Amazon Kendra
Developer Guide
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is Amazon Kendra?</td>
<td>ix</td>
</tr>
<tr>
<td>Querying Amazon Kendra</td>
<td>1</td>
</tr>
<tr>
<td>Benefits of Amazon Kendra</td>
<td>1</td>
</tr>
<tr>
<td>Amazon Kendra Editions</td>
<td>2</td>
</tr>
<tr>
<td>Pricing for Amazon Kendra</td>
<td>2</td>
</tr>
<tr>
<td>Are you a first-time Amazon Kendra user?</td>
<td>3</td>
</tr>
<tr>
<td>How Amazon Kendra works</td>
<td>4</td>
</tr>
<tr>
<td>Index</td>
<td>4</td>
</tr>
<tr>
<td>Searching indexes</td>
<td>5</td>
</tr>
<tr>
<td>Documents</td>
<td>6</td>
</tr>
<tr>
<td>Document types or formats</td>
<td>6</td>
</tr>
<tr>
<td>Document attributes or fields</td>
<td>8</td>
</tr>
<tr>
<td>Data sources</td>
<td>10</td>
</tr>
<tr>
<td>Queries</td>
<td>11</td>
</tr>
<tr>
<td>Tags</td>
<td>11</td>
</tr>
<tr>
<td>Tagging resources</td>
<td>11</td>
</tr>
<tr>
<td>Tag restrictions</td>
<td>12</td>
</tr>
<tr>
<td>Setting up Amazon Kendra</td>
<td>13</td>
</tr>
<tr>
<td>Sign up for AWS</td>
<td>13</td>
</tr>
<tr>
<td>Regions and endpoints</td>
<td>13</td>
</tr>
<tr>
<td>Setting up the AWS CLI</td>
<td>13</td>
</tr>
<tr>
<td>Setting up the AWS SDKs</td>
<td>14</td>
</tr>
<tr>
<td>IAM access roles for Amazon Kendra</td>
<td>15</td>
</tr>
<tr>
<td>IAM roles for indexes</td>
<td>15</td>
</tr>
<tr>
<td>IAM roles for the BatchPutDocument API</td>
<td>17</td>
</tr>
<tr>
<td>IAM roles for data sources</td>
<td>19</td>
</tr>
<tr>
<td>IAM roles for frequently asked questions (FAQs)</td>
<td>64</td>
</tr>
<tr>
<td>IAM roles for query suggestions</td>
<td>65</td>
</tr>
<tr>
<td>IAM roles for principal mapping of users and groups</td>
<td>66</td>
</tr>
<tr>
<td>IAM roles for AWS IAM Identity Center (successor to AWS Single Sign-On)</td>
<td>68</td>
</tr>
<tr>
<td>IAM roles for Amazon Kendra experiences</td>
<td>69</td>
</tr>
<tr>
<td>IAM roles for Custom Document Enrichment</td>
<td>70</td>
</tr>
<tr>
<td>Deploying Amazon Kendra</td>
<td>74</td>
</tr>
<tr>
<td>Overview</td>
<td>74</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>75</td>
</tr>
<tr>
<td>Setting up the example</td>
<td>75</td>
</tr>
<tr>
<td>Main search page</td>
<td>76</td>
</tr>
<tr>
<td>Search component</td>
<td>76</td>
</tr>
<tr>
<td>Results component</td>
<td>76</td>
</tr>
<tr>
<td>Facets component</td>
<td>76</td>
</tr>
<tr>
<td>Pagination component</td>
<td>76</td>
</tr>
<tr>
<td>Deploying a search application with no code</td>
<td>76</td>
</tr>
<tr>
<td>How the search Experience Builder works</td>
<td>77</td>
</tr>
<tr>
<td>Design and tune your search experience</td>
<td>77</td>
</tr>
<tr>
<td>Providing access to your search page</td>
<td>78</td>
</tr>
<tr>
<td>Configuring a search experience</td>
<td>79</td>
</tr>
<tr>
<td>Adjusting capacity</td>
<td>82</td>
</tr>
<tr>
<td>Viewing capacity</td>
<td>82</td>
</tr>
<tr>
<td>Adding and removing capacity</td>
<td>83</td>
</tr>
<tr>
<td>Amazon Kendra Intelligent Ranking capacity</td>
<td>83</td>
</tr>
<tr>
<td>Query suggestions capacity</td>
<td>83</td>
</tr>
<tr>
<td>Amazon Kendra experience capacity</td>
<td>84</td>
</tr>
</tbody>
</table>
Search experience capacity ... 84
Adaptive query bursting .. 84
Getting started ... 85
Prerequisites ... 85
 Sign up for an AWS account ... 85
 Create an administrative user ... 86
 Amazon Kendra resources: AWS CLI, SDK, console 86
Getting started with the Amazon Kendra console 90
Getting started (AWS CLI) ... 91
Getting started (SDK for Python (Boto3)) .. 92
Getting started (SDK for Java) .. 94
Getting started with S3 (console) .. 97
Getting started with MySQL (console) ... 98
Getting started with an IAM Identity Center identity source (console) .. 100
 Changing your IAM Identity Center identity source 101
Creating an index ... 103
 Adding documents directly to an index with batch upload 106
 Adding documents with the BatchPutDocument API 106
 Adding documents from an S3 bucket ... 108
 Adding frequently asked questions (FAQs) to an index 110
 Basic CSV file ... 110
 Custom CSV file ... 111
 JSON file .. 112
 Using your FAQ file .. 113
 FAQ files in languages other than English 115
Creating custom document fields ... 115
 Adding custom attributes or fields with the BatchPutDocument API 115
 Adding custom attributes or fields to an Amazon S3 data source 116
Controlling user access to documents with tokens 116
 Using OpenID .. 117
 Using a JSON Web Token (JWT) with a shared secret 118
 Using a JSON Web Token (JWT) with a public key 120
 Using JSON ... 123
Creating a data source connector ... 125
Setting an update schedule ... 125
Setting a language ... 125
Data source connectors ... 126
 Data source template schemas ... 126
 Adobe Experience Manager .. 277
 Alfresco ... 283
 Amazon RDS/Aurora ... 288
 Amazon FSx .. 292
 Amazon S3 .. 296
 Amazon Kendra Web Crawler ... 304
 Amazon WorkDocs .. 316
 Box ... 319
 Confluence .. 323
 Custom data source connector ... 334
 Dropbox ... 340
 GitHub .. 344
 Gmail .. 348
 Google Drive .. 353
 Jira ... 363
 Microsoft Exchange ... 366
 Microsoft OneDrive .. 370
 Microsoft SharePoint ... 379
 Microsoft Teams .. 398
| Microsoft Yammer | .. 404 |
| Quip | .. 407 |
| Salesforce | .. 411 |
| ServiceNow | .. 420 |
| Slack | .. 432 |
| Zendesk | .. 436 |
| Mapping data source fields | .. 440 |
| Using Amazon Kendra reserved or common document fields | .. 5 |
| Adding documents in languages other than English | .. 443 |
| Configuring Amazon Kendra to use an Amazon VPC | .. 445 |
| Connecting to a database in a VPC | .. 446 |
| Deleting an index, data source, or batch uploaded documents | .. 448 |
| Deleting an index | .. 448 |
| Deleting a data source | .. 449 |
| Deleting batch uploaded documents | .. 450 |
| Enriching your documents during ingestion | .. 451 |
| How Custom Document Enrichment works | .. 451 |
| Basic operations to change metadata | .. 452 |
| Lambda functions: extract and change metadata or content | .. 457 |
| Data contracts for Lambda functions | .. 463 |
| Structured document format | .. 464 |
| Example of a Lambda function that adheres to data contracts | .. 464 |
| Searching an index | .. 467 |
| Querying an index | .. 467 |
| Prerequisites | .. 468 |
| Searching an index (console) | .. 468 |
| Searching an index (SDK) | .. 468 |
| Searching an index (Postman) | .. 470 |
| Searching with advanced query syntax | .. 471 |
| Searching in languages | .. 474 |
| Retrieving passages | .. 476 |
| Browsing an index | .. 478 |
| Featuring search results | .. 480 |
| Tabular search for HTML | .. 482 |
| Query suggestions | .. 485 |
| Query suggestions using query history | .. 486 |
| Query suggestions using document fields | .. 490 |
| Block certain queries or document field content from suggestions | .. 493 |
| Query spell checker | .. 496 |
| Using the query spell checker with default limits | .. 497 |
| Filtering and facet search | .. 497 |
| Facets | .. 498 |
| Using document attributes to filter search results | .. 501 |
| Filtering each document's attributes in the search results | .. 502 |
| Filtering on user context | .. 502 |
| Filtering by user token | .. 503 |
| Filtering by user ID and group | .. 503 |
| Filtering by user attribute | .. 504 |
| User context filtering for documents added directly to an index | .. 505 |
| User context filtering for frequently asked questions | .. 505 |
| User context filtering for data sources | .. 505 |
| Query responses and response types | .. 514 |
| Query responses | .. 514 |
| Response types | .. 517 |
| Tuning and sorting responses | .. 520 |
| Tuning responses | .. 520 |
| Sorting responses | .. 520 |
What is Amazon Kendra?

Amazon Kendra is an intelligent search service that uses natural language processing and advanced machine learning algorithms to return specific answers to search questions from your data.

Unlike traditional keyword-based search, Amazon Kendra uses its semantic and contextual understanding capabilities to decide whether a document is relevant to a search query. It returns specific answers to questions, giving users an experience that’s close to interacting with a human expert.

Note
You can also use Amazon Kendra's semantic search capabilities to re-rank another search service's results. See Amazon Kendra Intelligent Ranking for more details.

With Amazon Kendra, you can create a unified search experience by connecting multiple data repositories to an index and ingesting and crawling documents. You can use your document metadata to create a feature-rich and customized search experience for your users, helping them efficiently find the right answers to their queries.

Querying Amazon Kendra

You can ask Amazon Kendra the following types of queries:

Factoid questions—Simple who, what, when, or where questions, such as *Where is the nearest service center to Seattle?* Factoid questions have fact-based answers that can be returned as a single word or phrase. The answer is retrieved from a FAQ or from your indexed documents.

Descriptive questions—Questions where the answer could be a sentence, passage, or an entire document. For example, *How do I connect my Echo Plus to my network?* Or, *How do I get tax benefits for lower income families?*

Keyword and natural language questions—Questions that include complex, conversational content where the meaning may not be clear. For example, *keynote address.* When Amazon Kendra encounters a word like "address", which has multiple contextual meanings, it correctly infers the meaning behind the search query and returns relevant information.

Benefits of Amazon Kendra

Amazon Kendra is highly scalable, capable of meeting performance demands, is tightly integrated with other AWS services such as Amazon S3 and Amazon Lex, and offers enterprise-grade security. Some of the benefits of using Amazon Kendra include:

Simplicity—Amazon Kendra provides a console and API for managing the documents that you want to search. You can use a simple search API to integrate Amazon Kendra into your client applications, such as websites or mobile applications.

Connectivity—Amazon Kendra can connect to third-party data repositories or data sources such as Microsoft SharePoint. You can easily index and search your documents using your data source.
Accuracy—Unlike traditional search services that use keyword searches, Amazon Kendra attempts to understand the context of the question and returns the most relevant word, snippet, or document for your query. Amazon Kendra uses machine learning to improve search results over time.

Security—Amazon Kendra delivers a highly secure enterprise search experience. Your search results reflect the security model of your organization and can be filtered based on the user or group access to documents. Customers are responsible for authenticating and authorizing user access.

Amazon Kendra Editions

Amazon Kendra has two versions: Developer Edition and Enterprise Edition. The following table outlines their features and the differences between the two.

<table>
<thead>
<tr>
<th>Amazon Kendra Developer Edition</th>
<th>Amazon Kendra Enterprise Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Kendra Developer Edition provides all of the features of Amazon Kendra at a lower cost.</td>
<td>Amazon Kendra Enterprise Edition provides all of the features of Amazon Kendra and is designed for production contexts.</td>
</tr>
<tr>
<td>Ideal use case</td>
<td>Ideal use case</td>
</tr>
<tr>
<td>• Exploring how Amazon Kendra indexes your documents</td>
<td>• Indexing your entire enterprise document library</td>
</tr>
<tr>
<td>• Trying out features</td>
<td>• Deploying your application in a production environment</td>
</tr>
<tr>
<td>• Developing applications that use Amazon Kendra</td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>Features</td>
</tr>
<tr>
<td>• A free tier with 750 hours of use included</td>
<td>• Up to 5 indexes with up to 50 data sources each</td>
</tr>
<tr>
<td>• Up to 5 indexes with up to 5 data sources each</td>
<td>• 100,000 documents or 30 GB of extracted text</td>
</tr>
<tr>
<td>• 10,000 documents or 3 GB of extracted text</td>
<td>• Approximately 8,000 queries per day or 0.1 queries per second</td>
</tr>
<tr>
<td>• Approximately 4,000 queries per day or 0.05 queries per second</td>
<td>• Runs in 3 Availability Zones (AZ)—see Availability Zones (data centers in AWS regions)</td>
</tr>
<tr>
<td>• Runs in 1 Availability Zone (AZ)—see Availability Zones (data centers in AWS regions)</td>
<td>Note</td>
</tr>
<tr>
<td>Limitations</td>
<td>You can increase this quota using the Service Quotas console.</td>
</tr>
<tr>
<td>• Not for production applications</td>
<td>Limitations</td>
</tr>
<tr>
<td>• No guarantees of latency or availability</td>
<td>• None</td>
</tr>
<tr>
<td>Note</td>
<td>For a list of regions, endpoints, and service quotas supported by Amazon Kendra, see Amazon Kendra endpoints and quotas.</td>
</tr>
</tbody>
</table>

Pricing for Amazon Kendra

You can get started for free with the Amazon Kendra Developer Edition that provides usage of up to 750 hours for the first 30 days.
After your trial expires, you are charged for all provisioned Amazon Kendra indexes, even if they are empty and no queries are run. After the trial expires, there are additional charges for scanning and syncing documents using the Amazon Kendra data sources.

For a complete list of charges and prices, see Amazon Kendra pricing.

Are you a first-time Amazon Kendra user?

If you are a first-time user of Amazon Kendra, we recommend that you read the following sections in order:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>How Amazon Kendra works (p. 4)</td>
<td>Getting started (p. 85)</td>
<td>Creating an index (p. 103)</td>
<td>Adding documents directly to an index with batch upload (p. 106)</td>
<td>Creating a data source connector (p. 125)</td>
<td>Searching an index (p. 467)</td>
</tr>
<tr>
<td>1</td>
<td>Introduces Amazon Kendra components and describes how you use them to create a search solution.</td>
<td>Explains how to set up your account and test the Amazon Kendra search API.</td>
<td>Explains how to use Amazon Kendra to create a search index and to add data sources to sync your documents.</td>
<td>Explains how to add documents directly to an Amazon Kendra index.</td>
<td>Explains how to add documents from your data repository to an Amazon Kendra index.</td>
<td>Explains how to use the Amazon Kendra search API to search an index.</td>
</tr>
</tbody>
</table>
How Amazon Kendra works

Amazon Kendra provides search functionality to your application. It indexes your documents directly or from your third-party document repository and intelligently serves relevant information to your users. You can use Amazon Kendra to create an updatable index of documents of a variety of types. For a list of document types supported by Amazon Kendra see Types of documents.

Amazon Kendra integrates with other services. For example, you can power Amazon Lex chat bots with Amazon Kendra search to provide useful answers to users' questions. You can use an Amazon Simple Storage Service bucket as a data source for Amazon Kendra to connect to and index your documents. And you can set up access policies or permissions to resources using AWS Identity and Access Management.

Amazon Kendra has the following components:

- **An index** that holds your documents and makes them searchable.
- **A data source** that stores your documents and Amazon Kendra connects to. You can automatically synchronize a data source with an Amazon Kendra index so that your index stays updated with your source repository.
- **A document addition API** that adds documents directly to an index.

You can use Amazon Kendra through the console or the API. You can create, update, and delete indexes. Deleting an index deletes all of its data source connectors and permanently deletes all of your document information from Amazon Kendra.

Topics

- Index (p. 4)
- Documents (p. 6)
- Data sources (p. 10)
- Queries (p. 11)
- Tags (p. 11)

Index

An index holds the contents of your documents and is structured in a way to make the documents searchable. The way you add documents to the index depends on how you store your documents.

- If you store your documents in some kind of repository, such as an Amazon S3 bucket or a Microsoft SharePoint site, you use a data source connector to index your documents from your repository.
- If you don't store your documents in a repository, you use the BatchPutDocument API to directly index your documents.
- For FAQ questions and answers, which must be stored in an Amazon Kendra (Amazon S3) bucket, you upload them from the bucket

You can create indexes with the Amazon Kendra console, the AWS CLI, or an AWS SDK. For information about the types of documents that can be indexed, see Document types.
Using Amazon Kendra reserved or common document fields

With the UpdateIndex API, you can create reserved or common fields using DocumentMetadataConfigurationUpdates and specifying the Amazon Kendra reserved index field name to map to your equivalent document attribute/field name. You can also create custom fields. If you use a data source connector, most include field mappings that map your data source document fields to Amazon Kendra index fields. If you use the console, you update fields by selecting your data source, selecting the edit action, and then proceeding next to the field mappings section for configuring the data source.

You can configure the Search object to set a field as either displayable, facetable, searchable, and sortable. You can configure the Relevance object to set a field's rank order, boost duration or time period to apply to boosting, freshness, importance value, and importance values mapped to specific field values. If you use the console, you can set the search settings for a field by selecting the facet option in the navigation menu. To set relevance tuning, select the option to search your index in the navigation menu, enter a query, and use the side panel options to tune the search relevance. You cannot change the field type once you have created the field.

Amazon Kendra has the following reserved or common document fields that you can use:

- **_authors** — A list of one or more authors responsible for the content of the document.
- **_category** — A category that places a document in a specific group.
- **_created_at** — The date and time in ISO 8601 format that the document was created. For example, 2012-03-25T12:30:10+01:00 is the ISO 8601 date-time format for March 25th 2012 at 12:30PM (plus 10 seconds) in Central European Time.
- **_data_source_id** — The identifier of the data source that contains the document.
- **_document_body** — The content of the document.
- **_document_id** — A unique identifier for the document.
- **_document_title** — The title of the document.
- **_excerpt_page_number** — The page number in a PDF file where the document excerpt appears. If your index was created before September 8, 2020, you must re-index your documents before you can use this attribute.
- **_faq_id** — If this is a question-answer type document (FAQ), a unique identifier for the FAQ.
- **_file_type** — The file type of the document, such as pdf or doc.
- **_last_updated_at** — The date and time in ISO 8601 format that the document was last updated. For example, 2012-03-25T12:30:10+01:00 is the ISO 8601 date-time format for March 25th 2012 at 12:30PM (plus 10 seconds) in Central European Time.
- **_source_uri** — The URI where the document is available. For example, the URI of the document on a company website.
- **_version** — An identifier for the specific version of a document.
- **_view_count** — The number of times that the document has been viewed.
- **_language_code** (String) — The code for a language that applies to the document. This defaults to English if you do not specify a language. For more information on supported languages, including their codes, see Adding documents in languages other than English.

For custom fields, you create these fields using DocumentMetadataConfigurationUpdates with the UpdateIndex API, just as you do when creating a reserved or common field. You must set the appropriate data type for your custom field. If you use the console, you update fields by selecting your data source, selecting the edit action, and then proceeding next to the field mappings section for...
configuring the data source. Some data sources don't support adding new fields or custom fields. You cannot change the field type once you have created the field.

The following are the types you can set for custom fields:

- Date
- Number
- String
- String list

If you added documents to the index using BatchPutDocument API, Attributes lists the fields/attributes of your documents and you create fields using the DocumentAttribute object.

For documents indexed from an Amazon S3 data source, you create fields using a JSON metadata file that includes the fields information.

If you use a supported database as your data source, you can configure your fields using the field mappings option.

Searching indexes

After you create an index, you can start searching your documents. For more information, see Searching indexes.

Documents

This section explains how Amazon Kendra indexes the many document formats it supports and the different fields/attributes of documents.

Topics

- Document types or formats (p. 6)
- Document attributes or fields (p. 8)

Document types or formats

Amazon Kendra supports popular document types or formats such as PDF, HTML, Word, PowerPoint, and more. An index can contain multiple document formats.

Amazon Kendra extracts the content inside the documents in order to make the documents searchable. The documents are parsed in a way to optimize search on the extracted text and any tabular content (HTML tables) within the documents. This means structuring the documents into fields or attributes that are used for search. The document metadata, such as the last modified date, can be useful fields for search.

Documents can be organized into rows and columns. For example, each document is a row and each document field/attribute, such as the title and body content, is a column. For example, if you use a database as your data source, the data should be structured or organized into rows and columns.

You can add documents to your index through the following ways:

- BatchPutDocument API
If you want to add a FAQ file, you use the CreateFaq API to add the file stored in an Amazon S3 bucket. You can choose between a basic CSV format, a CSV format that includes customs fields/attributes in a header, and a JSON format that includes custom fields. The default format is basic CSV.

The following provides information on each supported document format and how Amazon Kendra treats each format when indexing documents.

<table>
<thead>
<tr>
<th>Document format</th>
<th>Treated as</th>
<th>How document is treated</th>
<th>Original structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable Document Format (PDF)</td>
<td>HTML</td>
<td>Converted to HTML, then content is extracted.</td>
<td>Unstructured</td>
</tr>
<tr>
<td>HyperText Markup Language (HTML)</td>
<td>HTML</td>
<td>HTML tags are filtered out to extract content. Content must between the main HTML start and closing tags (<HTML>content</HTML>).</td>
<td>Semi-structured</td>
</tr>
<tr>
<td>Extensible Markup Language (XML)</td>
<td>XML</td>
<td>XML tags are filtered out to extract content.</td>
<td>Semi-structured</td>
</tr>
<tr>
<td>Extensible Stylesheet Language Transformation (XSLT)</td>
<td>XSLT</td>
<td>Tags are filtered out to extract content.</td>
<td>Semi-structured</td>
</tr>
<tr>
<td>MarkDown (MD)</td>
<td>Plain text</td>
<td>Content is extracted with MarkDown syntax included.</td>
<td>Semi-structured</td>
</tr>
<tr>
<td>Comma Separated Values (CSV)</td>
<td>CSV</td>
<td>Content extracted from each cell, with a single file treated as a single document result.</td>
<td>Structured for FAQ files, otherwise semi-structured</td>
</tr>
<tr>
<td>Microsoft Excel (XLSX)</td>
<td>XLSX</td>
<td>Content extracted from each cell, with a single file treated as a single document result.</td>
<td>Semi-structured</td>
</tr>
<tr>
<td>JavaScript Object Notation (JSON)</td>
<td>Plain text</td>
<td>Content is extracted with JSON syntax included.</td>
<td>Semi-structured</td>
</tr>
<tr>
<td>Rich Text Format (RTF)</td>
<td>RTF</td>
<td>RTF syntax is filtered out to extract content.</td>
<td>Semi-structured</td>
</tr>
<tr>
<td>Microsoft PowerPoint (PPT)</td>
<td>PPT</td>
<td>Only text content is extracted from PowerPoint slides for search. Images and other content are not extracted.</td>
<td>Unstructured</td>
</tr>
</tbody>
</table>
Document attributes or fields

A document has attributes or fields associated with it. Fields of a document are the properties of a document or what is contained within the structure of a document. For example, each of your documents might contain title, body text, and author. You can also add custom fields for your particular documents. For example, if your index searches tax documents, you might specify a custom field for the type of tax document such as W-2, 1099, and so on.

Before you can use a document field in a query, it must be mapped to an index field. For example, the title field can be mapped to the field _document_title. For more information, see Mapping fields.

You can use document fields to filter responses and to make faceted search results. For example, you can filter a response to only return a specific version of a document, or you can filter searches to only return 1099 type of tax documents that match the search term. For more information, see Filtering and facet search.

You can also use document fields to manually tune the query response. For example, you can choose to increase the importance of the title field to increase the weight that Amazon Kendra assigns to the field when determining which documents to return in the response. For more information, see Tuning search relevance.

If you are adding a document directly to an index, you specify the fields in the Document input parameter to the BatchPutDocument API. You specify the custom field values in a DocumentAttribute object array. If you are using a data source, the method that you use to add the document fields depends on the data source. For more information, see Mapping data source fields.

Using Amazon Kendra reserved or common document fields

With the UpdateIndex API, you can create reserved or common fields using DocumentMetadataConfigurationUpdates and specifying the Amazon Kendra reserved index field name to map to your equivalent document attribute/field name. You can also create custom fields. If you use a data source connector, most include field mappings that map your data source document fields to Amazon Kendra index fields. If you use the console, you update fields by selecting your data source, selecting the edit action, and then proceeding next to the field mappings section for configuring the data source.

You can configure the Search object to set a field as either displayable, facetable, searchable, and sortable. You can configure the Relevance object to set a field's rank order, boost duration or time period to apply to boosting, freshness, importance value, and importance values mapped to specific field values. If you use the console, you can set the search settings for a field by selecting the facet option in the navigation menu. To set relevance tuning, select the option to search your index in the navigation menu.
menu, enter a query, and use the side panel options to tune the search relevance. You cannot change the
field type once you have created the field.

Amazon Kendra has the following reserved or common document fields that you can use:

- **_authors**—A list of one or more authors responsible for the content of the document.
- **_category**—A category that places a document in a specific group.
- **_created_at**—The date and time in ISO 8601 format that the document was created. For example,
 2012-03-25T12:30:10+01:00 is the ISO 8601 date-time format for March 25th 2012 at 12:30PM (plus 10
 seconds) in Central European Time.
- **_data_source_id**—The identifier of the data source that contains the document.
- **_document_body**—The content of the document.
- **_document_id**—A unique identifier for the document.
- **_document_title**—The title of the document.
- **_excerpt_page_number**—The page number in a PDF file where the document excerpt appears. If
 your index was created before September 8, 2020, you must re-index your documents before you can
 use this attribute.
- **_faq_id**—If this is a question-answer type document (FAQ), a unique identifier for the FAQ.
- **_file_type**—The file type of the document, such as pdf or doc.
- **_last_updated_at**—The date and time in ISO 8601 format that the document was last updated.
 For example, 2012-03-25T12:30:10+01:00 is the ISO 8601 date-time format for March 25th 2012 at
 12:30PM (plus 10 seconds) in Central European Time.
- **_source_uri**—The URI where the document is available. For example, the URI of the document on a
 company website.
- **_version**—An identifier for the specific version of a document.
- **_view_count**—The number of times that the document has been viewed.
- **_language_code** (String)—The code for a language that applies to the document. This defaults to
 English if you do not specify a language. For more information on supported languages, including
 their codes, see [Adding documents in languages other than English](#).

For custom fields, you create these fields using `DocumentMetadataConfigurationUpdates` with
the `UpdateIndex` API, just as you do when creating a reserved or common field. You must set the
appropriate data type for your custom field. If you use the console, you update fields by selecting
your data source, selecting the edit action, and then proceeding next to the field mappings section for
configuring the data source. Some data sources don't support adding new fields or custom fields. You
cannot change the field type once you have created the field.

The following are the types you can set for custom fields:

- Date
- Number
- String
- String list

If you added documents to the index using `BatchPutDocument` API, `Attributes` lists the fields/
attributes of your documents and you create fields using the `DocumentAttribute` object.

For documents indexed from an Amazon S3 data source, you create fields using a [JSON metadata file]
that includes the fields information.

If you use a supported database as your data source, you can configure your fields using the field
mappings option.
Data sources

A data source is a data repository or location that Amazon Kendra connects to and indexes your documents or content. For example, you can configure Amazon Kendra to connect to Microsoft SharePoint to crawl and index your documents stored in this source. You can also index web pages by providing the URLs for Amazon Kendra to crawl. You can automatically synchronize a data source with an Amazon Kendra index so that added, updated, or deleted documents in the data source are also added, updated, or deleted in the index.

Supported data sources are:

- Adobe Experience Manager
- Alfresco
- Amazon FSx
- Amazon RDS for MySQL, Amazon RDS for PostgreSQL, Amazon Aurora MySQL, Amazon Aurora PostgreSQL databases
- Amazon S3 buckets
- Amazon Kendra Web Crawler
- Amazon WorkDocs
- Box
- Confluence
- Custom data sources
- Dropbox
- GitHub
- Gmail
- Google Workspace Drives
- Jira
- Microsoft Exchange
- Microsoft OneDrive
- Microsoft SharePoint
- Microsoft Teams
- Microsoft Yammer
- Quip
- Salesforce
- ServiceNow
- Slack
- Zendesk

For a list of document types or formats supported by Amazon Kendra see Document types. You must first create an index before creating a data source connector to index your documents from your data source.

Note

To create an index of documents, you don't need to use a data source. You can add documents directly to an index with batch upload. For more information, see Adding documents directly to an index.

For a walkthrough on using the Amazon Kendra console, the AWS CLI, or SDKs, see Getting started.
Queries

To get answers, users query an index. Users can use natural language in their queries. The response contains information, such as the title, a text excerpt, and the location of documents in the index that provide the best answer.

Amazon Kendra uses all of the information that you provide about your documents, not just the contents of the documents, to determine whether a document is relevant to the query. For example, if your index contains information about when documents were last updated, you can tell Amazon Kendra to assign a higher relevance to documents that were updated more recently.

A query can also contain criteria for how to filter the response so that Amazon Kendra returns only documents that satisfy the filter criteria. For example, if you created an index field called `department`, you can filter the response so that only documents with the department field set to `legal` are returned. For more information, see Filtering search.

You can influence the results of a query by tuning the relevance of individual fields in the index. Tuning changes the importance of a field on the results. For example, if you raise the importance of documents with the category `new`, documents with this category are more likely to be included in the response. For more information, see Tuning search relevance.

For more information about using queries, see Searching an index.

Tags

Manage your indexes, data sources, and FAQs by assigning tags or labels. You can use tags to categorize your Amazon Kendra resources in various ways. For example, by purpose, owner, or application, or any combination. Each tag consists of a key and a value, both of which you define.

Tags help you to:

- Identify and organize your AWS resources. Many AWS services support tagging, so you can assign the same tag to resources in different services to indicate that the resources are related. For example, you can tag an index and the Amazon Lex bot that uses the index with the same tag.
- Allocate costs. You activate tags on the AWS Billing and Cost Management dashboard. AWS uses tags to categorize your costs and deliver a monthly cost allocation report to you. For more information, see Cost Allocation and Tagging in About AWS Billing and Cost Management.
- Control access to your resources. You can use tags in AWS Identity and Access Management (IAM) policies that control access to Amazon Kendra resources. You can attach these policies to an IAM role or user to activate tag-based access control. For more information, see Authorization based on tags.

You can create and manage tags using the AWS Management Console, the AWS Command Line Interface (AWS CLI), or the Amazon Kendra API.

Tagging resources

If you're using the Amazon Kendra console, you can tag resources when you create them or add them later. You can also use the console to update or remove tags.

If you’re using the AWS Command Line Interface (AWS CLI) or the Amazon Kendra API, use the following operations to manage tags for your resources:

- `CreateDataSource`—Apply tags when you create a data source.
- `CreateFaq`—Apply tags when you create an FAQ.
Tag restrictions

The following restrictions apply to tags on Amazon Kendra resources:

- Maximum number of tags—50
- Maximum key length—128 characters
- Maximum value length—256 characters
- Valid characters for key and value—a–z, A–Z, space, and the following characters: _ . / = + - and @
- Keys and values are case sensitive
- Don't use aws : as a prefix for keys; it's reserved for AWS use
Setting up Amazon Kendra

Before using Amazon Kendra, you must have an Amazon Web Services (AWS) account. After you have an AWS account, you can access Amazon Kendra through the Amazon Kendra console, the AWS Command Line Interface (AWS CLI), or the AWS SDKs.

This guide includes examples for AWS CLI, Java, and Python.

Topics
- Sign up for AWS (p. 13)
- Regions and endpoints (p. 13)
- Setting up the AWS CLI (p. 13)
- Setting up the AWS SDKs (p. 14)

Sign up for AWS

When you sign up for Amazon Web Services (AWS), your account is automatically signed up for all services in AWS, including Amazon Kendra. You are charged only for the services that you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Open https://aws.amazon.com, and then choose Create an AWS Account.
2. Follow the on-screen instructions to complete the account creation. Note your 12-digit AWS account number. Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone keypad.

Regions and endpoints

An endpoint is a URL that is the entry point for a web service. Each endpoint is associated with a specific AWS region. If you use a combination of the Amazon Kendra console, the AWS CLI, and the Amazon Kendra SDKs, pay attention to their default regions as all Amazon Kendra components of a given campaign (index, query, etc.) must be created in the same region. For the regions and endpoints supported by Amazon Kendra, see Regions and Endpoints.

Setting up the AWS CLI

The AWS Command Line Interface (AWS CLI) is a unified developer tool for managing AWS services, including Amazon Kendra. We recommend that you install it.

1. To install the AWS CLI, follow the instructions in Installing the AWS Command Line Interface in the AWS Command Line Interface User Guide.
2. To configure the AWS CLI and set up a profile to call the AWS CLI, follow the instructions in [Configuring the AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html) in the [AWS Command Line Interface User Guide](https://docs.aws.amazon.com/cli/latest/index.html).

3. To confirm that the AWS CLI profile is configured properly, run the following command:

   ```
   aws configure --profile default
   ```

 If your profile has been configured correctly, you will see output similar to the following:

   ```
   AWS Access Key ID [**************52FQ]:
   AWS Secret Access Key [**************xgyZ]:
   Default region name [us-west-2]:
   Default output format [json]:
   ```

4. To verify that the AWS CLI is configured for use with Amazon Kendra, run the following commands:

   ```
   aws kendra help
   ```

 If the AWS CLI is configured correctly, you will see a list of the supported AWS CLI commands for Amazon Kendra, Amazon Kendra runtime, and Amazon Kendra events.

Setting up the AWS SDKs

Download and install the AWS SDKs that you want to use. This guide provides examples for Python. For information about other AWS SDKs, see [Tools for Amazon Web Services](https://docs.aws.amazon.com/sdk-for-python/guide/Welcome.html).

The package for the Python SDK is called **Boto3**.

Before you run the below Python commands, you must first download and install Python 3.6 or later for your operating system. Support for Python 3.5 and earlier is deprecated. If you do not have pip included in your Python Scripts directory, you can download the [get-pip.py](https://bootstrap.pypa.io/get-pip.py) and store this in your Scripts directory. You can also set your Python directory as a [Path or environment variable](https://docs.python.org/3/library/sys.html#environment-variables) using a terminal program.

```python
# Install the latest Boto3 release via pip
pip install boto3

# You can install a specific version of Boto3 for compatibility reasons
# Install Boto3 version 1.0 specifically
pip install boto3==1.0.0

# Make sure Boto3 is no older than version 1.15.0
pip install boto3>=1.15.0

# Avoid versions of Boto3 newer than version 1.15.3
pip install boto3<=1.15.3
```

To use Boto3, you must set up authentication credentials for your AWS account using the [IAM console](https://aws.amazon.com/iam/).
IAM access roles for Amazon Kendra

When you create an index, data source, or an FAQ, Amazon Kendra needs access to the AWS resources required to create the Amazon Kendra resource. You must create an AWS Identity and Access Management (IAM) policy before you create the Amazon Kendra resource. When you call the operation, you provide the Amazon Resource Name (ARN) of the role with the policy attached. For example, if you are calling the BatchPutDocument API to add documents from an Amazon S3 bucket, you provide Amazon Kendra with a role with a policy that has access to the bucket.

You can create a new IAM role in the Amazon Kendra console or choose an IAM existing role to use. The console displays roles that have the string "kendra" or "Kendra" in the role name.

The following topics provide details for the required policies. If you create IAM roles using the Amazon Kendra console these policies are created for you.

Topics
- IAM roles for indexes (p. 15)
- IAM roles for the BatchPutDocument API (p. 17)
- IAM roles for data sources (p. 19)
- IAM roles for frequently asked questions (FAQs) (p. 64)
- IAM roles for query suggestions (p. 65)
- IAM roles for principal mapping of users and groups (p. 66)
- IAM roles for AWS IAM Identity Center (successor to AWS Single Sign-On) (p. 68)
- IAM roles for Amazon Kendra experiences (p. 69)
- IAM roles for Custom Document Enrichment (p. 70)

IAM roles for indexes

When you create an index, you must provide an IAM role with permission to write to an Amazon CloudWatch. You must also provide a trust policy that allows Amazon Kendra to assume the role. The following are the policies that must be provided.

IAM roles for indexes

A role policy to allow Amazon Kendra to access a CloudWatch log.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": "cloudwatch:PutMetricData",
         "Resource": "+",
         "Condition": {
            "StringEquals": {
               "cloudwatch:namespace": "AWS/Kendra"
            }
         }
      },
      {
         "Effect": "Allow",
         "Action": "cloudwatch:PutMetricData",
         "Resource": "+",
         "Condition": {
            "StringEquals": {
               "cloudwatch:namespace": "AWS/Kendra"
            }
         }
      }
   ]
}
```
IAM roles for indexes

A role policy to allow Amazon Kendra to access AWS Secrets Manager. If you are using user context with Secrets Manager as a key location, you can use the following policy.

```json
{
  "Version":"2012-10-17",
  "Statement":[
    {
      "Effect":"Allow",
      "Action":"cloudwatch:PutMetricData",
      "Resource":"*",
      "Condition":{
        "StringEquals":{
          "cloudwatch:namespace":"AWS/Kendra"
        }
      }
    },
    {
      "Effect":"Allow",
      "Action":"logs:DescribeLogGroups",
      "Resource": "*"
    },
    {
      "Effect":"Allow",
      "Action": "logs:CreateLogGroup",
    },
    {
      "Effect":"Allow",
    },
    {
      "Effect":"Allow",
      "Action": "secretsmanager:GetSecretValue",
    }
  ]
}
```
IAM roles for the BatchPutDocument API

Warning

Amazon Kendra doesn't use a bucket policy that grants permissions to an Amazon Kendra principal to interact with an S3 bucket. Instead, it uses IAM roles. Make sure that Amazon Kendra isn't included as a trusted member in your bucket policy to avoid any data security issues in accidentally granting permissions to arbitrary principals. However, you can add a bucket policy to use an Amazon S3 bucket across different accounts. For more information, see [Policies to use Amazon S3 across accounts](#). For information about IAM roles for S3 data sources, see [IAM roles](#).

When you use the `BatchPutDocument` API to index documents in an Amazon S3 bucket, you must provide Amazon Kendra with an IAM role with access to the bucket. You must also provide a trust policy that allows Amazon Kendra to assume the role. If the documents in the bucket are encrypted, you must provide permission to use the AWS KMS customer master key (CMK) to decrypt the documents.

IAM roles for the BatchPutDocument API

A required role policy to allow Amazon Kendra to access an Amazon S3 bucket.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "Service": "kendra.amazonaws.com"
            },
            "Action": "sts:AssumeRole"
        }
    ]
}
```
IAM roles for the BatchPutDocument API

```json
"Effect": "Allow",
"Action": [
  "s3:GetObject"
],
"Resource": [
  "arn:aws:s3:::bucket-name/*"
]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

It is recommended that you include `aws:sourceAccount` and `aws:sourceArn` in the trust policy. This limits permissions and securely checks if `aws:sourceAccount` and `aws:sourceArn` are the same as provided in the IAM role policy for the `sts:AssumeRole` action. This prevents unauthorized entities from accessing your IAM roles and their permissions. For more information, see the AWS Identity and Access Management guide on the [confused deputy problem](#).

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": ["kendra.amazonaws.com"]
      },
      "Action": "sts:AssumeRole",
      "Condition": {
        "StringEquals": {
          "aws:SourceAccount": "your-account-id"
        },
        "StringLike": {
          "aws:SourceArn": "arn:aws:kendra:your-region:your-account-id:index/*"
        }
      }
    }
  ]
}
```

An optional role policy to allow Amazon Kendra to use an AWS KMS customer master key (CMK) to decrypt documents in an Amazon S3 bucket.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": ["kendra.amazonaws.com"]
      },
      "Action": "sts:AssumeRole",
      "Condition": {
        "StringEquals": {
          "aws:SourceAccount": "your-account-id"
        },
        "StringLike": {
          "aws:SourceArn": "arn:aws:kendra:your-region:your-account-id:index/*"
        }
      }
    }
  ]
}
```
IAM roles for data sources

When you use the CreateDataSource API, you must give Amazon Kendra an IAM role that has permission to access the database resources. The specific permissions required depend on the data source.

IAM roles for Adobe Experience Manager data sources

When you use Adobe Experience Manager, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Adobe Experience Manager.
- Permission to call the required public APIs for the Adobe Experience Manager connector.
- Permission to call the BatchPutDocument, BatchDeleteDocument, PutPrincipalMapping, DeletePrincipalMapping, DescribePrincipalMapping, and ListGroupsOlderThanOrderingId APIs.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": ["secretsmanager:GetSecretValue"],
      "Resource": ["arn:aws:secretsmanager:{{your-region}}:{{your-account-id}}:secret:[[secret-id]]"]
    },
    {
      "Effect": "Allow",
      "Action": ["kms:Decrypt"],
      "Resource": ["arn:aws:kms:{{your-region}}:{{your-account-id}}:key/[[key-id]]"],
      "Condition": {
        "StringLike": {
          "kms:ViaService": ["secretsmanager.{{your-region}}.amazonaws.com"]
        }
      }
    }
  ]
}
```
IAM roles for data sources

A trust policy to allow Amazon Kendra to assume a role.

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

IAM roles for Alfresco data sources

When you use Alfresco, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Alfresco.
- Permission to call the required public APIs for the Alfresco connector.
- Permission to call the BatchPutDocument, BatchDeleteDocument, PutPrincipalMapping, DeletePrincipalMapping, DescribePrincipalMapping, and ListGroupsOlderThanOrderingId APIs.

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": ["secretsmanager:GetSecretValue"],
      "Resource": ["arn:aws:secretsmanager:{your-region}:{your-account-id}:secret:[{secret-id}]"]
    },
    {
      "Effect": "Allow",
      "Action": ["kms:Decrypt"
    },
    {
      "Effect": "Allow",
    }]
}
```
"Resource": [
 "arn:aws:kms:{{your-region}}:{{your-account-id}}:key/{{key-id}}"]
],
"Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.{{your-region}}.amazonaws.com"
]
 }
},
"Effect": "Allow",
"Action": [
 "kendra:PutPrincipalMapping",
 "kendra:DeletePrincipalMapping",
 "kendra:ListGroupsOlderThanOrderingId",
 "kendra:DescribePrincipalMapping"
],
"Resource": [
 "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}",
 "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}/data-source/*"
],
"Effect": "Allow",
"Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
"Resource": "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}"
}

A trust policy to allow Amazon Kendra to assume a role.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"kendra.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

IAM roles for Amazon S3 data sources

Warning
Amazon Kendra doesn't use a bucket policy that grants permissions to an Amazon Kendra principal to interact with an S3 bucket. Instead, it uses IAM roles. Make sure that Amazon Kendra isn't included as a trusted member in your bucket policy to avoid any data security issues in accidentally granting permissions to arbitrary principals. However, you can add a bucket policy to use an Amazon S3 bucket across different accounts. For more information, see Policies to use Amazon S3 across accounts (p. 27) (scroll down).

When you use an Amazon S3 bucket as a data source, you supply a role that has permission to access the bucket, and to use the BatchPutDocument and BatchDeleteDocument operations. If the documents in the Amazon S3 bucket are encrypted, you must provide permission to use the AWS KMS customer master key (CMK) to decrypt the documents.
The following role policies must allow Amazon Kendra to assume a role. Scroll further down to view a trust policy to assume a role.

A required role policy to allow Amazon Kendra to use an Amazon S3 bucket as a data source.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": ["s3:GetObject"],
            "Resource": ["arn:aws:s3:::bucket-name/**"],
            "Effect": "Allow"
        },
        {
            "Action": ["s3:ListBucket"],
            "Resource": ["arn:aws:s3:::bucket-name"],
            "Effect": "Allow"
        },
        {
            "Effect": "Allow",
            "Resource": ["arn:aws:kendra:your-region:your-account-id:index/index-id"]
        }
    ]
}
```

An optional role policy to allow Amazon Kendra to use an AWS KMS customer master key (CMK) to decrypt documents in an Amazon S3 bucket.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": ["kms:Decrypt"],
            "Resource": ["arn:aws:kms:your-region:your-account-id:key/key-id"]
        }
    ]
}
```

An optional role policy to allow Amazon Kendra to access an Amazon S3 bucket, while using a Amazon VPC, and without activating AWS KMS or sharing AWS KMS permissions.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": ["s3:GetObject"],
            "Resource": ["arn:aws:s3:::bucket-name/**"],
            "Effect": "Allow"
        },
        {
            "Action": ["s3:ListBucket"],
            "Resource": ["arn:aws:s3:::bucket-name"],
            "Effect": "Allow"
        },
        {
            "Effect": "Allow",
            "Resource": ["arn:aws:kendra:your-region:your-account-id:index/index-id"]
        }
    ]
}
```
IAM roles for data sources

"Statement": [
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::{{bucket-name}}/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::{{bucket-name}}"
],
 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:{{your-region}}:{{your-account-id}}:subnet/{{subnet-ids}}",
 "arn:aws:ec2:{{your-region}}:{{your-account-id}}:security-group/{{security-group}}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": "arn:aws:ec2:{{your-region}}:{{your-account-id}}:network-interface/{*}",
 "Condition": {
 "StringLike": {
 "aws:RequestTag/AWS_KENDRA": "kendra_{your-account-id}_{data-source-id}" *
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:{{your-region}}:{{your-account-id}}:network-interface/{*}",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateNetworkInterface"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSubnets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeNetworkInterfaces"
],
 "Resource": "*"
 }
]
An optional role policy to allow Amazon Kendra to access an Amazon S3 bucket while using a Amazon VPC, and with AWS KMS permissions activated.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": [
                "s3:GetObject"
            ],
            "Resource": [
                "arn:aws:s3:::{bucket-name}/*"
            ],
            "Effect": "Allow"
        },
        {
            "Action": [
                "s3:ListBucket"
            ],
            "Resource": [
                "arn:aws:s3:::{bucket-name}"
            ],
            "Effect": "Allow"
        }
    ]
}
```
IAM roles for data sources

```
"arn:aws:s3:::{{bucket-name}}",
"Effect": "Allow"
],
"Effect": "Allow",
"Action": [
  "kms:Decrypt"
],
"Resource": [
  "arn:aws:kms:{{your-region}}:{{your-account-id}}:key/{{key-id}}"
],
"Condition": {
  "StringLike": {
    "kms:ViaService": [
      "s3.{{your-region}}.amazonaws.com"
    ]
  }
}
],
"Effect": "Allow",
"Action": [
  "ec2:CreateNetworkInterface"
],
"Resource": [
  "arn:aws:ec2:{{your-region}}:{{your-account-id}}:subnet/[[subnet-ids]]",
  "arn:aws:ec2:{{your-region}}:{{your-account-id}}:security-group/[[security-group]]"
],
"Effect": "Allow",
"Action": [
  "ec2:CreateNetworkInterface"
],
"Resource": "arn:aws:ec2:{{your-region}}:{{your-account-id}}:network-interface/*",
"Condition": {
  "StringLike": {
    "aws:RequestTag/AWS_KENDRA": "kendra_{{your-account-id}}_{{index-id}}_{data-source-id}}_**"
  }
}
],
"Effect": "Allow",
"Action": [
  "ec2:CreateTags"
],
"Resource": "arn:aws:ec2:{{your-region}}:{{your-account-id}}:network-interface/*",
"Condition": {
  "StringEquals": {
    "ec2:CreateAction": "CreateNetworkInterface"
  }
}
],
"Effect": "Allow",
"Action": [
  "ec2:DescribeSubnets"
],
"Resource": "**"
],
"Effect": "Allow",
"Action": [
  "ec2:DescribeNetworkInterfaces"
]
```
IAM roles for data sources

A trust policy to allow Amazon Kendra to assume a role.

```json
{
    "Version":"2012-10-17",
    "Statement": [
        {
            "Effect":"Allow",
            "Principal":{
                "Service":"kendra.amazonaws.com"
            },
            "Action":"sts:AssumeRole"
        }
    ]
}
```
Policies to use Amazon S3 across accounts

If your Amazon S3 bucket is in a different account to the account you use for your Amazon Kendra index, you can create policies to use it across accounts.

A role policy to use your Amazon S3 bucket as your data source when the bucket is in a different account to your Amazon Kendra index.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": ["s3:GetObject"],
            "Resource": ["arn:aws:s3:::$bucket-in-other-account/*"],
            "Effect": "Allow"
        },
        {
            "Action": ["s3:ListBucket"],
            "Resource": ["arn:aws:s3:::$bucket-in-other-account/*"],
            "Effect": "Allow"
        },
        {
            "Effect": "Allow",
            "Resource": ["arn:aws:kendra:$your-region:$your-account-id:index/$index-id"]
        },
        {
            "Effect": "Allow",
            "Action": ["s3:GetObject", "s3:PutObject", "s3:PutObjectAcl"],
            "Resource": "arn:aws:s3:::$bucket-in-other-account/*"
        }
    ]
}
```

A bucket policy to allow the Amazon S3 data source role to access the Amazon S3 bucket across accounts.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "AWS": "$kendra-s3-connector-role-arn"
            },
        }
    ]
}
```
IAM roles for data sources

When you use a database as a data source, you provide Amazon Kendra with a role that has the permissions necessary for connecting to the database. These include:

- Permission to access the AWS Secrets Manager secret that contains the user name and password for the database site. For more information about the contents of the secret, see Database data sources.
- Permission to use the AWS KMS customer master key (CMK) to decrypt the user name and password secret stored by Secrets Manager.
- Permission to use the BatchPutDocument and BatchDeleteDocument operations to update the index.
- Permission to access the Amazon S3 bucket that contains the SSL certificate used to communicate with the database site.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

IAM roles for database data sources

A trust policy to allow Amazon Kendra to assume a role.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "secretsmanager:GetSecretValue"
      ],
      "Resource": [
        "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
      ]
    }
  ]
}
```
There are two optional policies that you might use with a database data source.

If you have encrypted the Amazon S3 bucket that contains the SSL certificate used to communicate with the database, provide a policy to give Amazon Kendra access to the key.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
            "kms:Decrypt"
         ],
         "Resource": [
            "arn:aws:kms:your-region:your-account-id:key/key-id"
         ]
      },
      {
         "Effect": "Allow",
         "Action": [
            "kendra:BatchPutDocument",
            "kendra:BatchDeleteDocument"
         ],
         "Resource": [
            "arn:aws:kendra:your-region:your-account-id:index/index-id"
         ],
         "Condition": {
            "StringLike": {
               "kms:ViaService": ["kendra.your-region.amazonaws.com"
            ]
         }
      },
      {
         "Effect": "Allow",
         "Action": [
            "s3:GetObject"
         ],
         "Resource": [
            "arn:aws:s3:::bucket-name/*"
         ]
      }
   ]
}
```

If you are using a VPC, provide a policy that gives Amazon Kendra access to the required resources. See [IAM roles for data sources, VPC](#) for the required policy.

A trust policy to allow Amazon Kendra to assume a role.
IAM roles for Amazon FSx data sources

When you use Amazon FSx, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Amazon FSx.
- Permission to access Amazon Virtual Private Cloud (VPC) where your Amazon FSx resides.
- Permission to get the domain name of your Active Directory for your Amazon FSx Windows file system.
- Permission to call the required public APIs for the Amazon FSx connector.
- Permission to call the BatchPutDocument and BatchDeleteDocument APIs to update the index.
IAM roles for data sources

```json
{
    "arn:aws:ec2:{{your-region}}:{{your-account-id}}:subnet/[[subnet-ids]]"
},
{
    "Effect": "Allow",
    "Action": [
        "ec2:DescribeSubnets",
        "ec2:DescribeNetworkInterfaces"
    ],
    "Resource": "*"
},
{
    "Effect": "Allow",
    "Action": [
        "ec2:CreateNetworkInterfacePermission"
    ],
    "Resource": "arn:aws:ec2:{{your-region}}:{{your-account-id}}:network-interface/ *",
    "Condition": {
        "StringEquals": {
            "ec2:AuthorizedService": "kendra.*.amazonaws.com"
        },
        "ArnEquals": {
            "ec2:Subnet": [
                "arn:aws:ec2:{{your-region}}:{{your-account-id}}:subnet/[[subnet-ids]]"
            ]
        }
    }
},
{
    "Sid": "AllowsKendraToGetDomainNameOfActiveDirectory",
    "Effect": "Allow",
    "Action": "ds:DescribeDirectories",
    "Resource": "*"
},
{
    "Sid": "AllowsKendraToCallRequiredFsxAPIs",
    "Effect": "Allow",
    "Action": [
        "fsx:DescribeFileSystems"
    ],
    "Resource": "*"
},
{
    "Sid": "iamPassRole",
    "Effect": "Allow",
    "Action": "iam:PassRole",
    "Resource": "*",
    "Condition": {
        "StringEquals": {
            "iam:PassedToService": [
                "kendra.*.amazonaws.com"
            ]
        }
    }
},
{
    "Effect": "Allow",
    "Action": [
        "kendra:BatchPutDocument",
        "kendra:BatchDeleteDocument"
    ],
    "Resource": "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}"
}
]
A trust policy to allow Amazon Kendra to assume a role.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

IAM roles for Amazon Kendra Web Crawler data sources

When you use Amazon Kendra Web Crawler, you provide a role with the following policies:

- Permission to access the AWS Secrets Manager secret that contains the credentials to connect to websites or a web proxy server backed by basic authentication. For more information about the contents of the secret, see Using a web crawler data source.
- Permission to use the AWS KMS customer master key (CMK) to decrypt the user name and password secret stored by Secrets Manager.
- Permission to use the BatchPutDocument and BatchDeleteDocument operations to update the index.
- If you use an Amazon S3 bucket to store your list of seed URLs or sitemaps, include permission to access the Amazon S3 bucket.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account:key/key-id"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": ["secretsmanager.your-region.amazonaws.com"
]
 }
 }
]
}
```
IAM roles for data sources

If you store your seed URLs or sitemaps in an Amazon S3 bucket, you must add this permission to the role.

A trust policy to allow Amazon Kendra to assume a role.

IAM roles for Amazon WorkDocs data sources

When you use Amazon WorkDocs, you provide a role with the following policies

- Permission to verify the directory ID (organization ID) that corresponds with your Amazon WorkDocs site repository.
- Permission to get the domain name of your Active Directory that contains your Amazon WorkDocs site directory.
- Permission to call the required public APIs for the Amazon WorkDocs connector.
- Permission to call the BatchPutDocument and BatchDeleteDocument APIs to update the index.
A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```
IAM roles for Box data sources

When you use Box, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Slack.
- Permission to call the required public APIs for the Box connector.
- Permission to call the BatchPutDocument, BatchDeleteDocument, 
  PutPrincipalMapping, DeletePrincipalMapping, DescribePrincipalMapping, and 
  ListGroupsOlderThanOrderingId APIs.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:{your-region}:{your-account-id}:secret:[secret-id]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:{your-region}:{your-account-id}:key:[key-id]"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.{your-region}.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:PutPrincipalMapping",
 "kendra:DeletePrincipalMapping",
 "kendra:ListGroupsOlderThanOrderingId",
 "kendra:DescribePrincipalMapping"
],
 "Resource": "arn:aws:kendra:{your-region}:{your-account-d}:index/{{index-id}}",
 "arn:aws:kendra:{your-region}:{your-account-id}:index/{{index-id}}/data-source/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:{your-region}:{your-account-id}:index/{{index-id}}"
 }
]
}
```

A trust policy to allow Amazon Kendra to assume a role.
IAM roles for Confluence data sources

IAM roles for Confluence Connector v1.0

When you use a Confluence server as a data source, you provide a role with the following policies:

- Permission to access the AWS Secrets Manager secret that contains the credentials necessary to connect to Confluence. For more information about the contents of the secret, see Confluence data sources.
- Permission to use the AWS KMS customer master key (CMK) to decrypt the user name and password secret stored by Secrets Manager.
- Permission to use the BatchPutDocument and BatchDeleteDocument operations to update the index.
If you are using a VPC, provide a policy that gives Amazon Kendra access to the required resources. See IAM roles for data sources, VPC for the required policy.

A trust policy to allow Amazon Kendra to assume a role.

```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "kendra.amazonaws.com"
},
"Action": "sts:AssumeRole"
}
}
```

**IAM roles for Confluence Connector v2.0**

For a Confluence connector v2.0 data source, you provide a role with the following policies.

- Permission to access the AWS Secrets Manager secret that contains the authentication credentials for Confluence. For more information about the contents of the secret, see Confluence data sources.
- Permission to use the AWS KMS customer master key (CMK) to decrypt the user name and password secret stored by AWS Secrets Manager.
- Permission to use the BatchPutDocument and BatchDeleteDocument operations to update the index.

You must also attach a trust policy that allows Amazon Kendra to assume the role.

A role policy to allow Amazon Kendra to connect to Confluence.

```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"secretsmanager:GetSecretValue"
],
"Resource": [
"arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
},
{
"Effect": "Allow",
"Action": [
"kms:Decrypt"
],
"Resource": [
"arn:aws:kms:your-region:your-account-id:key/key-id"
],
"Condition": {
"StringLike": {
"kms:ViaService": [
"kendra.amazonaws.com"
]
}
}
```
An role policy to allow Amazon Kendra to connect to Confluence with VPC configuration.

```json

[
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
],
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/key-id"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.your-region.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:PutPrincipalMapping",
 "kendra:DeletePrincipalMapping",
 "kendra:ListGroupsOlderThanOrderingId"
],
 "Resource": [
 "arn:aws:kendra:your-region:your-account-id:index/index-id"
]
 }
]
]

```

"secretsmanager.your-region.amazonaws.com"
IAM roles for data sources

```json
{
 "Effect": "Allow",
 "Action": [
 "kendra:DescribePrincipalMapping"
],
 "Resource": [
 "arn:aws:kendra:your-region:your-account-id:index/index-id",
]
}
{
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:your-region:your-account-id:index/index-id"
}
{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
]
}
{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Condition": {
 "StringLike": {
 "aws:RequestTag/AWS_KENDRA": "kendra_your-account-id_index-id_*"
 }
 }
}
{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateNetworkInterface"
 }
 }
}
{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterfacePermission"
],
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/AWS_KENDRA": "kendra_your-account-id_index-id_*"
 }
 }
}
{
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeNetworkInterfaces"
]
}```
A trust policy to allow Amazon Kendra to assume a role.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

IAM roles for Dropbox data sources

When you use Dropbox, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Dropbox.
- Permission to call the required public APIs for the Dropbox connector.
- Permission to call the `BatchPutDocument`, `BatchDeleteDocument`, `PutPrincipalMapping`, `DeletePrincipalMapping`, `DescribePrincipalMapping`, and `ListGroupsOlderThanOrderingId` APIs.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "secretsmanager:GetSecretValue"
      ],
      "Resource": [
        "arn:aws:secretsmanager:{{your-region}}:{{your-account-id}}:secret:[[secret-id]]"
      ]
    },
    {
      "Effect": "Allow",
      "Action": [
        "kms:Decrypt"
      ],
      "Resource": [
        "arn:aws:kms:{{your-region}}:{{your-account-id}}:key:[[key-id]]"
      ],
      "Condition": {
        "StringLike": {
          "kms:ViaService": [
            "secretsmanager.{{your-region}}.amazonaws.com"
          ]
        }
      }
    }
  ]
}
```
A trust policy to allow Amazon Kendra to assume a role.

```
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Principal": {
            "Service": "kendra.amazonaws.com"
         },
         "Action": ["sts:AssumeRole"]
      }
   ]
}
```

IAM roles for GitHub data sources

When you use GitHub, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your GitHub.
- Permission to call the required public APIs for the GitHub connector.
- Permission to call the `BatchPutDocument`, `BatchDeleteDocument`, `PutPrincipalMapping`, `DeletePrincipalMapping`, `DescribePrincipalMapping`, and `ListGroupsOlderThanOrderingId` APIs.

```
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": ["secretsmanager:GetSecretValue"],
         "Resource": ["arn:aws:secretsmanager:{{your-region}}:{{your-account-id}}:secret:{{secret-id}}"]
      },
      {
         "Effect": "Allow",
         "Action": ["kendra:PutPrincipalMapping",
                    "kendra:DeletePrincipalMapping",
                    "kendra:ListGroupsOlderThanOrderingId",
                    "kendra:DescribePrincipalMapping"
                     ],
         "Resource": ["arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}",
                       "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}/data-source/**"]
      },
      {
         "Effect": "Allow",
         "Action": ["kendra:BatchPutDocument",
                    "kendra:BatchDeleteDocument"
                     ],
         "Resource": "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}"
      }
   ]
}
```
IAM roles for data sources

A trust policy to allow Amazon Kendra to assume a role.

```
{
    "Version":"2012-10-17",
    "Statement": [ 
        { 
            "Effect":"Allow",
            "Principal": {
                "Service": "kendra.amazonaws.com" 
            },
            "Action": "sts:AssumeRole"
        }
    ]
}
```

IAM roles for Gmail data sources

When you use Gmail, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Gmail.
- Permission to call the required public APIs for the Gmail connector.
- Permission to call the BatchPutDocument, BatchDeleteDocument, PutPrincipalMapping, DeletePrincipalMapping, DescribePrincipalMapping, and ListGroupsOlderThanOrderingId APIs.

```
IAM roles for data sources

A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

IAM roles for Google Drive data sources

When you use a Google Workspace Drive data source, you provide Amazon Kendra with a role that has the permissions necessary for connecting to the site. These include:
• Permission to get and decrypt the AWS Secrets Manager secret that contains the client account email, admin account email, and private key necessary to connect to the Google Drive site. For more information about the contents of the secret, see [Google Drive data sources](#).

• Permission to use the BatchPutDocument and BatchDeleteDocument APIs.

The following IAM policy provides the necessary permissions:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["secretsmanager:GetSecretValue"],
 },
 {
 "Effect": "Allow",
 "Action": ["kms:Decrypt"],
 "Resource": ["arn:aws:kms:your-region:your-account-id:key/key-id"],
 "Condition": {
 "StringLike": {
 "kms:ViaService": ["secretsmanager.your-region.amazonaws.com"]
 }
 }
 },
 {
 "Effect": "Allow",
 "Resource": "arn:aws:kendra:your-region:your-account-id:index/index-id"
 }
]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```
IAM roles for Jira data sources

When you use Jira, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Jira.
- Permission to call the required public APIs for the Jira connector.
- Permission to call the BatchPutDocument, BatchDeleteDocument, PutPrincipalMapping, DeletePrincipalMapping, DescribePrincipalMapping, and ListGroupsOlderThanOrderingId APIs.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:{your-region}:{your-account-id}:secret:[[secret-id]]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:{your-region}:{your-account-id}:key:[[key-id]]"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.{{your-region}}.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:PutPrincipalMapping",
 "kendra:DeletePrincipalMapping",
 "kendra:ListGroupsOlderThanOrderingId",
 "kendra:DescribePrincipalMapping"
],
 "Resource": [
 "arn:aws:kendra:{your-region}:{your-account-id}:index/{{index-id}}",
 "arn:aws:kendra:{your-region}:{your-account-id}:index/{{index-id}}/data-source/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:{your-region}:{your-account-id}:index/{{index-id}}"
 }
]
}
```

A trust policy to allow Amazon Kendra to assume a role.
IAM roles for data sources

IAM roles for Microsoft Exchange data sources

When you use a Microsoft Exchange data source, you provide Amazon Kendra with a role that has the permissions necessary for connecting to the site. These include:

- Permission to get and decrypt the AWS Secrets Manager secret that contains the application ID and secret key necessary to connect to the Microsoft Exchange site. For more information about the contents of the secret, see Microsoft Exchange data sources.
- Permission to use the BatchPutDocument and BatchDeleteDocument APIs.

The following IAM policy provides the necessary permissions:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/key-id"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.your-region.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:your-region:your-account-id:index/index-id"
 }
]
}
```
If you are storing the list of users to index in an Amazon S3 bucket, you must also provide permission to use the S3 GetObject operation. The following IAM policy provides the necessary permissions:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
 },
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name/*"
],
 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/[[key-ids]]"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.your-region.amazonaws.com",
 "s3.your-region.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:your-region:your-account-id:index/index-id"
 }
]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 }
 }
]
}
```
IAM roles for Microsoft OneDrive data sources

When you use a Microsoft OneDrive data source, you provide Amazon Kendra with a role that has the permissions necessary for connecting to the site. These include:

- Permission to get and decrypt the AWS Secrets Manager secret that contains the application ID and secret key necessary to connect to the OneDrive site. For more information about the contents of the secret, see Microsoft OneDrive data sources.
- Permission to use the BatchPutDocument and BatchDeleteDocument APIs.

The following IAM policy provides the necessary permissions:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/key-id"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": ["secretsmanager.your-region.amazonaws.com"
]
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:your-region:your-account-id:index/index-id"
 }
]
}
```

If you are storing the list of users to index in an Amazon S3 bucket, you must also provide permission to use the S3 GetObject operation. The following IAM policy provides the necessary permissions:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::your-bucket/*"
 }
]
}
```
A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```
IAM roles for Microsoft SharePoint data sources

IAM roles for SharePoint Connector v1.0

For a Microsoft SharePoint connector v1.0 data source, you provide a role with the following policies:

- Permission to access the AWS Secrets Manager secret that contains the user name and password for the SharePoint site. For more information about the contents of the secret, see Microsoft SharePoint data sources.
- Permission to use the AWS KMS customer master key (CMK) to decrypt the user name and password secret stored by AWS Secrets Manager.
- Permission to use the BatchPutDocument and BatchDeleteDocument operations to update the index.
- Permission to access the Amazon S3 bucket that contains the SSL certificate used to communicate with the SharePoint site.

You must also attach a trust policy that allows Amazon Kendra to assume the role.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/key-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": [
 "arn:aws:kendra:your-region:your-account-id:index/index-id"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "kendra.your-region.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
]
 }
]
}
```
IAM roles for data sources

If you have encrypted the Amazon S3 bucket that contains the SSL certificate used to communicate with the SharePoint site, provide a policy to give Amazon Kendra access to the key.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": ["arn:aws:kms:your-region:your-account-id:key/key-id"]
 }
]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

**IAM roles for SharePoint Connector v2.0**

For a Microsoft SharePoint connector v2.0 data source, you provide a role with the following policies.

- Permission to access the AWS Secrets Manager secret that contains the authentication credentials for the SharePoint site. For more information about the contents of the secret, see Microsoft SharePoint data sources.
- Permission to use the AWS KMS customer master key (CMK) to decrypt the user name and password secret stored by AWS Secrets Manager.
- Permission to use the BatchPutDocument and BatchDeleteDocument operations to update the index.
- Permission to access the Amazon S3 bucket that contains the SSL certificate used to communicate with the SharePoint site.

You must also attach a trust policy that allows Amazon Kendra to assume the role.

```json
{
 "Version": "2012-10-17",
}```
"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/key-id"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.{}.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:PutPrincipalMapping",
 "kendra:DeletePrincipalMapping",
 "kendra:ListGroupsOlderThanOrderingId",
 "kendra:DescribePrincipalMapping"
],
 "Resource": [
 "arn:aws:kendra:your-region:your-account-id:index/index-id",
]
 },
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name/key-name"
],
 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:your-region:your-account-id:index/index-id"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
]
 }]}
IAM roles for data sources

```json
{
  "Effect": "Allow",
  "Action": [
    "ec2:CreateNetworkInterface"
  ],
  "Condition": {
    "StringLike": {
      "aws:RequestTag/AWS_KENDRA": "kendra_your-account-id_index-id_*"
    }
  }
},
{
  "Effect": "Allow",
  "Action": [
    "ec2:CreateTags"
  ],
  "Condition": {
    "StringEquals": {
      "ec2:CreateAction": "CreateNetworkInterface"
    }
  }
},
{
  "Effect": "Allow",
  "Action": [
    "ec2:CreateNetworkInterfacePermission"
  ],
  "Condition": {
    "StringLike": {
      "aws:ResourceTag/AWS_KENDRA": "kendra_your-account-id_index-id_*"
    }
  }
},
{
  "Effect": "Allow",
  "Action": [
    "ec2:DescribeNetworkInterfaces",
    "ec2:DescribeAvailabilityZones",
    "ec2:DescribeNetworkInterfaceAttribute",
    "ec2:DescribeVpcs",
    "ec2:DescribeRegions",
    "ec2:DescribeNetworkInterfacePermissions",
    "ec2:DescribeSubnets"
  ],
  "Resource": "*"
}
}

If you have encrypted the Amazon S3 bucket that contains the SSL certificate used to communicate with the SharePoint site, provide a policy to give Amazon Kendra access to the key.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "*"
 }
]
}
```
IAM roles for data sources

A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

IAM roles for Microsoft Teams data sources

When you use a Microsoft Teams data source, you provide Amazon Kendra with a role that has the permissions necessary for connecting to the site. These include:

- Permission to get and decrypt the AWS Secrets Manager secret that contains the client ID and client secret necessary to connect to Microsoft Teams. For more information about the contents of the secret, see [Microsoft Teams data sources](#).

The following IAM policy provides the necessary permissions:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:client-id:secret:secret-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/key-id"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.your-region.amazonaws.com"
]
 }
 }
 }
]
}
```
A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

**IAM roles for Microsoft Yammer data sources**

When you use a Microsoft Yammer data source, you provide Amazon Kendra with a role that has the permissions necessary for connecting to the site. These include:

- Permission to get and decrypt the AWS Secrets Manager secret that contains the application ID and secret key necessary to connect to the Microsoft Yammer site. For more information about the contents of the secret, see [Microsoft Yammer data sources](#).
- Permission to use the [BatchPutDocument](#) and [BatchDeleteDocument](#) APIs.

The following IAM policy provides the necessary permissions:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["secretsmanager:GetSecretValue"],
 },
 {
 "Effect": "Allow",
 "Action": ["kms:Decrypt"],
 "Resource": ["arn:aws:kms:your-region:your-account-id:key/key-id"],
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "your-account-id"
 }
 }
 }
]
}
```
If you are storing the list of users to index in an Amazon S3 bucket, you must also provide permission to use the S3 GetObject operation. The following IAM policy provides the necessary permissions:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
 },
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name/*"
],
 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/[[key-ids]]"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.your-region.amazonaws.com",
 "s3.your-region.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:your-region:your-account-id:index/index-id"
 }
]
}
```
IAM roles for data sources

A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

IAM roles for Quip data sources

When you use Quip, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Quip.
- Permission to call the required public APIs for the Quip connector.
- Permission to call the BatchPutDocument, BatchDeleteDocument, PutPrincipalMapping, DeletePrincipalMapping, DescribePrincipalMapping, and ListGroupsOlderThanOrderingId APIs.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["secretsmanager:GetSecretValue"],
 "Resource": ["arn:aws:secretsmanager:{{your-region}}:{{your-account-id}}:secret:[[secret-id]]"]
 },
 {
 "Effect": "Allow",
 "Action": ["kms:Decrypt"],
 "Resource": ["arn:aws:kms:{{your-region}}:{{your-account-id}}:key/[[-key-id]]"],
 "Condition": {
 "StringLike": {
 "kms:ViaService": ["secretsmanager.{{your-region}}.amazonaws.com"]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": ["s3:GetObject", "s3:GetObjectVersion", "s3:ListBucket"],
 "Resource": ["arn:aws:s3:::your-bucketname", "arn:aws:s3:::your-bucketname/*"]
 }
]
}
```
IAM roles for data sources

A trust policy to allow Amazon Kendra to assume a role.

```json
[
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"kendra.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
]
```

IAM roles for Salesforce data sources

When you use a Salesforce as a data source, you provide a role with the following policies:

- Permission to access the AWS Secrets Manager secret that contains the user name and password for the Salesforce site. For more information about the contents of the secret, see Salesforce data sources.
- Permission to use the AWS KMS customer master key (CMK) to decrypt the user name and password secret stored by Secrets Manager.
- Permission to use the BatchPutDocument and BatchDeleteDocument operations to update the index.

```json
[
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:your-region:your-account-id:secret:secret-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:PutPrincipalMapping",
 "kendra:DeletePrincipalMapping",
 "kendra:ListGroupsOlderThanOrderingId",
 "kendra:DescribePrincipalMapping"
],
 "Resource": ["arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{your-index-id}}", "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{your-index-id}}/data-source/*"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}"
 }
]
]
```
A trust policy to allow Amazon Kendra to assume a role.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

**IAM roles for ServiceNow data sources**

When you use a ServiceNow as a data source, you provide a role with the following policies:

- Permission to access the Secrets Manager secret that contains the user name and password for the ServiceNow site. For more information about the contents of the secret, see ServiceNow data sources.
- Permission to use the AWS KMS customer master key (CMK) to decrypt the user name and password secret stored by Secrets Manager.
- Permission to use the BatchPutDocument and BatchDeleteDocument operations to update the index.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/key-id"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.your-region.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:your-region:account-id:index/index-id"
 }
]
}
```
A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

### IAM roles for Slack data sources

When you use Slack, you provide a role with the following policies.

- Permission to access your AWS Secrets Manager secret to authenticate your Slack.
- Permission to call the required public APIs for the Slack connector.
- Permission to call the `BatchPutDocument`, `BatchDeleteDocument`, `PutPrincipalMapping`, `DeletePrincipalMapping`, `DescribePrincipalMapping`, and `ListGroupsOlderThanOrderingId` APIs.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```
IAM roles for data sources

A trust policy to allow Amazon Kendra to assume a role.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": ["sts:AssumeRole"]
 }
]
}
```

**IAM roles for Zendesk data sources**

When you use Zendesk, you provide a role with the following policies.

```json
"Action": [
 "secretsmanager:GetSecretValue"
],
"Resource": [
 "arn:aws:secretsmanager:{{your-region}}:{{your-account-id}}:secret:[[secret-id]]"
],
{
 "Effect": "Allow",
 "Action": ["kms:Decrypt"],
 "Resource": ["arn:aws:kms:{{your-region}}:{{account-id}}:key[[key-id]]"],
 "Condition": {
 "StringLike": {
 "kms:ViaService": ["secretsmanager.{{region}}.amazonaws.com"]
 }
 }
},
{
 "Effect": "Allow",
 "Action": [
 "kendra:PutPrincipalMapping",
 "kendra:DeletePrincipalMapping",
 "kendra:ListGroupsOlderThanOrderingId",
 "kendra:DescribePrincipalMapping"
],
 "Resource": ["arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/[index-id]",
 "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/[index-id]/data-source/*"]
},
{
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/[index-id]"
}
```
• Permission to access your AWS Secrets Manager secret to authenticate your Zendesk Suite.
• Permission to call the required public APIs for the Zendesk connector.
• Permission to call the BatchPutDocument, BatchDeleteDocument, PutPrincipalMapping, DeletePrincipalMapping, DescribePrincipalMapping, and ListGroupsOlderThanOrderingId APIs.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:{{your-region}}:{{your-account-id}}:secret:{{secret-id}}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:{{your-region}}:{{your-account-id}}:key:{{key-id}}"
],
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "secretsmanager.{{your-region}}.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:PutPrincipalMapping",
 "kendra:DeletePrincipalMapping",
 "kendra:ListGroupsOlderThanOrderingId",
 "kendra:DescribePrincipalMapping"
],
 "Resource": [
 "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}",
 "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}/data-source/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:{{your-region}}:{{your-account-id}}:index/{{index-id}}"
 }
]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sts:AssumeRole"
],
 "Principal": {
 "Service": "kendra.amazonaws.com"
 }
 }
]
}
```
IAM roles for data sources

Virtual private cloud (VPC) IAM role

If you use a virtual private cloud (VPC) to connect to your data source, you must provide the following permissions.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterface"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterfacePermission"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ec2:AuthorizedService": "kendra.*.amazonaws.com"
 },
 "ArnEquals": {
 "ec2:Subnet": [{
 "arn:aws:ec2:your-region:your-account-id:subnet/subnet-ids"
 }
]
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSubnets"
],
 "Resource": "*"
 },
 {
 "Sid": "iamPassRole",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "kendra.*.amazonaws.com"
]
 }
 }
 }
]
}
```
IAM roles for frequently asked questions (FAQs)

When you use the CreateFaq API to load questions and answers into an index, you must provide Amazon Kendra with an IAM role with access to the Amazon S3 bucket that contains the source files. If the source files are encrypted, you must provide permission to use the AWS KMS customer master key (CMK) to decrypt the files.

IAM roles for FAQs

A required role policy to allow Amazon Kendra to access an Amazon S3 bucket.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name/**"
]
]
]
 }
```

An optional role policy to allow Amazon Kendra to use an AWS KMS customer master key (CMK) to decrypt files in an Amazon S3 bucket.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:your-region:your-account-id:key/key-id"
]
]
]
 }
```
IAM roles for query suggestions

When you use an Amazon S3 file as a query suggestions block list, you supply a role that has permission to access the Amazon S3 file and the Amazon S3 bucket. If the block list text file (the Amazon S3 file) in the Amazon S3 bucket is encrypted, you must provide permission to use the AWS KMS customer master key (CMK) to decrypt the documents.

**IAM roles for query suggestions**

A required role policy to allow Amazon Kendra to use the Amazon S3 file as your query suggestions block list.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:GetObject"],
 "Resource": ["arn:aws:s3:::bucket-name/*"]
 }
]
}
```

An optional role policy to allow Amazon Kendra to use an AWS KMS customer master key (CMK) to decrypt documents in an Amazon S3 bucket.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["kms:UnwrapKey"]
 }
]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Service": "kendra.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
]
}
```

```

IAM roles for principal mapping of users and groups

When you use the `PutPrincipalMapping` API to map users to their groups for filtering search results by user context, you need to provide a list of users or sub groups that belong to a group. If your list is more than 1000 users or sub groups for a group, you need to supply a role that has permission to access the Amazon S3 file of your list and the Amazon S3 bucket. If the text file (the Amazon S3 file) of the list in the Amazon S3 bucket is encrypted, you must provide permission to use the AWS KMS customer master key (CMK) to decrypt the documents.

IAM roles for principal mapping

A required role policy to allow Amazon Kendra to use the Amazon S3 file as your list of users and sub groups that belong to a group.

```json
{
  "Version":"2012-10-17",
  "Statement": [ 
    {
      "Effect":"Allow",
      "Principal": {
        "Service":"kendra.amazonaws.com"
      },
      "Action":"sts:AssumeRole"
    } 
  ]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
  "Version":"2012-10-17",
  "Statement": [ 
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    } 
  ]
}
```
An optional role policy to allow Amazon Kendra to use an AWS KMS customer master key (CMK) to decrypt documents in an Amazon S3 bucket.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": ["kms:Decrypt"],
      "Resource": [
        "arn:aws:kms:your-region:your-account-id:key/key-id"
      ]
    }
  ]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

It is recommended that you include `aws:sourceAccount` and `aws:sourceArn` in the trust policy. This limits permissions and securely checks if `aws:sourceAccount` and `aws:sourceArn` are the same as provided in the IAM role policy for the `sts:AssumeRole` action. This prevents unauthorized entities from accessing your IAM roles and their permissions. For more information, see the AWS Identity and Access Management guide on the confused deputy problem.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": ["kendra.*.amazonaws.com"
      ],
      "Action": "sts:AssumeRole",
      "Condition": {
        "StringEquals": {
          "aws:SourceAccount": "your-account-id"
        },
        "StringLike": {
          "aws:SourceArn": "arn:aws:kendra:your-region:your-account-id:index-id/.*"
        }
      }
    }
  ]
}
```
IAM roles for AWS IAM Identity Center (successor to AWS Single Sign-On)

When you use the UserGroupResolutionConfiguration object to fetch access levels of groups and users from an AWS IAM Identity Center (successor to AWS Single Sign-On) identity source, you need to supply a role that has permission to access IAM Identity Center.

IAM roles for AWS IAM Identity Center (successor to AWS Single Sign-On)

A required role policy to allow Amazon Kendra to access IAM Identity Center.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "sso-directory:SearchUsers",
                "sso-directory:ListGroupsForUser",
                "sso-directory:DescribeGroups",
                "sso:ListDirectoryAssociations"
            ],
            "Resource": [
                "*
            ],
            "Sid": "iamPassRole",
            "Effect": "Allow",
            "Action": "iam:PassRole",
            "Resource": "*",
            "Condition": {
                "StringEquals": {
                    "iam:PassedToService": [
                        "kendra.*.amazonaws.com"
                    ]
                }
            }
        }
    ]
}
```

A trust policy to allow Amazon Kendra to assume a role.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "Service": "kendra.amazonaws.com"
            },
            "Action": "sts:AssumeRole"
        }
    ]
}
```
IAM roles for Amazon Kendra experiences

When you use the CreateExperience or UpdateExperience APIs to create or update a search application, you must supply a role that has permission to access the necessary operations and IAM Identity Center.

IAM roles for Amazon Kendra search experience

A required role policy to allow Amazon Kendra to access Query operations, QuerySuggestions operations, SubmitFeedback operations, and IAM Identity Center that stores your user and group information.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "AllowsKendraSearchAppToCallKendraApi",
            "Effect": "Allow",
            "Action": [
                "kendra:GetQuerySuggestions",
                "kendra:Query",
                "kendra:DescribeIndex",
                "kendra:ListFaqs",
                "kendra:DescribeDataSource",
                "kendra:ListDataSources",
                "kendra:DescribeFaq",
                "kendra:SubmitFeedback"
            ],
            "Resource": [
                "arn:aws:kendra:your-region:your-account-id:index/index-id"
            ]
        },
        {
            "Sid": "AllowKendraSearchAppToDescribeDataSourcesAndFaq",
            "Effect": "Allow",
            "Action": [
                "kendra:DescribeDataSource",
                "kendra:DescribeFaq"
            ],
            "Resource": [
                "arn:aws:kendra:your-region:your-account-id/index/index-id/faq/faq-id"
            ]
        },
        {
            "Sid": "AllowKendraSearchAppToCallSSODescribeUsersAndGroups",
            "Effect": "Allow",
            "Action": [
                "sso-directory:ListGroupsForUser",
                "sso-directory:SearchGroups",
                "sso-directory:SearchUsers",
                "sso-directory:DescribeUser",
                "sso-directory:DescribeGroup",
                "sso-directory:DescribeGroups",
                "sso-directory:DescribeUsers",
                "sso-listDirectoryAssociations"
            ],
            "Resource": [
                "*"
            ],
            "Condition": {
                "StringLike": {
```
A trust policy to allow Amazon Kendra to assume a role.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

It is recommended that you include `aws:sourceAccount` and `aws:sourceArn` in the trust policy. This limits permissions and securely checks if `aws:sourceAccount` and `aws:sourceArn` are the same as provided in the IAM role policy for the `sts:AssumeRole` action. This prevents unauthorized entities from accessing your IAM roles and their permissions. For more information, see the AWS Identity and Access Management guide on the confused deputy problem.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.*.amazonaws.com"
      },
      "Action": "sts:AssumeRole",
      "Condition": {
        "StringEquals": {
          "aws:SourceAccount": "your-account-id"
        },
        "StringLike": {
          "aws:SourceArn": "arn:aws:kendra:your-region:your-account-id:index-id/*"
        }
      }
    }
  ]
}
```

IAM roles for Custom Document Enrichment

When you use the `CustomDocumentEnrichmentConfiguration` object to apply advanced alterations of your document metadata and content, you must supply a role that has the required permissions.
to run PreExtractionHookConfiguration and/or PostExtractionHookConfiguration. You configure a Lambda function for PreExtractionHookConfiguration and/or PostExtractionHookConfiguration to apply advanced alterations of your document metadata and content during the ingestion process. If you choose to activate Server Side Encryption for your Amazon S3 bucket, you must provide permission to use the AWS KMS customer master key (CMK) to encrypt and decrypt the objects stored in your Amazon S3 bucket.

IAM roles for Custom Document Enrichment

A required role policy to allow Amazon Kendra to run PreExtractionHookConfiguration and PostExtractionHookConfiguration with encryption for your Amazon S3 bucket.

```
{
  "Version": "2012-10-17",
  "Statement": [{
    "Action": [
      "s3:GetObject",
      "s3:PutObject"
    ],
    "Resource": [
      "arn:aws:s3:::bucket-name/*"
    ],
    "Effect": "Allow"
  },
  { "Action": [
    "s3:ListBucket"
  ],
  "Resource": [
    "arn:aws:s3:::bucket-name"
  ],
  "Effect": "Allow"
  },
  { "Effect": "Allow",
    "Action": [
      "kms:Decrypt",
      "kms:GenerateDataKey"
    ],
    "Resource": [
      "arn:aws:kms:your-region:your-account-id:key/key-id"
    ]
  },
  { "Effect": "Allow",
    "Action": [
      "lambda:InvokeFunction"
    ],
  }
}
```

An optional role policy to allow Amazon Kendra to run PreExtractionHookConfiguration and PostExtractionHookConfiguration without encryption for your Amazon S3 bucket.

```
{
  "Version": "2012-10-17",
  "Statement": [{
    "Action": [
      "s3:GetObject",
      "s3:PutObject"
    ],
  }
```
A trust policy to allow Amazon Kendra to assume a role.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

It is recommended that you include `aws:sourceAccount` and `aws:sourceArn` in the trust policy. This limits permissions and securely checks if `aws:sourceAccount` and `aws:sourceArn` are the same as provided in the IAM role policy for the `sts:AssumeRole` action. This prevents unauthorized entities from accessing your IAM roles and their permissions. For more information, see the AWS Identity and Access Management guide on the confused deputy problem.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "kendra.*.amazonaws.com"
      },
      "Action": "sts:AssumeRole",
      "Condition": {
        "StringEquals": {
          "aws:SourceAccount": "your-account-id"
        },
        "StringLike": {
          "aws:SourceArn": "arn:aws:kendra:your-region:your-account-id:index-id/*"
        }
      }
    }
  ]
}
```
Deploying Amazon Kendra

When it comes time to deploy Amazon Kendra search to your website, we provide source code that you can use with React to get a head start on your application. The source code is provided with no charge under a modified MIT license. You can use it as is or change it for your own needs. The provided React app is an example to help you get started. It's not a production ready app.

To deploy a search application with no code and generate an endpoint URL to your search page with access control, see Amazon Kendra Experience Builder.

The following example code adds Amazon Kendra search to an existing React web application:

- https://kendrasamples.s3.amazonaws.com/kendrasamples-react-app.zip—Sample files that developers can use to build a functional search experience into their existing React web application.

The examples are modeled after the search page of the Amazon Kendra console. They have the same features for searching and displaying search results. You can use the whole example, or you can choose just one of the features for your own use.

To see the three components of the search page in the Amazon Kendra console, choose the code icon (<code>) from the right menu. Hover your pointer over each section to see a brief description of the component and get the URL of the component's source.

Topics

- Overview (p. 74)
- Prerequisites (p. 75)
- Setting up the example (p. 75)
- Main search page (p. 76)
- Search component (p. 76)
- Results component (p. 76)
- Facets component (p. 76)
- Pagination component (p. 76)
- Building a search experience with no code (p. 76)

Overview

You add the example code to an existing React web application to activate search. The example code includes a Readme file with steps to set up a new React development environment. The example data in the code example can be used to demonstrate a search. The search files and components in the example code are structured as follows:

- Main search page (Search.tsx)—This is the main page that contains all of the components. This is where you integrate your application with the Amazon Kendra API.
- Search bar—This is the component where a user enters a search term and calls the search function.
- Results—This is the component that displays the results from Amazon Kendra. It has three components: Suggested answers, FAQ results, and recommended documents.
Prerequisites

Before you begin, you need the following:

- Node.js and npm installed. Node.js version 19 or older is required.
- Python 3 or Python 2 installed.
- SDK for Java or AWS SDK for JavaScript to make API calls to Amazon Kendra.
- An existing React web application. The example code includes a Readme file with steps on how to set up a new React development environment, including using required frameworks/libraries. You can also follow the quick start instructions in the React documentation on creating a React web app.
- The required libraries and dependencies configured in your development environment. The example code includes a Readme file that lists the required libraries and package dependencies. Note that sass is required, as node-sass is deprecated. If you previously installed node-sass, uninstall this and install sass.

Setting up the example

A complete procedure for adding Amazon Kendra search to a React application is in the Readme file included in the code example.

To get started using kendrasamples-react-app.zip

1. Make sure you have completed the Prerequisites (p. 75), including downloading and installing Node.js and npm.
2. Download kendrasamples-react-app.zip and unzip.
3. Open your terminal and go to aws-kendra-example-react-app/src/services/. Open local-dev-credentials.json and provide your credentials. Do not add this file to any public repository.
4. Go to aws-kendra-example-react-app and install the dependencies in package.json. Run npm install.
5. Launch a demo version of your app on your local server. Run npm start. You can stop the local server by entering on your keyboard Cmd/Ctrl + C.
6. You can change the port or host (for example, IP address) by going to package.json and update the host and port: "start": "HOST=[host] PORT=[port] react-scripts start". If you use Windows: "start": "set HOST=[host] & set PORT=[port] & react-scripts start".
7. If you have a registered website domain, you can specify this in package.json after your app name. For example, "homepage": "https://mywebsite.com". You must run npm install again to update new dependencies, and then run npm start.
8. To build the app, run npm build. Upload the contents of the build directory to your hosting provider.

Warning
The React app is not production ready. It's an example of deploying an app for Amazon Kendra search.
Main search page

The main search page (Search.tsx) contains all of the example search components. It includes the search bar component for output, the results components to display the response from the Query API, and a pagination component for paging through the response.

Search component

The search component provides a text box to enter query text. The onSearch function is a hook that calls the main function in Search.tsx to make the Amazon Kendra Query API call.

Results component

The results component shows the response from the Query API. The results are shown in three separate areas.

- Suggested answers—These are the top results returned by the Query API. It contains up to three suggested answers. In the response, they have the result type ANSWER.
- FAQ answers—These are the frequently asked questions results returned by the response. FAQs are added to the index separately. In the response, they have the type QUESTION_ANSWER. For more information, see Questions and answers.
- Recommended documents—These are additional documents that Amazon Kendra returns in the response. In the response from the Query API, they have the type DOCUMENT.

The results components share a set of components for features like highlighting, titles, links, and more. The shared components must be present for the result components to work.

Facets component

The facets component lists the facets available in the search results. Each facet classifies the response along a specific dimension, such as author. You can refine the search to a specific facet by choosing one from the list.

After you select a facet, the component calls Query with an attribute filter that restricts the search to documents that match the facet.

Pagination component

The pagination component allows you to display the search results from the Query API in multiple pages. It calls the Query API with the PageSize and PageNumber parameters to get a specific page of results.

Building a search experience with no code

You can build and deploy an Amazon Kendra search application without the need for any front-end code. Amazon Kendra Experience Builder helps you build and deploy a fully functional search application in
a few clicks so that you can start searching right away. You can custom design your search page and
tune your search to tailor the experience to your users' needs. Amazon Kendra generates a unique, fully
hosted endpoint URL of your search page to start searching your documents and FAQs. You can quickly
build a proof of concept of your search experience and share it with others.

You use the search experience template available in the builder to customize your search. You can invite
others to collaborate in building your search experience, or evaluate search results for tuning purposes.
Once your search experience is ready for your users to start searching, you simply share the secure
endpoint URL.

How the search Experience Builder works

The overall process of building a search experience is as follows:

1. You create your search experience by giving it a name, description, and choosing your data sources you
want to use for your search experience.

2. You configure your list of users and groups in AWS IAM Identity Center (successor to AWS Single
Sign-On) and then assign them access rights to your search experience. You include yourself as an
owner of the experience. For more information, see the section called “Providing access to your search
page” (p. 78).

3. You open the Amazon Kendra Experience Builder to design and tune your search page. You can share
your endpoint URL of your search experience with others who you assign own-edit access rights or
view-search access rights.

You call the CreateExperience API to create and configure your search experience. If you use the console,
you select your index and then select Experiences in the navigation menu to configure your experience.

Design and tune your search experience

Once you create and configure your search experience, you open the search experience using an endpoint
URL to start customizing your search as an owner with editor access rights. You type your query into
the search box, then customize your search using the editing options on the side panel to see how they
apply to your page. When you are ready to publish, select Publish. You can also toggle between Switch
to live view, to view the latest published version of your search page, and Switch to build mode, to edit
or customize your search page.

The following are ways you can customize your search experience.

Filter

Add faceted search or filter by document attributes. This includes custom attributes. You can add a filter
using your own configured metadata fields. For example, to facet search by each city category, use a
_category custom document attribute that contains all the city categories.

Suggested answer

Add machine learning generated answers to your users’ queries. For example, ‘How difficult is this
course?’ Amazon Kendra can retrieve the most relevant text across all documents referring to a course's
difficulty and suggest the most relevant answer.

FAQ

Add a FAQ document to provide answers to frequently asked questions. For example, ‘How many hours to
complete this course?’. Amazon Kendra can use the FAQ document containing the answer to this question
and give the correct answer.
Sort

Add sorting of the search results so that your users can organize the results by relevancy, created time, last updated time, and other sorting criteria.

Documents

Configure how documents or search results are displayed on your search page. You can configure how many results display on the page, include pagination such as page numbers, activate a user feedback button, and arrange how document metadata fields are displayed in a search result.

Language

Select a language to filter the search results or documents in the selected language.

Search box

Configure the size and placeholder text of your search box, as well as allow query suggestions.

Relevance tuning

Add boosting to document metadata fields to place more weight on these fields when your users search for documents. You can add a weight that starts at 1 and incrementally increases to 10. You can boost text, date, and numeric field types. For example, to give `_last_updated_at` and `_created_at` more weight or importance than other fields, give these fields a weight of 1 to 10, depending on their importance. You can apply different relevance tuning configurations for each search application or experience.

Providing access to your search page

Access to your search experience is through IAM Identity Center. When you configure your search experience, you grant other people listed in your Identity Center directory access to your Amazon Kendra search page. They receive an email that directs them to sign in using their credentials in IAM Identity Center to access the search page. You must set up IAM Identity Center at the organization level or account holder level in AWS Organizations. For more information on setting up IAM Identity Center, see Getting started with IAM Identity Center.

You activate user identities in IAM Identity Center with your search experience and assign Viewer or Owner access permissions using the API or the console.

- **Viewer**: Allowed to issue queries, receive suggested answers relevant to their search, and contribute their feedback to Amazon Kendra so that it keeps improving the search.
- **Owner**: Allowed to customize the design of the search page, tune the search, and use the search application as a Viewer. Disabling access to viewers in the console is currently not supported.

To assign other people access to your search experience, you first activate user identities in IAM Identity Center with your Amazon Kendra experience by using the `ExperienceConfiguration` object. You specify the field name that contains the identifiers of your users such as user name or email address. You then grant your list of users access to your search experience using the `AssociateEntitiesToExperience` API and define their permissions as Viewer or Owner using the `AssociatePersonasToEntities` API. You specify each user or group using the `EntityConfiguration` object and whether that user or group is a Viewer or Owner using the `EntityPersonaConfiguration` object.

To assign other people access to your search experience using the console, you first need to create an experience and confirm your identity and that you are an owner. Then you can assign other users...
or groups as viewers or owners. In the console, select your index and then select Experiences in the navigation menu. After you create your experience, you can select your experience from the list. Go to Access management to assign users or groups as viewers or owners.

Configuring a search experience

The following is an example of configuring or creating a search experience.

Console

To create an Amazon Kendra search experience

1. In the left navigation pane, under Indexes, select Experiences and then select Create experience.
2. On the Configure experience page, enter a name and description for your experience, choose your content sources, and choose the IAM role for your experience. For more information on IAM roles, see IAM roles for Amazon Kendra experiences.
3. On the Confirm your identity from an Identity Center directory page, select your user ID such as your email. If you do not have an Identity Center directory, simply enter your full name and email to create an Identity Center directory. This includes you as a user of the experience and automatically assigns you owner access rights.
4. On the Review to open Experience Builder page, review your configuration details and select Create experience and open Experience Builder to start editing your search page.

CLI

To create an Amazon Kendra experience

```
aws kendra create-experience \
  --name experience-name \n  --description "experience description" \n  --index-id index-id \n  --role-arn arn:aws:iam::account-id:role/role-name \n  --configuration '{"ExperienceConfiguration":{{"ContentSourceConfiguration":{{"DataSourceIds":["data-source-1","data-source-2"], "UserIdentityConfiguration":"identity attribute name"}}}}}'
```

```
aws kendra describe-experience \
  --endpoints experience-endpoint-URL(s)
```

Python

To create an Amazon Kendra experience

```
import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")

print("Create an experience.")

# Provide a name for the experience
name = "experience-name"
# Provide an optional description for the experience
description = "experience description"
# Provide the index ID for the experience
```
index_id = "index-id"
Provide the IAM role ARN required for Amazon Kendra experiences
role_arn = "arn:aws:iam::${account-id}:role/${role-name}"
Configure the experience
collection = {"ExperienceConfiguration":
[{
 "ContentSourceConfiguration":{"DataSourceIds":["data-source-1","data-source-2"]},
 "UserIdentityConfiguration":"identity attribute name"
}]
}
try:
 experience_response = kendra.create_experience(
 Name = name,
 Description = description,
 IndexId = index_id,
 RoleArn = role_arn,
 Configuration = configuration
)
 pprint.pprint(experience_response)

 experience_endpoints = experience_response["Endpoints"]
 print("Wait for Amazon Kendra to create the experience.")
 while True:
 # Get the details of the experience, such as the status
 experience_description = kendra.describe_experience(
 Endpoints = experience_endpoints
)
 status = experience_description["Status"]
 print("Creating experience. Status: " + status)
 time.sleep(60)
 if status != "CREATING":
 break
except ClientError as e:
 print("%s" % e)

 print("Program ends.")

Java

To create an Amazon Kendra

class CreateExperienceExample {
 public static void main(String[] args) throws InterruptedException {
 System.out.println("Create an experience");
 String experienceName = "experience-name";
 String experienceDescription = "experience description";

 try {
 CreateExperienceRequest request =
 CreateExperienceRequest.builder()
 .name(experienceName)
 .description(experienceDescription)
 .indexId(index_id)
 .roleArn(role_arn)
 .collection(collection)
 .build();

 CreateExperienceResponse response =
 kendra.createExperience(request);
 System.out.println(response);

 DescribeExperienceRequest describeRequest =
 DescribeExperienceRequest.builder()
 .endpoints(experience_endpoints)
 .build();

 DescribeExperienceResponse describeResponse =
 kendra.describeExperience(describeRequest);
 System.out.println("Description: " + describeResponse);
 } catch (ClientException e) {
 System.err.println("Error creating experience: "+ e.getMessage());
 }

 System.out.println("Program ends.");
 }
}
Configuring a search experience

```java
String indexId = "index-id";
String experienceRoleArn = "arn:aws:iam::account-id:role/role-name";

KendraClient kendra = KendraClient.builder().build();

CreateExperienceRequest createExperienceRequest = CreateExperienceRequest
.builder()
.name(experienceName)
.description(experienceDescription)
.roleArn(experienceRoleArn)
.configuration(
    ExperienceConfiguration
    .builder()
    .contentSourceConfiguration(
        ContentSourceConfiguration
        .builder()
        .dataSourceIds("data-source-1","data-source-2")
        .build()
    )
    .userIdentityConfiguration(
        UserIdentityConfiguration
        .builder()
        .identityAttributeName("identity-attribute-name")
        .build()
    )
    ).build();

CreateExperienceResponse createExperienceResponse =
kendra.createExperience(createExperienceRequest);
System.out.println(String.format("Experience response %s",
createExperienceResponse));

String experienceEndpoints = createExperienceResponse.endpoints();
System.out.println(String.format("Wait for Kendra to create the experience.",
experienceEndpoints));
while (true) {
    DescribeExperienceRequest describeExperienceRequest =
DescribeExperienceRequest.builder().endpoints(experienceEndpoints).build();
    DescribeExperienceResponse describeExperienceResponse =
kendra.describeExperience(describeExperienceRequest);
    ExperienceStatus status = describeExperienceResponse.status();
    TimeUnit.SECONDS.sleep(60);
    if (status != ExperienceStatus.CREATING) {
        break;
    }
}
System.out.println("Experience creation is complete.");
}```
### Adjusting capacity

Amazon Kendra provides resources for your index in *capacity units*. Each capacity unit provides additional resources for your index. There are separate capacity units for document storage and for queries. You can only add capacity units to Amazon Kendra Enterprise Edition indexes. You can't add capacity to a Developer Edition index.

A document storage capacity unit provides the following additional storage for your index.

- 100,000 documents or 30 GB of storage.

A query capacity unit provides the following additional queries for your index.

- 0.1 queries per second or approximately 8,000 queries per day.

Each index comes with a base capacity equal to 1 capacity unit (30 GB of storage and 0.1 queries per second). There is an additional cost for each additional capacity unit. For details, see [Amazon Kendra pricing](https://aws.amazon.com/pricing/).

You can add up to 100 extra capacity units to your storage and query resources for an index. If you need more units, simply contact Support.

You can adjust capacity units up to 5 times per day to fit your usage requirements. You can't reduce document storage capacity below the number of documents stored in your index. For example, if you are storing 150,000 documents, you can't reduce the storage capacity below 1 additional unit.

You can view the resources an index is using in the console by selecting the name of the index to open the index settings and other information, or you can use the `DescribeIndex` API. Amazon Kendra also returns exceptions when you exceed the capacity of an index. You get a `ServiceQuotaExceededException` when the total extracted size of all the documents exceeds the limit for an index. You get an `InvalidRequest` for each document when the number of documents exceeds the limit for an index. You get a `ThrottlingException` when the number of queries per second exceeds the limit. For more information on limits, see [Quotas for Amazon Kendra](https://aws.amazon.com/documentation/kendra/quotas/).

### Viewing capacity

View the resources that your index is using with the Amazon Kendra console by selecting the name of your index to access the details. The console also provides usage graphs so you can determine how much storage and query capacity your index uses. You can use this information to help you plan when to add additional capacity.

**To view document storage and query use (console)**

2. From the list of indexes, choose the index you want to access.
3. Scroll to the settings section to view the current total document storage and query capacity.

To view capacity using the Amazon Kendra API, use the `CapacityUnits` parameter in the `DescribeIndex` API.
Adding and removing capacity

If you need additional capacity for your index, you can add it using the console or the Amazon Kendra API.

**To add or remove storage or query capacity (console)**

2. From the list of indexes, choose the index that you want to access.
3. Select **Edit**, or select **Edit** from the **Actions** dropdown.
4. Select **Next** to go to the provisioning details page.
5. Add or remove document storage and/or query capacity units.
6. Continue to select **Next** to go to the review page and then select **Update** to save your changes.

After you update the capacity of your index, it can take several minutes for the changes to take effect.

To add or remove capacity using the Amazon Kendra API, use the **CapacityUnits** parameter in the **UpdateIndex** API.

**Amazon Kendra Intelligent Ranking capacity**

A capacity unit provides the following additional rescore requests per second for a rescore execution plan. A rescore execution plan is a resource used to provision the **Rescore** API.

- 0.01 requests per second.

Each rescore execution plan comes with a base capacity equal to 1 capacity unit (0.01 requests per second). There is an additional cost for each additional capacity unit. For details, see [Amazon Kendra pricing](https://aws.amazon.com/kendra/pricing/).

You can add up to 1000 extra capacity units for a rescore execution plan. If you need more units, simply contact Support.

**Query suggestions capacity**

When using query suggestions, there’s a base query capacity of 2.5 **GetQuerySuggestions** calls per second. The **GetQuerySuggestions** capacity is five times the provisioned query capacity for an index, or the base capacity of 2.5 calls per second, whichever is higher. For example, the base capacity for an index is 0.1 queries per second, and **GetQuerySuggestions** capacity has a base of 2.5 calls per second. If you add another 0.1 queries per second to total 0.2 queries per second for an index, the **GetQuerySuggestions** capacity is 2.5 calls per second (higher than five times 0.2 queries per second).
Amazon Kendra experience capacity

Search experience capacity

Amazon Kendra starts to throttle Query, QuerySuggestions, SubmitFeedback for your Amazon Kendra experience at 15 requests per second and 40 requests per second for query bursting. For an index with more than 150 query capacity units, these limits still apply.

For example, your query capacity units for your index is 150, so your search experience application can handle 15 requests per second. However, if you scaled to 200 query capacity units, then your search experience app would still only handle 15 requests per second. If you limit your index to 100 query capacity units, then your search experience app would only handle 10 requests per second.

Adaptive query bursting

Amazon Kendra has a provisioned base capacity of 1 query capacity unit. You can use up to 8,000 queries per day with a minimum throughput of 0.1 queries per second (per query capacity unit). Accumulated queries will last up to 24 hours and can accommodate bursts of traffic. The amount of burst allowed varies because it depends on the cluster's load at any given time. Provision enough query capacity units to handle your peak load levels.

An adaptive approach to handling unexpected bursts of traffic beyond the provisioned throughput is Amazon Kendra's built-in adaptive query bursting. Adaptive query bursting is available in the Enterprise Edition of Amazon Kendra.

Adaptive query bursting is a built-in capability that allows you to apply unused query capacity to handle unexpected traffic. Amazon Kendra accumulates your unused queries at your provisioned queries per second rate, every second, up to the maximum number of queries you’ve provisioned for your Amazon Kendra index. These accumulated queries are used for unexpected traffic above the allocated capacity. Optimal performance of adaptive query bursting can vary, depending on several factors such as your total index size, query complexity, accumulated unused queries, and overall load on your index. It is recommended that you perform your own load tests to accurately measure bursting capacity.
Getting started

This section shows you how to create a data source and add your documents to an Amazon Kendra index. Instructions are provided for the AWS console, the AWS CLI, a Python program using the AWS SDK for Python (Boto3), and a Java program using the AWS SDK for Java.

Topics

- Prerequisites (p. 85)
- Getting started with the Amazon Kendra console (p. 90)
- Getting started (AWS CLI) (p. 91)
- Getting started (AWS SDK for Python (Boto3)) (p. 92)
- Getting started (AWS SDK for Java) (p. 94)
- Getting started with an Amazon S3 data source (console) (p. 97)
- Getting started with a MySQL database data source (console) (p. 98)
- Getting started with an AWS IAM Identity Center (successor to AWS Single Sign-On) identity source (console) (p. 100)

Prerequisites

The following steps are prerequisites for the getting started exercises. The steps show you how to set up your account, create an IAM role that gives Amazon Kendra permission to make calls on your behalf, and index documents from an Amazon S3 bucket. An S3 bucket is used as an example, but you can use other data sources that Amazon Kendra supports. See Data sources.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user has access to all AWS services and resources in the account. As a security best practice, assign administrative access to an administrative user, and use only the root user to perform tasks that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can view your current account activity and manage your account by going to https://aws.amazon.com/ and choosing My Account.
Create an administrative user

After you sign up for an AWS account, create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and entering your AWS account email address. On the next page, enter your password.

   For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

   For instructions, see Enable a virtual MFA device for your AWS account root user (console) in the IAM User Guide.

Create an administrative user

- For your daily administrative tasks, grant administrative access to an administrative user in AWS IAM Identity Center (successor to AWS Single Sign-On).

   For instructions, see Getting started in the AWS IAM Identity Center (successor to AWS Single Sign-On) User Guide.

Sign in as the administrative user

- To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email address when you created the IAM Identity Center user.

   For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in the AWS Sign-In User Guide.

- If you are using an S3 bucket containing documents to test Amazon Kendra, create an S3 bucket in the same region that you are using Amazon Kendra. For instructions, see Creating and Configuring an S3 Bucket in the Amazon Simple Storage Service User Guide.

   Upload your documents to your S3 bucket. For instructions, see Uploading, Downloading, and Managing Objects in the Amazon Simple Storage Service User Guide.

   If you are using another data source, you must have an active site and credentials to connect to the data source.

If you are using the console to get started, start with Getting started with the Amazon Kendra console (p. 90).

Amazon Kendra resources: AWS CLI, SDK, console

There are certain permissions required if you use CLI, SDK, or the console.

To use Amazon Kendra for the CLI, SDK, or console you must have permissions to allow Amazon Kendra to create and manage resources on your behalf. Depending on your use case, these permissions include access to the Amazon Kendra API itself, AWS KMS keys if you want to encrypt your data through a custom CMK, Identity Center directory if you want to integrate with AWS IAM Identity Center (successor to AWS Single Sign-On) or create a Search Experience. For a full list of permissions for different use cases, see IAM roles.
First, you must attach the below permissions to your IAM user.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1644430855544",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "Stmt1644430878150",
 "Action": "kendra:*",
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "Stmt1644430973706",
 "Action": [
 "sso:AssociateProfile",
 "sso:CreateManagedApplicationInstance",
 "sso:DeleteManagedApplicationInstance",
 "sso:DisassociateProfile",
 "sso:GetManagedApplicationInstance",
 "sso:GetProfile",
 "sso:ListDirectoryAssociations",
 "sso:ListProfileAssociations",
 "sso:ListProfiles"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "Stmt1644430999558",
 "Action": [
 "sso-directory:DescribeGroup",
 "sso-directory:DescribeGroups",
 "sso-directory:DescribeUser",
 "sso-directory:DescribeUsers"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "Stmt1644431025960",
 "Action": [
 "identitystore:DescribeGroup",
 "identitystore:DescribeUser",
 "identitystore:ListGroups",
 "identitystore:ListUsers"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}
```

Second, if you use the CLI or SDK, you must also create an IAM role and policy to access Amazon CloudWatch Logs. If you are using the console, you don't need to create an IAM role and policy for this. You create this as part of the console procedure.
To create an IAM role and policy for the AWS CLI and SDK that allows Amazon Kendra to access your Amazon CloudWatch Logs.

1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/.
2. From the left menu, choose Policies and then choose Create policy.
3. Choose JSON and then replace the default policy with the following:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["cloudwatch:PutMetricData"],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "AWS/Kendra"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": ["logs:DescribeLogGroups"],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": ["logs:CreateLogGroup"],
 "Resource": ["arn:aws:logs:region:account ID:log-group:/aws/kendra/*"]
 },
 {
 "Effect": "Allow",
 }
]
}
```
5. Name the policy "KendraPolicyForGettingStartedIndex" and then choose Create policy.
6. From the left menu, choose Roles and then choose Create role.
7. Choose Another AWS account and then type your account ID in Account ID. Choose Next: Permissions.
8. Choose the policy that you created above and then choose Next: Tags
10. Name the role "KendraRoleForGettingStartedIndex" and then choose Create role.

11. Find the role that you just created. Choose the role name to open the summary. Choose Trust relationships and then choose Edit trust relationship.

12. Replace the existing trust relationship with the following:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

13. Choose Update trust policy.

Third, if you use an Amazon S3 to store your documents or you are using S3 to test Amazon Kendra, you also must create an IAM role and policy to access your bucket. If you are using another data source, see IAM roles for data sources.

To create an IAM role and policy that allows Amazon Kendra to access and index your Amazon S3 bucket.

1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/.

2. From the left menu, choose Policies and then choose Create policy.

3. Choose JSON and then replace the default policy with the following:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucket name/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::bucket name"
],
 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kendra:BatchPutDocument",
 "kendra:BatchDeleteDocument"
],
 "Resource": "arn:aws:kendra:region:account ID:index/*"
 }
]
}
```
4. Choose **Review policy**.

5. Name the policy "KendraPolicyForGettingStartedDataSource" and then choose **Create policy**.

6. From the left menu, choose **Roles** and then choose **Create role**.

7. Choose **Another AWS account** and then type your account ID in **Account ID**. Choose **Next: Permissions**.

8. Choose the policy that you created above and then choose **Next: Tags**.

9. Don't add any tags. Choose **Next: Review**.

10. Name the role "KendraRoleForGettingStartedDataSource" and then choose **Create role**.

11. Find the role that you just created. Choose the role name to open the summary. Choose **Trust relationships** and then choose **Edit trust relationship**.

12. Replace the existing trust relationship with the following:

   ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kendra.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 ``

13. Choose **Update trust policy**.

Depending on how you want to use the Amazon Kendra API, do one of the following.

- **Getting started (AWS CLI) (p. 91)**
- **Getting started (AWS SDK for Java) (p. 94)**
- **Getting started (AWS SDK for Python (Boto3)) (p. 92)**

Getting started with the Amazon Kendra console

The following procedures show how to create and test an Amazon Kendra index by using the AWS console. In the procedures you create an index and a data source for an index. Finally, you test your index by making a search request.

Step 1: To create an index (console)

1. Sign in to the AWS Management Console and open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. Select **Create index** in the **Indexes** section.
3. In the **Specify index details** page, give your index a name and a description.
4. In **IAM role**, choose **Create a new role** and then give the role a name. The IAM role will have the prefix "AmazonKendra-".
5. Leave all of the other fields at their defaults. Choose **Next**.
6. In the **Configure user access control** page, choose **Next**.
7. In the **Provisioning details** page, choose **Developer edition**.
8. Choose **Create** to create your index.
9. Wait for your index to be created. Amazon Kendra provisions the hardware for your index. This operation can take some time.

Step 2: To add a data source to an index (console)

1. View the available data sources to connect Amazon Kendra to and index your documents.
2. In the navigation pane, select **Data sources** and then select **Add data source** for your chosen data source.
3. Follow the steps to configure the data source.

Step 3: To search an index (console)

1. In the navigation pane, choose the option to search your index.
2. Enter a search term that's appropriate for your index. The **top results** and **top document** results are shown.

Getting started (AWS CLI)

The following procedure shows how to create an Amazon Kendra index using the AWS CLI. The procedure creates a data source, index, and runs a query on the index.

To create an Amazon Kendra index (CLI)

1. Do the **Prerequisites** (p. 85).
2. Enter the following command to create an index.

   ```bash
   aws kendra create-index \
   --name cli-getting-started-index \
   --description "Index for CLI getting started guide." \
   --role-arn arn:aws:iam::account id:role/KendraRoleForGettingStartedIndex
   ```

3. Wait for Amazon Kendra to create the index. Check the progress using the following command. When the status field is **ACTIVE**, go on to the next step.

   ```bash
   aws kendra describe-index \
   --id index id
   ```

4. At the command prompt, enter the following command to create a data source.

   ```bash
   aws kendra create-data-source \
   --index-id index id \
   --name data source name \
   --role-arn arn:aws:iam::account id:role/KendraRoleForGettingStartedDataSource \
   --type S3 \
   --configuration '{"S3Configuration":{"BucketName":"S3 bucket name"}}'
   ```

 If you connect to your data source using a template schema, configure the template schema.

   ```bash
   aws kendra create-data-source \
   --index-id index id \
   --name data source name \
   --role-arn arn:aws:iam::account id:role/KendraRoleForGettingStartedDataSource \
   ```
5. It will take Amazon Kendra a while to create the data source. Enter the following command to check the progress. When the status is ACTIVE, go on to the next step.

```
aws kendra describe-data-source
--id data source ID
--index-id index ID
```

6. Enter the following command to synchronize the data source.

```
aws kendra start-data-source-sync-job
--id data source ID
--index-id index ID
```

7. Amazon Kendra will index your data source. The amount of time that it takes depends on the number of documents. You can check the status of the sync job using the following command. When the status is ACTIVE, go on to the next step.

```
aws kendra describe-data-source
--id data source ID
--index-id index ID
```

8. Enter the following command to make a query.

```
aws kendra query
--index-id index ID
--query-text "search term"
```

The results of the search are displayed in JSON format.

Getting started (AWS SDK for Python (Boto3))

The following program is an example of using Amazon Kendra in a Python program. The program performs the following actions:

1. Creates a new index using the `CreateIndex` operation.
2. Waits for index creation to complete. It uses the `DescribeIndex` operation to monitor the status of the index.
3. Once the index is active, it creates a data source using the `CreateDataSource` operation.
4. Waits for data source creation to complete. It uses the `DescribeDataSource` operation to monitor the status of the data source.
5. When the data source is active, it synchronizes the index with the contents of the data source using the `StartDataSourceSyncJob` operation.

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")
print("Create an index.")
```
Provide a name for the index
index_name = "python-getting-started-index"
Provide an optional description for the index
description = "Getting started index"
Provide the IAM role ARN required for indexes
index_role_arn = "arn:aws:iam::${accountId}:role/KendraRoleForGettingStartedIndex"

try:
 index_response = kendra.create_index(
 Description = description,
 Name = index_name,
 RoleArn = index_role_arn
)

 pprint.pprint(index_response)

 index_id = index_response["Id"]

 print("Wait for Amazon Kendra to create the index.")

 while True:
 # Get the details of the index, such as the status
 index_description = kendra.describe_index(
 Id = index_id
)

 # When status is not CREATING quit.
 status = index_description["Status"]

 print("Creating index. Status: ", status)
 time.sleep(60)

 if status != "CREATING":
 break

 print("Create an S3 data source.")

 # Provide a name for the data source
 data_source_name = "python-getting-started-data-source"

 # Provide an optional description for the data source
 data_source_description = "Getting started data source."

 # Provide the IAM role ARN required for data sources
 data_source_role_arn = "arn:aws:iam::${accountId}:role/KendraRoleForGettingStartedDataSource"

 # Provide the data source connection information
 S3_bucket_name = "S3-bucket-name"
 data_source_type = "S3"

 # Configure the data source
 configuration = {
 "S3Configuration": {
 "BucketName": S3_bucket_name
 }
 }

 """
 If you connect to your data source using a template schema, configure the template schema
 configuration = {
 "TemplateConfiguration": {
 "Template": {JSON schema}
 }
 }
 """

 data_source_response = kendra.create_data_source(
 Name = data_source_name,
 Description = description,
 RoleArn = data_source_role_arn,
 Type = data_source_type,
Getting started (AWS SDK for Java)

The following program is an example of using Amazon Kendra in a Java program. The program performs the following actions:

1. Creates a new index using the `CreateIndex` operation.
2. Waits for index creation to complete. It uses the `DescribeIndex` operation to monitor the status of the index.
3. Once the index is active, it creates a data source using the `CreateDataSource` operation.
4. Waits for data source creation to complete. It uses the `DescribeDataSource` operation to monitor the status of the data source.
5. When the data source is active, it synchronizes the index with the contents of the data source using the `StartDataSourceSyncJob` operation.

```java
package com.amazonaws.kendra;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.CreateDataSourceRequest;
import software.amazon.awssdk.services.kendra.model.CreateDataSourceResponse;
import software.amazon.awssdk.services.kendra.model.CreateIndexRequest;
import software.amazon.awssdk.services.kendra.model.CreateIndexResponse;
import software.amazon.awssdk.services.kendra.model.DataSourceConfiguration;
import software.amazon.awssdk.services.kendra.model.DataSourceStatus;
import software.amazon.awssdk.services.kendra.model.DataSourceSyncJob;
import software.amazon.awssdk.services.kendra.model.DataSourceSyncJobStatus;
import software.amazon.awssdk.services.kendra.model.DataSourceType;
import software.amazon.awssdk.services.kendra.model.DescribeDataSourceRequest;
import software.amazon.awssdk.services.kendra.model.DescribeDataSourceResponse;
import software.amazon.awssdk.services.kendra.model.DescribeIndexRequest;
import software.amazon.awssdk.services.kendra.model.DescribeIndexResponse;
import software.amazon.awssdk.services.kendra.model.IndexStatus;
import software.amazon.awssdk.services.kendra.model.ListDataSourceSyncJobsRequest;
import software.amazon.awssdk.services.kendra.model.ListDataSourceSyncJobsResponse;
import software.amazon.awssdk.services.kendra.model.S3DataSourceConfiguration;
import software.amazon.awssdk.services.kendra.model.StartDataSourceSyncJobRequest;
import software.amazon.awssdk.services.kendra.model.StartDataSourceSyncJobResponse;

public class CreateIndexAndDataSourceExample {
    public static void main(String[] args) throws InterruptedException {
        System.out.println("Create an index");

        String indexDescription = "Getting started index for Kendra";
        String indexName = "java-getting-started-index";
        String indexRoleArn = "arn:aws:iam::<your AWS account ID>::role/<name of an IAM role>";

        System.out.println(String.format("Creating an index named %s", indexName));
        KendraClient kendra = KendraClient.builder().build();

        CreateIndexRequest createIndexRequest = CreateIndexRequest
                .builder()
                .description(indexDescription)
                .name(indexName)
                .roleArn(indexRoleArn)
                .build();

        CreateIndexResponse createIndexResponse = kendra.createIndex(createIndexRequest);
        System.out.println(String.format("Index response %s", createIndexResponse));

        String indexId = createIndexResponse.id();

        System.out.println(String.format("Waiting until the index with index ID %s is created", indexId));
        while (true) {
            DescribeIndexRequest describeIndexRequest =
                    DescribeIndexRequest.builder().id(indexId).build();
            DescribeIndexResponse describeIndexResponse =
                    kendra.describeIndex(describeIndexRequest);
            IndexStatus status = describeIndexResponse.status();
            if (IndexStatus.ACTIVE.equals(status)) {
                break;
            }
            System.out.println(String.format("Index status: %s", describeIndexResponse.status()));
            TimeUnit.MILLISECONDS.sleep(1000);
        }
    }
}```
if (status != IndexStatus.CREATING) {
    break;
}

TimeUnit.SECONDS.sleep(60);

System.out.println("Creating an S3 data source");
String dataSourceName = "java-getting-started-data-source";
String dataSourceDescription = "Getting started data source";
String s3BucketName = "an-aws-kendra-test-bucket";
String dataSourceRoleArn = "arn:aws:iam::<your AWS account ID>:role/<name of an IAM role>";

CreateDataSourceRequest createDataSourceRequest = CreateDataSourceRequest
    .builder()
    .indexId(indexId)
    .name(dataSourceName)
    .description(dataSourceDescription)
    .roleArn(dataSourceRoleArn)
    .type(DataSourceType.S3)
    .configuration(
        DataSourceConfiguration
            .builder()
            .s3Configuration(
                S3DataSourceConfiguration
                    .builder()
                    .bucketName(s3BucketName)
                    .build()
            ).build()
    ).build();

CreateDataSourceResponse createDataSourceResponse = kendra.createDataSource(createDataSourceRequest);
System.out.println(String.format("Response of creating data source: %s", createDataSourceResponse));

String dataSourceId = createDataSourceResponse.id();
System.out.println(String.format("Waiting for Kendra to create the data source %s", dataSourceId));
DescribeDataSourceRequest describeDataSourceRequest = DescribeDataSourceRequest
    .builder()
    .indexId(indexId)
    .id(dataSourceId)
    .build();

while (true) {
    DescribeDataSourceResponse describeDataSourceResponse = kendra.describeDataSource(describeDataSourceRequest);
    DataSourceStatus status = describeDataSourceResponse.status();
    System.out.println(String.format("Creating data source. Status: %s", status));
    if (status != DataSourceStatus.CREATING) {
        break;
    }
    TimeUnit.SECONDS.sleep(60);
}

System.out.println(String.format("Synchronize the data source %s", dataSourceId));
StartDataSourceSyncJobRequest startDataSourceSyncJobRequest = StartDataSourceSyncJobRequest
    .builder()
    .indexId(indexId)
    .id(dataSourceId)
    .build();
StartDataSourceSyncJobResponse startDataSourceSyncJobResponse = kendra.startDataSourceSyncJob(startDataSourceSyncJobRequest);
System.out.println(String.format("Waiting for the data source to sync with the index %s for execution ID %s", indexId, startDataSourceSyncJobResponse.executionId()));

// For this particular list, there should be just one job
ListDataSourceSyncJobsRequest listDataSourceSyncJobsRequest =
ListDataSourceSyncJobsRequest.builder()
.indexId(indexId)
.id(dataSourceId)
.build();

while (true) {
ListDataSourceSyncJobsResponse listDataSourceSyncJobsResponse =
kendra.listDataSourceSyncJobs(listDataSourceSyncJobsRequest);
DataSourceSyncJob job = listDataSourceSyncJobsResponse.history().get(0);
System.out.println(String.format("Syncing data source. Status: %s", job.status()));
if (job.status() != DataSourceSyncJobStatus.SYNCING) {
    break;
}

TimeUnit.SECONDS.sleep(60);
}
System.out.println("Index setup is complete");

Getting started with an Amazon S3 data source (console)

You can use the Amazon Kendra console to get started using an Amazon S3 bucket as a data store. When you use the console you specify all of the connection information you need to index the contents of the bucket. For more information, see Amazon S3 (p. 296).

Use the following procedure to create a basic S3 bucket data source using the default configuration. The procedure assumes that you created an index following the steps in step 1 of Getting started with the Amazon Kendra console (p. 90).

To create an S3 bucket data source using the Amazon Kendra console

1. Sign into the AWS Management Console and open the Amazon Kendra console at https://console.aws.amazon.com/kendra/home.
2. From the list of indexes, choose the index that you want to add the data source to.
3. Choose Add data sources.
4. From the list of data source connectors, choose Amazon S3.
5. On the Define attributes page, give your data source a name and optionally a description. Leave the Tags field blank. Choose Next to continue.
6. In the Enter the data source location field, enter the name of the S3 bucket that contains your documents. You can enter the name directly, or you can browse for the name by choosing Browse. The bucket must be in the same Region as the index.
7. In IAM role choose Create a new role and then type a role name. For more information, see IAM roles for Amazon S3 data sources.

8. In the Set sync run schedule section, choose Run on demand.

9. Choose Next to continue.

10. On the Review and create page review the details of your S3 data source. If you want to make changes, choose the Edit button next to the item that you want to change. When you are satisfied with your choices, choose Create to create your S3 data source.

After you choose Create, Amazon Kendra starts creating the data source. It can take several minutes for the data source to be created. When it is finished, the status of the data source changes from Creating to Active.

After creating the data source, you need to sync the Amazon Kendra index with the data source. Choose Sync now to start the sync process. It can take several minutes to several hours to synchronize the data source, depending on the number and size of the documents.

Getting started with a MySQL database data source (console)

You can use the Amazon Kendra console to get started using a MySQL database as a data source. When you use the console you specify the connection information you need to index the contents of a MySQL database. For more information, see Using a database data source.

You first need to create a MySQL database, then you can create a data source for the database.

Use the following procedure to create a basic MySQL database. The procedure assumes that you have already created an index following step 1 of Getting started with the Amazon Kendra console (p. 90).

To create a MySQL database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. From the navigation pane, choose Subnet groups and then choose Create DB Subnet Group.

3. Name the group and choose your Virtual Private Cloud (VPC). For more information on configuring a VPC, see Configuring Amazon Kendra to use a VPC.

4. Add your VPC's private subnets. Your private subnets are the ones that are not connected to your NAT. Choose Create.

5. From the navigation pane, choose Databases and then choose Create database.

6. Use the following parameters to create the database. Leave all of the other parameters at their defaults.

   - **Engine options**—MySQL
   - **Templates**—Free tier
   - **Credential Settings**—Enter and confirm a password
   - Under Connectivity, choose Additional connectivity configuration. Make the following choices.
     - **Subnet group**—Choose the subnet group that you created in step 4.
     - **VPC security group**—Choose the group that contains both inbound and outbound rules that you created in your VPC. For example, DataSourceSecurityGroup. For more information on configuring a VPC, see Configuring Amazon Kendra to use a VPC.
• Under Additional configuration, set the Initial database name to content.
7. Choose Create database.
8. From the list of databases, choose your new database. Make a note of the database endpoint.
9. After you create your database, you must create a table to hold your documents. Creating a table is outside the scope of these instructions. When you create your table, note the following:
   • Database name—content
   • Table name—documents
   • Columns—ID, Title, Body, and LastUpdate. You can include additional columns if you want.

Now that you have created your MySQL database, you can create a data source for the database.

To create a MySQL data source
1. Sign in to the AWS Management Console and open the Amazon Kendra console at https://console.aws.amazon.com/kendra/home.
2. From the navigation pane, choose Indexes and then choose your index.
3. Choose Add data sources and then choose Amazon RDS.
4. Type a name and description for the data source and then choose Next.
5. Choose MySQL.
6. Under Connection access, enter the following information:
   • Endpoint—The endpoint of the database that you created earlier.
   • Port—The port number for the database. For MySQL, the default is 3306.
   • Type of authentication—Choose New.
   • New secret container name—A name for the Secrets Manager container for the database credentials.
   • Username—The name of a user with administrative access to the database.
   • Password—The password for the user, and then choose Save authentication.
   • Database name—content.
   • Table name—documents.
   • IAM role—Choose Create a new role, and then type a name for the role.
7. In Column configuration enter the following:
   • Document ID column name—ID
   • Document title column name—Title
   • Document data column name—Body
8. In Column change detection enter the following:
   • Change detecting columns—LastUpdate
9. In Configure VPC & security group provide the following:
   • In Virtual Private Cloud (VPC), choose your VPC.
   • In Subnets, choose the private subnets that you created in your VPC.
   • In VPC security groups, choose the security group that contains both inbound and outbound rules that you created in your VPC for MySQL databases. For example, DataSourceSecurityGroup.
10. In Set sync run schedule, choose Run on demand and then choose Next.
11. In Data source field mapping, choose Next.
12. Review the configuration of your data source to make sure that it is correct. When you're satisfied that everything is correct, choose Create.
Getting started with an AWS IAM Identity Center (successor to AWS Single Sign-On) identity source (console)

An AWS IAM Identity Center (successor to AWS Single Sign-On) identity source contains information on your users and groups. This is useful for setting up user context filtering, where Amazon Kendra filters search results for different users based on the user or their group's access to documents.

To create an IAM Identity Center identity source, you must activate IAM Identity Center and create an organization in AWS Organizations. When you activate IAM Identity Center and create an organization for the first time, it automatically defaults to the Identity Center directory as the identity source. You can change to Active Directory (Amazon managed or self-managed) or an external identity provider as your identity source. You must follow the correct guidance for this — see Changing your IAM Identity Center identity source. You can have only one identity source per organization.

In order for your users and groups to be assigned different levels of access to documents, you need to include your users and groups in your access control list when you ingest documents into your index. This allows your users and groups to search for documents in Amazon Kendra in accordance with their level of access. When you issue a query, the user ID needs to be an exact match of the user name in IAM Identity Center.

You must also grant the required permissions to use IAM Identity Center with Amazon Kendra. For more information, see IAM roles for IAM Identity Center.

To set up an IAM Identity Center identity source

1. Open the IAM Identity Center console.
2. Choose Enable IAM Identity Center, and then choose Create AWS organization.
   
   Identity Center directory is created by default, and an email is sent to you to verify the email address associated with the organization.
3. To add a group to your AWS organization, in the navigation pane, choose Groups.
4. On the Groups page, choose Create group and enter a group name and description in the dialog box. Choose Create.
5. To add a user to your Organizations, in the navigation pane, choose Users.
6. On the Users page, choose Add user. Under User details, specify all required fields. For Password, choose Send an email to the user. Choose Next.
7. To add a user to a group, choose Groups and select a group.
8. On the Details page, under Group members, choose Add user.
9. On the Add users to group page, select the user you want to add as a member of the group. You can select multiple users to add to a group.
10. To sync your list of users and groups with IAM Identity Center, change your identity source to Active Directory or External identity provider.

   Identity Center directory is the default identity source and requires you to manually add your users and groups using this source if you do not have your own list managed by a provider. To change your identity source, you must follow the correct guidance for this—see Changing your IAM Identity Center identity source.

Note

If using Active Directory or an external identity provider as your identity source, you must map the email addresses of your users to IAM Identity Center user names when you specify the
Changing your IAM Identity Center identity source

Warning
Changing your identity source in IAM Identity Center Settings might affect the preservation
of user and group information. To do this safely, it is recommended you review Considerations
for changing your identity source. When you change your identity source, a new identity source
ID is generated. Check you are using the correct ID before you set the mode to AWS_SSO in
UserGroupResolutionConfiguration.

To change your IAM Identity Center identity source
1. Open the IAM Identity Center> console.
2. Choose Settings.
3. On the **Settings** page, under **Identity source**, choose **Change**.
4. On the **Change identity source** page, select your preferred identity source, and then choose **Next**.
Creating an index

You can create an index using the console or by calling the CreateIndex API. You can use the AWS Command Line Interface (AWS CLI) or SDK with the API. This chapter describes how you can create an index using any one of these methods. After you created your index, you can add documents directly to it or from a data source.

To create an index, you must provide the Amazon Resource Name (ARN) of an AWS Identity and Access Management (IAM) role for indexes to access CloudWatch. For more information, see IAM roles for indexes.

To create an index (console)

1. Sign in to the AWS Management Console and open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. Select Create index in the Indexes section.
3. In Specify index details, give your index a name and a description.
4. In IAM role provide an IAM role. To find a role, choose from roles in your account that contain the word "kendra" or enter the name of another role. For more information about the permissions that the role requires, see IAM roles for indexes.
5. Choose Next.
6. On the Configure user access control page, choose Next. You can update your index to use tokens for access control after you create an index. For more information, see Controlling access to documents.
7. On the Provisioning details page, choose Create.
8. It might take some time for the index to create. Check the list of indexes to watch the progress of creating your index. When the status of the index is ACTIVE, your index is ready to use.

To create an index (AWS CLI)

1. Use the following command to create an index. The role-arn must be the Amazon Resource Name (ARN) of an IAM role that can run Amazon Kendra actions. For more information, see IAM roles.

   The command is formatted for Linux and macOS. If you are using Windows, replace the Unix line continuation character (\) with a caret (^).

   ```
 aws kendra create-index \n --name index name \n --description "index description" \n --role-arn arn:aws:iam::account ID:role/role name
   ```

2. It might take some time for the index to create. To check the state of your index, use the index ID returned by create-index with the following command. When the status of the index is ACTIVE, your index is ready to use.

   ```
 aws kendra describe-index \n --index-id index ID
   ```

To create an index (SDK)

1. Provide values for the following variables:
• description—A description of the index that you're creating. This is optional.
• index_name—The name of the index that you're creating.
• role_arn—The Amazon Resource Name (ARN) of a role that can run Amazon Kendra APIs. For more information, see [IAM roles].

2. In the following examples, an Amazon Kendra index is created.

Python

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time
kendra = boto3.client("kendra")
print("Create an index.")

Provide a name for the index
index_name = "index-name"
Provide an optional description for the index
description = "index description"
Provide the IAM role ARN required for indexes
role_arn = "arn:aws:iam::${account id}:role/${role name}"

try:
 index_response = kendra.create_index(
 Name = index_name,
 Description = description,
 RoleArn = role_arn
)

 pprint.pprint(index_response)
 index_id = index_response["Id"]

 print("Wait for Amazon Kendra to create the index.")

 while True:
 # Get the details of the index, such as the status
 index_description = kendra.describe_index(
 Id = index_id
)
 # If status is not CREATING, then quit
 status = index_description["Status"]
 print(" Creating index. Status: " + status)
 if status != "CREATING":
 break
 time.sleep(60)

except ClientError as e:
 print("%s" % e)

print("Program ends.")
```

Java

```java
package com.amazonaws.kendra;

import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.CreateIndexRequest;
```
import software.amazon.awssdk.services.kendra.model.CreateIndexResponse;
import software.amazon.awssdk.services.kendra.model.DescribeIndexRequest;
import software.amazon.awssdk.services.kendra.model.DescribeIndexResponse;
import software.amazon.awssdk.services.kendra.model.IndexStatus;

public class CreateIndexExample {
    public static void main(String[] args) throws InterruptedException {
        String indexDescription = "Getting started index for Kendra";
        String indexName = "java-getting-started-index";
        String indexRoleArn = "arn:aws:iam::<your AWS account ID>:role/
KendraRoleForGettingStartedIndex";

        System.out.println(String.format("Creating an index named %s", indexName));
        CreateIndexRequest createIndexRequest = CreateIndexRequest
            .builder()
            .description(indexDescription)
            .name(indexName)
            .roleArn(indexRoleArn)
            .build();
        KendraClient kendra = KendraClient.builder().build();
        CreateIndexResponse createIndexResponse =
            kendra.createIndex(createIndexRequest);
        System.out.println(String.format("Index response %s",
            createIndexResponse));

        String indexId = createIndexResponse.id();

        System.out.println(String.format("Waiting until the index with ID %s is
            created.", indexId));
        while (true) {
            DescribeIndexRequest describeIndexRequest =
                DescribeIndexRequest.builder().id(indexId).build();
            DescribeIndexResponse describeIndexResponse =
                kendra.describeIndex(describeIndexRequest);
            IndexStatus status = describeIndexResponse.status();
            if (status != IndexStatus.CREATING) {
                break;
            }
        }

        TimeUnit.SECONDS.sleep(60);
    }

    System.out.println("Index creation is complete.");
}

After you created your index, you add documents to it. You can add them directly or create a data source
that updates your index on a regular schedule.

Topics
• Adding documents directly to an index with batch upload (p. 106)
• Adding frequently asked questions (FAQs) to an index (p. 110)
• Creating custom document fields (p. 115)
• Controlling user access to documents with tokens (p. 116)
Adding documents directly to an index with batch upload

You can add documents directly to an index using the `BatchPutDocument` API. You can't add documents directly using the console. If you use the console, you connect to a data source to add documents to your index.

Documents can be added from an S3 bucket or supplied as binary data.

For a list of document types supported by Amazon Kendra see [Types of documents](#).

Adding documents to an index using `BatchPutDocument` is an asynchronous operation. After you call the `BatchPutDocument` API, you use the `BatchGetDocumentStatus` API to monitor the progress of indexing your documents. When you call the `BatchGetDocumentStatus` API with a list of document IDs, it returns the status of the document. When the status of the document is INDEXED or FAILED, processing of the document is complete. When the status is FAILED, the `BatchGetDocumentStatus` API returns the reason that the document couldn't be indexed.

If you want to alter your content and document metadata fields or attributes during the document ingestion process, see [Amazon Kendra Custom Document Enrichment](#).

If you want to use a custom data source, each document you submit using the `BatchPutDocument` API requires a data source ID and execution ID as attributes or fields. For more information, see [Required attributes for custom data sources](#).

Note, each document ID must be unique per index. You cannot create a data source to index your documents with their unique IDs and then use the `BatchPutDocument` API to index the same documents, or vice versa. You can delete a data source and then use the `BatchPutDocument` API to index the same documents, or vice versa.

The following developer guide documents show how to add documents directly to an index.

**Topics**

- Adding documents with the `BatchPutDocument` API (p. 106)
- Adding documents from an S3 bucket (p. 108)

### Adding documents with the `BatchPutDocument` API

The following example adds a blob of text to an index by calling `BatchPutDocument`. You can also [add documents from an S3 bucket](#) and call the `BatchPutDocument` API.

You can use the `BatchPutDocument` API to add documents to your index. For a list of document types supported by Amazon Kendra see [Types of documents](#).

Files added to the index must be in a UTF-8 encoded byte stream.

For an example of creating an index using the AWS CLI and SDKs, see [Creating an index](#). To set up the CLI and SDKs, see [Setting up Amazon Kendra](#).

In the following examples, UTF-8 encoded text is added to the index.

**CLI**

In the AWS Command Line Interface, use the following command. The command is formatted for Linux and macOS. If you are using Windows, replace the Unix line continuation character (\) with a caret (^).

```shell
106
```
Adding documents with the BatchPutDocument API

**Python**

```python
import boto3
kendra = boto3.client("kendra")

Provide the index ID
index_id = "index-id"

Provide the title and text
title = "Information about Amazon.com"
text = "Amazon.com is an online retailer."

document = {
 "Id": "1",
 "Blob": text,
 "ContentType": "PLAIN_TEXT",
 "Title": title
}

documents = [
 document
]

result = kendra.batch_put_document(
 IndexId = index_id,
 Documents = documents
)

print(result)
```

**Java**

```java
package com.amazonaws.kendra;

import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.BatchPutDocumentRequest;
import software.amazon.awssdk.services.kendra.model.BatchPutDocumentResponse;
import software.amazon.awssdk.services.kendra.model.ContentType;
import software.amazon.awssdk.services.kendra.model.Document;

public class AddDocumentsViaAPIExample {
 public static void main(String[] args) {
 KendraClient kendra = KendraClient.builder().build();

 String indexId = "yourIndexId";

 Document testDoc = Document
 .builder()
 .title("The title of your document")
 .id("a_doc_id")
 .blob(SdkBytes.fromUtf8String("your text content"))
 .contentType(ContentType.PLAIN_TEXT)
 .build();

```
Adding documents from a bucket

You can add documents directly to your index from an Amazon S3 bucket. You can add up to 10 documents in the same call. When you use an S3 bucket, you must provide an IAM role with permission to access the bucket that contains your documents. You specify the role in the RoleArn parameter.

Using the BatchPutDocument API to add documents from an Amazon S3 bucket is a one-time operation. To keep an index synchronized with the contents of a bucket, create an Amazon S3 data source. For more information, see Amazon S3 data source.

For an example of creating an index using the AWS CLI and SDKs, see Creating an index. To set up the CLI and SDKs, see Setting up Amazon Kendra. For information on creating an S3 bucket, see Amazon Simple Storage Service documentation.

In the following example, two Microsoft Word documents are added to the index using the BatchPutDocument API.

Python

```python
import boto3
kendra = boto3.client("kendra")

Provide the index ID
index_id = "index-id"
Provide the IAM role ARN required to index documents in an S3 bucket
role_arn = "arn:aws:iam::${acccountID}:policy/${roleName}"

doc1_s3_file_data = {
 "Bucket": "bucket-name",
 "Key": "document1.docx"
}

doc1_document = {
 "S3Path": doc1_s3_file_data,
 "Title": "Document 1 title",
 "Id": "doc_1"
}

doc2_s3_file_data = {
 "Bucket": "bucket-name",
 "Key": "document2.docx"
}

doc2_document = {
 "S3Path": doc2_s3_file_data,
 "Title": "Document 2 title",
 "Id": "doc_2"
}
```
Adding documents from an S3 bucket

documents = [
    doc1_document,
    doc2_document
]

result = kendra.batch_put_document(
    Documents = documents,
    IndexId = index_id,
    RoleArn = role_arn
)

print(result)

Java

```java
package com.amazonaws.kendra;

import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.BatchPutDocumentRequest;
import software.amazon.awssdk.services.kendra.model.BatchPutDocumentResponse;
import software.amazon.awssdk.services.kendra.model.Document;
import software.amazon.awssdk.services.kendra.model.S3Path;

public class AddFilesFromS3Example {
 public static void main(String[] args) {
 KendraClient kendra = KendraClient.builder().build();

 String indexId = "yourIndexId";
 String roleArn = "yourIndexRoleArn";

 Document pollyDoc = Document
 .builder()
 .s3Path(S3Path.builder()
 .bucket("an-aws-kendra-test-bucket")
 .key("What is Amazon Polly.docx")
 .build())
 .title("What is Amazon Polly")
 .id("polly_doc_1")
 .build();

 Document rekognitionDoc = Document
 .builder()
 .s3Path(S3Path.builder()
 .bucket("an-aws-kendra-test-bucket")
 .key("What is Amazon Rekognition.docx")
 .build())
 .title("What is Amazon rekognition")
 .id("rekognition_doc_1")
 .build();

 .builder()
 .indexId(indexId)
 .roleArn(roleArn)
 .documents(pollyDoc, rekognitionDoc)
 .build();

 BatchPutDocumentResponse result =
 kendra.batchPutDocument(batchPutDocumentRequest);

 System.out.println(String.format("BatchPutDocument result: %s", result));
 }
```
Adding frequently asked questions (FAQs) to an index

You can add frequently asked questions (FAQs) directly to your index using the console or the CreateFaq API. Adding FAQs to an index is an asynchronous operation. You put the data for the FAQ in a file that you store in an Amazon Simple Storage Service bucket. You can use CSV or JSON files as input for your FAQ:

- **Basic CSV**—A CSV file where each row contains a question, answer, and an optional source URI.
- **Custom CSV**—A CSV file that contains questions, answers, and headers for custom fields/attributes that you can use to facet, display, or sort FAQ responses. You can also define access control fields to limit the FAQ response to certain users and groups that are allowed to see the FAQ response.
- **JSON**—A JSON file that contains questions, answers, and custom fields/attributes that you can use to facet, display, or sort FAQ responses. You can also define access control fields to limit the FAQ response to certain users and groups that are allowed to see the FAQ response.

For example, the following is a basic CSV file that provides answers to questions about free clinics in Spokane, Washington USA and Mountain View, Missouri, USA.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many free clinics are in Spokane WA?</td>
<td>13</td>
</tr>
<tr>
<td>How many free clinics are there in Mountain View Missouri?</td>
<td>7</td>
</tr>
</tbody>
</table>

When you use a custom CSV or JSON file for input, you can declare custom fields for your FAQ questions. For example, you can create a custom field that assigns each FAQ question a business department. When the FAQ is returned in a response, you can use the department as a facet to narrow the search to "HR" or "Finance" only, for example.

A custom field must map to an index field. In the console, you use the Facet definition page to create an index field. When using the API, you must first create an index field using the UpdateIndex API.

The field/attribute type in the FAQ file must match the type of the associated index field. For example, the "Department" field is a STRING_LIST type field. So, you must provide values for the department field as a string list in your FAQ file. You can check the type of index fields using the Facet definition page in the console or by using the DescribeIndex API.

When you create an index field that maps to a custom attribute, you can mark it displayable, facets, or sortable. You can't make a custom attribute searchable.

In addition to the custom attributes, you can also use the Amazon Kendra reserved or common fields in a custom CSV or JSON file. For more information, see Document attributes or fields.

**Basic CSV file**

Use a basic CSV file when you want to use a simple structure for your FAQs. In a basic CSV file, each row has two or three fields: a question, an answer, and an optional source URI that points to a document with more information.

The contents of the file must follow the RFC 4180 Common Format and MIME Type for Comma-Separated Values (CSV) Files.
Custom CSV file

Use a custom CSV file when you want to add custom fields/attributes to your FAQ questions. For a custom CSV file, you use a header row in your CSV file to define the additional attributes.

The CSV file must contain the following two required fields:

- _question—The frequently asked question
- _answer—The answer to the frequently asked question

Your file can contain both Amazon Kendra reserved fields and custom fields. The following is an example of a custom CSV file.

<table>
<thead>
<tr>
<th>_question, _answer, _last_updated_at, custom_string</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many free clinics are in Spokane WA?, 13, 2012-03-25T12:30:10+01:00, Note: Some free clinics require you to meet certain criteria in order to use their services</td>
</tr>
<tr>
<td>How many free clinics are there in Mountain View Missouri?, 7, 2012-03-25T12:30:10+01:00, Note: Some free clinics require you to meet certain criteria in order to use their services</td>
</tr>
</tbody>
</table>

The contents of the custom file must follow the [RFC 4180 Common Format and MIME Type for Comma-Separated Values (CSV) Files](https://www.rfc-editor.org/rfc/rfc4180).

The following lists the types of custom fields:

- **Date**—ISO 8601-encoded date and time values.
  
  For example, 2012-03-25T12:30:10+01:00 is the ISO 8601 date-time format for March 25, 2012, at 12:30PM (plus 10 seconds) in the Central European Time time zone.

- **Long**—Numbers, such as 1234.

- **String**—String values. If your string contains commas, enclose the entire value in double quotation marks ("), for example, "custom attribute, and more".

- **String list**—A list of string values. List the values in a comma-separated list that’s enclosed in quotation marks ("), for example, "item1, item2, item3"). If the list contains only a single entry, you can omit the quotation marks (for example, item1).

A custom CSV file can contain user access control fields. You can use these fields to limit access to the FAQ to certain users and groups. To filter on user context, the user must provide user and group information in the query. Otherwise, all relevant FAQs are returned. For more information, see [User context filtering](#).

The following lists the user context filters for FAQs:

- **_acl_user_allow**—Users in the allow list can see the FAQ in the query response. The FAQ isn’t returned to other users.

- **_acl_user_deny**—Users in the deny list can’t see the FAQ in the query response. The FAQ is returned to all other users when it’s relevant to the query.
• _acl_group_allow—Users that are members of an allowed group can see the FAQ in the query response. The FAQ isn't returned to users that are members of another group.

• _acl_group_deny—Users that are members of a denied group can't see the FAQ in the query response. The FAQ is returned to other groups when it's relevant to the query.

Provide the values for the allow and deny lists in comma-separated lists enclosed in quotation marks (for example, "user1,user2,user3"). You can include a user or a group in either an allow list or a deny list, but not both where the same user is individually allowed but also group denied. If you include a user or group in both, you receive an error.

The following is an example of a custom CSV file with user context information.

<table>
<thead>
<tr>
<th>_question, _answer, _acl_user_allow, _acl_user_deny, _acl_group_allow, _acl_group_deny</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many free clinics are in Spokane WA?, 13, &quot;userID6201,userID7552&quot;, &quot;userID1001,userID2020&quot;, groupBasicPlusRate, groupPremiumRate</td>
</tr>
</tbody>
</table>

**JSON file**

You can use a JSON file to provide questions, answers, and fields for your index. You can add any of the Amazon Kendra reserved fields or custom fields to the FAQ.

The following is the schema for the JSON file.

```json
{
 "SchemaVersion": 1,
 "FaqDocuments": [
 {
 "Question": string,
 "Answer": string,
 "Attributes": {
 string: object
 additional attributes
 },
 "AccessControlList": [
 {
 "Name": string,
 "Type": enum("GROUP" | "USER"),
 "Access": enum("ALLOW" | "DENY")
 },
 additional user context
],
 additional FAQ documents
 }
]
}
```

The following example JSON file shows two FAQ documents. One of the documents has the required question and answer only. The other document also includes additional field and user context or access control information.

```json
{
 "SchemaVersion": 1,
 "FaqDocuments": [
 {
 "Question": "How many free clinics are in Spokane WA?",
 "Answer": "13"
 },
 additional FAQ documents
]
}
```
Using your FAQ file

After you store your FAQ input file in an S3 bucket, you use the console or the CreateFaq API to put the questions and answers into your index. If you want to update a FAQ, delete the FAQ and create it again. You use the DeleteFaq API to delete a FAQ.
You must provide an IAM role that has access to the S3 bucket that contains your source files. You specify the role in the console or in the RoleArn parameter. The following is an example of adding a FAQ file to an index.

Python

```python
import boto3

kendra = boto3.client("kendra")

Provide the index ID
index_id = "index-id"

Provide the IAM role ARN required to index documents in an S3 bucket
role_arn = "arn:aws:iam::${accountId}:role/${roleName}"

Provide the S3 bucket path information to the FAQ file
faq_path = {
 "Bucket": "bucket-name",
 "Key": "FreeClinicsUSA.csv"
}

response = kendra.create_faq(
 S3Path = faq_path,
 Name = "FreeClinicsUSA",
 IndexId = index_id,
 RoleArn = role_arn
)

print(response)
```

Java

```java
package com.amazonaws.kendra;

import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.CreateFaqRequest;
import software.amazon.awssdk.services.kendra.model.CreateFaqResponse;
import software.amazon.awssdk.services.kendra.model.S3Path;

public class AddFaqExample {
 public static void main(String[] args) {
 KendraClient kendra = KendraClient.builder().build();

 String indexId = "yourIndexId";
 String roleArn = "your role for accessing S3 files";

 CreateFaqRequest createFaqRequest = CreateFaqRequest.builder()
 .indexId(indexId)
 .name("FreeClinicsUSA")
 .roleArn(roleArn)
 .s3Path(S3Path.builder()
 .bucket("an-aws-kendra-test-bucket")
 .key("FreeClinicsUSA.csv")
 .build());

 CreateFaqResponse response = kendra.createFaq(createFaqRequest);

 System.out.println(String.format("The result of creating FAQ: %s", response));
 }
}
```
FAQ files in languages other than English

You can index a FAQ in a supported language. Amazon Kendra indexes FAQs in English by default if you don't specify a language. You specify the language code when you call the `CreateFaq` operation or you can include the language code for a FAQ in the FAQ metadata as a field. If a FAQ doesn't have a language code in its metadata specified in a metadata field, the FAQ is indexed using the language code specified when you call the `CreateFaq` operation. To index a FAQ document in a supported language in the console, go to FAQs and select Add FAQ. You choose a language from the dropdown Language.

Creating custom document fields

You can apply custom attributes or fields for your particular documents. For example, you can create a custom field or attribute called "Department" with the values of "HR", "Sales", and "Manufacturing". You can use these fields or attributes to filter the search results to documents in the "HR" department, for example.

You can create up to 500 custom fields or attributes.

For most data sources, you map fields in the external data source to the corresponding fields in Amazon Kendra. For more information, see Mapping data source fields. For S3 data sources, you can create custom fields or attributes using a JSON metadata file.

Before you can use a custom field or attribute, you must first create the field in the index. Use the console to edit the data source field mappings to add a custom field or use the `UpdateIndex` API to create the index field. You cannot change the field data type once you have created the field.

You can also use Amazon Kendra's reserved or common fields. For more information, see Document attributes or fields.

With the UpdateIndex API, you add custom fields or attributes using the `DocumentMetadataConfigurationUpdates` parameter.

The following JSON example uses `DocumentMetadataConfigurationUpdates` to add a field called "Department" to the index.

```json
"DocumentmetadataConfigurationUpdates": [
 {
 "Name": "Department",
 "Type": "STRING_VALUE"
 }
]
```

Adding custom attributes or fields with the BatchPutDocument API

When you use the `BatchPutDocument` API to add a document to your index, you specify custom fields or attributes as part of Attributes. You can add multiple fields or attributes when you call the API. You can create up to 500 custom fields or attributes. The following example is a custom field or attribute that adds "Department" to a document.

```
"Attributes":
```
Adding custom attributes or fields to an Amazon S3 data source

When you use an S3 bucket as a data source for your index, you add metadata to the documents with companion metadata files. You place the metadata JSON files in a directory structure that is parallel to your documents. For more information, see S3 document metadata.

You specify custom fields or attributes in the Attributes JSON structure. You can create up to 500 custom fields or attributes. For example, the following example uses Attributes to define three custom fields or attributes and one reserved field.

```
"Attributes": {
 "brand": "Amazon Basics",
 "price": 1595,
 "_category": "sports",
 "subcategories": ["outdoors", "electronics"]
}
```

Controlling user access to documents with tokens

You can control which users or groups can access certain documents in your index or see certain documents in their search results. This is called user context filtering. It is a kind of personalized search with the benefit of controlling access to documents. For example, not all teams that search the company portal for information should access top-secret company documents, nor are these documents relevant to all users. Only specific users or groups of teams given access to top-secret documents should see these documents in their search results.

Amazon Kendra supports token-based user access control using the following token types:

- Open ID
- JWT with a shared secret
- JWT with a public key
- JSON

Amazon Kendra delivers highly secure enterprise search for your search applications. Your search results reflect the security model of your organization. Customers are responsible for authenticating and authorizing users to gain access to their search application. At search time, the Amazon Kendra service filters search results based on user ID provided by the customer's search application, and document access control lists (ACLs) collected by the Amazon Kendra connectors during crawl/indexing time. The search results return URLs pointing back to the original document repositories plus short excerpts. Access to the full document is still enforced by the original repository.

Topics

- Using OpenID (p. 117)
- Using a JSON Web Token (JWT) with a shared secret (p. 118)
- Using a JSON Web Token (JWT) with a public key (p. 120)
Using OpenID

To configure an Amazon Kendra index to use an OpenID token for access control, you need the JWKS (JSON Web Key Set) URL from the OpenID provider. In most cases the JWKS URL is in the following format (if they're following openid discovery): 

https://domain-name/.well_known/jwks.json

The following examples show how to use an OpenID token for user access control when you create an index.

Console

1. Choose Create index to start creating a new index.
2. On the Specify index details page, give your index a name and a description.
3. For IAM role, select a role or select Create a new role to and specify a role name to create a new role. The IAM role will have the prefix "AmazonKendra-".
4. Leave all of the other fields at their defaults. Choose Next.
5. In the Configure user access control page, under Access control settings, choose Yes to use tokens for access control.
6. Under Token configuration, select OpenID as the Token type.
7. Specify a Signing key URL. The URL should point to a set of JSON web keys.
8. Optional Under Advanced configuration:
   a. Specify a Username to use in the ACL check.
   b. Specify one or more Groups to use in the ACL check.
   c. Specify the Issuer that will validate the token issuer.
   d. Specify the Client Id(s). You must specify a regular expression that match the audience in the JWT.
10. Choose Create to create your index.
11. Wait for your index to be created. Amazon Kendra provisions the hardware for your index. This operation can take some time.

CLI

To create an index with the AWS CLI using a JSON input file, first create a JSON file with your desired parameters:

```json
{
 "Name": "user-context",
 "Edition": "ENTERPRISE_EDITION",
 "RoleArn": "arn:aws:iam::account-id:role:/my-role",
 "UserTokenConfigurations": [
 {
 "JwtTokenTypeConfiguration": {
 "KeyLocation": "URL",
 "Issuer": "optional: specify the issuer url",
 "ClaimRegex": "optional: regex to validate claims in the token",
 "UserNameAttributeField": "optional: user",
 "GroupAttributeField": "optional: group",
 "URL": "https://example.com/.well-known/jwks.json"
 }
 }
]
}
```
"UserContextPolicy": "USER_TOKEN"
}

You can override the default user and group field names. The default value for UserNameAttributeField is "user". The default value for GroupAttributeField is "groups".

Next, call `create-index` using the input file. For example, if the name of your JSON file is `create-index-openid.json`, you can use the following:

```
aws kendra create-index --cli-input-json file://create-index-openid.json
```

Python

```python
response = kendra.create_index(
 Name='user-context',
 Edition='ENTERPRISE_EDITION',
 RoleArn='arn:aws:iam::account-id:role:/my-role',
 UserTokenConfigurations=[
 {
 "JwtTokenTypeConfiguration": {
 "KeyLocation": "URL",
 "Issuer": "optional: specify the issuer url",
 "ClaimRegex": "optional: regex to validate claims in the token",
 "UserNameAttributeField": "optional: user",
 "GroupAttributeField": "optional: group",
 "URL": "https://example.com/.well-known/jwks.json"
 }
 }
],
 UserContextPolicy='USER_TOKEN'
)
```

Using a JSON Web Token (JWT) with a shared secret

The following examples show how to use a JSON Web Token (JWT) with a shared secret token for user access control when you create an index.

Console

1. Choose **Create index** to start creating a new index.
2. On the **Specify index details** page, give your index a name and a description.
3. For **IAM role**, select a role or select **Create a new role** to and specify a role name to create a new role. The IAM role will have the prefix "AmazonKendra-".
4. Leave all of the other fields at their defaults. Choose **Next**.
5. In the **Configure user access control** page, under **Access control settings**, choose **Yes** to use tokens for access control.
6. Under **Token configuration**, select **JWT with shared secret** as the **Token type**.
7. Under **Parameters for signing shared secret**, choose the **Type of secret**. You can use an existing AWS Secrets Manager shared secret or create a new shared secret.

To create a new shared secret, choose **New** and then follow these steps:

a. Under **New AWS Secrets Manager secret**, specify a **Secret name**. The prefix `AmazonKendra-` will be added when you save the public key.
b. Specify a **Key ID**. The key id is a hint that indicates which key was used to secure the JSON web signature of the token.
c. Choose the signing **Algorithm** for the token. This is the cryptographic algorithm used to secure the ID token. For more information on RSA, see [RSA Cryptography](#).
d. Specify a **Shared secret** by entering a base64 URL encoded secret. You can also select **Generate secret** to have a secret generated for you. You must ensure the secret is a base64 URL encoded secret.
e. **(Optional)** Specify when the shared secret is valid. You can specify the date and time a secret is valid from, valid to, or both. The secret will be valid in the interval specified.
f. Select **Save secret** to save the new secret.

8. **(Optional)** Under **Advanced configuration**:
   a. Specify a **Username** to use in the ACL check.
   b. Specify one or more **Groups** to use in the ACL check.
   c. Specify the **Issuer** that will validate the token issuer.
   d. Specify the **Claim ID(s)**. You must specify a regular expression that matches the audience in the JWT.

9. In the **Provisioning details** page, choose **Developer edition**.
10. Choose **Create** to create your index.
11. Wait for your index to be created. Amazon Kendra provisions the hardware for your index. This operation can take some time.

**CLI**

You can use JWT token with a shared secret inside of AWS Secrets Manager. The secret must be a base64 URL encoded secret. You need the Secrets Manager ARN, and your Amazon Kendra role must have access to `GetSecretValue` on the Secrets Manager resource. If you are encrypting the Secrets Manager resource with AWS KMS, the role must also have access to the decrypt action.

To create an index with the AWS CLI using a JSON input file, first create a JSON file with your desired parameters:

```json
{
 "Name": "user-context",
 "Edition": "ENTERPRISE_EDITION",
 "RoleArn": "arn:aws:iam::account-id:role:/my-role",
 "UserTokenConfigurations": [
 {
 "JwtTokenTypeConfiguration": {
 "KeyLocation": "SECRET_MANAGER",
 "Issuer": "optional: specify the issuer url",
 "ClaimRegex": "optional: regex to validate claims in the token",
 "UserNameAttributeField": "optional: user",
 "GroupAttributeField": "optional: group",
 "SecretManagerArn": "arn:aws:secretsmanager:us-west-2:account id:secret:/my-user-context-secret"
 }
 },
 {
 "UserContextPolicy": "USER_TOKEN"
 }
]
}
```

You can override the default user and group field names. The default value for **UserNameAttributeField** is "user". The default value for **GroupAttributeField** is "groups".

Next, call `create-index` using the input file. For example, if the name of your JSON file is `create-index-opid.json`, you can use the following:
Using a JSON Web Token (JWT) with a public key

The following examples show how to use a JSON Web Token (JWT) with certificate token for user access control when you create an index. For more information about JWT, see jwt.io.

Console

1. Choose Create index to start creating a new index.
2. On the Specify index details page, give your index a name and a description.
3. For IAM role, select a role or select Create a new role to and specify a role name to create a new role. The IAM role will have the prefix "AmazonKendra-".
4. Leave all of the other fields at their defaults. Choose Next.
5. In the Configure user access control page, under Access control settings, choose Yes to use tokens for access control.
6. Under Token configuration, select JWT with public key as the Token type.
7. Under Parameters for signing public key, choose the Type of secret. You can use an existing AWS Secrets Manager secret or create a new secret.

To create a new secret, choose New and then follow these steps:

a. Under New AWS Secrets Manager secret, specify a Secret name. The prefix AmazonKendra- will be added when you save the public key.
b. Specify a Key ID. The key id is a hint that indicates which key was used to secure the JSON web signature of the token.
c. Choose the signing Algorithm for the token. This is the cryptographic algorithm used to secure the ID token. For more information on RSA, see RSA Cryptography.
d. Under Certificate attributes, specify an optional Certificate chain. The certificate chain is made up of a list of certificates. It begins with a server's certificate and terminates with the root certificate.
e. Optional Specify the Thumbprint or fingerprint. It should be is a hash of a certificate, computed over all certificate data and its signature.
f. Specify the Exponent. This is the exponent value for the RSA public key. It is represented as a Base64urlUint-encoded value.
g. Specify the Modulus. This is the exponent value for the RSA public key. It is represented as a Base64urlUint-encoded value.
h. Select Save key to save the new key.
8. Optional Under Advanced configuration:

a. Specify a Username to use in the ACL check.
b. Specify one or more Groups to use in the ACL check.
c. Specify the Issuer that will validate the token issuer.
d. Specify the Client Id(s). You must specify a regular expression that match the audience in the JWT.
10. Choose Create to create your index.
11. Wait for your index to be created. Amazon Kendra provisions the hardware for your index. This operation can take some time.

CLI

You can use JWT with a public key inside of a AWS Secrets Manager. You need the Secrets Manager ARN, and your Amazon Kendra role must have access to GetSecretValue on the Secrets Manager resource. If you are encrypting the Secrets Manager resource with AWS KMS, the role must also have access to the decrypt action.

To create an index with the AWS CLI using a JSON input file, first create a JSON file with your desired parameters:

```json
{
 "Name": "user-context",
 "Edition": "ENTERPRISE_EDITION",
 "RoleArn": "arn:aws:iam::account_id:role/my-role",
 "UserTokenConfigurationList": [
 {
 "JwtTokenTypeConfiguration": {
```

121
Using a JSON Web Token (JWT) with a public key

```
"KeyLocation": "SECRET_MANAGER",
"Issuer": "optional: specify the issuer url",
"ClaimRegex": "optional: regex to validate claims in the token",
"UserNameAttributeField": "optional: user",
"GroupAttributeField": "optional: group",
"SecretManagerArn": "arn:aws:secretsmanager:us-west-2:account id:secret:/my-user-context-secret"
```

You can override the default user and group field names. The default value for `UserNameAttributeField` is "user". The default value for `GroupAttributeField` is "groups".

Next, call `create-index` using the input file. For example, if the name of your JSON file is `create-index-openid.json`, you can use the following:

```
aws kendra create-index --cli-input-json file://create-index-openid.json
```

The secret must have the following format in Secrets Manager:

```
{
 "keys": [
 {
 "alg": "RS256|RS384|RS512",
 "kty": "RSA", //this can be RSA only for now
 "use": "sig", //this value can be sig only for now
 "n": "modulus of standard pem",
 "e": "exponent of standard pem",
 "kid": "key_id",
 "x5t": "certificate thumbprint for x.509 cert",
 "x5c": ["certificate chain"
]
 }
]
}
```

For more information about JWT, see [jwt.io](https://jwt.io).

Python

```python
response = kendra.create_index(
 Name='user-context',
 Edition='ENTERPRISE_EDITION',
 RoleArn='arn:aws:iam::account_id:role:/my-role',
 UserTokenConfigurationList=[
 {
 "JwtTokenTypeConfiguration": {
 "KeyLocation": "URL",
 "Issuer": "optional: specify the issuer url",
 "ClaimRegex": "optional: regex to validate claims in the token",
 "UserNameAttributeField": "optional: user",
 "GroupAttributeField": "optional: group",
 "SecretManagerArn": "arn:aws:secretsmanager:us-west-2:account id:secret:/my-user-context-secret"
 }
 }
],
 UserContextPolicy='USER_TOKEN'
)
```
Using JSON

The following examples show how to use a JWT with certificate token for user access control when you create an index.

**Warning**
The JSON token is a non-validated payload. This should only be used when requests to Amazon Kendra come from a trusted server and never from a browser.

**Console**

1. Choose **Create index** to start creating a new index.
2. On the **Specify index details** page, give your index a name and a description.
3. For **IAM role**, select a role or select **Create a new role** to and specify a role name to create a new role. The IAM role will have the prefix "AmazonKendra-".
4. Leave all of the other fields at their defaults. Choose **Next**.
5. In the **Configure user access control** page, under **Access control settings**, choose **Yes** to use tokens for access control.
6. Under **Token configuration**, select **JSON** as the **Token type**.
7. Specify a **User name** to use in the ACL check.
8. Specify one or more **Groups** to use in the ACL check.
9. Choose **Next**.
10. In the **Provisioning details** page, choose **Developer edition**.
11. Choose **Create** to create your index.
12. Wait for your index to be created. Amazon Kendra provisions the hardware for your index. This operation can take some time.

**CLI**

To create an index with the AWS CLI using a JSON input file, first create a JSON file with your desired parameters:

```json
{
 "Name": "user-context",
 "Edition": "ENTERPRISE_EDITION",
 "RoleArn": "arn:aws:iam::account-id:role/my-role",
 "UserTokenConfigurations": [
 {
 "JsonTokenTypeConfiguration": {
 "UserNameAttributeField": "user",
 "GroupAttributeField": "group"
 }
 }
],
 "UserContextPolicy": "USER_TOKEN"
}
```

Next, call `create-index` using the input file. For example, if the name of your JSON file is `create-index-openid.json`, you can use the following:

```
aws kendra create-index --cli-input-json file://create-index-openid.json
```

If you are not using Open ID for AWS IAM Identity Center (successor to AWS Single Sign-On), you can send us the token in JSON format. If you do, you must specify which field in the JSON token contains...
the user name and which field contains the groups. The group field values must be a JSON string array. For example, if you are using SAML, your token would be similar to the following:

```json
{
 "username": "user1",
 "groups": [
 "group1",
 "group2"
]
}
```

The `TokenConfiguration` would specify the user name and group field names:

```json
{
 "UserNameAttributeField": "username",
 "GroupAttributeField": "groups"
}
```

**Python**

```python
response = kendra.create_index(
 Name='user-context',
 Edition='ENTERPRISE_EDITION',
 RoleArn='arn:aws:iam::account-id:role:/my-role',
 UserTokenConfigurationList=[
 {
 "JwtTokenTypeConfiguration": {
 "UserNameAttributeField": "user",
 "GroupAttributeField": "group",
 }
 },
],
 UserContextPolicy='USER_TOKEN'
)```

124
Creating a data source connector

You can create a data source connector for Amazon Kendra to connect to and index your documents. Amazon Kendra can connect to Microsoft SharePoint, Google Drive, and many other providers. When you create a data source connector, you give Amazon Kendra the configuration information required to connect to your source repository. Unlike adding documents directly to an index, you can periodically scan the data source to update the index.

For example, say that you have a repository of tax documents stored in an Amazon S3 bucket. From time to time, existing documents are changed and new documents are added to the repository. If you add the repository to Amazon Kendra as a data source, you can keep your index up to date by setting up periodic synchronizations between your data source and index.

You can choose to update an index manually using the console or the `StartDataSourceSyncJob` API. Otherwise, you set up a schedule to update an index and have it synchronize with your data source.

An index can have more than one data source. Each data source can have its own update schedule. For example, you might update the index of your working documents daily, or even hourly, while updating your archived documents manually whenever the archive changes.

If you want to alter your document metadata or attributes and content during the document ingestion process, see Amazon Kendra Custom Document Enrichment.

Note, each document ID must be unique per index. You cannot create a data source to index your documents with their unique IDs and then use the `BatchPutDocument` API to index the same documents, or vice versa. You can delete a data source and then use the `BatchPutDocument` API to index the same documents, or vice versa.

Setting an update schedule

Configure your data source to periodically update with the console or by using the Schedule parameter when you create or update a data source. The content of the parameter is a string that holds either a cron-format schedule string or an empty string to indicate that the index is updated on demand. For the format of a cron expression, see Schedule Expressions for Rules in the Amazon CloudWatch Events User Guide. Amazon Kendra supports only cron expressions. It doesn't support rate expressions.

Setting a language

You can index all your documents in a data source in a supported language. You specify the language code for all your documents in your data source when you call CreateDataSource. If a document doesn't have a language code specified in a metadata field, the document is indexed using the language code that's specified for all documents at the data source level. If you don't specify a language, Amazon Kendra indexes documents in a data source in English by default. For more information on supported languages, including their codes, see Adding documents in languages other than English.

You index all your documents in a data source in a supported language using the console. Go to Data sources and edit your data source or Add data source if you're adding a new data source. On the Specify data source details page, choose a language from the dropdown Language. You select Update or continue to enter the configuration information to connect to your data source.
Data source connectors

This section shows you how to connect Amazon Kendra to supported databases and data source repositories using Amazon Kendra in the AWS Management Console and the Amazon Kendra APIs.

Topics

- Data source template schemas (p. 126)
- Adobe Experience Manager (p. 277)
- Alfresco (p. 283)
- Amazon RDS/Aurora (p. 288)
- Amazon FSx (p. 292)
- Amazon S3 (p. 296)
- Amazon Kendra Web Crawler (p. 304)
- Amazon WorkDocs (p. 316)
- Box (p. 319)
- Confluence (p. 323)
- Custom data source connector (p. 334)
- Dropbox (p. 340)
- GitHub (p. 344)
- Gmail (p. 348)
- Google Drive (p. 353)
- Jira (p. 363)
- Microsoft Exchange (p. 366)
- Microsoft OneDrive (p. 370)
- Microsoft SharePoint (p. 379)
- Microsoft Teams (p. 398)
- Microsoft Yammer (p. 404)
- Quip (p. 407)
- Salesforce (p. 411)
- ServiceNow (p. 420)
- Slack (p. 432)
- Zendesk (p. 436)

Data source template schemas

The following are template schemas for data sources where templates are supported.

Topics

- Adobe Experience Manager template schema (p. 127)
- Alfresco template schema (p. 145)
- Amazon S3 template schema (p. 151)
- Amazon Kendra Web Crawler template schema (p. 154)
- Confluence template schema (p. 162)
- Dropbox template schema (p. 172)
- Gmail template schema (p. 177)
- Google Drive template schema (p. 183)
Adobe Experience Manager template schema

You include a JSON that contains the data source schema as part of the `TemplateConfiguration` object. You provide the Adobe Experience Manager host URL, the authentication type, and whether you use Adobe Experience Manager (AEM) as a Cloud Service or AEM On-Premise as part of the connection configuration or repository endpoint details. Also, specify the type of data source as AEM, a secret for your authentication credentials, and other necessary configurations. You then specify `TEMPLATE` as the Type when you call `CreateDataSource`.

You can use the template provided in this developer guide. For more information, see Adobe Experience Manager JSON schema (p. 130).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>aemUrl</td>
<td>The Adobe Experience Manager host URL. For example, if you use AEM On-Premise, you include the hostname and port: <code>https://hostname:port</code>. Or, if you use AEM as a Cloud Service, you can use the author URL: <code>https://author-xxxxxx-xxxxxxx.adobeamcloud.com</code>.</td>
</tr>
<tr>
<td>authType</td>
<td>The type of authentication you use, whether Basic or OAuth2.</td>
</tr>
<tr>
<td>deploymentType</td>
<td>The type of Adobe Experience Manager that you use, either CLOUD or ON_PREMISE.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>page</td>
<td>A list of objects that map the attributes or field names of your Adobe Experience Manager pages and assets to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>asset</td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
</tbody>
</table>

Adobe Experience Manager template schema

You include a JSON that contains the data source schema as part of the `TemplateConfiguration` object. You provide the Adobe Experience Manager host URL, the authentication type, and whether you use Adobe Experience Manager (AEM) as a Cloud Service or AEM On-Premise as part of the connection configuration or repository endpoint details. Also, specify the type of data source as AEM, a secret for your authentication credentials, and other necessary configurations. You then specify `TEMPLATE` as the Type when you call `CreateDataSource`.

You can use the template provided in this developer guide. For more information, see Adobe Experience Manager JSON schema (p. 130).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>aemUrl</td>
<td>The Adobe Experience Manager host URL. For example, if you use AEM On-Premise, you include the hostname and port: <code>https://hostname:port</code>. Or, if you use AEM as a Cloud Service, you can use the author URL: <code>https://author-xxxxxx-xxxxxxx.adobeamcloud.com</code>.</td>
</tr>
<tr>
<td>authType</td>
<td>The type of authentication you use, whether Basic or OAuth2.</td>
</tr>
<tr>
<td>deploymentType</td>
<td>The type of Adobe Experience Manager that you use, either CLOUD or ON_PREMISE.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>page</td>
<td>A list of objects that map the attributes or field names of your Adobe Experience Manager pages and assets to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>asset</td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>timeZoneId</td>
<td>If you use AEM On-Premise and the time zone of your server is different than the time zone of the Amazon Kendra AEM connector or index, you can specify the server time zone to align with the AEM connector or index.</td>
</tr>
<tr>
<td></td>
<td>The default time zone for AEM On-Premise is the time zone of the Amazon Kendra AEM connector or index. The default time zone for AEM as a Cloud Service is Greenwich Mean Time.</td>
</tr>
<tr>
<td>pageRootPaths</td>
<td>A list of root paths for pages and assets. For example, the root path for a page could be /content/sub and the root path for an asset could be /content/sub/asset1.</td>
</tr>
<tr>
<td>assetRootPaths</td>
<td></td>
</tr>
<tr>
<td>crawlAssets</td>
<td>true to crawl assets.</td>
</tr>
<tr>
<td>crawlPages</td>
<td>true to crawl pages.</td>
</tr>
<tr>
<td>pagePathInclusionPatterns</td>
<td>A list of regular expression patterns to include certain pages and assets in your Adobe Experience Manager data source. Pages and assets that match the patterns are included in the index. Pages and assets that don't match the patterns are excluded from the index. If a page or asset matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the content isn't included in the index.</td>
</tr>
<tr>
<td>pageNameInclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>assetPathInclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>assetTypeInclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>assetNameInclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>pagePathExclusionPatterns</td>
<td>A list of regular expression patterns to exclude certain pages and assets in your Adobe Experience Manager data source. Pages and assets that match the patterns are excluded from the index. Pages and assets that don't match the patterns are included in the index. If a page or asset matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the content isn't included in the index.</td>
</tr>
<tr>
<td>pageNameExclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>assetPathExclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>assetTypeExclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>assetNameExclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>pageComponents</td>
<td>A list of names for the specific page components that you want to index.</td>
</tr>
<tr>
<td>contentFragmentVariations</td>
<td>A list of names for the specific saved variations of Adobe Experience Manager Content Fragments that you want to index.</td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify AEM as your data source type.</td>
</tr>
<tr>
<td>enableIdentityCrawler</td>
<td>true to use Amazon Kendra's identity crawler to sync identity/principal information on users and groups with access to certain documents. If you choose to turn the identity crawler off, you must upload the identity/principal information using the PutPrincipalMapping API.</td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
</table>
| syncMode | Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between the following options:
- **FORCED_FULL_CRAWL** to freshly re-crawl all content and replace existing content each time your data source syncs with your index.
- **FULL_CRAWL** to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index.
- **CHANGE_LOG** to incrementally crawl only new and modified content each time your data source syncs with your index. |
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>secretArn</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Adobe Experience Manager. The secret must contain a JSON structure with the following keys:</td>
</tr>
<tr>
<td></td>
<td>If using basic authentication for either AEM On-Premise or Cloud:</td>
</tr>
<tr>
<td></td>
<td>```json</td>
</tr>
<tr>
<td></td>
<td>"aemUrl": "Adobe Experience Manager On-Premise host URL",</td>
</tr>
<tr>
<td></td>
<td>"username": "user name with admin permissions",</td>
</tr>
<tr>
<td></td>
<td>"password": "password with admin permissions"</td>
</tr>
<tr>
<td></td>
<td>```</td>
</tr>
<tr>
<td></td>
<td>If using OAuth 2.0 authentication for AEM On-Premise:</td>
</tr>
<tr>
<td></td>
<td>```json</td>
</tr>
<tr>
<td></td>
<td>"aemUrl": "Adobe Experience Manager host URL",</td>
</tr>
<tr>
<td></td>
<td>"clientId": "client ID",</td>
</tr>
<tr>
<td></td>
<td>"clientSecret": "client secret",</td>
</tr>
<tr>
<td></td>
<td>"privateKey": "private key"</td>
</tr>
<tr>
<td></td>
<td>```</td>
</tr>
<tr>
<td></td>
<td>If using OAuth 2.0 authentication for AEM as a Cloud Service:</td>
</tr>
<tr>
<td></td>
<td>```json</td>
</tr>
<tr>
<td></td>
<td>"clientId": "client ID",</td>
</tr>
<tr>
<td></td>
<td>"clientSecret": "client secret",</td>
</tr>
<tr>
<td></td>
<td>"privateKey": "private key",</td>
</tr>
<tr>
<td></td>
<td>"orgId": "organization ID",</td>
</tr>
<tr>
<td></td>
<td>"technicalAccountId": "technical account ID",</td>
</tr>
<tr>
<td></td>
<td>"imsHost": "Adobe Identity Management System (IMS) host"</td>
</tr>
<tr>
<td></td>
<td>```</td>
</tr>
<tr>
<td>version</td>
<td>The version of this template that is currently supported.</td>
</tr>
</tbody>
</table>

Adobe Experience Manager JSON schema

```json |
|   "$schema": "http://json-schema.org/draft-04/schema#", |
|   "type": "object", |
|   "properties": |
|   { |
|     "connectionConfiguration": { |
|       "type": "object", |
|       "properties": |
```
{ "repositoryEndpointMetadata": {
 "type": "object",
 "properties": {
 "aemUrl": {
 "type": "string",
 "pattern": "https:.*"
 },
 "authType": {
 "type": "string",
 "enum": ["Basic", "OAuth2"]
 },
 "deploymentType": {
 "type": "string",
 "enum": ["CLOUD", "ON_PREMISE"]
 }
 },
 "required": [
 "aemUrl",
 "authType",
 "deploymentType"
]
},
"required": ["repositoryEndpointMetadata"
],
"repositoryConfigurations": {
 "type": "object",
 "properties": {
 "page": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "DATE", "LONG"]
 }
 }
 }
]
 }
 }
 }
 }
}
"dataSourceFieldName":
{
 "type": "string"
},
"dateFieldFormat":
{
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required":
[
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]}
],
"required":
[
 "fieldMappings"
]
},
"asset":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 },
 "required":
 [
]
]
 }
 }
}
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]}
}
.nrrequired:
["fieldMappings"
]
},
"additionalProperties": {
"type": "object",
"properties": {
"timeZoneId": {
"type": "string",
"enum": [
"Africa/Abidjan",
"Africa/Accra",
"Africa/Addis_Ababa",
"Africa/Algiers",
"Africa/Asmara",
"Africa/Asmera",
"Africa/Bamako",
"Africa/Bangui",
"Africa/Banjul",
"Africa/Bissau",
"Africa/Blantyre",
"Africa/Brazzaville",
"Africa/Bujumbura",
"Africa/Cairo",
"Africa/Casablanca",
"Africa/Ceuta",
"Africa/Conakry",
"Africa/Dakar",
"Africa/Dar_es_Salaam",
"Africa/Djibouti",
"Africa/Douala",
"Africa/El_Aaiun",
"Africa/Freetown",
"Africa/Gaborone",
"Africa/Harare",
"Africa/Johannesburg",
"Africa/Juba",
"Africa/Kampala",
"Africa/Khartoum",
"Africa/Kigali",
"Africa/Kinshasa",
"Africa/Lagos",
"Africa/Libreville",
"Africa/Lome",
"Africa/Luanda",
"Africa/Lubumbashi",
"Africa/Lusaka",
"Africa/Malabo",
"Africa/Maputo",
"Africa/Maseru",
"Africa/Mbabane",
"Africa/Mogadishu",
"Africa/Monrovia",
"Africa/Nairobi",
}
"Africa/Ndjamena",
"Africa/Niamey",
"Africa/Nouakchott",
"Africa/Ouagadougou",
"Africa/Porto-Novos",
"Africa/Sao_Tome",
"Africa/Timbuktu",
"Africa/Tripoli",
"Africa/Tunis",
"Africa/Windhoek",
"America/Adak",
"America/Anchorage",
"America/Anguilla",
"America/Antigua",
"America/Araguaina",
"America/Argentina/Buenos_Aires",
"America/Argentina/Catamarca",
"America/Argentina/ComodRivadavia",
"America/Argentina/Cordoba",
"America/Argentina/Jujuy",
"America/Argentina/La_Rioja",
"America/Argentina/Mendoza",
"America/Argentina/Rio_Gallegos",
"America/Argentina/Salta",
"America/Argentina/San_Juan",
"America/Argentina/San_Luis",
"America/Argentina/Tucuman",
"America/Argentina/Ushuaia",
"America/Azuba",
"America/Asuncion",
"America/Atikokan",
"America/Atka",
"America/Bahia",
"America/Bahia_Banderas",
"America/Barbados",
"America/Belem",
"America/Belize",
"America/Blanc-Sablon",
"America/Boa_Vista",
"America/Bogota",
"America/Boise",
"America/Buenos_Aires",
"America/Cambridge_Bay",
"America/Campo_Grande",
"America/Cancun",
"America/Caracas",
"America/Catamarca",
"America/Cayenne",
"America/Cayman",
"America/Chicago",
"America/Chihuahua",
"America/Ciudad_Juarez",
"America/Coral_Harbour",
"America/Cordoba",
"America/Costa_Rica",
"America/Creston",
"America/Cuiaba",
"America/Curacao",
"America/Danmarkshavn",
"America/Dawson",
"America/Dawson_Creek",
"America/Denver",
"America/Detroit",
"America/Dominica",
"America/Edmonton",
"America/Eirunepe"
"America/El_Salvador",
"America/Ensenada",
"America/Fort_Nelson",
"America/Fort_Wayne",
"America/Fortaleza",
"America/Glace_Bay",
"America/Godthab",
"America/Goose_Bay",
"America/Grand_Turk",
"America/Grenada",
"America/Guadeloupe",
"America/Guatemala",
"America/Guayaquil",
"America/Guayana",
"America/Halifax",
"America/Havana",
"America/Hermosillo",
"America/Indiana/Indianapolis",
"America/Indiana/Knox",
"America/Indiana/Marengo",
"America/Indiana/Petersburg",
"America/Indiana/Tell_City",
"America/Indiana/Vevay",
"America/Indiana/Vincennes",
"America/Indiana/Winamac",
"America/Indianapolis",
"America/Inuvik",
"America/Iqaluit",
"America/Jamaica",
"America/Jujuy",
"America/Juneau",
"America/Kentucky/Louisville",
"America/Kentucky/Monticello",
"America/Knox_IN",
"America/Kralenrijk",
"America/La_Paz",
"America/Lima",
"America/Los_Angeles",
"America/Louisville",
"America/Lower_Princes",
"America/Maceio",
"America/Managua",
"America/Manaus",
"America/Marigot",
"America/Martinique",
"America/Matamoros",
"America/Mazatlan",
"America/Mendoza",
"America/Menominee",
"America/Merida",
"America/Melakatla",
"America/Mexico_City",
"America/Miquelon",
"America/Moncton",
"America/Monterrey",
"America/Montevideo",
"America/Montreal",
"America/Montserrat",
"America/Nassau",
"America/New_York",
"America/Nipigon",
"America/Nome",
"America/Noronha",
"America/North_Dakota/Beulah",
"America/North_Dakota/Centre",
"America/North_Dakota/New_Salem",
<table>
<thead>
<tr>
<th>Timezone</th>
</tr>
</thead>
<tbody>
<tr>
<td>"America/Nuuk"</td>
</tr>
<tr>
<td>"America/Ojinaga"</td>
</tr>
<tr>
<td>"America/Panama"</td>
</tr>
<tr>
<td>"America/Pangnirtung"</td>
</tr>
<tr>
<td>"America/Paramaribo"</td>
</tr>
<tr>
<td>"America/Phoenix"</td>
</tr>
<tr>
<td>"America/Port-au-Prince"</td>
</tr>
<tr>
<td>"America/Port_of_Spain"</td>
</tr>
<tr>
<td>"America/Porto_Acre"</td>
</tr>
<tr>
<td>"America/Porto_Velho"</td>
</tr>
<tr>
<td>"America/Puerto_Rico"</td>
</tr>
<tr>
<td>"America/Punta_Arenas"</td>
</tr>
<tr>
<td>"America/Rainy_River"</td>
</tr>
<tr>
<td>"America/Rankin_Inlet"</td>
</tr>
<tr>
<td>"America/Recife"</td>
</tr>
<tr>
<td>"America/Regina"</td>
</tr>
<tr>
<td>"America/Resolute"</td>
</tr>
<tr>
<td>"America/Rio_Branco"</td>
</tr>
<tr>
<td>"America/Rosario"</td>
</tr>
<tr>
<td>"America/Santa_Isabel"</td>
</tr>
<tr>
<td>"America/Santarem"</td>
</tr>
<tr>
<td>"America/Santiago"</td>
</tr>
<tr>
<td>"America/Santo_Domingo"</td>
</tr>
<tr>
<td>"America/Sao_Paulo"</td>
</tr>
<tr>
<td>"America/Scoresbysund"</td>
</tr>
<tr>
<td>"America/Shiprock"</td>
</tr>
<tr>
<td>"America/Sitka"</td>
</tr>
<tr>
<td>"America/St_Barthelemy"</td>
</tr>
<tr>
<td>"America/St_Johns"</td>
</tr>
<tr>
<td>"America/St_Kitts"</td>
</tr>
<tr>
<td>"America/St_Lucia"</td>
</tr>
<tr>
<td>"America/St_Thomass"</td>
</tr>
<tr>
<td>"America/St_Vincent"</td>
</tr>
<tr>
<td>"America/Swift_Current"</td>
</tr>
<tr>
<td>"America/Tegucigalpa"</td>
</tr>
<tr>
<td>"America/Thule"</td>
</tr>
<tr>
<td>"America/Thunder_Bay"</td>
</tr>
<tr>
<td>"America/Tijuana"</td>
</tr>
<tr>
<td>"America/Toronto"</td>
</tr>
<tr>
<td>"America/Tortola"</td>
</tr>
<tr>
<td>"America/Vancouver"</td>
</tr>
<tr>
<td>"America/Virgin"</td>
</tr>
<tr>
<td>"America/Whitehorse"</td>
</tr>
<tr>
<td>"America/Winnipeg"</td>
</tr>
<tr>
<td>"America/Yakutat"</td>
</tr>
<tr>
<td>"America/Yellowknife"</td>
</tr>
<tr>
<td>"Antarctica/Casey"</td>
</tr>
<tr>
<td>"Antarctica/Davis"</td>
</tr>
<tr>
<td>"Antarctica/DumontDUrville"</td>
</tr>
<tr>
<td>"Antarctica/Macquarie"</td>
</tr>
<tr>
<td>"Antarctica/Mawson"</td>
</tr>
<tr>
<td>"Antarctica/McMurdo"</td>
</tr>
<tr>
<td>"Antarctica/Palmer"</td>
</tr>
<tr>
<td>"Antarctica/Rothera"</td>
</tr>
<tr>
<td>"Antarctica/South_Pole"</td>
</tr>
<tr>
<td>"Antarctica/Syowa"</td>
</tr>
<tr>
<td>"Antarctica/Troll"</td>
</tr>
<tr>
<td>"Antarctica/Vostok"</td>
</tr>
<tr>
<td>"Arctic/Longyearbyen"</td>
</tr>
<tr>
<td>"Asia/Aden"</td>
</tr>
<tr>
<td>"Asia/Almaty"</td>
</tr>
<tr>
<td>"Asia/Amman"</td>
</tr>
<tr>
<td>"Asia/Anadyr"</td>
</tr>
<tr>
<td>"Asia/Aqtau"</td>
</tr>
<tr>
<td>"Asia/Aqtobe"</td>
</tr>
<tr>
<td>"Asia/Ashgabat"</td>
</tr>
</tbody>
</table>
"Asia/Ashkhabad",
"Asia/Atyrau",
"Asia/Baghdad",
"Asia/Bahrain",
"Asia/Baku",
"Asia/Bangkok",
"Asia/Barnaul",
"Asia/Beirut",
"Asia/Bishkek",
"Asia/Brunei",
"Asia/Calcutta",
"Asia/Chita",
"Asia/Choibalsan",
"Asia/Chungking",
"Asia/Colombo",
"Asia/Dacca",
"Asia/Damascus",
"Asia/Dhaka",
"Asia/Dili",
"Asia/Dubai",
"Asia/Dushanbe",
"Asia/Famagusta",
"Asia/Gaza",
"Asia/Harbin",
"Asia/Hebron",
"Asia/Ho_Chi_Minh",
"Asia/Hong_Kong",
"Asia/Hovd",
"Asia/Itkutsk",
"Asia/Istanbul",
"Asia/Jakarta",
"Asia/Jayapura",
"Asia/Jerusalem",
"Asia/Kabul",
"Asia/Kamchatka",
"Asia/Karachi",
"Asia/Kashgar",
"Asia/Kathmandu",
"Asia/Katmandu",
"Asia/Khandyga",
"Asia/Kolkata",
"Asia/Krasnoyarsk",
"Asia/Kuala_Lumpur",
"Asia/Kuching",
"Asia/Kuwait",
"Asia/Macao",
"Asia/Macau",
"Asia/Magadan",
"Asia/Makassar",
"Asia/Manila",
"Asia/Muscat",
"Asia/Nicosia",
"Asia/Novokuznetsk",
"Asia/Novosibirsk",
"Asia/Omusk",
"Asia/Ozal",
"Asia/Phnom_Penh",
"Asia/Pontianak",
"Asia/Pyongyang",
"Asia/Qatar",
"Asia/Qostanay",
"Asia/Qyzylorda",
"Asia/Rangoon",
"Asia/Riyadh",
"Asia/Saigon",
"Asia/Sakhalin",
"Asia/Samarkand",
"Asia/Seoul",
"Asia/Shanghai",
"Asia/Singapore",
"Asia/Srednekolymsk",
"Asia/Taipei",
"Asia/Tashkent",
"Asia/Tbilisi",
"Asia/Tehran",
"Asia/Tel_Aviv",
"Asia/Thimbu",
"Asia/Thimphu",
"Asia/Tokyo",
"Asia/Tomsk",
"Asia/Ujung_Pandang",
"Asia/Ulaanbaatar",
"Asia/Ulan_Bator",
"Asia/Urumqi",
"Asia/Ust-Nera",
"Asia/Vientiane",
"Asia/Vladivostok",
"Asia/Yakutsk",
"Asia/Yangon",
"Asia/Yekaterinburg",
"Asıa/Yerevan",
"Atlantic/Azores",
"Atlantic/Bermuda",
"Atlantic/Canary",
"Atlantic/Cape_Verde",
"Atlantic/Faeroe",
"Atlantic/Faroe",
"Atlantic/Jan_Mayen",
"Atlantic/Madeira",
"Atlantic/Reykjavik",
"Atlantic/South_Georgia",
"Atlantic/St_Helena",
"Atlantic/Stanley",
"Australia/ACT",
"Australia/Adelaide",
"Australia/Brisbane",
"Australia/Broken_Hill",
"Australia/Canberra",
"Australia/Currie",
"Australia/Darwin",
"Australia/Eucla",
"Australia/Hobart",
"Australia/LHI",
"Australia/Lindeman",
"Australia/Lord_Howe",
"Australia/Melbourne",
"Australia/NSW",
"Australia/North",
"Australia/Perth",
"Australia/Queensland",
"Australia/South",
"Australia/Sydney",
"Australia/Tasmania",
"Australia/Victoria",
"Australia/West",
"Australia/Yancowinna",
"Brazil/Acre",
"Brazil/DeNoronha",
"Brazil/East",
"Brazil/West",
"CET"
"CST6CDT",
"Canada/Atlantic",
"Canada/Central",
"Canada/Eastern",
"Canada/Mountain",
"Canada/Newfoundland",
"Canada/Pacific",
"Canada/Saskatchewan",
"Canada/Yukon",
"Chile/Continental",
"Chile/EasterIsland",
"Cuba",
"EET",
"EST5EDT",
"Egypt",
"Eire",
"Etc/GMT",
"Etc/GMT+0",
"Etc/GMT+1",
"Etc/GMT+10",
"Etc/GMT+11",
"Etc/GMT+12",
"Etc/GMT+2",
"Etc/GMT+3",
"Etc/GMT+4",
"Etc/GMT+5",
"Etc/GMT+6",
"Etc/GMT+7",
"Etc/GMT+8",
"Etc/GMT+9",
"Etc/GMT-0",
"Etc/GMT-1",
"Etc/GMT-10",
"Etc/GMT-11",
"Etc/GMT-12",
"Etc/GMT-13",
"Etc/GMT-14",
"Etc/GMT-2",
"Etc/GMT-3",
"Etc/GMT-4",
"Etc/GMT-5",
"Etc/GMT-6",
"Etc/GMT-7",
"Etc/GMT-8",
"Etc/GMT-9",
"Etc/GMT0",
"Etc/Greenwich",
"Etc/UCT",
"Etc/UTC",
"Etc/Universal",
"Etc/Zulu",
"Europe/Amsterdam",
"Europe/Andorra",
"Europe/Astrakhan",
"Europe/Athens",
"Europe/Belfast",
"Europe/Belgrade",
"Europe/Berlin",
"Europe/Bratislava",
"Europe/Brussels",
"Europe/Bucharest",
"Europe/Budapest",
"Europe/Busingen",
"Europe/Chisinau",
"Europe/Copenhagen",
"Europe/Dublin"
"Europe/Gibraltar",
"Europe/Guernsey",
"Europe/Helsinki",
"Europe/Isle_of_Man",
"Europe/Istanbul",
"Europe/Jersey",
"Europe/Kaliningrad",
"Europe/Kiev",
"Europe/Kirov",
"Europe/Kyiv",
"Europe/Lisbon",
"Europe/Ljubljana",
"Europe/London",
"Europe/Luxembourg",
"Europe/Madrid",
"Europe/Malta",
"Europe/Mariehamn",
"Europe/Minsk",
"Europe/Monaco",
"Europe/Moscow",
"Europe/Nicosia",
"Europe/Oslo",
"Europe/Paris",
"Europe/Podgorica",
"Europe/Prague",
"Europe/Riga",
"Europe/Rome",
"Europe/Samara",
"Europe/San_Marino",
"Europe/Sarajevo",
"Europe/Saratov",
"Europe/Simferopol",
"Europe/Skopje",
"Europe/Sofia",
"Europe/Stockholm",
"Europe/Tallinn",
"Europe/Tirane",
"Europe/Tiraspol",
"Europe/Ulyanovsk",
"Europe/Uzhgorod",
"Europe/Vaduz",
"Europe/Vatican",
"Europe/Vienna",
"Europe/Vilnius",
"Europe/Volgograd",
"Europe/Warsaw",
"Europe/Zagreb",
"Europe/Zaporozhye",
"Europe/Zurich",
"GB",
"GB-Eire",
"GMT",
"GMT0",
"Greenwich",
"Hongkong",
"Iceland",
"Indian/Antananarivo",
"Indian/Chagos",
"Indian/Christmas",
"Indian/Cocos",
"Indian/Comoro",
"Indian/Kerguelen",
"Indian/Mahe",
"Indian/Maldives",
"Indian/Mauritius",
"Indian/Mayotte",
"Indian/Reunion",
"Iran",
"Israel",
"Jamaica",
"Japan",
"Kwajalein",
"Libya",
"MET",
"MST7MDT",
"Mexico/BajaNorte",
"Mexico/BajaSur",
"Mexico/General",
"NZ",
"NZ-CHAT",
"Navajo",
"PRC",
"PST8PDT",
"Pacific/Apia",
"Pacific/Auckland",
"Pacific/Bougainville",
"Pacific/Chatham",
"Pacific/Chuuk",
"Pacific/Easter",
"Pacific/Efate",
"Pacific/Enderbury",
"Pacific/Fakaofo",
"Pacific/Fiji",
"Pacific/Funafuti",
"Pacific/Galapagos",
"Pacific/Gambier",
"Pacific/Guadalcanal",
"Pacific/Guam",
"Pacific/Honolulu",
"Pacific/Johnston",
"Pacific/Kanton",
"Pacific/Kiritimati",
"Pacific/Kosrae",
"Pacific/Kwajalein",
"Pacific/Majuro",
"Pacific/Marquesas",
"Pacific/Midway",
"Pacific/Nauru",
"Pacific/Niue",
"Pacific/Norfolk",
"Pacific/Noumea",
"Pacific/Pago_Pago",
"Pacific/Palau",
"Pacific/Pitcairn",
"Pacific/Pohnpei",
"Pacific/Ponape",
"Pacific/Port_Moresby",
"Pacific/Rarotonga",
"Pacific/Saipan",
"Pacific/Samoa",
"Pacific/Tahiti",
"Pacific/Tarawa",
"Pacific/Tongatapu",
"Pacific/Tuvalu",
"Pacific/Wake",
"Pacific/Wallis",
"Pacific/Yap",
"Poland",
"Portugal",
"ROK",
"Singapore",
"SystemV/AST4",
"System/UTC-2"
"SystemV/AST4ADT",
"SystemV/CST6",
"SystemV/CST6CDT",
"SystemV/EST5",
"SystemV/EST5EDT",
"SystemV/HST10",
"SystemV/MST7",
"SystemV/MST7MDT",
"SystemV/PST8",
"SystemV/PST8PDT",
"SystemV/YST9",
"SystemV/YST9YDT",
"Turkey",
"UCT",
"US/Alaska",
"US/Aleutian",
"US/Arizona",
"US/Central",
"US/East-Indiana",
"US/Eastern",
"US/Hawaii",
"US/Indiana-Starke",
"US/Michigan",
"US/Mountain",
"US/Pacific",
"US/Samoa",
"UTC",
"Universal",
"W-SU",
"WET",
"Zulu",
"EST",
"HST",
"MST",
"ACT",
"AET",
"AGT",
"ART",
"AST",
"BET",
"BST",
"CAT",
"CNT",
"CST",
"CTT",
"EAT",
"ECT",
"EET",
"IST",
"JST",
"MIT",
"NET",
"NST",
"PLT",
"PNT",
"PRT",
"PST",
"SST",
"VST"
]
},
"pageRootPaths":
{
 "type": "array",
 "items":
 {
"SystemV/AST4ADT",
"SystemV/CST6",
"SystemV/CST6CDT",
"SystemV/EST5",
"SystemV/EST5EDT",
"SystemV/HST10",
"SystemV/MST7",
"SystemV/MST7MDT",
"SystemV/PST8",
"SystemV/PST8PDT",
"SystemV/YST9",
"SystemV/YST9YDT",
"Turkey",
"UCT",
"US/Alaska",
"US/Aleutian",
"US/Arizona",
"US/Central",
"US/East-Indiana",
"US/Eastern",
"US/Hawaii",
"US/Indiana-Starke",
"US/Michigan",
"US/Mountain",
"US/Pacific",
"US/Samoa",
"UTC",
"Universal",
"W-SU",
"WET",
"Zulu",
"EST",
"HST",
"MST",
"ACT",
"AET",
"AGT",
"ART",
"AST",
"BET",
"BST",
"CAT",
"CNT",
"CST",
"CTT",
"EAT",
"ECT",
"EET",
"IST",
"JST",
"MIT",
"NET",
"NST",
"PLT",
"PNT",
"PRT",
"PST",
"SST",
"VST"
]
"type": "string"
}
],
"assetRootPaths":
{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"crawlAssets":
{
 "type": "boolean"
},
"crawlPages":
{
 "type": "boolean"
},
"pagePathInclusionPatterns":
{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"pagePathExclusionPatterns":
{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"pageNameInclusionPatterns":
{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"pageNameExclusionPatterns":
{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"assetPathInclusionPatterns":
{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"assetPathExclusionPatterns":
{
 "type": "array",
 "items":
 {
 "type": "string"
 }
}
"assetTypeInclusionPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"assetTypeExclusionPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"assetNameInclusionPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"assetNameExclusionPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"pageComponents": {
 "type": "array",
 "items": {
 "type": "object"
 }
},
"contentFragmentVariations": {
 "type": "array",
 "items": {
 "type": "object"
 }
},
"cugExemptedPrincipals": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"required": []
},
"type": {
 "type": "string",
 "pattern": "AEM"
},
"enableIdentityCrawler": {
 "type": "boolean"
},
"syncMode": {
 "type": "string",
 "enum": ["FORCED_FULL_CRAWL", ""]
Alfresco template schema

You include a JSON that contains the data source schema as part of the TemplateConfiguration object. You provide the Alfresco site ID, repository URL, user interface URL, authentication type, whether you use cloud or on-premises, and the type of content you want to crawl. You provide this as a part of the connection configuration or repository endpoint details. Also specify the type of data source as ALFRESCO, a secret for your authentication credentials, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

You can use the template provided in this developer guide. See Alfresco JSON schema (p. 147).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>siteId</td>
<td>The identifier of the Alfresco site.</td>
</tr>
<tr>
<td>repoUrl</td>
<td>The URL of your Alfresco repository. You can get the repository URL from your Alfresco administrator. For example, if you use Alfresco Cloud (PaaS), the repository URL could be https://company.alfrescocloud.com. Or, if you use Alfresco On-Premises, the repository URL could be https://company-alfresco-instance.company-domain.suffix:port.</td>
</tr>
<tr>
<td>webAppUrl</td>
<td>The URL of your Alfresco user interface. You can get the Alfresco user interface URL from your</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Alfresco administrator. For example, the user interface URL could be https://example.com.</td>
<td></td>
</tr>
<tr>
<td>repositoryAdditionalProperties</td>
<td>Additional properties to connect with the repository/data source endpoint.</td>
</tr>
<tr>
<td>authType</td>
<td>The type of authentication that you use, whether OAuth2 or Basic.</td>
</tr>
<tr>
<td>type (deployment)</td>
<td>The type of Alfresco that you use, whether PAAS or ON-PREM.</td>
</tr>
<tr>
<td>crawlType</td>
<td>The type of content that you want to crawl, whether ASPECT (content marked with 'Aspects' in Alfresco), SITE_ID (content within a specific Alfresco site), or ALL_SITES (content across all your Alfresco sites).</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>• document</td>
<td>A list of objects that map the attributes or field names of your Alfresco documents and comments to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>• comment</td>
<td></td>
</tr>
<tr>
<td>aspectName</td>
<td>The name of a specific 'Aspect' that you want to index.</td>
</tr>
<tr>
<td>aspectProperties</td>
<td>A list of specific 'Aspect' content properties that you want to index.</td>
</tr>
<tr>
<td>enableFineGrainedControl</td>
<td>true to crawl 'Aspects'.</td>
</tr>
<tr>
<td>isCrawlComment</td>
<td>true to index comments.</td>
</tr>
<tr>
<td>• inclusionFileNamePatterns</td>
<td>A list of regular expression patterns to include certain files in your Alfresco data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
</tr>
<tr>
<td>• inclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>• inclusionFilePathPatterns</td>
<td></td>
</tr>
<tr>
<td>• exclusionFileNamePatterns</td>
<td>A list of regular expression patterns to exclude certain files in your Alfresco data source. Files that match the patterns are excluded from the index. Files that don't match the patterns are included in the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
</tr>
<tr>
<td>• exclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>• exclusionFilePathPatterns</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify ALFRESCO as your data source type.</td>
</tr>
<tr>
<td>secretArn</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs that are required to connect to your Alfresco. The secret must contain a JSON structure with the following keys: If using basic authentication: { "username": "user name", "password": "password" } If using OAuth 2.0 authentication: { "clientId": "client ID", "clientSecret": "client secret", "tokenUrl": "token URL" }</td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between: • FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index. • FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index.</td>
</tr>
<tr>
<td>enableIdentityCrawler</td>
<td>true to use the Amazon Kendra identity crawler to sync identity/principal information on users and groups with access to certain documents. If you choose to turn identity crawler off, you must upload the identity/principal information using the PutPrincipalMapping API.</td>
</tr>
<tr>
<td>version</td>
<td>The version of this template that is currently supported.</td>
</tr>
</tbody>
</table>

Alfresco JSON schema

```json
{
    "$schema": "http://json-schema.org/draft-04/schema#",
    "type": "object",
    "properties": {
        "connectionConfiguration": {
            "type": "object",
            "properties": {
```
"repositoryEndpointMetadata": {
 "type": "object",
 "properties": {
 "siteId": {
 "type": "string"
 },
 "repoUrl": {
 "type": "string"
 },
 "webAppUrl": {
 "type": "string"
 },
 "repositoryAdditionalProperties": {
 "type": "object",
 "properties": {
 "authType": {
 "type": "string",
 "enum": [
 "OAuth2",
 "Basic"
]
 },
 "type": {
 "type": "string",
 "enum": [
 "PAAS",
 "ON_PREM"
]
 },
 "crawlType": {
 "type": "string",
 "enum": [
 "ASPECT",
 "SITE_ID",
 "ALL_SITES"
]
 };
 }
 }
 }
},
"required": [
 "repositoryEndpointMetadata"
],
"repositoryConfigurations": {
 "type": "object",
 "properties": {
 "document": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING"
]
 }
 }
 }
]
 }
 }
 }
 }
 }
}
"DATE",
"STRING_LIST",
"LONG"
]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
]
}
",
"comment": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": {
"anyOf": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": [
"STRING",
"DATE",
"STRING_LIST",
"LONG"
]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
]
]
}
"required": ["fieldMappings"]
],
"additionalProperties": {
"type": "object",
"properties": {
"aspectName": {
"type": "string"
},
"aspectProperties": {
"type": "array"
},
"enableFineGrainedControl": {
"type": "boolean"
},
"isCrawlComment": {
"type": "boolean"
},
"inclusionFileNamePatterns": {
"type": "array"
},
"exclusionFileNamePatterns": {
"type": "array"
},
"inclusionFileTypePatterns": {
"type": "array"
},
"exclusionFileTypePatterns": {
"type": "array"
},
"inclusionFilePathPatterns": {
"type": "array"
},
"type": "object",
"properties": {
"aspectName": {
"type": "string"
},
"aspectProperties": {
"type": "array"
},
"enableFineGrainedControl": {
"type": "boolean"
},
"isCrawlComment": {
"type": "boolean"
},
"inclusionFileNamePatterns": {
"type": "array"
},
"exclusionFileNamePatterns": {
"type": "array"
},
"inclusionFileTypePatterns": {
"type": "array"
},
"exclusionFileTypePatterns": {
"type": "array"
},
"inclusionFilePathPatterns": {
"type": "array"
},
"type": "string",
"pattern": "ALFRESCO"
},
"secretArn": {
"type": "string",
"minLength": 20,
"maxLength": 2048
},
"syncMode": {
"type": "string",
"enum": ["FORCED_FULL_CRAWL", "FULL_CRAWL"
]}
"enableIdentityCrawler": {
"type": "boolean"
},
"version": {
"type": "string",
"anyOf": [
{"pattern": "1.0.0"}]}
Amazon S3 template schema

You include a JSON that contains the data source schema as part of the template configuration. You provide the name of the S3 bucket as a part of the connection configuration or repository endpoint details. Also specify the type of data source as S3, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

You can use the template provided in this developer guide. See S3 JSON schema (p. 152).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>BucketName</td>
<td>The name of your Amazon S3 bucket.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source</td>
</tr>
<tr>
<td>inclusionPatterns</td>
<td>A list of regular expression patterns to include or exclude specific files in your Amazon S3 data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
<tr>
<td>exclusionPatterns</td>
<td></td>
</tr>
<tr>
<td>inclusionPrefixes</td>
<td></td>
</tr>
<tr>
<td>exclusionPrefixes</td>
<td></td>
</tr>
<tr>
<td>aclConfigurationFilePath</td>
<td>The file path that controls access to documents in an Amazon Kendra index.</td>
</tr>
<tr>
<td>metadataFilesPrefix</td>
<td>The location within your bucket for metadata files.</td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose</td>
</tr>
</tbody>
</table>
Data source template schemas

Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>The type of data source. Specify S3 as your data source type.</td>
</tr>
<tr>
<td>version</td>
<td>The version of the template that is supported.</td>
</tr>
</tbody>
</table>

S3 JSON schema

```json
{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "connectionConfiguration": {
      "type": "object",
      "properties": {
        "repositoryEndpointMetadata": {
          "type": "object",
          "properties": {
            "BucketName": {
              "type": "string"
            }
          }
        },
        "required": [
          "BucketName"
        ]
      }
    },
    "repositoryConfigurations": {
      "type": "object",
      "properties": {
        "document": {
          "type": "object",
          "properties": {
            "fieldMappings": {
              "type": "array",
              "items": [
                {
                  "type": "object",
                  "properties": {
                    "indexFieldName": {
                      "type": "string"
                    },
                    "indexFieldType": {
                      "type": "string",
                      "enum": [
                        "STRING"
                      ]
                    },
                    "dataSourceFieldName": {
                      "type": "string"
                    }
                  }
                }
              ]
            },
            "dataSourceFieldSchema": {
              "type": "string"
            }
          }
        }
      }
    }
  }
}
```
Amazon Kendra Developer Guide
Data source template schemas

]

}

}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]

}
},
"required": [
"fieldMappings"
]

}
},
"required": [
"document"
]
},
"additionalProperties": {
"type": "object",
"properties": {
"inclusionPatterns": {
"type": "array"
},
"exclusionPatterns": {
"type": "array"
},
"inclusionPrefixes": {
"type": "array"
},
"exclusionPrefixes": {
"type": "array"
},
"aclConfigurationFilePath": {
"type": "string"
},
"metadataFilesPrefix": {
"type": "string"
}
}
},
"syncMode": {
"type": "string",
"enum": [
"FULL_CRAWL",
"FORCED_FULL_CRAWL"
]
},
"type": {
"type": "string",
"pattern": "S3"
},
"version": {
"type": "string",
"anyOf": [
{
"pattern": "1.0.0"
}
]
}

},
"required": [
"connectionConfiguration",
"type",

153


Amazon Kendra Web Crawler template schema

You include a JSON that contains the data source schema as part of the TemplateConfiguration object. You provide the seed or starting point URLs, or you can provide the sitemap URLs, as part of the connection configuration or repository endpoint details. Instead of manually listing all your URLs, you can provide the path to the Amazon S3 bucket that stores a text file for your list of seed URLs or sitemap XML files, which you can club together in a ZIP file in S3.

Also specify the type of data source as WEBCRAWLERV2, the website authentication credentials and authentication type if your websites require authentication, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

When selecting websites to index, you must adhere to the Amazon Acceptable Use Policy and all other Amazon terms. Remember that you must only use Amazon Kendra Web Crawler to index your own web pages, or web pages that you have authorization to index. To learn how to stop Amazon Kendra Web Crawler from indexing your websites, see Configuring the robots.txt file for Amazon Kendra Web Crawler (p. 315).

You can use the template provided in this developer guide. See Amazon Kendra Web Crawler JSON schema (p. 158).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>siteMapUrls</td>
<td>The list of sitemap URLs for the websites that you want to crawl. You can list up to three sitemap URLs.</td>
</tr>
<tr>
<td>s3SeedUrl</td>
<td>The S3 path to the text file that stores the list of seed or starting point URLs. For example, s3://bucket-name/directory/. Each URL in the text file must be formatted on a separate line. You can list up to 100 seed URLs in a file.</td>
</tr>
<tr>
<td>s3SiteMapUrl</td>
<td>The S3 path to the sitemap XML files. For example, s3://bucket-name/directory/. You can list up to three sitemap XML files. You can club together multiple sitemap files into a ZIP file and store the ZIP file in your Amazon S3 bucket.</td>
</tr>
<tr>
<td>seedUrlConnections</td>
<td>The list of seed or starting point URLs for the websites that you want to crawl. You can list up to 100 seed URLs.</td>
</tr>
<tr>
<td>seedUrl</td>
<td>The seed or starting point URL.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>authentication</td>
<td>The authentication type if your websites require the same authentication, otherwise specify NoAuthentication.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>• webPage</td>
<td>A list of objects that map the attributes or field names of your web pages and web page files to Amazon Kendra index field names. For example, the HTML web page title tag can be mapped to the _document_title index field. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>• attachment</td>
<td></td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index.</td>
</tr>
<tr>
<td></td>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index.</td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
<tr>
<td>rateLimit</td>
<td>The maximum number of URLs crawled per website host per minute.</td>
</tr>
<tr>
<td>maxFileSize</td>
<td>The maximum size (in MB) of a web page or attachment to crawl.</td>
</tr>
<tr>
<td>crawlDepth</td>
<td>The number of levels from the seed URL to crawl. For example, the seed URL page is depth 1 and any hyperlinks on this page that are also crawled are depth 2.</td>
</tr>
<tr>
<td>maxLinksPerUrl</td>
<td>The maximum number of URLs on a web page to include when crawling a website. This number is per web page. As a website's web pages are crawled, any URLs that the webpages link to also are crawled. URLs on a web page are crawled in order of appearance.</td>
</tr>
<tr>
<td>crawlSubDomain</td>
<td>true to crawl the website domains with subdomains only. For example, if the seed URL is "abc.example.com", then "a.abc.example.com" and "b.abc.example.com" are also crawled. If you don't set crawlSubDomain or crawlAllDomain to true, then Amazon Kendra only crawls the domains of the websites that you want to crawl.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>crawlAllDomain</td>
<td>true to crawl the website domains with subdomains and other domains the web pages link to. If you don't set crawlSubDomain or crawlAllDomain to true, then Amazon Kendra only crawls the domains of the websites that you want to crawl.</td>
</tr>
<tr>
<td>honorRobots</td>
<td>true to respect the robots.txt directives of the websites that you want to crawl. These directives control how Amazon Kendra Web Crawler crawls the websites, whether Amazon Kendra can crawl only specific content or not crawl any content.</td>
</tr>
<tr>
<td>crawlAttachments</td>
<td>true to crawl files that the web pages link to.</td>
</tr>
<tr>
<td>• inclusionURLCrawlPatterns</td>
<td>A list of regular expression patterns to include crawling certain URLs and indexing any hyperlinks on these URL web pages. URLs that match the patterns are included in the index. URLs that don't match the patterns are excluded from the index. If a URL matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the URL/website's web pages aren't included in the index.</td>
</tr>
<tr>
<td>• inclusionURLIndexPatterns</td>
<td>A list of regular expression patterns to include crawling certain URLs and indexing any hyperlinks on these URL web pages. URLs that match the patterns are included in the index. URLs that don't match the patterns are excluded from the index. If a URL matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the URL/website's web pages aren't included in the index.</td>
</tr>
<tr>
<td>• exclusionURLCrawlPatterns</td>
<td>A list of regular expression patterns to exclude crawling certain URLs and indexing any hyperlinks on these URL web pages. URLs that match the patterns are excluded from the index. URLs that don't match the patterns are included in the index. If a URL matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the URL/website's web pages aren't included in the index.</td>
</tr>
<tr>
<td>• exclusionURLIndexPatterns</td>
<td>A list of regular expression patterns to exclude crawling certain URLs and indexing any hyperlinks on these URL web pages. URLs that match the patterns are excluded from the index. URLs that don't match the patterns are included in the index. If a URL matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the URL/website's web pages aren't included in the index.</td>
</tr>
<tr>
<td>inclusionFileIndexPatterns</td>
<td>A list of regular expression patterns to include certain web page files. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
</tr>
<tr>
<td>exclusionFileIndexPatterns</td>
<td>A list of regular expression patterns to exclude certain web page files. Files that match the patterns are excluded from the index. Files that don't match the patterns are included in the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
</tr>
<tr>
<td>proxy</td>
<td>Configuration information required to connect to your internal websites via a web proxy.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>host</td>
<td>The host name of the proxy sever you want to use to connect to internal websites. For example, the host name of https://a.example.com/page1.html is "a.example.com".</td>
</tr>
<tr>
<td>port</td>
<td>The port number of the proxy sever you want to use to connect to internal websites. For example, 443 is the standard port for HTTPS.</td>
</tr>
<tr>
<td>secretArn (proxy)</td>
<td>If web proxy credentials are required to connect to a website host, you can create an AWS Secrets Manager secret that stores the credentials. Provide the Amazon Resource Name (ARN) of the secret.</td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify WECRAWLERV2 as your data source type.</td>
</tr>
</tbody>
</table>
| secretArn | The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that's used if your websites require authentication to access the websites. You store the authentication credentials for the website in the secret that contains JSON key-value pairs.
If you use basic, or NTML/Kerberos, enter the user name and password. The JSON keys in the secret must be userName and password. NTLM authentication protocol includes password hashing, and Kerberos authentication protocol includes password encryption.
If you use SAML or form authentication, enter the user name and password, XPath for the user name field (and user name button if using SAML), XPaths for the password field and button, and the login page URL. The JSON keys in the secret must be userName, password, userNameFieldXpath, userNameButtonXpath, passwordFieldXpath, passwordButtonXpath, and loginPageUrl. You can find the XPaths (XML Path Language) of elements using your web browser's developer tools. XPaths usually follow this format: //tagname[@Attribute='Value'].
Amazon Kendra also checks if the endpoint information (seed URLs) included in the secret is the same the endpoint information specified in your data source endpoint configuration details. |
| version | The version of this template that is currently supported. |
Amazon Kendra Web Crawler JSON schema

```json
{
    "$schema": "http://json-schema.org/draft-04/schema#",
    "type": "object",
    "properties": {
        "connectionConfiguration": {
            "type": "object",
            "properties": {
                "repositoryEndpointMetadata": {
                    "type": "object",
                    "properties": {
                        "siteMapUrls": {
                            "type": "array",
                            "items": {
                                "type": "string",
                                "pattern": "https://.*"
                            }
                        },
                        "s3SeedUrl": {
                            "type": "string",
                            "pattern": "s3:.*"
                        },
                        "s3SiteMapUrl": {
                            "type": "string",
                            "pattern": "s3:.*"
                        },
                        "seedUrlConnections": {
                            "type": "array",
                            "items": [{
                                "type": "object",
                                "properties": {
                                    "seedUrl": {
                                        "type": "string",
                                        "pattern": "https:.*"
                                    }
                                }
                            }]
                        },
                        "authentication": {
                            "type": "string",
                            "enum": [
                                "NoAuthentication",
                                "BasicAuth",
                                "NTLM_Kerberos",
                                "Form",
                                "SAML"
                            ]
                        }
                    }
                }
            }
        },
        "required": [
            "repositoryEndpointMetadata"
        ],
        "repositoryConfigurations": {
            "type": "object",
            "properties": {
                "webPage": {
                    "type": "object",
                    "properties": {
                        "webPage": {
                        }...
```
"type": "object",
"properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
]
 }
},
"attachment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
]
 }
 }
}


```
{
  "required": [
    "indexFieldName",
    "indexFieldType",
    "dataSourceFieldName"
  ]
}

"required": [
  "fieldMappings"
]

"syncMode": {
  "type": "string",
  "enum": [
    "FORCED_FULL_CRAWL",
    "FULL_CRAWL"
  ]
},
"additionalProperties": {
  "type": "object",
  "properties": {
    "rateLimit": {
      "type": "string",
      "default": "300"
    },
    "maxFileSize": {
      "type": "string",
      "default": "50"
    },
    "crawlDepth": {
      "type": "string",
      "default": "2"
    },
    "maxLinksPerUrl": {
      "type": "string",
      "default": "100"
    },
    "crawlSubDomain": {
      "type": "boolean",
      "default": false
    },
    "crawlAllDomain": {
      "type": "boolean",
      "default": false
    },
    "honorRobots": {
      "type": "boolean",
      "default": false
    },
    "crawlAttachments": {
      "type": "boolean",
      "default": false
    },
    "inclusionURLCrawlPatterns": {
      "type": "array",
      "items": {
        "type": "string"
      }
    }
  }
}
```

"exclusionURLCrawlPatterns": {
"type": "array",
"items": {
 "type": "string"
}
],
"inclusionURLIndexPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionURLIndexPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionFileIndexPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionFileIndexPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"proxy": {
 "type": "object",
 "properties": {
 "host": {
 "type": "string"
 },
 "port": {
 "type": "string"
 },
 "secretArn": {
 "type": "string",
 "minLength": 20,
 "maxLength": 2048
 }
 }
},
"required": [
 "rateLimit",
 "maxFileSize",
 "crawlDepth",
 "crawlSubDomain",
 "crawlAllDomain",
 "maxLinksPerUrl",
 "honorRobots"
],
"type": {
 "type": "string",
 "pattern": "WEBCRAWLERV2"
},
"secretArn": {
 "type": "string",
 "minLength": 20,
 "maxLength": 2048
}
"version": {
 "type": "string",
 "anyOf": [
 {
 "pattern": "1.0.0"
 }
]
},
"required": [
 "connectionConfiguration",
 "repositoryConfigurations",
 "syncMode",
 "type",
 "additionalProperties"
]}

Confluence template schema

You include a JSON that contains the data source schema as part of the TemplateConfiguration object. You provide the Confluence host URL, the hosting method, and the authentication type as a part of the connection configuration or repository endpoint details. Also specify the type of data source as CONFLUENCEV2, a secret for your authentication credentials, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

You can use the template provided in this developer guide. See Confluence JSON schema (p. 166).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>hostUrl</td>
<td>The URL for your Confluence instance. For example, https://example.confluence.com.</td>
</tr>
<tr>
<td>type</td>
<td>The hosting method for your Confluence instance, whether SAAS and ON_PREM.</td>
</tr>
<tr>
<td>authType</td>
<td>The authentication method for your Confluence instance, whether Basic, OAuth2, or Personal-token.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>space</td>
<td>A list of objects that map the attributes or field names of your Confluence spaces, pages, blogs, comments, and attachments to Amazon Kendra index field names. For more information, see Mapping data source fields. The Confluence data source field names must exist in your Confluence custom metadata.</td>
</tr>
<tr>
<td>page</td>
<td></td>
</tr>
<tr>
<td>blog</td>
<td></td>
</tr>
<tr>
<td>comment</td>
<td></td>
</tr>
<tr>
<td>attachment</td>
<td></td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>inclusionSpaceKeyFilter</td>
<td>A list of regular expression patterns to include and/or exclude certain files in your Confluence data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
<tr>
<td>exclusionSpaceKeyFilter</td>
<td></td>
</tr>
<tr>
<td>pageTitleRegEX</td>
<td></td>
</tr>
<tr>
<td>blogTitleRegEX</td>
<td></td>
</tr>
<tr>
<td>commentTitleRegEX</td>
<td></td>
</tr>
<tr>
<td>attachmentTitleRegEX</td>
<td></td>
</tr>
<tr>
<td>inclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>inclusionUrlPatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionUrlPatterns</td>
<td></td>
</tr>
<tr>
<td>fieldForUserId</td>
<td></td>
</tr>
<tr>
<td>proxyHost</td>
<td>The host name of the web proxy you are using, without the http:// or https:// protocol.</td>
</tr>
<tr>
<td>proxyPort</td>
<td>The post number used by the host URL transport protocol. Must be a numeric value between 0 and 65535.</td>
</tr>
<tr>
<td>isCrawlPersonalSpace</td>
<td>true to index files in your Confluence personal spaces, pages, blogs, page comments, page attachments, blog comments, and blog attachments.</td>
</tr>
<tr>
<td>isCrawlArchivedSpace</td>
<td></td>
</tr>
<tr>
<td>isCrawlArchivedPage</td>
<td></td>
</tr>
<tr>
<td>isCrawlPage</td>
<td></td>
</tr>
<tr>
<td>isCrawlBlog</td>
<td></td>
</tr>
<tr>
<td>isCrawlPageComment</td>
<td></td>
</tr>
<tr>
<td>isCrawlPageAttachment</td>
<td></td>
</tr>
<tr>
<td>isCrawlBlogComment</td>
<td></td>
</tr>
<tr>
<td>isCrawlBlogAttachment</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify CONFLUENCEV2 as your data source type.</td>
</tr>
<tr>
<td>enableIdentityCrawler</td>
<td>true to activate identity crawler. Identity crawler is activated by default. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
</tr>
</tbody>
</table>
Configuration | Description
--- | ---
secretARN | The Amazon Resource Name (ARN) of a Secrets Manager secret that contains the key-value pairs required to connect to your Confluence instance. If you use basic authentication, the secret must contain a JSON structure with the following keys:
```
[
    "username": "Confluence account username",
    "password": "Confluence API token"
]
```
If you use OAuth 2.0 authentication, the secret must contain a JSON structure with the following keys:
```
{
    "confluenceAppKey": "app key for your Confluence account",
    "confluenceAppSecret": "app secret from your Confluence token",
    "confluenceAccessKey": "access token created in Confluence",
    "confluenceRefreshToken": "refresh token created in Confluence"
}
```
For Confluence Server only) If you use basic authentication, the secret is stored in a JSON structure with the following keys:
```
{
    "hostUrl": "Confluence Server host URL",
    "username": "Confluence Server username",
    "password": "Confluence Server password"
}
```
(For Confluence Server only) If you use Personal Access Token authentication, the secret is stored in a JSON structure with the following keys:
```
{
    "hostUrl": "Confluence Server host URL",
    "patToken": "Confluence token"
}
```
version | The version of this template that is currently supported.
Confluence JSON schema

```json
{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "connectionConfiguration": {
      "type": "object",
      "properties": {
        "repositoryEndpointMetadata": {
          "type": "object",
          "properties": {
            "hostUrl": {
              "type": "string",
              "pattern": "https:.*"
            },
            "type": {
              "type": "string",
              "enum": ["SAAS", "ON_PREM"]
            },
            "authType": {
              "type": "string",
              "enum": ["Basic", "OAuth2", "Personal-token"]
            }
          }
        }
      },
      "required": [
        "hostUrl",
        "type",
        "authType"
      ]
    },
    "repositoryConfigurations": {
      "type": "object",
      "properties": {
        "space": {
          "type": "object",
          "properties": {
            "fieldMappings": {
              "type": "array",
              "items": [
                {
                  "type": "object",
                  "properties": {
                    "indexFieldName": {
                      "type": "string"
                    },
                    "indexFieldType": {
                      "type": "string",
                      "enum": ["STRING", "STRING_LIST", "DATE"]
                    }
                  }
                }
              ]
            }
          }
        }
      }
    }
  }
}
```
Amazon Kendra Developer Guide

Data source template schemas

```
"page": {
  "type": "object",
  "properties": {
    "fieldMappings": {
      "type": "array",
      "items": [
        {
          "type": "object",
          "properties": {
            "indexFieldName": {
              "type": "string"
            },
            "indexFieldType": {
              "type": "string",
              "enum": [
                "STRING",
                "STRING_LIST",
                "DATE",
                "LONG"
              ]
            },
            "dataSourceFieldName": {
              "type": "string"
            },
            "dateFieldFormat": {
              "type": "string",
              "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
            }
          },
          "required": [
            "indexFieldName",
            "indexFieldType",
            "dataSourceFieldName"
          ]
        }
      ]
    }
  },
  "required": [
    "fieldMappings"
  ]
}
```


"properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
 },
 "comment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string"
 }
 }
 },
 "required": [
 "fieldMappings"
]
 }
 }
 }
 }
}
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
]
],
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
]
},
"required": [
"fieldMappings"
]
},
"attachment": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": [
"STRING",
"STRING_LIST",
"DATE",
"LONG"
]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
]
},
"additionalProperties": {
"type": "object",
"properties": {
"fieldForUserId": {
"type": "string"
}
}
}
}
"inclusionSpaceKeyFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionSpaceKeyFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"pageTitleRegEX": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"blogTitleRegEX": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"commentTitleRegEX": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"attachmentTitleRegEX": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"isCrawlPersonalSpace": {
 "type": "boolean"
},
"isCrawlArchivedSpace": {
 "type": "boolean"
},
"isCrawlArchivedPage": {
 "type": "boolean"
},
"isCrawlPage": {
 "type": "boolean"
},
"isCrawlBlog": {
 "type": "boolean"
},
"isCrawlPageComment": {
 "type": "boolean"
},
"isCrawlPageAttachment": {
 "type": "boolean"
},
"isCrawlBlogComment": {
 "type": "boolean"
},
"isCrawlBlogAttachment": {
 "type": "boolean"
},
"inclusionFileTypePatterns": {
 "type": "array",
 "items": {
"type": "string"
],
"exclusionFileTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionUrlPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionUrlPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
.proxyHost": {
 "type": "string"
},
"proxyPort": {
 "type": "string"
},
"required": [],
"type": {
 "type": "string",
 "pattern": "CONFLUENCEV2"
},
"enableIdentityCrawler": {
 "type": "boolean"
},
"syncMode": {
 "type": "string",
 "enum": [
 "FULL_CRAWL",
 "FORCED_FULL_CRAWL"
]
},
"secretArn": {
 "type": "string",
 "minLength": 20,
 "maxLength": 2048
},
"version": {
 "type": "string",
 "anyOf": [
 {
 "pattern": "1.0.0"
 }
]
},
"required": [
 "connectionConfiguration",
 "repositoryConfigurations",
 "syncMode",
 "additionalProperties",
 "secretArn",
 "type"
Dropbox template schema

You include a JSON that contains the data source schema as part of the `TemplateConfiguration` object. You provide the Dropbox app key, app secret, and access token as part of your secret that stores your authentication credentials. Also specify the type of data source as DROPBOX, the type of access token you want to use (temporary or permanent), and other necessary configurations. You then specify `TEMPLATE` as the Type when you call `CreateDataSource`.

You can use the template provided in this developer guide. See Dropbox JSON schema (p. 173).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>connectionConfiguration</code></td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td><code>repositoryEndpointMetadata</code></td>
<td>The endpoint information for the data source. This data source does not specify an endpoint in <code>repositoryEndpointMetadata</code>. Rather, the connection information is included in an AWS Secrets Manager secret that you provide the <code>secretARN</code>.</td>
</tr>
<tr>
<td><code>repositoryConfigurations</code></td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>• file</td>
<td>A list of objects that map the attributes or field names of your Dropbox files, Dropbox Paper, and shortcuts to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>• paper</td>
<td></td>
</tr>
<tr>
<td>• papert</td>
<td></td>
</tr>
<tr>
<td>• shortcut</td>
<td></td>
</tr>
<tr>
<td><code>secretARN</code></td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Dropbox. The secret must contain a JSON structure with the following keys:</td>
</tr>
<tr>
<td></td>
<td>[</td>
</tr>
<tr>
<td></td>
<td>"appKey": "Dropbox app key",</td>
</tr>
<tr>
<td></td>
<td>"appSecret": "Dropbox app secret",</td>
</tr>
<tr>
<td></td>
<td>"accesstoken": "temporary access token or refresh access token"</td>
</tr>
<tr>
<td></td>
<td>]</td>
</tr>
<tr>
<td><code>additionalProperties</code></td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
<tr>
<td>• inclusionFileNamePatterns</td>
<td>A list of regular expression patterns to include certain file names and types in your Dropbox data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file</td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exclusionFileNamePatterns</td>
<td>A list of regular expression patterns to exclude certain file names and types in your Dropbox data source. Files that match the patterns are excluded from the index. Files that don't match the patterns are included in the index. If a file matches both an exclusion and inclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
<tr>
<td>exclusionFileTypePatterns</td>
<td></td>
</tr>
</tbody>
</table>

- **true** to index files in your Dropbox, Dropbox Paper documents, Dropbox Paper templates, and webpage shortcuts stored in your Dropbox.

- **type**
 - The type of data source. Specify **DROPBOX** as your data source type.

- **useChangeLog**
 - **true** to use the Dropbox change log to determine which documents require adding, updating, or deleting in the index. Depending on the change log's size, it may take longer for Amazon Kendra to use the change log than to scan all of your documents in your Dropbox.

- **tokenType**
 - Specify your access token type: permanent or temporary access token. It's recommended that you create a refresh access token that never expires in Dropbox rather that relying on a one-time access token that expires after 4 hours. You create an app and a refresh access token in the Dropbox developer console and provide the access token in your secret.

- **version**
 - The version of this template that is currently supported.

Dropbox JSON schema

```json
{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "connectionConfiguration": {
      "type": "object",
      "properties": {
        "repositoryEndpointMetadata": {
          "type": "object",
          "properties": {
            "version": {
              "type": "string"
            }
          }
        }
      }
    }
  }
}
```
"repositoryEndpointMetadata"
],
"repositoryConfigurations": {
 "type": "object",
 "properties": {
 "file": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "LONG",
 "DATE"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "dd-MM-yyyy HH:mm:ss"
 }
 }
 }
]
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }"paper": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string"
 },
 "enum": [
 "STRING",
 "STRING_LIST",
 "LONG",
 "DATE"
]
 }
 }
]
 }
 },
 "required": [
 "fieldMappings"
]
 }"


```json
{
    "fieldMappings": [
        {
            "type": "object",
            "properties": {
                "indexFieldName": {
                    "type": "string"
                },
                "indexFieldType": {
                    "type": "string",
                    "enum": [
                        "STRING",
                        "STRING_LIST",
                        "LONG",
                        "DATE"
                    ]
                },
                "dataSourceFieldName": {
                    "type": "string"
                },
                "dateFieldFormat": {
                    "type": "string",
                    "pattern": "dd-MM-yyyy HH:mm:ss"
                }
            },
            "required": [
                "indexFieldName",
                "indexFieldType",
                "dataSourceFieldName"
            ]
        }
    ],
    "properties": {
        "fieldMappings": {
            "type": "array",
            "items": {
                "anyOf": [
                    {
                        "type": "object",
                        "properties": {
                            "indexFieldName": {
                                "type": "string"
                            },
                            "indexFieldType": {
                                "type": "string",
                                "enum": [
                                    "STRING",
                                    "STRING_LIST",
                                    "LONG",
                                    "DATE"
                                ]
                            },
                            "dataSourceFieldName": {
                                "type": "string"
                            },
                            "dateFieldFormat": {
                                "type": "string",
                                "pattern": "dd-MM-yyyy HH:mm:ss"
                            }
                        },
                        "required": [
                            "indexFieldName",
                            "indexFieldType",
                            "dataSourceFieldName"
                        ]
                    }
                ]
            }
        }
    }
}
```


```
{
  "fields": {
    "name": { "type": "string" },
    "description": { "type": "string" }
  },
  "required": [ "name", "description" ]
}
```

```
{
  "shortcut": {
    "type": "object",
    "properties": {
      "fieldMappings": {
        "type": "array",
        "items": {
          "anyOf": [
            {
              "type": "object",
              "properties": {
                "indexFieldName": { "type": "string" },
                "indexFieldType": { "type": "string", "enum": [ "STRING", "STRING_LIST", "LONG", "DATE" ] },
                "dataSourceFieldName": { "type": "string" },
                "dateFieldFormat": { "type": "string", "pattern": "dd-MM-yyyy HH:mm:ss" }
              },
              "required": [ "indexFieldName", "indexFieldType", "dataSourceFieldName" ]
            }
          ]
        }
      }
    }
  },
  "required": [ "fieldMappings" ]
}
```

```
{
  "secretArn": { "type": "string" },
  "additionalProperties": {
    "type": "object",
    "properties": {
      "inclusionFileNamePatterns": { "type": "array" },
      "exclusionFileNamePatterns": { "type": "array" },
      "inclusionFileTypePatterns": { "type": "array" }
    }
  }
}
```
You include a JSON that contains the data source schema as part of the `TemplateConfiguration` object. Specify the type of data source as `GMAIL`, a secret for your authentication credentials, and other necessary configurations. You then specify `TEMPLATE` as the `Type` when you call `CreateDataSource`.

You can use the template provided in this developer guide. See `Gmail JSON schema` (p. 179).
The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings. Specify the type of data source and the secret ARN.</td>
</tr>
<tr>
<td>• message</td>
<td>A list of objects that map the attributes or field names of your Gmail messages and attachments to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>• attachments</td>
<td></td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
<tr>
<td>• inclusionLabelNamePatterns</td>
<td>A list of regular expression patterns to include or exclude messages with specific subject names in your Gmail data source. Files that match the patterns are included in the index. If a file matches both an inclusion and an exclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
</tr>
<tr>
<td>• exclusionLabelNamePatterns</td>
<td></td>
</tr>
<tr>
<td>• inclusionAttachmentTypePatterns</td>
<td></td>
</tr>
<tr>
<td>• exclusionAttachmentTypePatterns</td>
<td></td>
</tr>
<tr>
<td>• inclusionAttachmentNamePatterns</td>
<td></td>
</tr>
<tr>
<td>• exclusionAttachmentNamePatterns</td>
<td></td>
</tr>
<tr>
<td>• inclusionSubjectFilter</td>
<td></td>
</tr>
<tr>
<td>• exclusionSubjectFilter</td>
<td></td>
</tr>
<tr>
<td>• isSubjectAnd</td>
<td></td>
</tr>
<tr>
<td>• inclusionFromFilter</td>
<td></td>
</tr>
<tr>
<td>• exclusionFromFilter</td>
<td></td>
</tr>
<tr>
<td>• inclusionToFilter</td>
<td></td>
</tr>
<tr>
<td>• exclusionToFilter</td>
<td></td>
</tr>
<tr>
<td>• inclusionCcFilter</td>
<td></td>
</tr>
<tr>
<td>• exclusionCcFilter</td>
<td></td>
</tr>
<tr>
<td>• inclusionBccFilter</td>
<td></td>
</tr>
<tr>
<td>• exclusionBccFilter</td>
<td></td>
</tr>
<tr>
<td>beforeDateFilter</td>
<td>Specify messages and attachments to be included before a certain date.</td>
</tr>
<tr>
<td>afterDateFilter</td>
<td>Specify messages and attachments to be included after a certain date.</td>
</tr>
<tr>
<td>isCrawlAttachment</td>
<td>A Boolean value to choose whether you want to crawl attachments. Messages are automatically crawled.</td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify GMAIL as your data source type.</td>
</tr>
<tr>
<td>shouldCrawlDraftMessages</td>
<td>A Boolean value to choose whether you want to crawl draft messages.</td>
</tr>
</tbody>
</table>
Data source template schemas

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose:</td>
</tr>
<tr>
<td></td>
<td>- FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>- FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
</tr>
<tr>
<td>Important</td>
<td>Because there is no API to update permanently deleted Gmail messages, a New, modified, or deleted content sync:</td>
</tr>
<tr>
<td></td>
<td>- Won’t remove messages that were permanently deleted from Gmail from your Amazon Kendra index</td>
</tr>
<tr>
<td></td>
<td>- Won’t sync changes in Gmail email labels</td>
</tr>
</tbody>
</table>

To sync your Gmail data source label changes and permanently deleted email messages to your Amazon Kendra index, you must run full crawls periodically.

<table>
<thead>
<tr>
<th>secretARN</th>
<th>The Amazon Resource Name (ARN) of a Secrets Manager secret that contains the key-value pairs required to connect to your Gmail. The secret must contain a JSON structure with the following keys:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{</td>
</tr>
<tr>
<td></td>
<td>"adminAccountEmailId": "service account email",</td>
</tr>
<tr>
<td></td>
<td>"clientEmailId": "user account email",</td>
</tr>
<tr>
<td></td>
<td>"privateKey": "private key"</td>
</tr>
<tr>
<td>version</td>
<td>The version of the template that is currently supported.</td>
</tr>
</tbody>
</table>

Gmail JSON schema

```json
{
   "$schema": "http://json-schema.org/draft-04/schema#",
   "type": "object",
   "properties": {
      "connectionConfiguration": {
         "type": "object",
         "properties": {
            "connectionConfiguration": {
               "type": "object",
               "properties": {
            
```
"repositoryConfigurations": {
"type": "object",
"properties": {
"message": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": ["STRING", "STRING_LIST", "DATE"]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string"
}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
]
}
}
}
},
"attachments": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": ["STRING"]
},
"dataSourceFieldName": {
"type": "string"
}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
]
}
}
}
}
"additionalProperties": {
 "type": "object",
 "properties": {
 "inclusionLabelNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionLabelNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "inclusionAttachmentTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionAttachmentTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "inclusionAttachmentNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionAttachmentNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "inclusionSubjectFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionSubjectFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "isSubjectAnd": {
 "type": "boolean"
 },
 "inclusionFromFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionFromFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
}"required": []
}
"items":

 "type": "string"

},
"inclusionToFilter":

 "type": "array",
 "items": [

 "type": "string"

],
"exclusionToFilter":

 "type": "array",
 "items": [

 "type": "string"

],
"inclusionCcFilter":

 "type": "array",
 "items": [

 "type": "string"

],
"exclusionCcFilter":

 "type": "array",
 "items": [

 "type": "string"

],
"inclusionBccFilter":

 "type": "array",
 "items": [

 "type": "string"

],
"exclusionBccFilter":

 "type": "array",
 "items": [

 "type": "string"

],
"beforeDateFilter":

 "anyOf": [

 "type": "string",
 "pattern": "^[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}Z$"
],

 [

 "type": "string",
 "pattern": ""

],
"afterDateFilter":

 "anyOf": [

 "type": "string",
 "pattern": "^[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}Z$"
],

 [

 "type": "string",
 "pattern": ""

],
"isCrawlAttachment": {

 "type": "boolean"
Google Drive template schema

You include a JSON that contains the data source schema as part of the TemplateConfiguration object. Specify the type of data source as GOOGLEDRIVE2, a secret for your authentication credentials, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

You can use the template provided in this developer guide. See Google Drive JSON schema (p. 186).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source. This data source does not specify an endpoint. You choose your authentication type: serviceAccount and OAuth2. The connection</td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Description</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information is included in an AWS Secrets Manager secret that you provide the <code>secretArn</code>.</td>
<td>authType</td>
</tr>
<tr>
<td>Choose between serviceAccount and OAuth2 based on your use case.</td>
<td>repositoryConfigurations</td>
</tr>
<tr>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
<td>repositoryConfigurations</td>
</tr>
<tr>
<td>A list of objects that map the attributes or field names of your Google Drive to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
<td>repositoryConfigurations</td>
</tr>
<tr>
<td>Additional configuration options for your content in your data source</td>
<td>additionalProperties</td>
</tr>
<tr>
<td>Specify a file size limit in MBs that Amazon Kendra should crawl.</td>
<td>maxFileSizeInMegaBytes</td>
</tr>
<tr>
<td>true to index comments in your Google Drive data source.</td>
<td>isCrawlComment</td>
</tr>
<tr>
<td>true to index MyDrive and Shared With Me Drives in your Google Drive data source.</td>
<td>isCrawlMyDriveAndSharedWithMe</td>
</tr>
<tr>
<td>true to index Shared Drives in your Google Drive data source.</td>
<td>isCrawlSharedDrives</td>
</tr>
<tr>
<td>true to crawl ACL information from your Google Drive data source.</td>
<td>isCrawlAcl</td>
</tr>
<tr>
<td>A list of regular expression patterns to exclude certain files in your Google Drive data source. Files that match the patterns are excluded from the index. Files that don't match the patterns are included in the index. If a file matches both an exclusion and inclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
<td>excludeUserAccounts</td>
</tr>
<tr>
<td>excludeSharedDrives</td>
<td></td>
</tr>
<tr>
<td>excludeMimeTypes</td>
<td></td>
</tr>
<tr>
<td>exclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionFileNamePatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionFilePathFilter</td>
<td></td>
</tr>
<tr>
<td>A list of regular expression patterns to include certain files in your Google Drive data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
<td>includeUserAccounts</td>
</tr>
<tr>
<td>includeSharedDrives</td>
<td></td>
</tr>
<tr>
<td>includeMimeTypes</td>
<td></td>
</tr>
<tr>
<td>inclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>inclusionFileNamePatterns</td>
<td></td>
</tr>
<tr>
<td>inclusionFilePathFilter</td>
<td></td>
</tr>
<tr>
<td>The type of data source. Specify <code>GOOGLEDRIVEV2</code> as your data source type.</td>
<td>type</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>enableIdentityCrawler</td>
<td><code>true</code> to activate identity crawler. Identity crawler is activated by default. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.</td>
</tr>
</tbody>
</table>
| syncMode | Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 - `FORCED_FULL_CRAWL` to freshly re-crawl all content and replace existing content each time your data source syncs with your index
 - `FULL_CRAWL` to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index
 - `CHANGE_LOG` to incrementally crawl only new and modified content each time your data source syncs with your index |
| secretARN | The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Google Drive. The secret must contain a JSON structure with the following keys:
 - If using Google Service Account authentication:
    ```json  
    {  
      "clientEmail": "user account email",  
      "adminAccountEmail": "service account email",  
      "privateKey": "private key"  
    }  
    ```  
 - If using OAuth 2.0 authentication:
    ```json  
    {  
      "clientID": "OAuth client ID",  
      "clientSecret": "client secret",  
      "refreshToken": "refresh token"  
    }  
    ``` |
| version | The version of this template that is currently supported. |
Google Drive JSON schema

```json
{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "connectionConfiguration": {
      "type": "object",
      "properties": {
        "repositoryEndpointMetadata": {
          "type": "object",
          "properties": {
            "authType": {
              "type": "string",
              "enum": [
                "serviceAccount",
                "OAuth2"
              ]
            }
          },
          "required": [
            "authType"
          ]
        },
        "repositoryEndpointMetadata": {
          "type": "object",
          "properties": {
            "getRepositoryEndpoint": {
              "type": "string",
              "enum": [
                "serviceAccount",
                "OAuth2"
              ]
            }
          },
          "required": [
            "getRepositoryEndpoint"
          ]
        }
      },
      "required": [
        "connectionConfiguration"
      ]
    },
    "repositoryConfigurations": {
      "type": "object",
      "properties": {
        "file": {
          "type": "object",
          "properties": {
            "fieldMappings": {
              "type": "array",
              "items": [
                {
                  "type": "object",
                  "properties": {
                    "indexFieldName": {
                      "type": "string"
                    },
                    "indexFieldType": {
                      "type": "string",
                      "enum": [
                        "STRING",
                        "DATE",
                        "STRING_LIST",
                        "LONG"
                      ]
                    },
                    "dataSourceFieldName": {
                      "type": "string"
                    },
                    "dateFieldFormat": {
                      "type": "string",
                      "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
                    }
                  }
                }
              ],
              "required": [
                "indexFieldName",
                "indexFieldType",
                "dataSourceFieldName",
                "dateFieldFormat"
              ]
            }
          }
        }
      }
    }
  }
}
```


```json
],
]"
],
"required": [
"fieldMappings"
]
],
"comment": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": [
"STRING",
"DATE",
"STRING_LIST"
]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
}
]
},
"required": [
"fieldMappings"
]
],
"additionalProperties": {
"type": "object",
"properties": {
"maxFileSizeInMegaBytes": {
"type": "string"
},
"isCrawlComment": {
"type": "boolean"
},
"isCrawlMyDriveAndSharedWithMe": {
"type": "boolean"
},
"isCrawlSharedDrives": {
"type": "boolean"
}
}
```

187

Amazon Kendra Developer Guide
Data source template schemas
Data source template schemas

```
{"isCrawlAcl": {
  "type": "boolean"
},
"excludeUserAccounts": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"excludeSharedDrives": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"excludeMimeTypes": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"includeUserAccounts": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"includeSharedDrives": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"includeMimeTypes": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"includeTargetAudienceGroup": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"inclusionFileTypePatterns": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"inclusionFileNamePatterns": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"exclusionFileTypePatterns": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"exclusionFileNamePatterns": {
  "type": "array",
  "items": {
    "type": "string"
  }
}
```
Microsoft Exchange template schema

You include a JSON that contains the data source schema as part of the TemplateConfiguration object. You provide the tenant ID as a part of the connection configuration or repository endpoint details. Also specify the type of data source as MSEXCHANGE, a secret for your authentication credentials, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.
You can use the template provided in this developer guide. See `Microsoft Exchange JSON schema (p. 192)`.

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>tenantId</td>
<td>The Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>email</td>
<td>A list of objects that map the attributes or field names of your Microsoft Exchange data source to Amazon Kendra index fields. For more information, see <code>Mapping data source fields</code>.</td>
</tr>
<tr>
<td>attachment</td>
<td></td>
</tr>
<tr>
<td>calendar</td>
<td></td>
</tr>
<tr>
<td>contacts</td>
<td></td>
</tr>
<tr>
<td>notes</td>
<td></td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for content in your data source.</td>
</tr>
<tr>
<td>inclusionPatterns</td>
<td>A list of regular expression patterns to <code>include</code> certain files in your Microsoft Exchange data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
<tr>
<td>exclusionPatterns</td>
<td>A list of regular expression patterns to <code>exclude</code> certain files in your Microsoft Exchange data source. Files that match the patterns are excluded from the index. Files that don't match the patterns are included in the index. If a file matches both an exclusion and inclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
<tr>
<td>inclusionUsersList</td>
<td>A list of regular expression patterns to <code>include</code> certain users and user files in your Microsoft Exchange data source. Users that match the patterns are included in the index. Users that don't match the patterns are excluded from the index. If a user matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence and the user isn't included in the index.</td>
</tr>
<tr>
<td>inclusionUsersFileName</td>
<td></td>
</tr>
<tr>
<td>inclusionDomainUsers</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>exclusionUsersList</td>
<td>A list of regular expression patterns to exclude certain users and user files in your Microsoft Exchange data source. Users that match the patterns are excluded from the index. Users that don’t match the patterns are included in the index.</td>
</tr>
<tr>
<td>exclusionUsersFileName</td>
<td></td>
</tr>
<tr>
<td>exclusionDomainUsers</td>
<td></td>
</tr>
<tr>
<td>s3bucketName</td>
<td>The name of your S3 bucket if that you want to use.</td>
</tr>
<tr>
<td>crawlCalendar</td>
<td><code>true</code> to index this content in your Microsoft Exchange data source.</td>
</tr>
<tr>
<td>crawlNotes</td>
<td></td>
</tr>
<tr>
<td>crawlFolderAcl</td>
<td></td>
</tr>
<tr>
<td>crawlContacts</td>
<td></td>
</tr>
<tr>
<td>crawlFolderAcl</td>
<td></td>
</tr>
<tr>
<td>startCalendarDateTime</td>
<td>You can configure a specific start date-time for your calendar content.</td>
</tr>
<tr>
<td>endCalendarDateTime</td>
<td>You can configure a specific end date-time for calendar content.</td>
</tr>
<tr>
<td>subject</td>
<td>You can configure a specific subject line for your mail content.</td>
</tr>
<tr>
<td>emailFrom</td>
<td>You can configure a specific email for your ‘From’ or sender mail content.</td>
</tr>
<tr>
<td>emailTo</td>
<td>You can configure a specific email for your ‘To’ or recipient mail content.</td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index</td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify MSEXCHANGE as your data source type.</td>
</tr>
</tbody>
</table>
Data source template schemas

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>secretARN</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Microsoft Exchange. This includes your client ID and your client secret that is generated when you create an OAuth application in the Azure portal.</td>
</tr>
<tr>
<td>version</td>
<td>The version of this template that is currently supported.</td>
</tr>
</tbody>
</table>

Microsoft Exchange JSON schema

```json
{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "connectionConfiguration": {
      "type": "object",
      "properties": {
        "repositoryEndpointMetadata": {
          "type": "object",
          "properties": {
            "tenantId": {
              "type": "string",
              "pattern": "^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$",
              "minLength": 36,
              "maxLength": 36
            }
          },
          "required": ["tenantId"]
        }
      }
    },
    "repositoryConfigurations": {
      "type": "object",
      "properties": {
        "email": {
          "type": "object",
          "properties": {
            "fieldMappings": {
              "type": "array",
              "items": [
                {
                  "type": "object",
                  "properties": {
                    "indexFieldName": {
                      "type": "string"
                    },
                    "indexFieldType": {
                      "type": "string",
                      "enum": ["STRING", "STRING_LIST", "DATE"]
                    },
                    "dataSourceFieldName": {
                      "type": "string"
                    },
                    "dateFieldFormat": {
                      "type": "string",
                      "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
                    }
                  }
                }
              ]
            }
          }
        }
      }
    }
  }
}
```
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
}
]
],
"required": [
 "fieldMappings"
]
},
"attachment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "DATE","LONG"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z"
 }
 }
 }
]
 }
 }
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
]
],
"required": [
 "fieldMappings"
]
},
"calendar": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING","STRING_LIST","DATE"]
 }
 }
 }
]
 }
 }
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
]
"dataSourceFieldName": {
 "type": "string"
},
"dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
},
"required": [
 "fieldMappings"
],
"contacts": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 },
 "required": [
 "fieldMappings"
]
],
"notes": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 },
 "required": [
 "fieldMappings"
]
],
"notes": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 },
 "required": [
 "fieldMappings"
]
]
"properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
},
"required": ["email"
],
"additionalProperties": {
 "type": "object",
 "properties": {
 "inclusionPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "inclusionUsersList": {
 "type": "array",
 "items": {
 "type": "string",
 "format": "email"
 }
 },
 "exclusionUsersList": {
 "type": "array",
 "items": {
 "type": "string",
 "format": "email"
 }
 },
 "s3bucketName": {
 "type": "string"
 },
 "inclusionUsersFileName": {
 "type": "string"
 }
 }
}
"type": "string",
"exclusionUsersFileName": {
 "type": "string"
},
"inclusionDomainUsers": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionDomainUsers": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"crawlCalendar": {
 "type": "boolean"
},
"crawlNotes": {
 "type": "boolean"
},
"crawlContacts": {
 "type": "boolean"
},
"crawlFolderAcl": {
 "type": "boolean"
},
"startCalendarDateTime": {
 "anyOf": [
 {
 "type": "string",
 "pattern": "^[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}Z$"
 },
 {
 "type": "string",
 "pattern": ""
 }
]
},
"endCalendarDateTime": {
 "anyOf": [
 {
 "type": "string",
 "pattern": "^[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}Z$"
 },
 {
 "type": "string",
 "pattern": ""
 }
]
},
"subject": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"emailFrom": {
 "type": "array",
 "items": {
 "type": "string",
 "format": "email"
 }
}
Microsoft OneDrive template schema

You include a JSON that contains the data source schema as part of the `TemplateConfiguration` object. You provide the tenant ID as part of the connection configuration or repository endpoint details. Also specify the type of data source as `ONEDRIVEV2`, and a secret for your authentication credentials, and other necessary configurations. You then specify `TEMPLATE` as the Type when you call `CreateDataSource`.

You can use the template provided in this developer guide. See Microsoft OneDrive JSON schema (p. 199).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
</tbody>
</table>
Data source template schemas

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>tenantId</td>
<td>The Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>file</td>
<td>A list of objects that map the attributes or field names of your Microsoft OneDrive files to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source</td>
</tr>
<tr>
<td>userNameFilter</td>
<td>You can choose to index specific files, OneNote sections, OneNote pages, and filter by user name.</td>
</tr>
<tr>
<td>userFilterPath</td>
<td></td>
</tr>
<tr>
<td>inclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>inclusionFileNamePatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionFileNamePatterns</td>
<td></td>
</tr>
<tr>
<td>inclusionFilePathPatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionFilePathPatterns</td>
<td></td>
</tr>
<tr>
<td>inclusionOneNoteSectionNamePatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionOneNoteSectionNamePatterns</td>
<td></td>
</tr>
<tr>
<td>inclusionOneNotePageNamePatterns</td>
<td></td>
</tr>
<tr>
<td>exclusionOneNotePageNamePatterns</td>
<td></td>
</tr>
<tr>
<td>isUserNameOnS3</td>
<td><code>true</code> to provide a list of user names in a file stored in an Amazon S3.</td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify ONEDRIVEV2 as your data source type.</td>
</tr>
<tr>
<td>enableIdentityCrawler</td>
<td><code>true</code> to activate identity crawler. Identity crawler is activated by default. If identity crawler is deactivated, you must upload the principal information using the <code>PutPrincipalMapping</code> API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.</td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify ONEDRIVEV2 as your data source type.</td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index</td>
</tr>
<tr>
<td>secretARN</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Microsoft OneDrive. The secret must contain a JSON structure with the following keys:</td>
</tr>
</tbody>
</table>
| | ```
| | { "clientId": "client ID",
| | "clientSecret": "client secret"
| | }```
| version | The version of this template that is currently supported. |

Microsoft OneDrive JSON schema

```json
{
    "$schema": "http://json-schema.org/draft-04/schema#",
    "type": "object",
    "properties": {
        "connectionConfiguration": {
            "type": "object",
            "properties": {
                "repositoryEndpointMetadata": {
                    "type": "object",
                    "properties": {
                        "tenantId": {
                            "type": "string",
                            "pattern": "^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$",
                            "minLength": 36,
                            "maxLength": 36
                        }
                    },
                    "required": [
                        "tenantId"
                    ]
                }
            },
            "required": [
                "repositoryEndpointMetadata"
            ]
        }
    }
}
```
"repositoryConfigurations": {
 "type": "object",
 "properties": {
 "file": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
 }
 }
},
"additionalProperties": {
 "type": "object",
 "properties": {
 "userNameFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "userFilterPath": {
 "type": "string"
 },
 "isUserNameOnS3": {
 "type": "boolean"
 },
 "inclusionFileTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
}
"exclusionFileTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionFileNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionFileNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionFilePathPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionFilePathPatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionOneNoteSectionNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionOneNoteSectionNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionOneNotePageNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionOneNotePageNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"required": []

"enableIdentityCrawler": {
 "type": "boolean"
},
"type": {
 "type": "string",
 "pattern": "ONEDRIVEV2"
Microsoft SharePoint template schema

You include a JSON that contains the data source schema as part of TemplateConfiguration object. You provide the SharePoint host URL, domain, and also a tenant ID if required as a part of the connection configuration or repository endpoint details. Also specify the type of data source as SHAREPINTV2, a secret for your authentication credentials, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

You can use the template provided in this developer guide. See SharePoint JSON schema (p. 204).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source</td>
</tr>
<tr>
<td>tenantId</td>
<td>The tenant id of your SharePoint account.</td>
</tr>
<tr>
<td>domain</td>
<td>The domain of your SharePoint account.</td>
</tr>
<tr>
<td>siteUrls</td>
<td>The host URLs of your SharePoint account.</td>
</tr>
<tr>
<td>repositoryAdditionalProperties</td>
<td>Additional properties to connect with the repository/data source endpoint.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>s3bucketName</td>
<td>The name of the Amazon S3 bucket that stores your Azure AD self-signed X.509 certificate.</td>
</tr>
<tr>
<td>s3certificateName</td>
<td>The name of the Azure AD self-signed X.509 certificate stored in your Amazon S3 bucket.</td>
</tr>
<tr>
<td>authType</td>
<td>The type of authentication you are using, whether OAuth2, OAuth2Certificate, OAuth2App, Basic.</td>
</tr>
<tr>
<td>version</td>
<td>The SharePoint version you are using, whether Server or Online.</td>
</tr>
<tr>
<td>onPremVersion</td>
<td>The SharePoint Server version you are using, whether 2013, 2016, 2019, or SubscriptionEdition.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
<tr>
<td></td>
<td>• eventTitleFilterRegEx</td>
</tr>
<tr>
<td></td>
<td>• pageTitleFilterRegEx</td>
</tr>
<tr>
<td></td>
<td>• linkTitleFilterRegEx</td>
</tr>
<tr>
<td></td>
<td>• inclusionFilePath</td>
</tr>
<tr>
<td></td>
<td>• exclusionFilePath</td>
</tr>
<tr>
<td></td>
<td>• inclusionFileTypePatterns</td>
</tr>
<tr>
<td></td>
<td>• exclusionFileTypePatterns</td>
</tr>
<tr>
<td></td>
<td>• inclusionFileNamePatterns</td>
</tr>
<tr>
<td></td>
<td>• exclusionFileNamePatterns</td>
</tr>
<tr>
<td></td>
<td>• inclusionOneNoteSectionNamePatterns</td>
</tr>
<tr>
<td></td>
<td>• exclusionOneNoteSectionNamePatterns</td>
</tr>
<tr>
<td></td>
<td>• inclusionOneNotePageNamePatterns</td>
</tr>
<tr>
<td></td>
<td>• exclusionOneNotePageNamePatterns</td>
</tr>
<tr>
<td></td>
<td>• aclConfiguration</td>
</tr>
<tr>
<td></td>
<td>• emailDomain</td>
</tr>
<tr>
<td></td>
<td>• proxyHost</td>
</tr>
<tr>
<td></td>
<td>• proxyPort</td>
</tr>
</tbody>
</table>

A list of regular expression patterns to include/exclude certain files in your SharePoint data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.
Data source template schemas

Configuration

<table>
<thead>
<tr>
<th>Description</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input TRUE to index.</td>
<td>• crawlFiles</td>
</tr>
<tr>
<td></td>
<td>• crawlPages</td>
</tr>
<tr>
<td></td>
<td>• crawlEvents</td>
</tr>
<tr>
<td></td>
<td>• crawlComments</td>
</tr>
<tr>
<td></td>
<td>• crawlLinks</td>
</tr>
<tr>
<td></td>
<td>• crawlAttachments</td>
</tr>
<tr>
<td></td>
<td>• crawlListData</td>
</tr>
<tr>
<td></td>
<td>• crawlAcl</td>
</tr>
<tr>
<td></td>
<td>• isCrawlLocalGroupMapping</td>
</tr>
<tr>
<td></td>
<td>• isCrawlAdGroupMapping</td>
</tr>
<tr>
<td>Specify SHAREPOINTV2 as your data source type</td>
<td>type</td>
</tr>
<tr>
<td>ttrue to activate identity crawler. Identity crawler is activated by default. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.</td>
<td>enableIdentityCrawler</td>
</tr>
<tr>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
<td>syncMode</td>
</tr>
<tr>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
<td></td>
</tr>
<tr>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
<td></td>
</tr>
<tr>
<td>• CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index</td>
<td></td>
</tr>
<tr>
<td>The Amazon Resource Name (ARN) of a AWS Secrets Manager secret that contains the key-value pairs required to connect to your SharePoint. For information on these key-value pairs, see Connection instructions for SharePoint Online and SharePoint Server.</td>
<td>secretARN</td>
</tr>
<tr>
<td>The version of this template that is currently supported.</td>
<td>version</td>
</tr>
</tbody>
</table>

SharePoint JSON schema

```json
{

}
```
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {
 "connectionConfiguration": {
 "type": "object",
 "properties": {
 "repositoryEndpointMetadata": {
 "type": "object",
 "properties": {
 "tenantId": {
 "type": "string",
 "pattern": "^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$",
 "minLength": 36,
 "maxLength": 36
 },
 "domain": {
 "type": "string"
 },
 "siteUrls": {
 "type": "array",
 "items": {
 "type": "string",
 "pattern": "https://.*"
 }
 }
 }
 },
 "repositoryAdditionalProperties": {
 "type": "object",
 "properties": {
 "s3bucketName": {
 "type": "string"
 },
 "s3certificateName": {
 "type": "string"
 },
 "authType": {
 "type": "string",
 "enum": ["OAuth2", "OAuth2Certificate", "OAuth2App", "Basic", "NTLM", "Kerberos"
]
 }
 }
 }
 },
 "required": ["authType", "version"]
}
"required": ["siteUrls", "domain", "repositoryAdditionalProperties"]
},
"required": ["repositoryEndpointMetadata"]
),
"repositoryConfigurations": {
 "type": "object",
 "properties": {
 "event": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
 }
 }
},
"dataSourceFieldName": {
 "type": "string"
},
"dateFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required": ["indexFieldName", "indexFieldType", "dataSourceFieldName"]
}
},
"required": ["fieldMappings"]
),
"page": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "fieldMapping": {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
 }
 }
]
 }
 }
}
"properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
"file": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
},
"required": [
 "fieldMappings"
]
"required": ["fieldMappings"]
],
"link": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": [
"STRING",
"STRING_LIST",
"DATE"
]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": ["indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
}
],
"required": ["fieldMappings"]
},
"attachment": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": [
"STRING",
"STRING_LIST",
"DATE"
]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": ["indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]}
],
"required": ["fieldMappings"]
},
"attachment": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": [
"STRING",
"STRING_LIST",
"DATE"
]
"DATE"
]

"dataSourceFieldName": {
 "type": "string"
},
"dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
}

"required": [
 "fieldMappings"
],
"comment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 }
}
},
 "additionalProperties": {
 "type": "object",
 "properties": {
 "eventTitleFilterRegEx": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "pageTitleFilterRegEx": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "linkTitleFilterRegEx": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "inclusionFilePath": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionFilePath": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "inclusionFileTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionFileTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "inclusionFileNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionFileNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "inclusionOneNoteSectionNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "exclusionOneNoteSectionNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
 }
}
"items": {
 "type": "string"
},
"inclusionOneNotePageNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionOneNotePageNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"crawlFiles": {
 "type": "boolean"
},
"crawlPages": {
 "type": "boolean"
},
"crawlEvents": {
 "type": "boolean"
},
"crawlComments": {
 "type": "boolean"
},
"crawlLinks": {
 "type": "boolean"
},
"crawlAttachments": {
 "type": "boolean"
},
"crawlListData": {
 "type": "boolean"
},
"crawlAcl": {
 "type": "boolean"
},
"aclConfiguration": {
 "type": "string",
 "enum": [
 "ACLWithLDAPEmailFmt",
 "ACLWithManualEmailFmt",
 "ACLWithUsernameFmt"
]
},
"emailDomain": {
 "type": "string"
},
"isCrawlLocalGroupMapping": {
 "type": "boolean"
},
"isCrawlAdGroupMapping": {
 "type": "boolean"
},
"proxyHost": {
 "type": "string"
},
"proxyPort": {
 "type": "string"
},
"required": [
]
Microsoft Teams template schema

You include a JSON that contains the data source schema as part of the TemplateConfiguration object. You provide the tenant ID as a part of the connection configuration or repository endpoint details. Also specify the type of data source as MSTEAMS, a secret for your authentication credentials, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

You can use the template provided in this developer guide. See Microsoft Teams JSON schema (p. 214).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>tenantId</td>
<td>The Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• chatMessage</td>
<td></td>
</tr>
<tr>
<td>• chatAttachment</td>
<td></td>
</tr>
<tr>
<td>• channelPost</td>
<td></td>
</tr>
<tr>
<td>• channelWiki</td>
<td></td>
</tr>
<tr>
<td>• channelAttachment</td>
<td></td>
</tr>
<tr>
<td>• meetingChat</td>
<td></td>
</tr>
<tr>
<td>• meetingNote</td>
<td></td>
</tr>
<tr>
<td>• calendarMeeting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A list of objects that map the attributes or field names of your Microsoft Teams content to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• isCrawlChatMessage</td>
<td></td>
</tr>
<tr>
<td>• isCrawlChatAttachment</td>
<td></td>
</tr>
<tr>
<td>• isCrawlChannelPost</td>
<td></td>
</tr>
<tr>
<td>• isCrawlChannelAttachment</td>
<td></td>
</tr>
<tr>
<td>• isCrawlChannelWiki</td>
<td></td>
</tr>
<tr>
<td>• isCrawlCalendarMeeting</td>
<td></td>
</tr>
<tr>
<td>• isCrawlMeetingChat</td>
<td></td>
</tr>
<tr>
<td>• isCrawlMeetingFile</td>
<td></td>
</tr>
<tr>
<td>• isCrawlMeetingNote</td>
<td></td>
</tr>
<tr>
<td></td>
<td>true to index this content in your Microsoft Teams data source.</td>
</tr>
<tr>
<td>paymentModel</td>
<td>Specifies what type of payment model to use with your Teams data source. Model A payment models are restricted to licensing and payment models that require security compliance. Model B payment models are suitable for licensing and payment models that do not require security compliance.</td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>secretArn</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Microsoft Teams. This includes your client ID and client secret that is generated when you create an OAuth application in the Azure portal.</td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify MSTEAMS as your data source type.</td>
</tr>
<tr>
<td>enableIdentityCrawler</td>
<td>True to activate identity crawler. Identity crawler is activated by default. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.</td>
</tr>
<tr>
<td>version</td>
<td>The version of this template that is currently supported.</td>
</tr>
</tbody>
</table>

Microsoft Teams JSON schema

```json
{
    "$schema": "http://json-schema.org/draft-04/schema#",
    "type": "object",
    "properties": {
        "connectionConfiguration": {
            "type": "object",
            "properties": {
                "repositoryEndpointMetadata": {
                    "type": "object",
                    "properties": {
                        "tenantId": {
                            "type": "string",
                            "pattern": "^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$",
                            "minLength": 36,
                            "maxLength": 36
                        }
                    }
                },
                "required": ["tenantId"
                ]
            },
            "required": ["repositoryEndpointMetadata"
            ]
        },
        "repositoryConfigurations": {
            "type": "object",
            "properties": {
                "chatMessage": {
                    "type": "object",
                    "properties": {
                        "required": ["chatMessage"
                        ]
                    }
                }
            }
        }
    }
}
```
"fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "STRING_LIST"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
],
 "required": ["fieldMappings"]
},
"chatAttachment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": ["indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
],
 "required": ["fieldMappings"]
 },
 "required": ["fieldMappings"]
 }
}
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
}
]
"required": [
 "fieldMappings"
],
"channelPost": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "DATE"
],
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
 }
 }
 }
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
]
"required": [
 "fieldMappings"
],
"channelWiki": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
 }
 }
 }
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
]
"indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "LONG"
]
},
"dataSourceFieldName": {
 "type": "string"
},
"dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
}
"channelAttachment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
},
"required": [
 "fieldMappings"
]
"required": [
 "fieldMappings"
]
},
"meetingChat": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 },
 "meetingFile": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 }
 }
 }
]
 }
 }
 }
]
}
"type": "string",
"dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
}
}
"required": [
 "fieldMappings"
],
"meetingNote": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 }
},
"required": [
 "fieldMappings"
],
"calendarMeeting": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 }
},
"required": [
 "fieldMappings"
]
```json
{
    "type": "object",
    "properties": {  
        "indexFieldName": {  
            "type": "string"
        },
        "indexFieldType": {  
            "type": "string",
            "enum": ["STRING", "DATE"
        ],
        "dataSourceFieldName": {  
            "type": "string"
        },
        "dateFieldFormat": {  
            "type": "string",
            "pattern": "YYYY-MM-dd'T'HH:mm:ss'Z'"
        }
    },
    "required": [  
        "indexFieldName",
        "indexFieldType",
        "dataSourceFieldName"
    ]
}
}
```

"exclusionChannelNameFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionFileNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionFileNamePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionFileTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"exclusionFileTypePatterns": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"inclusionUserEmailFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
},
"isCrawlChatMessage": {
 "type": "boolean"
},
"isCrawlChatAttachment": {
 "type": "boolean"
},
"isCrawlChannelPost": {
 "type": "boolean"
},
"isCrawlChannelAttachment": {
 "type": "boolean"
},
"isCrawlChannelWiki": {
 "type": "boolean"
},
"isCrawlCalendarMeeting": {
 "type": "boolean"
},
"isCrawlMeetingChat": {
 "type": "boolean"
},
"isCrawlMeetingFile": {
 "type": "boolean"
},
"isCrawlMeetingNote": {
 "type": "boolean"
},
"startCalendarDateTime": {
 "anyOf": [
 {
 "type": "string",
 "format": "date-time"
 }
]
}
{
 "type": "string",
 "pattern": "^\[0-9\]{4}-\[0-9\]{2}-\[0-9\]{2}T\[0-9\]{2}:\[0-9\]{2}:\[0-9\]{2}Z$"
},
{
 "type": "string",
 "pattern": """
}
}
"endCalendarDateTime": {
 "anyOf": [
 {
 "type": "string",
 "pattern": "^\[0-9\]{4}-\[0-9\]{2}-\[0-9\]{2}T\[0-9\]{2}:\[0-9\]{2}:\[0-9\]{2}Z$"
 },
 {
 "type": "string",
 "pattern": ""
 }
]
},
"required": []
},
"type": {
 "type": "string",
 "pattern": "MSTEAMS"
},
"enableIdentityCrawler": {
 "type": "boolean"
},
"syncMode": {
 "type": "string",
 "enum": [
 "FORCED_FULL_CRAWL",
 "FULL_CRAWL",
 "CHANGE_LOG"
]
},
"secretArn": {
 "type": "string",
 "minLength": 20,
 "maxLength": 2048
},
"version": {
 "type": "string",
 "anyOf": [
 {
 "pattern": "1.0.0"
 }
]
},
"required": [
 "connectionConfiguration",
 "repositoryConfigurations",
 "syncMode",
 "additionalProperties",
 "secretArn",
 "type"
]
Microsoft Yammer template schema

You include a JSON that contains the data source schema as part of `TemplateConfiguration` object. Specify the type of data source as **YAMMER**, a secret for your authentication credentials, and other necessary configurations. You then specify `TEMPLATE` as the **Type** when you call `CreateDataSource`.

You can use the template provided in this developer guide.

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source. This data source does not specify an endpoint in <code>repositoryEndpointMetadata</code>. Rather, the connection information is included in an AWS Secrets Manager secret that you provide the <code>secretArn</code>.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td></td>
<td>• community</td>
</tr>
<tr>
<td></td>
<td>• user</td>
</tr>
<tr>
<td></td>
<td>• message</td>
</tr>
<tr>
<td></td>
<td>• attachment</td>
</tr>
<tr>
<td></td>
<td>A list of objects that map attributes or field names of Microsoft Yammer content to Amazon Kendra index field names. For more information, see <code>Mapping data source fields</code>.</td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source</td>
</tr>
<tr>
<td>inclusionPatterns</td>
<td>A list of regular expression patterns to include certain files in your Microsoft Yammer data source. Files that match the patterns are included in the index. File that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
<tr>
<td>exclusionPatterns</td>
<td>A list of regular expression patterns to exclude certain files in your Microsoft Yammer data source. Files that match the patterns are excluded from the index. Files that don't match the patterns are included in the index. If a file matches both an exclusion and inclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
<tr>
<td>sinceDate</td>
<td>You can choose to configure a <code>sinceDate</code> parameter so that the Microsoft Yammer connector crawls content based on a specific <code>sinceDate</code>.</td>
</tr>
<tr>
<td>communityNameFilter</td>
<td>You can choose to index specific community content.</td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• isCrawlMessage</td>
<td>true to index messages, message attachments, and private messages.</td>
</tr>
<tr>
<td>• isCrawlAttachment</td>
<td></td>
</tr>
<tr>
<td>• isCrawlPrivateMessage</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>Specify YAMMER as your data source type.</td>
</tr>
<tr>
<td>secretARN</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Microsoft Yammer. This includes your Microsoft Yammer user name and password, and client ID and client secret that is generated when you create an OAuth application in the Azure portal.</td>
</tr>
<tr>
<td>useChangeLog</td>
<td>true to use the Microsoft Yammer change log to determine which documents require adding, updating, or deleting in the index.</td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index</td>
</tr>
<tr>
<td>enableIdentityCrawler</td>
<td>true to activate identity crawler. Identity crawler is activated by default. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.</td>
</tr>
</tbody>
</table>

Microsoft Yammer JSON schema

```json
{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "connectionConfiguration": {
      "type": "object",
      "properties": {
        "repositoryEndpointMetadata": {
          "type": "object",
          "properties": {
            "...":
          }
        }
      }
    }
  }
}
```
"properties": { }
},
"required": ["repositoryEndpointMetadata"
],
"repositoryConfigurations": { "type": "object",
"properties": { "community": { "type": "object",
"properties": { "fieldMappings": { "type": "array",
"items": { "anyOf": [
 { "type": "object",
 "properties": { "indexFieldName": { "type": "string" },
 "indexFieldType": { "type": "string",
 "enum": ["STRING", "DATE"] },
 "dataSourceFieldName": { "type": "string" },
 "dateFieldFormat": { "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'" }
 },
 "required": ["indexFieldName", "indexFieldType", "dataSourceFieldName"
] }
]
 }
 }
],
"required": ["fieldMappings"
]
 },
"user": { "type": "object",
"properties": { "fieldMappings": { "type": "array",
"items": { "anyOf": [
 { "type": "object",
 "properties": { "indexFieldName": { "type": "string" }
 }
 }
]
 }
 }
]
 }
}
"indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE"
]
},
"dataSourceFieldName": {
 "type": "string"
},
"dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
},
"message": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
 }
}
"attachment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldtype": {
 "type": "string",
 "enum": [
 "STRING",
 "DATE"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldtype",
 "dataSourceFieldName"
]
 }
]
 }
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldtype",
 "dataSourceFieldName"
]
},
"additionalProperties": {
 "type": "object",
 "properties": {
 "inclusionPatterns": {
 "type": "array"
 },
 "exclusionPatterns": {
 "type": "array"
 },
 "sinceDate": {
 "type": "string",
 "pattern": "^\d{4}\d{2}\d{2}\d{2}\d{2}\d{2}\d{2}(\+|-)\d{2}\d{2}\d{2}\d{2}\d{2}$"
 },
 "communityNameFilter": {
 "type": "array",
 }}}}
"items": {
 "type": "string"
},
"isCrawlMessage": {
 "type": "boolean"
},
"isCrawlAttachment": {
 "type": "boolean"
},
"isCrawlPrivateMessage": {
 "type": "boolean"
},
"required": [
 "sinceDate"
],
"type": {
 "type": "string",
 "pattern": "YAMMER"
},
"secretArn": {
 "type": "string",
 "minLength": 20,
 "maxLength": 2048
},
"useChangeLog": {
 "type": "string",
 "enum": [
 "true",
 "false"
]
},
"syncMode": {
 "type": "string",
 "enum": [
 "FORCED_FULL_CRAWL",
 "FULL_CRAWL",
 "CHANGE_LOG"
]
},
"enableIdentityCrawler": {
 "type": "boolean"
},
"version": {
 "type": "string",
 "anyOf": [
 {
 "pattern": "1.0.0"
 }
]
},
"required": [
 "connectionConfiguration",
 "repositoryConfigurations",
 "additionalProperties",
 "type",
 "secretArn",
 "syncMode"]}
Salesforce template schema

You include a JSON that contains the data source schema as part of the `TemplateConfiguration` object. You provide the Salesforce host URL as a part of the connection configuration or repository endpoint details. Also specify the type of data source as `SALESFORCEV2`, a secret for your authentication credentials, and other necessary configurations. You then specify `TEMPLATE` as the `Type` when you call `CreateDataSource`.

You can use the template provided in this developer guide. See [Salesforce JSON schema](p. 234).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>hostUrl</td>
<td>The URL of the Salesforce instance to be indexed.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>• account</td>
<td>A list of objects that map the attributes or field names of your Salesforce entities to Amazon Kendra index field names. For more information, see Mapping data source fields.</td>
</tr>
<tr>
<td>• contact</td>
<td></td>
</tr>
<tr>
<td>• campaign</td>
<td></td>
</tr>
<tr>
<td>• case</td>
<td></td>
</tr>
<tr>
<td>• product</td>
<td></td>
</tr>
<tr>
<td>• lead</td>
<td></td>
</tr>
<tr>
<td>• contract</td>
<td></td>
</tr>
<tr>
<td>• partner</td>
<td></td>
</tr>
<tr>
<td>• profile</td>
<td></td>
</tr>
<tr>
<td>• idea</td>
<td></td>
</tr>
<tr>
<td>• pricebook</td>
<td></td>
</tr>
<tr>
<td>• task</td>
<td></td>
</tr>
<tr>
<td>• solution</td>
<td></td>
</tr>
<tr>
<td>• attachment</td>
<td></td>
</tr>
<tr>
<td>• user</td>
<td></td>
</tr>
<tr>
<td>• document</td>
<td></td>
</tr>
<tr>
<td>• knowledgeArticles</td>
<td></td>
</tr>
<tr>
<td>• group</td>
<td></td>
</tr>
<tr>
<td>• opportunity</td>
<td></td>
</tr>
<tr>
<td>• chatter</td>
<td></td>
</tr>
<tr>
<td>• customEntity</td>
<td></td>
</tr>
<tr>
<td>secretARN</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Salesforce. The secret must contain a JSON structure with the following keys:</td>
</tr>
</tbody>
</table>

229
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{</td>
</tr>
<tr>
<td>"authenticationUrl":</td>
<td>"OAUTH endpoint that Amazon Kendra connects to get an OAUTH token",</td>
</tr>
<tr>
<td>"consumerKey":</td>
<td>"Application public key generated when you created your Salesforce application",</td>
</tr>
<tr>
<td>"consumerSecret":</td>
<td>"Application private key generated when you created your Salesforce application",</td>
</tr>
<tr>
<td>"password":</td>
<td>"Password associated with the user logging in to the Salesforce instance",</td>
</tr>
<tr>
<td>"securityToken":</td>
<td>"Token associated with the user account logging in to the Salesforce instance",</td>
</tr>
<tr>
<td>"username":</td>
<td>"User name of the user logging in to the Salesforce instance"</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
</tbody>
</table>

additionalProperties

- accountFilter
- contactFilter
- caseFilter
- campaignFilter
- contractFilter
- groupFilter
- leadFilter
- productFilter
- opportunityFilter
- partnerFilter
- pricebookFilter
- ideaFilter
- profileFilter
- taskFilter
- solutionFilter
- userFilter
- chatterFilter
- documentFilter
- knowledgeArticleFilter
- customEntities

- A collection of strings that specifies which entities to filter.
Configuration

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A list of regular expression patterns to include certain files in your Salesforce data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>inclusionPatterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclusionDocumentFileTypePatterns</td>
</tr>
<tr>
<td>inclusionDocumentFileNamePatterns</td>
</tr>
<tr>
<td>inclusionAccountFileTypePatterns</td>
</tr>
<tr>
<td>inclusionCampaignFileTypePatterns</td>
</tr>
<tr>
<td>inclusionCampaignFileNamePatterns</td>
</tr>
<tr>
<td>inclusionCaseFileTypePatterns</td>
</tr>
<tr>
<td>inclusionCaseFileNamePatterns</td>
</tr>
<tr>
<td>inclusionContactFileTypePatterns</td>
</tr>
<tr>
<td>inclusionContractFileNamePatterns</td>
</tr>
<tr>
<td>inclusionLeadFileTypePatterns</td>
</tr>
<tr>
<td>inclusionLeadFileNamePatterns</td>
</tr>
<tr>
<td>inclusionOpportunityFileTypePatterns</td>
</tr>
<tr>
<td>inclusionOpportunityFileNamePatterns</td>
</tr>
<tr>
<td>inclusionSolutionFileTypePatterns</td>
</tr>
<tr>
<td>inclusionSolutionFileNamePatterns</td>
</tr>
<tr>
<td>inclusionTaskFileTypePatterns</td>
</tr>
<tr>
<td>inclusionTaskFileNamePatterns</td>
</tr>
<tr>
<td>inclusionGroupFileTypePatterns</td>
</tr>
<tr>
<td>inclusionGroupFileNamePatterns</td>
</tr>
<tr>
<td>inclusionChatterFileTypePatterns</td>
</tr>
<tr>
<td>inclusionChatterFileNamePatterns</td>
</tr>
<tr>
<td>inclusionCustomEntityFileTypePatterns</td>
</tr>
<tr>
<td>inclusionCustomEntityFileNamePatterns</td>
</tr>
</tbody>
</table>
A list of regular expression patterns to exclude certain files in your Salesforce data source. Files that match the patterns are excluded from the index. Files that don't match the patterns are included in the index. If a file matches both an exclusion and inclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• isCrawlAccount</td>
<td>t(\bar{z})ue to index corresponding files in your Salesforce account.</td>
</tr>
<tr>
<td>• isCrawlContact</td>
<td></td>
</tr>
<tr>
<td>• isCrawlCase</td>
<td></td>
</tr>
<tr>
<td>• isCrawlCampaign</td>
<td></td>
</tr>
<tr>
<td>• isCrawlProduct</td>
<td></td>
</tr>
<tr>
<td>• isCrawlLead</td>
<td></td>
</tr>
<tr>
<td>• isCrawlContract</td>
<td></td>
</tr>
<tr>
<td>• isCrawlPartner</td>
<td></td>
</tr>
<tr>
<td>• isCrawlProfile</td>
<td></td>
</tr>
<tr>
<td>• isCrawlIdea</td>
<td></td>
</tr>
<tr>
<td>• isCrawlPricebook</td>
<td></td>
</tr>
<tr>
<td>• isCrawlDocument</td>
<td></td>
</tr>
<tr>
<td>• crawlSharedDocument</td>
<td></td>
</tr>
<tr>
<td>• isCrawlGroup</td>
<td></td>
</tr>
<tr>
<td>• isCrawlOpportunity</td>
<td></td>
</tr>
<tr>
<td>• isCrawlChatter</td>
<td></td>
</tr>
<tr>
<td>• isCrawlUser</td>
<td></td>
</tr>
<tr>
<td>• isCrawlSolution</td>
<td></td>
</tr>
<tr>
<td>• isCrawlTask</td>
<td></td>
</tr>
<tr>
<td>• isCrawlAccountAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlContactAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlCaseAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlCampaignAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlLeadAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlContractAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlGroupAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlOpportunityAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlChatterAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlSolutionAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlTaskAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlCustomEntityAttachments</td>
<td></td>
</tr>
<tr>
<td>• isCrawlKnowledgeArticles</td>
<td></td>
</tr>
<tr>
<td>• isCrawlDraft</td>
<td></td>
</tr>
<tr>
<td>• isCrawlPublish</td>
<td></td>
</tr>
<tr>
<td>• isCrawl Archived</td>
<td></td>
</tr>
</tbody>
</table>

| type | The type of data source. Specify SALESFORCEV2 as your data source type. |
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enableIdentityCrawler</td>
<td>true to activate identity crawler. Identity crawler is activated by default. If identity crawler is deactivated, you must upload the principal information using the <code>PutPrincipalMapping</code> API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.</td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index</td>
</tr>
<tr>
<td>version</td>
<td>The version of this template that is currently supported.</td>
</tr>
</tbody>
</table>

Salesforce JSON schema

```json
{
    "$schema": "http://json-schema.org/draft-04/schema#",
    "type": "object",
    "properties": {
        "connectionConfiguration": {
            "type": "object",
            "properties": {
                "repositoryEndpointMetadata": {
                    "type": "object",
                    "properties": {
                        "hostUrl": {
                            "type": "string",
                            "pattern": "https:.*"
                        }
                    }
                },
                "required": [
                    "hostUrl"
                ]
            }
        }
    }
}
```
"required":
[
 "repositoryEndpointMetadata"
],
"repositoryConfigurations": {
 "type": "object",
 "properties": {
 "account": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
 }
 }
},
"contact": {
 "type": "object",
 "properties": {
 "fieldMappings": []
 }
}
"properties":
{
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string",
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
],
 },
 "dataSourceFieldName":
 {
 "type": "string",
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required":
 [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
],
 "required":
 ["fieldMappings"
]
 },
 "campaign":
 {
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string",
 }
 }
 }
],
 "required":
 ["fieldMappings"
]
 }
 }
 }
}
{ "type": "object", "properties": { "fieldMappings": { "type": "array", "items": [{ "type": "object", "properties": { "indexFieldName": { "type": "string" }, "indexFieldType": { "type": "string", "enum": ["STRING", "STRING_LIST", "DATE", "LONG"] } }, "dataSourceFieldName": { "type": "string" }, "dateFieldFormat": { "type": "string", "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'" } } }, "required": ["indexFieldName", "indexFieldType", "dataSourceFieldName"] } } }, "required": ["fieldMappings"] }, "case": { "type": "object", "properties": { "fieldMappings": { "type": "array", "items": [{ "type": "object", "properties": { "indexFieldName": { "type": "string" }, "indexFieldType": { "type": "string", "enum": ["STRING", "STRING_LIST", "DATE"] } } }] } } } }
"dataSourceFieldName":
{
 "type": "string"
},
"dateFieldFormat":
{
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required":
[
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
}
,
"required":
[
 "fieldMappings"
],
"product":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
}
"indexFieldType",
"dataSourceFieldName"
]
}
]

"required":
[
 "fieldMappings"
]

"lead":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 ["STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 },
 "required":
 ["indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
 }
 },
 "required":
 ["fieldMappings"]
 },
"contract":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 ["STRING", "STRING_LIST", "DATE"]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
],
 "required":
 [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName",
 "dateFieldFormat"
]
 }
 },
 "required":
 [
 "fieldMappings"
],
 "partner":
 {
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 }
]
 }
 }
 }
}
{
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
},
"required":
[
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
}
"profile":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 }
 }
 }
]
 }
 }
}
"dataSourceFieldName": {
 "type": "string"
},
"dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]}
},
"idea": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
 }
 }
}
"required":
[
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
"
"required":
[
 "fieldMappings"
]
"pricebook":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
}
Data source template schemas

```
{
  "task": {
    "type": "object",
    "properties": {
      "fieldMappings": {
        "type": "array",
        "items": [
          {
            "type": "object",
            "properties": {
              "indexFieldName": {
                "type": "string"
              },
              "indexFieldType": {
                "type": "string",
                "enum": [
                  "STRING",
                  "STRING_LIST",
                  "DATE"
                ]
              },
              "dataSourceFieldName": {
                "type": "string"
              },
              "dateFieldFormat": {
                "type": "string",
                "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
              }
            }
          }
        ]
      }
    }
  },
  "required": [
    "fieldMappings"
  ],
  "solution": {
    "type": "object",
    "properties": {
      "fieldMappings": {
        "type": "array",
        "items": [
          {
            "type": "object",
            "properties": {
              "indexFieldName": {
                "type": "string"
              },
              "indexFieldType": {
                "type": "string",
                "enum": [
                  "STRING",
                  "STRING_LIST",
                  "DATE"
                ]
              },
              "dataSourceFieldName": {
                "type": "string"
              },
              "dateFieldFormat": {
                "type": "string",
                "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
              }
            }
          }
        ]
      }
    }
  }
}
```
"type": "object",
"properties":
{
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
},
"required":
[
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]}
}
"required":
[
 "fieldMappings"
]
},
"attachment":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 }
 }
 }
]
 }
 }
}
"STRING_LIST",
 "DATE",
 "LONG"
 },
"dataSourceFieldName":
 {
 "type": "string"
 },
"dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 },
"required":
 [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
},
"user":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
}
{}},
"required":
[
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
},
"document":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 }
]
 }
 }
},
"required":
[
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
"required":
[
 "fieldMappings"
],
"knowledgeArticles":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 },
 "required":
 [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
 }
 },
 "required":
 [
 "fieldMappings"
]
},
"group":
{
 "type": "object",
 "properties":
 {
 "fieldMappings":
 {
 "type": "array",
 "items":
 [
 {
 "type": "object",
 "properties":
 {
 "indexFieldName":
 {
 "type": "string"
 },
 "indexFieldType":
 {
 "type": "string",
 "enum":
 [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName":
 {
 "type": "string"
 },
 "dateFieldFormat":
 {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
 }
 }
 },
 "required":
 [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
 }
 },
 "required":
 [
 "fieldMappings"
]
}
"items":
[
{
"type": "object",
"properties":
{
"indexFieldName":
{
"type": "string"
},
"indexFieldType":
{
"type": "string",
"enum":
["STRING",
"STRING_LIST",
"DATE"
]
},
"dataSourceFieldName":
{
"type": "string"
},
"dateFieldFormat":
{
"type": "string",
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required":
[
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
}
],
"required":
["fieldMappings"
],
"opportunity":
{
"type": "object",
"properties":
{
"fieldMappings":
{
"type": "array",
"items":
[
{
"type": "object",
"properties":
{
"indexFieldName":
{
"type": "string"
},
"indexFieldType":
{
"type": "string"
}
}
]
"enum": [
 "STRING",
 "STRING_LIST",
 "DATE",
 "LONG"
],
"dataSourceFieldName": {
 "type": "string"
},
"dateFieldFormat": {
 "type": "string",
 "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
},
"required": [
 "fieldMappings"
],
"chatter": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": [
 "STRING",
 "STRING_LIST",
 "DATE"
]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string"
 }
 }
 }
]
 }
 }
}
Data source template schemas

```json
{
  "type": "object",
  "properties": {
    "fieldMappings": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "indexFieldName": {
            "type": "string"
          },
          "indexFieldType": {
            "type": "string",
            "enum": [
              "STRING",
              "STRING_LIST",
              "DATE"
            ]
          },
          "dataSourceFieldName": {
            "type": "string"
          },
          "dateFieldFormat": {
            "type": "string",
            "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
          }
        },
        "required": [
          "indexFieldName",
          "indexFieldType",
          "dataSourceFieldName"
        ]
      }
    },
    "required": [
      "fieldMappings"
    ]
  }
}
```
"additionalProperties": {
 "type": "object",
 "properties": {
 "accountFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "contactFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "caseFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "campaignFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "contractFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "groupFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "leadFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "productFilter": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
},
"required": [
 "fieldMappings"
]}
}
"type": "string"
}
},
"opportunityFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"partnerFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"pricebookFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"ideaFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"profileFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"taskFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"solutionFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"userFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"chatterFilter":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"documentFilter":{
 "type": "array",
 "items": {
 "type": "string"
 }
},
"knowledgeArticleFilter":{
 "type": "array",
 "items": {
 "type": "string"
 }
},
"customEntities":{
 "type": "array",
 "items": {
 "type": "string"
 }
},
"isCrawlAccount": {
 "type": "boolean"
},
"isCrawlContact": {
 "type": "boolean"
},
"isCrawlCase": {
 "type": "boolean"
},
"isCrawlCampaign": {
 "type": "boolean"
},
"isCrawlProduct": {
 "type": "boolean"
},
"isCrawlLead": {
 "type": "boolean"
},
"isCrawlContract": {
 "type": "boolean"
},
"isCrawlPartner": {
 "type": "boolean"
},
"isCrawlProfile": {
 "type": "boolean"
},
"isCrawlIdea": {
 "type": "boolean"
},
"isCrawlPricebook": {
 "type": "boolean"
},
"isCrawlDocument": {
 "type": "boolean"
},
"crawlSharedDocument": {
 "type": "boolean"
},
"isCrawlGroup": {
 "type": "boolean"
},
"isCrawlOpportunity": {
 "type": "boolean"
},
"isCrawlChatter": {
 "type": "boolean"
},
"isCrawlUser": {
 "type": "boolean"
},
"isCrawlSolution":{
 "type": "boolean"
},
"isCrawlTask":{
 "type": "boolean"
},
"isCrawlAccountAttachments": {
 "type": "boolean"
},
"isCrawlContactAttachments": {
 "type": "boolean"
},
"isCrawlCaseAttachments": {
 "type": "boolean"
},
"isCrawlCampaignAttachments": {
 "type": "boolean"
},
"isCrawlLeadAttachments": {
 "type": "boolean"
},
"isCrawlContractAttachments": {
 "type": "boolean"
},
"isCrawlGroupAttachments": {
 "type": "boolean"
},
"isCrawlOpportunityAttachments": {
 "type": "boolean"
},
"isCrawlChatterAttachments": {
 "type": "boolean"
},
"isCrawlSolutionAttachments":{
 "type": "boolean"
},
"isCrawlTaskAttachments":{
 "type": "boolean"
},
"isCrawlCustomEntityAttachments":{
 "type": "boolean"
},
"isCrawlKnowledgeArticles": {
 "type": "object",
 "properties": {
 "isCrawlDraft": {
 "type": "boolean"
 },
 "isCrawlPublish": {
 "type": "boolean"
 },
 "isCrawl Archived": {
 "type": "boolean"
 }
 }
},
"inclusionDocumentFileTypePatterns":{
 "type": "array"}
"items":
 {
 "type": "string"
 }
},
"exclusionDocumentFileTypePatterns": {
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionDocumentFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionDocumentFileNamePatterns": {
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionAccountFileTypePatterns": {
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionAccountFileTypePatterns": {
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionAccountFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionAccountFileNamePatterns": {
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionCampaignFileTypePatterns": {
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionCampaignFileTypePatterns": {
 "type": "array",
 "items":
 {
 "type": "string"
 }
}

},
"inclusionCampaignFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionCampaignFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionCaseFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionCaseFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionCaseFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionCaseFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionContactFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionContactFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionContactFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionContactFileNamePatterns":{

"type": "array",
"items":
{
 "type": "string"
}
],
"inclusionContractFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionContractFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionContractFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionContractFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionLeadFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionLeadFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionLeadFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionLeadFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionOpportunityFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionOpportunityFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
}
"type": "string"
}
"exclusionOpportunityFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionOpportunityFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionOpportunityFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionSolutionFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionSolutionFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionSolutionFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionSolutionFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionTaskFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionTaskFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
}
"inclusionTaskFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionTaskFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionGroupFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionGroupFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionGroupFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionGroupFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionChatterFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionChatterFileTypePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"inclusionChatterFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
},
"exclusionChatterFileNamePatterns":{
 "type": "array",
 "items":
 {
 "type": "string"
 }
}
`{ "type": "string" },
"inclusionCustomEntityFileTypePatterns":{ "type": "array", "items": [{ "type": "string" }] },
"exclusionCustomEntityFileTypePatterns":{ "type": "array", "items": [{ "type": "string" }] },
"inclusionCustomEntityFileNamePatterns":{ "type": "array", "items": [{ "type": "string" }] },
"exclusionCustomEntityFileNamePatterns":{ "type": "array", "items": [{ "type": "string" }] },
"required": [],
"enableIdentityCrawler": { "type": "boolean" },
"type": { "type": "string", "pattern": "SALESFORCEV2" },
"syncMode": { "type": "string", "enum": ["FULL_CRAWL", "FORCED_FULL_CRAWL", "CHANGE_LOG"] },
"secretArn": { "type": "string", "minLength": 20, "maxLength": 2048 },
"version": { "type": "string", "anyOf": [{ "pattern": "1.0.0" }] },
"required": [] }`
ServiceNow template schema

You include a JSON that contains the data source schema as part of the TemplateConfiguration object. You provide the ServiceNow host URL, authentication type, and instance version as a part of the connection configuration or repository endpoint details. Also specify the type of data source as SERVICENOWV2, a secret for your authentication credentials, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

You can use the template provided in this developer guide. See ServiceNow JSON schema (p. 264).

The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>hostUrl</td>
<td>The ServiceNow host URL. For example, your-domain.service-now.com.</td>
</tr>
<tr>
<td>authType</td>
<td>The type of authentication you are using, whether basicAuth or OAuth2.</td>
</tr>
<tr>
<td>servicenowInstanceVersion</td>
<td>The ServiceNow version you are using. You can choose between Tokyo, Sandiego, Rome, and Others.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>• knowledgeArticle</td>
<td>A list of objects that map the attributes or field names of your ServiceNow knowledge articles, attachments, service catalog, and incidents to Amazon Kendra index field names. For more information, see Mapping data source fields. The ServiceNow data source field names must exist in your ServiceNow custom metadata.</td>
</tr>
<tr>
<td>• attachment</td>
<td></td>
</tr>
<tr>
<td>• serviceCatalog</td>
<td></td>
</tr>
<tr>
<td>• incident</td>
<td></td>
</tr>
<tr>
<td>additional properties</td>
<td>Additional configuration options for your content in your data source.</td>
</tr>
<tr>
<td>• knowledgeArticleFilter</td>
<td>A list of regular expression patterns to include and/or exclude certain files in your ServiceNow data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence and the file isn't included in the index.</td>
</tr>
<tr>
<td>• incidentQueryFilter</td>
<td></td>
</tr>
<tr>
<td>• serviceCatalogQueryFilter</td>
<td></td>
</tr>
<tr>
<td>• knowledgeArticleTitleRegExp</td>
<td></td>
</tr>
<tr>
<td>• serviceCatalogTitleRegExp</td>
<td></td>
</tr>
<tr>
<td>• incidentTitleRegExp</td>
<td></td>
</tr>
<tr>
<td>• inclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>• exclusionFileTypePatterns</td>
<td></td>
</tr>
<tr>
<td>• inclusionFileNamePatterns</td>
<td></td>
</tr>
<tr>
<td>• exclusionFileNamePatterns</td>
<td></td>
</tr>
<tr>
<td>• incidentStateType</td>
<td></td>
</tr>
<tr>
<td>• isCrawlKnowledgeArticle</td>
<td>true to index ServiceNow knowledge articles, service catalogs, incidents, and attachments.</td>
</tr>
<tr>
<td>• isCrawlKnowledgeArticleAttachment</td>
<td></td>
</tr>
<tr>
<td>• includePublicArticlesOnly</td>
<td></td>
</tr>
<tr>
<td>• isCrawlServiceCatalog</td>
<td></td>
</tr>
<tr>
<td>• isCrawlServiceCatalogAttachment</td>
<td></td>
</tr>
<tr>
<td>• isCrawlActiveServiceCatalog</td>
<td></td>
</tr>
<tr>
<td>• isCrawlInactiveServiceCatalog</td>
<td></td>
</tr>
<tr>
<td>• isCrawlIncident</td>
<td></td>
</tr>
<tr>
<td>• isCrawlIncidentAttachment</td>
<td></td>
</tr>
<tr>
<td>• isCrawlActiveIncident</td>
<td></td>
</tr>
<tr>
<td>• isCrawlInactiveIncident</td>
<td></td>
</tr>
<tr>
<td>• applyACLForKnowledgeArticle</td>
<td></td>
</tr>
<tr>
<td>• applyACLForServiceCatalog</td>
<td></td>
</tr>
<tr>
<td>• applyACLForIncident</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>The type of data source. Specify SERVICENOWV2 as your data source type.</td>
</tr>
<tr>
<td>enableIdentityCrawler</td>
<td>true to activate identity crawler. Identity crawler is activated by default. Indentity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.</td>
</tr>
<tr>
<td>syncMode</td>
<td>Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:</td>
</tr>
<tr>
<td></td>
<td>• FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index</td>
</tr>
<tr>
<td></td>
<td>• CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>secretARN</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your ServiceNow. The secret must contain a JSON structure with the following keys:</td>
</tr>
<tr>
<td></td>
<td><code>{ "username": "user name", "password": "password" }</code></td>
</tr>
<tr>
<td></td>
<td>If you use OAuth2 authentication, your secret must contain a JSON structure with the following keys:</td>
</tr>
<tr>
<td></td>
<td><code>{ "username": "user name", "password": "password", "clientId": "client id", "clientSecret": "client secret" }</code></td>
</tr>
<tr>
<td>version</td>
<td>The version of the template that is currently supported.</td>
</tr>
</tbody>
</table>

ServiceNow JSON schema

```json
{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "connectionConfiguration": {
      "type": "object",
      "properties": {
        "repositoryEndpointMetadata": {
          "type": "object",
          "properties": {
            "hostUrl": { "type": "string",
                            "pattern": "^((https?|ftp|file):/\/[a-z0-9-]+.service-now.com$),
                            "minLength": 1,
                            "maxLength": 2048 }},
            "authType": { "type": "string",
                          "enum": [ "basicAuth", "OAuth2" ] },
            "servicenowInstanceVersion": { "type": "string",
                                           "enum": [ "Tokyo", "Sandiego", "Rome", "Others" ] }
          }},
      "required": [ ]
    }
  }
}```
"hostUrl",
"authType",
"servicenowInstanceVersion"
]
},
"required": [
"repositoryEndpointMetadata"
],
"repositoryConfigurations": {
"type": "object",
"properties": {
"knowledgeArticle": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": ["STRING", "DATE", "STRING_LIST"
]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
}
],
"attachment": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
}
},
"required": [
"fieldMappings"
]
}
},
"attachment": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
}
},
"required": [
"fieldMappings"
]
}
"indexFieldType": {
  "type": "string",
  "enum": [
    "STRING",
    "LONG",
    "DATE",
    "STRING_LIST"
  ]
},
"dataSourceFieldName": {
  "type": "string"
},
"dateFieldFormat": {
  "type": "string",
  "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
}
},
"required": [
  "indexFieldName",
  "indexFieldType",
  "dataSourceFieldName"
]
}],
"serviceCatalog": {
  "type": "object",
  "properties": {
    "fieldMappings": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "indexFieldName": {
            "type": "string"
          },
          "indexFieldType": {
            "type": "string",
            "enum": [
              "STRING",
              "DATE",
              "STRING_LIST"
            ]
          },
          "dataSourceFieldName": {
            "type": "string"
          },
          "dateFieldFormat": {
            "type": "string",
            "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
          }
        },
        "required": [
          "indexFieldName",
          "indexFieldType",
          "dataSourceFieldName"
        ]
      }
    }
  }
}
"required": [  
  "fieldMappings"
]
},
"incident": {  
  "type": "object",
  "properties": {  
    "fieldMappings": {  
      "type": "array",
      "items": [
        {  
          "type": "object",
          "properties": {  
            "indexFieldName": {  
              "type": "string"
            },
            "indexFieldType": {  
              "type": "string",
              "enum": [  
                "STRING",
                "DATE",
                "STRING_LIST"
              ]
            },
            "dataSourceFieldName": {  
              "type": "string"
            },
            "dateFieldFormat": {  
              "type": "string",
              "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
            }
          }
        }  
      ]
    },
    "dataSourceFieldName": {  
      "type": "string"
    },
    "dateFieldFormat": {  
      "type": "string",
      "pattern": "yyyy-MM-dd'T'HH:mm:ss'Z'"
    }
  },
  "required": [  
    "indexFieldName",
    "indexFieldType",
    "dataSourceFieldName"
  ]
},
"required": [  
  "fieldMappings"
]
},
"additionalProperties": {  
  "type": "object",
  "properties": {  
    "isCrawlKnowledgeArticle": {  
      "type": "boolean"
    },
    "isCrawlKnowledgeArticleAttachment": {  
      "type": "boolean"
    },
    "includePublicArticlesOnly": {  
      "type": "boolean"
    },
    "knowledgeArticleFilter": {  
      "type": "string"
    },
    "incidentQueryFilter": {  
      "type": "string"
    }
  }
}
"serviceCatalogQueryFilter": {
  "type": "string"
},
"isCrawlServiceCatalog": {
  "type": "boolean"
},
"isCrawlServiceCatalogAttachment": {
  "type": "boolean"
},
"isCrawlActiveServiceCatalog": {
  "type": "boolean"
},
"isCrawlInactiveServiceCatalog": {
  "type": "boolean"
},
"isCrawlIncident": {
  "type": "boolean"
},
"isCrawlIncidentAttachment": {
  "type": "boolean"
},
"isCrawlActiveIncident": {
  "type": "boolean"
},
"isCrawlInactiveIncident": {
  "type": "boolean"
},
"applyACLForKnowledgeArticle": {
  "type": "boolean"
},
"applyACLForServiceCatalog": {
  "type": "boolean"
},
"applyACLForIncident": {
  "type": "boolean"
},
"incidentStateType": {
  "type": "array",
  "items": {
    "type": "string",
    "enum": [
      "Open",
      "Open - Unassigned",
      "Resolved",
      "All"
    ]
  }
},
"knowledgeArticleTitleRegExp": {
  "type": "string"
},
"serviceCatalogTitleRegExp": {
  "type": "string"
},
"incidentTitleRegExp": {
  "type": "string"
},
"inclusionFileTypePatterns": {
  "type": "array",
  "items": {
    "type": "string"
  }
},
"exclusionFileTypePatterns": {
  "type": "array",
  "items": {
    "type": "string"
  }
}
Zendesk template schema

You include a JSON that contains the data source schema as part of TemplateConfiguration object. You provide the host URL as a part of the connection configuration or repository endpoint details. Also specify the type of data source as ZENDESK, a secret for your authentication credentials, and other necessary configurations. You then specify TEMPLATE as the Type when you call CreateDataSource.

You can use the template provided in this developer guide. See Zendesk JSON schema (p. 271).
The following provides information on important JSON keys to configure.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionConfiguration</td>
<td>Configuration information for the endpoint for the data source.</td>
</tr>
<tr>
<td>repositoryEndpointMetadata</td>
<td>The endpoint information for the data source.</td>
</tr>
<tr>
<td>hostURL</td>
<td>The Zendesk host URL. For example, <a href="https://yoursubdomain.zendesk.com">https://yoursubdomain.zendesk.com</a>.</td>
</tr>
<tr>
<td>repositoryConfigurations</td>
<td>Configuration information for the content of the data source. For example, configuring specific types of content and field mappings.</td>
</tr>
<tr>
<td>• ticket</td>
<td></td>
</tr>
<tr>
<td>• ticketComment</td>
<td></td>
</tr>
<tr>
<td>• ticketCommentAttachment</td>
<td></td>
</tr>
<tr>
<td>• article</td>
<td></td>
</tr>
<tr>
<td>• articleComment</td>
<td></td>
</tr>
<tr>
<td>• articleAttachment</td>
<td></td>
</tr>
<tr>
<td>• communityTopic</td>
<td></td>
</tr>
<tr>
<td>• communityPostComment</td>
<td></td>
</tr>
<tr>
<td>secretARN</td>
<td>The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the key-value pairs required to connect to your Zendesk. The secret must contain a JSON structure with the following keys: host URL, client ID, client secret, user name, and password.</td>
</tr>
<tr>
<td>additionalProperties</td>
<td>Additional configuration options for your content in your data source</td>
</tr>
<tr>
<td>organizationNameFilter</td>
<td>You can choose to index tickets that exist within a specific Organization.</td>
</tr>
<tr>
<td>sinceDate</td>
<td>You can choose to configure a sinceDate parameter so that the Zendesk connector crawls content based on a specific sinceDate.</td>
</tr>
<tr>
<td>inclusionPatterns</td>
<td>A list of regular expression patterns to include certain files in your Zendesk data source. Files that match the patterns are included in the index. Files that don't match the patterns are excluded from the index. If a file matches both an inclusion and exclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
</tr>
<tr>
<td>exclusionPatterns</td>
<td>A list of regular expression patterns to exclude certain files in your Zendesk data source. Files that match the patterns are excluded from the index. Files that don't match the patterns are included in the index. If a file matches both an exclusion and inclusion pattern, the exclusion pattern takes precedence, and the file isn't included in the index.</td>
</tr>
</tbody>
</table>
### Configuration

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>precedence, and the file isn’t included in the index.</td>
<td>• isCrawlTicket&lt;br&gt;• isCrawlTicketComment&lt;br&gt;• isCrawlTicketCommentAttachment&lt;br&gt;• isCrawlArticle&lt;br&gt;• isCrawlArticleComment&lt;br&gt;• isCrawlArticleAttachment&lt;br&gt;• isCrawlCommunityTopic&lt;br&gt;• isCrawlCommunityPost&lt;br&gt;• isCrawlCommunityPostComment</td>
</tr>
</tbody>
</table>

#### Zendesk JSON schema

```json
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "connectionConfiguration": {
 "type": "object",
 "properties": {
 "repositoryEndpointMetadata": {
 "type": "object",
 "properties": {
 "hostUrl": {
 "type": "string",
 "pattern": "https:.*"
 }
 },
 "required": [
 "hostUrl"
]
 }
 },
 "required": [
 "repositoryEndpointMetadata"
]
 },
 "repositoryConfigurations": {
 "type": "object",
 "properties": {
 "ticket": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "fieldName": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 }
 }
}```
"items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "dd-MM-yyyy HH:mm:ss"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
],
 "required": ["fieldMappings"
]
},
"ticketComment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "dd-MM-yyyy HH:mm:ss"
 }
 },
 "required": ["indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 }
 }
}
"ticketCommentAttachment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "dd-MM-yyyy HH:mm:ss"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 }
 },
 "required": [
 "fieldMappings"
]
},
"article": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 }
 }
 }
]
 }
 }
 },
 "required": [
 "fieldMappings"
]
}
"type": "string",
"dateFieldFormat": {
 "type": "string",
 "pattern": "dd-MM-yyyy HH:mm:ss"
},
"required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
}
]
"required": [
 "fieldMappings"
]
,"communityPostComment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "dd-MM-yyyy HH:mm:ss"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 }
 }
}
"required": [
 "fieldMappings"
]
,"articleComment": {
 "type": "object",
 "properties": {
 "fieldMappings": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "type": "object",
 "properties": {
 "indexFieldName": {
 "type": "string"
 },
 "indexFieldType": {
 "type": "string",
 "enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
 },
 "dataSourceFieldName": {
 "type": "string"
 },
 "dateFieldFormat": {
 "type": "string",
 "pattern": "dd-MM-yyyy HH:mm:ss"
 }
 },
 "required": [
 "indexFieldName",
 "indexFieldType",
 "dataSourceFieldName"
]
 }
]
 }
 }
 }
}
"required": [
 "fieldMappings"
]
,"..."
"anyOf": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "dd-MM-yyyy HH:mm:ss"
}
},
"required": [
"indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
}
],
"required": ["fieldMappings"
],
"articleAttachment": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": {
"anyOf": [
{
"type": "object",
"properties": {
"indexFieldName": {
"type": "string"
},
"indexFieldType": {
"type": "string",
"enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
},
"dataSourceFieldName": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "dd-MM-yyyy HH:mm:ss"
}
},
"required": ["indexFieldName",
"indexFieldType",
"dataSourceFieldName"
]
}
]
"required": ["fieldMappings"],
"communityTopic": {
"type": "object",
"properties": {
"fieldMappings": {
"type": "array",
"items": {
"anyOf": [
{
"type": "object",
"properties": {
"indexFieldNome": {
"type": "string"
},
"indexFieldTyped": {
"type": "string",
"enum": ["STRING", "STRING_LIST", "LONG", "DATE"]
},
"dataSourceFieldNome": {
"type": "string"
},
"dateFieldFormat": {
"type": "string",
"pattern": "dd-MM-yyyy HH:mm:ss"
}
},
"required": ["indexFieldNome",
"indexFieldTyped",
"dataSourceFieldNome"
]
}
]
"required": ["fieldMappings"]
,"secretArn": {
"type": "string",
"minLength": 20,
"maxLength": 2048
},
"additionalProperties": {
"type": "object",
"properties": {
"organizationNameFilter": {
"type": "array"
},
"sinceDate": {
"type": "string",
"pattern": "^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}$"
},
"inclusionPatterns": {
"type": "array"
},
"exclusionPatterns": {

Adobe Experience Manager

Adobe Experience Manager is a content management system that's used for creating website or mobile app content. You can use Amazon Kendra to connect to Adobe Experience Manager and index your pages and content assets.
Amazon Kendra supports Adobe Experience Manager (AEM) as a Cloud Service author instance and Adobe Experience Manager On-Premise author and publish instance.

You can connect Amazon Kendra to your Adobe Experience Manager data source using the Amazon Kendra console or the TemplateConfiguration API.

For troubleshooting your Amazon Kendra Adobe Experience Manager data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 278)
- Prerequisites (p. 278)
- Connection instructions (p. 279)

Supported features
Adobe Experience Manager data source connector supports the following features:

- Field mappings
- Inclusion/exclusion filters
- Virtual private cloud (VPC)
- Full sync/ New and modified content sync/ New, modified, and deleted content sync
- User context filtering
- OAuth 2.0 and basic authentication

Prerequisites
Before you can use Amazon Kendra to index your Adobe Experience Manager data source, make these changes in your Adobe Experience Manager and AWS accounts.

In Adobe Experience Manager, make sure you have:

- Access to an account with administrative privileges, or an admin user.
- Copied your Adobe Experience Manager host URL.
- Noted your basic authentication credentials of admin user name and password.
 - Optional: Generated OAuth 2.0 credentials in Adobe Experience Manager (AEM) as a Cloud Service or AEM On-Premise. If you use AEM On-Premise, the credentials include client ID, client secret, and private key. If you use AEM as a Cloud Service, the credentials include client ID, client secret, private key, organization ID, technical account ID, and Adobe Identity Management System (IMS) host. For more information about how to generate these credentials for AEM as a Cloud Service, see Adobe Experience Manager documentation. For AEM On-Premise, Adobe Granite OAuth 2.0 server implementation (com.adobe.granite.oauth.server) provides the support for OAuth 2.0 server functionalities in AEM.
 - Checked each document is unique in Adobe Experience Manager and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain
In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note

 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Adobe Experience Manager authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note

 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don't have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Adobe Experience Manager data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Adobe Experience Manager data source, you must provide the necessary details of your Adobe Experience Manager data source so that Amazon Kendra can access your data. If you have not yet configured Adobe Experience Manager for Amazon Kendra, see Prerequisites (p. 278).

Console

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Adobe Experience Manager connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the **Define access and security** page, enter the following information:

 a. **Source**—Choose either **AEM On-Premise** or **AEM as a Cloud Service**.

 Enter your Adobe Experience Manager host URL. For example, if you use AEM On-Premise, you include the hostname and port: `https://hostname:port`. Or, if you use AEM as a Cloud Service, you can use the author URL: `https://author-xxxxxx-xxxxxxx.adobeaemcloud.com`.

 b. **SSL certificate location**—Enter the path to the SSL certificate stored in an Amazon S3 bucket. You use this to connect to AEM On-Premise with a secure SSL connection.

 c. **Authentication**—Choose **Basic authentication** or **OAuth 2.0 authentication**. Then choose an existing AWS Secrets Manager secret or create a new secret to store your Adobe Experience Manager credentials. If you choose to create a new secret, an AWS Secrets Manager secret window opens.

 If you chose **Basic authentication**, enter a name for the secret, the Adobe Experience Manager site user name and password. The user must have admin permission or be an admin user.

 If you chose **OAuth 2.0 authentication** and you use AEM On-Premise, enter a name for the secret, client ID, client secret, and private key. If you use AEM as a Cloud Service, enter a name for the secret, client ID, client secret, private key, organization ID, technical account ID, and Adobe Identity Management System (IMS) host.

 Choose **Save**.

 d. **Identity crawler**—Choose to crawl identity information on users and groups with access to certain documents and store this in Amazon Kendra's principal/identity store. This is useful for user context filtering, where search results are filtered based on the user or their group access to documents.

 e. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

 f. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note

 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

 g. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

 a. **Sync scope**—Set limits for crawling certain content types, page components, and roots paths, and filter content using regex expression patterns.

 i. **Content types**—Choose whether to crawl only pages or assets, or both.

 ii. (Optional) **Additional configuration**—Configure the following settings:

 • **Page components**—The specific names of page components. The Page Component is an extensible page component designed to work with the Adobe Experience Manager template editor and allows page header/footer and structure components to be assembled with the template editor.

 • **Content fragment variations**—The specific names of content fragment variations. Content Fragments allow you to design, create, curate and publish page-independent content in Adobe Experience Manager. They allow you to prepare content ready for use in multiple locations/over multiple channels.

 • **Root paths**—The root paths to specific content.

 • **Regex patterns**—The regular expression patterns to include or exclude certain pages and assets.
b. **Sync mode**—Choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.

- **Full sync**—Sync all content regardless of the previous sync status.
- **New or modified documents sync**—Sync only new and modified documents.
- **New, modified, or deleted documents sync**—Sync only new, modified, and deleted documents.

c. **Time zone ID**—If you use AEM On-Premise and the time zone of your server is different than the time zone of the Amazon Kendra AEM connector or index, you can specify the server time zone to align with the AEM connector or index. The default time zone for AEM On-Premise is the time zone of the Amazon Kendra AEM connector or index. The default time zone for AEM as a Cloud Service is Greenwich Mean Time.

d. **Sync run schedule**—For **Frequency**, choose how often Amazon Kendra will sync with your data source.

e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

a. Select from the Amazon Kendra generated default data source fields you want to map to your index. To add custom data source fields, create an index field name to map to and the field data type.

b. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Adobe Experience Manager

You must specify a JSON of the **data source schema** using the **TemplateConfiguration** API. You must provide the following information:

- **Data source**—Specify the data source as AEM.
- **AEM host URL**—Specify the Adobe Experience Manager host URL. For example, if you use AEM On-Premise, you include the hostname and port: `https://hostname:port`. Or, if you use AEM as a Cloud Service, you can use the author URL: `https://author-xxxxxx-xxxxxxx.adobeaemcloud.com`.
- **Authentication type**—Specify which type of authentication you want to use, either Basic or OAuth2.
- **AEM type**—Specify which type of Adobe Experience Manager you use, either CLOUD or ON_PREMISE.
- **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.
- **Secret Amazon Resource Name (ARN)**—If you want to use basic authentication for either AEM On-Premise or Cloud, you provide a secret that stores your authentication credentials of your user name and password. You provide the Amazon Resource Name (ARN) of an AWS Secrets Manager secret. The secret is stored in a JSON structure with the following keys:

```json
{
    "aemUrl": "Adobe Experience Manager On-Premise host URL",
    "username": "user name with admin permissions",
    "password": "password with admin permissions"
}
```
If you want to use OAuth 2.0 authentication for AEM On-Premise, the secret is stored in a JSON structure with the following keys:

```
{
    "aemUrl": "Adobe Experience Manager host URL",
    "clientId": "client ID",
    "clientSecret": "client secret",
    "privateKey": "private key"
}
```

If you want to use OAuth 2.0 authentication for AEM as a Cloud Service, the secret is stored in a JSON structure with the following keys:

```
{
    "clientId": "client ID",
    "clientSecret": "client secret",
    "privateKey": "private key",
    "orgId": "organization ID",
    "technicalAccountId": "technical account ID",
    "imsHost": "Adobe Identity Management System (IMS) host"
}
```

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Adobe Experience Manager connector and Amazon Kendra. For more information, see IAM roles for Adobe Experience Manager data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

- **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between the following options:
 - FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index.
 - FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index.
 - CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index.

- **Time zone ID**—If you use AEM On-Premise and the time zone of your server is different than the time zone of the Amazon Kendra AEM connector or index, you can specify the server time zone to align with the AEM connector or index.

The default time zone for AEM On-Premise is the time zone of the Amazon Kendra AEM connector or index. The default time zone for AEM as a Cloud Service is Greenwich Mean Time.

For information about the supported time zones IDs, see Adobe Experience Manager JSON schema.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain pages and assets.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.
• **Identity crawler**—Specify whether to activate Amazon Kendra identity crawler. If identity crawler is deactivated, you must upload the identity/principal information using the [PutPrincipalMapping](#) API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see [User context filtering](#).

• **Field mappings**—Choose to map your Adobe Experience Manager data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).

For a list of other important JSON keys to configure, see [Adobe Experience Manager template schema](#).

Alfresco

Alfresco is a content management service that helps customers store and manage their content. You can use Amazon Kendra to index your Alfresco Document library, Wiki, and Blog.

Amazon Kendra supports Alfresco On-Premises and Alfresco Cloud (Platform as a Service).

You can connect Amazon Kendra to your Alfresco data source using the [Amazon Kendra console](#) or the [TemplateConfiguration](#) API.

For troubleshooting your Amazon Kendra Alfresco data source connector, see [Troubleshooting data sources](#).

Topics

- [Supported features](#)
- [Prerequisites](#)
- [Connection instructions](#)
- [Learn more](#)

Supported features

Amazon Kendra Alfresco data source connector supports the following features:

- Field mappings
- Inclusion/exclusion filters
- Full sync/ New, modified, and deleted content sync
- Virtual private cloud (VPC)
- User context filtering
- OAuth 2.0 and basic authentication

Prerequisites

Before you can use Amazon Kendra to index your Alfresco data source, make these changes in your Alfresco and AWS accounts.

In Alfresco, make sure you have:

- Copied your Alfresco repository URL and web application URL. If you only want to index a specific Alfresco site, then also copy the site ID.
Noted your Alfresco authentication credentials, which include a user name and password with at least read permissions. If you want to use OAuth 2.0 authentication, you should add the user to the Alfresco administrators group.

Optional: Generated OAuth 2.0 credentials in Alfresco. The credentials include client ID, client secret, and token URL. For more information on how to configure clients for Alfresco On-Premises, see Alfresco documentation. If you use Alfresco Cloud (PaaS), you must contact Hyland support for Alfresco OAuth 2.0 authentication.

Checked each document is unique in Alfresco and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Alfresco authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don't have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Alfresco data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Alfresco data source, you must provide the necessary details of your Alfresco data source so that Amazon Kendra can access your data. If you have not yet configured Alfresco for Amazon Kendra, see Prerequisites (p. 283).

Console

To connect Amazon Kendra to Alfresco

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.
3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Alfresco connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:

 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.
e. Choose **Next**.

6. On the **Define access and security** page, enter the following information:

a. **Alfresco type**—Choose whether you use Alfresco On-Premises or Alfresco Cloud (Platform as a Service).

b. **Alfresco repository URL**—Enter your Alfresco repository URL. For example, if you use Alfresco Cloud (PaaS), the repository URL could be `https://company.alfrescocloud.com`. Or, if you use Alfresco On-Premises, the repository URL could be `https://company-alfresco-instance.company-domain.suffix:port`.

c. **Alfresco user application. URL**—Enter your Alfresco user interface URL. You can get the repository URL from your Alfresco administrator. For example, the user interface URL could be `https://example.com`.

d. **SSL certificate location**—Enter the path to the SSL certificate stored in an Amazon S3 bucket. You use this to connect to Alfresco On-Premises with a secure SSL connection.

e. **AWS Secrets Manager secret**—Choose **Basic authentication** or **OAuth 2.0 authentication**. Then choose an existing Secrets Manager secret or create a new secret to store your Alfresco credentials. If you choose to create a new secret, an AWS Secrets Manager secret window opens.

If you chose **Basic authentication**, enter a name for the secret, the Alfresco user name, and password.

If you chose **OAuth 2.0 authentication**, enter a name for the secret, client ID, client secret, and token URL.

f. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

g. **Identity crawler**—Choose to crawl identity information on users and groups with access to certain documents and store this in the Amazon Kendra principal/identity store. The identity store is useful for user context filtering, where search results are filtered based on the user or their group access to documents.

h. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

Note
IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

i. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

a. **Sync scope**—Set limits for crawling certain content and filter content using regex expression patterns.

b. i. **Content**—Choose whether to crawl content marked with 'Aspects' in Alfresco, content within a specific Alfresco site, or content across all your Alfresco sites.

ii. (Optional) **Additional configuration**—Set the following settings:

• **Include comments**—Choose to include comments in Alfresco Document library and Blog.

• **Regex patterns**—Regular expression patterns to include or exclude certain files.
c. **Sync mode**—Choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.
 - **Full sync**—Sync all content regardless of the previous sync status.
 - **New, modified, or deleted documents sync**—Sync only new, modified, and deleted documents.

d. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.

e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. Select from the Amazon Kendra generated default data source fields that you want to map to your index.
 b. To add custom data source fields, create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Alfresco

You must specify a JSON of the **data source schema** using the **TemplateConfiguration** API. You must provide the following information:

- **Data source**—Specify the data source as **ALFRESCO**.
- **Alfresco site ID**—Specify the Alfresco site ID.
- **Alfresco repository URL**—Specify the Alfresco repository URL. You can get the repository URL from your Alfresco administrator. For example, if you use Alfresco Cloud (PaaS), the repository URL could be **https://company alfrescocloud.com**. Or, if you use Alfresco On-Premises, the repository URL could be **https://company alfresco-instance.company-domain.suffix:port**.
- **Alfresco web application URL**—Specify the Alfresco user interface URL. You can get the repository URL from your Alfresco administrator. For example, the user interface URL could be **https://example.com**.
- **Authentication type**—Specify which type of authentication you want to use, whether OAuth2 or Basic.
- **Alfresco type**—Specify which type of Alfresco you use, whether PAAS (Cloud/Platform as a Service) or ON_PREM (On-Premises).
- **Type**—Specify **TEMPLATE** as the Type when you call **CreateDataSource**.
- **Secret Amazon Resource Name (ARN)**—If you want to use basic authentication, you provide a secret that stores your authentication credentials of your user name and password. You provide the Amazon Resource Name (ARN) of an AWS Secrets Manager secret. The secret is stored in a JSON structure with the following keys:

```json
{
  "username": "user name",
  "password": "password"
}
```
If you want to use OAuth 2.0 authentication, the secret is stored in a JSON structure with the following keys:

```json
{
    "clientId": "client ID",
    "clientSecret": "client secret",
    "tokenUrl": "token URL"
}
```

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Alfresco connector and Amazon Kendra. For more information, see IAM roles for Alfresco data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

- **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 - FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index.
 - FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index.

- **Content type**—The type of content that you want to crawl, whether content marked with 'Aspects' in Alfresco, content within a specific Alfresco site, or content across all your Alfresco sites. You can also list specific 'Aspects' content.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain files.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Identity crawler**—Specify whether to activate identity crawler. If identity crawler is deactivated, you must upload the identity/principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see User context filtering.

- **Field mappings**—Choose to map your Alfresco data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

For a list of other important JSON keys to configure, see Alfresco template schema.

Learn more

To learn more about integrating Amazon Kendra with your Alfresco data source, see:

- Intelligently search Alfresco content using Amazon Kendra
Amazon RDS/Aurora

You can index documents that are stored in a database using a database data source. After you provided connection information for the database, Amazon Kendra connects and indexes documents.

Amazon Kendra supports the following databases:

- Amazon Aurora MySQL
- Amazon Aurora PostgreSQL
- Amazon RDS for MySQL
- Amazon RDS for PostgreSQL

Note
Serverless Aurora databases are not supported.

You can connect Amazon Kendra to your database data source using the [Amazon Kendra console](#) and the [DatabaseConfiguration API](#).

For troubleshooting your Amazon Kendra database data source connector, see [Troubleshooting data sources](#).

Topics
- Supported features (p. 288)
- Prerequisites (p. 288)
- Connection instructions (p. 289)

Supported features

Amazon Kendra database data source connector supports the following features:

- Field mappings
- User context filtering
- Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your database data source, make these changes in your database and AWS accounts.

In your database, make sure you have:

- Noted your user-password pair as basic authentication credentials for your data source.
- Copied the host name, port number, host address, and the name of the data table that contains the database data. For PostgreSQL, the data table must be a public table.

 Note
 The host and port tell Amazon Kendra where to find the database server on the internet. The database name and table name tell Amazon Kendra where to find the document data on the database server.

- Copied the names of the columns in the data table that contain the document data, the document ID, one to five columns to detect if a document has changed, and optional data table columns that map to custom index fields. You can map any of the Amazon Kendra reserved field names to a table column.
• Copied the database engine type information such as whether you use Amazon RDS for MySQL or another type.

• Checked each document is unique in database and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

• Created an Amazon Kendra index and, if using the API, noted the index ID.

• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

Note
If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

• Stored your database authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

Note
It’s recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It’s not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your database data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your database data source, you must provide the necessary details of your database data source so that Amazon Kendra can access your data. If you have not yet configured database for Amazon Kendra, see Prerequisites (p. 288).

Console

To connect Amazon Kendra to a database

1. Sign in to the AWS Management Console and open the Amazon Kendra console.

2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.

4. On the Add data source page, choose database connector, and then choose Add data source.

5. On the Specify data source details page, enter the following information:

 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.

 b. (Optional) Description—Enter an optional description for your data source.

 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.

 e. Choose Next.
6. On the **Define access and security** page, enter the following information:
 a. **Endpoint**—A DNS host name, an IPv4 address, or an IPv6 address.
 b. **Port**—A port number.
 c. **Database**—Database name.
 d. **Table name**—Table name.
 e. For **Type of authentication**, choose between **Existing** and **New** to store your database authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 - Enter following information in the **Create an AWS Secrets Manager secret window**:
 a. **Secret name**—A name for your secret. The prefix ‘AmazonKendra-database-' is automatically added to your secret name.
 b. For **User name** and **Password**—Enter the authentication credential values from your database account.
 c. Choose **Save authentication**.
 f. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

 Note
 You must use a private subnet. If your RDS instance is in a public subnet in your VPC, you can create a private subnet that has outbound access to a NAT gateway in the public subnet. The subnets provided in the VPC configuration must be in either US West (Oregon), US East (N. Virginia), EU (Ireland).

g. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

h. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:
 a. Select between **Aurora MySQL**, **MySQL**, **Aurora PostgreSQL**, and **PostgreSQL** based on your use case.
 b. **Enclose SQL identifiers with double quotes**—Select to enclose SQL identifiers in double quotes. For example, “columnName”.
 c. **ACL column** and **Change detecting columns**—Use to configure the columns that Amazon Kendra uses for change detection and access control lists.
 d. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.
 e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. **Amazon Kendra default field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index. You must add the **Database column** values for `document_id` and `document_body`
 b. **Custom field mappings**—To add custom data source fields to create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.
To connect Amazon Kendra to a database

You must specify the following the **DatabaseConfiguration** API:

- **ColumnConfiguration**—Information about where the index should get the document information from the database. For more details, see **ColumnConfiguration**. You must specify the **DocumentDataColumnName** and **DocumentIdColumnName** fields. The column mapped to the **DocumentIdColumnName** field must be an integer column. The following example shows a simple column configuration for a database data source:

```json
"ColumnConfiguration": {
  "ChangeDetectingColumns": [
    "LastUpdateDate",
    "LastUpdateTime"
  ],
  "DocumentDataColumnName": "TextColumn",
  "DocumentIdColumnName": "IdentifierColumn",
  "DocumentTitleColumnName": "TitleColumn",
  "FieldMappings": [
    {
      "DataSourceFieldName": "AbstractColumn",
      "IndexFieldName": "Abstract"
    }
  ]
}
```

- **ConnectionConfiguration**—The type of database engine that runs the database. The **DatabaseHost** field must be the Amazon Relational Database Service (Amazon RDS) instance endpoint for the database. Don't use the cluster endpoint.

- **DatabaseEngineType**—Configuration information that's required to connect to a database. For more details, see **ConnectionConfiguration**.

- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your database account. The secret is stored in a JSON structure with the following keys:

```json
{
  "username": "user name",
  "password": "password"
}
```

The secret can contain more information. The following example shows a database configuration.

```json
"DatabaseConfiguration": {
  "ConnectionConfiguration": {
    "DatabaseHost": "host.subdomain.domain.tld",
    "DatabaseName": "DocumentDatabase",
    "DatabasePort": 3306,
    "TableName": "DocumentTable"
  }
}
```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use
credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the database connector and Amazon Kendra. For more information, see IAM roles for database data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration as part of the data source configuration. See Configuring Amazon Kendra to use a VPC.

 Note
 You must only use a private subnet. If your RDS instance is in a public subnet in your VPC, you can create a private subnet that has outbound access to a NAT gateway in the public subnet. The subnets provided in the VPC configuration must be in either US West (Oregon), US East (N. Virginia), EU (Ireland).

- **Field mappings**—Choose to map your database data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for database data sources.

Amazon FSx

Amazon FSx is a fully managed, cloud based file server system that offers shared storage capabilities. If you are an Amazon FSx user, you can use Amazon Kendra to index your Amazon FSx data source.

Amazon Kendra currently only supports Amazon FSx for Windows File Server.

You can connect Amazon Kendra to your Amazon FSx data source using the Amazon Kendra console and the FsxCongfiguration API.

For troubleshooting your Amazon Kendra Amazon FSx data source connector, see Troubleshooting data sources (p. 636).

Topics

- Supported features (p. 292)
- Prerequisites (p. 293)
- Connection instructions (p. 293)
- Learn more (p. 295)

Supported features

Amazon Kendra Amazon FSx data source connector supports the following features:

- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)
Prerequisites

Before you can use Amazon Kendra to index your Amazon FSx data source, make these changes in your Amazon FSx, and AWS account.

In Amazon FSx, make sure you have:

- An Amazon FSx account with read and mounting permissions.
- Noted your Amazon FSx authentication credentials for an Active Directory user account. This includes your Active Directory user name and your Domain Name System (DNS) domain name. For example, user@corp.example.com.
- Copied your Amazon FSx file system ID.
- Used an Amazon VPC (AWS VPC) where your Amazon FSx resides.
- Checked each document is unique in Amazon FSx and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

Note
If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Amazon FSx authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Amazon FSx data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Amazon FSx data source, you must provide the necessary details of your Amazon FSx data source so that Amazon Kendra can access your data. If you have not yet configured Amazon FSx for Amazon Kendra, see Prerequisites (p. 293).

Console

To connect Amazon Kendra to Amazon FSx

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

Note
You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the **Add data source** page, choose **Amazon FSx connector**, and then choose **Add data source**.

5. On the **Specify data source details** page, enter the following information:
 a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) **Description**—Enter an optional description for your data source.
 c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.
 e. Choose **Next**.

6. On the **Define access and security** page, enter the following information:
 a. **Source**—Select Amazon FSx for Windows file server.
 b. **Amazon FSx file system ID**—Select your file system ID or create a new directory.
 c. **AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your Amazon FSx authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 i. Enter following information in the **Create an AWS Secrets Manager secret window**:
 A. **Secret name**—A name for your secret. The prefix 'AmazonKendra-Amazon FSx-' is automatically added to your secret name.
 B. **For User name**—Enter the user name for Amazon FSx Active Directory account.
 C. **For Password**—Enter the password for the Amazon FSx Active Directory account.
 ii. Choose **Save**.
 d. **Virtual Private Cloud (VPC)**—You must use a VPC with your Amazon FSx data source. You must add **Subnets** and **VPC security groups**.
 e. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.
 f. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:
 a. **Regex patterns**—Add regular expression patterns to include or exclude certain content. You can add up to 100 patterns.
 b. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra should sync with your data source.
 c. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. **Amazon FSx Windows field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index.
 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.
To connect Amazon Kendra to Amazon FSx

You must specify the following using the `FsxConfiguration` API:

- **File system ID**—The identifier of the Amazon FSx file system. You can find your file system ID on the File Systems dashboard in the Amazon FSx console.
- **File system type**—Specify the type of file system as `WINDOWS`.
- **Virtual Private Cloud (VPC)**—You must select an Amazon VPC where your Amazon FSx resides. This includes the VPC subnet and security groups. See Configuring an Amazon VPC.
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Amazon FSx account. The secret is stored in a JSON structure with the following keys:

  ```json
  {
    "username": "user@corp.example.com",
    "password": "password"
  }
  ```

- **IAM role**—Specify `RoleArn` when you call `CreateDataSource` to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Amazon FSx connector and Amazon Kendra. For more information, see IAM roles for Amazon FSx data sources.

You can also add the following optional features:

- **Inclusion and exclusion filters**—You can specify whether to include or exclude certain content and types of content.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for Amazon FSx data sources.

 Note
 To test user context filtering on a user, you must include the DNS domain name as part of the user name when you issue the query. You must have administrative permissions of the Active Directory domain. You can also test user context filtering on a group name.

- **Field mappings**—Choose to map your Amazon FSx data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

Learn more

To learn more about integrating Amazon Kendra with your Amazon FSx data source, see:

- Securely search unstructured data on Windows file systems with the Amazon Kendra connector for Amazon FSx for Windows File Server.
Amazon S3

Amazon S3 is an object storage service that stores data as objects within buckets. You can use Amazon Kendra to index your Amazon S3 bucket repository of documents.

Warning
Amazon Kendra doesn't use a bucket policy that grants permissions to an Amazon Kendra principal to interact with an S3 bucket. Instead, it uses IAM roles. Make sure that Amazon Kendra isn't included as a trusted member in your bucket policy to avoid any data security issues in accidentally granting permissions to arbitrary principals. However, you can add a bucket policy to use an Amazon S3 bucket across different accounts. For more information, see [Policies to use Amazon S3 across accounts](within the S3 IAM roles tab, under IAM roles for data sources). For information about IAM roles for S3 data sources, see [IAM roles](.)

To connect to Amazon S3, you specify the connection and other information in the console, by using [S3DataSourceConfiguration](.) or by using the [TemplateConfiguration](.). If you use the TemplateConfiguration object, you can use a VPC to connect to your data source. You specify VpcConfiguration when you call CreateDataSource. For more information, see [Configuring a VPC](.)

Note
S3DataSourceConfiguration API doesn't support configuring a VPC. Only TemplateConfiguration API and the console support VPC configuration.

For troubleshooting your Amazon Kendra S3 data source connector, see [Troubleshooting data sources](p. 636).

Topics

- Supported features (p. 296)
- Prerequisites (p. 297)
- Connection instructions (p. 297)
- Creating an Amazon S3 data source (p. 300)
- Amazon S3 document metadata (p. 302)
- Access control for Amazon S3 data sources (p. 303)

Supported features

S3Configuration API

- Field mappings
- User context filtering
- Inclusion/exclusion patterns

Console/TemplateConfiguration API

- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)
- Sync all documents/Sync only new, modified, or deleted documents
Prerequisites

Before you can use Amazon Kendra to index your S3 data source, make these changes in your S3 and AWS accounts.

In S3, make sure you have:

- Copied the name of your Amazon S3 bucket name.

 Note

 Your bucket must be in the same region as your Amazon Kendra index and your index must have permission to access the bucket that contains your documents.

- Checked each document is unique in S3 and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

If you don’t have an existing IAM role, you can use the console to create a new IAM role when you connect your S3 data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and an index ID.

Connection instructions

To connect Amazon Kendra to your S3 data source, you must provide the necessary details of your S3 data source so that Amazon Kendra can access your data. If you have not yet configured S3 for Amazon Kendra, see Prerequisites (p. 297).

Console

To connect Amazon Kendra to Amazon S3

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your User access control settings under Index settings.
3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose S3 connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:

 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.

 b. (Optional) Description—Enter an optional description for your data source.

 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.

 e. Choose Next.
6. On the Define access and security page, enter the following optional information:
 a. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.

 b. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add Subnets and VPC security groups.

 Important
 Make sure you have:

 - Configured your VPC according to the steps in [Gateway endpoints for Amazon S3](#).
 - Chosen a private subnet in an Amazon Kendra supported availability zone. See [Configuring Amazon Kendra to use an Amazon VPC](#) for more details.
 - Configured your security group to allow Amazon Kendra to access the Amazon S3 endpoint.

 c. Choose Next.

7. On the Configure sync settings page, enter the following information:
 a. In **Sync scope**, for **Data source location**—The path to the Amazon S3 bucket where your data is stored. Select Browse S3 to choose your bucket.

 b. (Optional) **Metadata files prefix folder location**—The path to the folder in which your metadata is stored. Select Browse S3 to locate your metadata folder.

 c. (Optional) **Access control list configuration file location**—The path to the location of a file containing a JSON structure that specifies access settings for the files stored in your S3 data source. Select Browse S3 to locate your ACL file.

 d. (Optional) **Select decryption key**—Select to use a decryption key. You can choose to use an existing AWS KMS key or create a new one.

 e. (Optional) In **Additional configuration**, for **Patterns**—Add patterns to include or exclude documents from your index. All paths are relative to the data source location S3 bucket. You can add up to 100 patterns.

 f. In **Sync mode**, choose between Full sync mode and New, modified, or deleted content sync to determine how your index updates when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.

 g. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.

 h. Choose Next.

8. On the Set field mappings page, enter the following optional information:
 a. **S3 field mapping**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

 b. **Add field**—Choose to add custom data source fields to create an index field name to map to and the field data type.

 c. Choose Next.

9. On the Review and create page, check that the information you have entered is correct and then select Add data source. You can also choose to edit your information from this page. Your data source will appear on the Data sources page after it’s added successfully.
TemplateConfiguration API

To connect Amazon Kendra to Amazon S3

You must specify a JSON of the data source schema using the TemplateConfiguration API. You must provide the following information:

- **BucketName**—The name of the bucket that contains the documents.
- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the S3 connector and Amazon Kendra. For more information, see IAM roles for S3 data sources.

You can also add the following optional features:

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain file names, file types, file paths, and use glob patterns (patterns that can expand a wildcard pattern into a list of path names that match the given pattern). Examples of glob patterns include:
 - `/myapp/config/*`—All files inside config directory
 - `/**/*.png`—All .png files in all directories
 - `/**/.{png,ico,md}`—All .png, .ico or .md files in all directories
 - `/myapp/src/**/.*.ts`—All .ts files inside src directory (and all its subdirectories)
 - `**/!(*.module).ts`—All .ts files but not .module.ts
- **Field mappings**—Choose to map your S3 data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.
- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).
- **Document metadata configuration**—Add document metadata files that contain information such as the document access control information, source URI, document author, and custom attributes. Each metadata file contains metadata about a single document.
- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for S3 data sources.

For a list of other important JSON keys to configure, see Amazon S3 template schema (p. 151).

S3DataSourceConfiguration API

To connect Amazon Kendra to Amazon S3

You must specify the following using the S3DataSourceConfiguration API:

- **BucketName**—The name of the bucket that contains the documents.
- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the S3 connector and Amazon Kendra. For more information, see IAM roles for S3 data sources.

You can also add the following optional features:

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain content using prefixes, file name, file type, file path, and glob patterns (patterns that can expand a wildcard pattern into a list of path names that match the given pattern). Examples of glob patterns include:
 - `/myapp/config/*`—All files inside config directory
 - `/**/*.png`—All .png files in all directories
 - `/**/.{png,ico,md}`—All .png, .ico or .md files in all directories
Learn more

To learn more about integrating Amazon Kendra with your S3 data source, see:

• Search for answers accurately using Amazon Kendra S3 Connector with VPC support

Creating an Amazon S3 data source

The following examples demonstrate creating an Amazon S3 data source. The examples assume that you have already created an index and an IAM role with permission to read the data from the index. For more information about the IAM role, see IAM access roles. For more information about creating an index, see Creating an index.

CLI

```bash
aws kendra create-data-source \
--index-id index ID \
--name example-data-source \
--type S3 \
--configuration '{"S3Configuration":{"BucketName":"bucket name"}}' \
--role-arn 'arn:aws:iam::account id:role:/role name'
```

Python

The following snippet of Python code creates an Amazon S3 data source. For the complete example, see Getting started (AWS SDK for Python (Boto3)) (p. 92).

```python
print("Create an Amazon S3 data source.")

# Provide a name for the data source
name = "getting-started-data-source"
# Provide an optional description for the data source
description = "Getting started data source."
# Provide the IAM role ARN required for data sources
role_arn = "arn:aws:iam::${accountID}:role/${roleName}"
# Provide the data source connection information
s3_bucket_name = "S3-bucket-name"
type = "S3"
# Configure the data source
configuration = {"S3DataSourceConfiguration":
    {
        "BucketName": s3_bucket_name
    }
}

data_source_response = kendra.create_data_source(
    Configuration = configuration,
    Name = name,
    Description = description,
    RoleArn = role_arn,
    Type = type,
    IndexId = index_id
```

User context filtering—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for S3 data sources.
It can take some time to create your data source. You can monitor the progress by using the `DescribeDataSource` API. When the data source status is `ACTIVE` the data source is ready to use.

The following examples demonstrate getting the status of a data source.

CLI

```
aws kendra describe-data-source \
  --index-id index ID \
  --id data source ID
```

Python

The following snippet of Python code gets information about an S3 data source. For the complete example, see [Getting started (AWS SDK for Python (Boto3))](p. 92).

```python
print("Wait for Amazon Kendra to create the data source.")
while True:
    data_source_description = kendra.describe_data_source(       
        Id = "data-source-id",       
        IndexId = "index-id"
    )
    status = data_source_description["Status"]
    print(" Creating data source. Status: "+status)
    time.sleep(60)
    if status != "CREATING":
        break
```

This data source doesn't have a schedule, so it doesn't run automatically. To index the data source, you call `StartDataSourceSyncJob` to synchronize the index with the data source.

The following examples demonstrate synchronizing a data source.

CLI

```
aws kendra start-data-source-sync-job \
  --index-id index ID \
  --id data source ID
```

Python

The following snippet of Python code synchronizes an Amazon S3 data source. For the complete example, see [Getting started (AWS SDK for Python (Boto3))](p. 92).

```python
print("Synchronize the data source.")
    sync_response = kendra.start_data_source_sync_job(       
        Id = "data-source-id",       
        IndexId = "index-id"
    )
```
Amazon S3 document metadata

You can add metadata, additional information about a document, to documents in an Amazon S3 bucket using a metadata file. Each metadata file is associated with an indexed document.

Your metadata files must be stored in the same bucket as your indexed files. You can specify a location within the bucket for your metadata files using the console or the S3Prefix field of the DocumentsMetadataConfiguration parameter when you create an Amazon S3 data source. If you don't specify an Amazon S3 prefix, your metadata files must be stored in the same location as your indexed documents.

If you specify an Amazon S3 prefix for your metadata files, they are in a directory structure parallel to your indexed documents. Amazon Kendra looks only in the specified directory for your metadata. If the metadata isn't read, check that the directory location matches the location of your metadata.

The following examples show how the indexed document location maps to the metadata file location. Note that the document's Amazon S3 key is appended to the metadata's Amazon S3 prefix and then suffixed with .metadata.json to form the metadata file's Amazon S3 path. The combined Amazon S3 key, with the metadata's Amazon S3 prefix and .metadata.json suffix must be no more than a total of 1024 characters. It is recommended that you keep your Amazon S3 key below 1000 characters to account for additional characters when combining your key with the prefix and suffix.

```
Bucket name:
  s3://bucketName
Document path:
  documents
Metadata path:
  none
File mapping
  s3://bucketName/documents/file.txt ->
    s3://bucketName/documents/file.txt.metadata.json

Bucket name:
  s3://bucketName
Document path:
  documents/legal
Metadata path:
  metadata
File mapping
  s3://bucketName/documents/legal/file.txt ->
    s3://bucketName/metadata/documents/legal/file.txt.metadata.json
```

Your document metadata is defined in a JSON file. The file must be a UTF-8 text file without a BOM marker. The file name of the JSON file must be <document>.<extension>.metadata.json. In this example, "document" is the name of the document that the metadata applies to and "extension" is the file extension for the document. The document ID must be unique in <document>.<extension>.metadata.json.

The content of the JSON file follows this template. All of the attributes are optional. If you don't specify the _source_uri, then the links returned by Amazon Kendra in search results point to the Amazon S3 bucket that contains the document.

```
{
  "DocumentId": "document ID",
  "Attributes": {
    "_category": "document category",
    "_created_at": "ISO 8601 encoded string",
    "_last_updated_at": "ISO 8601 encoded string",
    "_source_uri": "document URI",
  }
}
```
The _created_at and _last_updated_at metadata fields are ISO 8601 encoded dates. For example, 2012-03-25T12:30:10+01:00 is the ISO 8601 date-time format for March 25, 2012, at 12:30PM (plus 10 seconds) in the Central European Time time zone.

You can add additional information to the Attributes field about a document that you use to filter queries or to group query responses. For more information, see Creating custom document fields (p. 115).

You can use the AccessControlList field to filter the response from a query. This way, only certain users and groups have access to documents. For more information, see Filtering on user context (p. 502).

Access control for Amazon S3 data sources

You can control access to documents in an Amazon S3 data source using a configuration file. You specify the file in the console or as the AccessControlListConfiguration parameter when you call the CreateDataSource or UpdateDataSource API.

The configuration file contains a JSON structure that identifies an S3 prefix and lists the access settings for the prefix. The prefix can be a path, or it can be an individual file. If the prefix is a path, the access settings apply to all of the files in that path.

You can specify both users and groups in the access settings. When you query the index, you specify user and group information. For more information, see Filtering by user attribute (p. 504).

The JSON structure for the configuration file must be in the following format:

```json
[
  {
    "keyPrefix": "s3://prefix1",
    "aclEntries": [
      {
        "Name": "user1",
        "Type": "USER",
        "Access": "ALLOW"
      },
      {
        "Name": "group1",
        "Type": "GROUP",
        "Access": "DENY"
      }
    ]
  },
  {
    "keyPrefix": "s3://prefix2",
  }
]
```


```
"aclEntries": [
  {
    "Name": "user2",
    "Type": "USER",
    "Access": "ALLOW"
  },
  {
    "Name": "user1",
    "Type": "USER",
    "Access": "DENY"
  },
  {
    "Name": "group1",
    "Type": "GROUP",
    "Access": "DENY"
  }
]
```

Amazon Kendra Web Crawler

You can use Amazon Kendra Web Crawler to crawl and index web pages.

You can only crawl public facing websites or internal company websites that use the secure communication protocol Hypertext Transfer Protocol Secure (HTTPS). If you receive an error when crawling a website, it could be that the website is blocked from crawling. To crawl internal websites, you can set up a web proxy. The web proxy must be public facing. You can also use authentication to access and crawl websites.

When selecting websites to index, you must adhere to the Amazon Acceptable Use Policy and all other Amazon terms. Remember that you must only use Amazon Kendra Web Crawler to index your own web pages, or web pages that you have authorization to index. To learn how to stop Amazon Kendra Web Crawler from indexing your website(s), please see Configuring the robots.txt file for Amazon Kendra Web Crawler (p. 315).

Note

Abusing Amazon Kendra Web Crawler to aggressively crawl websites or web pages you don’t own is **not** considered acceptable use.

Amazon Kendra has two versions of the web crawler connector. Supported features of each version include:

Amazon Kendra Web Crawler connector v1.0 / WebCrawlerConfiguration API

- Web proxy
- Inclusion/exclusion filters

Amazon Kendra Web Crawler connector v2.0 / TemplateConfiguration API

- Field mappings
- Web proxy
- Inclusion/exclusion filters
- Virtual private cloud (VPC)
- Sync all documents / sync only new, modified, deleted documents

For troubleshooting your Amazon Kendra web crawler data source connector, see Troubleshooting data sources (p. 636).
You can use Amazon Kendra Web Crawler to crawl and index web pages. You can only crawl public facing websites and websites that use the secure communication protocol Hypertext Transfer Protocol Secure (HTTPS). If you receive an error when crawling a website, it could be that the website is blocked from crawling. To crawl internal websites, you can set up a web proxy. The web proxy must be public facing.

When selecting websites to index, you must adhere to the Amazon Acceptable Use Policy and all other Amazon terms. Remember that you must only use Amazon Kendra Web Crawler to index your own web pages, or web pages that you have authorization to index. To learn how to stop Amazon Kendra Web Crawler from indexing your website(s), please see Configuring the robots.txt file for Amazon Kendra Web Crawler (p. 315).

Note
Abusing Amazon Kendra Web Crawler to aggressively crawl websites or web pages you don’t own is not considered acceptable use.

For troubleshooting your Amazon Kendra web crawler data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 305)
- Prerequisites (p. 305)
- Connection instructions (p. 306)
- Learn more (p. 309)

Supported features
- Web proxy
- Inclusion/exclusion filters

Prerequisites
Before you can use Amazon Kendra to index your websites, check the details of your websites and AWS accounts.

For your websites, make sure you have:
- Copied the seed or sitemap URLs of the websites you want to index.
- For websites that require basic authentication: Noted the user name and password, and copied the host name of the website and the port number.
- Optional: Copied the host name of the website and the port number if you want to use a web proxy to connect to internal websites you want to crawl. The web proxy must be public facing. Amazon Kendra supports connecting to web proxy servers that are backed by basic authentication or you can connect with no authentication.
- Checked each web page document you want to index is unique and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the
same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note

 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- For websites that require authentication, or if using a web proxy with authentication, stored your authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note

 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don't have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your web crawler data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your web crawler data source, you must provide the necessary details of your web crawler data source so that Amazon Kendra can access your data. If you have not yet configured web crawler for Amazon Kendra see Prerequisites (p. 305).

Console

To connect Amazon Kendra to web crawler

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose web crawler connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:

 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:

a. For Source, choose between Source URLs and Source sitemaps depending on your use case and enter the values for each.

 You can add up to 10 source URLs and three sitemaps.

 Note
 If you want to crawl a sitemap, check that the base or root URL is the same as the URLs listed on your sitemap page. For example, if your sitemap URL is `https://example.com/sitemap-page.html`, the URLs listed on this sitemap page should also use the base URL "https://example.com/".

 b. (Optional) For Web proxy—enter the following information:

 i. **Host name**—The host name where web proxy is required.

 ii. **Port number**—The port used by the host URL transport protocol. The port number should be a numeric value between 0 and 65535.

 iii. For Web proxy credentials—If your web proxy connection requires authentication, choose an existing secret or create a new secret to store your authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

 iv. Enter the following information in the Create an AWS Secrets Manager Secrets Manager secret window:

 A. **Secret name**—A name for your secret. The prefix ‘AmazonKendra-WebCrawler-’ is automatically added to your secret name.

 B. For **User name** and **Password**—Enter these basic authentication credentials for your websites.

 C. Choose **Save**.

 c. (Optional) **Hosts with authentication**—Select to add additional hosts with authentication.

 d. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

 e. Choose **Next**.

7. On the Configure sync settings page, enter the following information:

a. **Crawl range**—Choose the kind of web pages you want to crawl.

 b. **Crawl depth**—Select number of levels from the seed URL that Amazon Kendra should crawl.

 c. **Advanced crawl settings** and **Additional configuration** enter the following information:

 i. **Maximum file size**—The maximum web page or attachment size to crawl. Minimum 0.000001 MB (1 byte). Maximum 50 MB.

 ii. **Maximum links per page**—The maximum number of links crawled per page. Links are crawled in order of appearance. Minimum 1 link/page. Maximum 1000 links/page.

 iii. **Maximum throttling**—The maximum number of URLs crawled per host name per minute. Minimum 1 URLs/host name/minute. Maximum 300 URLs/host name/minute.

 iv. **Regex patterns**—Add regular expression patterns to include or exclude certain URLs. You can add up to 100 patterns.

 d. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.

 e. Choose **Next**.
8. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.

API

To connect Amazon Kendra to web crawler

You must specify the following using the [WebCrawlerConfiguration](#) API:

- **URLs**—Specify the seed or starting point URLs of the websites or the sitemap URLs of the websites you want to crawl using [SeedUrlConfiguration](#) and [SiteMapsConfiguration](#).

 Note

 If you want to crawl a sitemap, check that the base or root URL is the same as the URLs listed on your sitemap page. For example, if your sitemap URL is `https://example.com/sitemap-page.html`, the URLs listed on this sitemap page should also use the base URL "https://example.com/".

- **Secret Amazon Resource Name (ARN)**—If a website requires basic authentication, you provide the host name, port number and a secret that stores your basic authentication credentials of your user name and password. You provide the secret ARN using the [AuthenticationConfiguration](#) API. The secret is stored in a JSON structure with the following keys:

```json
{
    "username": "username",
    "password": "password"
}
```

You can also provide web proxy credentials using an AWS Secrets Manager secret. You use the [ProxyConfiguration](#) API to provide the website host name and port number, and optionally the secret that stores your web proxy credentials.

- **IAM role**—Specify RoleArn when you call [CreateDataSource](#) to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the web crawler connector and Amazon Kendra. For more information, see [IAM roles for web crawler data sources](#).

You can also add the following optional features:

- **Crawl mode**—Choose whether to crawl website host names only, or host names with subdomains, or also crawl other domains the web pages link to.
- The 'depth' or number of levels from the seed level to crawl. For example, the seed URL page is depth 1 and any hyperlinks on this page that are also crawled are depth 2.
- The maximum number of URLs on a single web page to crawl.
- The maximum number of URLs crawled per website host per minute.
- The web proxy host and port number to connect to and crawl internal websites. For example, the host name of `https://a.example.com/page1.html` is 'a.example.com' and the port number is is 443, the standard port for HTTPS. If web proxy credentials are required to connect to a website host, you can create an AWS Secrets Manager that stores the credentials.
- The authentication information to access and crawl websites that require user authentication.
- You can extract HTML meta tags as fields using the [Custom Document Enrichment](#) tool. For more information, see [Customizing document metadata during the ingestion process](#). For an example of extracting HTML meta tags, see [CDE examples](#).

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain URLs.
Note
Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

Learn more
To learn more about integrating Amazon Kendra with your web crawler data source, see:
• Reimagine knowledge discovery using Amazon Kendra’s Web Crawler

Amazon Kendra Web Crawler connector v2.0
You can use Amazon Kendra Web Crawler to crawl and index web pages.
You can only crawl public facing websites or internal company websites that use the secure communication protocol Hypertext Transfer Protocol Secure (HTTPS). If you receive an error when crawling a website, it could be that the website is blocked from crawling. To crawl internal websites, you can set up a web proxy. The web proxy must be public facing. You can also use authentication to access and crawl websites.

Amazon Kendra Web Crawler v2.0 uses the Selenium web crawler package and a Chromium driver. Amazon Kendra automatically updates the version of Selenium and the Chromium driver using Continuous Integration (CI).

When selecting websites to index, you must adhere to the Amazon Acceptable Use Policy and all other Amazon terms. Remember that you must only use Amazon Kendra Web Crawler to index your own web pages, or web pages that you have authorization to index. To learn how to stop Amazon Kendra Web Crawler from indexing your website(s), please see Configuring the robots.txt file for Amazon Kendra Web Crawler (p. 315).

Note
Abusing Amazon Kendra Web Crawler to aggressively crawl websites or web pages you don’t own is not considered acceptable use.

For troubleshooting your Amazon Kendra web crawler data source connector, see Troubleshooting data sources (p. 636).

Topics
• Supported features (p. 309)
• Prerequisites (p. 310)
• Connection instructions (p. 311)

Supported features
• Field mappings
• Web proxy
• Inclusion/exclusion filters
• Virtual private cloud (VPC)
• Sync all documents / sync only new, modified, deleted documents
• Basic, NTLM/Kerberos, SAML, and form authentication for your websites

Prerequisites

Before you can use Amazon Kendra to index your websites, check the details of your websites and AWS accounts.

For your websites, make sure you have:

• Copied the seed or sitemap URLs of the websites you want to index. You can store the URLs in a text file and upload this to an Amazon S3 bucket. Each URL in the text file must be formatted on a separate line. If you want to store your sitemaps in an Amazon S3 bucket, make sure you have copied the sitemap XML and saved this in an XML file. You can also club multiple sitemap XML files into a ZIP file.

 Note
 (On-premise/server) Amazon Kendra checks if the endpoint information included in AWS Secrets Manager is the same the endpoint information specified in your data source configuration details. This helps protect against the confused deputy problem, which is a security issue where a user doesn't have permission to perform an action but uses Amazon Kendra as a proxy to access the configured secret and perform the action. If you later change your endpoint information, you must create a new secret to sync this information.

• For websites that require basic, NTLM, or Kerberos authentication:
 • Noted your website authentication credentials, which include a user name and password.

 Note
 Amazon Kendra Web Crawler v2.0 supports the NTLM authentication protocol that includes password hashing, and Kerberos authentication protocol that includes password encryption.

• For websites that require SAML or login form authentication:
 • Noted your website authentication credentials, which include a user name and password.
 • Copied the XPaths (XML Path Language) of the user name field (and the user name button if using SAML), password field and button, and copied the login page URL. You can find the XPaths of elements using your web browser's developer tools. XPaths usually follow this format: //tagname[@Attribute='Value'].

 Note
 Amazon Kendra Web Crawler v2.0 uses a headless Chrome browser and the information from the form to authenticate and authorize access with an OAuth 2.0 protected URL.

• Optional: Copied the host name and the port number of the web proxy server if you want to use a web proxy to connect to internal websites you want to crawl. The web proxy must be public facing. Amazon Kendra supports connecting to web proxy servers that are backed by basic authentication or you can connect with no authentication.

• Optional: Copied the virtual private cloud (VPC) subnet ID if you want to use a VPC to connect to internal websites you want to crawl. For more information, see Configuring an Amazon VPC.

• Checked each web page document you want to index is unique and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

• Created an Amazon Kendra index and, if using the API, noted the index ID.
• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.
For websites that require authentication, or if using a web proxy with authentication, stored your authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your web crawler data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your web crawler data source, you must provide the necessary details of your web crawler data source so that Amazon Kendra can access your data. If you have not yet configured web crawler for Amazon Kendra see **Prerequisites** (p. 310).

Console

To connect Amazon Kendra to web crawler

1. Sign in to the AWS Management Console and open the [Amazon Kendra console](https://console.aws.amazon.com/kendra/home).
2. From the left navigation pane, choose **Indexes** and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your **User access control** settings under **Index settings**.

3. On the **Getting started** page, choose **Add data source**.
4. On the **Add data source** page, choose **web crawler connector**, and then choose **Add data source**.
5. On the **Specify data source details** page, enter the following information:
 a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) **Description**—Enter an optional description for your data source.
 c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.
 e. Choose **Next**.
6. On the **Define access and security** page, enter the following information:
 a. **Source**—Choose either **Source URLs**, **Source sitemaps**, **Source URLs file**, **Source sitemaps file**. If you choose to use a text file that includes a list of up to 100 seed URLs, you specify the path to the Amazon S3 bucket where your file is stored. If you choose to use a sitemap XML file, you specify the path to the Amazon S3 bucket where your file is stored. You can also club multiple sitemap XML files into a ZIP file. Otherwise, you can manually enter up to 10 seed or starting point URLs, and up to three sitemap URLs.

 Note
 If you want to crawl a sitemap, check that the base or root URL is the same as the URLs listed on your sitemap page. For example, if your sitemap URL is **https://**
example.com/sitemap-page.html, the URLs listed on this sitemap page should also use the base URL "https://example.com/".

If your websites require authentication to access the websites, you can choose either basic, NTLM/Kerberos, SAML, or form authentication. Otherwise, choose the option for no authentication.

Note
If you want to later edit your data source to change your seed URLs with authentication to sitemaps, you must create a new data source. Amazon Kendra configures the data source using the seed URLs endpoint information in the Secrets Manager secret for authentication, and therefore cannot re-configure the data source when changing to sitemaps.

- **AWS Secrets Manager secret**—If your websites require the same authentication to access the websites, choose an existing secret or create a new Secrets Manager secret to store your website credentials. If you choose to create a new secret, an AWS Secrets Manager secret window opens.

 If you chose **Basic** or **NTLM/Kerberos** authentication, enter a name for the secret, plus the user name and password. NTLM authentication protocol includes password hashing, and Kerberos authentication protocol includes password encryption.

 If you chose **SAML** or **Form** authentication, enter a name for the secret, plus the user name and password. Use XPath for the user name field (and XPath for the user name button if using SAML). Use XPaths for the password field and button, and login page URL. You can find the XPaths (XML Path Language) of elements using your web browser's developer tools. XPaths usually follow this format: //</tagname[@Attribute='Value']>

b. **(Optional) Web proxy**—Enter the host name and the port number of the proxy sever you want to use to connect to internal websites. For example, the host name of https://a.example.com/page1.html is "a.example.com" and the port number is is 443, the standard port for HTTPS. If web proxy credentials are required to connect to a website host, you can create an AWS Secrets Manager that stores the credentials.

c. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

d. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

Note
IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

e. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

a. **Sync scope**—Set limits for crawling web pages including their domains, file sizes and links; and filter URLs using regex patterns.

 i. **(Optional) Crawl domain range**—Choose whether to crawl website domains with subdomains only, or also crawl other domains that the web pages link to. By default, Amazon Kendra only crawls the domains of the websites you want to crawl.

 ii. **(Optional) Additional configuration**—Set the following settings:

 - **Crawl depth**—The 'depth' or number of levels from the seed level to crawl. For example, the seed URL page is depth 1 and any hyperlinks on this page that are also crawled are depth 2.

 - **Maximum file size**—The maximum size in MB of a web page or attachment to crawl.

312
• **Maximum links per page**—The maximum number of URLs on a single webpage to crawl.

• **Maximum throttling of crawling speed**—The maximum number of URLs crawled per website host per minute.

• **Files**—Choose to crawl files that the web pages link to.

• **Crawl and index URLs**—Add regular expression patterns to include or exclude crawling certain URLs, and indexing any hyperlinks on these URL web pages.

b. **Sync mode**—Choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.

 • **Full sync**—Sync all content regardless of the previous sync status.

 • **New, modified, or deleted documents sync**—Sync only new, modified, and deleted documents.

c. **Sync run schedule**—For **Frequency**, choose how often Amazon Kendra will sync with your data source.

d. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

 a. Select from the Amazon Kendra generated default fields of web pages and files that you want to map to your index.

 b. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.

API

To connect Amazon Kendra to web crawler

You must specify a JSON of the **data source schema** using the **TemplateConfiguration** API. You must provide the following information:

• **Data source**—Specify the data source as **WEBCRAWLERV2**.

• **URLs**—Specify the seed or starting point URLs of the websites or the sitemap URLs of the websites you want to crawl. You can specify the path to an Amazon S3 bucket that stores your list of seed URLs. Each URL in the text file for seed URLs must be formatted on a separate line. You can also specify the path to an Amazon S3 bucket that stores your sitemap XML files. You can club together multiple sitemap files into a ZIP file and store the ZIP file in your Amazon S3 bucket.

 Note
 If you want to crawl a sitemap, check that the base or root URL is the same as the URLs listed on your sitemap page. For example, if your sitemap URL is **https://example.com/sitemap-page.html**, the URLs listed on this sitemap page should also use the base URL "https://example.com/".

• **Type**—Specify **TEMPLATE** as the Type when you call **CreateDataSource**.

• **Authentication**—If your websites require the same authentication, specify either **BasicAuth**, **NTLM_Kerberos**, **SAML**, or **Form** authentication. If your websites don't require authentication, specify **NoAuthentication**.

• **Secret Amazon Resource Name (ARN)**—If your websites require basic, NTLM, or Kerberos authentication, you provide a secret that stores your authentication credentials of your user name and password. You provide the Amazon Resource Name (ARN) of an AWS Secrets Manager secret. The secret is stored in a JSON structure with the following keys:
If your websites require SAML authentication, the secret is stored in a JSON structure with the following keys:

```json
{
    "seedUrlsHash": "Hash representation of all seed URLs",
    "userName": "user name",
    "password": "password"
}
```

If your websites require form authentication, the secret is stored in a JSON structure with the following keys:

```json
{
    "seedUrlsHash": "Hash representation of all seed URLs",
    "userName": "user name",
    "password": "password",
    "userNameFieldXpath": "XPath for user name field",
    "userNameButtonXpath": "XPath for user name button",
    "passwordFieldXpath": "XPath for password field",
    "passwordButtonXpath": "XPath for password button",
    "loginPageUrl": "Full URL for website login page"
}
```

You can find the XPaths (XML Path Language) of elements using your web browser's developer tools. XPaths usually follow this format: `//tagname[@Attribute='Value']`.

You can also provide web proxy credentials using an AWS Secrets Manager secret.
- ** IAM role**—Specify RoleArn when you call `CreateDataSource` to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the web crawler connector and Amazon Kendra. For more information, see IAM roles for web crawler data sources.

You can also add the following optional features:

- **Domain range**—Choose whether to crawl website domains with subdomains only, or also crawl other domains the web pages link to. By default, Amazon Kendra only crawls the domains of the websites you want to crawl.
- The 'depth' or number of levels from the seed level to crawl. For example, the seed URL page is depth 1 and any hyperlinks on this page that are also crawled are depth 2.
- The maximum number of URLs on a single web page to crawl.
- The maximum size in MB of a web page or attachment to crawl.
- The maximum number of URLs crawled per website host per minute.
- The web proxy host and port number to connect to and crawl internal websites. For example, the host name of `https://a.example.com/page1.html` is "a.example.com" and the port number is is 443.
the standard port for HTTPS. If web proxy credentials are required to connect to a website host, you can create an AWS Secrets Manager that stores the credentials.

- **Virtual Private Cloud (VPC)**—Specify `VpcConfiguration` when you call `CreateDataSource`. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

- **Field mappings**—Choose to map the fields of web pages and web page files to your Amazon Kendra index fields. For more information, see Mapping data source fields.

- **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents, or only new, modified, and deleted documents. You can choose between:

 - `FORCED_FULL_CRAWL` to freshly re-crawl all content and replace existing content each time your data source syncs with your index.

 - `FULL_CRAWL` to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index.

- **Inclusion and exclusion filters**—Specify whether to include or exclude crawling certain URLs and indexing any hyperlinks on these URL web pages.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

For a list of other important JSON keys to configure, see Amazon Kendra Web Crawler template schema.

Configuring the `robots.txt` file for Amazon Kendra Web Crawler

Amazon Kendra is an intelligent search service that AWS customers use to index and search documents of their choice. In order to index documents on the web, customers may use Amazon Kendra Web Crawler, indicating which URL(s) should be indexed and other operational parameters. Amazon Kendra customers are required to obtain authorization before indexing any particular website.

Amazon Kendra Web Crawler respects standard `robots.txt` directives like `Allow` and `Disallow`. You can modify the `robots.txt` file of your website to control how Amazon Kendra Web Crawler crawls your website.

Configuring how Amazon Kendra Web Crawler accesses your website

You can control how the Amazon Kendra Web Crawler indexes your website using `Allow` and `Disallow` directives. You can also control which web pages are indexed and which web pages are not crawled.

To allow Amazon Kendra Web Crawler to crawl all web pages except disallowed web pages, use the following directive:

```plaintext
User-agent: amazon-kendra    # Amazon Kendra Web Crawler
Disallow: /credential-pages/ # disallow access to specific pages
```

To allow Amazon Kendra Web Crawler to crawl only specific web pages, use the following directive:

```plaintext
User-agent: amazon-kendra    # Amazon Kendra Web Crawler
Allow: /pages/ # allow access to specific pages
```
To allow Amazon Kendra Web Crawler to crawl all website content and disallow crawling for any other robots, use the following directive:

```
User-agent: amazon-kendra # Amazon Kendra Web Crawler
Allow: / # allow access to all pages
User-agent: * # any (other) robot
Disallow: / # disallow access to any pages
```

Stopping Amazon Kendra Web Crawler from crawling your website

You can stop Amazon Kendra Web Crawler from indexing your website using the `Disallow` directive. You can also control which web pages are crawled and which are not.

To stop Amazon Kendra Web Crawler from crawling the website, use the following directive:

```
User-agent: amazon-kendra # Amazon Kendra Web Crawler
Disallow: / # disallow access to any pages
```

Amazon Kendra Web Crawler also supports the robots noindex and nofollow directives in meta tags in HTML pages. These directives stop the web crawler from indexing a web page and stops following any links on the web page. You put the meta tags in the section of the document to specify the rules of robots rules.

For example, the below web page includes the directives robots noindex and nofollow:

```
<html>
<head>
  <meta name="robots" content="noindex, nofollow"/>
  ...
</head>
<body>...</body>
</html>
```

If you have any questions or concerns regarding Amazon Kendra Web Crawler, you can reach out to the AWS support team.

Amazon WorkDocs

Amazon WorkDocs is a secure content collaboration service for creating, editing, storing, and sharing content. You can use Amazon Kendra to index your Amazon WorkDocs data source.

You can connect Amazon Kendra to your Amazon WorkDocs data source using the Amazon Kendra console and the WorkDocsConfiguration API.

Amazon WorkDocs is available in Oregon, North Virginia, Sydney, Singapore, and Ireland regions.

For troubleshooting your Amazon Kendra WorkDocs data source connector, see Troubleshooting data sources (p. 636).

Topics

- Supported features (p. 317)
- Prerequisites (p. 317)
- Connection instructions (p. 317)
Supported features

Amazon Kendra WorkDocs data source connector supports the following features:

- Change log
- Field mappings
- User context filtering
- Inclusion/exclusion filters

Prerequisites

Before you can use Amazon Kendra to index your WorkDocs data source, make these changes in your WorkDocs and AWS accounts.

In WorkDocs, make sure you have:

- Noted the Amazon WorkDocs directory ID (organization ID) for your Amazon WorkDocs repository.
- Checked each document is unique in WorkDocs and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

If you don’t have an existing IAM role, you can use the console to create a new IAM role when you connect your WorkDocs data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and an index ID.

Connection instructions

To connect Amazon Kendra to your WorkDocs data source, you must provide the necessary details of your WorkDocs data source so that Amazon Kendra can access your data. If you have not yet configured WorkDocs for Amazon Kendra, see Prerequisites (p. 317).

Console

To connect Amazon Kendra to Amazon WorkDocs

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose WorkDocs connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.

b. (Optional) **Description**—Enter an optional description for your data source.

c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.

e. Choose Next.

6. On the **Define access and security** page, enter the following information:

 a. **Organization ID specific to your Amazon WorkDocs site**—Select the ID of the Amazon WorkDocs site you want to index. You must already have created a site.

 b. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

c. Choose Next.

7. On the **Configure sync settings** page, enter the following information:

 a. **Crawl document comments**—The Amazon WorkDocs entities or content types you want to crawl.

 b. **Use change logs**—Select to update your index instead of syncing all your files.

 c. **Regex patterns**—Regular expression patterns to include or exclude certain files. You can add up to 100 patterns.

 d. In **Sync run schedule** for **Frequency**—Choose how often Amazon Kendra will sync with your data source.

e. Choose Next.

8. On the **Set field mappings** page, enter the following information:

 a. **Default data source fields**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

c. Choose Next.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.

API

To connect Amazon Kendra to Amazon WorkDocs

You must specify the following using the **WorkDocsConfiguration** API:

- **Amazon WorkDocs directory ID**—Specify the organization ID of your Amazon WorkDocs directory. You can find the organization ID in the AWS Directory Service by going to **Active Directory** and then **Directories**.

- **IAM role**—Specify **RoleArn** when you call **CreateDataSource** to provide an IAM role with permissions to access the WorkDocs directory and to call the required public APIs for the WorkDocs connector and Amazon Kendra. For more information, see **IAM roles for WorkDocs data sources**.
You can also add the following optional features:

- **Change log**—Whether Amazon Kendra should use the WorkDocs data source change log mechanism to determine if a document must be added, updated, or deleted in the index.

 Note
 Use the change log if you don’t want Amazon Kendra to scan all of the documents. If your change log is large, it might take Amazon Kendra less time to scan the documents in the WorkDocs data source than to process the change log. If you are syncing your WorkDocs data source with your index for the first time, all documents are scanned.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain documents and document comments. Each comment is indexed as a separate document.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your WorkDocs data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see [User context filtering for WorkDocs data sources](#).

Learn more

To learn more about integrating Amazon Kendra with your WorkDocs data source, see:

- [Get started with the Amazon Kendra Amazon WorkDocs connector](#)

Box

Box is cloud storage service that offers file hosting capabilities. You can use Amazon Kendra to index content in your Box content, including comments, tasks, and weblinks.

You can connect Amazon Kendra to your Box data source using the [Amazon Kendra console](#) and the [BoxConfiguration API](#).

For troubleshooting your Amazon Kendra Box data source connector, see [Troubleshooting data sources](#).

Topics

- [Supported features](#)
- [Prerequisites](#)
- [Connection instructions](#)
- [Learn more](#)

Supported features

Amazon Kendra Box data source connector supports the following features:

- Change log
• Field mappings
• User context filtering
• Inclusion/exclusion filters
• Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your Box data source, make these changes in your Box and AWS accounts.

In Box, make sure you have:

• A Box Enterprise or Box Enterprise Plus account.
• Created a Box custom app in the Box Developer Console and configured it to use Server Authentication (with JWT). See Box documentation on creating a Custom App and Box documentation of configuring JWT Auth for more details.
• Set your App Access Level to App + Enterprise Access and allowed it to Make API calls using the as-user header.
• Used the admin user to add the following Application Scopes in your Box app:
 • Write all files and folders stored in a Box
 • Manage users
 • Manage groups
 • Manage enterprise properties
• Generated and downloaded Public/Private key pair including a client ID, a client secret, a public key ID, private key ID, a pass phrase, and an enterprise ID to use as authentication credentials. See Public and private keypair for more details.
• Copied your Box enterprise ID either from your Box Developer Console settings or from your Box app. For example, 801234567.
• Checked each document is unique in Box and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

• Created an Amazon Kendra index and, if using the API, noted the index ID.
• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.
• Stored your Box authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It’s recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It’s not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Box data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.
Connection instructions

To connect Amazon Kendra to your Box data source, you must provide the necessary details of your Box data source so that Amazon Kendra can access your data. If you have not yet configured Box for Amazon Kendra, see Prerequisites (p. 320).

Console

To connect Amazon Kendra to Box

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Box connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:
 a. Box enterprise ID—Enter your Box Enterprise ID.
 b. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Box authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 i. Secret name—A name for your secret. The prefix ‘AmazonKendra-Box-’ is automatically added to your secret name.
 ii. For Client ID, Client Secret, Public Key ID, Private Key ID, and Pass Phrase—Enter the values from the Public/Private Key you generated in your Box account and downloaded from your Box account.
 iii. Choose Save.
 c. Virtual Private Cloud (VPC)—You can choose to use a VPC. If so, you must add Subnets and VPC security groups.
 d. IAM role—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.
 e. Choose Next.
7. On the Configure sync settings page, enter the following information:
 a. Select entities or content types—The Box entities or content types you want to crawl. Each comment is indexed as a separate document.
b. **Change log**—Select to update your index instead of syncing all your files.

c. **Regex patterns**—Regular expression patterns to include or exclude certain files. You can add up to 100 patterns.

d. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.

e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

 a. For **Files and folders, Comments, Tasks, and Web Links**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Box

You must specify the following using the **BoxConfiguration** API:

- **Box enterprise ID**—Provide your Box Enterprise ID. You can find the enterprise ID in the Box Developer Console settings or when you create an app in Box.

- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Box account. The secret is stored in a JSON structure with the following keys:

```json
{
   "clientID": "client-id",
   "clientSecret": "client-secret",
   "publicKeyID": "public-key-id",
   "privateKey": "private-key",
   "passphrase": "pass-phrase"
}
```

Note

It’s recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It’s not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify **RoleArn** when you call **CreateDataSource** to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Box connector and Amazon Kendra. For more information, see [IAM roles for Box data sources](#).

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify **VpcConfiguration** as part of the data source configuration. See [Configuring Amazon Kendra to use a VPC](#).

- **Change log**—Whether Amazon Kendra should use the Box data source change log mechanism to determine if a document must be added, updated, or deleted in the index.
Note
Use the change log if you don’t want Amazon Kendra to scan all of the documents. If your change log is large, it might take Amazon Kendra less time to scan the documents in the Box data source than to process the change log. If you are syncing your Box data source with your index for the first time, all documents are scanned.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain Box files, folders, comments, tasks, and web links.

Note
Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your Box data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for Box data sources.

Learn more

To learn more about integrating Amazon Kendra with your Box data source, see:

- Getting started with the Amazon Kendra Box connector

Confluence

Confluence is a collaborative work-management tool designed for sharing, storing, and working on project planning, software development, and product management. You can use Amazon Kendra to index your Confluence spaces, pages (including nested pages), blogs, and comments and attachments to indexed pages and blogs.

Amazon Kendra supports both Confluence Server and Confluence Cloud.

Note
By default, Amazon Kendra doesn't index Confluence archives and personal spaces. You can choose to index them when you create the data source. If you don't want Amazon Kendra to index a space, mark it private in Confluence.

You can connect Amazon Kendra to your Confluence data source using either the Amazon Kendra console, the TemplateConfiguration API, or the ConfluenceConfiguration API.

Amazon Kendra has two versions of the Confluence connector. Supported features of each version include:

- **Confluence connector V1.0** / ConfluenceConfiguration API
 - Field mappings
 - User context filtering
 - Inclusion/exclusion filters
 - (For Confluence Server only) Virtual private cloud (VPC)

- **Confluence connector V2.0** / TemplateConfiguration API
• Field mappings
• User context filtering
• Virtual private cloud (VPC)
• Sync all documents/Sync only new, modified, or deleted documents
• Inclusion/exclusion patterns

Note
Support for Confluence connector V1.0 / ConfluenceConfiguration API is scheduled to end in 2023. We recommend migrating to or using Confluence connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra Confluence data source connector, see Troubleshooting data sources (p. 636).

Topics
- Confluence connector V1.0 (p. 324)
- Confluence connector V2.0 (p. 329)

Confluence connector V1.0

Confluence is a collaborative work-management tool designed for sharing, storing, and working on project planning, software development, and product management. You can use Amazon Kendra to index your Confluence spaces, pages (including nested pages), blogs, and comments and attachments to indexed pages and blogs.

Note
Support for Confluence connector V1.0 / ConfluenceConfiguration API is scheduled to end in 2023. We recommend migrating to or using Confluence connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra Confluence data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 324)
- Prerequisites (p. 324)
- Connection instructions (p. 325)
- Learn more (p. 328)

Supported features

Amazon Kendra Confluence data source connector supports the following features:

• Field mappings
• User context filtering
• Inclusion/exclusion filters
• (For Confluence Server only) Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your Confluence data source, make these changes in your Confluence and AWS accounts.
In Confluence, make sure you have:

- Granted Amazon Kendra permissions to view all content within your Confluence instance by:
 - Making Amazon Kendra a member of confluence-administrators group.
 - Granting site-admin permissions for all existing spaces, blogs, and pages.
- Copied the URL of your Confluence instance.
- **For SSO (Single Sign-On) users**: Activated the Show on login page for the user name and password when you configure Confluence Authentication methods in Confluence Data Center.
- **For Confluence Server**
 - Noted your basic authentication credentials containing your Confluence administrative account user name and password to connect to Amazon Kendra.
 - Optional: Generated a personal access token in your Confluence account to connect to Amazon Kendra. For more information, see [Confluence documentation on generating personal access tokens](#).
- **For Confluence Cloud**
 - Noted your basic authentication credentials containing your Confluence administrative account user name and password to connect to Amazon Kendra.
 - Checked each document is unique in Confluence and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note

 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Confluence authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note

 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don't have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Confluence data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Confluence data source, you must provide details of your Confluence credentials so that Amazon Kendra can access your data. If you have not yet configured Confluence for Amazon Kendra see [Prerequisites](#) on page 324.

Console

To connect Amazon Kendra to Confluence

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.
Note
You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.

4. On the Add data source page, choose Confluence connector V1.0, and then choose Add data source.

5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.

6. On the Define access and security page, enter the following information:
 a. Choose between Confluence cloud and Confluence server based on your use case.
 b. If you choose Confluence cloud, enter the following information:
 i. Confluence URL—Your Confluence URL.
 ii. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Confluence authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 • Enter following information in the Create an AWS Secrets Manager secret window:
 I. Secret name—A name for your secret. The prefix ‘AmazonKendra-Confluence-’ is automatically added to your secret name.
 II. For User name and Password—Enter your Confluence user name and your Confluence API token as the password.
 III. Choose Save authentication.
 c. If you choose Confluence server, enter the following information:
 i. Confluence URL—Your Confluence user name and password.
 ii. (Optional) For Web proxy enter the following information:
 A. Host name—Host name for your Confluence account.
 B. Port number—Port used by the host URL transport protocol.
 iii. Choose between Basic authentication and Personal Access Token.
 iv. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Confluence authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 • Enter following information in the Create an AWS Secrets Manager secret window:
 I. Secret name—A name for your secret. The prefix ‘AmazonKendra-Confluence-’ is automatically added to your secret name.
 II. For User name and Password—Enter the authentication credential values you generated and downloaded from your Confluence account. If using
basic authentication, use your Confluence user name and password as your authentication credential. If using personal access token, enter the details of the Personal Access Token you created in your Confluence account.

III. Choose Save authentication.

d. IAM role—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

Note
IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.

e. Choose Next.

7. On the Configure sync settings page, enter the following information:

a. For Include personal spaces and Include archived spaces—Choose the optional space types to include in this data source.

b. For Additional configuration—Specify regular expression patterns to include or exclude certain content. You can add up to 100 patterns.

c. You can also choose to Crawl attachments within chosen spaces.

d. In Sync run schedule, for Frequency—Choose how often Amazon Kendra will sync with your data source.

e. Choose Next.

8. On the Set field mappings page, enter the following information:

a. For Space, Page, Blog—Select from the Amazon Kendra generated default data source fields or Additional suggested field mappings to add index fields.

b. Add field—To add custom data source fields to create an index field name to map to and the field data type.

c. Choose Next.

9. On the Review and create page, check that the information you have entered is correct and then select Add data source. You can also choose to edit your information from this page. Your data source will appear on the Data sources page after it’s added successfully.

API

To connect Amazon Kendra to Confluence

You must specify the following using ConfluenceConfiguration API:

• Confluence version—Specify the version of the Confluence instance you are using as CLOUD or SERVER.

• Secret Amazon Resource Name (ARN)—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials you created in your Confluence account.

If you are using Confluence Server, you can use either your Confluence user name and password, or your personal access token as credentials.

When you use your Confluence user name and password as authentication credentials, you store the following credentials as a JSON structure in your Secrets Manager secret:

```json
{
    "username": "user name",
    "password": "password"
}
```
If you are using a personal access token to connect Confluence Server to Amazon Kendra, you store the following credentials as a JSON structure in your Secrets Manager secret:

```json
{
    "patToken": "personal access token"
}
```

If you are using Confluence Cloud as a Amazon Kendra data source, you use your Confluence user name and an API token generated in your Confluence account as your password. You store the following credentials as a JSON structure in your Secrets Manager secret:

```json
{
    "username": "user name",
    "password": "API token"
}
```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Confluence connector and Amazon Kendra. For more information, see [IAM roles for Confluence data sources](#).

You can also add the following optional features:

- **Web proxy**—Whether to connect to your Confluence URL instance via a web proxy. You can use this option for Confluence Server.

 (For Confluence Server only) **Virtual Private Cloud (VPC)**—Specify VpcConfiguration as part of the data source configuration. See [Configuring Amazon Kendra to use a VPC](#).

- **Inclusion and exclusion filters**—Specify regular expression patterns to include or exclude certain spaces, blog posts, pages, spaces, and attachments. If you choose to index attachments, only attachments to the indexed pages and blogs are indexed.

 Note

 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your Confluence data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see [User context filtering for Confluence data sources](#).

Learn more

To learn more about integrating Amazon Kendra with your Confluence data source, see:

- [Configuring your Amazon Kendra Confluence Server connector](#)
Confluence connector V2.0

Confluence is a collaborative work-management tool designed for sharing, storing, and working on project planning, software development, and product management. You can use Amazon Kendra to index your Confluence spaces, pages (including nested pages), blogs, and comments and attachments to indexed pages and blogs.

For troubleshooting your Amazon Kendra Confluence data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 329)
- Prerequisites (p. 329)
- Connection instructions (p. 330)

Supported features
Amazon Kendra Confluence data source connector supports the following features:
- Field mappings
- User context filtering
- Virtual private cloud (VPC)
- Sync all documents/ Sync only new, modified, or deleted documents
- Inclusion/exclusion patterns

Prerequisites
Before you can use Amazon Kendra to index your Confluence data source, make these changes in your Confluence and AWS accounts.

In Confluence, make sure you have:
- Copied your Confluence instance URL. For example: https://example.confluence.com. You need your Confluence instance URL to connect to Amazon Kendra.

 Note
 (On-premise/server) Amazon Kendra checks if the endpoint information included in AWS Secrets Manager is the same the endpoint information specified in your data source configuration details. This helps protect against the confused deputy problem, which is a security issue where a user doesn't have permission to perform an action but uses Amazon Kendra as a proxy to access the configured secret and perform the action. If you later change your endpoint information, you must create a new secret to sync this information.

- Configured basic authentication credentials containing a user name (email ID used to log into Confluence) and password (Confluence server password) to allow Amazon Kendra to connect to your Confluence instance. For information on how to create a Confluence API token, see Manage API tokens for your Atlassian account.

- Optional: Configured OAuth 2.0 credentials containing a Confluence app key, Confluence app secret, Confluence access token, and Confluence refresh token to allow Amazon Kendra to connect to your Confluence instance. If your access token expires, you can either use the refresh token to regenerate your access token and refresh token pair. Or, you can repeat the authorization process. For more information on access tokens, see Manage OAuth access tokens.

- (For Confluence Server only) Optional: Configured a Personal Access Token (PAT) containing a Confluence token to allow Amazon Kendra to connect to your Confluence instance. For information on how to create a PAT token, see Using Personal Access Tokens.
In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Confluence authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Confluence data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Confluence data source, you must provide details of your Confluence credentials so that Amazon Kendra can access your data. If you have not yet configured Confluence for Amazon Kendra see **Prerequisites** (p. 329).

Console

To connect Amazon Kendra to Confluence

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Confluence connector V2.0, and then choose Add connector.
5. On the Specify data source details page, enter the following information:

 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:

 a. In Source, choose between Confluence Cloud and Confluence Server based on your Confluence data source hosting method.
b. **Confluence URL**—Enter the Confluence host URL. The format for the host URL you enter is `https://example.confluence.com`.

c. (For Confluence Server only) **SSL certificate location - optional**—Enter the Amazon S3 path to your SSL certificate file for Confluence Server.

d. (For Confluence Server only) **Web proxy - optional**—Enter the web proxy `Host name` (without the `http://` or `https://` protocol) and `Port number` (port used by the host URL transport protocol). The port number should be a numeric value between 0 and 65535.

e. (For Confluence Server only) **Authorization**—Choose to enable Access Control List (ACL). Then, choose between **Username** and **Email** to select the field you want to use for access control.

f. Choose between **Basic authentication**, **Oauth 2.0 authentication** and (For Confluence server only) **Personal Access Token authentication** based on your use case.

AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Confluence authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens. Enter the following information in the window:

 i. **Secret name**—A name for your secret. The prefix ‘AmazonKendra-Confluence-' is automatically added to your secret name.

 ii. If using **Basic Authentication**—Enter the **Secret name** **User name**, and **Password** (Confluence Server password) you generated and downloaded from your Confluence account.

 If using **OAuth2.0 Authentication**—Enter the **Secret name**, **App key**, **App secret**, **Access token**, and **Refresh token** you created in your Confluence account.

 (Confluence server only) If using **Personal Access Token authentication**—Enter the **Secret name** and **Confluence token** you created in your Confluence account.

 iii. Choose **Save and add secret**.

h. In **Configure VPC and security group - optional**, for **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

i. **Identity crawler**—Choose to activate Amazon Kendra identity crawler to sync identity information. If you choose to turn identity crawler off, you must upload the principal information using the **PutPrincipalMapping** API.

j. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note

 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

k. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

 Note

 Page comments and **Page attachments** can only be selected if you choose to sync **Pages**. **Blog comments** and **blog attachments** can only be selected if you choose to sync **Blogs**.

 b. In **Additional configuration** for **Spaces regex patterns**, specify whether to include or exclude specific spaces in your index using:

 - **Space key**—For example, `my-space-123`.
- **URL**—For example, ".*/MySite/MyDocuments/.
- **File type**—For example, ".*\.pdf, .*\.txt.

- For **Entity title regex patterns**—Specify regular expression patterns to include or exclude certain Blogs, Pages, Comments, and Attachments by titles.
 c. For **Sync mode** choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.
 - **Full sync**—Sync all content regardless of the previous sync status.
 - **New, modified, or deleted content sync**—Only sync new, modified, and deleted content.
 d. In **Sync run schedule**, for **Frequency**—How often Amazon Kendra will sync with your data source.
 e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. For **Space, Page, Blog, Comment** and **Attachment**—Select from the Amazon Kendra generated default data source fields that you want to map to your index.
 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Confluence

You must specify a JSON of the data source schema using the TemplateConfiguration API. You must provide the following information:

- **Data source**—Specify the data source as CONFLUENCEV2.
- **Host URL**—Specify the Confluence host instance version. For example, https://example.confluence.com.
 (Optional—For Confluence Server only) **SSL certificate location**—Specify the S3bucketName and s3certificateName you used to store your SSL certificate.
- **Auth type**—Specify the type of authentication, whether Basic, OAuth2, Personal-token for your Confluence instance.
- **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.
- **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 - FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index
 - FULL_CRAWL incrementally crawl only new, modified, and deleted content each time your data source syncs with your index
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials you created in your Confluence account. If you use basic account authentication, the secret is stored in a JSON structure with the following keys:

```json
{
}
```
"username": "Confluence account user name",
"password": "Confluence API token"
}

If you use OAuth 2.0 authentication, the secret is stored in a JSON structure with the following keys:

{
 "confluenceAppKey": "app key for your Confluence account",
 "confluenceAppSecret": "app secret from your Confluence token",
 "confluenceAccessToken": "access token created in Confluence",
 "confluenceRefreshToken": "refresh token created in Confluence"
}

(For Confluence Server only) If you use basic authentication, the secret is stored in a JSON structure with the following keys:

{
 "hostUrl": "Confluence Server host URL",
 "username": "Confluence Server user name",
 "password": "Confluence Server password"
}

(For Confluence Server only) If you use Personal Access Token authentication, the secret is stored in a JSON structure with the following keys:

{
 "hostUrl": "Confluence Server host URL",
 "patToken": "Confluence token"
}

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Confluence connector and Amazon Kendra. For more information, see IAM roles for Confluence data sources.

You can also add the following optional features:

- **Inclusion and exclusion filters**—You can specify whether to include or exclude certain spaces, pages, blogs, and their comments and attachments.

 Note

 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Enable identity crawler**—Specify whether to activate identity crawler. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful.
for user context filtering. Search results are filtered based on the user or their group access to
documents. For more information, see Filtering on user context.

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource.
 For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

- **Field mappings**—Choose to map your Confluence data source fields to your Amazon Kendra index
 fields. For more information, see Mapping data source fields.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by
 default. The ACL information is used to filter search results based on the user or their group access
 to documents. For more information, see User context filtering for Confluence data sources.

For a list of other important JSON keys to configure, see Confluence template schema (p. 162).

Notes

- Personal Access Token (PAT) is not available for Confluence Cloud.

Custom data source connector

Use a custom data source when you have a repository that Amazon Kendra doesn’t yet provide a data
source connector for. You can use it to see the same run history metrics that Amazon Kendra data
sources provide even when you can’t use Amazon Kendra's data sources to sync your repositories. Use
this to create a consistent sync monitoring experience between Amazon Kendra data sources and custom
ones. Specifically, use a custom data source to see sync metrics for a data source connector that you
created using the BatchPutDocument and BatchDeleteDocument APIs.

For troubleshooting your Amazon Kendra custom data source connector, see Troubleshooting data
sources (p. 636).

When you create a custom data source, you have complete control over how the documents to index are
selected. Amazon Kendra only provides metric information that you can use to monitor your data source
sync jobs. You must create and run the crawler that determines the documents your data source indexes.

You must specify the main title of your documents using the Document object, and _source_uri in
DocumentAttribute in order to have DocumentTitle and DocumentURI included in the response of the
Query result.

You create an identifier for your custom data source using the console or by using the CreateDataSource
API. To use the console, give your data source a name, and optionally a description and resource tags.
After the data source is created, a data source ID is shown. Copy this ID to use when you synchronize the
data source with the index.
You can also create a custom data source using the CreateDataSource API. The API returns an ID to use when you synchronize the data source. When you use the CreateDataSource API to create a custom data source, you can't set the Configuration, RoleArn or Schedule parameters. If you set these parameters, Amazon Kendra returns a ValidationException exception.

To use a custom data source, create an application that is responsible for updating the Amazon Kendra index. The application depends on a crawler that you create. The crawler reads the documents in your repository and determines which should be sent to Amazon Kendra. Your application should perform the following steps:

1. Crawl your repository and make a list of the documents in your repository that are added, updated, or deleted.
2. Call the StartDataSourceSyncJob API to signal that a sync job is starting. You provide a data source ID to identify the data source that is synchronizing. Amazon Kendra returns an execution ID to identify a particular sync job.
3. Call the BatchDeleteDocument API to remove documents from the index. You provide the data source ID and execution ID to identify the data source that is synchronizing and the job that this update is associated with.
4. Call the StopDataSourceSyncJob API to signal the end of the sync job. After you call the StopDataSourceSyncJob API, the associated execution ID is no longer valid.
5. Call the ListDataSourceSyncJobs API with the index and data source identifiers to list the sync jobs for the data source and to see metrics for the sync jobs.

After you end a sync job, you can start a new synchronization job. There can be a period of time before all of the submitted documents are added to the index. Use the ListDataSourceSyncJobs API to...
see the status of the sync job. If the Status returned for the sync job is SYNCPING_INDEXING, some documents are still being indexed. You can start a new sync job when the status of the previous job is FAILED, SUCCEEDED, or SYNCPING_INDEX.

After you call the StopDataSourceSyncJob API, you can’t use a sync job identifier in a call to the BatchPutDocument or BatchDeleteDocument APIs. If you do, all of the documents submitted are returned in the FailedDocuments response message from the API.

Required attributes

When you submit a document to Amazon Kendra using the BatchPutDocument API, each document requires two attributes to identify the data source and synchronization run that it belongs to. You must provide the following two attributes:

- **_data_source_id**—The identifier of the data source. This is returned when you create the data source with the console or the CreateDataSource API.
- **_data_source_sync_job_execution_id**—The identifier of the sync run. This is returned when you start the index synchronization with the StartDataSourceSyncJob API.

The following is the JSON required to index a document using a custom data source.

```json
{
  "Documents": [
    {
      "Attributes": [
        {
          "Key": "_data_source_id",
          "Value": {
            "StringValue": "data source identifier"
          }
        },
        {
          "Key": "_data_source_sync_job_execution_id",
          "Value": {
            "StringValue": "sync job identifier"
          }
        }
      ],
      "Blob": "document content",
      "ContentType": "content type",
      "Id": "document identifier",
      "Title": "document title"
    }
  ],
  "IndexId": "index identifier",
  "RoleArn": "IAM role ARN"
}
```

When you remove a document from the index using the BatchDeleteDocument API, you need to specify the following two fields in the DataSourceSyncJobMetricTarget parameter:

- **DataSourceId**—The identifier of the data source. This is returned when you create the data source with the console or the CreateDataSource API.
- **DataSourceSyncJobId**—The identifier of the sync run. This is returned when you start the index synchronization with the StartDataSourceSyncJob API.

The following is the JSON required to delete a document from the index using the BatchDeleteDocument API.

```json
"Documents": [
  {
    "Attributes": [
      {
        "Key": "_data_source_id",
        "Value": {
          "StringValue": "data source identifier"
        }
      },
      {
        "Key": "_data_source_sync_job_execution_id",
        "Value": {
          "StringValue": "sync job identifier"
        }
      }
    ],
    "Blob": "document content",
    "ContentType": "content type",
    "Id": "document identifier",
    "Title": "document title"
  }
],
"IndexId": "index identifier",
"RoleArn": "IAM role ARN"
```
Viewing metrics

After a sync job is finished, you can use the DataSourceSyncJobMetrics API to get the metrics associated with the sync job. Use this to monitor your custom data source syncs.

If you submit the same document multiple times, either as part of the BatchPutDocument API, the BatchDeleteDocument API, or if the document is submitted for both addition and deletion, the document is only counted once in the metrics.

- **DocumentsAdded**—The number of documents submitted using the BatchPutDocument API associated with this sync job added to the index for the first time. If a document is submitted for addition more than once in a sync, the document is only counted once in the metrics.
- **DocumentsDeleted**—The number of documents submitted using the BatchDeleteDocument API associated with this sync job deleted from the index. If a document is submitted for deletion more than once in a sync, the document is only counted once in the metrics.
- **DocumentsFailed**—The number of documents associated with this sync job that failed indexing. These are documents that were accepted by Amazon Kendra for indexing but could not be indexed or deleted. If a document isn't accepted by Amazon Kendra, the identifier for the document is returned in the FailedDocuments response property of the BatchPutDocument and BatchDeleteDocument APIs.
- **DocumentsModified**—The number of modified documents submitted using the BatchPutDocument API associated with this sync job that were modified in the Amazon Kendra index.

Amazon Kendra also emits Amazon CloudWatch metrics while indexing documents. For more information, see Monitoring Amazon Kendra with Amazon CloudWatch.

Amazon Kendra doesn't return the DocumentsScanned metric for custom data sources. It also emits the CloudWatch metrics listed in the document Metrics for Amazon Kendra data sources.

Learn more

To learn more about integrating Amazon Kendra with your custom data source, see:

- Adding custom data sources to Amazon Kendra

Custom data source (Java)

The following code provides a sample implementation of a custom data source using Java. The program first creates a custom data source and then synchronizes newly added documents to the index with the custom data source.

The following code demonstrates creating and using a custom data source. When you use a custom data source in your application you don't need to create a new data source (one-off process) each time that
you synchronize your index with your data source. You use the index ID and data source ID to synchronize your data.

```java
package com.amazonaws.kendra;

import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.services.kendra.KendraClient;
import csoftware.amazon.awssdk.services.kendra.model.BatchPutDocumentRequest;
import csoftware.amazon.awssdk.services.kendra.model.BatchPutDocumentResponse;
import software.amazon.awssdk.services.kendra.model.CreateDataSourceRequest;
import software.amazon.awssdk.services.kendra.model.CreateDataSourceResponse;
import software.amazon.awssdk.services.kendra.model.DataSourceType;
import software.amazon.awssdk.services.kendra.model.Document;
import software.amazon.awssdk.services.kendra.model.ListDataSourceSyncJobsRequest;
import software.amazon.awssdk.services.kendra.model.ListDataSourceSyncJobsResponse;
import software.amazon.awssdk.services.kendra.model.StartDataSourceSyncJobRequest;
import software.amazon.awssdk.services.kendra.model.StartDataSourceSyncJobResponse;
import software.amazon.awssdk.services.kendra.model.StopDataSourceSyncJobRequest;
import software.amazon.awssdk.services.kendra.model.StopDataSourceSyncJobResponse;

public class SampleSyncForCustomDataSource {
    public static void main(String[] args) {
        KendraClient kendra = KendraClient.builder().build();

        String myIndexId = "yourIndexId";
        String dataSourceName = "custom data source";
        String dataSourceDescription = "Amazon Kendra custom data source connector"

        // Create custom data source
        CreateDataSourceRequest createDataSourceRequest = CreateDataSourceRequest
                                           .builder()
                                           .indexId(myIndexId)
                                           .name(dataSourceName)
                                           .description(dataSourceDescription)
                                           .type(DataSourceType.CUSTOM)
                                           .build();

        CreateDataSourceResponse createDataSourceResponse =
            kendra.createDataSource(createDataSourceRequest);
        System.out.println(String.format("Response of creating data source: %s",
                                         createDataSourceResponse));

        // Get the data source ID from createDataSourceResponse
        String dataSourceId = createDataSourceResponse.Id();

        // Wait for the custom data source to become active
        System.out.println(String.format("Waiting for Amazon Kendra to create the data source %s", dataSourceId));
        // You can use the DescribeDataSource API to check the status
        DescribeDataSourceRequest describeDataSourceRequest = DescribeDataSourceRequest
                                                                      .builder()
                                                                      .indexId(myIndexId)
                                                                      .id(dataSourceId)
                                                                      .build();

        while (true) {
            DescribeDataSourceResponse describeDataSourceResponse =
                kendra.describeDataSource(describeDataSourceRequest);

            DataSourceStatus status = describeDataSourceResponse.status();
            System.out.println(String.format("Creating data source. Status: %s", status));
            if (status != DataSourceStatus.CREATING) {
                break;
            }
        }
    }
}
```
TimeUnit.SECONDS.sleep(60);

// Start syncing your data source by calling StartDataSourceSyncJob and providing your index ID
// and your custom data source ID
System.out.println(String.format("Synchronize the data source %s", dataSourceId));
StartDataSourceSyncJobRequest startDataSourceSyncJobRequest =
 StartDataSourceSyncJobRequest
 .builder()
 .indexId(myIndexId)
 .id(dataSourceId)
 .build();
StartDataSourceSyncJobResponse startDataSourceSyncJobResponse =
kendra.startDataSourceSyncJob(startDataSourceSyncJobRequest);

// Get the sync job execution ID from startDataSourceSyncJobResponse
String executionId = startDataSourceSyncJobResponse.executionId();

// Add 2 documents uploaded to S3 bucket to your index using the BatchPutDocument API
// The added documents should sync with your custom data source
Document pollyDoc = Document
 .builder()
 .s3Path(
 S3Path.builder()
 .bucket("s3-test-bucket")
 .key("what_is_Amazon_Polly.docx")
 .build())
 .title("What is Amazon Polly?")
 .id("polly_doc_1")
 .build();

Document rekognitionDoc = Document
 .builder()
 .s3Path(
 S3Path.builder()
 .bucket("s3-test-bucket")
 .key("what_is_amazon_rekognition.docx")
 .build())
 .title("What is Amazon rekognition?")
 .id("rekognition_doc_1")
 .build();

 .builder()
 .indexId(myIndexId)
 .documents(pollyDoc, rekognitionDoc)
 .build();

BatchPutDocumentResponse result = kendra.batchPutDocument(batchPutDocumentRequest);
System.out.println(String.format("BatchPutDocument result: %s", result));

// Wait for the sync job status to succeed
// If the sync job status is SYNCING_INDEXING, documents are still being indexed
// If the sync job status is SYNCING, sync job has started
System.out.println(String.format("Waiting for the data source to sync with the index %s for execution ID %s", indexId, startDataSourceSyncJobResponse.executionId()));
ListDataSourceSyncJobsRequest listDataSourceSyncJobsRequest =
 ListDataSourceSyncJobsRequest
 .builder()
 .indexId(myIndexId)
 .id(dataSourceId)
 .build();
while (true) {

}
Dropbox

Dropbox is a file hosting service that offers cloud storage, document organization, and document templating services. If you are a Dropbox user, you can use Amazon Kendra to index your Dropbox files, Dropbox Paper, Dropbox Paper Templates, and stored shortcuts to web pages. You can also configure Amazon Kendra to index specific Dropbox files, Dropbox Paper, Dropbox Paper Templates, and stored shortcuts to web pages.

Amazon Kendra supports both Dropbox and Dropbox Advanced for Dropbox Business.

You can connect Amazon Kendra to your Dropbox data source using the Amazon Kendra console and the TemplateConfiguration API.

For troubleshooting your Amazon Kendra Dropbox data source connector, see Troubleshooting data sources (p. 636).

Topics

- Supported features (p. 340)
- Prerequisites (p. 341)
- Connection instructions (p. 342)
- Learn more (p. 344)

Supported features

Amazon Kendra Dropbox data source connector supports the following features:

- Change log
- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)
Prerequisites

Before you can use Amazon Kendra to index your Dropbox data source, make these changes in your Dropbox and AWS accounts.

In Dropbox, make sure you have:

- Created a Dropbox Advanced account and set up an admin user.
- Created a Dropbox app with a unique **App name**, activated **Scoped Access**. See Dropbox documentation on creating an app.
- Activated **Full Dropbox** permissions on the Dropbox console and added the following permissions:
 - files.content.read
 - files.metadata.read
 - sharing.read
 - file_requests.read
 - groups.read
 - team_info.read
 - team_data.content.read
- Noted your Dropbox app key, Dropbox app secret, and Dropbox access token for basic authentication credentials.
- Generated and copied a temporary Oauth 2.0 access token for your Dropbox app. This token is temporary and expires after 4 hours. See Dropbox documentation on OAuth authentication.

 Note
 It is recommended that you create a Dropbox refresh access token that never expires, rather than relying on a one-time access token that expires after 4 hours. A refresh access token is permanent and never expires so that you can continue to sync your data source in the future.

- **Recommended**: Configured a Dropbox permanent refresh token that never expires to allow Amazon Kendra to continue to sync your data source without any disruptions. See Dropbox documentation on refresh tokens.
- Checked each document is unique in Dropbox and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- **Created an Amazon Kendra index** and, if using the API, noted the index ID.
- **Created an IAM role** for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Dropbox authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don't have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Dropbox data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.
Connection instructions

To connect Amazon Kendra to your Dropbox data source, you must provide the necessary details of your Dropbox data source so that Amazon Kendra can access your data. If you have not yet configured Dropbox for Amazon Kendra, see Prerequisites (p. 341).

Console

To connect Amazon Kendra to Dropbox

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Dropbox connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:
 a. Type of authentication token—Choose between Permanent Token (recommended) and Access Token (temporary use) based on your use case.
 b. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Dropbox authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 i. Enter following information in the Create an AWS Secrets Manager secret window:
 A. Secret name—A name for your secret. The prefix ‘AmazonKendra-Dropbox-’ is automatically added to your secret name.
 B. For App key, App secret, and token information (permanent or temporary)—Enter the authentication credential values you generated from your Dropbox account.
 ii. Choose Save.
 c. Virtual Private Cloud (VPC)—You can choose to use a VPC. If so, you must add Subnets and VPC security groups.
 d. IAM role—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.
 e. Choose Next.
7. On the Configure sync settings page, enter the following information:
a. For **Select entities or content types**—Choose entities or content types you want to crawl.
b. **Change log mode**—Choose to update your index instead of syncing all files.
c. In **Additional configuration for Regex patterns**—Add regular expression patterns to include or exclude certain files.
d. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.
e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. **Files, Dropbox Paper, and Dropbox Paper templates**—Select from the Amazon Kendra generated default data source fields you want to map to your index.
 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Dropbox

You must specify a JSON of the **data source schema** using the **TemplateConfiguration** API. You must provide the following information:

- **Data source**—You must specify the data source as DROPBOX.
- **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Dropbox account. The secret is stored in a JSON structure with the following keys:

```json
{
    "appKey": "Dropbox app key",
    "appSecret": "Dropbox app secret",
    "accesstoken": "temporary access token or refresh access token"
}
```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Dropbox connector and Amazon Kendra. For more information, see **IAM roles for Dropbox data sources**.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see **Configuring Amazon Kendra to use an Amazon VPC (p. 445)**.
- **Change log**—Whether Amazon Kendra should use the Dropbox data source change log mechanism to determine if a document must be added, updated, or deleted in the index.
Note
Use the change log if you don't want Amazon Kendra to scan all of the documents. If your change log is large, it might take Amazon Kendra less time to scan the documents in the Dropbox data source than to process the change log. If you are syncing your Dropbox data source with your index for the first time, all documents are scanned.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain files.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your Dropbox data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see [User context filtering for Dropbox data sources](#).

For a list of other important JSON keys to configure, see [Dropbox template schema](#).

Learn more
To learn more about integrating Amazon Kendra with your Dropbox data source, see:

- [Index your Dropbox content using the Dropbox connector for Amazon Kendra](#)

GitHub
GitHub is a web-based hosting service for software development providing code storage and management services with version control. You can use Amazon Kendra to index your GitHub Enterprise Cloud (SaaS) and GitHub Enterprise Server (On Prem) repository files, issue and pull requests, issue and pull request comments, and issue and pull request comment attachments. You can also choose to include or exclude certain files.

You can connect Amazon Kendra to your GitHub data source using the [Amazon Kendra console](#) and the [GitHubConfiguration](#) API.

For troubleshooting your Amazon Kendra GitHub data source connector, see [Troubleshooting data sources](#).

Topics
- [Supported features](#)
- [Prerequisites](#)
- [Connection instructions](#)
- [Learn more](#)

Supported features
Amazon Kendra GitHub data source connector supports the following features:

- Change log
• Field mappings
• User context filtering
• Inclusion/exclusion filters

Prerequisites

Before you can use Amazon Kendra to index your GitHub data source, make these changes in your GitHub and AWS accounts.

In GitHub, make sure you have:

• Created a GitHub user with administrative permissions to the GitHub organization.
• Created a personal access token for authentication credentials. See GitHub documentation on creating a personal access token.
• Recommended: Created an OAuth token for authentication credentials. Use OAuth token for better API throttle limits and connector performance. See GitHub documentation on OAuth authorization.
• Optional: Installed a SSL certificate.
• Noted the GitHub host URL for the type of GitHub service that you use. For example, the host URL for GitHub cloud could be https://api.github.com and the host URL for GitHub server could be https://on-prem-host-url/api/v3/.
• Noted the GitHub organization name for your repositories from your GitHub settings.
• Added the following permissions:

 For GitHub Enterprise Cloud (SaaS)
 • repo:status
 • public_repo
 • repo:invite
 • read:org
 • user:email
 • read:user

 For GitHub Enterprise Server (On Prem)
 • repo:status
 • public_repo
 • repo:invite
 • read:org
 • user:email
 • read:user
 • site_admin

• Checked each document is unique in GitHub and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

• Created an Amazon Kendra index and, if using the API, noted the index ID.
• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.
• Stored your GitHub authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

Note
It’s recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It’s not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your GitHub data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your GitHub data source, you must provide the necessary details of your GitHub data source so that Amazon Kendra can access your data. If you have not yet configured GitHub for Amazon Kendra, see Prerequisites (p. 345).

Console

To connect Amazon Kendra to GitHub

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.
3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose GitHub connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:
 a. GitHub source—Choose between GitHub Enterprise Cloud and GitHub Enterprise Server.
 b. GitHub host URL—Enter your GitHub host name.
 c. GitHub organization name—Enter your GitHub organization name. You can find your organization information in your GitHub account.
 d. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your GitHub authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 i. Enter following information in the Create an AWS Secrets Manager secret window:
 A. Secret name—A name for your secret. The prefix 'AmazonKendra-GitHub-' is automatically added to your secret name.
B. For **GitHub token**—Enter the authentication credential values you created in you GitHub account.
 ii. Choose **Save**.
 e. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.
 f. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.
 g. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:
 a. **Select repositories to crawl**—The GitHub entities or content types you want to crawl.
 b. **Change log**—Select to update your index instead of syncing all your files.
 c. **Content types**—Select to file types you want to include.
 d. **Regex patterns**—Regular expression patterns to include or exclude certain files. You can add up to 100 patterns.
 e. In **Sync run schedule**, for **Frequency**—How often Amazon Kendra will sync with your data source.
 f. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.

API

To connect Amazon Kendra to GitHub

You must specify the following using the **GitHubConfiguration** API object:

- **Data source type**—Specify the data source type as either SAAS or ON_PREMISE.
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your GitHub account. The secret is stored in a JSON structure with the following keys:

```json
{
  "personalToken": "token"
}
```

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).
• IAM role—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the GitHub connector and Amazon Kendra. For more information, see IAM roles for GitHub data sources.

You can also add the following optional features:

• Virtual Private Cloud (VPC)—Specify VpcConfiguration as part of the data source configuration. See Configuring Amazon Kendra to use a VPC.

 Note
 If you use GitHub server, you must use an Amazon VPC to connect to your GitHub server.

• Change log—Whether Amazon Kendra should use the GitHub data source change log mechanism to determine if a document must be added, updated, or deleted in the index.

 Note
 Use the change log if you don’t want Amazon Kendra to scan all of the documents. If your change log is large, it might take Amazon Kendra less time to scan the documents in the GitHub data source than to process the change log. If you are syncing your GitHub data source with your index for the first time, all documents are scanned.

• Inclusion and exclusion filters—Specify whether to include or exclude certain files.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn’t match the inclusion filter isn’t indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

• Field mappings—Choose to map your GitHub data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

• User context filtering—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for GitHub data sources.

Learn more

To learn more about integrating Amazon Kendra with your GitHub data source, see:

• Reimagine search on GitHub repositories with the power of the Amazon Kendra GitHub connector

Gmail

Gmail is email client developed by Google through which you can send email messages with file attachments. Gmail messages can be sorted and stored inside your email inbox using folders and labels. You can use Amazon Kendra to index your email messages and message attachments. You can also configure Amazon Kendra to include or exclude specific email messages, message attachments, and labels for indexing.

You can connect Amazon Kendra to your Gmail data source using the Amazon Kendra console and the TemplateConfiguration API.

For troubleshooting your Amazon Kendra Gmail data source connector, see Troubleshooting data sources (p. 636).

Topics
Supported features

- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)
- Sync all documents/Sync only new, modified, deleted documents

Prerequisites

Before you can use Amazon Kendra to index your Gmail data source, make these changes in your Gmail and AWS accounts.

In Gmail, make sure you have:

- Created a Google Cloud Platform admin account and have created a Google Cloud project.
- Activated Gmail API and Admin SDK API in your admin account.
- Created a service account and downloaded a JSON private key for your Gmail. For information on how to create and access your private key, see Google Cloud documentation on how to [Create a service account key](#) and [Service account credentials](#).
- Copied your admin account email, your service account email, and your private key to use for authentication.
- Added the following OAuth scopes (using an admin role) for your user and the shared directories you want to index:
 - `https://www.googleapis.com/auth/admin.directory.user.readonly`
 - `https://www.googleapis.com/auth/gmail.readonly`
- Checked each document is unique in Gmail and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- [Created an Amazon Kendra index](#) and, if using the API, noted the index ID.
- [Created an IAM role](#) for your data source and, if using the API, noted the ARN of the IAM role.

 Note

 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Gmail authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note

 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).
If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Gmail data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Gmail data source you must provide details of your Gmail credentials so that Amazon Kendra can access your data. If you have not yet configured Gmail for Amazon Kendra, see **Prerequisites (p. 349)**.

Console

To connect Amazon Kendra to Gmail

1. Sign in to the AWS Management Console and open the [Amazon Kendra console](https://www.amazon.com/).
2. From the left navigation pane, choose **Indexes** and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your **User access control** settings under **Index settings**.
3. On the **Getting started** page, choose **Add data source**.
4. On the **Add data source** page, choose **Gmail connector**, and then choose **Add data source**.
5. On the **Specify data source details** page, enter the following information:

 a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) **Description**—Enter an optional description for your data source.
 c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.
 e. Choose **Next**.
6. On the **Define access and security** page, enter the following information:

 a. In **Authentication** for **AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your Gmail authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

 • Enter following information in the **Create an AWS Secrets Manager secret window**:

 A. **Secret Name**—A name for your secret.
 B. **Client email**—The client email that you copied from your Google service account.
 C. **Admin account email**—The admin account email that you would like to use.
 D. **Private key**—The private key you copied from your Google service account.
 E. Choose **Save**.
 b. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.
 c. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.
 d. Choose **Next**.
7. On the **Configure sync settings** page, enter the following information:
 a. In **Sync scope**, for **Entity types**—Select **Message attachments** to sync message attachments. Messages will be synced by default.
 b. (Optional) For **Additional configuration**, enter the following information:
 i. **Date range**—Enter a date range to specify the start and end date of emails to be crawled.
 ii. **Email domains**—Include or exclude emails based on domains.
 iii. **Keywords in subjects**—Include or exclude emails based on keywords in their subjects.
 Note
 You can also choose to include any documents that match all the subject keywords you have entered.
 iv. **Labels**—Add regular expression patterns to include or exclude specific labels. You can add up to 100 patterns.
 v. **Attachments**—Add regular expression patterns to include or exclude specific attachments. You can add up to 100 patterns.
 c. For **Sync mode** choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.
 • **Full sync**—Sync all content regardless of the previous sync status.
 • **New, modified, or deleted content sync**—Only sync new, modified, and deleted content.
 Important
 Because there is no API to update permanently deleted Gmail messages, a **New, modified, or deleted content sync**:
 • Won’t remove messages that were permanently deleted from Gmail from your Amazon Kendra index
 • Won’t sync changes in Gmail email labels
 To sync your Gmail data source label changes and permanently deleted email messages to your Amazon Kendra index, you must run full crawls periodically.
 d. In **Sync run schedule**, for **Frequency**—How often Amazon Kendra will sync with your data source.
 e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. For **Messages** and **Message attachments**—Select from the Amazon Kendra generated default data source fields you want to map to your index.
 Note
 Amazon Kendra Gmail data source connector does not support creating custom index fields due to API limitations.
 b. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Gmail

You must specify the following using the **TemplateConfiguration** API:

• **Data source**—You must specify the data source as GMAIL.
• **Data source schema**—Include a JSON that contains the data source schema. To view the template schema, see [Data source schemas](#).

• **Type**—Specify `TEMPLATE` as the Type when you call `CreateDataSource`.

• **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Gmail account. The secret is stored in a JSON structure with the following keys:

```json
{
    "adminAccountEmailId": "service account email",
    "clientEmailId": "user account email",
    "privateKey": "private key"
}
```

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

• **IAM role**—Specify `RoleArn` when you call `CreateDataSource` to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Gmail connector and Amazon Kendra. For more information, see [IAM roles for Gmail data sources](#).

You can also add the following optional features:

• **Virtual Private Cloud (VPC)**—Specify `VpcConfiguration` when you call `CreateDataSource`. For more information, see [Configuring Amazon Kendra to use an Amazon VPC (p. 445)](#).

• **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 - `FORCED_FULL_CRAWL` to freshly re-crawl all content and replace existing content each time your data source syncs with your index
 - `FULL_CRAWL` incrementally crawl only new, modified, and deleted content each time your data source syncs with your index

 Important
 Because there is no API to update permanently deleted Gmail messages, a `FULL_CRAWL/New, modified, or deleted content sync`:
 - Won't remove messages that were permanently deleted from Gmail from your Amazon Kendra index
 - Won't sync changes in Gmail email labels
 To sync your Gmail data source label changes and permanently deleted email messages to your Amazon Kendra index, you must run full crawls periodically.

• **Inclusion and exclusion filters**—You can specify whether to include or exclude messages and attachments.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

• **Field mappings**—Choose to map your Gmail data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).
Note
Amazon Kendra Gmail data source connector does not support creating custom index fields due to API limitations.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see [User context filtering for Gmail data sources](#).

Learn more

To learn more about integrating Amazon Kendra with your Gmail data source, see:

- Perform intelligent search across emails in your Google workspace using the Gmail connector for Amazon Kendra.

Notes

- Because there is no API to update permanently deleted Gmail messages, a **FULL_CRAWL/New, modified, or deleted content sync**:
 - Won’t remove messages that were permanently deleted from Gmail from your Amazon Kendra index
 - Won’t sync changes in Gmail email labels

 To sync your Gmail data source label changes and permanently deleted email messages to your Amazon Kendra index, you must run full crawls periodically.

- Amazon Kendra Gmail data source connector does not support creating custom index fields due to API limitations.

Google Drive

Google Drive is a cloud-based file storage service. You can use Amazon Kendra to index documents stored in shared drives, My Drives, and Shared with me folders in your Google Drive data source. You can index both Google Workspace documents as well as documents listed in [Types of documentation](#). You can also use inclusion and exclusion filters to index content by file name, file type, and file path.

You can connect Amazon Kendra to your Google Drive data source using the Amazon Kendra console, the **TemplateConfiguration** API, or the **GoogleDriveConfiguration** API.

Amazon Kendra has two versions of the Google Drive connector. Supported features of each version include:

Google Drive connector V1.0 / GoogleDriveConfiguration API

- Field mappings
- Inclusion/exclusion filters

Google Drive connector V2.0 / TemplateConfiguration API

- User context filtering
- Virtual private cloud (VPC)
- Inclusion/exclusion filters
- Sync all documents/Sync only new, modified, or deleted documents
Note
Support for Google Drive connector V1.0 / Google DriveConfiguration API is scheduled to end in 2023. We recommend migrating to or using Google Drive connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra Google Drive data source connector, see Troubleshooting data sources (p. 636).

Topics
- Google Drive connector V1.0 (p. 354)
- Google Drive connector V2.0 (p. 358)

Google Drive connector V1.0

Google Drive is a cloud-based file storage service. You can use Amazon Kendra to index documents and comments stored in shared drives, My Drives, and Shared with me folders in your Google Drive data source. You can index Google Workspace documents, as well as documents listed in Types of documentation. You can also use inclusion and exclusion filters to index content by file name, file type, and file path.

Note
Support for Google Drive connector V1.0 / Google DriveConfiguration API is scheduled to end in 2023. We recommend migrating to or using Google Drive connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra Google Drive data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 354)
- Prerequisites (p. 354)
- Connection instructions (p. 355)
- Learn more (p. 357)

Supported features
- Field mappings
- User context filtering
- Inclusion/exclusion filters

Prerequisites

Before you can use Amazon Kendra to index your Google Drive data source, make these changes in your Google Drive and AWS accounts.

In Google Drive, make sure you have:

- Either been granted access by a super admin role or are a user with administrative privileges. You do not need a super admin role for yourself if you have been granted access by a super admin role.
- Created a service account with Enable G Suite Domain-wide Delegation activated and a JSON key as private key using the account.
- Copied your user account email and your service account email. When you connect to Amazon Kendra you enter your user account email as admin account email and your service account email as client email in your Secrets Manager secret.
• Added Admin SDK API and Google Drive API in your account.
• Added (or asked a user with a super admin role to add) the following permissions to your service account using a super admin role:
 • https://www.googleapis.com/auth/drive.readonly
 • https://www.googleapis.com/auth/drive.metadata.readonly
 • https://www.googleapis.com/auth/admin.directory.user.readonly
 • https://www.googleapis.com/auth/admin.directory.group.readonly
• Checked each document is unique in Google Drive and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:
• Created an Amazon Kendra index and, if using the API, noted the index ID.
• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.
• Stored your Google Drive authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Google Drive data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Google Drive data source, you must provide the necessary details of your Google Drive data source so that Amazon Kendra can access your data. If you have not yet configured Google Drive for Amazon Kendra see **Prerequisites** (p. 354).

Console

To connect Amazon Kendra to Google Drive

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose **Indexes** and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your **User access control** settings under **Index settings**.
3. On the **Getting started** page, choose **Add data source**.
4. On the **Add data source** page, choose **Google Drive connector V1.0**, and then choose **Add connector**.
5. On the **Specify data source details** page, enter the following information:
a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.

b. (Optional) **Description**—Enter an optional description for your data source.

c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.

e. Choose **Next**.

6. On the **Define access and security** page, enter the following information:

a. For **Type of authentication**—Choose between **Existing** and **New**. If you choose to use an existing secret, use **Select secret** to choose your secret.

b. If you choose to create a new secret an AWS Secrets Manager secret option opens.

- Enter following information in the **Create an AWS Secrets Manager secret window**:

 A. **Secret name**—A name for your secret. The prefix 'AmazonKendra-Google Drive-' is automatically added to your secret name.

 B. For **Admin account email**, **Client email**, and **Private key**—Enter the authentication credential values you generated and downloaded from your Google Drive account.

 C. Choose **Save authentication**.

c. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note

 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

d. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

a. **Exclude user accounts**—The Google Drive users you want to exclude from the index. You can add up to 100 user accounts.

b. **Exclude shared drives**—The Google Drive shared drives you want to exclude from your index. You can add up to 100 shared drives.

c. **Exclude file types drives**—The Google Drive file types you want to exclude from your index. You can also choose to edit MIME type selections.

d. **Additional configurations**—Regular expression patterns to include or exclude certain content. You can add up to 100 patterns.

e. **Frequency**—How often Amazon Kendra will sync with your data source.

f. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

a. For **GoogleDrive field name** and **Additional suggested field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

 Note

 You can add up to 100 patterns.

c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.
To connect Amazon Kendra to Google Drive

You must specify the following using the GoogleDriveConfiguration API:

• **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Google Drive account. The secret is stored in a JSON structure with the following keys:

```json
{
    "clientAccount": "service account email",
    "adminAccount": "user account email",
    "privateKey": "private key"
}
```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

• **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Google Drive connector and Amazon Kendra. For more information, see IAM roles for Google Drive data sources.

You can also add the following optional features:

• **Inclusion and exclusion filters**—By default Amazon Kendra indexes all documents in Google Drive. You can specify whether to include or exclude certain content in shared drives, user accounts, document MIME types, and files. If you choose to exclude user accounts, none of the files in the My Drive owned by the account are indexed. Files shared with the user are indexed unless the owner of the file is also excluded.

 Note

 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

• **Field mappings**—Choose to map your Google Drive data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

• **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for Google Drive data sources.

Learn more

To learn more about integrating Amazon Kendra with your Google Drive data source, see:

• [Getting started with the Amazon Kendra Google Drive connector](#)
Google Drive connector V2.0

Google Drive is a cloud-based file storage service. You can use Amazon Kendra to index documents and comments stored in shared drives, My Drives, and Shared with me folders in your Google Drive data source. You can index Google Workspace documents, as well as documents listed in Types of documentation. You can also use inclusion and exclusion filters to index content by file name, file type, and file path.

Note
Support for Google Drive connector V1.0 / Google DriveConfiguration API is scheduled to end in 2023. We recommend migrating to or using Google Drive connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra Google Drive data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 358)
- Prerequisites (p. 358)
- Connection instructions (p. 359)
- Notes (p. 363)

Supported features
- Field mappings
- User context filtering
- Virtual private cloud (VPC)
- Sync all documents/ Sync only new, modified, or deleted documents
- Inclusion/exclusion filters

Prerequisites

Before you can use Amazon Kendra to index your Google Drive data source, make these changes in your Google Drive and AWS accounts.

In Google Drive, make sure you have:

- **Either** been granted access by a super admin role or are a user with administrative privileges. You do not need a super admin role for yourself if you have been granted access by a super admin role.
- Created a service account with Enable G Suite Domain-wide Delegation activated and generated a JSON private key using the account.
- Added Admin SDK API and Google Drive API in your user account.
- Configured Google Drive Service Account connection credentials containing your admin account email, client email (service account email), and private key. See Google Cloud documentation on creating and deleting service account keys.
- **Optional:** Configured an OAuth 2.0 credential token that can identify Amazon Kendra and generate a OAuth client id, a client secret, and a refresh token as connection credentials. See Google documentation on using OAuth 2.0 to access APIs.
- Added (or asked a user with a super admin role to add) the following OAuth scopes to your service account using a super admin role:
 - https://www.googleapis.com/auth/drive
 - https://www.googleapis.com/auth/drive.file
 - https://www.googleapis.com/auth/drive.readonly
In your AWS account, make sure you have:

- **Created an Amazon Kendra index** and, if using the API, noted the index ID.
- **Created an IAM role** for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Google Drive authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It’s recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It’s **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Google Drive data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Google Drive data source, you must provide the necessary details of your Google Drive data source so that Amazon Kendra can access your data. If you have not yet configured Google Drive for Amazon Kendra see **Prerequisites** (p. 358).

Console

To connect Amazon Kendra to Google Drive

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose **Indexes** and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your **User access control** settings under **Index settings**.

3. On the **Getting started** page, choose **Add data source**.
4. On the **Add data source** page, choose **Google Drive connector V2.0**, and then choose **Add connector**.
5. On the **Specify data source details** page, enter the following information:
a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.

b. (Optional) **Description**—Enter an optional description for your data source.

c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.

e. Choose **Next**.

6. On the **Define access and security** page, enter the following information:

a. For **Authorization**—Choose to enable **Access Control List (ACL)** based on your use case. ACL is enabled by default.

b. For **Authentication**—Choose between **Google service account** and **OAuth 2.0 authentication** based on your use case.

c. **AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your Google Drive authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

i. If you chose **Google service account**, enter the **Secret Name**, **Admin account email**, **Client email**, and **Private Key** that you created in your service account and choose **Save and add secret**.

ii. If you chose **OAuth 2.0 authentication**, enter the details of **Secret Name**, **Client ID**, **Client secret** and **Refresh token** that you created in your service account and choose **Save and add secret**.

d. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

e. (For Google service account authentication users only) **Identity crawler**—Choose to activate Amazon Kendra identity crawler to sync identity information. If you choose to turn identity crawler off, you must upload the principal information using the **PutPrincipalMapping** API.

f. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note

 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

g. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

a. **Sync contents**—Select from the following choices to index **My Drive & Shared with me**, **Shared drives**, and **Comments**. Files are crawled by default.

b. In **Additional configuration - optional** enter the following optional information:

i. **Maximum file size**—Choose the maximum size limit in MBs of files to be crawled by Amazon Kendra.

ii. **User email**—Add user emails you want to include or exclude.

iii. **Shared drives**—Add the shared drive names you want to include or exclude.

iv. **Mime types**—Add MIME types you want to include or exclude.

v. **Attachment regex patterns**—Add regular expression patterns to include or exclude certain attachments for all supported entities. You can add up to 100 patterns.

c. For **Sync mode**, choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.
• **Full sync**—Sync all content regardless of the previous sync status.
• **New or modified documents sync**—Sync only new and modified documents.
• **New, modified, or deleted documents sync**—Sync only new, modified, and deleted documents.

Important
Google Drive API does not support retrieving comments from a permanently deleted file. Comments from trashed files are retrievable. When a file is trashed, the connector will delete comments from the Amazon Kendra index.

d. In **Sync run schedule**, for **Frequency**—How often Amazon Kendra will sync with your data source.

e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

 a. For **Files**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

 b. For **Comments**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

Note
Google Drive API does not support creating custom fields. Custom field mapping is not available for the Google Drive connector.

c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.

API

To connect Amazon Kendra to Google Drive

You must specify a JSON of the data source schema using the **TemplateConfiguration** API. You must provide the following information:

- **Data source**—Specify the data source as GOOGLEDRIVEV2.
- **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials you created in your Google Drive account. If you use Google service account authentication, the secret is stored in a JSON structure with the following keys:

```json
{
    "clientEmail": "user account email",
    "adminAccountEmail": "service account email",
    "privateKey": "private key"
}
```

If you use OAuth 2.0 authentication, the secret is stored in a JSON structure with the following keys:

```json
{
    "clientId": "OAuth client ID",
    "clientSecret": "client secret"
}
```
"refreshToken": "refresh token"
}

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Google Drive connector and Amazon Kendra. For more information, see IAM roles for Google Drive data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

- **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 - FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index
 - FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index
 - CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index

 Important
 Google Drive API does not support retrieving comments from a permanently deleted file. Comments from trashed files are retrievable. When a file is trashed, the connector will delete comments from the Amazon Kendra index.

- **Enable identity crawler**—Specify whether to activate identity crawler. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.

- **Inclusion and exclusion filters**—You can specify whether to include or exclude certain user accounts, shared drives, MIME types, and files.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—You can only built-in index fields for the Amazon Kendra Google Drive connector. Custom field mapping is not available for the Google Drive connector because of API limitations. For more information, see Mapping data source fields.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for Google Drive data sources.

For a list of other important JSON keys to configure, see Google Drive template schema.
Notes

- Custom field mapping is not available for Google Drive connector as the Google Drive UI does not support creating custom fields.
- Google Drive API does not support retrieving comments from a permanently deleted file. Comments are retrievable, however, for trashed files. When a file is trashed, the Amazon Kendra connector will delete comments from the Amazon Kendra index.
- Google Drive API does not return comments present in a .docx file.

Jira

Jira is a project management tool for software development, product management, and bug tracking. You can use Amazon Kendra to index your Jira projects, issues, comments, attachments, worklogs, and statuses.

Amazon Kendra currently only supports Jira Cloud.

You can connect Amazon Kendra to your Jira data source using either the Amazon Kendra console or the JiraConfiguration API. For a list of features supported by each, see Supported features (p. 363).

For troubleshooting your Amazon Kendra Jira data source connector, see Troubleshooting data sources (p. 636).

Topics

- Supported features (p. 363)
- Prerequisites (p. 363)
- Connection instructions (p. 364)
- Learn more (p. 366)

Supported features

Amazon Kendra Jira data source connector supports the following features:

- Change log
- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your Jira data source, make these changes in your Jira and AWS accounts.

In Jira, make sure you have:

- Created Jira API token authentication credentials that include a Jira ID (user name or email) and a Jira credential (Jira API token). See Atlassian documentation on managing API tokens.
- Noted the Jira account URL from your Jira account settings. For example, company.atlassian.net.
• Checked each document is unique in Jira and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

• **Created an Amazon Kendra index** and, if using the API, noted the index ID.

• **Created an IAM role** for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

• Stored your Jira authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don't have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Jira data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Jira data source, you must provide the necessary details of your Jira data source so that Amazon Kendra can access your data. If you have not yet configured Jira for Amazon Kendra, see [Prerequisites (p. 363)](#).

Console

To connect Amazon Kendra to Jira

1. Sign in to the AWS Management Console and open the Amazon Kendra console.

2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your **User access control** settings under Index settings.

3. On the Getting started page, choose Add data source.

4. On the Add data source page, choose **Jira connector**, and then choose Add data source.

5. On the Specify data source details page, enter the following information:

 a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.

 b. **Optional** **Description**—Enter an optional description for your data source.

 c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

 d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.

 e. Choose Next.

6. On the Define access and security page, enter the following information:
a. **Jira Account URL**—Enter your Jira Account URL.

b. **AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your Jira authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

 i. Enter following information in the **Create an AWS Secrets Manager secret window**:

 A. **Secret name**—A name for your secret. The prefix 'AmazonKendra-Jira-' is automatically added to your secret name.

 B. For **Jira ID**—Enter the Jira user name or email.

 C. For **Password/Token**—Enter the Jira API token you created from your Jira account.

 ii. Choose **Save**.

c. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

d. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

e. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

 a. **Select which Jira projects to index**—The Jira entities or content types you want to crawl.

 b. **Statuses, Additional elements, and Issue types**—Select content to refine the scope of your index.

 c. **Change log**—Select to update your index instead of syncing all your files.

 d. **Regex patterns**—Regular expression patterns to include or exclude certain files. You can add up to 100 patterns.

 e. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.

 f. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

 a. For **Project, Issue, Comment, Attachment, Worklog**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Jira

You must specify the following using the **JiraConfiguration** API:

- **Data source URL**—Specify your Jira account URL. For example, *company.atlassian.net*.

- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Jira account. The secret is stored in a JSON structure with the following keys:
Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Jira connector and Amazon Kendra. For more information, see IAM roles for Jira data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration as part of the data source configuration. See Configuring Amazon Kendra to use a VPC.

- **Change log**—Whether Amazon Kendra should use the Jira data source change log mechanism to determine if a document must be added, updated, or deleted in the index.

 Note
 Use the change log if you don't want Amazon Kendra to scan all of the documents. If your change log is large, it might take Amazon Kendra less time to scan the documents in the Jira data source than to process the change log. If you are syncing your Jira data source with your index for the first time, all documents are scanned.

- **Inclusion and exclusion filters**—You can specify whether to include or exclude certain projects, issues, comments, attachments, worklogs, and statuses.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your Jira data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for Jira data sources.

Learn more
To learn more about integrating Amazon Kendra with your Jira data source, see:

- Intelligently search your Jira projects with Amazon Kendra Jira Cloud connector

Microsoft Exchange
Microsoft Exchange is an enterprise collaboration tool for messaging, meetings and file sharing. If you are a Microsoft Exchange user, you can use Amazon Kendra to index your Microsoft Exchange data source.
You can connect Amazon Kendra to your Microsoft Exchange data source using the Amazon Kendra console and the TemplateConfiguration API.

For troubleshooting your Amazon Kendra Microsoft Exchange data source connector, see Troubleshooting data sources (p. 636).

Supported features

- Field mappings
- Inclusion/exclusion filters
- Virtual private cloud (VPC)
- Sync all documents/Sync only new, modified, or deleted documents

Prerequisites

Before you can use Amazon Kendra to index your Microsoft Exchange data source, make these changes in your Microsoft Exchange and AWS accounts.

In Microsoft Exchange, make sure you have:

- Created a Microsoft Exchange account in Office 365.
- Noted your Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.
- Created an OAuth application in the Azure portal and noted the tenant ID, client ID and client secret or client credentials. See Microsoft tutorial for more information.
- Added the following permissions for the connector application:

<table>
<thead>
<tr>
<th>Microsoft Graph</th>
<th>Office 365 Exchange Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mail.Read (Application)</td>
<td>full_access_as_app (Application)</td>
</tr>
<tr>
<td>Mail.ReadBasic (Application)</td>
<td></td>
</tr>
<tr>
<td>Mail.ReadBasic.All (Application)</td>
<td></td>
</tr>
<tr>
<td>Calendars.Read (Application)</td>
<td></td>
</tr>
<tr>
<td>User.Read.All (Application)</td>
<td></td>
</tr>
<tr>
<td>Contacts.Read (Application)</td>
<td></td>
</tr>
<tr>
<td>Notes.Read.All (Application)</td>
<td></td>
</tr>
<tr>
<td>Directory.Read.All (Application)</td>
<td></td>
</tr>
<tr>
<td>EWS.AccessAsUser.All (Delegated)</td>
<td></td>
</tr>
</tbody>
</table>

- Checked each document is unique in Microsoft Exchange and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

Note

If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.
• Stored your Microsoft Exchange authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

Note
It’s recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It’s not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Microsoft Exchange data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Microsoft Exchange data source, you must provide the necessary details of your Microsoft Exchange data source so that Amazon Kendra can access your data. If you have not yet configured Microsoft Exchange for Amazon Kendra, see *Prerequisites* (p. 367).

Console

To connect Amazon Kendra to Microsoft Exchange

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose **Indexes** and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your **User access control** settings under **Index settings**.

3. On the **Getting started** page, choose **Add data source**.
4. On the **Add data source** page, choose **Microsoft Exchange connector**, and then choose **Add data source**.
5. On the **Specify data source details** page, enter the following information:
 a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) **Description**—Enter an optional description for your data source.
 c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.
 e. Choose **Next**.
6. On the **Define access and security** page, enter the following information:
 a. **Source**—Enter your Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.
 b. **AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your Microsoft Exchange authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

 i. Enter following information in the **Create an AWS Secrets Manager secret window**:

 A. **Secret name**—A name for your secret. The prefix 'AmazonKendra-Microsoft Exchange
B. For **Client ID** and **Client Secret**—Enter the authentication credential values you created in your Microsoft Exchange account in the Azure portal.

ii. Choose **Save**.

C. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

d. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

Note
IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

e. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

a. **Sync contents**—Select contents to sync.

b. **Additional configuration**—You can optionally index the following content instead of syncing all the documents.

 • **Entity types** — Choose the entities you want to sync. You can choose between **Calendar**, **OneNotes** and **Contacts**.

 • **Calendar crawling** — Enter the start and end date for the sync of your calendar.

 • **Include email** — Enter the **Email from** and **Email to** domains, and any **Subject** lines you wish to include or exclude in your index.

 • **Regex for domains** — Add patterns to include and exclude certain email domains from your index.

 • **Regex patterns** — Add regular expression patterns to include or exclude certain files. You can add up to 100 patterns.

(c. **Sync mode**—You can choose how you want to update your index when your data source content changes.

i. If you choose full sync, Amazon Kendra will sync all contents in all entities, regardless of the previous sync status.

ii. If you choose new or modified content sync, Amazon Kendra will only sync new or modified content.

iii. If you choose new, modified or deleted content sync, Amazon Kendra will only sync new, modified or deleted content.

8. On the **Set field mappings** page, enter the following information:

a. **Default data source fields**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Microsoft Exchange

You must specify a JSON of the **data source schema** using the **TemplateConfiguration** API. You must provide the following information:
• **Data source**—You must specify the data source as MSEXCHANGE.

• **Tenant ID**—You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.

• **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.

• **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Microsoft Exchange account. The secret is stored in a JSON structure with the following keys:

```json
{
   "clientID": "client ID",
   "clientSecret": "client secret"
}
```

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

• **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Microsoft Exchange connector and Amazon Kendra. For more information, see IAM roles for Microsoft Exchange data sources.

You can also add the following optional features:

• **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

• **Inclusion and exclusion filters**—Specify whether to include or exclude certain pages and assets.

Note
Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

• **Field mappings**—Choose to map your Microsoft Exchange data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

Learn more
To learn more about integrating Amazon Kendra with your Microsoft Exchange data source, see:

• Index your Microsoft Exchange content using the Exchange connector for Amazon Kendra

Microsoft OneDrive

Microsoft OneDrive is cloud-based storage service that you can use to store, share, and host your content. You can use Amazon Kendra to index your OneDrive data source.

You can connect Amazon Kendra to your OneDrive data source using the Amazon Kendra console and the OneDriveConfiguration API.

Amazon Kendra has two versions of the OneDrive connector. Supported features of each version include:
Microsoft OneDrive connector V1.0 / OneDriveConfiguration API

- Field mappings
- Inclusion/exclusion filters

Microsoft OneDrive connector V2.0 / TemplateConfiguration API

- User context filtering
- Inclusion/exclusion filters
- Identity crawler functionality
- Sync all documents/Sync only new, modified, deleted documents

Note
Support for OneDrive connector V1.0 / OneDriveConfiguration API is scheduled to end by June 2023. We recommend using OneDrive connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra OneDrive data source connector, see Troubleshooting data sources (p. 636).

Topics

- Microsoft OneDrive connector V1.0 (p. 371)
- Microsoft OneDrive connector V2.0 (p. 375)
- Learn more (p. 379)

Microsoft OneDrive connector V1.0

Microsoft OneDrive is a cloud-based storage service that you can use to store, share, and host your content. You can use Amazon Kendra to index your Microsoft OneDrive data source.

Note
Support for OneDrive connector V1.0 / Microsoft OneDrive API is scheduled to end by June 2023. We recommend using OneDrive connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra OneDrive data source connector, see Troubleshooting data sources (p. 636).

Topics

- Supported features (p. 371)
- Prerequisites (p. 371)
- Connection instructions (p. 372)

Supported features

- Field mappings
- Inclusion/exclusion filters

Prerequisites

Before you can use Amazon Kendra to index your OneDrive data source, make these changes in your OneDrive and AWS accounts.
In your Azure Active Directory (AD), make sure you have:

- Created an Azure Active Directory (AD) application.
- Used the AD application ID to register a secret key for the application on the AD site. The secret key must contain the application ID and a secret key.
- Copied the AD domain of the organization.
- Added the following permissions to your AD application on the Microsoft Graph option:
 - Read files in all site collections (File.Read.All)
 - Read all users' full profile (User.Read.All)
 - Read directory data (Directory.Read.All)
 - Read all groups (Group.Read.All)
 - Read items in all site collections (Site.Read.All)
- Copied the list of users whose documents must be indexed. You can choose to provide a list of user names, or you can provide the user names in a file stored in an Amazon S3. After you create the data source, you can:
 - Modify the list of users.
 - Change from a list of users to a list stored in an Amazon S3 bucket.
 - Change the Amazon S3 bucket location of a list of users. If you change the bucket location, you must also update the IAM role for the data source so that it has access to the bucket.

 Note
 If you store the list of user names in an Amazon S3 bucket, the IAM policy for the data source must provide access to the bucket and access to the key that the bucket was encrypted with, if any.

- Checked each document is unique in OneDrive and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your OneDrive authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don't have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your OneDrive data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your OneDrive data source you must provide details of your OneDrive credentials so that Amazon Kendra can access your data. If you have not yet configured OneDrive for Amazon Kendra see **Prerequisites**.
To connect Amazon Kendra to OneDrive

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose OneDrive connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:
 a. OneDrive tenant ID—Enter the OneDrive tenant ID without the protocol.
 b. Type of authentication—Choose between New and Existing.
 c. i. If you choose Existing, select an existing secret for Select secret.
 ii. If you choose New, enter following information in the New AWS Secrets Manager secret section:
 A. Secret name—A name for your secret. The prefix ‘AmazonKendra-OneDrive-’ is automatically added to your secret name.
 B. For Application ID and Application password—Enter the authentication credential values from your OneDrive account and then choose Save authentication.
 d. IAM role—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.
 e. Choose Next.
7. On the Configure sync settings page, enter the following information:
 a. Choose between List file and Names list based on your use case.
 i. If you choose List file, enter the following information:
 • Select location—Enter the path to your Amazon S3 bucket.
 Add user list file to Amazon S3—Select to add your user list files to your Amazon S3 bucket.
 User local group mappings—Select to use local group mapping to filter your content.
ii. If you choose **Names list**, enter the following information:

- **User name**—Enter up to 10 user drives to index. To add more than 10 users, create a file that contains the names.

 Add another—Choose to add more users.

- **User local group mappings**—Select to use local group mapping to filter your content.

b. For **Additional configurations**—Add regular expression patterns to include or exclude certain files. You can add up to 100 patterns.

c. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.

d. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

a. For **Default data source fields** and **Additional suggested field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

b. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.

API

To connect Amazon Kendra to OneDrive

You must specify the following using the **OneDriveConfiguration** API:

- **Tenant ID**—Specify the Azure Active Directory domain of the organization.

- **OneDrive Users**—Specify the list of user accounts whose documents should be indexed.

- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your OneDrive account. The secret is stored in a JSON structure with the following keys:

```json
{
  "username": "OAuth client ID",
  "password": "client secret"
}
```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call **CreateDataSource** to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the OneDrive connector and Amazon Kendra. For more information, see [IAM roles for OneDrive data sources](#).

You can also add the following optional features:

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain documents.
Note
Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your OneDrive data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.
- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for OneDrive data sources.

Microsoft OneDrive connector V2.0

Microsoft OneDrive is cloud-based storage service that you can use to store, share, and host your content. You can use Amazon Kendra to index your OneDrive data source.

You can connect Amazon Kendra to your OneDrive data source using the Amazon Kendra console and the OneDriveConfiguration API.

Note
Support for OneDrive Connector V1.0 / OneDriveConfiguration API is scheduled to end by June 2023. We recommend using OneDrive Connector V2.0 / TemplateConfiguration API. Version 2.0 provides additional ACLs and identity crawler functionality.

For troubleshooting your Amazon Kendra OneDrive data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 375)
- Prerequisites (p. 375)
- Connection instructions (p. 376)

Supported features

Amazon Kendra OneDrive data source connector supports the following features:

- User context filtering
- Inclusion/exclusion filters
- Identity crawler functionality
- Sync all documents/Sync only new, modified, deleted documents

Prerequisites

Before you can use Amazon Kendra to index your OneDrive data source, make these changes in your OneDrive and AWS accounts.

In your Azure Active Directory (AD), make sure you have:

- Created a OneDrive account in Office 365.
- Noted your Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.
- Created an Azure Active Directory (AD) application.
• Used the AD application ID to register a secret key for the application on the AD site. The secret key must contain the application ID and a secret key.
• Copied the AD domain of the organization.
• Added the following permissions to your AD application on the Microsoft Graph option:
 • Read files in all site collections (File.Read.All)
 • Read all users' full profiles (User.Read.All)
 • Read all groups (Group.Read.All)
 • Read all notes (Notes.Read.All)
• Copied the list of users whose documents must be indexed. You can choose to provide a list of user names, or you can provide the user names in a file stored in an Amazon S3. After you create the data source, you can:
 • Modify the list of users.
 • Change from a list of users to a list stored in an Amazon S3 bucket.
 • Change the Amazon S3 bucket location of a list of users. If you change the bucket location, you must also update the IAM role for the data source so that it has access to the bucket.

 Note
 If you store the list of user names in an Amazon S3 bucket, the IAM policy for the data source must provide access to the bucket and access to the key that the bucket was encrypted with, if any.
 The OneDrive connector uses **Email from Contact Information** present in the **Onedrive User Properties**. Make sure the user whose data you want to crawl has the email field configured in the **Contact Information** page as for new users this might be blank.

In your AWS account, make sure you have:

• Created an Amazon Kendra index and, if using the API, noted the index id.
• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.
• Stored your OneDrive authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your OneDrive data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index id.

Connection instructions

To connect Amazon Kendra to your OneDrive data source you must provide details of your OneDrive credentials so that Amazon Kendra can access your data. If you have not yet configured OneDrive for Amazon Kendra, see [Prerequisites](p. 375).

Console

To connect Amazon Kendra to OneDrive

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.
3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose OneDrive connector, and then choose Add data source.
5. On the **Specify data source details** page, enter the following information:
 a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) **Description**—Enter an optional description for your data source.
 c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.
 e. Choose **Next**.

6. On the **Define access and security** page, enter the following information:
 a. **OneDrive tenant ID**—Enter the OneDrive tenant ID without the protocol.
 b. In **Authentication**—Choose between **New** and **Existing**.
 c. i. If you choose **Existing**, select an existing secret for **Select secret**.
 ii. If you choose **New**, enter following information in the **New AWS Secrets Manager secret** section:
 a. **Secret name**—A name for your secret. The prefix 'AmazonKendra-OneDrive-' is automatically added to your secret name.
 b. For **Client ID** and **Client Secret**—Enter the client ID and client secret and then select **Save authentication**.
 d. In **Configure VPC and security group - optional**, for **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.
 e. **Identity crawler**—Choose to activate Amazon Kendra identity crawler to sync identity information. If you choose to turn identity crawler off, you must upload the principal information using the **PutPrincipalMapping** API.
 f. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.
 g. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:
 a. For **Sync scope**—Choose which users' OneDrive data to index. You can add a maximum of 10 users manually.
 b. For **Additional configurations**—Add regular expression patterns to include or exclude certain content. You can add up to 100 patterns.
 c. In **Sync mode**, choose how you want to update your index when your data source content changes. **Full sync** indexes all contents, regardless of the previous sync status. **New, modified or deleted documents sync** only syncs the new, modified, or deleted documents.
 d. In **Sync run schedule**, for **Frequency**—Choose how often Amazon Kendra will sync with your data source.
 e. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. For **Default data source fields** and **Additional suggested field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index.
 b. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.
API

To connect Amazon Kendra to OneDrive

You must specify a JSON of the [data source schema](https://kendra.amazon.com/docs/data-source-schemas.html) using the [TemplateConfiguration](https://docs.aws.amazon.com/kendra/latest/dg/API_Templates.html) API. You must provide the following information:

- **Data source**—Specify the data source as ONEDRIVEV2.
- **Tenant ID**—Specify the Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.
- **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials you created in your OneDrive account.

If you use OAuth 2.0 authentication, the secret is stored in a JSON structure with the following keys:

```json
{
    "clientID": "OAuth client ID",
    "clientSecret": "client secret"
}
```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the OneDrive connector and Amazon Kendra. For more information, see [IAM roles for OneDrive data sources](https://kendra.amazon.com/docs/iam-roles-one-drive-data-sources.html).

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see [Configuring Amazon Kendra to use an Amazon VPC](https://kendra.amazon.com/docs/configure-vpc.html).
- **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 - FORCED_FULL_CRAWL to crawl and sync all content to your index
 - FULL_CRAWL to crawl all content and sync only new, modified, or deleted content
 - CHANGE_LOG to crawl and sync only new, modified, and deleted content.
- **Identity crawler**—Specify whether to activate Amazon Kendra identity crawler. If identity crawler is deactivated, you must upload the identity/principal information using the [PutPrincipalMapping](https://docs.aws.amazon.com/kendra/latest/dg/API_PutPrincipalMapping.html) API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see [User context filtering](https://kendra.amazon.com/docs/user-context-filtering.html).
- **Inclusion and exclusion filters**—You can specify whether to include or exclude certain files, OneNote sections, and OneNote pages.

Note

Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.
• **Field mappings**—You can only built-in index fields for the Amazon Kendra OneDrive connector. Custom field mapping is not available for the OneDrive connector because of API limitations. For more information, see [Mapping data source fields](https://docs.aws.amazon.com/kendra/latest/developerguide/mapping-data-source-fields.html).

For a list of other important JSON keys to configure, see [Microsoft OneDrive template schema](p. 197).

Learn more

To learn more about integrating Amazon Kendra with your OneDrive data source, see:

• [Announcing the updated Microsoft OneDrive connector (V2) for Amazon Kendra](https://aws.amazon.com/about-aws/whats-new/2022/03/announcing-the-updated-microsoft-onedrive-connector-v2-for-amazon-kendra/)

Microsoft SharePoint

SharePoint is a collaborative website building service that you can use to customize web content and create pages, sites, document libraries, and lists. You can use Amazon Kendra to index your SharePoint data source.

Amazon Kendra currently supports SharePoint Online and SharePoint Server (versions 2013, 2016, 2019, and Subscription Edition).

You can connect Amazon Kendra to your SharePoint data source using either the [Amazon Kendra console](https://console.aws.amazon.com/kendra), the [TemplateConfiguration API](https://docs.aws.amazon.com/kendra/latest/developerguide/templateconfiguration-api.html), or the [SharePointConfiguration API](https://docs.aws.amazon.com/kendra/latest/developerguide/sharepoint.html).

Amazon Kendra has two versions of the SharePoint connector. Supported features of each version include:

SharePoint Connector V1.0 / SharePointConfiguration API

• Change log
• Field mappings
• User context filtering
• Inclusion/exclusion filters
• Virtual private cloud (VPC)

SharePoint Connector V2.0 / TemplateConfiguration API

• Field mappings
• User context filtering
• Inclusion/exclusion filters
• Virtual private cloud (VPC)
• Sync all documents/Sync only new or modified documents/Sync only new, modified, or deleted documents

Note

Support for SharePoint connector V1.0 / SharePointConfiguration API is scheduled to end in 2023. We recommend migrating to or using SharePoint connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra SharePoint data source connector, see [Troubleshooting data sources](p. 636).
SharePoint connector V1.0

SharePoint is a collaborative website building service that you can use to customize web content and create pages, sites, document libraries, and lists. If you are a SharePoint user, you can use Amazon Kendra to index your SharePoint data source.

Note
Support for SharePoint connector V1.0 / SharePointConfiguration API is scheduled to end in 2023. We recommend migrating to or using SharePoint connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra SharePoint data source connector, see Troubleshooting data sources (p. 636).

Supported features

- Change log
- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your SharePoint data source, make these changes in your SharePoint and AWS accounts.

In SharePoint, make sure you have:

- Noted the URL of the SharePoint sites you want to index.
- **For SharePoint Online:**
 - Noted your basic authentication credentials containing a user name and password with site admin permissions.
 - **Optional:** Generated OAuth 2.0 credentials containing a user name, password, client ID, and client secret.
 - Deactivated Security Defaults in your Azure portal using an administrative user. For more information on managing security default settings in the Azure portal, see Microsoft documentation on how to enable/disable security defaults.
- **For SharePoint Server:**
 - Noted your SharePoint Server domain name (the NetBIOS name in your Active Directory). You use this, along with your SharePoint basic authentication user name and password, to connect SharePoint Server to Amazon Kendra.
Note
If you use SharePoint Server and need to convert your Access Control List (ACL) to email format for filtering on user context, provide the LDAP server URL and LDAP search base. Or you can use the directory domain override. The LDAP server URL is the full domain name and the port number (for example, ldap://example.com:389). The LDAP search base are the domain controllers 'example' and 'com'. With the directory domain override, you can use the email domain instead of using LDAP server URL and LDAP search base. For example, the email domain for username@example.com is 'example.com'. You can use this override if you aren't concerned about validating your domain and simply want to use your email domain.

- Added the following permissions to your SharePoint account:

 For SharePoint lists
 - Open Items—View the source of documents with server-side file handlers.
 - View Application Pages—View forms, views, and application pages. Enumerate lists.
 - View Items—View items in lists and documents in document libraries.
 - View Versions—View past versions of a list item or document.

 For SharePoint websites
 - Browse Directories—Enumerate files and folders in a website using SharePoint Designer and WebDAV interface.
 - Browse User Information—View information about users of the website.
 - Enumerate Permissions—Enumerate permissions on the website, list, folder, document, or list item.
 - Open—Open a website, list, or folder to access items inside the container.
 - Use Client Integration Features—Use SOAP, WebDAV, the client object model, or SharePoint Designer interfaces to access the website.
 - Use Remote Interfaces—Use features that launch client applications.
 - View Pages—View pages on a website.

- Checked each document is unique in SharePoint and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- [Created an Amazon Kendra index](#) and, if using the API, noted the index ID.
- [Created an IAM role](#) for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your SharePoint authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It’s recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It’s **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your SharePoint data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.
Connection instructions

To connect Amazon Kendra to your SharePoint data source you must provide details of your SharePoint credentials so that Amazon Kendra can access your data. If you have not yet configured SharePoint for Amazon Kendra see Prerequisites (p. 380).

Console

To connect Amazon Kendra to SharePoint

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose SharePoint connector v1.0, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.

6. On the Define access and security page, enter the following information:
 a. For Hosting method—Choose between SharePoint Online and SharePoint Server.
 i. For SharePoint Online—Enter the Site URLs specific to your SharePoint repository.
 ii. For SharePoint Server—Choose your SharePoint version, enter Site URLs specific to your SharePoint repository, and enter the Amazon S3 path to your SSL certificate location.
 b. (SharePoint Server only) For Web proxy—Enter the Host name and Port number of your internal SharePoint instance. The port number should be a numeric value between 0 and 65535.
 c. For Authentication—Choose between the following options based on your use case:
 i. For SharePoint Online—Choose between Basic authentication and OAuth 2.0 authentication.
 ii. For SharePoint Server—Choose between None, LDAP, and Manual.
 d. For AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your SharePoint authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens. You must enter a Secret name. The prefix ‘AmazonKendra-SharePoint-’ is automatically added to your secret name.
 e. Enter following other information in the Create an AWS Secrets Manager secret window:
 i. Choose from the following SharePoint Cloud authentication options, based on your use case:
A. **Basic authentication**—Enter your SharePoint account user name as **User name** and SharePoint account password as **Password**.

B. **OAuth 2.0 authentication**—Enter your SharePoint account user name as **User name**, SharePoint account password as **Password**, your auto-generated unique SharePoint ID as **Client ID**, and the shared secret string used by both SharePoint and Amazon Kendra as **Client secret**.

ii. Choose from the following SharePoint Server authentication options, based on your use case:

A. **None**—Enter your SharePoint account user name as **User name**, your SharePoint account password as **Password**, and your **Server Domain Name**.

B. **LDAP**—Enter your SharePoint account user name as **User name**, SharePoint account password as **Password**, your **LDAP Server Endpoint** (including protocol and port number, for example `ldap://example.com:389`), and your **LDAP Search Base** (for example, `dc=example, dc=com`).

C. **Manual**—Enter your SharePoint account user name as **User name**, your SharePoint account password as **Password**, and your **Email Domain Override** (email domain of directory user or group).

iii. Choose **Save**.

f. **Virtual Private Cloud (VPC)**—You must also add **Subnets** and **VPC security groups**.

 Note
 You must use a VPC if you use SharePoint Server. Amazon VPC is optional for other SharePoint versions.

g. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

h. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

 a. **Use Change log**—Select to update your index instead of syncing all your files.
 b. **Crawl attachments**—Select to crawl attachments.
 c. **Use local group mappings**—Select to make sure that documents are properly filtered.
 d. **Additional configuration**—Add regular expression patterns to include or exclude certain files. You can add up to 100 patterns.
 e. In **Sync run schedule** for **Frequency**—How often Amazon Kendra will sync with your data source.
 f. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

 a. **Amazon Kendra default field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index.
 b. For **Custom field mappings**—Add custom data source fields to create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.
API

To connect Amazon Kendra to SharePoint

You must specify the following using SharePointConfiguration API:

- **SharePoint Version**—Specify the SharePoint version you use when configuring SharePoint. This is the case no matter if you use SharePoint Server 2013, SharePoint Server 2016, SharePoint Server 2019, or SharePoint Online.

- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials you created in your SharePoint account. The secret is stored in a JSON structure.

For **SharePoint Online basic authentication**, the following is the minimum JSON structure that must be in your secret:

```json
{
    "username": "user name",
    "password": "password"
}
```

For **SharePoint Online OAuth 2.0 authentication**, the following is the minimum JSON structure that must be in your secret:

```json
{
    "username": "SharePoint account user name",
    "password": "SharePoint account password",
    "clientId": "SharePoint auto-generated unique client id",
    "clientSecret": "secret string shared by Amazon Kendra and SharePoint to authorize communications"
}
```

For **SharePoint Server basic authentication**, the following is the minimum JSON structure that must be in your secret:

```json
{
    "username": "user name",
    "password": "password",
    "domain": "server domain name"
}
```

For **SharePoint Server LDAP authentication** (if you need to convert your access control list (ACL) to email format for filtering on user context you can include the LDAP server URL and LDAP search base in your secret), the following is the minimum JSON structure that must be in your secret:

```json
{
    "username": "user name",
    "password": "password",
    "domain": "server domain name",
    "ldapServerUrl": "ldap://example.com:389",
    "ldapSearchBase": "dc=example,dc=com"
}
```

For **SharePoint Server Manual authentication**, the following is the minimum JSON structure that must be in your secret:

```json
{
    "username": "user name",
    "password": "password"
}
```
"password": "password",
"domain": "server domain name",
"emailDomainOverride": "example.com"
}

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the SharePoint connector and Amazon Kendra. For more information, see IAM roles for SharePoint data sources.

- **Amazon VPC**—If you use SharePoint Server, specify VpcConfiguration as part of the data source configuration. See Configuring Amazon Kendra to use a VPC.

You can also add the following optional features:

- **Web proxy**—Whether to connect to your SharePoint site URLs via a web proxy. You can use this option only for SharePoint Server.

- **Indexing lists**—Whether Amazon Kendra should index the contents of attachments to SharePoint list items.

- **Change log**—Whether Amazon Kendra should use the SharePoint data source change log mechanism to determine if a document must be added, updated, or deleted in the index.

 Note
 Use the change log if you don't want Amazon Kendra to scan all of the documents. If your change log is large, it might take Amazon Kendra less time to scan the documents in the SharePoint data source than to process the change log. If you are syncing your SharePoint data source with your index for the first time, all documents are scanned.

- **Inclusion and exclusion filters**—You can specify whether to include or exclude certain content.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your SharePoint data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for SharePoint data sources.

Learn more
To learn more about integrating Amazon Kendra with your SharePoint data source, see:

- Getting started with the Amazon Kendra SharePoint Online connector
SharePoint connector V2.0

SharePoint is a collaborative website building service that you can use to customize web content and create pages, sites, document libraries, and lists. You can use Amazon Kendra to index your SharePoint data source.

Note
Support for SharePoint connector V1.0 / SharePointConfiguration API is scheduled to end in 2023. We recommend migrating to or using SharePoint connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra SharePoint data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 386)
- Prerequisites (p. 386)
- Connection instructions (p. 389)
- Notes (p. 398)

Supported features
Amazon Kendra SharePoint data source connector supports the following features:
- Field mappings
- Identity crawling
- User context filtering
- Virtual private cloud (VPC)
- Inclusion/exclusion patterns
- Full sync/New or modified content sync/New, modified, or deleted content sync

Prerequisites
Before you can use Amazon Kendra to index your SharePoint data source, make these changes in your SharePoint and AWS accounts.

In SharePoint Online, make sure you have:

- Copied your SharePoint instance URLs. The format for the host URL you enter is https://yourdomain.sharepoint.com/sites/mysite. Your URL must start with https and contain sharepoint.com.
- Copied the domain name of your SharePoint instance URL.
- Noted your basic authentication credentials containing the user name and password with site admin permissions to connect to SharePoint Online.
- **If using authentication type other than Basic authentication:** Copied the tenant ID of your SharePoint instance. For details on how to find your tenant ID, see Find your Microsoft 365 tenant ID.
- **For OAuth 2.0 authentication:** Noted your Basic authentication credentials containing the user name and password you use to connect to SharePoint Online and the Client ID and Client secret generated after registering SharePoint with Azure AD.
• **If you're not using ACL**, added the following permissions:

<table>
<thead>
<tr>
<th>Microsoft Graph</th>
<th>SharePoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Notes.Read.All (Application)—Read all OneNote notebooks</td>
<td>• AllSites.Read (Delegated)—Read items in all site collections</td>
</tr>
<tr>
<td>• Sites.Read.All (Application)—Read items in all site collections</td>
<td></td>
</tr>
</tbody>
</table>

Note

Note.Read.All and Sites.Read.All are required only if you want to crawl OneNote Documents.

• **If you're using ACL**, added the following permissions:

<table>
<thead>
<tr>
<th>Microsoft Graph</th>
<th>SharePoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Group.Member.Read.All (Application)—Read all group memberships</td>
<td>• AllSites.Read (Delegated)—Read items in all site collections</td>
</tr>
<tr>
<td>• Notes.Read.All (Application)—Read all OneNote notebooks</td>
<td></td>
</tr>
<tr>
<td>• Sites.FullControl.All (Delegated)—Have full control of all site collections</td>
<td></td>
</tr>
<tr>
<td>• Sites.Read.All (Application)—Read items in all site collections</td>
<td></td>
</tr>
<tr>
<td>• User.Read.All (Application)—Read all users' full profiles</td>
<td></td>
</tr>
<tr>
<td>• AllSites.Read (Delegated)—Read items in all site collections</td>
<td></td>
</tr>
</tbody>
</table>

Note

GroupMember.Read.All and User.Read.All are required only if Identity crawler is activated.

• **For Azure AD App-Only authentication**: Noted the X.509 certificate, private key, and the Client ID you generated after registering SharePoint with Azure AD.

• **If you're not using ACL**, added the following permissions:

<table>
<thead>
<tr>
<th>SharePoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AllSites.Read (Delegated)—Read items in all site collections</td>
</tr>
<tr>
<td>• Sites.Manage.All (Application)—Read and write items and lists in all site collections</td>
</tr>
</tbody>
</table>

• **If you're using ACL**, added the following permissions:

<table>
<thead>
<tr>
<th>SharePoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AllSites.Read (Delegated)—Read items in all site collections</td>
</tr>
<tr>
<td>• Sites.FullControl.All (Application)—Have full control of all site collections</td>
</tr>
<tr>
<td>• Sites.Manage.All (Application)—Read and write items and lists in all site collections</td>
</tr>
</tbody>
</table>
• **For SharePoint App-Only authentication:** Noted your SharePoint client ID and client secret generated while granting permission to SharePoint App Only, and your Client ID and Client secret generated when you registered your SharePoint app with Azure AD.

 Note
 SharePoint App-Only Authentication is not supported for SharePoint 2013 version.

• **(Optional) If you're crawling OneNote documents and using Identity crawler,** added the following permissions:

 Microsoft Graph
 - GroupMember.Read.All (Application)—Read all group memberships
 - Notes.Read.All (Application)—Read all OneNote notebooks
 - Sites.Read.All (Application)—Read items in all site collections
 - User.Read.All (Application)—Read all users' full profiles

 Note
 No API permissions are required for crawling entities using Basic authentication and SharePoint App-only authentication.

In SharePoint Server, make sure you have:

• Copied your SharePoint instance URLs and the domain name of your SharePoint URLs. The format for the host URL you enter is `https://yourcompany/sites/mysite`. Your URL must start with `https`.

 Note
 (On-premise/server) Amazon Kendra checks if the endpoint information included in AWS Secrets Manager is the same the endpoint information specified in your data source configuration details. This helps protect against the confused deputy problem, which is a security issue where a user doesn't have permission to perform an action but uses Amazon Kendra as a proxy to access the configured secret and perform the action. If you later change your endpoint information, you must create a new secret to sync this information.

• If using **SharePoint App-Only authentication** for access control:
 - Copied the SharePoint client ID generated when you registered App Only at Site Level. ClientID format is ClientID@TenantId. For example, `ffa956f3-8f89-44e7-b0e4-49670756342c@888d0b57-69f1-4fb8-957f-e1f0bedf82fe`.
 - Copied the SharePoint client secret generated when you registered App Only at Site Level.

 Note: Because client IDs and client secrets are generated for single sites only when you register SharePoint Server for App Only authentication, only one site URL is supported for SharePoint App Only authentication.

 Note
 SharePoint App-Only Authentication is not supported for SharePoint 2013 version.

• If using **Email ID with Custom Domain** for access control:
 - Noted your custom email domain value—for example: "amazon.com".

• If using **Email ID with Domain from IDP** authorization, copied your:
 - LDAP Server Endpoint (endpoint of LDAP server including protocol and port number). For example: `ldap://example.com:389`.
 - LDAP Search Base (search base of the LDAP user). For example: `CN=Users,DC=sharepoint,DC=com`.
• LDAP user name and LDAP password.
• Either configured NTLM authentication credentials or configured Kerberos authentication credentials containing a user name (SharePoint account user name) and password (SharePoint account password).

In your AWS account, make sure you have:

• Created an Amazon Kendra index and, if using the API, noted the index ID.
• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

Note
If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

• Stored your SharePoint authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your SharePoint data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your SharePoint data source, you must provide details of your SharePoint credentials so that Amazon Kendra can access your data. If you have not yet configured SharePoint for Amazon Kendra see Prerequisites (p. 386).

Console: SharePoint Online

To connect Amazon Kendra to SharePoint Online

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose SharePoint connector V2.0, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. **On the Define access and security page**, enter the following information:

 a. **In Source**, for **Hosting Method**—Choose **SharePoint Online**.

 b. **Site URLs specific to your SharePoint repository**—Enter the SharePoint host URLs. The format for the host URLs you enter is `https://yourdomain.sharepoint.com/sites/mysite`. The URL must start with `https` protocol. Separate URLs with a new line. You can add up to 100 URLs.

 c. **Domain**—Enter the SharePoint domain. For example, the domain in the URL `https://yourdomain.sharepoint.com/sites/mysite` is `yourdomain`.

 d. **For Authorization**, you can choose to use an access control list (ACL) for controlling search results based on your end-user's document access level in your SharePoint Online data source. Authorization using ACL is activated by default.

 e. **For Authentication**, choose between **Basic**, **Oauth 2.0**, **Azure AD App-Only authentication**, and **SharePoint App-Only authentication** based on your use case.

 i. **If using Basic Authentication**, enter the following information:

 - **For AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your SharePoint authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens. Enter the following information in the window:

 - **Secret name**—A name for your secret. The prefix ‘AmazonKendra-SharePoint-’ is automatically added to your secret name.

 - **Username**—User name for your SharePoint account.

 - **Password**—Password for your SharePoint account.

 ii. **If using OAuth 2.0 authentication**, enter the following information:

 - **Tenant ID**—Tenant ID of your SharePoint account.

 - **For AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your SharePoint authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens. Enter the following information in the window:

 - **Secret name**—A name for your secret. The prefix ‘AmazonKendra-SharePoint-’ is automatically added to your secret name.

 - **Username**—User name for your SharePoint account.

 - **Password**—Password for your SharePoint account.

 - **Client ID**—The Azure AD client ID generated when you register SharePoint in Azure AD.

 - **Client secret**—The Azure AD client secret generated when you register SharePoint in Azure AD.

 iii. **If using Azure AD App-Only authentication**, enter the following information:

 - **Tenant ID**—Tenant ID of your SharePoint account.

 - **Azure AD self-signed X.509 certificate**—Certificate to authenticate the connector for Azure AD.

 - **For AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your SharePoint authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens. Enter the following information in the window:

 - **Secret name**—A name for your secret. The prefix ‘AmazonKendra-SharePoint-’ is automatically added to your secret name.

 - **Client ID**—The Azure AD client ID generated when you register SharePoint in Azure AD.
• **Private key**—A private key to authenticate the connector for Azure AD.

iv. If using **SharePoint App-Only authentication**, enter the following information:

• **Tenant ID**—Tenant ID of your SharePoint account.

• **For AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your SharePoint authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens. Enter the following information in the window:

 • **Secret name**—A name for your secret. The prefix ‘AmazonKendra-SharePoint-’ is automatically added to your secret name.

 • **SharePoint client ID**—The SharePoint client ID you generated when you registered App Only at Tenant Level. ClientID format is `ClientID@TenantId`. For example, `ff956f3-8f89-44e7-b0e4-49670756342c@888d0b57-69f1-4fb8-957f-e1f0bedf82fe`.

 • **SharePoint client secret**—The SharePoint client secret generated when your register for App Only at Tenant Level.

 • **Client ID**—The Azure AD client ID generated when you register SharePoint in Azure AD.

 • **Client secret**—The Azure AD client secret generated when you register SharePoint to Azure AD.

f. **Identity crawler**—(Activated only when ACL is enabled) Choose to activate Amazon Kendra identity crawler to sync identity information. If you choose to turn identity crawler off, you must upload the principal information using the `PutPrincipalMapping` API.

 Note
 Crawl AD Group mapping is available to OAuth 2.0 and SharePoint App Only authentication users only.

You can also choose to:

i. **Crawl Local Group Mapping**—Activate to crawl local group mapping.

ii. **Crawl AD Group Mapping**—Activate to crawl Azure Active Directory group mapping.

g. (Optional) **Configure VPC and security group**—Select a VPC to use with your SharePoint instance. If so, you must add **Subnets** and **VPC security groups**.

h. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

i. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

a. In **Sync scope**, choose from the following options:

 i. **Select entities**—Choose the entities you want to crawl. You can select to crawl **All entities** or any combination of **Files**, **Attachments**, **Links Pages**, **Events**, **Comments**, and **List Data**.

 ii. In **Additional configuration**, for **Entity regex patterns**—Add regular expression patterns for **Links**, **Pages**, and **Events** to include specific entities instead of syncing all your documents.

 iii. **Regex patterns**—Add regular expression patterns to include or exclude files by **File path** **File name** **File type**, **OneNote section name**, and **OneNote page name** instead of syncing all your documents. You can add up to 100.
b. For **Sync mode** choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.
 - **Full sync**—Sync all content regardless of the previous sync status.
 - **New or modified documents sync**—Sync only new or modified documents.
 - **New, modified, or deleted documents sync**—Sync only new, modified, and deleted documents.

c. In **Sync run schedule**, for **Frequency**—How often Amazon Kendra will sync with your data source.

d. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. For **Events Pages, Files, Links, Attachments**, and **Comments**—Select from the Amazon Kendra generated default data source fields that you want to map to your index.
 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

Console: SharePoint Server

To connect Amazon Kendra to SharePoint

1. Sign in to the AWS Management Console and open the [Amazon Kendra console](https://console.aws.amazon.com/kendra/home).
2. From the left navigation pane, choose **Indexes** and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your **User access control** settings under **Index settings**.

3. On the **Getting started** page, choose **Add data source**.
4. On the **Add data source** page, choose **SharePoint connector V2.0**, and then choose **Add data source**.
5. On the **Specify data source details** page, enter the following information:
 a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) **Description**—Enter an optional description for your data source.
 c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.
 e. Choose **Next**.
6. On the **Define access and security** page, enter the following information:
 a. In **Source**, for **Hosting Method**—Choose **SharePoint Server**.
 b. **Choose SharePoint Version**—Choose between SharePoint 2013, SharePoint 2016, SharePoint 2019, and **SharePoint (Subscription Edition)**.
 c. **Site URLs specific to your SharePoint repository**—Enter the SharePoint host URLs. The format for the host URLs you enter is https://yourcompany/sites/mysite. The URL
must start with https protocol. Separate URLs with a new line. You can add up to 100 URLs.

d. **Domain**—Enter the SharePoint domain. For example, the domain in the URL https://yourcompany/sites/mysite is yourcompany

e. **SSL certificate location**—Enter the Amazon S3 path to your SSL certificate file.

f. (Optional) For **Web proxy**—Enter the host name (without the http:// or https:// protocol), and the port number used by the host URL transport protocol. The numeric value of the port number must be between 0 and 65535.

g. For **Authorization**—You can choose to use an access control list (ACL) for controlling search results based on your end-user's document access level in your SharePoint data source. Authorization using ACL is activated by default. When ACL is deactivated, no ACL information is crawled and no access control/context filtering is available. For SharePoint Server you can choose from the following ACL options:

i. **Email ID with Domain from IDP**—Access control will be based on email ids extracted from email domains fetched from the underlying identity provider (IDP). You provide the IDP connection details in your Secrets Manager secret during Authentication.

ii. **Email ID with Custom Domain**—Access control will be based on email IDs. You want to provide the email domain value. For example, "amazon.com". The email domain will be used to construct the email ID for access control. You must enter your email domain using Add Email Domain.

iii. **Domain\User with Domain**—Access control will be structured using a Domain\User ID format. You need to provide a valid Domain name. For example: "sharepoint2019" to construct access control.

h. For **Authentication**, choose between **SharePoint App-Only authentication**, **NTLM authentication**, and **Kerberos authentication** based on your use case.

i. Enter the following information for both **NTLM authentication** and **Kerberos authentication**:

 For **AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your SharePoint authentication credentials. If you choose to create a new secret, an AWS Secrets Manager secret window opens. Enter the following information in the window:

 • **Secret name**—A name for your secret. The prefix ‘AmazonKendra-SharePoint-‘ is automatically added to your secret name.

 • **Username**—User name for your SharePoint account.

 • **Password**—Password for your SharePoint account.

If using **Email ID with Domain from IDP**, also enter your:

• **LDAP Server Endpoint**—Endpoint of LDAP server, including protocol and port number. For example: ldap://example.com:389.

• **LDAP Search Base**—Search base of LDAP user. For example: CN=Users,DC=sharepoint,DC=com.

• **LDAP username**—Your LDAP user name.

• **LDAP Password**—Your LDAP password.

ii. Enter the following information for **SharePoint App-Only authentication**.

 For **AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your SharePoint authentication credentials. If you choose to create a new secret, an AWS Secrets Manager secret window opens. Enter the following information in the window:
- **Secret name**—A name for your secret. The prefix ‘AmazonKendra-SharePoint-‘ is automatically added to your secret name.

- **Client ID**—The SharePoint client ID you generated when you registered App Only at Site Level. The ClientID format is ClientID@TenantId. For example, ffa956f3-8f89-44e7-b0e4-49670756342c@888d0b57-69f1-4fb8-957f-e1f0bedf82fe.

- **SharePoint client secret**—The SharePoint client secret generated when you register for App Only at Site Level.

 Note: Because client IDs and client secrets are generated for single sites only when you register SharePoint Server for App Only authentication, only one site URL is supported for SharePoint App Only authentication.

If using **Email ID with Domain from IDP**, also enter your:

- **LDAP Server Endpoint**—Endpoint of LDAP server, including protocol and port number. For example: ldap://example.com:389.

- **LDAP Search Base**—Search base of LDAP user. For example: CN=Users,DC=sharepoint,DC=com.

- **LDAP username**—Your LDAP user name.

- **LDAP Password**—Your LDAP password.

 i. **Identity crawler**—(Activated only when ACL is enabled) Choose to enable Amazon Kendra identity crawler to sync identity information. If you choose to turn identity crawler off, you must upload the principal information using the `PutPrincipalMapping` API. You can also choose to:

 i. **Crawl Local Group Mapping**—Activate to crawl local group mapping.

 ii. **(For Email ID with Domain from IDP only) Crawl AD Group Mapping**—Activate to crawl Active Directory mapping.

 j. **(Optional) Configure VPC and security group**—Select a VPC to use with your SharePoint instance. If so, you must add **Subnets** and **VPC security groups**.

 k. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note

 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

 l. **Choose Next**.

7. On the **Configure sync settings** page, enter the following information:

 a. In **Sync scope**, choose from the following options:

 i. **Select entities**—Choose the entities you want to crawl. You can select to crawl **All** entities or any combination of **Files**, **Attachments**, **Links Pages**, **Events**, and **List Data**.

 ii. In **Additional configuration**, for **Entity regex patterns**—Add regular expression patterns for **Links**, **Pages**, and **Events** to include specific entities instead of syncing all your documents.

 iii. **Regex patterns**—Add regular expression patterns to include or exclude files by **File path**, **File name**, **File type**, **OneNote section name**, and **OneNote page name** instead of syncing all your documents. You can add up to 100.

 b. For **Sync mode** choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.
• **Full sync**—Sync all content regardless of the previous sync status.
• **New or modified documents sync**—Sync only new and modified documents.
• **New, modified, or deleted documents sync**—Sync only new, modified, and deleted documents.

 c. In **Sync run schedule**, for **Frequency**—How often Amazon Kendra will sync with your data source.
 d. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:
 a. For **Events Pages, Files, Links, Attachments, and List data**—Select from the Amazon Kendra generated default data source fields that you want to map to your index.
 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.
 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.

API

To connect Amazon Kendra to SharePoint

You must specify a JSON of the **data source schema** using the **TemplateConfiguration** API. You must provide the following information:

- **Repository Endpoint Metadata**—Specify the **tenantID** domain and **siteUrls** of your SharePoint instance.
- **Repository Additional Properties**—Specify the:
 - (For SharePoint Server only) **s3bucketName** and **s3certificateName** you used to store your Azure AD self-signed X.509 certificate.
 - Authentication type (**auth_Type**) you are using, whether OAuth2, OAuth2App, OAuth2Certificate, Basic.
 - Version (**version**) you are using, whether Server or Online. If you use Server you can further specify the **onPremVersion** as 2013, 2016, 2019, or SubscriptionEdition.
 - **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.
 - **Data source**—Specify the data source as SHAREPOINTV2.
 - **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials you created in your SharePoint account.

If you use SharePoint Online, you can choose between Basic, OAuth 2.0, Azure AD App-only and SharePoint App Only authentication. The following are the minimum JSON structure that must be in your secret for each authentication option:

- **Basic authentication**

```json
{
    "username": "SharePoint account user name",
    "password": "SharePoint account password"
}
```

- **OAuth 2.0 authentication**

```json
{
```
"clientId": "client id generated when registering SharePoint with Azure AD",
"clientSecret": "client secret generated when registering SharePoint with Azure AD",
"userName": "SharePoint account user name",
"password": "SharePoint account password"
}

• Azure AD App-Only authentication

{
 "clientId": "client id generated when registering SharePoint with Azure AD",
 "privateKey": "private key to authorize connection with Azure AD"
}

• SharePoint App-Only authentication

{
 "clientId": "client id generated when registering SharePoint for App Only at Tenant Level",
 "clientSecret": "client secret generated when registering SharePoint for App Only at Tenant Level",
 "adClientId": "client id generated while registering SharePoint with Azure AD",
 "adClientSecret": "client secret generated while registering SharePoint with Azure AD"
}

If you use SharePoint Server, you can choose between SharePoint App-Only authentication, NTLM authentication, and Kerberos authentication. The following are the minimum JSON structure that must be in your secret for each authentication option:

• SharePoint App-Only authentication

{
 "siteUrlsHash": "Hash representation of SharePoint site URLs",
 "clientId": "client id generated when registering SharePoint for App Only at Site Level",
 "clientSecret": "client secret generated when registering SharePoint for App Only at Site Level"
}

• SharePoint App-Only authentication with domain from IDP authorization

{
 "siteUrlsHash": "Hash representation of SharePoint site URLs",
 "clientId": "client id generated when registering SharePoint for App Only at Site Level",
 "clientSecret": "client secret generated when registering SharePoint for App Only at Site Level",
 "ldapUrl": "LDAP Account url eg. ldap://example.com:389",
 "baseDn": "LDAP Account base dn eg. CN=Users,DC=sharepoint,DC=com",
 "ldapUser": "LDAP account user name",
 "ldapPassword": "LDAP account password"
}

• (Server only) NTLM or Kerberos authentication

{
 "siteUrlsHash": "Hash representation of SharePoint site URLs",
 "username": "SharePoint account user name",
 "password": "SharePoint account password"
}
• (Server only) NTLM or Kerberos authentication with domain from IDP authorization

```json
{
    "siteUrlsHash": "Hash representation of SharePoint site URLs",
    "userName": "SharePoint account user name",
    "password": "SharePoint account password",
    "ldapUrl": "ldap://example.com:389",
    "baseDn": "CN=Users,DC=sharepoint,DC=com",
    "ldapUser": "LDAP account user name",
    "ldapPassword": "LDAP account password"
}
```

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

• **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 - FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index
 - FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index
 - CHANGE_LOG to incrementally crawl only new and modified content each time your data source syncs with your index

• **Enable identity crawler**—Specify whether to activate identity crawler. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.

 Note
 Identity crawling is available only when you set crawlAcl to true.

• **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the SharePoint connector and Amazon Kendra. For more information, see IAM roles for SharePoint data sources.

You can also add the following optional features:

• **Specific documents to index**—You can use a SharePoint query to specify the documents you want from one or more knowledge bases, including private knowledge bases. Access to the knowledge bases is determined by the user that you use to connect to the SharePoint instance. For more information, see Specifying documents to index with a query.

• **Inclusion and exclusion filters**—You can specify whether to include or exclude knowledge articles, service catalogs, incidents and their attachments.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

• **Field mappings**—Choose to map your SharePoint data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.
Amazon Kendra Developer Guide
Microsoft Teams

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for SharePoint data sources.

 For a list of other important JSON keys to configure, see Microsoft SharePoint template schema (p. 202).

Notes

- The connector supports custom field mappings only for the Files entity.

- For all SharePoint Server versions, the ACL token must be in lower case. For Email with Domain from IDP and Email ID with Custom Domain ACL, for example: user@sharepoint2019.com. For Domain \User with Domain ACL, for example: sharepoint2013\user.

- The connector does not support change log mode/New or modified content sync for SharePoint 2013.

- If an entity name has a % character in its name, the connector will skip these files due to API limitations.

- OneNote can only be crawled by the connector using a Tenant ID and with OAuth 2.0 or SharePoint App Only authentication activated for SharePoint Online.

- The connector crawls the first section of a OneNote document using its default name only, even if the document is renamed.

- The connector crawls links in SharePoint 2019, SharePoint Online, and Subscription Edition, only if Pages and Files are selected as entities to be crawled in addition to Links.

- The connector crawls links in SharePoint 2013 and SharePoint 2016 if Links is selected as an entity to be crawled.

- The connector crawls list attachments and comments only when List Data is also selected as an entity to be crawled.

- The connector crawls event attachments only when Events is also selected as an entity to be crawled.

Microsoft Teams

Microsoft Teams is an enterprise collaboration tool for messaging, meetings and file sharing. If you are a Microsoft Teams user, you can use Amazon Kendra to index your Microsoft Teams data source.

You can connect Amazon Kendra to your Microsoft Teams data source using the Amazon Kendra console and the TemplateConfiguration API.

For troubleshooting your Amazon Kendra Microsoft Teams data source connector, see Troubleshooting data sources (p. 636).

Topics

- Supported features (p. 399)
- Prerequisites (p. 399)
- Connection instructions (p. 401)
- Learn more (p. 403)
Supported features

- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)
- Identity crawler
- Sync all documents/Sync only new, modified, or deleted documents

Prerequisites

Before you can use Amazon Kendra to index your Microsoft Teams data source, make these changes in your Microsoft Teams and AWS accounts.

In Microsoft Teams, make sure you have:

- Created a Microsoft Teams account in Office 365.
- Noted your Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.
- Created an OAuth application in the Azure portal and noted the tenant ID, client ID and client secret or client credentials. See Microsoft tutorial for more information.
- Added the necessary permissions. You can choose to add all permissions, or you can limit the scope by selecting fewer permissions based on which entities you’d like to be crawled. Below is the table of permissions by corresponding entity:

<table>
<thead>
<tr>
<th>Entity</th>
<th>Required Permissions for Data Sync</th>
<th>Required Permissions for Identity Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Post</td>
<td>ChannelMessage.Read.All</td>
<td>TeamMember.Read.All</td>
</tr>
<tr>
<td></td>
<td>Group.Read.All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User.Read</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User.Read.All</td>
<td></td>
</tr>
<tr>
<td>Channel Attachment</td>
<td>ChannelMessage.Read.All</td>
<td>TeamMember.Read.All</td>
</tr>
<tr>
<td></td>
<td>Group.Read.All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User.Read</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User.Read.All</td>
<td></td>
</tr>
<tr>
<td>Channel Wiki</td>
<td>Group.Read.All</td>
<td>TeamMember.Read.All</td>
</tr>
<tr>
<td></td>
<td>User.Read</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User.Read.All</td>
<td></td>
</tr>
<tr>
<td>Chat Message</td>
<td>Chat.Read.All</td>
<td>TeamMember.Read.All</td>
</tr>
<tr>
<td></td>
<td>ChatMessage.Read.All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChatMember.Read.All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User.Read</td>
<td></td>
</tr>
<tr>
<td></td>
<td>User.Read.All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group.Read.All</td>
<td></td>
</tr>
<tr>
<td>Meeting Chat</td>
<td>Chat.Read.All</td>
<td>TeamMember.Read.All</td>
</tr>
</tbody>
</table>

399
Entity

<table>
<thead>
<tr>
<th>Required Permissions for Data Sync</th>
<th>Required Permissions for Identity Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ChatMessage.Read</td>
<td></td>
</tr>
<tr>
<td>• ChatMember.Read.All</td>
<td></td>
</tr>
<tr>
<td>• User.Read</td>
<td></td>
</tr>
<tr>
<td>• User.Read.All</td>
<td></td>
</tr>
<tr>
<td>• Group.Read.All</td>
<td></td>
</tr>
<tr>
<td>Chat Attachment</td>
<td></td>
</tr>
<tr>
<td>• Chat.Read.All</td>
<td>TeamMember.Read.All</td>
</tr>
<tr>
<td>• ChatMessage.Read</td>
<td></td>
</tr>
<tr>
<td>• ChatMember.Read.All</td>
<td></td>
</tr>
<tr>
<td>• User.Read</td>
<td></td>
</tr>
<tr>
<td>• User.Read.All</td>
<td></td>
</tr>
<tr>
<td>• Group.Read.All</td>
<td></td>
</tr>
<tr>
<td>Meeting File</td>
<td></td>
</tr>
<tr>
<td>• Chat.Read.All</td>
<td>TeamMember.Read.All</td>
</tr>
<tr>
<td>• ChatMessage.Read.All</td>
<td></td>
</tr>
<tr>
<td>• ChatMember.Read.All</td>
<td></td>
</tr>
<tr>
<td>• User.Read</td>
<td></td>
</tr>
<tr>
<td>• User.Read.All</td>
<td></td>
</tr>
<tr>
<td>• Group.Read.All</td>
<td></td>
</tr>
<tr>
<td>• Files.Read.All</td>
<td></td>
</tr>
<tr>
<td>Calendar Meeting</td>
<td></td>
</tr>
<tr>
<td>• Chat.Read.All</td>
<td>TeamMember.Read.All</td>
</tr>
<tr>
<td>• ChatMessage.Read.All</td>
<td></td>
</tr>
<tr>
<td>• ChatMember.Read.All</td>
<td></td>
</tr>
<tr>
<td>• User.Read</td>
<td></td>
</tr>
<tr>
<td>• User.Read.All</td>
<td></td>
</tr>
<tr>
<td>• Group.Read.All</td>
<td></td>
</tr>
<tr>
<td>• Files.Read.All</td>
<td></td>
</tr>
<tr>
<td>Meeting Notes</td>
<td></td>
</tr>
<tr>
<td>• User.Read</td>
<td>TeamMember.Read.All</td>
</tr>
<tr>
<td>• User.Read.All</td>
<td></td>
</tr>
<tr>
<td>• Group.Read.All</td>
<td></td>
</tr>
<tr>
<td>• Files.Read.All</td>
<td></td>
</tr>
</tbody>
</table>

- Checked each document is unique in Microsoft Teams and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- **Created an Amazon Kendra index** and, if using the API, noted the index ID.
- **Created an IAM role** for your data source and, if using the API, noted the ARN of the IAM role.

 Note

 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Microsoft Teams authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.
Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Microsoft Teams data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Microsoft Teams data source, you must provide the necessary details of your Microsoft Teams data source so that Amazon Kendra can access your data. If you have not yet configured Microsoft Teams for Amazon Kendra, see Prerequisites (p. 399).

Console

To connect Amazon Kendra to Microsoft Teams

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Microsoft Teams connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:
 a. Source—Enter your Microsoft 365 tenant ID. You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.
 b. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Microsoft Teams authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 i. Enter following information in the Create an AWS Secrets Manager secret window:
 A. Secret name—A name for your secret. The prefix ‘AmazonKendra-Microsoft Teams-’ is automatically added to your secret name.
 B. For Client ID and Client secret—Enter the authentication credential values you generated in your Microsoft Teams account in the Azure portal.
ii. Choose Save.

c. **Payment model**—You can choose a licensing and payment model for your Microsoft Teams account. Model A payment models are restricted to licensing and payment models that require security compliance. Model B payment models are suitable for licensing and payment models that do not require security compliance.

d. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add Subnets and VPC security groups.

e. **Identity crawler**—When the identity crawler is activated, Amazon Kendra syncs identity information. If you choose to turn identity crawler off, you must upload the principal information using the PutPrincipalMapping API.

f. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.

g. Choose Next.

7. On the **Configure sync settings** page, enter the following information:

 a. **Sync contents**—Select contents to sync.

 b. **Additional configuration**—You can optionally use these settings to index certain content instead of syncing all the documents.

 c. **Sync mode**—You can choose how you want to update your index when your data source content changes.

 i. If you choose full sync, Amazon Kendra will sync all contents in all entities, regardless of the previous sync status.

 ii. If you choose new or modified content sync, Amazon Kendra will only sync new or modified content.

 iii. If you choose new, modified or deleted content sync, Amazon Kendra will only sync new, modified or deleted content.

8. On the **Set field mappings** page, enter the following information:

 a. **Default data source fields**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

 c. Choose Next.

9. On the **Review and create** page, check that the information you have entered is correct and then select Add data source. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Microsoft Teams

You must specify a JSON of the data source schema using the TemplateConfiguration API. You must provide the following information:

- **Data source**—You must specify the data source as MSTEAMS.

- **Tenant ID**—You can find your tenant ID in the Properties of your Azure Active Directory Portal or in your OAuth application.

- **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.
• **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Microsoft Teams account. The secret is stored in a JSON structure with the following keys:

```json
{
    "clientId": "client ID",
    "clientSecret": "client secret"
}
```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

• **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Microsoft Teams connector and Amazon Kendra. For more information, see IAM roles for Microsoft Teams data sources.

You can also add the following optional features:

• **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

• **Enable identity crawler**—Specify whether to activate identity crawler. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.

• **Inclusion and exclusion filters**—Specify whether to include or exclude certain content in Microsoft Teams.

 Note

 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

• **Field mappings**—Choose to map your Microsoft Teams data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

For a list of other important JSON keys to configure, see Microsoft Teams template schema (p. 212).

Learn more

To learn more about integrating Amazon Kendra with your Microsoft Teams data source, see:

• Intelligently search your organization’s Microsoft Teams data source with the Amazon Kendra connector for Microsoft Teams
Microsoft Yammer

Microsoft Yammer is an enterprise collaboration tool for messaging, meetings and file sharing. If you are a Microsoft Yammer user, you can use Amazon Kendra to index your Microsoft Yammer data source.

You can connect Amazon Kendra to your Microsoft Yammer data source using the Amazon Kendra console and the TemplateConfiguration API.

For troubleshooting your Amazon Kendra Microsoft Yammer data source connector, see Troubleshooting data sources (p. 636).

Supported features

- Change log
- Field mappings
- Inclusion/exclusion filters
- Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your Microsoft Yammer data source, make these changes in your Microsoft Yammer and AWS accounts.

In Microsoft Yammer, make sure you have:

- Created a Microsoft Yammer administrative account.
- Noted your Microsoft Yammer user name and password.
- Created an OAuth application in the Azure portal and noted the client ID and client secret or client credentials. See Microsoft tutorial for more information.
- Checked each document is unique in Microsoft Yammer and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Microsoft Yammer authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Microsoft Yammer data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.
Connection instructions

To connect Amazon Kendra to your Microsoft Yammer data source, you must provide the necessary details of your Microsoft Yammer data source so that Amazon Kendra can access your data. If you have not yet configured Microsoft Yammer for Amazon Kendra, see Prerequisites (p. 404).

Console

To connect Amazon Kendra to Microsoft Yammer

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your User access control settings under Index settings.
3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Microsoft Yammer connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:

 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.

 b. (Optional) Description—Enter an optional description for your data source.

 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.

 e. Choose Next.
6. On the Define access and security page, enter the following information:

 a. Source—Use your Microsoft Yammer URL.

 b. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Microsoft Yammer authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

 i. Enter following information in the Create an AWS Secrets Manager secret window:

 A. Secret name—A name for your secret. The prefix ‘AmazonKendra-Microsoft Yammer-’ is automatically added to your secret name.

 B. For Username, Password—Enter your Microsoft Yammer user name and password.

 C. For Client ID, Client secret—Enter the authentication credential values you generated from your Microsoft Yammer account in the Azure portal.

 ii. Choose Save.

 c. Virtual Private Cloud (VPC)—You can choose to use a VPC. If so, you must add Subnets and VPC security groups.

 d. Identity crawler—Choose to crawl identity information on users and groups with access to certain documents and store this in Amazon Kendra's principal/identity store. This is useful for user context filtering, where search results are filtered based on the user or their group access to documents.

 e. IAM role—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.
Note
IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.

f. Choose Next.

7. On the Configure sync settings page, enter the following information:
 a. Since date—Specify the date to begin crawling your data in Microsoft Yammer.
 b. Sync contents—Select type of content you want to index. For example, public message, private messages, and attachments.
 c. Additional configuration—You can optionally use these options to index certain content instead of syncing all the documents. For example, you can index specific community names and use regular expression patterns to include or exclude certain files.
 d. Sync mode—You can choose how you want to update your index when your data source content changes.
 i. If you choose full sync, Amazon Kendra will sync all contents in all entities, regardless of the previous sync status.
 ii. If you choose new or modified content sync, Amazon Kendra will only sync new or modified content.
 iii. If you choose new, modified or deleted content sync, Amazon Kendra will only sync new, modified or deleted content.

8. On the Set field mappings page, enter the following information:
 a. Default data source fields—Select from the Amazon Kendra generated default data source fields you want to map to your index.
 b. Add field—To add custom data source fields to create an index field name to map to and the field data type.
 c. Choose Next.

9. On the Review and create page, check that the information you have entered is correct and then select Add data source. You can also choose to edit your information from this page. Your data source will appear on the Data sources page after it’s added successfully.

API

To connect Amazon Kendra to Microsoft Yammer

You must specify a JSON of the data source schema using the TemplateConfiguration API. You must provide the following information:

- Data source—You must specify the data source as YAMMER.
- Type—Specify TEMPLATE as the Type when you call CreateDataSource.
- Secret Amazon Resource Name (ARN)—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Microsoft Yammer account. The secret is stored in a JSON structure with the following keys:

```json
{
    "username": "username",
    "password": "password",
    "clientId": "clientID",
    "clientSecret": "client secret"
}
```
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Microsoft Yammer connector and Amazon Kendra. For more information, see IAM roles for Microsoft Yammer data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

- **Identity crawler**—Specify whether to activate Amazon Kendra identity crawler. If identity crawler is deactivated, you must upload the identity/principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see User context filtering.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain content.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your Microsoft Yammer data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

Learn more

To learn more about integrating Amazon Kendra with your Microsoft Yammer data source, see:

- Announcing the Yammer connector for Amazon Kendra

Quip

Quip is a collaborative productivity software that offers real time document-authoring capabilities. You can use Amazon Kendra to index your Quip folders, files, file comments, chatrooms, and attachments.

You can connect Amazon Kendra to your Quip data source using the Amazon Kendra console and the QuipConfiguration API.

For troubleshooting your Amazon Kendra Quip data source connector, see Troubleshooting data sources (p. 636).

Topics

- Supported features (p. 408)
- Prerequisites (p. 408)
- Connection instructions (p. 408)
- Learn more (p. 411)
Supported features

Amazon Kendra Quip data source connector supports the following features:

- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your Quip data source, make these changes in your Quip and AWS accounts.

In Quip, make sure you have:

- A Quip account with administrative permissions.
- Created Quip authentication credentials that include a personal access token. See Quip documentation on authentication for more information.
- Copied your Quip site domain. For example, https://quip-company.quipdomain.com/browse where quipdomain is the domain.
- Checked each document is unique in Quip and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Quip authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Quip data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Quip data source, you must provide the necessary details of your Quip data source so that Amazon Kendra can access your data. If you have not yet configured Quip for Amazon Kendra, see Prerequisites (p. 408).

Console

To connect Amazon Kendra to Quip
1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.
3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Quip connector, and then choose Add data source.
5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:
 a. Quip domain name—Enter the Quip you copied from your Quip account.
 b. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Quip authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 i. Enter following information in the Create an AWS Secrets Manager secret window:
 A. Secret name—A name for your secret. The prefix 'AmazonKendra-Quip-' is automatically added to your secret name.
 B. Quip token—Enter the Quip personal access token you created in your Quip account.
 ii. Choose Save.
 c. Virtual Private Cloud (VPC)—You can choose to use a VPC. If so, you must add Subnets and VPC security groups.
 d. IAM role—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.
 e. Choose Next.
7. On the Configure sync settings page, enter the following information:
 a. Add Quip folder IDs to crawl—The Quip folder IDs you want to crawl.
 b. Additional configuration (content types)—Enter the content types you want to crawl.
 c. Regex patterns—Regular expression patterns to include or exclude certain files. You can add up to 100 patterns.
 d. In Sync run schedule, for Frequency—Choose how often Amazon Kendra will sync with your data source.
 e. Choose Next.
8. On the Set field mappings page, enter the following information:
a. Select from the generated default data source fields you want to map to Amazon Kendra index.

b. Add field—To add custom data source fields to create an index field name to map to and the field data type.

c. Choose Next.

9. On the Review and create page, check that the information you have entered is correct and then select Add data source. You can also choose to edit your information from this page. Your data source will appear on the Data sources page after it's added successfully.

API

To connect Amazon Kendra to Quip

You must specify the following using QuipConfiguration API:

- **Quip site domain**—For example, https://quip-company.quipdomain.com/browse where quipdomain is the domain.

- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Quip account. The secret is stored in a JSON structure with the following keys:

  ```
  {
      "accessToken": "token"
  }
  ```

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Quip connector and Amazon Kendra. For more information, see IAM roles for Quip data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration as part of the data source configuration. See Configuring Amazon Kendra to use a VPC.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain files.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your Quip data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for Quip data sources.
Learn more

To learn more about integrating Amazon Kendra with your Quip data source, see:

- Search for knowledge in Quip documents with intelligent search using the Quip connector for Amazon Kendra

Salesforce

Salesforce is a customer relationship management (CRM) tool for managing support, sales, and marketing teams. You can use Amazon Kendra to index your Salesforce standard objects and even custom objects.

You can connect Amazon Kendra to your Salesforce data source using either the Amazon Kendra console, the TemplateConfiguration API, or the SalesforceConfiguration API.

Amazon Kendra has two versions of the Salesforce connector. Supported features of each version include:

Salesforce connector V1.0 / SalesforceConfiguration API

- Field mappings
- User context filtering
- Inclusion/exclusion filters

Salesforce connector V2.0 / TemplateConfiguration API

- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Entity attachment support
- Identity crawling
- VPC support
- Sync all documents/Sync only new, modified, or deleted documents

Note

Support for Salesforce connector V1.0 / SalesforceConfiguration API is scheduled to end in 2023. We recommend migrating to or using Salesforce connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra Salesforce data source connector, see Troubleshooting data sources (p. 636).

Topics

- Salesforce connector V1.0 (p. 411)
- Salesforce connector V2.0 (p. 416)

Salesforce connector V1.0

Salesforce is a customer relationship management (CRM) tool for managing support, sales, and marketing teams. You can use Amazon Kendra to index your Salesforce standard objects and even custom objects.
Important
Amazon Kendra uses the Salesforce API version 48. The Salesforce API limits the number of requests that you can make per day. If Salesforce exceeds those requests, it retries until it is able to continue.

Note
Support for Salesforce connector V1.0 / SalesforceConfiguration API is scheduled to end in 2023. We recommend migrating to or using Salesforce connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra Salesforce data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 412)
- Prerequisites (p. 412)
- Connection instructions (p. 413)

Supported features
Amazon Kendra Salesforce data source connector supports the following features:

- Field mappings
- User context filtering
- Inclusion/exclusion filters

Prerequisites
Before you can use Amazon Kendra to index your Salesforce data source, make these changes in your Salesforce and AWS accounts.

In Salesforce, make sure you have:

- Created a Salesforce account and have noted the user name and password you use to connect to Salesforce.
- Created a Salesforce Connected App account with OAuth activated and have copied the consumer key (client ID) and consumer secret (client secret) assigned to your Salesforce Connected App. See Salesforce documentation on Connected Apps for more information.
- Copied the Salesforce security token associated with the account used to connect to Salesforce.
- Copied the URL of the Salesforce instance that you want to index. Typically, this is https://<company>.salesforce.com/. The server must be running a Salesforce connected app.
- Added credentials to your Salesforce server for a user with read-only access to Salesforce by cloning the ReadOnly profile and then adding the View All Data and Manage Articles permissions. These credentials identify the user making the connection and the Salesforce connected app that Amazon Kendra connects to.
- Checked each document is unique in Salesforce and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
• **Created an IAM role** for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

• Stored your Salesforce authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don't have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Salesforce data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Salesforce data source, you must provide the necessary details of your Salesforce data source so that Amazon Kendra can access your data. If you have not yet configured Salesforce for Amazon Kendra see Prerequisites (p. 412).

Console

To connect Amazon Kendra to Salesforce

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose **Indexes** and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under **Index settings**.

3. On the **Getting started** page, choose **Add data source**.
4. On the **Add data source** page, choose **Salesforce connector V1.0**, and then choose **Add connector**.
5. On the **Specify data source details** page, enter the following information:

 a. **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.

 b. (Optional) **Description**—Enter an optional description for your data source.

 c. **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in metadata overrides selected language.

 d. **Add new tag**—Tags to search and filter your resources or track your shared costs.

 e. Choose **Next**.

6. On the **Define access and security** page, enter the following information:

 a. **Salesforce URL**—Enter the instance URL for the Salesforce site that you want to index.

 b. For **Type of authentication**, choose between **Existing** and **New** to store your Salesforce authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

 • Enter following information in the Create an AWS Secrets Manager secret window:
A. **Secret name**—A name for your secret. The prefix ‘AmazonKendra-Salesforce-’ is automatically added to your secret name.

B. **For User name, Password, Security token, Consumer key, Consumer secret, and Authentication URL**—Enter the authentication credential values you created in your Salesforce account.

C. Choose **Save authentication**.

 c. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

 d. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

 a. **For Crawl attachments**—Select to crawl all attached objects, articles, and feeds.

 b. **For Standard objects, Knowledge articles, and Chatter feeds**—Select Salesforce entities or content types you want to crawl.

 Note
 You must provide configuration information for indexing at least one of standard objects, knowledge articles, or chatter feeds. If you choose to crawl **Knowledge articles** you must specify the types of knowledge articles to index, the name of the articles, and whether to index the standard fields of all knowledge articles or only the fields of a custom article type. If you choose to index custom articles, you must specify the internal name of the article type. You can specify upto 10 article types.

 c. **Frequency**—How often Amazon Kendra will sync with your data source.

 d. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

 a. **For Standard knowledge article, Standard object attachments, and Additional suggested field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

 Note
 An index mapping to **_document_body** is required. You can't change the mapping between the Salesforce _ID field and the Amazon Kendra _document_id field.

 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.

API

To connect Amazon Kendra to Salesforce

You must specify the following the **SalesforceConfiguration** API:

- **Server URL**—The instance URL for the Salesforce site that you want to index.
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Salesforce account. The secret is stored in a JSON structure with the following keys:
Amazon Kendra Developer Guide
Salesforce

```json
{
  "authenticationUrl": "OAUTH endpoint that Amazon Kendra connects to get an OAUTH token",
  "consumerKey": "Application public key generated when you created your Salesforce application",
  "consumerSecret": "Application private key generated when you created your Salesforce application.",
  "password": "Password associated with the user logging in to the Salesforce instance",
  "securityToken": "Token associated with the user account logging in to the Salesforce instance",
  "username": "User name of the user logging in to the Salesforce instance"
}
```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Salesforce connector and Amazon Kendra. For more information, see [IAM roles for Salesforce data sources](#).

- You must provide configuration information for indexing at least one of standard objects, knowledge articles, or chatter feeds.
 - **Standard objects**—If you choose to crawl **Standard objects**, you must specify the name of the standard object and the name of the field in the standard object table that contains the document contents.
 - **Knowledge articles**—If you choose to crawl **Knowledge articles**, you must specify the types of knowledge articles to index, the states of the knowledge articles to index, and whether to index the standard fields of all knowledge articles or only the fields of a custom article type.
 - **Chatter feeds**—If you choose to crawl **Chatter feeds**, you must specify the name of the column in the Salesforce FeedItem table that contains the content to index.

You can also add the following optional features:

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain file attachments.

 Note

 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your Salesforce data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see [User context filtering for Salesforce data sources](#).
Salesforce connector V2.0

Salesforce is a customer relationship management (CRM) tool for managing support, sales, and marketing teams. You can use Amazon Kendra to index your Salesforce standard objects and even custom objects.

Note
Support for Salesforce connector V1.0 / SalesforceConfiguration API is scheduled to end in 2023. We recommend migrating to or using Salesforce connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra Salesforce data source connector, see Troubleshooting data sources (p. 636).

Topics
• Supported features (p. 416)
• Prerequisites (p. 416)
• Connection instructions (p. 417)
• Learn more (p. 420)

Supported features
Amazon Kendra Salesforce data source connector supports the following features:

• Field mappings
• User context filtering
• Inclusion/exclusion filters
• Entity attachment support
• Identity crawling
• VPC support
• Sync all documents/Sync only new, modified, or deleted documents

Prerequisites
Before you can use Amazon Kendra to index your Salesforce data source, make these changes in your Salesforce and AWS accounts.

In Salesforce, make sure you have:

• Created a Salesforce administrative account and have noted the user name and password you use to connect to Salesforce.
• Copied the Salesforce security token associated with the account used to connect to Salesforce.
• Created a Salesforce Connected App account with OAuth activated and have copied the consumer key (client ID) and consumer secret (client secret) assigned to your Salesforce Connected App. See Salesforce documentation on Connected Apps for more information.
• Copied the URL of the Salesforce instance that you want to index. Typically, this is https://<company>.salesforce.com/. The server must be running a Salesforce connected app.
• Added credentials to your Salesforce server for a user with read-only access to Salesforce by cloning the ReadOnly profile and then adding the View All Data and Manage Articles permissions. These credentials identify the user making the connection and the Salesforce connected app that Amazon Kendra connects to.
• Checked each document is unique in Salesforce and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

• Created an Amazon Kendra index and, if using the API, noted the index ID.
• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

• Stored your Salesforce authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It’s recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It’s not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Salesforce data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Salesforce data source, you must provide the necessary details of your Salesforce data source so that Amazon Kendra can access your data. If you have not yet configured Salesforce for Amazon Kendra see [Prerequisites (p. 416)](#).

Console

To connect Amazon Kendra to Salesforce:

1. Sign in to the AWS Management Console and open the [Amazon Kendra console](#).
2. From the left navigation pane, choose **Indexes** and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your **User access control** settings under **Index settings**.

3. On the **Getting started** page, choose **Add data source**.
4. On the **Add data source** page, choose **Salesforce connector V2.0**, and then choose **Add connector**.
5. On the **Specify data source details** page, enter the following information:
 a. **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) **Description**—Enter an optional description for your data source.
 c. **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in metadata overrides selected language.
 d. Choose **Next**.
6. On the **Define access and security** page, enter the following information:
a. **Salesforce URL**—Enter the instance URL for the Salesforce site that you want to index.
b. Enter an existing secret or if you create a new secret, an AWS Secrets Manager secret window opens.
 - Enter following information in the *Create an AWS Secrets Manager secret window*:
 A. **Secret name**—A name for your secret. The prefix ‘AmazonKendra-Salesforce-’ is automatically added to your secret name.
 B. For **User name, Password, Security token, Consumer key, Consumer secret, and Authentication URL**—Enter the authentication credential values you generated and downloaded from your Salesforce account.
 C. Choose **Save authentication**.
c. **Identity crawler** If identity crawler is deactivated, you must upload the principal information using the [PutPrincipalMapping API](#).
d. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.
 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.
e. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:
 a. For **Crawl attachments**—Select to crawl all attached Salesforce objects.
 b. For **Standard objects, Standard objects with attachments, and Standard object without attachment** and **Knowledge Articles**—Select Salesforce entities or content types you want to crawl.
 c. You must provide configuration information for indexing at least one of standard objects, knowledge articles, or chatter feeds. If you choose to crawl **Knowledge articles** you must specify the types of knowledge articles to index. You can choose published, archived, drafts and attachments.
 Regex filter—Specify a regex pattern to include specific catalog items.

8. For **Additional configuration**:
 - **ACL information** All access control lists are included by default. Deselecting an access control list will make all files in that category public.
 - **Regex patterns**—Add regular expression patterns to include or exclude certain files. You can add up to 100 patterns.

 For **Sync mode** in Salesforce v2, choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.
 - **Full sync**—Sync all content regardless of the previous sync status.
 - **New, modified, and deleted content sync**—Only sync new, modified, and deleted content.
 - **New and modified content sync**—Only sync new and modified content.

9. Choose **Next**.

10. On the **Set field mappings** page, enter the following information:
 a. For **Standard knowledge article, Standard object attachments**, and **Additional suggested field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index.
Note
An index mapping to _document_body is required. You can't change the mapping between the Salesforce ID field and the Amazon Kendra document_id field.

b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

c. **Choose Next**.

11. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it's added successfully.

API

To connect Amazon Kendra to Salesforce

You must specify a JSON of the **data source schema** using the **TemplateConfiguration** API. You must provide the following information:

- **Data source**—Specify the data source as SALESFORCEV2.
- **Host URL**—Specify the Salesforce instance host URL.
- **Type**—Specify TEMPLATE as the Type when you call **CreateDataSource**.
- **Sync mode**—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 - FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index
 - FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Salesforce account. The secret is stored in a JSON structure with the following keys:

  ```json
  {
    "authenticationUrl": "OAUTH endpoint that Amazon Kendra connects to get an OAUTH token",
    "consumerKey": "Application public key generated when you created your Salesforce application",
    "consumerSecret": "Application private key generated when you created your Salesforce application",
    "password": "Password associated with the user logging in to the Salesforce instance",
    "securityToken": "Token associated with the user account logging in to the Salesforce instance",
    "username": "User name of the user logging in to the Salesforce instance"
  }
  ```

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's **not** recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call **CreateDataSource** to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Salesforce connector and Amazon Kendra. For more information, see [IAM roles for Salesforce data sources](#).
You can also add the following optional features:

- **Inclusion and exclusion filters**—You can specify whether to include or exclude certain documents, accounts, campaigns, cases, contacts, leads, opportunities, solutions, tasks, groups, chatters, and custom entity files.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn’t indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see [Configuring Amazon Kendra to use an Amazon VPC](p. 445).

- **Enable identity crawler**—Specify whether to activate identity crawler. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see [Filtering on user context](#).

- **Field mappings**—Choose to map your Salesforce data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see [User context filtering for Salesforce data sources](#).

 For a list of other important JSON keys to configure, see [Salesforce template schema](p. 229).

Learn more

To learn more about integrating Amazon Kendra with your Salesforce data source, see:

- [Announcing the updated Salesforce connector (V2) for Amazon Kendra](#)

ServiceNow

ServiceNow provides a cloud-based service management system to create and manage organization-level workflows, such as IT services, ticketing systems, and support. You can use Amazon Kendra to index your ServiceNow catalogs, knowledge articles, incidents, and support. You can connect Amazon Kendra to your ServiceNow data source using either the Amazon Kendra console, the TemplateConfiguration API, or the ServiceNowConfiguration API.

Amazon Kendra has two versions of the ServiceNow connector. Supported features of each version include:

- **ServiceNow connector V1.0** / TemplateConfiguration API
 - Field mappings
 - ServiceNow instance versions: London, Others
 - Inclusion/exclusion patterns: Service catalogs, knowledge articles, attachments

- **ServiceNow connector V2.0** / TemplateConfiguration API
 - Field mappings
• User context filtering
• Virtual private cloud (VPC)
• Sync all documents/Sync only new, modified, deleted documents
• ServiceNow instance versions: Rome, Sandiego, Tokyo, Others
• Inclusion/exclusion patterns: Service catalogs, knowledge articles, incidents, attachments

Note
Support for ServiceNow connector V1.0 / ServiceNowConfiguration API is scheduled to end in 2023. We recommend migrating to or using ServiceNow connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra ServiceNow data source connector, see Troubleshooting data sources (p. 636).

Topics
• ServiceNow connector V1.0 (p. 421)
• ServiceNow connector V2.0 (p. 425)
• Specifying documents to index with a query (p. 431)

ServiceNow connector V1.0

ServiceNow provides a cloud-based service management system to create and manage organization-level workflows, such as IT services, ticketing systems, and support. You can use Amazon Kendra to index your ServiceNow catalogs, knowledge articles, and their attachments.

Note
Support for ServiceNow connector V1.0 / ServiceNowConfiguration API is scheduled to end in 2023. We recommend migrating to or using ServiceNow connector V2.0 / TemplateConfiguration API.

For troubleshooting your Amazon Kendra ServiceNow data source connector, see Troubleshooting data sources (p. 636).

Topics
• Supported features (p. 421)
• Prerequisites (p. 421)
• Connection instructions (p. 422)
• Learn more (p. 425)

Supported features

Amazon Kendra ServiceNow data source connector supports the following features:

• ServiceNow instance versions: London, Others
• Inclusion/exclusion patterns: Service catalogs, knowledge articles, and their attachments

Prerequisites

Before you can use Amazon Kendra to index your ServiceNow data source, make these changes in your ServiceNow and AWS accounts.

In ServiceNow, make sure you have:
• Created a ServiceNow administrator account and have created a ServiceNow instance.
• Copied the host of your ServiceNow instance URL. For example, if the URL of the instance is https://your-domain.service-now.com, the format for the host URL you enter is your-domain.service-now.com.
• Noted your basic authentication credentials containing a user name and password to allow Amazon Kendra to connect to your ServiceNow instance.

 Optional: Configured an OAuth 2.0 credential token that can identify Amazon Kendra and generate a user name, password, a client ID, and a client secret. The user name and password must provide access to the ServiceNow knowledge base and service catalog. See ServiceNow documentation on OAuth 2.0 authentication for more information.
• Added the following permissions:
 • kb_category
 • kb_knowledge
 • kb_knowledge_base
 • kb_uc_cannot_read_mtom
 • kb_uc_can_read_mtom
 • sc_catalog
 • sc_category
 • sc_cat_item
 • sys_attachment
 • sys_attachment_doc
 • sys_user_role
• Checked each document is unique in ServiceNow and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:
• Created an Amazon Kendra index and, if using the API, noted the index ID.
• Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.
• Stored your ServiceNow authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your ServiceNow data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions
To connect Amazon Kendra to your ServiceNow data source, you must provide the necessary details of your ServiceNow data source so that Amazon Kendra can access your data. If you have not yet configured ServiceNow for Amazon Kendra see Prerequisites (p. 421).
To connect Amazon Kendra to ServiceNow

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your User access control settings under Index settings.
3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose ServiceNow connector V1.0, and then choose Add data source.
5. On the Specify data source details page, enter the following information:

 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.

 b. (Optional) Description—Enter an optional description for your data source.

 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.

 e. Choose Next.
6. On the Define access and security page, enter the following information:

 a. ServiceNow host—Enter the ServiceNow host URL.

 b. ServiceNow version—Select your ServiceNow version.

 c. Choose between Basic authentication and Oauth 2.0 authentication based on your use case.

 d. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your ServiceNow authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

 i. Secret name—A name for your secret. The prefix ‘AmazonKendra-ServiceNow-’ is automatically added to your secret name.

 ii. If using Basic Authentication—Enter the Secret name, Username, and Password for your ServiceNow account.

 If using OAuth2 Authentication—Enter the Secret name, Username, Password, Client ID, and Client Secret you created in your ServiceNow account.

 iii. Choose Save and add secret.

 e. IAM role—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note

 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.

 f. Choose Next.
7. On the Configure sync settings page, enter the following information:

 a. Include knowledge articles—Choose to index knowledge articles.

 b. Type of knowledge articles—Choose between Include only public articles and Include articles based on ServiceNow filter query based on your use case. If you select Include
articles based on ServiceNow filter query, you must enter a Filter query copied from your ServiceNow account.

c. Include knowledge articles attachments—Choose to index knowledge article attachments. You can also select specific file types to index.

d. Include catalog items—Choose to index catalog items.

e. Include catalog item attachments—Choose to index catalog item attachments. You can also select specific file types to index.

f. Frequency—How often Amazon Kendra will sync with your data source.

g. Choose Next.

8. On the Set field mappings page, enter the following information:

 a. Knowledge articles and Service catalog—Select from the Amazon Kendra generated default data source fields and additional suggested field mappings that you want to map to your index.

 b. Add field—To add custom data source fields to create an index field name to map to and the field data type.

 c. Choose Next.

9. On the Review and create page, check that the information you have entered is correct and then select Add data source. You can also choose to edit your information from this page. Your data source will appear on the Data sources page after it’s added successfully.

API

To connect Amazon Kendra to ServiceNow

You must specify the following using ServiceNowConfiguration API:

- Data source URL—Specify the ServiceNow URL. The host endpoint should look like the following: your-domain.service-now.com.

- Data source host instance—Specify the ServiceNow host instance version as either LONDON or OTHERS.

- Secret Amazon Resource Name (ARN)—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials you created in your ServiceNow account.

 If you are using basic authentication, the secret is stored in a JSON structure with the following keys:

   ```json
   { 
     "username": "username",
     "password": "password"
   }
   ```

 If you are using OAuth2 authentication, the secret is stored in a JSON structure with the following keys:

   ```json
   { 
     "username": "username",
     "password": "password",
     "clientId": "client id",
     "clientSecret": "client secret"
   }
   ```
Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the ServiceNow connector and Amazon Kendra. For more information, see IAM roles for ServiceNow data sources.

You can also add the following optional features:

- **Field mappings**—Choose to map your ServiceNow data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain file attachments of catalogs and knowledge articles.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Indexing parameters**—You can also choose to specify whether to:
 - Index knowledge articles and service catalogs, or both of these. If you choose to index knowledge articles and service catalog items, you must provide the name of the ServiceNow field that is mapped to the index document contents field in the Amazon Kendra index.
 - Index attachments to knowledge articles and catalog items.
 - Use a ServiceNow query that selects documents from one or more knowledge bases. The knowledge bases can be public or private. For more information, see Specifying documents to index with a query.

Learn more

To learn more about integrating Amazon Kendra with your ServiceNow data source, see:

- Getting started with Amazon Kendra ServiceNow Online connector

ServiceNow connector V2.0

ServiceNow provides a cloud-based service management system to create and manage organization-level workflows, such as IT services, ticketing systems, and support. You can use Amazon Kendra to index your ServiceNow catalogs, knowledge articles, incidents, and their attachments.

For troubleshooting your Amazon Kendra ServiceNow data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 426)
- Prerequisites (p. 426)
- Connection instructions (p. 427)
- Learn more (p. 431)
Supported features

Amazon Kendra ServiceNow data source connector supports the following features:

- Field mappings
- User context filtering
- Virtual private cloud (VPC)
- Sync all documents/ Sync only new, modified, deleted documents
- ServiceNow instance versions: Rome, Sandiego, Tokyo, Others
- Inclusion/exclusion patterns: Service catalogs, knowledge articles, incidents, and their attachments

Prerequisites

Before you can use Amazon Kendra to index your ServiceNow data source, make these changes in your ServiceNow and AWS accounts.

In ServiceNow, make sure you have:

- Created a Personal or Enterprise Developer Instance and have a ServiceNow instance with an administrative role.
- Copied the host of your ServiceNow instance URL. The format for the host URL you enter is `your-domain.service-now.com`. You need your ServiceNow instance URL to connect to Amazon Kendra.
- Configured basic authentication credentials containing a user name and password to allow Amazon Kendra to connect to your ServiceNow instance.
- Optional: Configured an OAuth 2.0 credential token that can identify Amazon Kendra using a user name, password, and a generated client ID, and a client secret. See ServiceNow documentation on OAuth 2.0 authentication for more information.
- Checked each document is unique in ServiceNow and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- Created an Amazon Kendra index and, if using the API, noted the index ID.
- Created an IAM role for your data source and, if using the API, noted the ARN of the IAM role.

 Note

 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your ServiceNow authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note

 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your ServiceNow data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.
Connection instructions

To connect Amazon Kendra to your ServiceNow data source, you must provide the necessary details of your ServiceNow data source so that Amazon Kendra can access your data. If you have not yet configured ServiceNow for Amazon Kendra see Prerequisites (p. 426).

Console

To connect Amazon Kendra to ServiceNow

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note

 You can choose to configure or edit your User access control settings under Index settings.
3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose ServiceNow connector V2.0, and then choose Add data source.
5. On the Specify data source details page, enter the following information:

 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.
6. On the Define access and security page, enter the following information:

 a. ServiceNow host—Enter the ServiceNow host URL. The format for the host URL you enter is your-domain.service-now.com.
 b. ServiceNow version—Select your ServiceNow version.
 c. Choose between Basic authentication and Oauth 2.0 authentication based on your use case.
 d. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your ServiceNow authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens. Enter the following information in the window:

 i. Secret name—A name for your secret. The prefix 'AmazonKendra-ServiceNow-' is automatically added to your secret name.
 ii. If using Basic Authentication—Enter the Secret name, Username, and Password for your ServiceNow account.

 If using OAuth2.0 Authentication—Enter the Secret name, Username, Password, Client ID, and Client Secret you created in your ServiceNow account.
 iii. Choose Save and add secret.
 e. (Optional) Configure VPC and security group—Select a VPC to use with your ServiceNow instance.
 f. Identity crawler—Choose to activate Amazon Kendra identity crawler to sync identity information. If you choose to turn identity crawler off, you must upload the principal information using the PutPrincipalMapping API.
g. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

Note
IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

h. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

a. For **Knowledge articles**, choose from the following options:

- **Knowledge articles**—Choose to index knowledge articles.
- **Knowledge article attachments**—Choose to index knowledge article attachments.
- **Type of knowledge articles**—Choose between **Only public articles** and **Knowledge articles based on ServiceNow filter query** based on your use case. If you select **Include articles based on ServiceNow filter query**, you must enter a **Filter query** copied from your ServiceNow account. Example filter queries include:

 - `workflow_state=draft^EQ`,
 - `kb_knowledge_base=dfe19531bf202103f07e2c1ac0739ab^text ISNOTEMPTY^EQ`,
 - `article_type=text^active=true^EQ`.

- **Include articles based on short description filter**—Specify regular expression patterns to include or exclude specific articles.

b. For **Service catalog items**:

- **Service catalog items**—Choose to index service catalog items.
- **Service catalog item attachments**—Choose to index service catalog item attachments.
- **Active service catalog items**—Choose to index active service catalog items.
- **Inactive service catalog items**—Choose to index inactive service catalog items.
- **Filter query**—Choose to include service catalog items based on a filter defined in your ServiceNow instance. Example filter queries include:

 - `short_descriptionLIKEAccess^category=280952237b1300054b6a3549d6e5dd4^EQ`,
 - `nameSTARTSWITHService^active=true^EQ`.

- **Include service catalog items based on short description filter**—Specify a regex pattern to include specific catalog items.

c. For **Incidents**:

- **Incidents**—Choose to index service incidents.
- **Incident attachments**—Choose to index incident attachments.
- **Active incidents**—Choose to index active incidents.
- **Inactive incidents**—Choose to index inactive incidents.
- **Active incident type**—Choose between **All incidents**, **Open incidents**, **Open - unassigned incidents**, and **Resolved incidents** depending on your use case.
- **Filter query**—Choose to include incidents based on a filter defined in your ServiceNow instance. Example filter queries include:

 - `short_descriptionLIKETest^urgency=3^state=1^EQ`,
 - `priority=2^category=software^EQ`.

- **Include incidents based on short description filter**—Specify a regex pattern to include specific incidents.

d. For **Additional configuration**:

- **ACL information**—Access control lists for entities you have selected are included by default. Deselecting an access control list will make all files in that category public. ACL options are automatically deactivated for entities not selected. For public articles ACL is not applied.
Attachment regex patterns—Add regular expression patterns to include or exclude certain attached files of catalogs, knowledge articles, and incidents. You can add up to 100 patterns.

e. For Sync mode choose how you want to update your index when your data source content changes. When you sync your data source with Amazon Kendra for the first time, all content is synced by default.

• Full sync—Sync all content regardless of the previous sync status.
• New, modified, or deleted content sync—Only sync new, modified, and deleted content.

f. In Sync run schedule, for Frequency—How often Amazon Kendra will sync with your data source.

g. Choose Next.

8. On the Set field mappings page, enter the following information:

a. Knowledge articles, Service catalog, Attachments, and Incidents—Select from the Amazon Kendra generated default data source fields that you want to map to your index.
b. Add field—To add custom data source fields to create an index field name to map to and the field data type.
c. Choose Next.

9. On the Review and create page, check that the information you have entered is correct and then select Add data source. You can also choose to edit your information from this page. Your data source will appear on the Data sources page after it's added successfully.

API

To connect Amazon Kendra to ServiceNow

You must specify a JSON of the data source schema using the TemplateConfiguration API. You must provide the following information:

• Data source—Specify the data source as SERVICENOWV2.
• Host URL—Specify the ServiceNow host instance version. For example, your-domain.service-now.com.
• Auth type—Specify the type of authentication, whether basicAuth or OAuth2 for your ServiceNow instance.
• ServiceNow instance version—Specify the ServiceNow instance you are using, whether Tokyo, Sandieg, Rome, or Others.
• Type—Specify TEMPLATE as the Type when you call CreateDataSource.
• Sync mode—Specify whether Amazon Kendra should update your index by syncing all documents or only new, modified, and deleted documents. You can choose between:
 • FORCED_FULL_CRAWL to freshly re-crawl all content and replace existing content each time your data source syncs with your index
 • FULL_CRAWL to incrementally crawl only new, modified, and deleted content each time your data source syncs with your index
• Secret Amazon Resource Name (ARN)—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials you created in your ServiceNow account.

If you are using basic authentication, the secret is stored in a JSON structure with the following keys:

```json
{

```
"username": "user name",
"password": "password"
}

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- (Optional): You can also configure OAuth2 token. The OAuth2 credentials are stored as a JSON string in the Secrets Manager secret.

```
{
    "username": "user name",
    "password": "password",
    "clientId": "client id",
    "clientSecret": "client secret"
}
```

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the ServiceNow connector and Amazon Kendra. For more information, see IAM roles for ServiceNow data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

- **Inclusion and exclusion filters**—You can specify whether to include or exclude certain attached files using the file names and the file types of knowledge articles, service catalogs, and incidents.

 Note
 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Enable identity crawler**—Specify whether to activate identity crawler. If identity crawler is deactivated, you must upload the principal information using the PutPrincipalMapping API. Crawling identity information on users and groups with access to certain documents is useful for user context filtering. Search results are filtered based on the user or their group access to documents. For more information, see Filtering on user context.

- **Indexing parameters**—You can also choose to specify whether to:
 - Index knowledge articles, service catalogs, and incidents or all of these. If you choose to index knowledge articles, service catalog items and incidents, you must provide the name of the ServiceNow field that is mapped to the index document contents field in the Amazon Kendra index.
 - Index attachments to knowledge articles, service catalog items and incidents.
 - Include knowledge articles, service catalog items and incidents based on the short description filter pattern.
 - Choose to filter active and inactive service catalog items and incidents.
 - Choose to filter incidents based on incident type.
 - Choose which entities should have their ACL crawled.
 - You can use a ServiceNow query to specify the documents you want from one or more knowledge bases, including private knowledge bases. Access to the knowledge bases is
determined by the user that you use to connect to the ServiceNow instance. For more information, see [Specifying documents to index with a query](#).

- **Field mappings**—Choose to map your ServiceNow data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).
- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see [User context filtering for ServiceNow data sources](#).

For a list of other important JSON keys to configure, see [ServiceNow template schema (p. 262)](#).

Learn more

To learn more about integrating Amazon Kendra with your ServiceNow data source, see:

- [Getting started with Amazon Kendra](#)
- [Announcing the updated ServiceNow connector (V2) for Amazon Kendra](#)

Specifying documents to index with a query

You can use a ServiceNow query to specify the documents you want to include in an Amazon Kendra index. When you use a query, you can specify multiple knowledge bases, including private knowledge bases. Access to the knowledge bases is determined by the user that you use to connect to the ServiceNow instance.

To build a query, you use the ServiceNow query builder. You can use the builder to create the query and to test that the query returns the correct list of documents.

To create a query using the ServiceNow console

1. Log in to the ServiceNow console.
2. From the left menu, choose **Knowledge**, then **Articles**, and the choose **All**.
3. At the top of the page, choose the filter icon.
4. Use the query builder to create the query.
5. When the query is complete, right click the query and choose **Copy query** to copy the query from the query builder. Save this query to use in Amazon Kendra.

Make sure that you don't change any query parameter when you copy the query. If any of the query parameters are not recognized, ServiceNow treats the parameter as empty and doesn't use it to filter the results.
Slack

Slack is an enterprise communications app that lets users send messages and attachments through various public and private channels. You can use Amazon Kendra to index your Slack public and private channels, bot and archive messages, files and attachments, direct and group messages. You can also choose specific content to filter.

You can connect Amazon Kendra to your Slack data source using the Amazon Kendra console and the SlackConfiguration API.

For troubleshooting your Amazon Kendra Slack data source connector, see Troubleshooting data sources (p. 636).

Topics
- Supported features (p. 432)
- Prerequisites (p. 432)
- Connection instructions (p. 433)
- Learn more (p. 436)

Supported features

Amazon Kendra Slack data source connector supports the following features:

- Change log
- Field mappings
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your Slack data source, make these changes in your Slack and AWS accounts.

In Slack, make sure you have:

- Created a Slack Bot User OAuth token or Slack User OAuth token. You can choose either token to connect Amazon Kendra to your Slack data source. See Slack documentation on access tokens for more information.

 Note
 If you use the bot token as part of your Slack credentials, you cannot index direct messages and group messages and you must add the bot token to the channel you want to index.

- Noted your Slack workspace team ID from your Slack workspace main page URL. For example, https://app.slack.com/client/T0123456789/… where T0123456789 is the team ID.

- Added the following [Oauth scopes/ read] permissions:
 - channels:history
 - channels:read
 - groups:history
 - groups:read
• im:history
• im:read
• mpim:history
• mpim:read
• team:read
• users.profile:read
• users:read
• emoji:read
• files:read
• usergroups:read

• Checked each document is unique in Slack and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

• **Created an Amazon Kendra index** and, if using the API, noted the index ID.

• **Created an IAM role** for your data source and, if using the API, noted the ARN of the IAM role.

 Note
 If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

• Stored your Slack authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

 Note
 It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Slack data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Slack data source, you must provide the necessary details of your Slack data source so that Amazon Kendra can access your data. If you have not yet configured Slack for Amazon Kendra, see **Prerequisites (p. 432)**.

Console

To connect Amazon Kendra to Slack

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Slack connector, and then choose Add data source.
5. On the **Specify data source details** page, enter the following information:

 a. In **Name and description**, for **Data source name**—Enter a name for your data source. You can include hyphens but not spaces.

 b. (Optional) **Description**—Enter an optional description for your data source.

 c. In **Language**, for **Default language**—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.

 d. In **Tags**, for **Add new tag**—Tags to search and filter your resources or track your AWS costs.

 e. Choose **Next**.

6. On the **Define access and security** page, enter the following information:

 a. **Slack workspace team ID**—The team ID of your Slack workspace.

 b. **AWS Secrets Manager secret**—Choose an existing secret or create a new Secrets Manager secret to store your Slack authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.

 i. Enter following information in the **Create an AWS Secrets Manager secret window**:

 A. **Secret name**—A name for your secret. The prefix 'AmazonKendra-Slack-' is automatically added to your secret name.

 B. For **Slack token**—Enter the authentication credential values you created in your Slack account.

 ii. Choose **Save**.

 c. **Virtual Private Cloud (VPC)**—You can choose to use a VPC. If so, you must add **Subnets** and **VPC security groups**.

 d. **IAM role**—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.

 Note

 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose **Create a new role** to avoid errors.

 e. Choose **Next**.

7. On the **Configure sync settings** page, enter the following information:

 a. **Select type of content to crawl**—The Slack entities or content types you want to crawl.

 b. **Change log**—Select to update your index instead of syncing all your files.

 c. **Regex patterns**—Regular expression patterns to include or exclude certain files. You can add up to 100 patterns.

 d. **Select crawl start date**—What date Amazon Kendra will start crawling your data from.

 e. In **Sync run schedule**, for **Frequency**—How often Amazon Kendra will sync with your data source.

 f. Choose **Next**.

8. On the **Set field mappings** page, enter the following information:

 a. For **Slack field mappings**—Select from the Amazon Kendra generated default data source fields you want to map to your index.

 b. **Add field**—To add custom data source fields to create an index field name to map to and the field data type.

 c. Choose **Next**.

9. On the **Review and create** page, check that the information you have entered is correct and then select **Add data source**. You can also choose to edit your information from this page. Your data source will appear on the **Data sources** page after it’s added successfully.
To connect Amazon Kendra to Slack

You must specify the following using SlackConfiguration API:

- **Slack workspace team ID**—The Slack team ID you copied from your Slack main page URL.
- **List of entities to index**—Whether Amazon Kendra should index your public and private channels, and your group and direct messages.
- **Crawl date**—The date to start crawling your data from your Slack workspace team. The date must follow this format: yyyy-mm-dd.
- **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Slack account. The secret is stored in a JSON structure with the following keys:

  ```json
  {
    "slackToken": "token"
  }
  ```

Note

It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

- **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Slack connector and Amazon Kendra. For more information, see IAM roles for Slack data sources.

You can also add the following optional features:

- **Virtual Private Cloud (VPC)**—Specify VpcConfiguration as part of the data source configuration. See Configuring Amazon Kendra to use a VPC.
- **Change log**—Whether Amazon Kendra should use the Slack data source change log mechanism to determine if a document must be added, updated, or deleted in the index.

 Note

 Use the change log if you don't want Amazon Kendra to scan all of the documents. If your change log is large, it might take Amazon Kendra less time to scan the documents in the Slack data source than to process the change log. If you are syncing your Slack data source with your index for the first time, all documents are scanned.

- **Inclusion and exclusion filters**—Specify whether to include or exclude certain public and private channels, group and private messages, and bot and archived messages. If you use a bot token as part of your Slack authentication credentials, you must add the bot token to the channel you want to index. You cannot index direct messages and group messages using a bot token.

 Note

 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn't match the inclusion filter isn't indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

- **Field mappings**—Choose to map your Slack data source fields to your Amazon Kendra index fields. For more information, see Mapping data source fields.

- **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see User context filtering for Slack data sources.
Learn more

To learn more about integrating Amazon Kendra with your Slack data source, see:

- Unravel the knowledge in Slack workspaces with intelligent search using the Amazon Kendra Slack connector

Zendesk

Zendesk is a customer relationship management system that helps businesses automate and enhance customer support interactions. You can use Amazon Kendra to index your Zendesk support tickets, ticket comments, ticket attachments, help center articles, article comments, article comment attachments, guide community topics, community posts, and community post comments.

You can filter by organization name if you want to index tickets that are only within a specific organization. You can also choose to set a crawl date for when you want to start crawling data from Zendesk.

You can connect Amazon Kendra to your Zendesk data source using the Amazon Kendra console and the TemplateConfiguration API.

For troubleshooting your Amazon Kendra Zendesk data source connector, see Troubleshooting data sources (p. 636).

Topics

- Supported features (p. 436)
- Prerequisites (p. 436)
- Connection instructions (p. 437)
- Learn more (p. 440)

Supported features

Amazon Kendra Zendesk data source connector supports the following features:

- Change log
- Field mapping
- User context filtering
- Inclusion/exclusion filters
- Virtual private cloud (VPC)

Prerequisites

Before you can use Amazon Kendra to index your Zendesk data source, make these changes in your Zendesk and AWS accounts.

In Zendesk, make sure you have:

- Created a Zendesk Suite (Professional/Enterprise) administrative account.
- Noted your Zendesk host URL. For example, https://[sub-domain (https://{host/}].zendesk.com/.
Note
(On-premise/server) Amazon Kendra checks if the endpoint information included in AWS Secrets Manager is the same the endpoint information specified in your data source configuration details. This helps protect against the confused deputy problem, which is a security issue where a user doesn't have permission to perform an action but uses Amazon Kendra as a proxy to access the configured secret and perform the action. If you later change your endpoint information, you must create a new secret to sync this information.

- Generated an OAuth 2.0 credential token containing a client ID, client secret, user name, and password. See Zendesk documentation on generating OAuth 2.0 tokens for more information.
- Added the following OAuth 2.0 scope:
 - read
- **Optional:** Installed an SSL certificate to allow Amazon Kendra to connect.
- Checked each document is unique in Zendesk and across other data sources you plan to use for the same index. Each data source that you want to use for an index must not contain the same document across the data sources. Document IDs are global to an index and must be unique per index.

In your AWS account, make sure you have:

- [Created an Amazon Kendra index](#) and, if using the API, noted the index ID.
- [Created an IAM role](#) for your data source and, if using the API, noted the ARN of the IAM role.

Note
If you change your authentication type and credentials, you must update your IAM role to access the correct AWS Secrets Manager secret ID.

- Stored your Zendesk authentication credentials in an AWS Secrets Manager secret and, if using the API, noted the ARN of the secret.

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

If you don’t have an existing IAM role or secret, you can use the console to create a new IAM role and Secrets Manager secret when you connect your Zendesk data source to Amazon Kendra. If you are using the API, you must provide the ARN of an existing IAM role and Secrets Manager secret, and an index ID.

Connection instructions

To connect Amazon Kendra to your Zendesk data source, you must provide the necessary details of your Zendesk data source so that Amazon Kendra can access your data. If you have not yet configured Zendesk for Amazon Kendra, see Prerequisites (p. 436).

Console

To connect Amazon Kendra to Zendesk

1. Sign in to the AWS Management Console and open the Amazon Kendra console.
2. From the left navigation pane, choose Indexes and then choose the index you want to use from the list of indexes.

 Note
 You can choose to configure or edit your User access control settings under Index settings.

3. On the Getting started page, choose Add data source.
4. On the Add data source page, choose Zendesk connector, and then choose Add data source.

5. On the Specify data source details page, enter the following information:
 a. In Name and description, for Data source name—Enter a name for your data source. You can include hyphens but not spaces.
 b. (Optional) Description—Enter an optional description for your data source.
 c. In Language, for Default language—A language to filter your documents for the index. Unless you specify otherwise, the language defaults to English. Language specified in the document metadata overrides the selected language.
 d. In Tags, for Add new tag—Tags to search and filter your resources or track your AWS costs.
 e. Choose Next.

6. On the Define access and security page, enter the following information:
 a. Zendesk URL—Enter your Zendesk URL.
 b. AWS Secrets Manager secret—Choose an existing secret or create a new Secrets Manager secret to store your Zendesk authentication credentials. If you choose to create a new secret an AWS Secrets Manager secret window opens.
 i. Enter following information in the Create an AWS Secrets Manager secret window:
 A. Secret name—A name for your secret. The prefix ‘AmazonKendra-Zendesk-’ is automatically added to your secret name.
 B. For Client ID, Client secret, User name, Password—Enter the authentication credential values you created in your Zendesk account.
 ii. Choose Save.
 c. Virtual Private Cloud (VPC)—You can choose to use a VPC. If so, you must add Subnets and VPC security groups.
 d. IAM role—Choose an existing IAM role or create a new IAM role to access your repository credentials and index content.
 Note
 IAM roles used for indexes cannot be used for data sources. If you are unsure if an existing role is used for an index or FAQ, choose Create a new role to avoid errors.
 e. Choose Next.

7. On the Configure sync settings page, enter the following information:
 a. Select entities or content types—The Zendesk entities or content types you want to crawl.
 b. Change log—Select to update your index instead of syncing all your files.
 c. Organization name—Enter the Zendesk organization names to filter your sync.
 d. Sync start date—The date from which you want to index your content.
 e. Regex patterns—Regular expression patterns to include or exclude certain files. You can add up to 100 patterns.
 f. In Sync run schedule for Frequency—Choose how often Amazon Kendra will sync with your data source.
 g. Choose Next.

8. On the Set field mappings page, enter the following information:
 a. For Tickets, Ticket comment, Ticket comment attachment, Article, Article comment, Article comment attachment, Community topic, Community post, Community post comment—Select from the Amazon Kendra generated default data source fields you want to map to your index.
 b. Add field—To add custom data source fields to create an index field name to map to and the field data type.
c. Choose Next.
9. On the Review and create page, check that the information you have entered is correct and then select Add data source. You can also choose to edit your information from this page. Your data source will appear on the Data sources page after it’s added successfully.

API

To connect Amazon Kendra to Zendesk

You must specify a JSON of the data source schema using the TemplateConfiguration API. You must provide the following information:

• **Data source**—Specify the data source as ZENDESK.
• **Host URL**—Provide your Zendesk host URL as part of the connection configuration or repository endpoint details. For example, https://yoursubdomain.zendesk.com.
• **Type**—Specify TEMPLATE as the Type when you call CreateDataSource.
• **Secret Amazon Resource Name (ARN)**—Provide the Amazon Resource Name (ARN) of a Secrets Manager secret that contains the authentication credentials for your Zendesk account. The secret is stored in a JSON structure with the following keys:

```json
{
  "hostUrl": "https://yoursubdomain.zendesk.com",
  "clientId": "client ID",
  "clientSecret": "Zendesk client secret",
  "userName": "Zendesk user name",
  "password": "Zendesk password"
}
```

Note
It's recommended that you regularly refresh or rotate your credentials and secret. Provide only the necessary access level for your own security. It's not recommended to re-use credentials and secrets across data sources, and connector versions 1.0 and 2.0 (where applicable).

• **IAM role**—Specify RoleArn when you call CreateDataSource to provide an IAM role with permissions to access your Secrets Manager secret and to call the required public APIs for the Zendesk connector and Amazon Kendra. For more information, see IAM roles for Zendesk data sources.

You can also add the following optional features:

• **Virtual Private Cloud (VPC)**—Specify VpcConfiguration when you call CreateDataSource. For more information, see Configuring Amazon Kendra to use an Amazon VPC (p. 445).

• **Change log**—Whether Amazon Kendra should use the Zendesk data source change log mechanism to determine if a document must be added, updated, or deleted in the index.

 Note
The change log if you don't want Amazon Kendra to scan all of the documents. If your change log is large, it might take Amazon Kendra less time to scan the documents in the Zendesk data source than to process the change log. If you are syncing your Zendesk data source with your index for the first time, all documents are scanned.

• **Inclusion and exclusion filters**—Specify whether to include or exclude:
 • Support tickets, ticket comments, and/or ticket comment attachments
 • Help center articles, article attachments, and article comments
 • Guide community topics, posts, or post comments
• **Note**

 Most data sources use regular expression patterns, which are inclusion or exclusion patterns referred to as filters. If you specify an inclusion filter, only content that matches the inclusion filter is indexed. Any document that doesn’t match the inclusion filter isn’t indexed. If you specify an inclusion and exclusion filter, documents that match the exclusion filter are not indexed, even if they match the inclusion filter.

• **Field mappings**—Choose to map your Zendesk data source fields to your Amazon Kendra index fields. For more information, see [Mapping data source fields](#).

• **User context filtering**—Amazon Kendra crawls the access control list (ACL) for your data source by default. The ACL information is used to filter search results based on the user or their group access to documents. For more information, see [User context filtering for Zendesk data sources](#).

For a list of other important JSON keys to configure, see [Zendesk template schema](#) (p. 269).

Learn more

To learn more about integrating Amazon Kendra with your Zendesk data source, see:

• [Discover insights from Zendesk with Amazon Kendra intelligent search](#)

Mapping data source fields

You can map document or content fields from your data source to fields in your index. For example, if you have a field in your data source called "dept" that contains department information for a document, you can map it to an index field called "Department". That way, you can use the field when querying documents.

You can also map Amazon Kendra reserved or common fields such as _created_at. If your data source has a field called "creation_date", you can map this to the equivalent Amazon Kendra reserved field called _created_at. For more information on Amazon Kendra reserved fields, see [Document attributes or fields](#).

You can map fields for most data sources. You can create field mappings for the following data sources:

• Adobe Experience Manager
• Alfresco
• Amazon FSx
• Amazon RDS/Aurora
• Amazon Kendra Web Crawler
• Amazon WorkDocs
• Box
• Confluence
• Dropbox
• GitHub
• Google Workspace Drives
• Gmail
• Jira
• Microsoft Exchange
• Microsoft OneDrive
• Microsoft SharePoint
If you store your documents in an S3 bucket, or S3 data source, you specify your fields using a JSON metadata file. For more information, see S3 data source connector.

Mapping your data source fields to an index field is a three-step process:

1. Create an index. For more information, see Creating an index.
2. Update the index to add fields.
3. Create a data source and include field mappings to map reserved fields and any custom fields to Amazon Kendra index fields.

To update the index to add custom fields, use the console to edit the data source field mappings and add a custom field or use the UpdateIndex API. You can add a total of 500 custom fields to your index.

For database data sources, if the name of the database column matches the name of a reserved field, the field and column are automatically mapped.

With the UpdateIndex API, you add reserved and custom fields using DocumentMetadataConfigurationUpdates.

The following JSON example uses DocumentMetadataConfigurationUpdates to add a field called "Department" to the index.

```
"DocumentMetadataConfigurationUpdates": [
    {
        "Name": "Department",
        "Type": "STRING_VALUE"
    }
]
```

When you create the field, you have the option of setting how the field is used for search. You can choose from the following:

- **Displayable**—Determines whether the field is returned in the query response. The default is true.
- **Facetable**—Indicates that the field can be used to create facets. The default is false.
- **Searchable**—Determines whether the field is used in the search. The default is true for string fields and false for number and date fields.
- **Sortable**—Indicates that the field can be used to sort the response from a query. Can only be set for date, number, and string fields. Can't be set for string list fields.

The following JSON example uses DocumentMetadataConfigurationUpdates to add a field called "Department" to the index and marks it as facetable.

```
"DocumentMetadataConfigurationUpdates": [
    {
        "Name": "Department",
    }
]
Using Amazon Kendra reserved or common document fields

With the `UpdateIndex API`, you can create reserved or common fields using `DocumentMetadataConfigurationUpdates` and specifying the Amazon Kendra reserved index field name to map to your equivalent document attribute/field name. You can also create custom fields. If you use a data source connector, most include field mappings that map your data source document fields to Amazon Kendra index fields. If you use the console, you update fields by selecting your data source, selecting the edit action, and then proceeding next to the field mappings section for configuring the data source.

You can configure the `Search` object to set a field as either displayable, facetable, searchable, and sortable. You can configure the `Relevance` object to set a field's rank order, boost duration or time period to apply to boosting, freshness, importance value, and importance values mapped to specific field values. If you use the console, you can set the search settings for a field by selecting the facet option in the navigation menu. To set relevance tuning, select the option to search your index in the navigation menu, enter a query, and use the side panel options to tune the search relevance. You cannot change the field type once you have created the field.

Amazon Kendra has the following reserved or common document fields that you can use:

- `_authors`—A list of one or more authors responsible for the content of the document.
- `_category`—A category that places a document in a specific group.
- `_created_at`—The date and time in ISO 8601 format that the document was created. For example, `2012-03-25T12:30:10+01:00` is the ISO 8601 date-time format for March 25th 2012 at 12:30PM (plus 10 seconds) in Central European Time.
- `_data_source_id`—The identifier of the data source that contains the document.
- `_document_body`—The content of the document.
- `_document_id`—A unique identifier for the document.
- `_document_title`—The title of the document.
- `_excerpt_page_number`—The page number in a PDF file where the document excerpt appears. If your index was created before September 8, 2020, you must re-index your documents before you can use this attribute.
- `_faq_id`—If this is a question-answer type document (FAQ), a unique identifier for the FAQ.
- `_file_type`—The file type of the document, such as pdf or doc.
- `_last_updated_at`—The date and time in ISO 8601 format that the document was last updated. For example, `2012-03-25T12:30:10+01:00` is the ISO 8601 date-time format for March 25th 2012 at 12:30PM (plus 10 seconds) in Central European Time.
- `_source_uri`—The URI where the document is available. For example, the URI of the document on a company website.
- `_version`—An identifier for the specific version of a document.
- `_view_count`—The number of times that the document has been viewed.
- `_language_code` (String)—The code for a language that applies to the document. This defaults to English if you do not specify a language. For more information on supported languages, including their codes, see Adding documents in languages other than English.
For custom fields, you create these fields using `DocumentMetadataConfigurationUpdates` with the `UpdateIndex` API, just as you do when creating a reserved or common field. You must set the appropriate data type for your custom field. If you use the console, you update fields by selecting your data source, selecting the edit action, and then proceeding next to the field mappings section for configuring the data source. Some data sources don't support adding new fields or custom fields. You cannot change the field type once you have created the field.

The following are the types you can set for custom fields:

- Date
- Number
- String
- String list

If you added documents to the index using `BatchPutDocument` API, `Attributes` lists the fields/attributes of your documents and you create fields using the `DocumentAttribute` object.

For documents indexed from an Amazon S3 data source, you create fields using a JSON metadata file that includes the fields information.

If you use a supported database as your data source, you can configure your fields using the field mappings option.

### Adding documents in languages other than English

You can index documents in multiple languages. If you don't specify a language, Amazon Kendra indexes documents in English by default. You include the language code for a document in the document metadata as a field. See Field mappings and Custom attributes for more information on the `_language_code` field for a document.

You can specify the language code for all your documents in your data source when you call `CreateDataSource`. If a document doesn't have a language code specified in a metadata field, the document is indexed using the language code specified for all documents at the data source level. In the console, you can index documents in a supported language only at the data source level. Go to Data sources, then the Specify data source details page, and choose a language from the dropdown Language.

You can also search or query documents in a supported language. For more information, see Searching in languages.

The following languages and their codes are supported (English or `en` is supported by default if you don't specify a language). This table includes languages that Amazon Kendra supports with full semantic search, as well as languages that only support simple keyword matching. Languages that support full semantic search are marked with an asterisk and are in bold text in the following table. English (default language) is also supported with full semantic search.

<table>
<thead>
<tr>
<th>Language name</th>
<th>Language code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>ar</td>
</tr>
<tr>
<td>Armenian</td>
<td>hy</td>
</tr>
<tr>
<td>Basque</td>
<td>eu</td>
</tr>
<tr>
<td>Bengali</td>
<td>bn</td>
</tr>
<tr>
<td>Language name</td>
<td>Language code</td>
</tr>
<tr>
<td>---------------------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Bulgarian</td>
<td>bg</td>
</tr>
<tr>
<td>Catalan</td>
<td>ca</td>
</tr>
<tr>
<td><strong>Chinese – simplified and traditional</strong>*</td>
<td>zh</td>
</tr>
<tr>
<td>Czech</td>
<td>cs</td>
</tr>
<tr>
<td>Danish</td>
<td>da</td>
</tr>
<tr>
<td>Dutch</td>
<td>nl</td>
</tr>
<tr>
<td>Finnish</td>
<td>fi</td>
</tr>
<tr>
<td><strong>French – includes French (Canada)</strong>*</td>
<td>fr</td>
</tr>
<tr>
<td>Galician</td>
<td>gl</td>
</tr>
<tr>
<td><strong>German</strong>*</td>
<td>de</td>
</tr>
<tr>
<td>Greek</td>
<td>el</td>
</tr>
<tr>
<td>Hindi</td>
<td>hi</td>
</tr>
<tr>
<td>Hungarian</td>
<td>hu</td>
</tr>
<tr>
<td>Indonesian</td>
<td>id</td>
</tr>
<tr>
<td>Irish</td>
<td>ga</td>
</tr>
<tr>
<td>Italian</td>
<td>it</td>
</tr>
<tr>
<td><strong>Japanese</strong>*</td>
<td>ja</td>
</tr>
<tr>
<td><strong>Korean</strong>*</td>
<td>ko</td>
</tr>
<tr>
<td>Latvian</td>
<td>lv</td>
</tr>
<tr>
<td>Lithuanian</td>
<td>lt</td>
</tr>
<tr>
<td>Norwegian</td>
<td>no</td>
</tr>
<tr>
<td>Persian</td>
<td>fa</td>
</tr>
<tr>
<td>Portuguese</td>
<td>pt</td>
</tr>
<tr>
<td><strong>Portuguese (Brazil)</strong>*</td>
<td>pt-BR</td>
</tr>
<tr>
<td>Romanian</td>
<td>ro</td>
</tr>
<tr>
<td>Russian</td>
<td>ru</td>
</tr>
<tr>
<td>Sorani</td>
<td>ckb</td>
</tr>
<tr>
<td><strong>Spanish – includes Spanish (Mexico)</strong>*</td>
<td>es</td>
</tr>
<tr>
<td>Swedish</td>
<td>sv</td>
</tr>
<tr>
<td>Turkish</td>
<td>tr</td>
</tr>
</tbody>
</table>
Configuring Amazon Kendra to use an Amazon VPC

Amazon Kendra can connect to your Amazon Virtual Private Cloud to index content stored in data sources or databases running in your private cloud. When you create a data source connector or a database connector, you provide security group and subnet identifiers for the subnet that contains your data source or database. Amazon Kendra uses this information to create an elastic network interface that it uses to securely communicate with your data source or database.

If your data source or database isn't running on an Amazon VPC, you can connect your data source or database to your Amazon VPC using a Virtual Private Network (VPN). You get a default VPC when you create your Amazon account. For information about setting up a VPN, see the AWS VPN Documentation.

To use a VPC, you must tell Amazon Kendra the identifier of the subnet that the database belongs to and the identifiers of any security groups that Amazon Kendra must use to access the subnet. For example, if you're using the default port for a MySQL database, the security groups must allow Amazon Kendra to access port 3306 on the host that runs the database.

Choosing a subnet for your data source or database

Only use private subnets in the VPC configuration of your data source or database. If your RDS instance is in a public subnet in your VPC, then you can't use that subnet directly to sync your data source or database. Instead, create a private subnet that has outbound access to a NAT gateway in the public subnet. When you configure the VPC for your data source or database, specify that private subnet. For a database data source configured with a VPC, the subnets must be in one of the following Availability Zone IDs:

- US West (Oregon)—usw2-az1, usw2-az2, usw2-az3
- US East (N. Virginia)—use1-az1, use1-az2, use1-az4
- EU (Ireland)—euw1-az1, euw1-az2, euw1-az3

The identifiers for subnets and security groups are configured in the Amazon VPC control panel. To see the identifiers, open the Amazon VPC console as follows:

To view subnet identifiers

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. From the navigation pane, choose Subnets.
3. From the subnet list, choose the subnet that contains your database server.
4. From the description tab, make a note of the identifier in the Subnet ID field.

To view security group identifiers
1. Sign in to the AWS Management Console and open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. From the navigation pane, choose Security Groups.
3. From the security group list, choose the group that you want the identifier for.
4. From the description tab, make a note of the identifier in the Group ID field.

If Amazon Kendra must route the connection between two or more subnets, you can provide multiple subnets. For example, if the subnet that contains your database server is out of IP addresses, Amazon Kendra can connect to a subnet with free IP addresses and route the connection to the first subnet. If you list multiple subnets, the subnets must be able to communicate with each other. Each subnet must be associated with a route table that provides outbound internet access using a network address translator (NAT) device.

You can also provide multiple security groups. The combined effect of the security groups must allow Amazon Kendra to access the data source or database server that you have specified in the connection configuration.

Connecting to a database in a VPC

The following example shows how to connect a MySQL database running in a VPC. The example assumes that you’re starting with your default VPC and that you need to create a MySQL database. If you already have a VPC, make sure that it’s configured as shown. If you have a MySQL database, you can use that instead of creating a new one.

Topics
- Step 1: Configure a VPC (p. 446)
- Step 2: Configure security (p. 447)
- Step 3: Create a database (p. 447)
- Step 4: Create a database data source connector (p. 447)

Step 1: Configure a VPC

Configure your VPC so that you have a private subnet and a security group for Amazon Kendra to access a MySQL database running in the subnet. The subnets provided in the VPC configuration must be in either US West (Oregon), US East (N. Virginia), EU (Ireland).

To configure a VPC
1. Sign in to the AWS Management Console and open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. From the navigation pane, choose Route tables, then choose Create route table.
3. For the Name tag field, enter Private subnet route table. In the VPC field, choose your VPC, and then choose Create. Choose Close to return to the list of route tables.
4. From the navigation pane, choose NAT Gateways then choose Create NAT Gateway.
5. In the Subnet field, choose the subnet that's the public subnet and note the subnet ID.
6. If you don't have an Elastic IP address, choose Create New EIP, choose Create a NAT Gateway, and then choose Close.
7. From the navigation pane, choose Route Tables.
8. From the route table list, choose the Private subnet route table that you created in step 3. From Actions, choose Edit Routes.
9. Choose Add route. Add the destination 0.0.0.0/0 to allow all outgoing traffic to the internet. For Target, choose NAT Gateway, and then choose the gateway that you created in step 4. Choose Save routes, and then choose Close.
10. From Actions, choose Edit subnet associations.
11. Choose the subnets that you want to be private. Don't choose the subnet with the NAT gateway that you noted previously.

**Step 2: Configure security**

Next, configure security groups for your database.

**To create security groups**

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. From the description of your VPC, note the IPv4 CIDR.
3. From the navigation pane, choose Security Groups and then choose Create security group.
4. In Security group name enter DataSourceInboundSecurityGroup. Provide a description, then choose your VPC from the list. Choose Create and then choose Close.
5. Choose the Inbound tab.
6. Choose Edit rules, and then choose Add Rule.
7. For a database, enter the port number for the Port Range. For example, for MySQL it's 3306, and, for HTTPS, it's 443. For the Source, type the Classless Inter-Domain Routing (CIDR) of your VPC. Choose Save rules and then choose Close.

The security group allows anyone within the VPC to connect to the database, and it allows outbound connections to the internet.

**Step 3: Create a database**

Create a database to hold your documents, or you can use your existing database. See Using a database data source for a list of databases that Amazon Kendra supports.

For instructions on how to create a MySQL database, see Getting Starting with a MySQL database data source (console) using Amazon RDS.

**Step 4: Create a database data source connector**

After you configured your VPC and created your database, you can create a data source connector for the database. See Using a database data source.

Make sure that you configure your VPC, the private subnets that you created in your VPC, and the security group that you created in your VPC for your database.

For instructions on how to create a data source for a MySQL database, see Getting Starting with a MySQL database data source (console) using Amazon RDS.
Deleting an index, data source, or batch uploaded documents

This section shows you how to delete an index, a data source repository of documents in your index, or documents in your index that you batch uploaded.

Topics
- Deleting an index (p. 448)
- Deleting a data source (p. 449)
- Deleting batch uploaded documents (p. 450)

Deleting an index

You can delete an index from Amazon Kendra when you are no longer using the index. For example, delete an index when:

- You are no longer using the index and want to reduce charges to your AWS account. An Amazon Kendra index accrues charges while it is running whether or not you make queries on the index.
- You want to reconfigure the index for a different edition of Amazon Kendra. Delete the existing index and then create a new one with the different edition.
- You have reached the maximum number of indexes in your account and don't want to exceed your quota. Delete an existing index and add a new one. For information about the maximum number of indexes that you can create, see Quotas.

To delete an index, use the console, the AWS Command Line Interface, the AWS CloudFormation script, or the DeleteIndex API. Deleting an index removes the index and all associated data sources and document data. Deleting an index doesn't remove the original documents from your storage.

Deleting an index is an asynchronous operation. When you start deleting an index, the index status changes to DELETING. It remains in the DELETING state until all of the information related to the index is removed. Once the index is deleted, it no longer appears in the results of a call to the ListIndices API. If you call the DescribeIndex API with the deleted index's identifier, you receive a ResourceNotFoundException.

To delete an index (console)
1. Sign in to the AWS Management Console and open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. In the navigation pane, choose Indexes, and then choose the index to delete.
3. Choose Delete to delete the selected index.

To delete an index (CLI)
- In the AWS CLI, use the following command. The command is formatted for Linux and macOS. If you are using Windows, replace the Unix line continuation character (\) with a caret (^).
Deleting a data source

You delete a data source when you want to remove the information contained in the data source from your Amazon Kendra index. For example, delete a data source when:

- A data source is incorrectly configured. Delete the data source, wait for the data source to finish deleting, and then recreate it.
- You migrated documents from one data source to another. Delete the original data source and recreate it in the new location.
- You have reached the limit of data sources for an index. Delete one of the existing data sources and add a new one. For more information about the number of data sources that you can create, see Quotas (p. 632).

To delete a data source, use the console, the AWS Command Line Interface (AWS CLI), the DeleteDataSource API, or a AWS CloudFormation script. Deleting a data source removes all of the information about the data source from the index. If you only want to stop synching the data source, change the synchronization schedule for the data source to "run on demand".

Deleting a data source is an asynchronous operation. When you start deleting a data source, the data source status changes to DELETING. It remains in the DELETING state until the information related to the data source is removed. After the data source is deleted, it no longer appears in the results of a call to the ListDataSources API. If you call the DescribeDataSource API with the deleted data source's identifier, you receive a ResourceNotFoundException.

**Note**
Deleting an entire data source or re-syncing your index after deleting specific documents from a data source could take up to an hour or more, depending on the number of documents you want to delete.

**To delete a data source (console)**

1. Sign in to the AWS Management Console and open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. In the navigation pane, choose Indexes, and then choose the index that contains the data source to delete.
3. In the navigation pane, choose Data sources.
4. Choose the data source to remove.
5. Choose Delete to delete the data source.

**To delete a data source (CLI)**

- In the AWS Command Line Interface, use the following command. The command is formatted for Linux and macOS. If you are using Windows, replace the Unix line continuation character (\) with a caret (^).

```
aws kendra delete-data-source \r
 --id data-source-id \r
 --index-id index-id
```
When you delete a data source, Amazon Kendra removes all of the stored information about the data source. Amazon Kendra removes all of the document data stored in the index, and all run histories and metrics associated with the data source. Deleting a data source does not remove the original documents from your storage.

Documents in the data source may be included in the document count returned by the DescribeIndex API while Amazon Kendra deletes a data source. Documents from the data source may appear in search results while Amazon Kendra deletes the data source.

Amazon Kendra releases the resources for a data source as soon as you call the DeleteDataSource API or choose to delete the data source in the console. If you are deleting the data source to reduce the number of data sources below your limit, you can create a new data source right away.

If you are deleting a data source and then creating another data source to the document data, wait for the first data source to be deleted before you sync the new data source.

You can delete a data source that is in the process of syncing with Amazon Kendra. The sync is stopped and the data source is removed. If you attempt to start a sync when the data source is being deleted, you get a ConflictException exception.

You can't delete a data source if the associated index is in the DELETING state. Deleting an index deletes all of the data sources for the index. You can start deleting an index while a data source for that index is in the DELETING state.

If you have two data sources pointing to the same documents, such as two data sources pointing to the same Amazon S3 bucket, documents in the index might be inconsistent when one of the data sources is deleted. When two data sources reference the same documents, only one copy of the document data is stored in the index. Removing one data source removes the index data for the documents. The other data source is not aware that the documents have been removed, so Amazon Kendra won't correctly re-index the documents the next time it syncs. When you have two data sources pointing to the same document location, you should delete both data sources and then recreate one.

### Deleting batch uploaded documents

You can delete documents directly from an index using the BatchDeleteDocument API. You can't delete documents directly using the console. If you use the console, you can either delete specific documents from your data source repository and re-sync with your index or delete the entire data source connector.

Deleting documents from an index using BatchDeleteDocument is an asynchronous operation. After you call the BatchDeleteDocument API, you use the BatchGetDocumentStatus API to monitor the progress of deleting your documents. When a document is deleted from the index, Amazon Kendra returns NOT_FOUND as the status.

**Note**

Deleting documents from an index using BatchDeleteDocument could take up to an hour or more, depending on the number of documents you want to delete.

To delete batch uploaded documents from an index (CLI)

- In the AWS Command Line Interface, use the following command. The command is formatted for Linux and macOS. If you are using Windows, replace the Unix line continuation character (\) with a caret (^).

  ```bash
 aws kendra batch-delete-document \
 --index-id index-id \n --document-id-list 'doc-id-1' 'doc-id-2'
  ```
Enriching your documents during ingestion

You can alter your content and document metadata fields or attributes during the document ingestion process. With Amazon Kendra's Custom Document Enrichment feature, you can create, modify, or delete document attributes and content when you ingest your documents into Amazon Kendra. This means you can manipulate and ingest your data as you need.

This feature gives you control over how your documents are treated and ingested into Amazon Kendra. For example, you can scrub personally identifiable information in the document metadata while ingesting your documents into Amazon Kendra.

Another way that you can use this feature is to invoke a Lambda function in AWS Lambda to run Optical Character Recognition (OCR) on images, translation on text, and other tasks for preparing the data for search or analysis. For example, you can invoke a function to run OCR on images. The function could interpret text from images and treat each image as a textual document. A company that receives mailed-in customer surveys and stores these surveys as images could ingest these images as textual documents into Amazon Kendra. The company can then search for valuable customer survey information in Amazon Kendra.

You can use basic operations to apply as a first parse of your data, and then use a Lambda function to apply more complex operations on your data. For example, you could use a basic operation to simply remove all values in the document metadata field 'Customer_ID', and then apply a Lambda function to extract text from images of the text in the documents.

How Custom Document Enrichment works

The overall process of Custom Document Enrichment is as follows:

1. You configure Custom Document Enrichment when you create or update your data source, or index your documents directly into Amazon Kendra.
2. Amazon Kendra applies inline configurations or basic logic to alter your data. For more information, see the section called "Basic operations to change metadata" (p. 452).
3. If you choose to configure advanced data manipulation, Amazon Kendra can apply this on your original, raw documents or on the structured, parsed documents. For more information, see the section called "Lambda functions: extract and change metadata or content" (p. 457).
4. Your altered documents are ingested into Amazon Kendra.

At any point in this process, if your configuration is not valid, Amazon Kendra throws an error.

When you call CreateDataSource, UpdateDataSource, or BatchPutDocument APIs, you provide your Custom Document Enrichment configuration. If you call BatchPutDocument, you must configure Custom Document Enrichment with each request. If you use the console, you select your index and then select Document enrichments to configure Custom Document Enrichment.

If you use Document enrichments in the console, you can choose to only configure basic operations or only Lambda functions or both, like you can using the API. You can select Next in the console steps.
to choose not to configure basic operations and only Lambda functions, including whether to apply to
the original (pre-extraction) or structured (post-extraction) data. You can only save your configurations
by completing all the steps in the console. Your document configurations are not saved if you don’t
complete all the steps.

Basic operations to change metadata

You can manipulate your document fields and content using basic logic. This includes removing values in
a field, modifying values in a field using a condition, or creating a field. For advanced manipulations that
go beyond what you can manipulate using basic logic, invoke a Lambda function. For more information,
see the section called “Lambda functions: extract and change metadata or content” (p. 457).

To apply basic logic, you specify the target field you want to manipulate using the
DocumentAttributeTarget object. You provide the attribute key. For example, the key 'Department' is
a field or attribute that holds all the department names associated with the documents. You can also
specify a value to use in the target field if a certain condition is met. You set the condition using the
DocumentAttributeCondition object. For example, if the 'Source_URI' field contains 'financial' in its URI
value, then prefill the target field 'Department' with the target value 'Finance' for the document. You can
also delete the values of the target document attribute.

To apply basic logic using the console, select your index and then select Document enrichments in the
navigation menu. Go to Configure basic operations to apply basic manipulations to your document
fields and content.

The following is an example of using basic logic to remove all customer identification numbers in the
document field called ‘Customer_ID’.

Example 1: Removing customer identification numbers associated with the documents

Data before basic manipulation applied.

<table>
<thead>
<tr>
<th>Document_ID</th>
<th>Body_Text</th>
<th>Customer_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lorem Ipsum.</td>
<td>CID1234</td>
</tr>
<tr>
<td>2</td>
<td>Lorem Ipsum.</td>
<td>CID1235</td>
</tr>
<tr>
<td>3</td>
<td>Lorem Ipsum.</td>
<td>CID1236</td>
</tr>
</tbody>
</table>

Data after basic manipulation applied.

<table>
<thead>
<tr>
<th>Document_ID</th>
<th>Body_Text</th>
<th>Customer_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lorem Ipsum.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lorem Ipsum.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lorem Ipsum.</td>
<td></td>
</tr>
</tbody>
</table>

The following is an example of using basic logic to create a field called 'Department' and prefill this field
with the department names based on information from the 'Source_URI' field. This uses the condition
that if the 'Source_URI' field contains 'financial' in its URI value, then prefill the target field 'Department'
with the target value 'Finance' for the document.
Example 2: Creating 'Department' field and prefilling it with department names associated with the documents using a condition.

Data before basic manipulation applied.

<table>
<thead>
<tr>
<th>Document_ID</th>
<th>Body_Text</th>
<th>Source_URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lorem Ipsum.</td>
<td>financial/1</td>
</tr>
<tr>
<td>2</td>
<td>Lorem Ipsum.</td>
<td>financial/2</td>
</tr>
<tr>
<td>3</td>
<td>Lorem Ipsum.</td>
<td>financial/3</td>
</tr>
</tbody>
</table>

Data after basic manipulation applied.

<table>
<thead>
<tr>
<th>Document_ID</th>
<th>Body_Text</th>
<th>Source_URI</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lorem Ipsum.</td>
<td>financial/1</td>
<td>Finance</td>
</tr>
<tr>
<td>2</td>
<td>Lorem Ipsum.</td>
<td>financial/2</td>
<td>Finance</td>
</tr>
<tr>
<td>3</td>
<td>Lorem Ipsum.</td>
<td>financial/3</td>
<td>Finance</td>
</tr>
</tbody>
</table>

Note
Amazon Kendra can't create a target document field if it isn't already created as an index field. After you create your index field, you can create a document field using DocumentAttributeTarget. Amazon Kendra then maps your newly created document metadata field to your index field.

The following code is an example of configuring basic data manipulation to remove customer identification numbers associated with the documents.

Console

To configure basic data manipulation to remove customer identification numbers

1. In the left navigation pane, under Indexes, select Document enrichments and then select Add document enrichment.
2. On the Configure basic operations page, choose from the dropdown your data source that you want to alter document fields and content. Then choose from the dropdown the document field name 'Customer_ID', select from the dropdown the index field name 'Customer_ID', and select from the dropdown the target action Delete. Then select Add basic operation.

CLI

To configure basic data manipulation to remove customer identification numbers

```
aws kendra create-data-source \
 --name data-source-name \n --index-id index-id \n --role-arn arn:aws:iam::account-id:role/role-name \n --type S3 \n --configuration '{"S3Configuration":{"BucketName":"S3-bucket-name"}}' \n --custom-document-enrichment-configuration '{"InlineConfigurations": [{"Target": {"TargetDocumentAttributeKey": "Customer_ID", "TargetDocumentAttributeValueDeletion": true}}]}'
```
Python

To configure basic data manipulation to remove customer identification numbers

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")

print("Create a data source with customizations")

Provide the name of the data source
name = "data-source-name"
Provide the index ID for the data source
index_id = "index-id"
Provide the IAM role ARN required for data sources
role_arn = "arn:aws:iam::${account-id}:role/${role-name}"
Provide the data source connection information
data_source_type = "S3"
S3_bucket_name = "S3-bucket-name"
Configure the data source with Custom Document Enrichment
configuration = {
 "S3Configuration":
 {
 "BucketName": S3_bucket_name
 }
}

custom_document_enrichment_configuration = {"InlineConfigurations":[
 {
 "Target":{
 "TargetDocumentAttributeKey":"Customer_ID",
 "TargetDocumentAttributeValueDeletion": True
 }
]
]}

try:
data_source_response = kendra.create_data_source(
 Name = name,
 IndexId = index_id,
 RoleArn = role_arn,
 Type = data_source_type,
 Configuration = configuration,
 CustomDocumentEnrichmentConfiguration = custom_document_enrichment_configuration
)

pprint.pprint(data_source_response)

data_source_id = data_source_response["Id"]

print("Wait for Amazon Kendra to create the data source with your customizations.")

while True:
 # Get the details of the data source, such as the status
data_source_description = kendra.describe_data_source(
 Id = data_source_id,
 IndexId = index_id
)
 status = data_source_description["Status"]
 print("Creating data source. Status: "+status)
time.sleep(60)
 if status != "CREATING":
 break
```

454
print("Synchronize the data source.")

sync_response = kendra.start_data_source_sync_job(
    Id = data_source_id,
    IndexId = index_id
)

pprint.pprint(sync_response)

print("Wait for the data source to sync with the index.")

while True:
    jobs = kendra.list_data_source_sync_jobs(
        Id= data_source_id,
        IndexId= index_id
    )

    # For this example, there should be one job
    status = jobs["History"][0]["Status"]

    print(" Syncing data source. Status: "+status)
    time.sleep(60)
    if status != "SYNCING":
        break

except ClientError as e:
    print("%s" % e)

print("Program ends.")

Java

To configure basic data manipulation to remove customer identification numbers

```java
package com.amazonaws.kendra;

import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.CreateDataSourceRequest;
import software.amazon.awssdk.services.kendra.model.CreateDataSourceResponse;
import software.amazon.awssdk.services.kendra.model.CreateIndexRequest;
import software.amazon.awssdk.services.kendra.model.CreateIndexResponse;
import software.amazon.awssdk.services.kendra.model.DataSourceConfiguration;
import software.amazon.awssdk.services.kendra.model.DataSourceStatus;
import software.amazon.awssdk.services.kendra.model.DataSourceSyncJob;
import software.amazon.awssdk.services.kendra.model.DataSourceSyncJobStatus;
import software.amazon.awssdk.services.kendra.model.DataSourceType;
import software.amazon.awssdk.services.kendra.model.DescribeDataSourceRequest;
import software.amazon.awssdk.services.kendra.model.DescribeDataSourceResponse;
import software.amazon.awssdk.services.kendra.model.DescribeIndexRequest;
import software.amazon.awssdk.services.kendra.model.DescribeIndexResponse;
import software.amazon.awssdk.services.kendra.model.IndexStatus;
import software.amazon.awssdk.services.kendra.model.ListDataSourceSyncJobsRequest;
import software.amazon.awssdk.services.kendra.model.ListDataSourceSyncJobsResponse;
import software.amazon.awssdk.services.kendra.model.S3DataSourceConfiguration;
import software.amazon.awssdk.services.kendra.model.StartDataSourceSyncJobRequest;
import software.amazon.awssdk.services.kendra.model.StartDataSourceSyncJobResponse;

public class CreateDataSourceWithCustomizationsExample {
 public static void main(String[] args) throws InterruptedException {
 System.out.println("Create a data source with customizations");

 String dataSourceName = "data-source-name";
```

455
String indexId = "index-id";
String dataSourceRoleArn = "arn:aws:iam::account-id:role/role-name";
String s3BucketName = "S3-bucket-name"

KendraClient kendra = KendraClient.builder().build();

CreateDataSourceRequest createDataSourceRequest = CreateDataSourceRequest
 .builder()
 .name(dataSourceName)
 .description(experienceDescription)
 .roleArn(experienceRoleArn)
 .type(DataSourceType.S3)
 .configuration(
   DataSourceConfiguration
     .builder()
     .s3Configuration(S3DataSourceConfiguration
       .builder()
       .bucketName(s3BucketName)
       .build()
     ).build()
   ).customDocumentEnrichmentConfiguration(
     CustomDocumentEnrichmentConfiguration
       .builder()
       .inlineConfigurations(Arrays.asList(
         InlineCustomDocumentEnrichmentConfiguration
           .builder()
           .target(
             DocumentAttributeTarget
               .builder()
               .targetDocumentAttributeKey("Customer_ID")
               .targetDocumentAttributeValueDeletion(true)
               .build()
           ).build()
       )).build();

CreateDataSourceResponse createDataSourceResponse =
  kendra.createDataSource(createDataSourceRequest);
System.out.println(String.format("Response of creating data source: %s",
  createDataSourceResponse));

String dataSourceId = createDataSourceResponse.id();
System.out.println(String.format("Waiting for Kendra to create the data source %s", dataSourceId));
DescribeDataSourceRequest describeDataSourceRequest = DescribeDataSourceRequest
 .builder()
 .indexId(indexId)
 .id(dataSourceId)
 .build();

while (true) {
  DescribeDataSourceResponse describeDataSourceResponse =
    kendra.describeDataSource(describeDataSourceRequest);
  DataSourceStatus status = describeDataSourceResponse.status();
  System.out.println(String.format("Creating data source. Status: %s", status));
  TimeUnit.SECONDS.sleep(60);
  if (status != DataSourceStatus.CREATING) {
    break;
  }
}
System.out.println(String.format("Synchronize the data source %s", dataSourceId));
Lambda functions: extract and change metadata or content

You can manipulate your document fields and content using Lambda functions. This is useful if you want to go beyond basic logic and apply advanced data manipulations. For example, using Optical Character Recognition (OCR), which interprets text from images, and treats each image as a textual document. Or, retrieving the current date-time in a certain time zone and inserting the date-time where there's an empty value for a date field.

You can apply basic logic first and then use a Lambda function to further manipulate your data, or vice versa. You can also choose to only apply a Lambda function.

Amazon Kendra can invoke a Lambda function to apply advanced data manipulations during the ingestion process as part of your CustomDocumentEnrichmentConfiguration. You specify a role that includes permission to execute the Lambda function and access your Amazon S3 bucket to store the output of your data manipulations—see IAM access roles.

Amazon Kendra can apply a Lambda function on your original, raw documents or on the structured, parsed documents. You can configure a Lambda function that takes your original or raw data and applies your data manipulations using PreExtractionHookConfiguration. You can also configure a Lambda function that takes your structured documents and applies your data manipulations using
PostExtractionHookConfiguration. Amazon Kendra extracts the document metadata and text to structure your documents. Your Lambda functions must follow the mandatory request and response structures. For more information, see the section called “Data contracts for Lambda functions” (p. 463).

To configure a Lambda function in the console, select your index and then select Document enrichments in the navigation menu. Go to Configure Lambda functions to configure a Lambda function.

You can configure only one Lambda function for PreExtractionHookConfiguration and only one Lambda function for PostExtractionHookConfiguration. However, your Lambda function can invoke other functions that it requires. You can configure both PreExtractionHookConfiguration and PostExtractionHookConfiguration or either one. Your Lambda function for PreExtractionHookConfiguration must not exceed a run time of 5 minutes and your Lambda function for PostExtractionHookConfiguration must not exceed a run time of 1 minute. Configuring Custom Document Enrichment naturally takes longer to ingest your documents into Amazon Kendra than if you were to not configure this.

You can configure Amazon Kendra to invoke a Lambda function only if a condition is met. For example, you can specify a condition that if there are empty date-time values, then Amazon Kendra should invoke a function that inserts the current date-time.

The following is an example of using a Lambda function to run OCR to interpret text from images and store this text in a field called 'Document_Image_Text'.

Example 1: Extracting text from images to create textual documents

Data before advanced manipulation applied.

<table>
<thead>
<tr>
<th>Document_ID</th>
<th>Document_Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>image_1.png</td>
</tr>
<tr>
<td>2</td>
<td>image_2.png</td>
</tr>
<tr>
<td>3</td>
<td>image_3.png</td>
</tr>
</tbody>
</table>

Data after advanced manipulation applied.

<table>
<thead>
<tr>
<th>Document_ID</th>
<th>Document_Image</th>
<th>Document_Image_Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>image_1.png</td>
<td>Mailed survey response</td>
</tr>
<tr>
<td>2</td>
<td>image_2.png</td>
<td>Mailed survey response</td>
</tr>
<tr>
<td>3</td>
<td>image_3.png</td>
<td>Mailed survey response</td>
</tr>
</tbody>
</table>

The following is an example of using a Lambda function to insert the current date-time for empty date values. This uses the condition that if a date field value is ‘null’, then replace this with the current date-time.

Example 2: Replacing empty values in the Last_Updated field with the current date-time.

Data before advanced manipulation applied.

<table>
<thead>
<tr>
<th>Document_ID</th>
<th>Body_Text</th>
<th>Last_Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lorem Ipsum.</td>
<td>January 1, 2020</td>
</tr>
</tbody>
</table>
The following code is an example of configuring a Lambda function for advanced data manipulation on the raw, original data.

**Console**

To configure a Lambda function for advanced data manipulation on the raw, original data

1. In the left navigation pane, under Indexes, select Document enrichments and then select Add document enrichment.

2. On the Configure Lambda functions page, in the Lambda for pre-extraction section, select from the dropdowns your Lambda function ARN and your Amazon S3 bucket. Add your IAM access role by selecting the option to create a new role from the dropdown. This creates the required Amazon Kendra permissions to create the document enrichment.

**CLI**

To configure a Lambda function for advanced data manipulation on the raw, original data

```
aws kendra create-data-source \
 --name data-source-name \
 --index-id index-id \
 --role-arn arn:aws:iamp:account-id:role/role-name \
 --type S3 \
 --configuration '{"S3Configuration":{"BucketName":"S3-bucket-name"}}' \
```

**Python**

To configure a Lambda function for advanced data manipulation on the raw, original data

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")

print("Create a data source with customizations.")
```
# Provide the name of the data source
name = "data-source-name"

# Provide the index ID for the data source
index_id = "index-id"

# Provide the IAM role ARN required for data sources
role_arn = "arn:aws:iam::${account-id}:role/${role-name}"

# Provide the data source connection information
data_source_type = "S3"
S3_bucket_name = "S3-bucket-name"

# Configure the data source with Custom Document Enrichment
configuration = {
    "S3Configuration": {
        "BucketName": S3_bucket_name
    }
}
custom_document_enrichment_configuration = {
    "PreExtractionHookConfiguration": {
        "LambdaArn": "arn:aws:iam::account-id:function/function-name",
        "S3Bucket": S3_bucket-name"
    }
    "RoleArn": "arn:aws:iam::account-id:role/cde-role-name"
}

try:
    data_source_response = kendra.create_data_source(
        Name = name,
        IndexId = index_id,
        RoleArn = role_arn,
        Type = data_source_type
        Configuration = configuration
        CustomDocumentEnrichmentConfiguration =
        custom_document_enrichment_configuration
    )
    pprint.pprint(data_source_response)
    data_source_id = data_source_response["Id"]
    print("Wait for Amazon Kendra to create the data source with your customizations.")

    while True:
        # Get the details of the data source, such as the status
        data_source_description = kendra.describe_data_source(
            Id = data_source_id,
            IndexId = index_id
        )
        status = data_source_description["Status"]
        print("Creating data source. Status: " + status)
        time.sleep(60)
        if status != "CREATING":
            break
        print("Synchronize the data source.")
        sync_response = kendra.start_data_source_sync_job(
            Id = data_source_id,
            IndexId = index_id
        )
        pprint.pprint(sync_response)
        print("Wait for the data source to sync with the index.")

        while True:
Lambda functions: extract and change metadata or content

```python
jobs = kendra.list_data_source_sync_jobs(
 Id = data_source_id,
 IndexId = index_id
)

For this example, there should be one job
status = jobs["History"][0]["Status"]
print(" Syncing data source. Status: "+status)
time.sleep(60)
if status != "SYNCING":
 break
except ClientError as e:
 print("%s" % e)
print("Program ends.")
```

Java

```
To configure a Lambda function for advanced data manipulation on the raw, original data
```

```
package com.amazonaws.kendra;

import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.CreateDataSourceRequest;
import software.amazon.awssdk.services.kendra.model.CreateDataSourceResponse;
import software.amazon.awssdk.services.kendra.model.CreateIndexRequest;
import software.amazon.awssdk.services.kendra.model.CreateIndexResponse;
import software.amazon.awssdk.services.kendra.model.DataSourceConfiguration;
import software.amazon.awssdk.services.kendra.model.DataSourceStatus;
import software.amazon.awssdk.services.kendra.model.DataSourceSyncJob;
import software.amazon.awssdk.services.kendra.model.DataSourceSyncJobStatus;
import software.amazon.awssdk.services.kendra.model.DataSourceType;
import software.amazon.awssdk.services.kendra.model.DescribeDataSourceRequest;
import software.amazon.awssdk.services.kendra.model.DescribeDataSourceResponse;
import software.amazon.awssdk.services.kendra.model.DescribeIndexRequest;
import software.amazon.awssdk.services.kendra.model.DescribeIndexResponse;
import software.amazon.awssdk.services.kendra.model.IndexStatus;
import software.amazon.awssdk.services.kendra.model.ListDataSourceSyncJobsRequest;
import software.amazon.awssdk.services.kendra.model.ListDataSourceSyncJobsResponse;
import software.amazon.awssdk.services.kendra.model.S3DataSourceConfiguration;
import software.amazon.awssdk.services.kendra.model.StartDataSourceSyncJobRequest;
import software.amazon.awssdk.services.kendra.model.StartDataSourceSyncJobResponse;

public class CreateDataSourceWithCustomizationsExample {

 public static void main(String[] args) throws InterruptedException {
 System.out.println("Create a data source with customizations");

 String dataSourceName = "data-source-name";
 String indexId = "index-id";
 String dataSourceRoleArn = "arn:aws:iam::account-id:role/role-name";
 String s3BucketName = "S3-bucket-name"

 KendraClient kendra = KendraClient.builder().build();

 CreateDataSourceRequest createDataSourceRequest = CreateDataSourceRequest
 .builder()
 .name(dataSourceName)
 .description(experienceDescription)
 .roleArn(dataSourceRoleArn)
```
Lambda functions: extract and change metadata or content

```java
.type(DataSourceType.S3)
.configuration(
 DataSourceConfiguration
 .builder()
 .s3Configuration(
 S3DataSourceConfiguration
 .builder()
 .bucketName(s3BucketName)
 .build()
).build()
)
.customDocumentEnrichmentConfiguration(
 CustomDocumentEnrichmentConfiguration
 .builder()
 .preExtractionHookConfiguration(
 HookConfiguration
 .builder()
 .lambdaArn("arn:aws:iam::account-id:function/function-name")
 .s3Bucket("S3-bucket-name")
 .build()
).roleArn("arn:aws:iam::account-id:role/cde-role-name")
 .build();

CreateDataSourceResponse createDataSourceResponse =
 kendra.createDataSource(createDataSourceRequest);
System.out.println(String.format("Response of creating data source: %s", createDataSourceResponse));

String dataSourceId = createDataSourceResponse.id();
System.out.println(String.format("Waiting for Kendra to create the data source %s", dataSourceId));
DescribeDataSourceRequest describeDataSourceRequest = DescribeDataSourceRequest
 .builder()
 .indexId(indexId)
 .id(dataSourceId)
 .build();

while (true) {
 DescribeDataSourceResponse describeDataSourceResponse =
 kendra.describeDataSource(describeDataSourceRequest);
 DataSourceStatus status = describeDataSourceResponse.status();
 System.out.println(String.format("Creating data source. Status: %s", status));
 TimeUnit.SECONDS.sleep(60);
 if (status != DataSourceStatus.CREATING) {
 break;
 }
}
System.out.println(String.format("Synchronize the data source %s", dataSourceId));
StartDataSourceSyncJobRequest startDataSourceSyncJobRequest =
 StartDataSourceSyncJobRequest
 .builder()
 .indexId(indexId)
 .id(dataSourceId)
 .build();
StartDataSourceSyncJobResponse startDataSourceSyncJobResponse =
 kendra.startDataSourceSyncJob(startDataSourceSyncJobRequest);
System.out.println(String.format("Waiting for the data source to sync with the index %s for execution ID %s", indexId, startDataSourceSyncJobResponse.executionId()));

// For this example, there should be one job
```
Data contracts for Lambda functions

Your Lambda functions for advanced data manipulation interact with Amazon Kendra data contracts. The contracts are the mandatory request and response structures of your Lambda functions. If your Lambda functions don't follow these structures, then Amazon Kendra throws an error.

Your Lambda function for PreExtractionHookConfiguration should expect the following request structure:

```json
{
 "version": <str>,
 "dataBlobStringEncodedInBase64": <str>, //In the case of a data blob
 "s3Bucket": <str>, //In the case of an S3 bucket
 "s3ObjectKey": <str>, //In the case of an S3 bucket
 "metadata": <Metadata>
}
```

The metadata structure, which includes the CustomDocumentAttribute structure, is as follows:

```json
[{
 "attributes": [CustomDocumentAttribute]
}]
```

CustomDocumentAttribute

```json
{
 "name": <str>,
 "value": <CustomDocumentAttributeValue>
}
```

CustomDocumentAttributeValue

```json
{
 "stringValue": <str>,
 "integerValue": <int>,
 "longValue": <long>,
 "stringListValue": list<str>,
 "dateValue": <str>
}
```
Your Lambda function for **PreExtractionHookConfiguration** must adhere to the following response structure:

```json
{
 "version": <str>,
 "dataBlobStringEncodedInBase64": <str>, // In the case of a data blob
 "s3ObjectKey": <str>, // In the case of an S3 bucket
 "metadataUpdates": [<CustomDocumentAttribute>]
}
```

Your Lambda function for **PostExtractionHookConfiguration** should expect the following request structure:

```json
{
 "version": <str>,
 "s3Bucket": <str>,
 "s3ObjectKey": <str>,
 "metadata": <Metadata>
}
```

Your Lambda function for **PostExtractionHookConfiguration** must adhere to the following response structure:

```json
?:
 "version": <str>,
 "s3ObjectKey": <str>,
 "metadataUpdates": [<CustomDocumentAttribute>]
}
```

Your altered document is uploaded to your Amazon S3 bucket. The altered document must follow the format shown in **the section called “Structured document format” (p. 464)**.

### Structured document format

Amazon Kendra uploads your structured document to the given Amazon S3 bucket. The structured document follows this format:

```json
Kendra document
{
 "textContent": <TextContent>
}

TextContent
{
 "documentBodyText": <str>
}
```

### Example of a Lambda function that adheres to data contracts

The following Python code is an example of a Lambda function that applies advanced manipulation of the metadata fields _authors, _document_title, and the body content on the raw or original documents.
In the case of the body content residing in an Amazon S3 bucket

```python
import json
import boto3

s3 = boto3.client("s3")

Lambda function for advanced data manipulation
def lambda_handler(event, context):
 # Get the value of "S3Bucket" key name or item from the given event input
 s3_bucket = event.get("s3Bucket")
 # Get the value of "S3ObjectKey" key name or item from the given event input
 s3_object_key = event.get("s3ObjectKey")

 content_object_before_CDE = s3.get_object(Bucket = s3_bucket, Key = s3_object_key)
 content_before_CDE = content_object_before_CDE["Body"].read().decode("utf-8")
 content_after_CDE = "CDEInvolved " + content_before_CDE

 # Get the value of "metadata" key name or item from the given event input
 metadata = event.get("metadata")
 # Get the document "attributes" from the metadata
 document_attributes = metadata.get("attributes")

 s3.put_object(Bucket = s3_bucket, Key = "dummy_updated_kendra_document",
 Body=json.dumps(content_after_CDE))
 return {
 "version": "v0",
 "s3ObjectKey": "dummy_updated_kendra_document",
 "metadataUpdates": [
 {"name":"_document_title", "value":
 {"stringValue":"title_from_pre_extraction_lambda"}},
 {"name":"_authors", "value":{"stringListValue":['author1', 'author2']}}
]
 }
```

In the case of the body content residing in a data blob

```python
import json
import boto3
import base64

Lambda function for advanced data manipulation
def lambda_handler(event, context):
 # Get the value of "dataBlobStringEncodedInBase64" key name or item from the given event input
 data_blob_string_encoded_in_base64 = event.get("dataBlobStringEncodedInBase64")
 # Decode the data blob string in UTF-8
 data_blob_string = base64.b64decode(data_blob_string_encoded_in_base64).decode("utf-8")

 # Get the value of "metadata" key name or item from the given event input
 metadata = event.get("metadata")
 # Get the document "attributes" from the metadata
 document_attributes = metadata.get("attributes")

 new_data_blob = "This should be the modified data in the document by pre processing lambda ".encode("utf-8")
 return {
 "version": "v0",
 "dataBlobStringEncodedInBase64": base64.b64encode(new_data_blob).decode("utf-8"),
 "metadataUpdates": [
 {"name":"_document_title", "value":
 {"stringValue":"title_from_pre_extraction_lambda"}},
 {"name":"_authors", "value":{"stringListValue":['author1', 'author2']}}
]
 }
```
The following Python code is an example of a Lambda function that applies advanced manipulation of the metadata fields _authors, _document_title, and the body content on the structured or parsed documents.

```python
import json
import boto3
import time

s3 = boto3.client("s3")

Lambda function for advanced data manipulation
def lambda_handler(event, context):
 # Get the value of "S3Bucket" key name or item from the given event input
 s3_bucket = event.get("S3Bucket")
 # Get the value of "S3ObjectKey" key name or item from the given event input
 s3_key = event.get("S3ObjectKey")
 # Get the value of "metadata" key name or item from the given event input
 metadata = event.get("metadata")
 # Get the document "attributes" from the metadata
 document_attributes = metadata.get("attributes")

 kendra_document_object = s3.get_object(Bucket = s3_bucket, Key = s3_key)
 kendra_document_string = kendra_document_object["Body"].read().decode('utf-8')
 kendra_document = json.loads(kendra_document_string)
 kendra_document["textContent"]["documentBodyText"] = "Changing document body to a short sentence."
 s3.put_object(Bucket = s3_bucket, Key = "dummy_updated_kendra_document",
 Body=json.dumps(kendra_document))

 return {
 "version" : "v0",
 "s3ObjectKey" : "dummy_updated_kendra_document",
 "metadataUpdates" : [
 {"name" : "_document_title", "value" : {"stringValue": "title_from_post_extraction_lambda"}},
 {"name" : "_authors", "value" : {"stringListValue" : ["author1", "author2"]}}
]
 }
```

Searching an index

To search an Amazon Kendra index, you use the Query API. The Query API returns information about the indexed documents that you use in your application. This section shows you how to make a query, perform filters, and interpret the response that you get from the Query API.

To search documents that you have indexed with Amazon Kendra for Amazon Lex, use AMAZON.KendraSearchIntent. For an example of configuring Amazon Kendra with Amazon Lex, see Creating a FAQ Bot for an Amazon Kendra Index.

Topics
- Querying an index (p. 467)
- Browsing an index (p. 478)
- Featuring search results (p. 480)
- Tabular search for HTML (p. 482)
- Query suggestions (p. 485)
- Query spell checker (p. 496)
- Filtering and facet search (p. 497)
- Filtering on user context (p. 502)
- Query responses and response types (p. 514)
- Tuning and sorting responses (p. 520)

Querying an index

When you search your index, Amazon Kendra uses all the information that you provided about your documents to determine the documents most relevant to the search terms entered. Some of the items that Amazon Kendra considers are:

- The text or body of the document.
- The title of the document.
- Custom text fields that you have marked as searchable.
- The date field that you have indicated should be used to determine the “freshness” of a document.
- Any other field that could provide relevant information.

Amazon Kendra can also filter the response based on any field/attribute filters that you might have set for the search. For example, if you have a custom field called “department”, you can filter the response to return only documents from a department called "legal". For more information, see Custom fields or attributes.

Returned search results are sorted by the relevance that Amazon Kendra determines for each document. The results are paginated so that you can show a page at a time to your user.

To search documents that you have indexed with Amazon Kendra for Amazon Lex, use AMAZON.KendraSearchIntent. For an example of configuring Amazon Kendra with Amazon Lex, see Creating a FAQ Bot for an Amazon Kendra Index.

The following example shows how to search an index. Amazon Kendra determines the type of the search result (answer, document, question-answer) that's best suited for the query.

For information about the query responses, see Query responses and response types (p. 514).
Prerequisites

Before using the Query API to query an index:

- Set up the required permissions for an index and connect to your data source or batch upload your documents. For more information, see IAM roles. You use the Amazon Resource Name of the role when you call the API to create an index and data source connector or batch upload of documents.
- Set up either the AWS Command Line Interface, an SDK, or go to the Amazon Kendra console. For more information, see Setting up Amazon Kendra.
- Create an index and connect to a data source of documents or batch upload documents. For more information, see Creating an index and Creating a data source connector.

Searching an index (console)

You can use the Amazon Kendra console to search and test your index. You can make queries and see the results.

To search an index with the console

1. Sign in to the AWS Management Console and open the Amazon Kendra console at http://console.aws.amazon.com/kendra/.
2. On the navigation pane, choose Indexes.
3. Choose your index.
4. In the navigation menu, choose the option to search your index.
5. Enter a query in the text box and then press enter.
6. Amazon Kendra returns the results of the search.

You can also get the query ID for the search by selecting the lightbulb icon in the side panel.

Searching an index (SDK)

To search an index with Python or Java

- The following example searches an index. Change the value of query to your search query and index_id or indexId to the index identifier of the index that you want to search.

You can also get the query ID for the search as part of the response elements when you call the Query API.

Python

```python
import boto3
import pprint

kendra = boto3.client("kendra")

Provide the index ID
index_id = "index-id"
Provide the query text
query = "query text"

response = kendra.query(
 QueryText = query,
 IndexId = index_id)
```
print("Search results for query: " + query + ":n")

for query_result in response["ResultItems"]:  
  print("-------------------")
  print("Type: " + str(query_result["Type"]))
  if query_result["Type"] == "ANSWER" or query_result["Type"] == "QUESTION_ANSWER":  
    answer_text = query_result["DocumentExcerpt"]["Text"]
    print(answer_text)
  if query_result["Type"] == "DOCUMENT":  
    if "DocumentTitle" in query_result:  
      document_title = query_result["DocumentTitle"]["Text"]
      print("Title: " + document_title)
      document_text = query_result["DocumentExcerpt"]["Text"]
      print(document_text)
  print("-------------------\n\n")

Java

package com.amazonaws.kendra;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.QueryRequest;
import software.amazon.awssdk.services.kendra.model.QueryResponse;
import software.amazon.awssdk.services.kendra.model.QueryResultItem;

public class SearchIndexExample {
  public static void main(String[] args) {
    KendraClient kendra = KendraClient.builder().build();
    String query = "query text";
    String indexId = "index-id";
    QueryRequest queryRequest = QueryRequest
      .builder()
      .queryText(query)
      .indexId(indexId)
      .build();
    QueryResponse queryResponse = kendra.query(queryRequest);
    System.out.println(String.format("Search results for query: %s", query));
    for(QueryResultItem item: queryResponse.resultItems()) {
      System.out.println("----------------------");
      System.out.println(String.format("Type: %s", item.type()));
      switch(item.type()) {
        case QUESTION_ANSWER:
          case ANSWER:
            String answerText = item.documentExcerpt().text();
            System.out.println(answerText);
            break;
        case DOCUMENT:
          String documentTitle = item.documentTitle().text();
          System.out.println(String.format("Title: %s", documentTitle));
          String documentExcerpt = item.documentExcerpt().text();
          System.out.println(String.format("Excerpt: %s", documentExcerpt));
          break;
        default:
          break;
      }
    }
  }
}
Searching an index (Postman)

You can use Postman to query and test your Amazon Kendra index.

To search an index using Postman

1. Create a new collection in Postman and set the request type to POST.
2. Enter the endpoint URL. For example, https://kendra.<region>.amazonaws.com.
3. Select the Authorization tab and enter the following information.
   - Type—Select AWS signature.
   - AccessKey—Enter the access key generated when you create an IAM user.
   - SecretKey—Enter the secret key generated when you create an IAM user.
   - AWS Region—Enter the region of your index. For example, us-west-2.
   - Service Name—Enter kendra. This is case sensitive, so must be lowercase.

   **Warning**

   If you enter the incorrect service name or don't use lowercase, an error is thrown once you select Send to send the request: "Credential should be scoped to the correct service 'kendra'."
   You must also check that you entered the correct access key and secret key.

4. Select the Headers tab and enter the following key and value information.
   - Key: X-Amz-Target
     Value: com.amazonaws.kendra.AWSKendraFrontendService.Query
   - Key: Content-Encoding
     Value: amz-1.0

5. Select the Body tab and do the following.
   - Choose the raw JSON type for the body of the request.
   - Enter a JSON that includes your index ID and query text.

   ```json
 {
 "IndexId": "index-id",
 "QueryText": "enter a query here"
 }
   ```

   **Warning**

   If your JSON doesn't use the correct indendation, an error is thrown: "SerializationException". Check the indendation in your JSON.

6. Select Send (near the top right).
Searching with advanced query syntax

You can create queries that are more specific than simple keyword or natural language queries by using advanced query syntax or operators. This includes ranges, Booleans, wildcards, and more. By using operators, you can give your query more context and further refine the search results.

Amazon Kendra supports the following operators.

- **Boolean**: Logic to limit or broaden the search. For example, `amazon AND sports` limits the search to only search for documents containing both terms.
- **Parentheses**: Reads nested query terms in order of precedence. For example, `(amazon AND sports) NOT rainforest` reads `amazon AND sports` before `NOT rainforest`.
- **Ranges**: Date or numeric range values. Ranges can be inclusive, exclusive, or unbounded. For example, you can search for documents that were last updated between January 1st 2020 and December 31st 2020, inclusive of these dates.
- **Fields**: Uses a specific field to limit the search. For example, you can search for documents that have 'United States' in the field 'location'.
- **Wildcards**: Partially match a string of text. For example, `Cloud*` could match CloudFormation. Amazon Kendra currently only supports trailing wildcards.
- **Exact quotes**: Exact match a string of text. For example, documents that contain "Amazon Kendra" "pricing".

You can use a combination of any of the above operators.

Note that excessive use of operators or highly complex queries could impact query latency. Wildcards are some of the most expensive operators in terms of latency. A general rule is the more terms and operators that you use, the greater potential impact on latency. Other factors that affect latency include the average size of documents indexed, the size of your index, any filtering on search results, and the overall load on your Amazon Kendra index.

**Boolean**

You can combine or exclude words using the Boolean operators AND, OR, NOT.

The following are examples of using Boolean operators.

```plaintext
amazon AND sports
```

Returns search results that contain both the terms 'amazon' and 'sports' in the text, such as Amazon Prime video sports or other similar content.

```plaintext
sports OR recreation
```

Returns search results that contain the terms 'sports' or 'recreation', or both, in the text.

```plaintext
amazon NOT rainforest
```

Returns search results that contain the term 'amazon' but not the term 'rainforest' in the text. This is to search for documents about the company Amazon, not the Amazon Rainforest.

**Parentheses**

You can query nested words in order of precedence by using parentheses. The parentheses indicate to Amazon Kendra how a query should be read.

The following are examples of using parentheses operators.
(amazon AND sports) NOT rainforest

Returns documents that contain both the terms 'amazon' and 'sports' in the text, but not the term 'rainforest'. This is to search Amazon Prime video sports or other similar content, not adventure sports in the Amazon Rainforest. The parentheses help indicate that amazon AND sports should be read before NOT rainforest. The query should not be read as amazon AND (sports NOT rainforest).

(amazon AND (sports OR recreation)) NOT rainforest

Returns documents that contain the terms 'sports' or 'recreation', or both, and the term 'amazon'. But it does not include the term 'rainforest'. This is to search Amazon Prime video sports or recreation, not adventure sports in the Amazon Rainforest. The parentheses help indicate that sports OR recreation should be read before combining with 'amazon', which is read before NOT rainforest. The query should not be read as amazon AND (sports OR (recreation NOT rainforest)).

Ranges

You can use a range of values to filter the search results. You specify an attribute and the range values. This can be date or numeric type.

Date ranges must be in the following formats:

- Epoch
- YYYY
- YYYY-mm
- YYYY-mm-dd
- YYYY-mm-dd'T'HH

You can also specify whether to include or exclude the lower and higher values of the range.

The following are examples of using range operators.

_processed_date:>2019-12-31 AND _processed_date:<2021-01-01

Returns documents that were processed in 2020—greater than December 31st 2019 and less than January 1st 2021.

_processed_date:>=2020-01-01 AND _processed_date:<=2020-12-31

Returns documents that were processed in 2020—greater than or equal to January 1st 2020 and less than or equal to December 31st 2020.

_document_likes:<1

Returns documents with zero likes or no user feedback—less than 1 like.

You can specify whether a range should be treated as inclusive or exclusive of the given range values.

Inclusive

_last_updated_at:[2020-01-01 TO 2020-12-31]

Returns documents last updated in 2020—including the days December 1st 2020 and December 31st 2020.

Exclusive

_last_updated_at:{2019-12-31 TO 2021-01-01}

Returns documents last updated in 2020—excludes the days December 31st 2019 and January 1st 2021.
For unbounded ranges that are neither inclusive or exclusive, simply use the < and > operators. For example, _last_updated_at:>2019-12-31 AND _last_updated_at:<2021-01-01

**Fields**

You can limit your search to only return documents that meet a value in a specific field. The field can be of any type.

The following are examples of using field-level context operators.

**status:**"Incomplete" AND **financial_year:**2021

Returns documents for the 2021 financial year with their status as incomplete.

**(sports OR recreation) AND country:**"United States" AND **level:**"professional"

Returns documents that discuss professional sports or recreation in the United States.

**Wildcards**

You can broaden your search to account for variants of words and phrases using the wildcard operator. This is useful when searching for name variants. Amazon Kendra currently only supports trailing wildcards. The number of prefix characters for a trailing wildcard must be greater than two.

The following are examples of using prefix characters.

**Cloud**

Returns documents that contain variants such as CloudFormation and CloudWatch.

**kendra**aws

Returns documents that contain variants such as kendra.amazonaws.

**kendra**aws*

Returns documents that contain variants such as kendra.amazonaws.com

**Exact quotes**

You can use quotation marks to search for an exact match of a piece of text.

The following are examples of using quotation marks.

"Amazon Kendra" "pricing"

Returns documents that contain both the phrase 'Amazon Kendra' and the term 'pricing'. Documents must contain both 'Amazon Kendra' and 'pricing' in order to return in the results.

"Amazon Kendra" "pricing" cost

Returns documents that contain both the phrase 'Amazon Kendra' and the term 'pricing', and optionally the term 'cost'. Documents must contain both 'Amazon Kendra' and 'pricing' in order to return in the results, but might not necessarily include 'cost'.

**Invalid query syntax**

Amazon Kendra issues a warning if there are problems with your query syntax or your query is currently not supported by Amazon Kendra. For more information, see the API documentation for query warnings.

The following queries are examples of invalid query syntax.

_last_updated_at:<2021-12-32
Invalid date. Day 32 does not exist in the Gregorian calendar, which is used by Amazon Kendra.

_view_count:ten
Invalid numeric value. Digits must be used to represent numeric values.

nonExistentField:123
Invalid field search. The field must exist in order to use field search.

Product:[A TO D]
Invalid range. Numeric values or dates must be used for ranges.

OR Hello
Invalid Boolean. Operators must be used with terms and placed between terms.

Searching in languages

You can search for documents in a supported language. You pass the language code in the AttributeFilter to return filtered documents in your chosen language. You can type the query in a supported language.

If you do not specify a language, Amazon Kendra queries documents in English by default. For more information on supported languages, including their codes, see Adding documents in languages other than English.

To search for documents in a supported language in the console, select your index, then select the option to search your index from the navigation menu. Choose the language that you want to return documents by selecting the search settings and then selecting a language from the dropdown Language.

The following examples show how to search for documents in Spanish.

To search an index in Spanish in the console
1. Sign in to the AWS Management Console and open the Amazon Kendra console at http://console.aws.amazon.com/kendra/.
2. In the navigation menu, choose Indexes and choose your index.
3. In the navigation menu, choose the option to search your index.
4. In the search settings, select the Languages dropdown and choose Spanish.
5. Enter a query into the text box and then press enter.
6. Amazon Kendra returns the results of the search in Spanish.

To search an index in Spanish using the CLI, Python or Java

- The following example searches an index in Spanish. Change the value searchString to your search query and the value indexID to the identifier of the index that you want to search. The language code for Spanish is es. You can replace this with your own language code.

CLI

```json
{
 "EqualsTo":{
 "Key": "_language_code",
 "Value": {
 "StringValue": "es"
 }
 }
}
```
Python

```python
import boto3
import pprint

kendra = boto3.client("kendra")

Provide the index ID
index_id = "index-id"
Provide the query text
query = "search-string"

Includes the index ID, query text, and language attribute filter
response = kendra.query(
 QueryText = query,
 IndexId = index_id,
 AttributeFilter = {
 "EqualsTo": {
 "Key": ".language_code",
 "Value": {
 "StringValue": "es"
 }
 }
 }
)

print ("\nSearch results|Resultados de la búsqueda: " + query + "\n")
for query_result in response["ResultItems"]:
 print("-------------------")
 print("Type: " + str(query_result["Type"]))

 if query_result["Type"] == "ANSWER" or query_result["Type"] == "QUESTION_ANSWER":
 answer_text = query_result["DocumentExcerpt"]["Text"]
 print(answer_text)

 if query_result["Type"] == "DOCUMENT":
 if "DocumentTitle" in query_result:
 document_title = query_result["DocumentTitle"]["Text"]
 print("Title: " + document_title)
 document_text = query_result["DocumentExcerpt"]["Text"]
 print(document_text)

 print("------------------\n\n")
```

Java

```java
package com.amazonaws.kendra;

import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.QueryRequest;
import software.amazon.awssdk.services.kendra.model.QueryResponse;
import software.amazon.awssdk.services.kendra.model.QueryResultItem;

public class SearchIndexExample {
 public static void main(String[] args) {
 KendraClient kendra = KendraClient.builder().build();

 String query = "searchString";
 String indexId = "indexID";
```
Retrieving passages

You can use the Retrieve API as a retriever for retrieval augmented generation (RAG) systems.

RAG systems use generative artificial intelligence to build question-answering applications. RAG systems consist of a retriever and large language models (LLM). Given a query, the retriever identifies the most relevant chunks of text from a corpus of documents and feeds it to the LLM to provide the most useful answer. Then, the LLM analyzes the relevant text chunks or passages and generates a comprehensive response for the query.

The Retrieve API looks at chunks of text or excerpts that are referred to as passages and returns the top passages that are most relevant to the query.

Like the Query API, the Retrieve API also searches for relevant information using semantic search. Semantic search takes into account the search query’s context, plus all the available information from the indexed documents. However, by default, the Query API only returns excerpt passages of up to 100 token words. With the Retrieve API, you can retrieve longer passages of up to 200 token words and up
to 100 semantically relevant passages. This doesn't include question-answer or FAQ type responses from your index. The passages are text excerpts that can be semantically extracted from multiple documents and multiple parts of the same document. If in extreme cases your documents produce zero passages using the Retrieve API, you can alternatively use the Query API and its types of responses.

You can also do the following with the Retrieve API:

- Override boosting at the index level
- Filter based on document fields or attributes
- Filter based on the user or their group access to documents

You can also include certain fields in the response that might provide useful additional information.

The Retrieve API currently doesn't support all features supported by the Query API. The following features are not supported: querying using advance query syntax, suggested spell corrections for queries, faceting, query suggestions to autocomplete search queries, incremental learning, and confidence buckets. Note that not all features apply to the Retrieve API. Any future releases of the Retrieve API will be documented in this guide.

The Retrieve API shares the number of query capacity units that you set for your index. For more information on what's included in a single capacity unit and the default base capacity for an index, see Adjusting capacity.

**Note**

You can't add capacity if you are using the Amazon Kendra Developer Edition; you can only add capacity when using Amazon Kendra Enterprise Edition. For more information on what's included in the Developer and Enterprise Editions, see Amazon Kendra Editions.

The following is an example of using the Retrieve API to retrieve the top 100 most relevant passages from documents in an index for the query “how does amazon kendra work?”

**Python**

```python
import boto3
import pprint

kendra = boto3.client("kendra")

Provide the index ID
index_id = "index-id"
Provide the query text
query = "how does amazon kendra work?"
You can retrieve up to 100 relevant passages
You can paginate 100 passages across 10 pages, for example
page_size = 10
page_number = 10

result = kendra.retrieve(
 IndexId = index_id,
 QueryText = query,
 PageSize = page_size,
 PageNumber = page_number)

print("Retrieved passage results for query: " + query + "\n")

for retrieve_result in result["ResultItems"]:
 print("------------------")
 print("Title: " + str(retrieve_result["DocumentTitle"]))
 print("URI: " + str(retrieve_result["DocumentURI"]))
```

477
print("Passage content: " + str(retrieve_result["Content"]))
print("------------------

Java

package com.amazonaws.kendra;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.RetrieveRequest;
import software.amazon.awssdk.services.kendra.model.RetrieveResult;
import software.amazon.awssdk.services.kendra.model.RetrieveResultItem;

public class RetrievePassageExample {
    public static void main(String[] args) {
        KendraClient kendra = KendraClient.builder().build();

        String indxId = "index-id";
        String query = "how does amazon kendra work?";
        Integer pgSize = 10;
        Integer pgNumber = 10;

        RetrieveRequest retrieveRequest = retrieveRequest
            .builder()
            .indexId(indxId)
            .queryText(query)
            .pageSize(pgSize)
            .pageNumber(pgNumber)
            .build();

        RetrieveResult retrieveResult = kendra.retrieve(retrieveRequest);

        System.out.println(String.format("\nRetrieved passage results for query: %s", query));
        for(RetrieveResultItem item: retrieveResult.resultItems()) {
            System.out.println("----------------------");
            System.out.println(String.format("Title: %s", documentTitle));
            System.out.println(String.format("URI: %s", documentURI));
            System.out.println(String.format("Passage content: %s", content));
            System.out.println("-----------------------\n");
        }
    }
}

Browsing an index

You can browse documents by their attributes or facets without having to type a search query. Amazon Kendra Index Browse can help your users discover documents by freely browsing an index without a specific query in mind. This also helps your users broadly browse an index as a starting point in their search.

Index Browse can only be used for searching by document attribute or facet with a sorting type. You cannot search an entire index using Index Browse. If the query text is missing, then Amazon Kendra asks for a document attribute filter or a facet, and a sorting type.

To allow index browsing using the Query API, you must include AttributeFilter or Facet, and SortingConfiguration. To allow index browsing in the console, select your index under Indexes in the navigation menu, then select the option to search your index. In the search box, press the Enter key twice. Select the dropdown Filter search results to choose a filter and select the dropdown Sort to choose a sorting type.
The following is an example of browsing an index for documents in the language Spanish in descending order of document creation date.

**CLI**

```bash
aws kendra query \
--index-id "index-id" \
--attribute-filter '{
 "EqualsTo": {
 "Key": "_language_code",
 "Value": {
 "StringValue": "es"
 }
 }
}' \
--sorting-configuration '{
 "DocumentAttributeKey": "_created_at",
 "SortOrder": "DESC"
}'
```

**Python**

```python
import boto3

kendra = boto3.client("kendra")

Must include the index ID, the attribute filter, and sorting configuration
response = kendra.query(
 IndexId = "index-id",
 AttributeFilter = {
 "EqualsTo": {
 "Key": "_language_code",
 "Value": {
 "StringValue": "es"
 }
 }
 },
 SortingConfiguration = {
 "DocumentAttributeKey": "_created_at",
 "SortOrder": "DESC"
 })

print("\nSearch results|Resultados de la búsqueda: \n")
for query_result in response["ResultItems"]:
 print("-------------------")
 print("Type: " + str(query_result["Type"]))
 if query_result["Type"]="ANSWER" or query_result["Type"]="QUESTION_ANSWER":
 answer_text = query_result["DocumentExcerpt"]["Text"]
 print(answer_text)
 if query_result["Type"]="DOCUMENT":
 if "DocumentTitle" in query_result:
 document_title = query_result["DocumentTitle"]["Text"]
 print("Title: " + document_title)
 document_text = query_result["DocumentExcerpt"]["Text"]
 print(document_text)
 print("-------------------")

print("\n\n")
```

479
Java

```java
package com.amazonaws.kendra;

import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.QueryRequest;
import software.amazon.awssdk.services.kendra.model.QueryResult;
import software.amazon.awssdk.services.kendra.model.QueryResultItem;

public class SearchIndexExample {
 public static void main(String[] args) {
 KendraClient kendra = KendraClient.builder().build();
 QueryRequest queryRequest = QueryRequest.builder()
 .withIndexId("index-id")
 .withAttributeFilter(AttributeFilter.builder()
 .withEqualsTo(DocumentAttribute.builder()
 .withKey("_language_code")
 .withValue(DocumentAttributeValue.builder()
 .withStringValue("es")
 .build())
 .build())
 .withSortingConfiguration(SortingConfiguration.builder()
 .withDocumentAttributeKey("_created_at")
 .withSortOrder("DESC")
 .build())
 .build());

 QueryResult queryResult = kendra.query(queryRequest);
 for (QueryResultItem item : queryResult.getResultItems()) {
 System.out.println("----------------------");
 System.out.println(String.format("Type: %s", item.getType()));
 switch (item.getType()) {
 case QueryResultType.QUESTION_ANSWER:
 case QueryResultType.ANSWER:
 String answerText = item.getDocumentExcerpt().getText();
 System.out.println(answerText);
 break;
 case QueryResultType.DOCUMENT:
 String documentTitle = item.getDocumentTitle().getText();
 System.out.println(String.format("Title: %s", documentTitle));
 String documentExcerpt = item.getDocumentExcerpt().getText();
 System.out.println(String.format("Excerpt: %s", documentExcerpt));
 break;
 default:
 System.out.println(String.format("Unknown query result type: %s", item.getType()));
 break;
 }
 System.out.println("-----------------------
 }
 }
}
```

**Featuring search results**

You can feature certain documents in the search results when your users issue certain queries. This helps make the results more visible and prominent for your users. Featured results are separated out from the usual list of results, and displayed at the top of the search page. You can experiment with featuring different documents for different queries, or ensure certain documents get the visibility they deserve.
You map specific queries to specific documents for featuring in the results. If a query contains an exact match, then one or more specific documents are featured in the search results.

For example, you can specify that if your users issue the query 'new products 2023', then select the documents titled 'What’s new' and 'Coming soon' to feature at the top of the search results page. This helps ensure these documents on new products get the visibility they deserve.

Amazon Kendra doesn't duplicate search results if a result is already selected for featuring at the top of the search results page. A featured result isn't again ranked as the first result if it is already featured above all other results.

In order to feature certain results, you must specify an exact match of a full text query, not a partial match of a query using a keyword or phrase contained within a query. For example, if you only specify the query 'Kendra' in a featured result set, queries such as 'How does Kendra semantically rank results?' will not render the featured results. Featured results are designed for specific queries, rather than queries that are too broad in scope. Amazon Kendra naturally handles keyword type queries to rank the most useful documents in the search results, avoiding excessive featuring of results based on simple keywords.

If there are certain queries that your users frequently use, then you can specify these queries for featured results. For example, if you look at your top queries using Amazon Kendra Analytics and find that specific queries, such as 'How does kendra semantically rank results?' and 'kendra semantic search', are frequently used, then these queries might be useful to specify for featuring the document titled ‘Amazon Kendra search 101’.

Amazon Kendra treats queries for featured results as case insensitive. Amazon Kendra converts a query to lower case, and replaces trailing white space characters with a single space. Amazon Kendra matches all other characters as they are when you specify your queries for featured results.

You create a set of featured results that you map to certain queries using the CreateFeaturedResultsSet API. If you use the console, you select your index and then select Featured results in the navigation menu to create a featured results set. You can create up to 50 sets of featured results per index, up to four documents to be featured per set, and up to 49 query texts per featured results set. You can request to increase these limits by contacting Support.

You can select the same document across multiple sets of featured results. However, you must not use the same exact match query text across multiple sets. The queries you specify for featured results must be unique per featured results set for each index.

You can arrange the order of documents when selecting up to four featured documents. If you use the API, the order you list the featured documents is the same as displayed in the featured results. If you use the console, you can simply drag and drop the order of documents when you select documents for featuring in the results.

Access control, where certain users and groups have access to certain documents and others don't, is still honored when configuring featured results. That's also true for user context filtering. For example, user A belongs to the 'Interns' company group, which shouldn't access documents on company secrets. If user A enters a query that features a company secret document, user A doesn't see this document featured in their results. That's also true for any other results on the search results page. You can also use tags to control access to a featured results set, which is an Amazon Kendra resource for which you control access.

The following is an example of creating a set of featured results with the queries "new products 2023", "new products available" mapped to the documents titled "What’s new" (doc-id-1) and "Coming soon" (doc-id-2).

CLI

```
aws kendra create-featured-results-set \
 --featured-results-set-name 'New product docs to feature' \
 --description "Featuring What's new and Coming soon docs"
```
Tabular search for HTML

Amazon Kendra's tabular search feature can search and extract answers from tables embedded in HTML documents. When you search your index, Amazon Kendra includes an excerpt from a table if it's relevant to the query and provides useful information.

Amazon Kendra looks at all of the information within the body text of a document, including useful information in tables. For example, an index contains business reports with tables on operation costs,
income, and other financial information. For the query, "what is the annual operation cost from 2020-2022?", Amazon Kendra can return an excerpt from a table that contains relevant table columns "Operations (millions USD)" and "Financial year", and table rows containing income values for 2020, 2021, and 2022. The table excerpt is included in the result, along with the document title, a link to the full document, and any other document fields you choose to include.

Table excerpts can be displayed in the search results whether the information is found in one cell of a table or multiple cells. For example, Amazon Kendra can display a table excerpt tailored to each of these kinds of queries:

- "highest interest rate credit card in 2020"
- "highest interest rate credit card from 2020-2022"
- "top 3 highest interest rate credit cards in 2020-2022"
- "credit cards with interest rates less than 10%"
- "all available low interest credit cards"

Amazon Kendra highlights the table cell or cells that are most relevant to the query. The most relevant cells with their corresponding rows, columns and column names are displayed in the search result. The table excerpt displays up to five columns and three rows, depending on how many table cells are relevant to the query and how many columns are available in the original table. The top most relevant cell is displayed in the table excerpt, along with the next most relevant cells.

The response includes the confidence bucket (MEDIUM, HIGH, VERY_HIGH) to show how relevant the table answer is to the query. If a table cell value is VERY_HIGH in confidence, then it becomes the 'top answer' and is highlighted. For table cell values that are HIGH in confidence, then they are highlighted. For table cell values that are MEDIUM in confidence, then they are not highlighted. The overall confidence for the table answer is returned in the response. For example, if a table contains mostly table cells with HIGH confidence, then the overall confidence returned in the response for the table answer is HIGH confidence.

By default, tables aren't given a higher level of importance or more weight than other components of a document. Within a document, if a table is only slightly relevant to a query, but there's a highly relevant paragraph, Amazon Kendra returns an excerpt of the paragraph. Search results display the piece of content that provides the best possible answer and most useful information, in the same document or other documents. If the confidence for a table falls below MEDIUM confidence, then the table excerpt is not returned in the response.

To use tabular search on an existing index, you must re-index your content.

Amazon Kendra tabular search supports synonyms (including custom synonyms). Amazon Kendra only supports documents in English with HTML tables that are within the table tag.

The following example shows table excerpt included in the query result. To view a sample JSON with query responses, including table excerpts, see Query responses and types.

Python

```python
import boto3
import pprint

kendra = boto3.client("kendra")

Provide the index ID
index_id = <index-id>

Provide the query text
query = "search string"
```
response = kendra.query(
    QueryText = query,
    IndexId = index_id)

print("Search results for query: " + query + \"\n")
for query_result in response["ResultItems"]:
    print("-------------------")
    print("Type: " + str(query_result["Type"]))
    print("Format: " + str(query_result["Format"]))

    if query_result["Type"] == "ANSWER" and query_result["Format"] == "TABLE":
        answer_table = query_result["TableExcerpt"]
        print(answer_table)

    if query_result["Type"] == "ANSWER" and query_result["Format"] == "TEXT":
        answer_text = query_result["DocumentExcerpt"]
        print(answer_text)

    if query_result["Type"] == "QUESTION_ANSWER":
        question_answer_text = query_result["DocumentExcerpt"]["Text"]
        print(question_answer_text)

    if query_result["Type"] == "DOCUMENT":
        if "DocumentTitle" in query_result:
            document_title = query_result["DocumentTitle"]["Text"]
            print("Title: " + document_title)
        document_text = query_result["DocumentExcerpt"]["Text"]
        print(document_text)

    print("------------------\n\n")

Java

package com.amazonaws.kendra;

import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.QueryRequest;
import software.amazon.awssdk.services.kendra.model.QueryResponse;
import software.amazon.awssdk.services.kendra.model.QueryResultItem;

public class SearchIndexExample {
    public static void main(String[] args) {
        KendraClient kendra = KendraClient.builder().build();

        String query = "search string";
        String indexId = "index-id";

        QueryRequest queryRequest = QueryRequest
            .builder()
            .queryText(query)
            .indexId(indexId)
            .build();

        QueryResponse queryResponse = kendra.query(queryRequest);

        System.out.println(String.format("Search results for query: %s", query));
        for(QueryResultItem item: queryResponse.resultItems()) {
            System.out.println("------------------------");
            System.out.println(String.format("Type: %s", item.type()));
            System.out.println(String.format("Format: %s", item.format()));

            switch(item.format()) {
                case TABLE:
Query suggestions

Amazon Kendra Query suggestions can help your users type their search queries faster and guide their search.

Amazon Kendra suggests queries relevant to your users based on one of the following:

- Popular queries in the query history or query log
- The contents of document fields/attributes

You can set your preference for using the query history or document fields by setting SuggestionTypes as either QUERY or DOCUMENT_ATTRIBUTES and calling GetQuerySuggestions. By default, Amazon Kendra uses the query history to base suggestions on. If the query history and document fields are both activated when you call UpdateQuerySuggestionsConfig and you haven't set your SuggestionTypes preference to use document fields, then Amazon Kendra uses the query history.

If you use the console, you can base query suggestions on either the query history or document fields. You first select your index and then select Query suggestions under Enrichments in the navigation menu. Then select Configure query suggestions. After you configure query suggestions, you are directed to a search console where you can select either the Query history or Document fields in the right panel and enter a search query in the search bar.

By default, query suggestions using the query history and document fields are both activated at no additional cost. You can deactivate these types of query suggestions at any time by using the UpdateQuerySuggestionsConfig API. To deactivate query suggestions based on the query
Query suggestions using query history

You can choose to suggest queries relevant to your users based on popular queries in the query history or query log. Amazon Kendra uses all of the queries that your users search for and learns from these queries to make suggestions to your users. Amazon Kendra suggests popular queries to users when they start typing their query. Amazon Kendra suggests a query if the prefix or first few characters of the query matches what the user starts typing as their query.

For example, a user starts typing the query 'upcoming events'. Amazon Kendra has learned from the query history that many users have searched for 'upcoming events 2050' many times. The user sees 'upcoming events 2050' appear directly underneath their search bar, autocompleting their search query. The user selects this query suggestion, and the document 'New events: What's happening in 2050' is returned in the search results.

You can specify how Amazon Kendra selects eligible queries to suggest to your users. For example, you can specify that a query suggestion must have been searched by at least 10 unique users (default is three), have been searched within the last 30 days, and does not contain any words or phrases from your block list. Amazon Kendra requires that a query has at least one search result and contains at least one word of more than four characters.

Settings for selecting queries for suggestions

You can configure the following settings for selecting queries for suggestions by using the UpdateQuerySuggestionsConfig API:

- **Mode**—Query suggestions using the query history are either ENABLED or LEARN_ONLY. Amazon Kendra activates query suggestions by default. LEARN_ONLY turns off query suggestions. If turned off, Amazon Kendra continues to learn suggestions but doesn't make query suggestions to users.
- **Query log time window**—How recent your queries are in your query log time window. The time window is an integer value for the number of days from current day to past days.
- **Queries without user information**—Set to TRUE to include all queries, or set to FALSE to only include queries with user information. You can use this setting if your search application includes user
Query suggestions using query history

Amazon Kendra automatically suggests queries that are popular among your users. You can help the system make better suggestions by using your query logs. You can set filtering rules that control which queries the system suggests to your users. These rules are based on the query log information, such as the user ID, when a user issues a query. By default, this setting doesn’t filter out queries if there’s no specific user information associated with the queries. However, you can use this setting to only make suggestions based on queries that include user information.

- **Unique users** — The minimum number of unique users who must search a query for the query to be eligible to suggest to your users. This number is an integer value.
- **Query count** — The minimum number of times a query must be searched for the query to be eligible to suggest to your users. This number is an integer value.

These settings affect how queries are selected as popular queries to suggest to your users. How you tune your settings will depend on your specific needs, for example:

- If your users usually search once a month on average, then you can set the number of days in the query log time window to 30 days. By using that setting, you capture most of your users’ recent queries before they become outdated in the time window.
- If only a small number of your queries include user information, and you don’t want to suggest queries based on a small sample size, then you can set queries to include all users.
- If you define popular queries as being searched by at least 10 unique users and searched at least 100 times, then you set the unique users to 10 and the query count to 100.

**Warning**

Your changes to settings might not take effect immediately. You can track the settings changes by using the DescribeQuerySuggestionsConfig API. The time for your updated settings to take effect depends on the updates that you make and the number of search queries in your index. Amazon Kendra automatically updates suggestions every 24 hours, after you change a setting or after you apply a block list.

**CLI**

**To retrieve query suggestions**

```bash
aws kendra get-query-suggestions \
 --index-id index-id \
 --query-text "query-text" \
 --suggestion-types '["QUERY"]' \
 --max-suggestions-count 1 // If you want to limit the number of suggestions
```

**To update query suggestions**

For example, to change the query log time window and the minimum number of times a query must be searched:

```bash
aws kendra update-query-suggestions-config \
 --index-id index-id \
 --query-log-look-back-window-in-days 30 \
 --minimum-query-count 100
```

**Python**

**To retrieve query suggestions**

```python
import boto3
from botocore.exceptions import ClientError

kendra = boto3.client("kendra")
```
print("Get query suggestions.")

# Provide the index ID
index_id = "index-id"

# Provide the query text
query_text = "query"

# Provide the query suggestions type
query_suggestions_type = "QUERY"

# If you want to limit the number of suggestions
num_suggestions = 1

try:
    query_suggestions_response = kendra.get_query_suggestions(
        IndexId = index_id,
        QueryText = query_text,
        SuggestionTypes = query_suggestions_type,
        MaxSuggestionsCount = num_suggestions
    )

    # Print out the suggestions you received
    if ("Suggestions" in query_suggestions_response.keys()) {
        for (suggestion: query_suggestions_response["Suggestions"]) {
            print(suggestion["Value"]["Text"]["Text"])  
        }
    }
except ClientError as e:
    print("%s" % e)

print("Program ends.")

To update query suggestions

For example, to change the query log time window and the minimum number of times a query must be searched:

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")

print("Updating query suggestions settings/configuration for an index.")

Provide the index ID
index_id = "index-id"

Configure the settings you want to update
minimum_query_count = 100
query_log_look_back_window_in_days = 30

try:
 kendra.update_query_suggestions_config(
 IndexId = index_id,
 MinimumQueryCount = minimum_query_count,
 QueryLogLookBackWindowInDays = query_log_look_back_window_in_days
)

 print("Wait for Amazon Kendra to update the query suggestions.")
```
while True:
    # Get query suggestions description of settings/configuration
    query_sugg_config_response = kendra.describe_query_suggestions_config(
        IndexId = index_id
    )

    # If status is not UPDATING, then quit
    status = query_sugg_config_response["Status"]
    print("Updating query suggestions config. Status: " + status)
    if status != "UPDATING":
        break
    time.sleep(60)

except ClientError as e:
    print("%s" % e)

print("Program ends.")

---

Clear suggestions while retaining query history

You can clear query suggestions by using the `ClearQuerySuggestions` API. Clearing suggestions deletes existing query suggestions only, not the queries in the query history. When you clear suggestions, Amazon Kendra learns new suggestions based on new queries added to the query log from the time you cleared suggestions.

**CLI**

To clear query suggestions

```
aws kendra clear-query-suggestions \
--index-id index-id
```

**Python**

To clear query suggestions

```
import boto3
from botocore.exceptions import ClientError
kendra = boto3.client("kendra")

print("Clearing out query suggestions for an index.")

Provide the index ID
index_id = "index-id"

try:
 kendra.clear_query_suggestions(
 IndexId = index_id
)

 # Confirm last cleared date-time and that there are no suggestions
 query_sugg_config_response = kendra.describe_query_suggestions_config(
 IndexId = index_id
)
 print("Query Suggestions last cleared at: " +
 str(query_sugg_config_response["LastClearTime"]));
 print("Number of suggestions available from the time of clearing: " +
 str(query_sugg_config_response["TotalSuggestionsCount"]));
```
except ClientError as e:
    print("%s" % e)

print("Program ends.")

No suggestions available

If you don’t see suggestions for a query, it could be for one of the following reasons:

- There are not enough queries in your index for Amazon Kendra to learn from.
- Your query suggestions settings are too strict, resulting in most queries being filtered out from suggestions.
- You recently cleared suggestions, and Amazon Kendra still needs time for new queries to accumulate in order to learn new suggestions.

You can check your current settings using the `DescribeQuerySuggestionsConfig` API.

Query suggestions using document fields

Topics
- Settings for selecting fields for suggestions (p. 490)
- User control in document fields (p. 493)

You can choose to suggest queries relevant to your users based on the contents of document fields. Instead of using the query history to suggest other popular relevant queries, you can use information contained within a document field that is useful to autocompleting the query. Amazon Kendra looks for relevant content in fields set to `Suggestable` and that closely aligns with your user’s query. Then, Amazon Kendra suggests this content to your user when they start typing their query.

For example, if you specify the title field to base suggestions on and a user starts typing the query 'How amazon ken...', the most relevant title 'How Amazon Kendra works' could be suggested to autocomplete the search. The user sees 'How Amazon Kendra works' appear directly underneath their search bar, autocompleting their search query. The user selects this query suggestion, and the document 'How Amazon Kendra works' is returned in the search results.

You can use the contents of any document field of `String` and `StringList` type to suggest a query by setting the field to `Suggestable` as part of your fields configuration for query suggestions. You can also use a block list so that suggested document fields that contain certain words or phrases are not shown to your users. You can use one block list. The block list applies whether you set query suggestions to use the query history or document fields.

Settings for selecting fields for suggestions

You can configure the following settings for selecting document fields for suggestions using `AttributeSuggestionsConfig` and calling the `UpdateQuerySuggestionsConfig` API to update the settings at the index level:

- **Field/attribute suggestions mode**—Query suggestions using document fields are either ACTIVE or INACTIVE. Amazon Kendra activates query suggestions by default.
- **Suggestible fields/attributes**—The field names or field keys to base suggestions on. These fields must be set to TRUE for `Suggestable`, as part of the fields configuration. You can override the fields configuration at the query level while maintaining the configuration at the index level. Use the `GetQuerySuggestions` API to change `AttributeSuggestionConfig` at the query level. This
configuration at the query level can be useful for quickly experimenting with using different document fields without having to update the configuration at the index level.

- Additional fields/attributes—The additional fields that you want to include in the response for a query suggestion. These fields are used to provide extra information in the response; however, they are not used to base suggestions on.

Warning
Your changes to settings might not take effect immediately. You can track the settings changes by using the DescribeQuerySuggestionsConfig API. The time for your updated settings to take effect depends on the updates that you make. Amazon Kendra automatically updates suggestions every 24 hours, after you change a setting or after you apply a block list.

CLI

To retrieve query suggestions and override the document fields configuration at the query level instead of having to change the configuration at the index level.

```
aws kendra get-query-suggestions \
--index-id index-id \
--query-text "query-text" \
--suggestion-types '["DOCUMENT_ATTRIBUTES"]' \
--attribute-suggestions-config '["SuggestionAttributes":"field/attribute key 1", "field/attribute key 2"], "AdditionalResponseAttributes":"response field/attribute key 1", "response field/attribute key 2"]' \
--max-suggestions-count 1 // If you want to limit the number of suggestions
```

To update query suggestions

For example, to change the document fields configuration at the index level:

```
aws kendra update-query-suggestions-config \
--index-id index-id \
--attribute-suggestions-config '{"SuggestableConfigList": ["_document_title", "Suggestable": true], "AttributeSuggestionsMode": "ACTIVE"}'
```

Python

To retrieve query suggestions and override the document fields configuration at the query level instead of having to change the configuration at the index level.

```python
import boto3
from botocore.exceptions import ClientError

kendra = boto3.client("kendra")

print("Get query suggestions.")

Provide the index ID
index_id = "index-id"

Provide the query text
query_text = "query"

Provide the query suggestions type
query_suggestions_type = "DOCUMENT_ATTRIBUTES"

Override fields/attributes configuration at query level
configuration = {
 "SuggestionAttributes": [
 "field/attribute key 1", "field/attribute key 2"],
 "AdditionalResponseAttributes": ["response field/attribute key 1", "response field/attribute key 2"]
}
```
"AdditionalResponseAttributes":
  ["response field/attribute key 1", "response field/attribute key 2"]
}

# If you want to limit the number of suggestions
num_suggestions = 1

try:
    query_suggestions_response = kendra.get_query_suggestions(
        IndexId = index_id,
        QueryText = query_text,
        SuggestionTypes = [query_suggestions_type],
        AttributeSuggestionsConfig = configuration,
        MaxSuggestionsCount = num_suggestions
    )
    # Print out the suggestions you received
    if ("Suggestions" in query_suggestions_response.keys()) {
        for (suggestion: query_suggestions_response["Suggestions"]){
            print(suggestion["Value"]["Text"]["Text"]);
        }
    }
except ClientError as e:
    print("%s" % e)
print("Program ends.")

To update query suggestions

For example, to change the document fields configuration at the index level:

import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")

print("Updating query suggestions settings/configuration for an index.")

# Provide the index ID
index_id = "index-id"

# Configure the settings you want to update at the index level
configuration = {
    "SuggestableConfigList": [
        {"SuggestableConfig": ".document_title", "Suggestable": true},
        "AttributeSuggestionsMode": "ACTIVE"
    ]
}

try:
    kendra.update_query_suggestions_config(
        IndexId = index_id,
        AttributeSuggestionsConfig = configuration
    )
    print("Wait for Amazon Kendra to update the query suggestions.")

while True:
    # Get query suggestions description of settings/configuration
    query_sugg_config_response = kendra.describe_query_suggestions_config(
        IndexId = index_id
    )
    # If status is not UPDATING, then quit
User control in document fields

You can apply user context filtering to the document fields that you want to base query suggestions on. This filters document field information based on the user or their group access to documents. For example, an intern searches the company's portal and doesn't have access to a top-secret company document. Therefore, suggested queries based on the top-secret document's title, or any other suggestible field, is not shown to the intern.

You can index your documents with an access control list (ACL), defining which users and groups are assigned access to which documents. Then, you can apply user context filtering to your documents fields for query suggestions. User context filtering that is currently set for your index is the same user context filtering applied to your document fields configuration for query suggestions. User context filtering is part of your document fields configuration. You use the `AttributeSuggestionsGetConfig` call and call `GetQuerySuggestions`.

Block certain queries or document field content from suggestions

A block list stops Amazon Kendra from suggesting certain queries to your users. A block list is a list of words or phrases that you want to exclude from query suggestions. Amazon Kendra excludes queries containing an exact match of the words or phrases in the block list.

You can use a block list to safeguard against offensive words or phrases that commonly appear in your query history or document fields and that Amazon Kendra could select as suggestions. A block list can also prevent Amazon Kendra from suggesting queries that contain information that is not ready to be publicly released or announced. For example, your users frequently query about an upcoming release of a potential new product. However, you don't want to suggest the product because you're not ready to release it. You can block queries that contain the product name and product information from suggestions.

You can create a block list for queries by using the `CreateQuerySuggestionsBlockList` API. You put each block word or phrase on a separate line in a text file. Then you upload the text file to your Amazon S3 bucket and provide the path or location to the file in Amazon S3. Amazon Kendra currently supports creating only one block list.

You can replace the text file of your blocked words and phrases in your Amazon S3 bucket. To update the block list in Amazon Kendra, use the `UpdateQuerySuggestionsBlockList` API.

Use the `DescribeQuerySuggestionsBlockList` API to get the status of your block list. `DescribeQuerySuggestionsBlockList` can also provide you with other useful information, such as the following:

- When your block list was last updated
- How many words or phrases are in your current block list
- Helpful error messages when creating a block list
You can also use the `ListQuerySuggestionsBlockLists` API to get a list of block list summaries for an index.

To delete your block list, use the `DeleteQuerySuggestionsBlockList` API.

Your updates to the block list might not take effect right away. You can track updates by using the `DescribeQuerySuggestionsBlockList` API.

**CLI**

**To create a block list**

```bash
aws kendra create-query-suggestions-block-list \\
 --index-id index-id \\
 --name "block-list-name" \\
 --description "block-list-description" \\
 --source-s3-path "Bucket=bucket-name,Key=query-suggestions/block_list.txt" \\
 --role-arn role-arn
```

**To update a block list**

```bash
aws kendra update-query-suggestions-block-list \\
 --index-id index-id \\
 --name "new-block-list-name" \\
 --description "new-block-list-description" \\
 --source-s3-path "Bucket=bucket-name,Key=query-suggestions/new_block_list.txt" \\
 --role-arn role-arn
```

**To delete a block list**

```bash
aws kendra delete-query-suggestions-block-list \\
 --index-id index-id \\
 --id block-list-id
```

**Python**

**To create a block list**

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")

print("Create a query suggestions block list.")

Provide a name for the block list
block_list_name = "block-list-name"
Provide an optional description for the block list
block_list_description = "block-list-description"
Provide the IAM role ARN required for query suggestions block lists
block_list_role_arn = "role-arn"
Provide the index ID
index_id = "index-id"

s3_bucket_name = "bucket-name"
s3_key = "query-suggestions/block_list.txt"
s3_path = {
 'Bucket': s3_bucket_name,
 'Key': s3_key

kendra.put_query_suggestions_block_list(
 IndexId=index_id,
 BlockListName=block_list_name,
 SourceS3Path=s3_path,
 RoleArn=block_list_role_arn)
```

try:
    block_list_response = kendra.create_query_suggestions_block_list(
        Description = block_list_description,
        Name = block_list_name,
        RoleArn = block_list_role_arn,
        IndexId = index_id,
        SourceS3Path = source_s3_path
    )

    print(block_list_response)
    block_list_id = block_list_response["Id"]

    print("Wait for Amazon Kendra to create the block list.")
    while True:
        # Get block list description
        block_list_description = kendra.describe_query_suggestions_block_list(
            Id = block_list_id,
            IndexId = index_id
        )
        # If status is not CREATING, then quit
        status = block_list_description["Status"]
        print("Creating block list. Status: " + status)
        if status != "CREATING":
            break
        time.sleep(60)
except ClientError as e:
    print("%s" % e)

print("Program ends.")

To update a block list

import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")

print("Update a block list for query suggestions.")

# Provide the block list name you want to update
block_list_name = "new-block-list-name"

# Provide the block list description you want to update
block_list_description = "new-block-list-description"

# Provide the IAM role ARN required for query suggestions block lists
block_list_role_arn = "role-arn"

# Provide the block list ID
block_list_id = "block-list-id"

# Provide the index ID
index_id = "index-id"

s3_bucket_name = "bucket-name"
s3_key = "query-suggestions/new_block_list.txt"
source_s3_path = {
    'Bucket': s3_bucket_name,
    'Key': s3_key
}
try:
   kendra.update_query_suggestions_block_list(
      Id = block_list_id,
      IndexId = index_id,
      Description = block_list_description,
      Name = block_list_name,
      RoleArn = block_list_role_arn,
      SourceS3Path = source_s3_path
   )

   print("Wait for Amazon Kendra to update the block list.")

   while True:
      # Get block list description
      block_list_description = kendra.describe_query_suggestions_block_list(
         Id = block_list_id,
         IndexId = index_id
      )
      # If status is not UPDATING, then the update has finished
      status = block_list_description["Status"]
      print("Updating block list. Status: " + status)
      if status != "UPDATING":
         break
         time.sleep(60)

   except ClientError as e:
      print("%s" % e)

   print("Program ends.")

To delete a block list

import boto3
from botocore.exceptions import ClientError

kendra = boto3.client("kendra")

print("Delete a block list for query suggestions.")

# provide the block list ID
query_suggestions_block_list_id = "query-suggestions-block-list-id"
# Provide the index ID
index_id = "index-id"

try:
   kendra.delete_query_suggestions_block_list(
      Id = query_suggestions_block_list_id,
      IndexId = index_id
   )

   except ClientError as e:
      print("%s" % e)

   print("Program ends.")

Query spell checker

Amazon Kendra Spell Checker suggests spell corrections for a query. This can help you keep occurrences of zero search results to a minimum and return relevant results. Your users might receive zero search results from misspelled queries with no matching results or no returned documents. Or, your users might receive irrelevant search results from misspelled queries.
Spell Checker is designed to suggest corrections for misspelled words based on words that appear in your indexed documents and how closely a corrected word matches a misspelled word. For example, if the word 'statements' appears in your indexed documents, then this could closely match the misspelled word 'statments' in the query 'year-end financial statments'.

Spell Checker returns the intended or corrected words that replace misspelled words in the original query text. For example, 'deploying kendre search' could return 'deploying Kendra search'. You can also use offset locations provided in the API to highlight or italicize the returned corrected words in a query in your front-end application. In the console, the corrected words are highlighted or italicized by default. For example, 'deploying Kendra search'.

For business-specific or specialized terms that appear in your indexed documents, Spell Checker does not misunderstand these terms as spellings mistakes in the query. For example, 'amazon macie' is not corrected to 'amazon mace'.

For hyphenated words, such as 'year-end', Spell Checker treats these as individual words to suggest corrections for these words. For example, the suggested correction for 'yaer-end' could be 'year-end'.

For DOCUMENT and QUESTION_ANSWER query response types, Spell Checker suggests corrections to misspelled words based on words in the document body. The document body is more reliable than the title for suggesting corrections that closely match the misspelled words. For ANSWER query response types, Spell Checker suggests corrections based on words in the default question and answer document in your index.

You can activate Spell Checker using the `SpellCorrectionConfiguration` object. You set `IncludeQuerySpellCheckSuggestions` to `TRUE`. Spell Checker is activated by default in the console. It is built into the console by default.

Spell Checker can also suggest spell corrections for queries in multiple languages, not only English. For a list of languages supported for Spell Checker, see Amazon Kendra supported languages.

### Using the query spell checker with default limits

Spell Checker is designed with certain defaults or limits. The following is a list of current limits that apply when you activate spell correction suggestions.

- Suggested spell corrections cannot be returned for words that are less than three characters or more than 30 characters in length. To allow for more than 30 characters or less than three characters, contact Support.
- Suggested spell corrections cannot restrict suggestions based on user access control or your access control list for user context filtering. Spell corrections are based on all words in your indexed documents, whether the words are restricted to certain users or not. If you want to avoid certain words appearing in the suggested spell corrections for queries, then do not activate SpellCorrectionConfiguration.
- Suggested spell corrections cannot be returned for words that include numbers. For example, 'how 2 not br8k ubun2'.
- Suggested spell corrections cannot use words that don't appear in your indexed documents.
- Suggested spell corrections cannot use words that are frequented less than 0.01 percent in your indexed documents. To change the 0.01% threshold, contact Support.

### Filtering and facet search

You can improve the search results or response from the Query API by using filters. Filters restrict the documents in the response to ones that directly apply to the query. To create faceted search suggestions,
use Boolean logic to filter out specific document attributes from the response or documents that don’t match specific criteria. You can specify facets using the Facets parameter in the Query API.

To search documents that you have indexed with Amazon Kendra for Amazon Lex, use AMAZON.KendraSearchIntent. For an example of configuring Amazon Kendra with Amazon Lex, see Creating a FAQ Bot for an Amazon Kendra Index. You can also provide a filter for the response by using AttributeFilter. This is the query filter in JSON when configuring AMAZON.KendraSearchIntent. To provide an attribute filter when configuring a search intent in the console, go to the intent editor and choose Amazon Kendra query to provide a query filter in JSON. For more information about AMAZON.KendraSearchIntent, see the Amazon Lex documentation guide.

### Facets

Facets are scoped views of a set of search results. For example, you can provide search results for cities across the world, where documents are filtered by a specific city with which they are associated. Or, you can create facets to display results by a specific author.

You can use a document attribute or metadata field associated with a document as a facet so that your users can search by categories or values within that facet. You can also display nested facets in the search results so that your users can search not only by a category or field but also by a sub category or sub field.

The following example shows how to get facet information for the “City” custom attribute.

```python
response=kendra.query(
 QueryText = query,
 IndexId = index,
 Facets = [
 {
 "DocumentAttributeKey" : "City"
 }
]
)
```

You can use nested facets to further narrow the search. For example, the document attribute or facet “City” includes a value called “Seattle”. In addition, the document attribute or facet “CityRegion” includes the values “North” and “South” for documents assigned to “Seattle”. You can display nested facets with their counts in the search results so that documents can be searched not only by city but also by a region within a city.

Note that nested facets could impact query latency. A general rule is the more nested facets that you use, the greater potential impact on latency. Other factors that affect latency include the average size of documents indexed, the size of your index, highly complex queries, and the overall load on your Amazon Kendra index.

The following example shows how to get facet information for the “CityRegion” custom attribute, as a nested facet within “City”.

```python
response=kendra.query(
 QueryText = query,
 IndexId = index,
 Facets = [
 {
 "DocumentAttributeKey" : "City",
 "Facets": [
 {
 "DocumentAttributeKey" : "CityRegion"
 }
]
 }
]
)
```
Facet information, such as the document count, is returned in the `FacetResults` response array. You use the contents to display faceted search suggestions in your application. For example, if the document attribute "City" contains the city that a search could apply to, use that information to display a list of city searches. Users can choose a city to filter their search results. To make the faceted search, call the `Query` API and use the chosen document attribute to filter the results.

You can display up to 10 facet values per facet for a query, and only one nested facet within a facet. If you want to increase these limits, contact `Support`. If you want to limit the number of facet values per facet to less than 10, you can specify this in the `Facet` object.

The following sample JSON response shows facets scoped to the "City" document attribute. The response includes the count of documents for the facet value.

```json
{
 'FacetResults': [
 {
 'DocumentAttributeKey': 'City',
 'DocumentAttributeValueCountPairs': [
 {
 'Count': 3,
 'DocumentAttributeValue': {
 'StringValue': 'Dubai'
 }
 },
 {
 'Count': 3,
 'DocumentAttributeValue': {
 'StringValue': 'Seattle'
 }
 },
 {
 'Count': 1,
 'DocumentAttributeValue': {
 'StringValue': 'Paris'
 }
 }
]
 }
]
}
```

You can also display facet information for a nested facet, such as a region within a city, to further filter the search results.

The following sample JSON response shows facets scoped to the "CityRegion" document attribute, as a nested facet within "City". The response includes the count of documents for the nested facet values.

```json
{
 'FacetResults': [
 {
 'DocumentAttributeKey': 'City',
 'DocumentAttributeValueCountPairs': [
 {
 'Count': 3,
 'DocumentAttributeValue': {
 'StringValue': 'Dubai'
 }
 },
 {
 'Count': 3,
 'DocumentAttributeValue': {
 'StringValue': 'Seattle'
 }
 },
 {
 'Count': 1,
 'DocumentAttributeValue': {
 'StringValue': 'Paris'
 }
 }
]
 }
]
}
```
{'FacetResults': [
    {'DocumentAttributeKey': 'CityRegion',
     'DocumentAttributeValueCountPairs': [
        {'Count': 2, 'DocumentAttributeValue': { 'StringValue': 'Bur Dubai' }},
        {'Count': 1, 'DocumentAttributeValue': { 'StringValue': 'Deira' }},
        {'Count': 3, 'DocumentAttributeValue': { 'StringValue': 'Seattle' }},
        {'Count': 1, 'DocumentAttributeValue': { 'StringValue': 'Paris' }},
        {'Count': 1, 'DocumentAttributeValue': { 'StringValue': 'City center' }}
    ]}
]}

500
When you use a string list field to create facets, the facet results returned are based on the contents of the string list. For example, if you have a string list field that contains two items, one with the list "dachshund", "sausage dog" and one with the value "husky", you get FacetResults with three facets.

For more information, see Query responses and response types (p. 514).

Using document attributes to filter search results

By default, Query returns all search results. To filter responses, you can perform logical operations on the document attributes. For example, if you only want documents for a specific city, you can filter on the "City" and "State" custom document attributes. You use AttributeFilter to create a Boolean operation on filters that you supply.

Most attributes can be used to filter responses for all response types. However, the _excerpt_page_number attribute is only applicable to ANSWER response types when filtering responses.

The following example shows how to perform a logical AND operation by filtering on a specific city, Seattle, and state, Washington.

```python
response=kendra.query(
 QueryText = query,
 IndexId = index,
 AttributeFilter = {'AndAllFilters':
 [{"EqualsTo": {"Key": "City","Value": {"StringValue": "Seattle"}}},
 {"EqualsTo": {"Key": "State","Value": {"StringValue": "Washington"}}}
]
)
```

The following example shows how to perform a logical OR operation for when any of the Fileformat, Author, or SourceURI keys match the specified values.

```python
response=kendra.query(
 QueryText = query,
 IndexId = index,
 AttributeFilter = {'OrAllFilters':
 [{"EqualsTo": {"Key": "Fileformat","Value": {"StringValue": "AUTO_DETECT"}}},
 {"EqualsTo": {"Key": "Author","Value": {"StringValue": "Ana Carolina"}}},
 {"EqualsTo": {"Key": "SourceURI","Value": {"StringValue": "https://aws.amazonaws.com/234234242342"}}}
]
)
```

For StringList fields, use the ContainsAny or ContainsAll attribute filters to return documents with the specified string. The following example shows how to return all documents that have the values "Seattle" or "Portland" in their Locations custom attribute.

```python
response=kendra.query(
 QueryText = query,
 IndexId = index,
 AttributeFilter = {"AndAllFilters":
 [{"ContainsAny": {"Key": "Locations","Value": ["Seattle","Portland"]}}]
]
)
```
Filtering each document's attributes in the search results

Amazon Kendra returns document attributes for each document in the search results. You can filter certain document attributes you want to include in the response as part of the search results. By default, all document attributes assigned to a document are returned in the response.

In the following example, only the _source_uri and _author document attributes are included in the response for a document.

```python
response=kendra.query(
 QueryText = query,
 IndexId = index,
 RequestedDocumentAttributes = ["_source_uri", ",author"]
)
```

Filtering on user context

You can filter a user's search results based on the user or their group access to documents. You can use a user token, user ID, or user attribute to filter documents. Amazon Kendra can also map users to their groups. You can choose to use AWS IAM Identity Center (successor to AWS Single Sign-On) as your identity store/source.

User context filtering is a kind of personalized search with the benefit of controlling access to documents. For example, not all teams that search the company portal for information should access top-secret company documents, nor are these documents relevant to all users. Only specific users or groups of teams given access to top-secret documents should see these documents in their search results.

When a document is indexed into Amazon Kendra, a corresponding access control list (ACL) is ingested for most documents. The ACL specifies which user names and group names are allowed or denied access to the document. Documents without an ACL are public documents.

Amazon Kendra automatically extracts the user or group information associated with each document in most data sources. For example, a document in Quip can include a 'share' list of select users or groups that are given access to the document. If you use an S3 bucket as a data source, you provide a JSON file for your ACL and include the S3 path to this file as part of the data source configuration. If you add documents directly to an index, you specify the ACL in the Principal object as part of the document object in the BatchPutDocument API.

You can use the CreateAccessControlConfiguration API to re-configure your existing document level access control without indexing all of your documents again. For example, your index contains top-secret company documents that only certain employees or users should access. One of these users leaves the company or switches to a team that should be blocked from accessing top-secret documents. The user still has access to top-secret documents because the user had access when your documents were previously indexed. You can create a specific access control configuration for the user with deny access. You can later update the access control configuration to allow access in the case the user returns to the company and re-joins the 'top-secret' team. You can re-configure access control for your documents as circumstances change.
To apply your access control configuration to certain documents, you call the `BatchPutDocument` API with the `AccessControlConfigurationId` included in the `Document` object. If you use an S3 bucket as a data source, you update the `.metadata.json` with the `AccessControlConfigurationId` and synchronize your data source. Amazon Kendra currently only supports access control configuration for S3 data sources and documents indexed using the `BatchPutDocument` API.

### Filtering by user token

When you query an index, you can use a user token to filter search results based on the user or their group access to documents. When you issue a query, Amazon Kendra extracts and validates the token, pulls and checks the user and group information, and runs the query. All of the documents the user has access to, including public documents, are returned. For more information, see [Token-based user access control](#).

You provide the user token in the `UserContext` object and pass this in the `Query` API.

The following shows how to include a user token.

```python
response = kendra.query(
 QueryText = query,
 IndexId = index,
 UserToken = {
 Token = "token"
 }
)
```

You can map users to groups. When you use user-context filtering, it is not required to include all of the groups that a user belongs to when you issue the query. With the `PutPrincipalMapping` API, you can map users to their groups. If you do not want to use the `PutPrincipalMapping` API, you must provide the user name and all the groups the user belongs to when you issue a query. You can also fetch access levels of groups and users in your IAM Identity Center identity source by using the `UserGroupResolutionConfiguration` object.

### Filtering by user ID and group

When you query an index, you can use the user ID and group to filter search results based on the user or their group access to documents. When you issue a query, Amazon Kendra checks the user and group information and runs the query. All of the documents relevant to the query that the user has access to, including public documents, are returned.

You can also filter search results by data sources that users and groups have access to. Specifying a data source is useful if a group is tied to multiple data sources, but you only want the group to access documents of a certain data source. For example, the groups "Research", "Engineering", and "Sales and Marketing" are all tied to the company's documents stored in the data sources Confluence and Salesforce. However, "Sales and Marketing" team only needs access to customer-related documents stored in Salesforce. So when sales and marketing users search for customer-related documents, they can see documents from Salesforce in their results. Users who do not work in sales and marketing do not see Salesforce documents in their search results.

You provide the user, groups and data sources information in the `UserContext` object and pass this in the `Query` API. The user ID, and the list of groups and data sources should match the name you specify in the `Principal` object to identify the user, groups, and data sources. With the `Principal` object, you can add a user, group, or data source to either an allow list or a deny list for accessing a document.

You are required to provide one of the following:

- User and groups information, and (optional) data sources information.
Filtering by user attribute

When you query an index, you can use built-in attributes `_user_id` and `_group_id` to filter search results based on the user and their group access to documents. You can set up to 100 group identifiers. When you issue a query, Amazon Kendra checks the user and group information and runs the query. All documents relevant to the query that the user has access to, including public documents, are returned.

You provide the user and group attributes in the `AttributeFilter` object and pass this in the `Query` API.

The following example shows a request that filters the query response based on the user ID and the groups "HR" and "IT", which the user belongs to. The query will return any document that has the user or the "HR" or "IT" groups in the allow list. If the user or either group is in the deny list for a document, the document is not returned.

```python
response = kendra.query(
 QueryText = query,
 IndexId = index,
 AttributeFilter = {
 "OrAllFilters": [
 {
 "EqualsTo": {
 "Key": "_user_id",
 "Value": {
 "StringValue": "user1"
 }
 }
 },
 {
 "EqualsTo": {
 "Key": "_group_ids",
 "Value": {
 "StringListValue": ["HR", "IT"]
 }
 }
 }
]
 }
)
```
You can also specify which data source a group can access in the Principal object.

**Note**
User context filtering isn't an authentication or authorization control for your content. It doesn't do user authentication on the user and groups sent to the Query API. It is up to your application to ensure that the user and group information sent to Query API is authenticated and authorized.

There is an implementation of user context filtering for each data source. The following section describes each implementation.

**Topics**
- User context filtering for documents added directly to an index (p. 505)
- User context filtering for frequently asked questions (p. 505)
- User context filtering for data sources (p. 505)

### User context filtering for documents added directly to an index

When you add documents directly to an index using the `BatchPutDocument` API, Amazon Kendra gets user and group information from the `AccessControlList` field of the document. You provide an access control list (ACL) for your documents and the ACL is ingested with your documents.

You specify the ACL in the `Principal` object as part of the `Document` object in the `BatchPutDocument` API. You provide the following information:

- The access that the user or group should have. You can say ALLOW or DENY.
- The type of entity. You can say USER or GROUP.
- The name of the user or group.

You can add up to 200 entries in the `AccessControlList` field.

### User context filtering for frequently asked questions

When you add a FAQ to an index, Amazon Kendra gets user and group information from the `AccessControlList` object/field of the FAQ JSON file. You can also use a FAQ CSV file with custom fields or attributes for access control.

You provide the following information:

- The access that the user or group should have. You can say ALLOW or DENY.
- The type of entity. You can say USER or GROUP.
- The name of the user or group.

For more information, see FAQ files.

### User context filtering for data sources

Amazon Kendra also crawls user and group access control list (ACL) information from supported data source connectors. This is useful for user context filtering, where search results are filtered based on the user or their group access to documents.
User context filtering for Adobe Experience Manager data sources

When you use an Adobe Experience Manager data source, Amazon Kendra gets the user and group information from the Adobe Experience Manager instance.

The group and user IDs are mapped as follows:

- `group_ids`—Group IDs exist in Adobe Experience Manager content where there are set access permissions. They are mapped from the names of the groups in Adobe Experience Manager.
- `user_id`—User IDs exist in Adobe Experience Manager content where there are set access permissions. They are mapped from the user emails as the IDs in Adobe Experience Manager.

You can add up to 200 entries in the AccessControlList field.

User context filtering for Alfresco data sources

When you use an Alfresco data source, Amazon Kendra gets the user and group information from the Alfresco instance.

The group and user IDs are mapped as follows:
• _group_ids—Group IDs exist in Alfresco on files where there are set access permissions. They are mapped from the system names of the groups (not display names) in Alfresco.
• _user_id—User IDs exist in Alfresco on files where there are set access permissions. They are mapped from the user emails as the IDs in Alfresco.

You can add up to 200 entries in the AccessControlList field.

User context filtering for Amazon S3 data sources

You add user context filtering to a document in an Amazon S3 data source using a metadata file associated with the document. You add the information to the AccessControlList field in the JSON document. For more information about adding metadata to the documents indexed from an Amazon S3 data source, see S3 document metadata.

You provide three pieces of information:

• The access that the entity should have. You can say ALLOW or DENY.
• The type of entity. You can say USER or GROUP.
• The name of the entity.

You can add up to 200 entries in the AccessControlList field.

User context filtering for database data sources

When you use a database data source, such as Amazon Aurora PostgreSQL, Amazon Kendra gets user and group information from a column in the source table. You specify this column in the AclConfiguration object as part of the DatabaseConfiguration object in the CreateDataSource API.

A database data source has the following limitations:

• You can only specify an allow list for a database data source. You can't specify a deny list.
• You can only specify groups. You can't specify individual users for the allow list.
• The database column should be a string containing a semicolon delimited list of groups.

User context filtering for Amazon FSx data sources

When you use an Amazon FSx data source, Amazon Kendra gets user and group information from the directory service of the Amazon FSx instance.

The Amazon FSx group and user IDs are mapped as follows:

• _group_ids—Group IDs exist in Amazon FSx on files where there are set access permissions. They are mapped from the system group names in the directory service of Amazon FSx.
• _user_id—User IDs exist in Amazon FSx on files where there are set access permissions. They are mapped from the system user names in the directory service of Amazon FSx.

You can add up to 200 entries in the AccessControlList field.

User context filtering for Amazon WorkDocs data sources

When you use an Amazon WorkDocs data source, Amazon Kendra gets user and group information from the Amazon WorkDocs instance.
The Amazon WorkDocs group and user IDs are mapped as follows:

- **_group_ids**—Group IDs exist in Amazon WorkDocs on files where there are set access permissions. They are mapped from the names of the groups in Amazon WorkDocs.
- **_user_id**—User IDs exist in Amazon WorkDocs on files where there are set access permissions. They are mapped from the user names in Amazon WorkDocs.

You can add up to 200 entries in the AccessControlList field.

### User context filtering for Box data sources

When you use a Box data source, Amazon Kendra gets user and group information from the Box instance.

The Box group and user IDs are mapped as follows:

- **_group_ids**—Group IDs exist in Box on files where there are set access permissions. They are mapped from the names of the groups in Box.
- **_user_id**—User IDs exist in Box on files where there are set access permissions. They are mapped from the user emails as the user IDs in Box.

You can add up to 200 entries in the AccessControlList field.

### User context filtering for Confluence data sources

When you use a Confluence data source, Amazon Kendra gets user and group information from the Confluence instance.

You configure user and group access to spaces using the space permissions page. For pages and blogs, you use the restrictions page. For more information about space permissions, see [Space Permissions Overview](https://confluence.support) on the Confluence Support website. For more information about page and blog restrictions, see [Page Restrictions](https://confluence.support) on the Confluence Support website.

The Confluence group and user names are mapped as follows:

- **_group_ids**—Group names are present on spaces, pages, and blogs where there are restrictions. They are mapped from the name of the group in Confluence. Group names are always lower case.

- **_user_id**—User names are present on the space, page, or blog where there are restrictions. They are mapped depending on the type of Confluence instance that you are using.

  **For Confluence connector v1.0**
  - Server—The _user_id is the user name. The username is always lower case.
  - Cloud—The _user_id is the account ID of the user.

  **For Confluence connector v2.0**
  - Server—The _user_id is the user name. The username is always lower case.
  - Cloud—The _user_id is the email ID of the user.

You can add up to 200 entries in the AccessControlList field.

### User context filtering for Dropbox data sources

When you use a Dropbox data source, Amazon Kendra gets the user and group information from the Dropbox instance.
The group and user IDs are mapped as follows:

- **_group_ids**—Group IDs exist in Dropbox on files where there are set access permissions. They are mapped from the names of the groups in Dropbox.
- **_user_id**—User IDs exist in Dropbox on files where there are set access permissions. They are mapped from the user emails as the IDs in Dropbox.

You can add up to 200 entries in the AccessControlList field.

### User context filtering for GitHub data sources

When you use a GitHub data source, Amazon Kendra gets user information from the GitHub instance.

The GitHub user IDs are mapped as follows:

- **_user_id**—User IDs exist in GitHub on files where there are set access permissions. They are mapped from the user emails as the IDs in GitHub.

You can add up to 200 entries in the AccessControlList field.

### User context filtering for Google Drive data sources

A Google Workspace Drive data source returns user and group information for Google Drive users and groups. Group and domain membership are mapped to the _group_ids index field. The Google Drive user name is mapped to the _user_id field.

When you provide one or more user email addresses in the Query API, only documents that have been shared with those email addresses are returned. The following AttributeFilter parameter only returns documents shared with "martha@example.com".

```json
"AttributeFilter": {
 "EqualsTo": {
 "Key": "_user_id",
 "Value": {
 "StringValue": "martha@example.com"
 }
 }
}
```

If you provide one or more group email addresses in the query, only documents shared with the groups are returned. The following AttributeFilter parameter only returns documents shared with the "hr@example.com" group.

```json
"AttributeFilter": {
 "EqualsTo": {
 "Key": "_group_ids",
 "Value": {
 "StringListValue": ["hr@example.com"]
 }
 }
}
```

If you provide the domain in the query, all documents shared with the domain are returned. The following AttributeFilter parameter returns documents shared with the "example.com" domain.

```json
"AttributeFilter": {
 "EqualsTo": {
 "Key": "_domain",
 "Value": "example.com"
 }
}
```

"AttributeFilter": {
  "EqualsTo": {
    "Key": "_domain",
    "Value": "example.com"
  }
}
"Key": "_group_ids",
"Value": {
  "StringListValue": ["example.com"]
}
}

You can add up to 200 entries in the AccessControlList field.

**User context filtering for Gmail data sources**

When you use a Gmail data source, Amazon Kendra gets the user information from the Gmail instance. The user IDs are mapped as follows:

- _user_id – User IDs exist in Gmail on files where there are set access permissions. They are mapped from the user emails as the IDs in Gmail.

You can add up to 200 entries in the AccessControlList field.

**User context filtering for Jira data sources**

When you use a Jira data source, Amazon Kendra gets user and group information from the Jira instance. The Jira user IDs are mapped as follows:

- _user_id—User IDs exist in Jira on files where there are set access permissions. They are mapped from the user emails as the user IDs in Jira.

You can add up to 200 entries in the AccessControlList field.

**User context filtering for Microsoft Exchange data sources**

Amazon Kendra retrieves user information from Microsoft Exchange when it indexes the documents on the site. The user information is taken from the underlying Microsoft Exchange host site.

When you use an Exchange user for user context filtering, Amazon Kendra gets the user information from the Microsoft Exchange instance. The Exchange IDs are mapped as follows:

- _tenant_id—Your Microsoft tenant ID is a globally unique identifier that is necessary to configure each connector instance. Your tenant ID is different from your organization name or domain and can be found in the properties section of your Microsoft account dashboard.

You can add up to 200 entries in the AccessControlList field.

**User context filtering for Microsoft Teams data sources**

Amazon Kendra retrieves user information from Microsoft Teams when it indexes the documents on the site. The user information is taken from the underlying Microsoft Teams host site.

When you use a Teams user for user context filtering, Amazon Kendra gets the user information from the Microsoft Teams instance. The Teams tenant IDs are mapped as follows:

- _tenant_id—Your Microsoft tenant ID is a globally unique identifier that is necessary to configure each connector instance. Your tenant ID is different from your organization name or domain and can be found in the properties section of your Microsoft account dashboard.
You can add up to 200 entries in the AccessControlList field.

**User context filtering for Microsoft OneDrive data sources**

Amazon Kendra retrieves user and group information from Microsoft OneDrive when it indexes the documents on the site. The user and group information is taken from the underlying Microsoft SharePoint site that hosts OneDrive.

When you use a OneDrive user or group for user context filtering, calculate the ID as follows:

1. Get the site name. For example, https://host.onmicrosoft.com/sites/siteName.
2. Take the MD5 hash of the site name. For example, 430a6b90503ee95c89295c8999c7981.
3. Create the user email or group ID by concatenating the MD5 hash with a vertical bar (|) and the ID. For example, if a group name is "site owners", the group ID would be:

   "430a6b90503ee95c89295c8999c7981|site owners"

   For the user name "someone@host.onmicrosoft.com," the user ID would be the following:

   "430a6b90503ee95c89295c8999c7981|someone@host.onmicrosoft.com"

Send the user or group ID to Amazon Kendra as the _user_id or _group_ids attribute when you call the Query API. For example, the AWS CLI command that uses a group to filter the query response looks like this:

```sh
aws kendra query --index-id index ID --query-text "query text" --attribute-filter '{
 "EqualsTo": {
 "Key": "_group_ids",
 "Value": {"StringValue": "430a6b90503ee95c89295c8999c7981|site owners"}
 }
}
```

You can add up to 200 entries in the AccessControlList field.

**User context filtering for Microsoft OneDrive v2.0 data sources**

A Microsoft OneDrive v2.0 data source returns section and page information from OneDrive access control list (ACL) entities. Amazon Kendra uses the OneDrive tenant domain to connect to the OneDrive instance and can filter based on section name, page type, file name, file type and file contents.

For standard objects, the _user_id and _group_id are used as follows:

- _user_id— Your Microsoft OneDrive user email ID is mapped to the _user_id field.
- _group_id— Your Microsoft OneDrive group email is mapped to the _group_id field.

You can add up to 200 entries in the AccessControlList field.

**User context filtering for Microsoft Yammer data sources**

Amazon Kendra retrieves user and group information from Microsoft Yammer when it indexes the documents on the site. The user and group information is taken from the underlying Microsoft Yammer host site.
When you use a Yammer user for user context filtering, Amazon Kendra gets the user information from the Microsoft Yammer instance. The Microsoft Yammer user IDs are mapped as follows:

- **_email_id**— Your Microsoft email ID is an identifier that is necessary to configure each connector instance. Your email ID can be found in the properties section of your Microsoft account dashboard.
- **_group_id**— Group IDs exist in Microsoft Yammer Instances where there are set access permissions. They are mapped from the names of the groups in Microsoft Yammer.

You can add up to 200 entries in the AccessControlList field.

**User context filtering for Microsoft SharePoint data sources**

Amazon Kendra retrieves user and group information from Microsoft SharePoint when it indexes the documents on the site. To filter your documents, provide user and group information when you call the Query API.

To filter using a user name, use the user's email address. For example, johnstiles@example.com.

When you use a SharePoint group for user context filtering, calculate the group ID as follows:

**For local groups**

1. Get the site name. For example, https://host.onmicrosoft.com/sites/siteName.
2. Take the SHA256 hash of the site name. For example, 430a6b90503eeef95c89295c8999c7981.
3. Create the group ID by concatenating the SHA256 hash with a vertical bar (|) and the group name. For example, if the group name is "site owners", the group ID would be:

   "430a6b90503eeef95c89295c8999c7981|site owners"

Send the group ID to Amazon Kendra as the _group_ids attribute when you call the Query API. For example, the AWS CLI command looks like this:

```bash
aws kendra query \
 --index-id index ID \
 --query-text "query text" \
 --attribute-filter '{
 "EqualsTo":{
 "Key": "_group_ids",
 "Value": {"StringValue": "430a6b90503eeef95c89295c8999c7981|site owners"}}
 }'
```

**For AD groups**

1. Use the AD group ID for configuring user context.

Send the group ID to Amazon Kendra as the _group_ids attribute when you call the Query API. For example, the AWS CLI command looks like this:

```bash
aws kendra query \
 --index-id index ID \
 --query-text "query text" \
 --attribute-filter '{
 "EqualsTo":{
 "Key": "_group_ids",
 "Value": {"StringValue": "AD group"}}
 }'
```
You can add up to 200 entries in the AccessControlList field.

**User context filtering for Quip data sources**

When you use a Quip data source, Amazon Kendra gets the user information from the Quip instance.

The Quip user IDs are mapped as follows:

- `_user_id`—User IDs exist in Quip on files where there are set access permissions. They are mapped from the user emails as the IDs in Quip.

You can add up to 200 entries in the AccessControlList field.

**User context filtering for Salesforce data sources**

A Salesforce data source returns user and group information from Salesforce access control list (ACL) entities. You can apply user context filtering to Salesforce standard objects and chatter feeds. User context filtering is not available for Salesforce knowledge articles.

For standard objects, the `_user_id` and `_group_ids` are used as follows:

- `_user_id`—The user name of the Salesforce user.
- `_group_ids`—
  - Name of the Salesforce Profile
  - Name of the Salesforce Group
  - Name of the Salesforce UserRole
  - Name of the Salesforce PermissionSet

For chatter feeds, the `_user_id` and `_group_ids` are used as follows:

- `_user_id`—The user name of the Salesforce user. Only available if the item is posted in the user's feed.
- `_group_ids`—Group IDs are used as follows. Only available if the feed item is posted in a chatter or collaboration group.
  - The name of the chatter or collaboration group.
  - If the group is public, PUBLIC:ALL.

You can add up to 200 entries in the AccessControlList field.

**User context filtering for ServiceNow data sources**

User context filtering for ServiceNow is supported only for the TemplateConfiguration API and ServiceNow Connector v2.0. ServiceNowConfiguration API and ServiceNow Connector v1.0. do not support user context filtering.

When you use a ServiceNow data source, Amazon Kendra gets the user and group information from the ServiceNow instance.

The group and user IDs are mapped as follows:

- `_group_ids`—Group IDs exist in ServiceNow on files where there are set access permissions. They are mapped from the role names of sys_ids in ServiceNow.
• _user_id—User IDs exist in ServiceNow on files where there are set access permissions. They are mapped from the user emails as the IDs in ServiceNow.

You can add up to 200 entries in the AccessControlList field.

User context filtering for Slack data sources

When you use a Slack data source, Amazon Kendra gets the user information from the Slack instance.

The Slack user IDs are mapped as follows:

• _user_id—User IDs exist in Slack on messages and channels where there are set access permissions. They are mapped from the user emails as the IDs in Slack.

You can add up to 200 entries in the AccessControlList field.

User context filtering for Zendesk data sources

When you use a Zendesk data source, Amazon Kendra gets the user and group information from the Zendesk instance.

The group and user IDs are mapped as follows:

• _group_ids—Group IDs exist in Zendesk tickets and articles where there are set access permissions. They are mapped from the names of the groups in Zendesk.

• _user_id—Group IDs exist in Zendesk tickets and articles where there are set access permissions. They are mapped from the user emails as the IDs in Zendesk.

You can add up to 200 entries in the AccessControlList field.

Query responses and response types

Amazon Kendra supports different query responses and response types.

Query responses

A call to the Query API returns information about the results of a search. The results are in an array of QueryResultItem objects (ResultItems). Each QueryResultItem includes a summary of the result. Document attributes associated with the query result are included.

Summary information

The summary information varies depending on the type of result. In each case, it includes document text that matches the search term. It also includes highlight information that you can use to highlight the search text in your application's output. For example, if the search term is what is the height of the Space Needle?, the summary information includes text location for the words height and space needle. For information about response types, see Query responses and response types (p. 514).

Document attributes

Each result contains document attributes for the document that matches a query. Some of the attributes are predefined, such as DocumentId, DocumentTitle, and DocumentUri. Others are custom attributes that you define. You can use document attributes to filter the response from the Query API. For example, you might want only the documents written by a specific author or a specific version of
a document. For more information, see Filtering and facet search (p. 497). You specify document attributes when you add documents to an index. For more information, see Custom fields or attributes.

The following is sample JSON code for a query result. Note the document attributes in DocumentAttributes and AdditionalAttributes.

```json
{
 "QueryId": "query-id",
 "ResultItems": [
 {
 "Id": "result-id",
 "Type": "ANSWER",
 "AdditionalAttributes": [
 {
 "Key": "AnswerText",
 "Value": {
 "Value": {
 "TextWithHighlightsValue": {
 "Text": "text",
 "Highlights": [
 {
 "BeginOffset": 55,
 "EndOffset": 90,
 "TopAnswer": false
 }
]
 }
 }
 }
 }
],
 "DocumentId": "document-id",
 "DocumentTitle": {
 "Text": "title"
 },
 "DocumentExcerpt": {
 "Text": "text",
 "Highlights": [
 {
 "BeginOffset": 0,
 "EndOffset": 300,
 "TopAnswer": false
 }
]
 },
 "DocumentURI": "uri",
 "DocumentAttributes": [],
 "ScoreAttributes": "score",
 "FeedbackToken": "token"
 },
 {
 "Id": "result-id",
 "Type": "ANSWER",
 "Format": "TABLE",
 "DocumentId": "document-id",
 "DocumentTitle": {
 "Text": "title"
 },
 "TableExcerpt": {
 "Rows": [{
 "Cells": [
 {
 "Header": true,
 "Highlighted": false,
 "TopAnswer": false,
 "Value": "value"
 }
]
]
 }
 }
]
}
```
Response types

Amazon Kendra returns three types of query response.

- **Answer** (includes table answer)
- **Document**
- **Question and answer**

The type of the response is returned in the `Type` response field of the `QueryResultItem` object.

**Answer**

Amazon Kendra detected one or more question answers in the response. A factoid is the response to a who, what, when, or where question such as *Where is the nearest service center to me?* Amazon Kendra returns text in the index that best matches the query. The text is in the `AnswerText` field and contains highlight information for the search term within the response text. `AnswerText` includes the full document excerpt with highlighted text, while `DocumentExcerpt` includes the truncated (290 characters) document excerpt with highlighted text.

Amazon Kendra only returns one answer per document, and that is the answer with the highest confidence. To return multiple answers from a document, you must split the document into multiple documents.

```json
{
 'AnswerText': {
 'TextWithHighlights': [
 {
 'BeginOffset': 271,
 'EndOffset': 279,
 'TopAnswer': False
 },
 {
 'BeginOffset': 481,
 'EndOffset': 489,
 'TopAnswer': False
 },
 {
 'BeginOffset': 547,
 'EndOffset': 555,
 'TopAnswer': False
 },
 {
 'BeginOffset': 764,
 'EndOffset': 772,
 'TopAnswer': False
 }
]
 }
}
```
Asynchronous operations can also process documents that are in PDF format. Using PDF format files allows you to process multi-page documents. For information about how Amazon Textract represents documents as Block objects, see Documents and Block Objects. For information about document limits, see Limits in Amazon Textract.

The Amazon Textract synchronous operations can process documents stored in an Amazon S3 bucket or you can pass base64 encoded image bytes. For more information, see Calling Amazon Textract Synchronous Operations. Asynchronous operations require input documents to be supplied in an Amazon S3 bucket.

Document

Amazon Kendra returns ranked documents for those that match the search term. The ranking is based on the confidence that Amazon Kendra has in the accuracy of the search result. Information about the matching document is returned in the QueryResultItem. It includes the title of the document. The excerpt includes highlight information for search text and the section of matching text in the document. The URI for matching documents is in the SourceURI document attribute. The following sample JSON shows the document summary for a matching document.

```json
{
 'DocumentTitle': {
 'Highlights': [
 {'BeginOffset': 7, 'EndOffset': 15, 'TopAnswer': False},
 {'BeginOffset': 97, 'EndOffset': 105, 'TopAnswer': False}
],
 'Text': 'Amazon Textract API Permissions: Actions, Permissions, and Resources Reference - Amazon Textract'
 },
 'DocumentExcerpt': {
 'Highlights': [
 {'BeginOffset': 68, 'EndOffset': 76, 'TopAnswer': False}
],
 'Text': 'Amazon Textract API Permissions: Actions, Permissions, and Resources Reference - Amazon Textract'
 }
}
```
Question and answer

A question and answer response is returned when Amazon Kendra matches a question with one of the frequently asked questions in your index. The response includes the matching question and answer in the QueryResultItem field. It also includes highlight information for query terms detected in query string. The following JSON shows a question and answer response. Note that the response includes the question text.

```json
{
 'AnswerText': {
 'TextWithHighlights': [
],
 'Text': '605 feet'
 },
 'DocumentExcerpt': {
 'Highlights': [
 {
 'BeginOffset': 0,
 'EndOffset': 8,
 'TopAnswer': False
 }
],
 'Text': '605 feet'
 },
 'Type': 'QUESTION_ANSWER',
 'QuestionText': {
 'Highlights': [
 {
 'BeginOffset': 12,
 'EndOffset': 18,
 'TopAnswer': False
 },
 {
 'BeginOffset': 26,
 'EndOffset': 31,
 'TopAnswer': False
 },
 {
 'BeginOffset': 32,
 'EndOffset': 38,
 'TopAnswer': False
 }
],
 'Text': 'what is the height of the Space Needle?'
 }
}
```

For information about adding question and answer text to an index, see Creating FAQ.
Tuning and sorting responses

You can modify the effect of a field or attribute on the search relevance through relevance tuning. You can also sort the search results by a certain attribute or field.

Tuning responses

You can modify the effect of a field or attribute on the search relevance through relevance tuning. To quickly test relevance tuning, use the Query API to pass in tuning configurations in the query. Then you can see the different search results that you get from different configurations. Relevance tuning at the query level is not supported in the console. You can also tune fields or attributes that are of the type StringList at the index level only. For more information, see Tuning search relevance.

By default, query responses are sorted by the relevance score that Amazon Kendra determines for each result in the response.

You can tune results for any built-in or custom attribute/field of the following types:

- Date value
- Long value
- String value

You can't sort attributes of the following type:

- String list values

Rank and tune document results (AWS SDK)

Set the Searchable parameter to true to boost the document metadata configuration.

To tune an attribute in a query, set the DocumentRelevanceOverrideConfigurations parameter of the Query API and specify the name of the attribute to tune.

The following JSON example shows a DocumentRelevanceOverrideConfigurations object that overrides the tuning for the attribute called "department" in the index.

```json
"DocumentRelevanceOverrideConfigurations" : [
 "Name": "department",
 "Relevance": {
 "Importance": 1,
 "ValueImportanceMap": {
 "IT": 3,
 "HR": 7
 }
 }
]
```

Sorting responses

Amazon Kendra uses the sorting attribute or field as part of the criteria for the documents returned by the query. For example, the results returned by a query sorted by "_created_at" might not contain the same results as a query sorted by "_version".

By default, query responses are sorted by the relevance score that Amazon Kendra determines for each result in the response. To change the sort order, make a document attribute sortable and then configure Amazon Kendra to use that attribute to sort responses.
You can sort results on any built-in or custom attribute/field of the following types:

- Date value
- Long value
- String value

You can't sort attributes of the following type:

- String list values

You can sort on only one document attribute/field in each query. Queries return 100 results. If there are fewer than 100 documents with the sorting attribute set, documents without a value for the sorting attribute are returned at the end of the results, sorted by relevance to the query.

To sort document results (AWS SDK)

1. To use the UpdateIndex API to make an attribute sortable, set the Sortable parameter to true. The following JSON example uses DocumentMetadataConfigurationUpdates to add an attribute called "Department" to the index and make it sortable.

```json
"DocumentMetadataConfigurationUpdates": [
 {
 "Name": "Department",
 "Type": "STRING_VALUE",
 "Search": {
 "Sortable": "true"
 }
 }
]
```

2. To use a sortable attribute in a query, set the SortingConfiguration parameter of the Query API. Specify the name of the attribute to sort and whether to sort the response in ascending or descending order.

   The following JSON example shows the SortingConfiguration parameter that you use to sort the results of a query by the "Department" attribute in ascending order.

```json
"SortingConfiguration": {
 "DocumentAttributeKey": "Department",
 "SortOrder": "ASC"
}
```

To sort document results (console)

1. To make an attribute sortable in the console, choose Sortable in the attribute definition. You can make an attribute sortable when you create the attribute, or you can modify it later.

2. To sort a query response in the console, choose the attribute to sort the response from the Sort menu. Only attributes that were marked sortable during datasource configuration appear in the list.
Amazon Kendra queries produce search results ranked by their relevance. The searchable fields or attributes in the index all contribute to this ranking.

You can modify the effect of a field or attribute on the search relevance through relevance tuning. Tuning search relevance can either be done manually at the index level, where you set tuning configurations for your index, or at the query level by overriding configurations set at the index level.

When you use relevance tuning, a result is given a boost in the response when the query includes terms that match the field or attribute. You also specify how much of a boost the document receives when there is a match. Relevance tuning doesn't cause Amazon Kendra to include a document in the query response, it is only one of the factors that Amazon Kendra uses to determine the relevance of a document.

You can boost specific fields or attributes in your index to assign more importance to specific responses. For example when someone searches for “When is re:Invent?” you could boost the relevance of document freshness in the “_last_update_at” field. Or, in an index of research reports, you could boost a specific data source in the “source” field.

You can also boost documents based on votes or view counts which is common in forums and other support knowledge bases. You can combine boosts, for example to boost documents that are viewed more as well as more recent.

You set the amount of boost that a document receives by using the Importance parameter. The higher the Importance, the more the field or attribute boosts the relevance of a document. When you tune your index or tune at the query level, increase the value of the Importance parameter in small increments until you get the effect that you want. To determine if you are improving search results, perform the search and compare the results to previous queries.

You can specify date, number, or string attributes to tune an index or tune at the query level. You can tune fields or attributes that are of the type StringList only at the index level. Each field or attribute has specific criteria for when it boosts a result.

- **Date fields or attributes**—There are three specific criteria for date fields, Duration, Freshness and RankOrder.
  - Duration sets the time period that the boost applies to. For example, if you set the time period to 86400 seconds (i.e. one day), the boost begins to lessen after one day. The higher the importance, the faster the boost effect lessens.
  - Freshness determines how recent a document is when applied to a field or attribute. If you apply Freshness to either the field for date created or date last updated, then a more recently created or last updated document is considered “ fresher” than an older document. For example, if document 1 was created on November 14, and document 2 was created on November 5, document 1 is “fresher” than document 2. And if document 1 was last updated on November 14, and document 2 was last updated on November 20, document 2 is “fresher” than document 1. The fresher the document, the more this boost is applied. You can only have one Freshness field in your index.
  - RankOrder applies the boost in either ascending or descending order. If you specify ASCENDING, later dates have precedence . If you specify DESCENDING, earlier dates have precedence.
- **Number fields or attributes**—For number fields or attributes, you can specify the rank order that Amazon Kendra should use when determining the relevance of the field or attribute. If you specify ASCENDING, then higher numbers are given precedence. If you specify DESCENDING, then lower numbers have precedence.
- **String fields or attributes**—For string fields or attributes, you can create categories of a field to give each category a different boost. For example, if you boost a field or attribute called “Department”, you
can give a different boost to documents from "HR" than to documents from "Legal". You can boost a field or attribute of the type String. You can boost StringList fields only at the index level.

Relevance tuning at the index level

You tune the relevance of a field or attribute at the index level by using either the console to set tuning in the index details or the UpdateIndex API.

The following example sets the "_last_updated_at" field as the Freshness field for a document.

```
"DocumentMetadataConfigurationUpdates" : [

 {
 "Name": "_last_updated_at",
 "Type": "DATE_VALUE",
 "Relevance": {
 "Freshness": TRUE,
 "Importance": 2
 }
 }
]
```

The following example applies different importance to the different categories in the "department" field.

```
"DocumentMetadataConfigurationUpdates" : [

 {
 "Name": "department",
 "Type": "STRING_VALUE",
 "Relevance": {
 "Importance": 2,
 "ValueImportanceMap": {
 "HR": 3,
 "Legal": 1
 }
 }
 }
]
```

Relevance tuning at the query level

You tune the relevance of a field or attribute at the query level by using the Query API.

Relevance tuning at the query level is not supported in the console.

Tuning at the query level can speed up the process of testing relevance tuning because you don't need to manually update the tuning configurations in the index for each test. You can tune the relevance of a document by passing tuning configurations in the query. Then you can see the different results that you get from different configurations. A configuration that is passed in the query overrides the configuration that is set at the index level.

The following example overrides the importance applied to the "department" field and each department category set at the index level, shown in the above example. When a user inputs their search query, the "department" field has a fair level of importance and the Legal department has more importance than the HR department.

```
"DocumentRelevanceOverrideConfigurations" : [

]
```
{ "Name": "department",
  "Type": "STRING_VALUE",
  "Relevance": {
    "Importance": 2,
    "ValueImportanceMap": {
      "HR": 2,
      "Legal": 8
    }
  }
}
Gaining insights with search analytics

You can use Amazon Kendra search Analytics to gain insights on how your search application is successfully or unsuccessfully helping your users find information.

Amazon Kendra Analytics provide a snapshot of how your users interact with your search application and how effective your search application configuration is. You can view the metrics data using the GetSnapshots API or by selecting Analytics on the navigation panel in the console.

You can render the data generated by GetSnapshots on your own custom-built dashboard. Or you can use the metrics dashboard provided in the console, which includes visual graphs. With a visual dashboard, you can look for trends or patterns in user behavior over time or surface problems with your search application configuration. For example, a line graph that shows a consistent number of queries per day and a steady increase might indicate increased adoption and usage. On the other hand, an abrupt drop might indicate there's an issue that must be investigated.

You can use the metrics to make connections between different points of data to solve problems with how your users query for information or discover business opportunities. For example, the document ‘How does AI work?’ is the most clicked on document in the search results, and the top searched query is ‘How does machine learning work?’. This informs you on the preferred terms and language your users use. You can integrate these terms in your documents or use custom synonyms for these terms to make your documents more searchable for your users.

Metrics for search

There are 10 metrics for analyzing your search application’s performance or what information your users are searching for. To retrieve the metrics data, you specify the string name of the metric data you want to retrieve when you call GetSnapshots.

You also must provide a time interval or time window to view the metrics data. You can view data in the following time windows:

- THIS_WEEK: The current week, starting on the Sunday and ending on the day before the current date.
- ONE_WEEK_AGO: The previous week, starting on the Sunday and ending on the following Saturday.
- TWO_WEEKS_AGO: The week before the previous week, starting on the Sunday and ending on the following Saturday.
- THIS_MONTH: The current month, starting on the first day of the month and ending on the day before the current date.
- ONE_MONTH_AGO: The previous month, starting on the first day of the month and ending on the last day of the month.
- TWO_MONTHS_AGO: The month before the previous month, starting on the first day of the month and ending on last day of the month.

In the console, the supported time windows are This week, Previous week, This month, Previous month.
Click-through rate

The proportion of queries that lead to click-through to a document in the search results. This helps you understand if your search application configuration helps your users find information relevant to their queries. For queries that return instant answers, users might not need to click through to a document for more information. For more information, see the section called “Instant answer rate” (p. 526). You must call SubmitFeedback to ensure that click-through feedback is collected.

To retrieve data on click-through rate using the GetSnapshots API, specify the metricType as AGG_QUERY_DOC_METRICS. You can also view this metric in the console by selecting Analytics on the navigation panel.

Zero click rate

The proportion of queries that lead to zero clicks in the search results. This helps you understand gaps in your content providing irrelevant search results. For queries that return instant answers, users might not need to click through to a document for more information. For more information, see the section called “Instant answer rate” (p. 526). Also, your search settings, such as tuning configurations, could have an impact on how documents are returned in the search results.

To retrieve data on zero click rate using the GetSnapshots API, specify the metricType as AGG_QUERY_DOC_METRICS. You can also view this metric in the console by selecting Analytics on the navigation panel.

Zero search results rate

The proportion of queries that lead to zero search results. This helps you understand gaps in your content providing no relevant search results.

To retrieve data on zero search results rate using the GetSnapshots API, specify the metricType as AGG_QUERY_DOC_METRICS. You can also view this metric in the console by selecting Analytics on the navigation panel.

Instant answer rate

The proportion of queries with an instant answer or FAQ returned. This helps you understand the role of instant answers in providing information.

To retrieve data on instant answer rate using the GetSnapshots API, specify the metricType as AGG_QUERY_DOC_METRICS. You can also view this metric in the console by selecting Analytics on the navigation panel.

Top queries

The top 100 queries searched by your users. This helps you understand which queries are popular and the kind of information your users are most interested in.

Metrics include the number of times the query is searched, the proportion of click-throughs to a document, the proportion of no click-throughs to a document, the average click depth in the search results for the query, the proportion of instant answers for the query, and the average confidence for the first 10 search results for a query.

To retrieve data on top queries using the GetSnapshots API, specify the metricType as QUERIES_BY_COUNT. You can also view this metric in the console by selecting Analytics on the navigation panel in the console, then selecting Top queries under Query lists.
Top queries with zero clicks

The top 100 queries that lead to zero clicks in the search results. This helps you understand any gaps in your content, where there’s a lack of documents relevant to some queries or your search application configuration is returning irrelevant search results. For queries that return instant answers, users might not need to click through to a document for more information. For more information, see the section called “Instant answer rate” (p. 526).

Metrics include the number of times the query leads to zero clicks, the proportion of zero clicks for the query, the proportion of instant answers for the query, and the average confidence for the first 10 search results for a query.

To retrieve data on top queries with zero clicks using the GetSnapshots API, specify the metricType as QUERIES_BY_ZERO_CLICK_RATE. You can also view this metric in the console by selecting Analytics on the navigation panel in the console, then selecting Top zero click queries under Query lists.

Top queries with zero search results

The top 100 queries that lead to zero search results. This helps you understand any gaps in your content, where there are no documents relevant to some queries. Or, your users might query with specialized terms that possibly lead to no search results, prompting you to create custom synonyms to handle this.

Metrics include the number of times the query leads to zero search results, the proportion of zero search results for the query, and the proportion of times the query is searched compared to all queries.

To retrieve data on top queries with zero search results using the GetSnapshots API, specify the metricType as QUERIES_BY_ZERO_RESULT_RATE. You can also view this metric in the console by selecting Analytics on the navigation panel in the console, then selecting Top zero result queries under Query lists.

Top clicked on documents

The top 100 most clicked on documents in the search results. This helps you understand which documents or search results are most relevant to your users when they query for information.

Metrics include the number of times the document is clicked on, the number of likes a document receives from your users (thumbs up), the number of dislikes a document receives from your users (thumbs down).

To retrieve data on top clicked on documents using the GetSnapshots API, specify the metricType as DOCS_BY_CLICK_COUNT. You can also view this metric in the console by selecting Analytics on the navigation panel in the console, then selecting Top clicked documents under Query lists.

Total queries

The total number of queries searched by your users. This helps you understand how engaged your users are with your search application.

To retrieve data on total queries using the GetSnapshots API, specify the metricType as AGG_QUERY_DOC_METRICS. You can also view this metric in the console by selecting Analytics on the navigation panel.

Total documents

The total number of documents in your index. This helps you compare the size of your index to the total number of queries to check if there is an appropriate number of documents for the volume of queries.
To retrieve data on total documents using the GetSnapshots API, specify the metricType as AGG_QUERY_DOC_METRICS. You can also view this metric in the console by selecting Analytics on the navigation panel.

Example of retrieving metric data

The following code is an example of retrieving data on the top queries for the previous month.

Console

To retrieve top queries for the previous month

1. In the left navigation pane, under Indexes, select your index, and then select Analytics.
2. On the Analytics page, select the button This week, to change the time window for retrieving the data to Previous month.
3. On the Analytics page, under Query lists, select Top queries.

CLI

To retrieve top queries for the previous month

```bash
aws kendra get-snapshots \
--index-id index-id \
--interval "ONE_MONTH_AGO" \
--metric-type "QUERIES_BY_COUNT"
```

Python

To retrieve top queries for the previous month

```python
import boto3

kendra = boto3.client("kendra")

index_id = "index-id"
interval = "ONE_MONTH_AGO"
metric_type = "QUERIES_BY_COUNT"

snapshots_response = kendra.get_snapshots(
 IndexId = index_id,
 Interval = interval,
 MetricType = metric_type
)

print("Top queries data: " + snapshots_response["snapshotsData"])
```

Java

To retrieve top queries for the previous month

```java
package com.amazonaws.kendra;

import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.GetSnapshotsRequest;
import software.amazon.awssdk.services.kendra.model.GetSnapshotsResponse;

public class TopQueriesExample {
 public static void main(String[] args) {
 KendraClient kendra = KendraClient.builder().build();
```
String indexId = "indexID";
String interval = "ONE_MONTH_AGO";
String metricType = "QUERIES_BY_COUNT";

GetSnapshotsRequest getSnapshotsRequest = GetSnapshotsRequest.builder()
    .indexId(indexId)
    .interval(interval)
    .metricType(metricType)
    .build();

GetSnapshotsResponse getSnapshotsResponse = kendra.getSnapshots(getSnapshotsRequest);

System.out.println(String.format("Top queries data: ",
    getSnapshotsResponse.snapshotsData()));

From metrics to actionable insights

Actionable insights are meaningful pieces of information extracted from raw data and are used to guide your actions or decisions. To extract meaning from the metrics and use them to drive actionable insights, it is important to not only look at the metrics in isolation but also make connections among the metrics.

For example, the top query with zero clicks is 'Which regions are currently available?'. However, it also has a 100 percent instant answer rate. This suggests your users receive the answer to this question without needing to click on a search result or document that provides information on available regions. If you looked at zero clicks alone, you would not get the full story and possibly make the wrong conclusions about the success of your search application configuration in handling this query.

Another example of an actionable insight is discovering a business opportunity. Businesses often look for opportunities to grow their customers by analyzing search metrics. The most clicked on document is 'Available regions'. In addition to this, most of the top searched queries are related to questions on product availability in the Oceanic region, with 100 percent instant answer rates and a high click-through rate to more information on available regions as part of the answer. This suggests there's interest and demand for your product or service in this region.

Visualizing and reporting search analytics

There are five metrics that include trends data for you to visualize and look for trends or patterns over time. If you use the console, graphs of the trends data are provided. If you use the APIs, you can retrieve the trends data to create your own graphs or visualizations. Most graphs in the console plot the daily data points over your chosen time window.

The console provides a dashboard of the metrics where you can select a graph and top list you are interested in viewing. You can export the metrics shown on your dashboard in CSV format by selecting Export on the Analytics home page. You can include these reports in your business documents or presentations.

You can visualize the following metrics:

**Total queries graph**

A line graph of the number of queries issued per day. The graph helps you visualize patterns in daily user engagement. Some examples include a steady increase or decrease in user engagement, or a drastic drop to 0 queries due to a crash of your search application or issues with your website.
If you use the API, you can retrieve these data by specifying TREND_QUERY_DOC_METRICS. You can use the data to create your own graphs, or use the graphs provided in the console.

**Click-through rate graph**

A line graph of the proportions of click-throughs per day. The graph helps you visualize patterns in daily click-through rate. Some examples include a steady increase or decrease in click-through rate, or a decrease in instant answers possibly influencing an increase in click-through.

If you use the API, you can retrieve these data by specifying TREND_QUERY_DOC_METRICS. You can use the data to create your own graphs, or use the graphs provided in the console.

**Zero click rate graph**

A line graph of the proportion of zero clicks per day. The graph helps you visualize patterns in daily zero click rate. Some examples include a steady increase or decrease in zero click rate, or an increase in instant answers possibly influencing an increase in zero clicks.

If you use the API, you can retrieve these data by specifying TREND_QUERY_DOC_METRICS. You can use the data to create your own graphs, or use the graphs provided in the console.

**Zero search results rate graph**

A line graph of the proportion of zero search results per day. The graph helps you visualize patterns in daily zero search results rate. Some examples include a steady increase or decrease in zero search results rate, or a sharp decrease in the number of documents in your index possibly influencing an increase in zero search results.

If you use the API, you can retrieve these data by specifying TREND_QUERY_DOC_METRICS. You can use the data to create your own graphs, or use the graphs provided in the console.

**Instant answer rate graph**

A line graph of the proportion of queries with an instant answer or FAQ returned. The graph helps you visualize patterns in daily instant answer rate. Some examples include steady increase or decrease in question-answer type queries, or a decrease in click-throughs possibly influencing an increase in instant answers.

If you use the API, you can retrieve these data by specifying TREND_QUERY_DOC_METRICS. You can use the data to create your own graphs, or use the graphs provided in the console.
Submitting feedback for incremental learning

Amazon Kendra uses incremental learning to improve search results. Using feedback from queries, incremental learning improves the ranking algorithms and optimizes search results for greater accuracy.

For example, suppose that your users search for the phrase "health care benefits." If users consistently choose the second result from the list, over time Amazon Kendra boosts that result to the first place result. The boost decreases over time, so if users stop selecting a result, Amazon Kendra eventually removes it and shows another more popular result instead. This helps Amazon Kendra prioritize results based on relevance, age, and content.

Incremental learning is activated for all indexes and for all supported document types. Amazon Kendra starts learning as soon as you provide feedback, though it can take over 24 hours to see the results of the feedback. Amazon Kendra provides three methods for you to submit feedback: the AWS console, a JavaScript library that you can include on your search results page, and an API that you can use.

Amazon Kendra accepts two types of user feedback:

- **Clicks**—Information about which query results the user chose. The feedback includes the result ID and the Unix timestamp of the date and time that the search result was chosen.

  To submit click feedback, your application must collect click information from the activities of your users, and then submit that information to Amazon Kendra. You can collect click information with the console, the JavaScript library, and the Amazon Kendra API.

- **Relevance**—Information about the relevance of a search result, which the user typically provides. The feedback contains the result ID and a relevance indicator (RELEVANT or NOT_RELEVANT). The user determines the relevance information.

  To submit relevance feedback, your application must provide a feedback mechanism that allows the user to choose the appropriate relevance for a query result, and then submit that information to Amazon Kendra. You can only collect relevance information with the console and the Amazon Kendra API.

Feedback is used while the index is active. Feedback only affects the index that it is submitted to, it can't be used across indexes or for different accounts.

You should provide additional user context when you query your Amazon Kendra index. When you provide user context, Amazon Kendra is able to tell if the feedback is provided by a single user or by multiple users and adjust search results accordingly.

When you provide user context, the feedback for the query is associated with the specific user provided in the context. If you don't specify user context, you can provide a visitor ID that is used to group and aggregate queries.

If you don't provide user context or a visitor ID, the feedback is anonymous and aggregated with other anonymous feedback.
The following code shows how to include user context as a token or the visitor ID.

```javascript
response = kendra.query(
 QueryText = query,
 IndexId = index,
 UserToken = {
 Token = "token"
 })

OR

response = kendra.query(
 QueryText = query,
 IndexId = index,
 VisitorId = "visitor-id"
)
```

For web applications, you can use cookies, locations, or browser users to generate a visitor ID for each user.

For head queries, the largest volume of queries, providing click-through feedback provides enough information to improve overall accuracy. For tail queries, those that are rare, subject matter experts should submit relevant and non-relevant feedback to improve accuracy for those queries.

In addition to the console, you can use one of two methods: a JavaScript library or the SubmitFeedback API. You should only use one method of gathering feedback. For best results, you should submit feedback within 24 hours of making the query.

**Topics**
- Using the Amazon Kendra JavaScript library to submit feedback (p. 532)
- Using the Amazon Kendra API to submit feedback (p. 535)

## Using the Amazon Kendra JavaScript library to submit feedback

Amazon Kendra provides a JavaScript library that you can use to add click feedback to your search results page. To use the library, you insert a script tag in your client code that displays the search result, then add information to each of the document links in your result list. When a user chooses a link to view a document, click information is sent to Amazon Kendra.

The library works with browsers that support JavaScript version ES6/ES2015.

**Step 1: Insert a script tag into your Amazon Kendra search application**

In your client code that renders the Amazon Kendra search results, insert a `<script>` tag and add a reference to the JavaScript library:

```html
<script>
(function(w, d, s, c, g, n) {
if(!w[n]) {
 w[n] = w[n] || function () {
 (w[n].q = w[n].q || []).push(arguments);
 }
 w[n].st = new Date().getTime();
}(w, d, s, c, g, n))
</script>
```
Step 1: Insert a script tag into your Amazon Kendra search application

```javascript
w[n].ep = g;
var e = document.createElement(s),
 j = document.getElementsByTagName(s)[0];
e.async = 1;
e.src = c;
e.type = 'module';
j.parentNode.insertBefore(e, j);
})((window, document, 'script',
'library download URL',
'feedback endpoint',
'kendraFeedback');
</script>
```

The script asynchronously downloads the JavaScript library from an Amazon Kendra hosted CDN and initializes a global variable called `kendraFeedback` that allows you to set optional parameters.

Replace **library download URL** and **feedback endpoint** with an identifier from the following table based on the region that hosts your Amazon Kendra index.

<table>
<thead>
<tr>
<th>Region</th>
<th>Download URL</th>
<th>Feedback endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>us-east-1</td>
<td><a href="https://d2zm0lpsns956f8.cloudfront.net/ksf-v1.js">https://d2zm0lpsns956f8.cloudfront.net/ksf-v1.js</a></td>
<td><a href="https://ujxwp5s92h.execute-api.us-east-1.amazonaws.com/prod/submit">https://ujxwp5s92h.execute-api.us-east-1.amazonaws.com/prod/submit</a></td>
</tr>
<tr>
<td>us-east-2</td>
<td><a href="https://d2crv7fufeg244.cloudfront.net/ksf-v1.js">https://d2crv7fufeg244.cloudfront.net/ksf-v1.js</a></td>
<td><a href="https://i6h76zwzf3.execute-api.us-east-2.amazonaws.com/prod/submit">https://i6h76zwzf3.execute-api.us-east-2.amazonaws.com/prod/submit</a></td>
</tr>
<tr>
<td>eu-west-1</td>
<td><a href="https://d3gptxtulu4us.cloudfront.net/ksf-v1.js">https://d3gptxtulu4us.cloudfront.net/ksf-v1.js</a></td>
<td><a href="https://po2b11740b.execute-api.eu-west-1.amazonaws.com/prod/submit">https://po2b11740b.execute-api.eu-west-1.amazonaws.com/prod/submit</a></td>
</tr>
<tr>
<td>ap-southeast-1</td>
<td><a href="https://d1vvuam7g4taoe.cloudfront.net/ksf-v1">https://d1vvuam7g4taoe.cloudfront.net/ksf-v1</a></td>
<td><a href="https://9je5uw7t5l.execute-api.ap-southeast-1.amazonaws.com/prod/submit">https://9je5uw7t5l.execute-api.ap-southeast-1.amazonaws.com/prod/submit</a></td>
</tr>
<tr>
<td>ap-southeast-2</td>
<td><a href="https://dopqntoe6z0ce.cloudfront.net/ksf-v1">https://dopqntoe6z0ce.cloudfront.net/ksf-v1</a></td>
<td><a href="https://oovf4nvij7.execute-api.ap-southeast-2.amazonaws.com/prod/submit">https://oovf4nvij7.execute-api.ap-southeast-2.amazonaws.com/prod/submit</a></td>
</tr>
<tr>
<td>ap-south-1</td>
<td><a href="https://d1ts9ouelsmk3g.cloudfront.net/ksf-v1">https://d1ts9ouelsmk3g.cloudfront.net/ksf-v1</a></td>
<td><a href="https://k1abnmd43b.execute-api.ap-south-1.amazonaws.com/prod/submit">https://k1abnmd43b.execute-api.ap-south-1.amazonaws.com/prod/submit</a></td>
</tr>
<tr>
<td>ap-northeast-1</td>
<td><a href="https://d3w0ybsa293kb4.cloudfront.net/ksf-v1.js">https://d3w0ybsa293kb4.cloudfront.net/ksf-v1.js</a></td>
<td><a href="https://wg7rz0uzjh.execute-api.ap-northeast-1.amazonaws.com/prod/submit">https://wg7rz0uzjh.execute-api.ap-northeast-1.amazonaws.com/prod/submit</a></td>
</tr>
</tbody>
</table>
Step 2: Add the feedback token to search results

On your result page, add an HTML attribute called `data-kendra-token` to the anchor tag or immediate parent div tag that contains a link to the document from the query response. For example:

```html


OR
<div data-url="document location" data-kendra-token="feedback token value"></div>
```

A query response contains a token in the `feedbackToken` field. The token uniquely identifies the response if the user chooses it. Assign the value of the token to the `data-kendra-token` attribute. The Amazon Kendra JavaScript library looks for this token when the user chooses the result and submits it to an Amazon Kendra endpoint as feedback.

The Amazon Kendra JavaScript library only submits the feedback token and other metadata such as the time the result was chosen and a unique visitor ID.

Step 3: Test the feedback script

To make sure that the JavaScript library is configured correctly and sending feedback to the right endpoint, do the following. This example uses the Chrome browser.

1. Open the Web developer tools in the browser. On Chrome, open the Chrome menu in the upper right corner of the browser, choose More tools and then choose Developer tools.
2. Make sure that there are no errors related to the Amazon Kendra JavaScript library in the console tab.
3. Make a search and choose any result. In the Network tab of the developer tools. You should see a request sent to the feedback endpoint, the token for the result, and a 200 OK status.
Using the Amazon Kendra API to submit feedback

To use the Amazon Kendra API to submit query feedback, use the SubmitFeedback API. To identify the query, you supply the IndexID of the index that the query applies to, and the QueryId returned in the response from the Query API.

The following example shows how to submit click and relevance feedback using the Amazon Kendra API. You can submit multiple sets of feedback through the ClickFeedbackItems and RelevanceFeedbackItems arrays. This example submits a single click and a single relevance feedback item. The feedback submittal uses the current time.

To submit feedback for a search (AWS SDK)

1. Use the following code and change the following values:
   a. index id—Change to the ID of the index that the query applies to.
   b. query id—Change to the query that you want to provide feedback on.
   c. result id—Change to the ID of the query result that you want to provide feedback on. The query response contains the result ID.
   d. relevance value—Change to either RELEVANT (the query result is relevant) or NOT_RELEVANT (the query result is not relevant).

Python

```python
import boto3
import time
kendra = boto3.client("kendra")

Provide the index ID
index_id = "index-id"
Provide the query ID
query_id = "query-id"
Provide the search result ID
result_id = "result-id"

Configure the feedback item
feedback_item = {"ClickTime": int(time.time()),
 "ResultId": result_id}

Configure the relevance value
relevance_value = "RELEVANT"
relevance_item = {
 "RelevanceValue": relevance_value,
 "ResultId": result_id
 }

response = kendra.submit_feedback(
 QueryId = query_id,
 IndexId = index_id,
 ClickFeedbackItems = [feedback_item],
 RelevanceFeedbackItems = [relevance_item]
)

print("Submitted feedback for query: " + query_id)
```
Java

```java
package com.amazonaws.kendra;

import java.time.Instant;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.ClickFeedback;
import software.amazon.awssdk.services.kendra.model.RelevanceFeedback;
import software.amazon.awssdk.services.kendra.model.RelevanceType;
import software.amazon.awssdk.services.kendra.model.SubmitFeedbackRequest;
import software.amazon.awssdk.services.kendra.model.SubmitFeedbackResponse;

public class SubmitFeedbackExample {
 public static void main(String[] args) {
 KendraClient kendra = KendraClient.builder().build();

 SubmitFeedbackRequest submitFeedbackRequest = SubmitFeedbackRequest.builder() .indexId("anIndexId") .queryId("aQueryId") .clickFeedbackItems(ClickFeedback.builder() .clickTime(Instant.now()) .resultId("aResultId") .build()) .relevanceFeedbackItems(RelevanceFeedback.builder() .relevanceValue(RelevanceType.RELEVANT) .resultId("aResultId") .build()) .build();

 SubmitFeedbackResponse response = kendra.submitFeedback(submitFeedbackRequest);

 System.out.println("Feedback is submitted");
 }
}
```

2. Run the code. After the feedback has been submitted, the code displays a message.
Adding custom synonyms to an index

To add custom synonyms to an index, you specify them in a thesaurus file. You can include business-specific or specialized terms in Amazon Kendra using synonyms. Generic English synonyms, such as leader, head, are built into Amazon Kendra and should not be included in a thesaurus file. Amazon Kendra supports synonyms for all response types, which include DOCUMENT response types and QUESTION_ANSWER or ANSWER response types. Amazon Kendra currently does not support adding synonyms flagged as stopwords. This is to be included in a future release.

Amazon Kendra makes correlations between synonyms. For example, using the synonym pair Dynamo, Amazon DynamoDB, Amazon Kendra correlates Dynamo with Amazon DynamoDB. The query "What is dynamo?" then returns a document such as "What is Amazon DynamoDB?". With synonyms, Amazon Kendra can more easily pick up the correlation.

The thesaurus file is a text file stored in an Amazon S3 bucket. See Adding a thesaurus to an index (p. 540).

The thesaurus file uses the Solr synonym format. Amazon Kendra has a limit on the number of thesauri per index. See Quotas.

Synonyms can be useful in the following scenarios:

- Specialized terms that are not traditional English language synonyms such as NLP, Natural Language Processing.
- Proper nouns with complex semantic associations. These are nouns that the general public are unlikely to understand, for example, in machine learning, cost, loss, model performance.
- Different forms of product names, for example, Elastic Compute Cloud, EC2.
- Domain-specific or business-specific terms, such as product names. For example, Route53, DNS.

Do not use synonyms in the following scenarios:

- Generic English language synonyms such as leader, head. These synonyms are not domain-specific, and using synonyms in these scenarios might have unintended effects.
- Typographical errors such as teh => the.
- Morphological variants like the plurals and possessives of nouns, the comparative and superlative form of adjectives, and the past tense, past participle and progressive form of verbs. One example of comparative and superlative adjectives is good, better, best.
- Unigram (single word) stop words such as WHO. Unigram stop words are not allowed in the thesaurus and are excluded from search. For example, WHO => World Health Organization is rejected. You can use W.H.O. however as a synonym term, and you can use stop words as part of a multi-word synonym. For example, of is not allowed but United States of America is accepted.

Custom synonyms make it easy to improve Amazon Kendra's understanding of your business-specific terminology by expanding your queries to cover your business-specific synonyms. Although synonyms can improve search accuracy, it is important to understand how synonyms affect latency so you can optimize for this.
A general rule for synonyms is: the more terms in your query that are matched and expanded with synonyms, the greater potential impact on latency. Other factors that affect latency include the average size of documents indexed, the size of your index, any filtering on search results, and the overall load on your Amazon Kendra index. Queries that don’t match any synonyms are not affected.

A general guideline for how synonyms affect latency:

<table>
<thead>
<tr>
<th>Use case</th>
<th>Increase in latency*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical natural language or keyword queries of 3 to 5 words each</td>
<td>Less than 15 percent</td>
</tr>
<tr>
<td>1 query term expands to 3 synonyms</td>
<td></td>
</tr>
<tr>
<td>Index of about 500,000 documents (averaging 10.48 KB of extracted text per document) or 30,000 FAQ / question pairs</td>
<td></td>
</tr>
</tbody>
</table>

*Performance varies based on your specific use of synonyms and configurations on your index. It's best to test search performance to obtain more accurate benchmarks for your specific use case.

If your thesaurus is large, has a high term expansion ratio, and your latency increase is not within acceptable boundaries, you can try one or both of the following:

- Trim your thesaurus to reduce the expansion ratio (number of synonyms per term).
- Trim the overall coverage of terms (number of lines in your thesaurus).

Alternatively, you can increase the provisioning capacity (virtual storage units) to offset the latency increase.

**Topics**
- Creating a thesaurus file (p. 538)
- Adding a thesaurus to an index (p. 540)
- Updating a thesaurus (p. 542)
- Deleting a thesaurus (p. 545)
- Highlights in search results (p. 546)

## Creating a thesaurus file

An Amazon Kendra thesaurus file is a UTF-8-encoded file containing a list of synonyms in the Solr synonym list format. The thesaurus file must be less than 5 MB.

There are two ways to specify synonym mappings:

- **Bidirectional synonyms** are specified as a comma-separated list of terms. If your user queries any of the terms, then all the terms in the list are used to search documents, which includes the original queried term.
- **Unidirectional synonyms** are specified as terms separated by the symbol "=>" between them to map terms to their synonyms. If your user queries a term on the left of the symbol "=>", then it is mapped to a term on the right to search for documents using the synonym. It is not mapped vice versa, making this unidirectional.
The synonyms themselves are case sensitive, but the terms they map to are case insensitive. For example, ML => Machine Learning means if your user queries "ML" or "ml" or uses some other case, it will map to "Machine Learning". If you were to map this vice versa, Machine Learning => ML, then "Machine Learning" or "machine learning" or some other case would map to "ML".

The following example shows a thesaurus file with synonyms for the sample AWS documentation for Amazon Kendra. Each line contains a single synonym rule. A synonym does not do an exact match on special characters. For example, if you search for dead-letter-queue, Kendra matches documents with the phrase dead letter queue. Blank lines and comments are ignored.

```
Lines starting with pound are comments and blank lines are ignored.
Synonym relationships can be defined as unidirectional or bidirectional relationships.
Unidirectional relationships are represented by any term sequence
on the left hand side (LHS) of "=>" followed by synonyms on the right hand side (RHS)
CodeStar => AWS CodeStar
This will map CodeStar to AWS CodeStar, but not vice-versa

To map terms vice versa
ML => Machine Learning
Machine Learning => ML

Multiple synonym relationships may be defined in one line as well by comma separation.
autoscaling group, ASG => Auto Scaling group, autoscaling
The above is equivalent to:
autoscaling group => Auto Scaling group, autoscaling
ASG => Auto Scaling group, autoscaling

Bi-directional synonyms are comma separated terms with no "=>"
DNS, Route53, Route 53
DNS, Route53, and Route 53 map to one another and are interchangeable at match time
The above is equivalent to:
DNS => Route53, Route 53
Route53 => DNS, Route 53
Route 53 => DNS, Route53

Overlapping LHS terms will be merged
beta => Alpha
beta => Gamma
beta, Delta
is equivalent to:
beta => Alpha, Gamma, Delta
Delta => Beta

Synonym rule count is the total number of lines defining synonym relationships
Term count is the total number of unique terms for all rules.
This thesaurus has a synonym rule count of 6 and a term count of 18.
Comments and blanks lines do not count.
```

This example has 6 rules and 18 terms. Each line contains a single synonym rule. A synonym does not do an exact match on special characters. For example, if you search for dead-letter-queue, Kendra will match documents matching dead letter queue. Blank lines and comments are ignored. Some rules are ignored. For example, a => b is a rule, but a => a is ignored and does not count as a rule. A synonym does not do an exact match on special characters. For example, if you search for dead-letter-queue, Amazon Kendra will match document containing dead letter queue (no hyphen). You can have a maximum of 10,000 synonym rules per thesaurus.

The term count is the number of unique terms in the thesaurus file. This example has the following terms: AWS CodeStar, autoscaling group, asg, Auto Scaling group, autoscaling, DNS, Route53, Route 53, dns, route53, route 53, beta, Alpha, Gamma, Delta, and delta. You can have up to 10 synonyms per term.
Adding a thesaurus to an index

The following procedures show how to add a thesaurus file containing synonyms to an index. It can take up to 30 minutes to see the effects of your updated thesaurus file. For more information about the thesaurus file, see Creating a thesaurus file (p. 538).

Console

To add a thesaurus

1. In the left navigation pane, under the index where you want to add a list of synonyms, your thesaurus, choose Synonyms.
2. On the Synonym page, choose Add Thesaurus.
3. In Define thesaurus, give your thesaurus a name and an optional description.
4. In Thesaurus settings, provide the Amazon S3 path to your thesaurus file. The file must be smaller than 5 MB.
5. For IAM Role, select a role or select Create a new role and specify a role name to create a new role. Amazon Kendra uses this role to access the Amazon S3 resource on your behalf. The IAM role has the prefix "AmazonKendra-".
6. Choose Save to save the configuration and add the thesaurus. Once the thesaurus is ingested, it is active and synonyms are highlighted in results. It can take up to 30 minutes to see the effects of your thesaurus file.

CLI

To add a thesaurus to an index with the AWS CLI, call create-thesaurus:

```python
aws kendra create-thesaurus \
 --index-id index-id \
 --name "thesaurus-name" \
 --description "thesaurus-description" \
 --source-s3-path "Bucket=bucket-name,Key=thesaurus/synonyms.txt" \
 --role-arn role-arn
```

Call list-thesauri to see a list of thesauruses:

```python
aws kendra list-thesauri \
 --index-id index-id
```

To view details for a thesaurus, call describe-thesaurus:

```python
aws kendra describe-thesaurus \
 --index-id index-id \
 --index-id thesaurus-id
```

It can take up to 30 minutes to see the effects of your thesaurus file.

Python

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time
```
kendra = boto3.client("kendra")
print("Create a thesaurus")

thesaurus_name = "thesaurus-name"
thesaurus_description = "thesaurus-description"
thesaurus_role_arn = "role-arn"

index_id = "index-id"
s3_bucket_name = "bucket-name"
s3_key = "thesaurus-file"
source_s3_path= {
    'Bucket': s3_bucket_name,
    'Key': s3_key
}

try:
    thesaurus_response = kendra.create_thesaurus(
        Description = thesaurus_description,
        Name = thesaurus_name,
        RoleArn = thesaurus_role_arn,
        IndexId = index_id,
        SourceS3Path = source_s3_path
    )
    pprint.pprint(thesaurus_response)
    thesaurus_id = thesaurus_response["Id"]
    print("Wait for Kendra to create the thesaurus.")
    while True:
        # Get thesaurus description
        thesaurus_description = kendra.describe_thesaurus(
            Id = thesaurus_id,
            IndexId = index_id
        )
        # If status is not CREATING quit
        status = thesaurus_description["Status"]
        print("Creating thesaurus. Status: " + status)
        if status != "CREATING":
            break
        time.sleep(60)
except ClientError as e:
    print("%s" % e)
    print("Program ends.")

Java

package com.amazonaws.kendra;

import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.CreateThesaurusRequest;
import software.amazon.awssdk.services.kendra.model.CreateThesaurusResponse;
import software.amazon.awssdk.services.kendra.model.DescribeThesaurusRequest;
import software.amazon.awssdk.services.kendra.model.DescribeThesaurusResponse;
import software.amazon.awssdk.services.kendra.model.S3Path;
import software.amazon.awssdk.services.kendra.model.ThesaurusStatus;

public class CreateThesaurusExample {
public static void main(String[] args) throws InterruptedException {
    KendraClient kendra = KendraClient.builder().build();
    String thesaurusName = "thesaurus-name";
    String thesaurusDescription = "thesaurus-description";
    String thesaurusRoleArn = "role-arn";
    String s3BucketName = "bucket-name";
    String s3Key = "thesaurus-file";
    String indexId = "index-id";
    System.out.println(String.format("Creating a thesaurus named %s", thesaurusName));
    CreateThesaurusRequest createThesaurusRequest = CreateThesaurusRequest.builder()
        .name(thesaurusName)
        .indexId(indexId)
        .description(thesaurusDescription)
        .roleArn(thesaurusRoleArn)
        .sourceS3Path(S3Path.builder()
            .bucket(s3BucketName)
            .key(s3Key)
            .build())
        .build();
    CreateThesaurusResponse createThesaurusResponse = kendra.createThesaurus(createThesaurusRequest);
    System.out.println(String.format("Thesaurus response %s", createThesaurusResponse));
    String thesaurusId = createThesaurusResponse.id();
    System.out.println(String.format("Waiting until the thesaurus with ID %s is created.", thesaurusId));
    while (true) {
        DescribeThesaurusRequest describeThesaurusRequest =
            DescribeThesaurusRequest.builder()
                .id(thesaurusId)
                .indexId(indexId)
                .build();
        DescribeThesaurusResponse describeThesaurusResponse =
            kendra.describeThesaurus(describeThesaurusRequest);
        ThesaurusStatus status = describeThesaurusResponse.status();
        if (status != ThesaurusStatus.CREATING) {
            break;
        }
        TimeUnit.SECONDS.sleep(60);
    }
    System.out.println("Thesaurus creation is complete.");
}

Updating a thesaurus

You can change the configuration of a thesaurus after it is created. You can change details like thesaurus
name and IAM information. You can also change the location of the thesaurus file Amazon S3 path.
If you change the path to the thesaurus file, Amazon Kendra replaces the existing thesaurus with the
thesaurus specified in the updated path.

It can take up to 30 minutes to see the effects of your updated thesaurus file.
Note
If there are validation or syntax errors in the thesaurus file, the previously uploaded thesaurus file is retained.

The following procedures show how to modify thesaurus details.

Console

To modify thesaurus details

1. In the left navigation pane, under the index you want to modify, choose Synonyms.
2. On the Synonym page, select the thesaurus you want to modify and then choose Edit.
3. On the Update thesaurus page, update the thesaurus details.
4. (Optional) Choose Change the thesaurus file path and then specify an Amazon S3 path to the new thesaurus file. Your existing thesaurus file is replaced by the file you specify. If you do not change the path, Amazon Kendra reloads the thesaurus from the existing path.

   If you select Keep the current thesaurus file, Amazon Kendra does not reload the thesaurus file.
5. Choose Save to save the configuration.

You can also reload the thesaurus from the existing thesaurus path.

To reload a thesaurus from an existing path

1. In the left navigation pane, under the index you want to modify, choose Synonyms.
2. On the Synonym page, select the thesaurus you want to reload and then choose Reload.
3. On the Reload thesaurus file page, confirm you want to reload the thesaurus file.

CLI

To update a thesaurus, call update-thesaurus:

```
aws kendra update-thesaurus \
--index-id index-id \
--name "thesaurus-name" \
--description "thesaurus-description" \
--source-s3-path "Bucket=Bucket-name,Key=thesaurus/synonyms.txt" \
--role-arn role-arn
```

Python

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra = boto3.client("kendra")

print("Update a thesaurus")

thesaurus_name = "thesaurus-name"
thesaurus_description = "thesaurus-description"
thesaurus_role_arn = "role-arn"

thesaurus_id = "thesaurus-id"
index_id = "index-id"

s3_bucket_name = "bucket-name"
```
s3_key = "thesaurus-file"
s3_key = "thesaurus-file"
source_s3_path= {  
  'Bucket': s3_bucket_name,  
  'Key': s3_key
}

try:
kendra.update_thesaurus(  
  Id = thesaurus_id,  
  IndexId = index_id,  
  Description = thesaurus_description,  
  Name = thesaurus_name,  
  RoleArn = thesaurus_role_arn,  
  SourceS3Path = source_s3_path
)

print("Wait for Kendra to update the thesaurus.")

while True:
    # Get thesaurus description
    thesaurus_description = kendra.describe_thesaurus(  
        Id = thesaurus_id,  
        IndexId = index_id
    )
    # If status is not UPDATING quit
    status = thesaurus_description["Status"]
    print("Updating thesaurus. Status: " + status)
    if status != "UPDATING":
        break
    time.sleep(60)

except ClientError as e:
    print("%s" % e)

print("Program ends.")

Java

package com.amazonaws.kendra;
import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.UpdateThesaurusRequest;
import software.amazon.awssdk.services.kendra.model.DescribeThesaurusRequest;
import software.amazon.awssdk.services.kendra.model.DescribeThesaurusResponse;
import software.amazon.awssdk.services.kendra.model.S3Path;
import software.amazon.awssdk.services.kendra.model.ThesaurusStatus;

public class UpdateThesaurusExample {
    public static void main(String[] args) throws InterruptedException {
        KendraClient kendra = KendraClient.builder().build();

        String thesaurusName = "thesaurus-name";
        String thesaurusDescription = "thesaurus-description";
        String thesaurusRoleArn = "role-arn";

        String s3BucketName = "bucket-name";
        String s3Key = "thesaurus-file";

        String thesaurusId = "thesaurus-id";
        String indexId = "index-id";

        UpdateThesaurusRequest updateThesaurusRequest = UpdateThesaurusRequest.
            builder()
Deleting a thesaurus

The following procedures show how to delete a thesaurus.

Console
1. In the left navigation pane, under the index you want to modify, choose Synonyms.
2. On the Synonym page, select the thesaurus you want to delete.
3. On the Thesaurus detail page, choose Delete and then confirm to delete.

CLI
To delete a thesaurus to an index with the AWS CLI, call delete-thesaurus:

```bash
aws kendra delete-thesaurus \
--index-id index-id \
--id thesaurus-id
```

Python

```python
import boto3
```
from botocore.exceptions import ClientError
kendra = boto3.client("kendra")

print("Delete a thesaurus")

thesaurus_id = "thesaurus-id"
index_id = "index-id"

try:
    kendra.delete_thesaurus(
        Id = thesaurus_id,
        IndexId = index_id
    )
except ClientError as e:
    print("%s" % e)

print("Program ends.")

Java

package com.amazonaws.kendra;

import software.amazon.awssdk.services.kendra.KendraClient;
import software.amazon.awssdk.services.kendra.model.DeleteThesaurusRequest;

public class DeleteThesaurusExample {
    public static void main(String[] args) throws InterruptedException {
        KendraClient kendra = KendraClient.builder().build();

        String thesaurusId = "thesaurus-id";
        String indexId = "index-id";

        DeleteThesaurusRequest updateThesaurusRequest = DeleteThesaurusRequest
            .builder()
            .id(thesaurusId)
            .indexId(indexId)
            .build();

        kendra.deleteThesaurus(updateThesaurusRequest);
    }
}

Highlights in search results

Synonym highlighting is on by default. Highlight information is included in Amazon Kendra SDK and CLI query results. If you interact with Amazon Kendra using the SDK or CLI, you determine how to display results.

Synonym highlights will have the highlight type THESAURUS_SYNONYM. For more information about highlights, see the Highlight object.
Tutorial: Building a metadata-enriched, intelligent search solution with Amazon Kendra

This tutorial shows you how to build a metadata-enriched, natural language based, intelligent search solution for your enterprise data using Amazon Kendra, Amazon Comprehend, Amazon Simple Storage Service (S3), and AWS CloudShell.

Amazon Kendra is an intelligent search service that can build a search index for your unstructured, natural language data repositories. To make it easier for your customers to find and filter relevant answers, you can use Amazon Comprehend to extract metadata from your data and ingest it into your Amazon Kendra search index.

Amazon Comprehend is a natural language processing (NLP) service that can identify entities. Entities are references to people, places, locations, organizations, and objects in your data.

This tutorial uses a sample dataset of news articles to extract entities, convert them to metadata, and ingest them into your Amazon Kendra index to run searches on. The added metadata lets you filter your search results using any subset of these entities, and improves search accuracy. By following this tutorial, you will learn how to create a search solution for your enterprise data without any specialized machine learning knowledge.

This tutorial shows you how to build your search solution using the following steps:

1. Storing a sample dataset of news articles in Amazon S3.
2. Using Amazon Comprehend to extract entities from your data.
3. Running a Python 3 script to convert the entities into Amazon Kendra index metadata format and storing this metadata in S3.
4. Creating an Amazon Kendra search index and ingesting the data and the metadata.
5. Querying the search index.

The following diagram shows the workflow:
Estimated time to complete this tutorial: 1 hour

Estimated cost: Some of the actions in this tutorial incur charges on your AWS account. For more information on the cost of each service, see the price pages for Amazon S3, Amazon Comprehend, AWS CloudShell, and Amazon Kendra.

Topics
- Prerequisites (p. 548)
- Step 1: Adding documents to Amazon S3 (p. 548)
- Step 2: Running an entities analysis job on Amazon Comprehend (p. 555)
- Step 3: Formatting the entities analysis output as Amazon Kendra metadata (p. 562)
- Step 4: Creating an Amazon Kendra index and ingesting the metadata (p. 570)
- Step 5: Querying the Amazon Kendra index (p. 587)
- Step 6: Cleaning up (p. 594)

Prerequisites

To complete this tutorial, you need the following resources:

- An AWS account. If you do not have an AWS account, follow the steps in Setting up Amazon Kendra to set up your AWS account.
- A development computer running Windows, macOS, or Linux, to access the AWS Management Console. For more information, see Configuring the AWS Management Console.
- An AWS Identity and Access Management (IAM) user. To learn how to set up an IAM user and group for your account, see the Getting Started section in the IAM User Guide.

If you are using the AWS Command Line Interface, you also need to attach the following policy to your IAM user to grant it the basic permissions required to complete this tutorial.

For more information, see Creating IAM policies and Adding and removing IAM identity permissions.
- The AWS Regional Services List. To reduce latency, you should choose the AWS region closest to your geographic location that is supported by both Amazon Comprehend and Amazon Kendra.
- (Optional) An AWS Key Management Service. While this tutorial does not use encryption, you might want to use encryption best practices for your specific use case.
- (Optional) An Amazon Virtual Private Cloud. While this tutorial does not use a VPC, you might want to use VPC best practices to ensure data security for your specific use case.

Step 1: Adding documents to Amazon S3

Before you run an Amazon Comprehend entities analysis job on your dataset, you create an Amazon S3 bucket to host the data, metadata, and the Amazon Comprehend entities analysis output.

Topics
- Downloading the sample dataset (p. 549)
- Creating an Amazon S3 bucket (p. 550)
- Creating data and metadata folders in your S3 bucket (p. 552)
- Uploading the input data (p. 554)
Downloading the sample dataset

Before Amazon Comprehend can run an entities analysis job on your data, you must download and extract the dataset and upload it to an S3 bucket.

To download and extract the dataset (Console)

1. Download the tutorial-dataset.zip folder on your device.
2. Extract the tutorial-dataset folder to access the data folder.

To download and extract the dataset (Terminal)

1. To download the tutorial-dataset, run the following command on a terminal window:

   ```
 curl -o path/tutorial-dataset.zip https://docs.aws.amazon.com/kendra/latest/dg/samples/tutorial-dataset.zip
   ```

   Where:
   - **path/** is the local filepath to the location you want to save the zip folder in.

   **Linux**

   ```
 unzip path/tutorial-dataset.zip -d path/
   ```

   Where:
   - **path/** is the local filepath to your saved zip folder.

2. To extract the data from the zip folder, run the following command on the terminal window:

   ```
 curl -o path/tutorial-dataset.zip https://docs.aws.amazon.com/kendra/latest/dg/samples/tutorial-dataset.zip
   ```

   Where:
   - **path/** is the local filepath to the location you want to save the zip folder in.

   **macOS**

   ```
 curl -o path/tutorial-dataset.zip https://docs.aws.amazon.com/kendra/latest/dg/samples/tutorial-dataset.zip
   ```

   Where:
   - **path/** is the local filepath to the location you want to save the zip folder in.

   **Windows**

   ```
 curl -o path/tutorial-dataset.zip https://docs.aws.amazon.com/kendra/latest/dg/samples/tutorial-dataset.zip
   ```

   Where:
   - **path/** is the local filepath to the location you want to save the zip folder in.
Creating an Amazon S3 bucket

After downloading and extracting the sample data folder, you store it in an Amazon S3 bucket.

### macOS

```
unzip path/tutorial-dataset.zip -d path/
```

Where:
- `path/` is the local filepath to your saved zip folder.

### Windows

```
tar -xf path/tutorial-dataset.zip -C path/
```

Where:
- `path/` is the local filepath to your saved zip folder.

At the end of this step, you should have the extracted files in a decompressed folder called `tutorial-dataset`. This folder contains a README file with an Apache 2.0 open source attribution and a folder called data containing the dataset for this tutorial. The dataset consists of 100 files with `.story` extensions.

### Creating an Amazon S3 bucket

After downloading and extracting the sample data folder, you store it in an Amazon S3 bucket.

**Important**

The name of an Amazon S3 bucket must be unique across all of AWS.

#### To create an S3 bucket (Console)

1. Sign in to the AWS Management Console and open the Amazon S3 console at [https://console.aws.amazon.com/s3/](https://console.aws.amazon.com/s3/).
2. In **Buckets**, choose **Create bucket**.
3. For **Bucket name**, enter a unique name.
4. For **Region**, choose the AWS region where you want to create the bucket.
   - **Note**
     - You must choose a region that supports both Amazon Comprehend and Amazon Kendra.
     - You cannot change the region of a bucket after you have created it.
5. Keep the default settings for **Block Public Access settings for this bucket**, **Bucket Versioning**, and **Tags**.
6. For **Default encryption**, choose **Disable**.
7. Keep the default settings for the **Advanced settings**.
8. Review your bucket configuration and then choose **Create bucket**.

#### To create an S3 bucket (AWS CLI)

1. To create an S3 bucket, use the `create-bucket` command in the AWS CLI:
Creating an Amazon S3 bucket

Linux

```
aws s3api create-bucket \
 --bucket DOC-EXAMPLE-BUCKET \
 --region aws-region \
 --create-bucket-configuration LocationConstraint=aws-region
```

Where:

- `DOC-EXAMPLE-BUCKET` is your bucket name,
- `aws-region` is the region you want to create your bucket in.

macOS

```
aws s3api create-bucket \
 --bucket DOC-EXAMPLE-BUCKET \
 --region aws-region \
 --create-bucket-configuration LocationConstraint=aws-region
```

Where:

- `DOC-EXAMPLE-BUCKET` is your bucket name,
- `aws-region` is the region you want to create your bucket in.

Windows

```
aws s3api create-bucket ^
 --bucket DOC-EXAMPLE-BUCKET ^
 --region aws-region ^
 --create-bucket-configuration LocationConstraint=aws-region
```

Where:

- `DOC-EXAMPLE-BUCKET` is your bucket name,
- `aws-region` is the region you want to create your bucket in.

**Note**
You must choose a region that supports both Amazon Comprehend and Amazon Kendra. You cannot change the region of a bucket after you have created it.

2. To ensure that your bucket was created successfully, use the `list` command:

Linux

```
aws s3 ls
```

macOS

```
aws s3 ls
```
Creating data and metadata folders in your S3 bucket

After creating your S3 bucket, you create data and metadata folders inside it.

To create folders in your S3 bucket (Console)

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. In Buckets, click on the name of your bucket from the list of buckets.
3. From the Objects tab, choose Create folder.
4. For the new folder name, enter data.
5. For the encryption settings, choose Disable.
6. Choose Create folder.
7. Repeat steps 3 to 6 to create another folder for storing the Amazon Kendra metadata and name the folder created in step 4 metadata.

To create folders in your S3 bucket (AWS CLI)

1. To create the data folder in your S3 bucket, use the put-object command in the AWS CLI:

   Windows
   
   ```bash
 aws s3 ls
   ```

   Creating data and metadata folders in your S3 bucket

   After creating your S3 bucket, you create data and metadata folders inside it.

   To create folders in your S3 bucket (Console)

   1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
   2. In Buckets, click on the name of your bucket from the list of buckets.
   3. From the Objects tab, choose Create folder.
   4. For the new folder name, enter data.
   5. For the encryption settings, choose Disable.
   6. Choose Create folder.
   7. Repeat steps 3 to 6 to create another folder for storing the Amazon Kendra metadata and name the folder created in step 4 metadata.

   To create folders in your S3 bucket (AWS CLI)

   1. To create the data folder in your S3 bucket, use the put-object command in the AWS CLI:

   Linux
   
   ```bash
 aws s3api put-object \
 --bucket DOC-EXAMPLE-BUCKET \
 --key data/
   ```

   Where:

   • DOC-EXAMPLE-BUCKET is your bucket name.

   macOS
   
   ```bash
 aws s3api put-object \
 --bucket DOC-EXAMPLE-BUCKET \
 --key data/
   ```

   Where:

   • DOC-EXAMPLE-BUCKET is your bucket name.

   Windows
   
   ```bash
 aws s3api put-object ^
 --bucket DOC-EXAMPLE-BUCKET ^
 --key data/
   ```

   Where:
Creating data and metadata folders in your S3 bucket

2. To create the metadata folder in your S3 bucket, use the `put-object` command in the AWS CLI:

   **Linux**
   
   ```
 aws s3api put-object \
 --bucket DOC-EXAMPLE-BUCKET \
 --key metadata/
   ```

   Where:
   
   - `DOC-EXAMPLE-BUCKET` is your bucket name.

   **macOS**
   
   ```
 aws s3api put-object \
 --bucket DOC-EXAMPLE-BUCKET \
 --key metadata/
   ```

   Where:
   
   - `DOC-EXAMPLE-BUCKET` is your bucket name.

   **Windows**
   
   ```
 aws s3api put-object ^
 --bucket DOC-EXAMPLE-BUCKET ^
 --key metadata/
   ```

   Where:
   
   - `DOC-EXAMPLE-BUCKET` is your bucket name.

3. To ensure that your folders were created successfully, check the contents of your bucket using the `list` command:

   **Linux**
   
   ```
 aws s3 ls s3://DOC-EXAMPLE-BUCKET/
   ```

   Where:
   
   - `DOC-EXAMPLE-BUCKET` is your bucket name.

   **macOS**
   
   ```
 aws s3 ls s3://DOC-EXAMPLE-BUCKET/
   ```

   Where:
   
   - `DOC-EXAMPLE-BUCKET` is your bucket name.
Uploading the input data

After creating your data and metadata folders, you upload the sample dataset into the data folder.

To upload the sample dataset into the data folder (Console)

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. In Buckets, click on the name of your bucket from the list of buckets and then click on data.
3. Choose Upload and then choose Add files.
4. In the dialog box, navigate to the data folder inside the tutorial-dataset folder in your local device, select all the files, and then choose Open.
5. Keep the default settings for Destination, Permissions, and Properties.

To upload the sample dataset into the data folder (AWS CLI)

1. To upload the sample data into the data folder, use the copy command in the AWS CLI:

   Linux
   ```bash
 aws s3 cp path/tutorial-dataset/data s3://DOC-EXAMPLE-BUCKET/data/ --recursive
   ```
   Where:
   - `path/` is the filepath to the tutorial-dataset folder on your device,
   - `DOC-EXAMPLE-BUCKET` is your bucket name.

   macOS
   ```bash
 aws s3 cp path/tutorial-dataset/data s3://DOC-EXAMPLE-BUCKET/data/ --recursive
   ```
   Where:
   - `path/` is the filepath to the tutorial-dataset folder on your device,
   - `DOC-EXAMPLE-BUCKET` is your bucket name.

   Windows
   ```bash
 aws s3 cp path/tutorial-dataset/data s3://DOC-EXAMPLE-BUCKET/data/ --recursive
   ```
Where:

- \textit{path/} is the filepath to the \texttt{tutorial-dataset} folder on your device,
- \texttt{DOC-EXAMPLE-BUCKET} is your bucket name.

2. To ensure that your dataset files were uploaded successfully to your data folder, use the \texttt{list} command in the AWS CLI:

   \begin{verbatim}
   Linux
   aws s3 ls s3://DOC-EXAMPLE-BUCKET/data/
   \end{verbatim}

   Where:

   - \texttt{DOC-EXAMPLE-BUCKET} is the name of your S3 bucket.

   \begin{verbatim}
   macOS
   aws s3 ls s3://DOC-EXAMPLE-BUCKET/data/
   \end{verbatim}

   Where:

   - \texttt{DOC-EXAMPLE-BUCKET} is the name of your S3 bucket.

   \begin{verbatim}
   Windows
   aws s3 ls s3://DOC-EXAMPLE-BUCKET/data/
   \end{verbatim}

   Where:

   - \texttt{DOC-EXAMPLE-BUCKET} is the name of your S3 bucket.

At the end of this step, you have an S3 bucket with your dataset stored inside the data folder, and an empty metadata folder, which will store your Amazon Kendra metadata.

**Step 2: Running an entities analysis job on Amazon Comprehend**

After storing the sample dataset in your S3 bucket, you run an Amazon Comprehend entities analysis job to extract entities from your documents. These entities will form Amazon Kendra custom attributes and help you filter search results on your index. For more information, see \texttt{Detect Entities}.

**Topics**

- Running an Amazon Comprehend entities analysis job (p. 556)
Running an Amazon Comprehend entities analysis job

To extract entities from your dataset, you run an Amazon Comprehend entities analysis job.

If you are using the AWS CLI in this step, you first create and attach an AWS IAM role and policy for Amazon Comprehend and then run an entities analysis job. To run an entities analysis job on your sample data, Amazon Comprehend needs:

- an AWS Identity and Access Management (IAM) role that recognizes it as a trusted entity
- an AWS IAM policy attached to the IAM role that gives it permissions to access your S3 bucket

For more information, see How Amazon Comprehend works with IAM and Identity-Based Policies for Amazon Comprehend.

To run an Amazon Comprehend entities analysis job (Console)

1. Open the Amazon Comprehend console at https://console.aws.amazon.com/comprehend/.
   ! Important
   Ensure that you are in the same region in which you created your Amazon S3 bucket. If you are in another region, choose the AWS region where you created your S3 bucket from the Region selector in the top navigation bar.
2. Choose Launch Amazon Comprehend.
3. In the left navigation pane, choose Analysis jobs.
4. Choose Create job.
5. In the Job settings section, do the following:
   a. For Name, enter data-entities-analysis.
   b. For Analysis type, choose Entities.
   c. For Language, choose English.
   d. Keep Job encryption turned off.
6. In the Input data section, do the following:
   a. For Data source, choose My documents.
   b. For S3 location, choose Browse S3.
   c. For Choose resources, click on the name of your bucket from the list of buckets.
   d. For Objects, select the option button for data and choose Choose.
   e. For Input format, choose One document per file.
7. In the Output data section, do the following:
   a. For S3 location, choose Browse S3 and then select the option box for your bucket from the list of buckets and choose Choose.
   b. Keep Encryption turned off.
8. In the Access permissions section, do the following:
   a. For IAM role, choose Create an IAM role.
   b. For Permissions to access, choose Input and Output S3 buckets.
   c. For Name suffix, enter comprehend-role. This role provides access to your Amazon S3 bucket.
10. Choose Create job.
To run an Amazon Comprehend entities analysis job (AWS CLI)

1. To create and attach an IAM role for Amazon Comprehend that recognizes it as a trusted entity, do the following:
   a. Save the following trust policy as a JSON file called comprehend-trust-policy.json in a text editor on your local device.

   ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
   ```
   b. To create an IAM role called comprehend-role and attach your saved comprehend-trust-policy.json file to it, use the create-role command:

   **Linux**

   ```bash
 aws iam create-role \
 --role-name comprehend-role \
 --assume-role-policy-document file://path/comprehend-trust-policy.json
   ```
   Where:
   - **path/** is the filepath to comprehend-trust-policy.json on your local device.

   **macOS**

   ```bash
 aws iam create-role \
 --role-name comprehend-role \
 --assume-role-policy-document file://path/comprehend-trust-policy.json
   ```
   Where:
   - **path/** is the filepath to comprehend-trust-policy.json on your local device.

   **Windows**

   ```bash
 aws iam create-role ^
 --role-name comprehend-role ^
 --assume-role-policy-document file://path/comprehend-trust-policy.json
   ```
   Where:
   - **path/** is the filepath to comprehend-trust-policy.json on your local device.
c. Copy the Amazon Resource Name (ARN) to your text editor and save it locally as `comprehend-role-arn`.

   **Note**
   The ARN has a format similar to `arn:aws:iam::123456789012:role/comprehend-role`. You need the ARN you saved as `comprehend-role-arn` to run the Amazon Comprehend analysis job.

2. To create and attach an IAM policy to your IAM role that grants it permissions to access your S3 bucket, do the following:

   a. Save the following trust policy as a JSON file called `comprehend-S3-access-policy.json` in a text editor on your local device.

   ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
],
 "Effect": "Allow"
 }
]
 }

 b. To create an IAM policy called `comprehend-S3-access-policy` to access your S3 bucket, use the `create-policy` command:

 Linux

   ```bash
   aws iam create-policy \ 
   --policy-name comprehend-S3-access-policy \ 
   --policy-document file://path/comprehend-S3-access-policy.json
   ```

 Where:
 - `path/` is the filepath to `comprehend-S3-access-policy.json` on your local device.
macOS

```bash
aws iam create-policy \
   --policy-name comprehend-S3-access-policy \
   --policy-document file://path/comprehend-S3-access-policy.json
```

Where:

- *path/* is the filepath to `comprehend-S3-access-policy.json` on your local device.

Windows

```bash
aws iam create-policy ^
   --policy-name comprehend-S3-access-policy ^
   --policy-document file://path/comprehend-S3-access-policy.json
```

Where:

- *path/* is the filepath to `comprehend-S3-access-policy.json` on your local device.

c. Copy the Amazon Resource Name (ARN) to your text editor and save it locally as `comprehend-S3-access-arn`.

Note

The ARN has a format similar to `arn:aws:iam::123456789012:role/comprehend-S3-access-policy`. You need the ARN you saved as `comprehend-S3-access-arn` to attach the `comprehend-S3-access-policy` to your IAM role.

d. To attach the `comprehend-S3-access-policy` to your IAM role, use the `attach-role-policy` command:

Linux

```bash
aws iam attach-role-policy \
   --policy-arn *policy-arn* \
   --role-name comprehend-role
```

Where:

- *policy-arn* is the ARN you saved as `comprehend-S3-access-arn`.

macOS

```bash
aws iam attach-role-policy \
   --policy-arn *policy-arn* \
   --role-name comprehend-role
```

Where:

- *policy-arn* is the ARN you saved as `comprehend-S3-access-arn`.

Windows

```bash
aws iam attach-role-policy ^
```
Running an Amazon Comprehend entities analysis job

```bash
--policy-arn policy-arn
--role-name comprehend-role
```

Where:

- `policy-arn` is the ARN you saved as `comprehend-S3-access-arn`.

3. To run an Amazon Comprehend entities analysis job, use the `start-entities-detection-job` command:

Linux

```bash
aws comprehend start-entities-detection-job
    --input-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/data/,InputFormat=ONE_DOC_PER_FILE
    --output-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/
    --data-access-role-arn role-arn
    --job-name data-entities-analysis
    --language-code en
    --region aws-region
```

Where:

- `DOC-EXAMPLE-BUCKET` is the name of your S3 bucket,
- `role-arn` is the ARN you saved as `comprehend-role-arn`,
- `aws-region` is your AWS region.

macOS

```bash
aws comprehend start-entities-detection-job
    --input-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/data/,InputFormat=ONE_DOC_PER_FILE
    --output-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/
    --data-access-role-arn role-arn
    --job-name data-entities-analysis
    --language-code en
    --region aws-region
```

Where:

- `DOC-EXAMPLE-BUCKET` is the name of your S3 bucket,
- `role-arn` is the ARN you saved as `comprehend-role-arn`,
- `aws-region` is your AWS region.

Windows

```bash
aws comprehend start-entities-detection-job
    --input-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/data/,InputFormat=ONE_DOC_PER_FILE
    --output-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/
    --data-access-role-arn role-arn
    --job-name data-entities-analysis
    --language-code en
    --region aws-region
```

Where:

- `DOC-EXAMPLE-BUCKET` is the name of your S3 bucket,
• *role-arn* is the ARN you saved as comprehend-role-arn,
• *aws-region* is your AWS region.

4. Copy the entities analysis JobId and save it in a text editor as comprehend-job-id. The JobId helps you track the status of your entities analysis job.

5. To track the progress of your entities analysis job, use the `describe-entities-detection-job` command:

Linux

```bash
aws comprehend describe-entities-detection-job \
  --job-id entities-job-id \
  --region aws-region
```

Where:

• *entities-job-id* is your saved comprehend-job-id,
• *aws-region* is your AWS region.

macOS

```bash
aws comprehend describe-entities-detection-job \
  --job-id entities-job-id \
  --region aws-region
```

Where:

• *entities-job-id* is your saved comprehend-job-id,
• *aws-region* is your AWS region.

Windows

```bash
aws comprehend describe-entities-detection-job ^
  --job-id entities-job-id ^
  --region aws-region
```

Where:

• *entities-job-id* is your saved comprehend-job-id,
• *aws-region* is your AWS region.

It can take several minutes for the JobStatus to change to COMPLETED.

At the end of this step, Amazon Comprehend stores the entity analysis results as a zipped output.tar.gz file inside an output folder within an auto-generated folder in your S3 bucket. Make sure that your analysis job status is complete before you move on to the next step.
Step 3: Formatting the entities analysis output as Amazon Kendra metadata

To convert the entities extracted by Amazon Comprehend to the metadata format required by an Amazon Kendra index, you run a Python 3 script. The results of the conversion are stored in the metadata folder in your Amazon S3 bucket.

For more information on Amazon Kendra metadata format and structure, see [S3 document metadata](#).

Topics
- Downloading and extracting the Amazon Comprehend output (p. 562)
- Uploading the output into the S3 bucket (p. 564)
- Converting the output to Amazon Kendra metadata format (p. 566)
- Cleaning up your Amazon S3 bucket (p. 569)

Downloading and extracting the Amazon Comprehend output

To format the Amazon Comprehend entities analysis output, you must first download the Amazon Comprehend entities analysis output.tar.gz archive and extract the entities analysis file.

To download and extract the output file (Console)

1. In the Amazon Comprehend console navigation pane, navigate to **Analysis jobs**.
2. Choose your entities analysis job data-entities-analysis.
3. Under **Output**, choose the link displayed next to **Output data location**. This redirects you to the output.tar.gz archive in your S3 bucket.
4. In the **Overview** tab, choose **Download**.

 Tip
 The output of all Amazon Comprehend analysis jobs have the same name. Renaming your archive will help you track it more easily.

5. Decompress and extract the downloaded Amazon Comprehend file to your device.

To download and extract the output file (AWS CLI)

1. To access the name of the Amazon Comprehend auto-generated folder in your S3 bucket which contains the results of the entities analysis job, use the **describe-entities-detection-job** command:

 Linux
   ```bash
   aws comprehend describe-entities-detection-job
   --job-id entities-job-id
   --region aws-region
   ```

 Where:
 - **entities-job-id** is your saved comprehend-job-id from the section called “Step 2: Detecting entities” (p. 555).
 - **aws-region** is your AWS region.
macOS

```bash
aws comprehend describe-entities-detection-job \
   --job-id entities-job-id \
   --region aws-region
```

Where:
- `entities-job-id` is your saved comprehend-job-id from the section called “Step 2: Detecting entities” (p. 555),
- `aws-region` is your AWS region.

Windows

```bash
aws comprehend describe-entities-detection-job ^
   --job-id entities-job-id ^
   --region aws-region
```

Where:
- `entities-job-id` is your saved comprehend-job-id from the section called “Step 2: Detecting entities” (p. 555),
- `aws-region` is your AWS region.

2. From the `OutputDataConfig` object in your entities job description, copy and save the `S3Uri` value as `comprehend-S3uri` on a text editor.

 Note
 The `S3Uri` value has a format similar to `s3://DOC-EXAMPLE-BUCKET/.../output/ output.tar.gz`.

3. To download the entities output archive, use the `copy` command:

 Linux

   ```bash
   aws s3 cp s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz path/output.tar.gz
   ```

 Where:
 - `s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz` is the `S3Uri` value you saved as `comprehend-S3uri`,
 - `path/` is the local directory where you wish to save the output.

 macOS

   ```bash
   aws s3 cp s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz path/output.tar.gz
   ```

 Where:
 - `s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz` is the `S3Uri` value you saved as `comprehend-S3uri`,
 - `path/` is the local directory where you wish to save the output.
Windows

```
aws s3 cp s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz path/output.tar.gz
```

Where:
- `s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz` is the S3Uri value you saved as comprehend-S3uri,
- `path/` is the local directory where you wish to save the output.

4. To extract the entities output, run the following command on a terminal window:

Linux

```
tar -xf path/output.tar.gz -C path/
```

Where:
- `path/` is the filepath to the downloaded `output.tar.gz` archive on your local device.

macOS

```
tar -xf path/output.tar.gz -C path/
```

Where:
- `path/` is the filepath to the downloaded `output.tar.gz` archive on your local device.

Windows

```
tar -xf path/output.tar.gz -C path/
```

Where:
- `path/` is the filepath to the downloaded `output.tar.gz` archive on your local device.

At the end of this step, you should have a file on your device called `output` with a list of Amazon Comprehend identified entities.

Uploading the output into the S3 bucket

After downloading and extracting the Amazon Comprehend entities analysis file, you upload the extracted output file to your Amazon S3 bucket.

To upload the extracted Amazon Comprehend output file (Console)

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. In **Buckets**, click on the name of your bucket and then choose **Upload**.
3. In **Files and folders**, choose **Add files**.
4. In the dialog box, navigate to your extracted output file in your device, select it, and choose **Open**.
5. Keep the default settings for Destination, Permissions, and Properties.

To upload the extracted Amazon Comprehend output file (AWS CLI)

1. To upload the extracted output file to your bucket, use the *copy* command:

 Linux
   ```bash
   aws s3 cp path/output s3://DOC-EXAMPLE-BUCKET/output
   ```
 Where:
 - `path/` is the local filepath to your extracted output file,
 - `DOC-EXAMPLE-BUCKET` is the name of your S3 bucket.

 macOS
   ```bash
   aws s3 cp path/output s3://DOC-EXAMPLE-BUCKET/output
   ```
 Where:
 - `path/` is the local filepath to your extracted output file,
 - `DOC-EXAMPLE-BUCKET` is the name of your S3 bucket.

 Windows
   ```bash
   aws s3 cp path/output s3://DOC-EXAMPLE-BUCKET/output
   ```
 Where:
 - `path/` is the local filepath to your extracted output file,
 - `DOC-EXAMPLE-BUCKET` is the name of your S3 bucket.

2. To ensure that the output file was uploaded successfully to your S3 bucket, check its contents by using the *list* command:

 Linux
   ```bash
   aws s3 ls s3://DOC-EXAMPLE-BUCKET/
   ```
 Where:
 - `DOC-EXAMPLE-BUCKET` is the name of your S3 bucket.

 macOS
   ```bash
   aws s3 ls s3://DOC-EXAMPLE-BUCKET/
   ```
 Where:
 - `DOC-EXAMPLE-BUCKET` is the name of your S3 bucket.
Converting the output to Amazon Kendra metadata format

To convert the Amazon Comprehend output to Amazon Kendra metadata, you run a Python 3 script. If you are using the Console, you use AWS CloudShell for this step.

To run the Python 3 script (Console)

1. Download the `converter.py.zip` zipped file on your device.
2. Extract the Python 3 file `converter.py`.
3. Sign into the AWS Management Console and make sure your AWS region is set to the same region as your S3 bucket and your Amazon Comprehend analysis job.
4. Choose the AWS CloudShell icon or type AWS CloudShell in the Search box on the top navigation bar to launch an environment.

 Note
 When AWS CloudShell launches in a new browser window for the first time, a welcome panel displays and lists key features. The shell is ready for interaction after you close this panel and the command prompt displays.

5. After the terminal is prepared, choose Actions from the navigation pane and then choose Upload file from the menu.

6. In the dialog box that opens, choose Select file and then choose the downloaded Python 3 file `converter.py` from your device. Choose Upload.

7. In the AWS CloudShell environment, enter the following command:

   ```
   python3 converter.py
   ```

8. When the shell interface prompts you to Enter the name of your S3 bucket, enter the name of your S3 bucket and press enter.

9. When the shell interface prompts you to Enter the full filepath to your Comprehend output file, enter output and press enter.

10. When the shell interface prompts you to Enter the full filepath to your metadata folder, enter metadata/ and press enter.

 Important
 For the metadata to be formatted correctly, the input values in steps 8-10 must be exact.

To run the Python 3 script (AWS CLI)

1. To download the Python 3 file `converter.py`, run the following command on a terminal window:

   ```
   aws s3 ls s3://DOC-EXAMPLE-BUCKET/
   ```

 Where:
 - **DOC-EXAMPLE-BUCKET** is the name of your S3 bucket.
To convert the output to Amazon Kendra metadata format, follow these steps:

1. **Download and Extract the Converter**

 - **Linux**
     ```
curl -o path/converter.py.zip https://docs.aws.amazon.com/kendra/latest/dg/samples/converter.py.zip
   ```
 Where:
 - *path/ is the filepath to the location you want to save the zipped file in.*

 - **macOS**
     ```
curl -o path/converter.py.zip https://docs.aws.amazon.com/kendra/latest/dg/samples/converter.py.zip
   ```
 Where:
 - *path/ is the filepath to the location you want to save the zipped file in.*

 - **Windows**
     ```
curl -o path/converter.py.zip https://docs.aws.amazon.com/kendra/latest/dg/samples/converter.py.zip
   ```
 Where:
 - *path/ is the filepath to the location you want to save the zipped file in.*

2. **Extract the Python 3 File**

 - **Linux**
     ```
unzip path/converter.py.zip -d path/
   ```
 Where:
 - *path/ is the filepath to your saved converter.py.zip.*

 - **macOS**
     ```
unzip path/converter.py.zip -d path/
   ```
 Where:
 - *path/ is the filepath to your saved converter.py.zip.*

 - **Windows**
     ```
tar -xf path/converter.py.zip -C path/
   ```
 Where:
 - *path/ is the filepath to your saved converter.py.zip.*
3. Make sure that Boto3 is installed on your device by running the following command.

 Linux

   ```bash
   pip3 show boto3
   ```

 macOS

   ```bash
   pip3 show boto3
   ```

 Windows

   ```bash
   pip3 show boto3
   ```

 Note

 If you do not have Boto3 installed, run `pip3 install boto3` to install it.

4. To run the Python 3 script to convert the output file, run the following command.

 Linux

   ```bash
   python path/converter.py
   ```

 Where:

 - `path/` is the filepath to your saved `converter.py.zip`.

 macOS

   ```bash
   python path/converter.py
   ```

 Where:

 - `path/` is the filepath to your saved `converter.py.zip`.

 Windows

   ```bash
   python path/converter.py
   ```

 Where:

 - `path/` is the filepath to your saved `converter.py.zip`.

5. When the AWS CLI prompts you to Enter the name of your S3 bucket, enter the name of your S3 bucket and press enter.

6. When the AWS CLI prompts you to Enter the full filepath to your Comprehend output file, enter `output` and press enter.

7. When the AWS CLI prompts you to Enter the full filepath to your metadata folder, enter `metadata/` and press enter.

 Important

 For the metadata to be formatted correctly, the input values in steps 5-7 must be exact.
At the end of this step, the formatted metadata is deposited inside the metadata folder in your S3 bucket.

Cleaning up your Amazon S3 bucket

Since the Amazon Kendra index syncs all files stored in a bucket, we recommend you clean up your Amazon S3 bucket to prevent redundant search results.

To clean up your Amazon S3 bucket (Console)

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. In **Buckets**, choose your bucket and then select the Amazon Comprehend entity analysis output folder, the Amazon Comprehend entity analysis .temp file, and the extracted Amazon Comprehend output file.
3. From the **Overview** tab choose **Delete**.
4. In **Delete objects**, choose **Permanently delete objects?** and enter **permanently delete** in the text input field.
5. Choose **Delete objects**.

To clean up your Amazon S3 bucket (AWS CLI)

1. To delete all files and folders in your S3 bucket except the data and metadata folders, use the **remove** command in the AWS CLI:

 Linux
   ```bash
   aws s3 rm s3://DOC-EXAMPLE-BUCKET/ --recursive --exclude "data/*" --exclude "metadata/*"
   ```

 Where:
 - **DOC-EXAMPLE-BUCKET** is the name of your S3 bucket.

 macOS
   ```bash
   aws s3 rm s3://DOC-EXAMPLE-BUCKET/ --recursive --exclude "data/*" --exclude "metadata/*"
   ```

 Where:
 - **DOC-EXAMPLE-BUCKET** is the name of your S3 bucket.

 Windows
   ```bash
   aws s3 rm s3://DOC-EXAMPLE-BUCKET/ --recursive --exclude "data/*" --exclude "metadata/*"
   ```

 Where:
 - **DOC-EXAMPLE-BUCKET** is the name of your S3 bucket.
2. To ensure that the objects were successfully deleted from your S3 bucket, check its contents by using the **list** command:
Step 4: Creating an index and ingesting the metadata

At the end of this step, you have converted the Amazon Comprehend entities analysis output to Amazon Kendra metadata. You are now ready to create an Amazon Kendra index.

To implement your intelligent search solution, you create an Amazon Kendra index and ingest your S3 data and metadata into it.

Before you add metadata to your Amazon Kendra index, you create custom index fields corresponding to custom document attributes, which in turn correspond to the Amazon Comprehend entity types. Amazon Kendra uses the index fields and custom document attributes you create to search and filter your documents.

For more information, see Index and Creating custom document attributes.

Topics

- Creating an Amazon Kendra index (p. 571)
- Updating the IAM role for Amazon S3 access (p. 576)
- Creating Amazon Kendra custom search index fields (p. 578)
- Adding the Amazon S3 bucket as a data source for the index (p. 582)
- Syncing the Amazon Kendra index (p. 585)
Creating an Amazon Kendra index

To query your source documents, you create an Amazon Kendra index.

If you are using the AWS CLI in this step, you create and attach an AWS IAM role and policy that allows Amazon Kendra to access your CloudWatch logs before creating an index. For more information, see Prerequisites.

To create an Amazon Kendra index (Console)

1. Open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.

 Important
 Ensure that you are in the same region in which you created your Amazon Comprehend entities analysis job and your Amazon S3 bucket. If you are in another region, choose the AWS region where you created your Amazon S3 bucket from the Region selector in the top navigation bar.

2. Choose Create an index.

3. For Index details on the Specify index details page, do the following:
 a. For Index name, enter kendra-index.
 b. Keep the Description field blank.
 c. For IAM role, choose Create a new role. This role provides access to your Amazon S3 bucket.
 d. For Role name, enter kendra-role. The IAM role will have the prefix AmazonKendra-.
 e. Keep default settings for Encryption and Tags and choose Next.

4. For Access control settings on the Configure user access control page, choose No and then choose Next.

5. For Provisioning editions on the Provisioning details page, choose Developer edition and choose Create.

To create an Amazon Kendra index (AWS CLI)

1. To create and attach an IAM role for Amazon Kendra that recognizes it as a trusted entity, do the following:
 a. Save the following trust policy as a JSON file called kendra-trust-policy.json in a text editor on your local device.

   ```json
   {
   "Version": "2012-10-17",
   "Statement": {
   "Effect": "Allow",
   "Principal": {
   "Service": "kendra.amazonaws.com"
   },
   "Action": "sts:AssumeRole"
   }
   }
   ```
 b. To create an IAM role called kendra-role and attach your saved kendra-trust-policy.json file to it, use the create-role command:

 Linux
   ```
   aws iam create-role
   --role-name kendra-role
   ```
--assume-role-policy-document file://path/kendra-trust-policy.json

Where:

- **path/** is the filepath to kendra-trust-policy.json on your local device.

macOS

```bash
aws iam create-role
   --role-name kendra-role
   --assume-role-policy-document file://path/kendra-trust-policy.json
```

Where:

- **path/** is the filepath to kendra-trust-policy.json on your local device.

Windows

```bash
aws iam create-role ^
   --role-name kendra-role ^
   --assume-role-policy-document file://path/kendra-trust-policy.json
```

Where:

- **path/** is the filepath to kendra-trust-policy.json on your local device.

c. Copy the Amazon Resource Name (ARN) to your text editor and save it locally as kendra-role-arn.

Note

The ARN has a format similar to `arn:aws:iam::123456789012:role/kendra-role`. You need the ARN you saved as kendra-role-arn to run Amazon Kendra jobs.

2. Before you create an index, you must provide your kendra-role the permission to write to CloudWatch Logs. To do this, complete the following steps:

 a. Save the following trust policy as a JSON file called kendra-cloudwatch-policy.json in a text editor on your local device.

```json
{
   "Version":"2012-10-17",
   "Statement":[
      {
         "Effect":"Allow",
         "Action":"cloudwatch:PutMetricData",
         "Resource":"*",
         "Condition":{
            "StringEquals":{
               "cloudwatch:namespace":"Kendra"
            }
         }
      },
      {
         "Effect":"Allow",
         "Action":"logs:DescribeLogGroups",
         "Resource":"*"
      },
      {
         "Effect":"Allow",
         "Action":"logs:CreateLogGroup",
```
Creating an Amazon Kendra index

```
{
  "Effect":"Allow",
  "Action":[
    "logs:DescribeLogStreams",
    "logs:CreateLogStream",
    "logs:PutLogEvents"
  ],
}
```

Replace `aws-region` with your AWS region, and `aws-account-id` with your 12-digit AWS account ID.

b. To create an IAM policy to access CloudWatch Logs, use the `create-policy` command:

Linux

```
aws iam create-policy \
  --policy-name kendra-cloudwatch-policy \
  --policy-document file://path/kendra-cloudwatch-policy.json
```

Where:
- `path/` is the filepath to `kendra-cloudwatch-policy.json` on your local device.

macOS

```
aws iam create-policy \
  --policy-name kendra-cloudwatch-policy \
  --policy-document file://path/kendra-cloudwatch-policy.json
```

Where:
- `path/` is the filepath to `kendra-cloudwatch-policy.json` on your local device.

Windows

```
aws iam create-policy ^
  --policy-name kendra-cloudwatch-policy ^
  --policy-document file://path/kendra-cloudwatch-policy.json
```

Where:
- `path/` is the filepath to `kendra-cloudwatch-policy.json` on your local device.

c. Copy the Amazon Resource Name (ARN) to your text editor and save it locally as `kendra-cloudwatch-arn`.

Note
The ARN has a format similar to `arn:aws:iam::123456789012:role/kendra-cloudwatch-policy`. You need the ARN you saved as kendra-cloudwatch-arn to attach the kendra-cloudwatch-policy to your IAM role.
d. To attach the kendra-cloudwatch-policy to your IAM role, use the `attach-role-policy` command:

Linux

```bash/aws iam attach-role-policy \
   --policy-arn policy-arn \
   --role-name kendra-role
```

Where:

- `policy-arn` is your saved kendra-cloudwatch-arn.

macOS

```bash/aws iam attach-role-policy \
   --policy-arn policy-arn \
   --role-name kendra-role
```

Where:

- `policy-arn` is your saved kendra-cloudwatch-arn.

Windows

```bash/aws iam attach-role-policy ^
   --policy-arn policy-arn ^
   --role-name kendra-role
```

Where:

- `policy-arn` is your saved kendra-cloudwatch-arn.

3. To create an index, use the `create-index` command:

Linux

```bash/aws kendra create-index \
   --name kendra-index \
   --edition DEVELOPER_EDITION \
   --role-arn role-arn \
   --region aws-region
```

Where:

- `role-arn` is your saved kendra-role-arn,
- `aws-region` is your AWS region.

macOS

```bash/aws kendra create-index \
   --name kendra-index \
   --edition DEVELOPER_EDITION \
   --role-arn role-arn \
   --region aws-region
```
Creating an Amazon Kendra index

Where:

- **role-arn** is your saved kendra-role-arn,
- **aws-region** is your AWS region.

Windows

```bash
aws kendra create-index
   --name kendra-index
   --edition DEVELOPER_EDITION
   --role-arn role-arn
   --region aws-region
```

Where:

- **role-arn** is your saved kendra-role-arn,
- **aws-region** is your AWS region.

4. Copy the index Id and save it in a text editor as kendra-index-id. The Id helps you track the status of your index creation.

5. To track the progress of your index creation job, use the `describe-index` command:

Linux

```bash
aws kendra describe-index
   --id kendra-index-id
   --region aws-region
```

Where:

- **kendra-index-id** is your saved kendra-index-id,
- **aws-region** is your AWS region.

macOS

```bash
aws kendra describe-index
   --id kendra-index-id
   --region aws-region
```

Where:

- **kendra-index-id** is your saved kendra-index-id,
- **aws-region** is your AWS region.

Windows

```bash
aws kendra describe-index
   --id kendra-index-id
   --region aws-region
```

Where:

- **kendra-index-id** is your saved kendra-index-id,
• `aws-region` is your AWS region.

The index creation process on average takes 15 minutes, but can take longer. When the status of the index is active, your index is ready to use. While your index is being created, you can start the next step.

If you are using the AWS CLI in this step, you create and attach an IAM policy to your Amazon Kendra IAM role that gives your index permissions to access your S3 bucket.

Updating the IAM role for Amazon S3 access

While the index is being created, you update your Amazon Kendra IAM role to allow the index you created to read data from your Amazon S3 bucket. For more information, see [IAM access roles for Amazon Kendra](#).

To update your IAM role (Console)

2. In the left navigation pane, choose Roles and enter `kendra-role` in the Search box above Role name.
3. From the suggested options, click on `kendra-role`.
4. In Summary, choose Attach policies.
5. In Attach permissions, in the Search box, enter `S3` and select the checkbox next to the AmazonS3ReadOnlyAccess policy from the suggested options.
6. Choose Attach policy. On the Summary page, you will now see two policies attached to the IAM role.
7. Return to the Amazon Kendra console at https://console.aws.amazon.com/kendra/ and wait for the status of your index to change from Creating to Active before continuing to the next step.

To update your IAM role (AWS CLI)

1. Save the following text in a JSON file called `kendra-S3-access-policy.json` in a text editor on your local device.

```json
{
  "Version":"2012-10-17",
  "Statement": [
    {
      "Action": ["s3:GetObject"],
      "Resource": ["arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"],
      "Effect": "Allow"
    },
    {
      "Action": ["s3:ListBucket"],
      "Resource": ["arn:aws:s3:::DOC-EXAMPLE-BUCKET"],
      "Effect": "Allow"
    }
  ]
}
```
Updating the IAM role for Amazon S3 access

```
"Effect":"Allow",
"Action": [
"kendra:BatchPutDocument",
"kendra:BatchDeleteDocument",
"kendra:ListDataSourceSyncJobs"
],
"Resource": [
"arn:aws:kendra:aws-region:aws-account-id:index/kendra-index-id"
]
```

Replace `DOC-EXAMPLE-BUCKET` with your S3 bucket name, `aws-region` with your AWS region, `aws-account-id` with your 12-digit AWS account ID, and `kendra-index-id` with your saved `kendra-index-id`.

2. To create an IAM policy to access your S3 bucket, use the `create-policy` command:

Linux

```
aws iam create-policy
  --policy-name kendra-S3-access-policy
  --policy-document file://path/kendra-S3-access-policy.json
```

Where:

- `path/` is the filepath to `kendra-S3-access-policy.json` on your local device.

macOS

```
aws iam create-policy
  --policy-name kendra-S3-access-policy
  --policy-document file://path/kendra-S3-access-policy.json
```

Where:

- `path/` is the filepath to `kendra-S3-access-policy.json` on your local device.

Windows

```
aws iam create-policy ^
  --policy-name kendra-S3-access-policy ^
  --policy-document file://path/kendra-S3-access-policy.json
```

Where:

- `path/` is the filepath to `kendra-S3-access-policy.json` on your local device.

3. Copy the Amazon Resource Name (ARN) to your text editor and save it locally as `kendra-S3-access-arn`.

Note
The ARN has a format similar to `arn:aws:iam::123456789012:role/kendra-S3-access-policy`. You need the ARN you saved as `kendra-S3-access-arn` to attach the `kendra-S3-access-policy` to your IAM role.

4. To attach the `kendra-S3-access-policy` to your Amazon Kendra IAM role, use the `attach-role-policy` command:
Creating Amazon Kendra custom search index fields

To prepare Amazon Kendra to recognize your metadata as custom document attributes, you create custom fields corresponding to Amazon Comprehend entity types. You input the following nine Amazon Comprehend entity types as custom fields:

- COMMERCIAL_ITEM
- DATE
- EVENT
- LOCATION
- ORGANIZATION
- OTHER
- PERSON
- QUANTITY
- TITLE

Important
Misspelled entity types will not be recognized by the index.
To create custom fields for your Amazon Kendra index (Console)

1. Open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. From the Indexes list, click on kendra-index.
3. From the left navigation panel, under Data management, choose Facet definition.
4. From the Index fields menu, choose Add field.
5. In the Add index field dialog box, do the following:
 a. In Field name, enter COMMERCIAL_ITEM.
 b. In Data type, choose String list.
 c. In Usage types, select Facetable, Searchable, and Displayable, and then choose Add.
 d. Repeat steps a to c for each Amazon Comprehend entity type: COMMERCIAL_ITEM, DATE, EVENT, LOCATION, ORGANIZATION, OTHER, PERSON, QUANTITY, TITLE.

The console displays successful field addition messages. You can choose to close them before you proceed with the next step.

To create custom fields for your Amazon Kendra index (AWS CLI)

1. Save the following text as a JSON file called custom-attributes.json in a text editor on your local device.

```json
{
  "Name": "COMMERCIAL_ITEM",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
},
{
  "Name": "DATE",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
},
{
  "Name": "EVENT",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
},
{
  "Name": "LOCATION",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
}
```
Creating Amazon Kendra custom search index fields

```json
{
  "Name": "ORGANIZATION",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
},
{
  "Name": "OTHER",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
},
{
  "Name": "PERSON",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
},
{
  "Name": "QUANTITY",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
},
{
  "Name": "TITLE",
  "Type": "STRING_LIST_VALUE",
  "Search": {
    "Facetable": true,
    "Searchable": true,
    "Displayable": true
  }
}
```

2. To create custom fields in your index, use the `update-index` command:

```bash
aws kendra update-index \
  --id kendra-index-id \
  --document-metadata-configuration-updates file://path/custom-attributes.json \
  --region aws-region
```

Where:

- `kendra-index-id` is your saved kendra-index-id,
- `path/` is the filepath to `custom-attributes.json` on your local device,
- `aws-region` is your AWS region.
Creating Amazon Kendra custom search index fields

macOS

```bash
aws kendra update-index
    --id kendra-index-id
    --document-metadata-configuration-updates file://path/custom-attributes.json
    --region aws-region
```

Where:
- `kendra-index-id` is your saved kendra-index-id,
- `path/` is the filepath to `custom-attributes.json` on your local device,
- `aws-region` is your AWS region.

Windows

```bash
aws kendra update-index
    --id kendra-index-id
    --document-metadata-configuration-updates file://path/custom-attributes.json
    --region aws-region
```

Where:
- `kendra-index-id` is your saved kendra-index-id,
- `path/` is the filepath to `custom-attributes.json` on your local device,
- `aws-region` is your AWS region.

3. To verify that the custom attributes have been added to your index, use the `describe-index` command:

Linux

```bash
aws kendra describe-index
    --id kendra-index-id
    --region aws-region
```

Where:
- `kendra-index-id` is your saved kendra-index-id,
- `aws-region` is your AWS region.

macOS

```bash
aws kendra describe-index
    --id kendra-index-id
    --region aws-region
```

Where:
- `kendra-index-id` is your saved kendra-index-id,
- `aws-region` is your AWS region.
Adding the Amazon S3 bucket as a data source for the index

Before you can sync your index, you must connect your S3 data source to it.

To connect an S3 bucket to your Amazon Kendra index (Console)

1. Open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. From the Indexes list, click on kendra-index.
3. From the left navigation menu, under Data management, choose Data sources.
4. Under the Select data source connector type section, navigate to Amazon S3, and choose Add connector.
5. In the Specify data source details page, do the following:
 a. Under Name and description, for Data source name, enter S3-data-source.
 b. Keep the Description section blank.
 c. Keep the default settings for Tags.
 d. Choose Next.
6. On the Configure sync settings page, in the Sync scope section, do the following:
 a. In Enter the data source location, choose Browse S3.
 b. In Choose resources, select your S3 bucket and then choose Choose.
 c. In Metadata files prefix folder location, choose Browse S3.
 d. In Choose resources, click on the name of your bucket from the list of buckets.
 e. For Objects, select the option box for metadata and choose Choose. The location field should now say metadata/.
 f. Keep the default settings for Access control list configuration file location, Select decryption key, and Additional configuration.
7. For IAM role, on the Configure sync settings page, choose kendra-role.
8. On the Configure sync settings page, under Sync run schedule, for Frequency, choose Run on demand and then choose Next.
9. On the Review and create page, review your choices for the data source details and choose Add data source.

Windows

```bash
aws kendra describe-index ^
  --id kendra-index-id ^
  --region aws-region ^
```
To connect an S3 bucket to your Amazon Kendra index (AWS CLI)

1. Save the following text as a JSON file called `S3-data-connector.json` in a text editor on your local device.

   ```json
   {
      "S3Configuration": {
          "BucketName": "DOC-EXAMPLE-BUCKET",
          "DocumentsMetadataConfiguration": {
              "S3Prefix": "metadata"
          }
      }
   }
   ``

   Replace `DOC-EXAMPLE-BUCKET` with the name of your S3 bucket.

2. To connect your S3 bucket to your index, use the `create-data-source` command:

   **Linux**
   ```bash
 aws kendra create-data-source
 --index-id kendra-index-id
 --name S3-data-source
 --type S3
 --configuration file://path/S3-data-connector.json
 --role-arn role-arn
 --region aws-region
   ```

   Where:
   - `kendra-index-id` is your saved kendra-index-id,
   - `path/` is the filepath to `S3-data-connector.json` on your local device,
   - `role-arn` is your saved kendra-role-arn,
   - `aws-region` is your AWS region.

   **macOS**
   ```bash
 aws kendra create-data-source
 --index-id kendra-index-id
 --name S3-data-source
 --type S3
 --configuration file://path/S3-data-connector.json
 --role-arn role-arn
 --region aws-region
   ```

   Where:
   - `kendra-index-id` is your saved kendra-index-id,
   - `path/` is the filepath to `S3-data-connector.json` on your local device,
   - `role-arn` is your saved kendra-role-arn,
   - `aws-region` is your AWS region.

   **Windows**
   ```bash
 aws kendra create-data-source
 --index-id kendra-index-id
   ```

583
Adding the Amazon S3 bucket as a data source for the index

```
--name S3-data-source
--type S3
--configuration file://path/S3-data-connector.json
--role-arn role-arn
--region aws-region
```

Where:
- `kendra-index-id` is your saved kendra-index-id,
- `path/` is the filepath to S3-data-connector.json on your local device,
- `role-arn` is your saved kendra-role-arn,
- `aws-region` is your AWS region.

3. Copy the connector Id and save it in a text editor as `S3-connector-id`. The Id helps you track the status of the data-connection process.

4. To ensure that your S3 data source was connected successfully, use the `describe-data-source` command:

Linux

```
aws kendra describe-data-source \
 --id S3-connector-id \
 --index-id kendra-index-id \
 --region aws-region
```

Where:
- `S3-connector-id` is your saved S3-connector-id,
- `kendra-index-id` is your saved kendra-index-id,
- `aws-region` is your AWS region.

macOS

```
aws kendra describe-data-source \
 --id S3-connector-id \
 --index-id kendra-index-id \
 --region aws-region
```

Where:
- `S3-connector-id` is your saved S3-connector-id,
- `kendra-index-id` is your saved kendra-index-id,
- `aws-region` is your AWS region.

Windows

```
aws kendra describe-data-source \
 --id S3-connector-id \
 --index-id kendra-index-id \
 --region aws-region
```

Where:
- `S3-connector-id` is your saved S3-connector-id,
Syncing the Amazon Kendra index

With the Amazon S3 data source added, you now sync your Amazon Kendra index to it.

To sync your Amazon Kendra index (Console)

1. Open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. From the Indexes list, click on kendra-index.
3. From the left navigation menu, choose Data sources.
4. From Data sources, select S3-data-source.
5. From the top navigation bar, choose Sync now.

To sync your Amazon Kendra index (AWS CLI)

1. To sync your index, use the start-data-source-sync-job command:

   Linux

   ```bash
 aws kendra start-data-source-sync-job \
 --id S3-connector-id \
 --index-id kendra-index-id \
 --region aws-region
   ```

   Where:
   - `S3-connector-id` is your saved S3-connector-id,
   - `kendra-index-id` is your saved kendra-index-id,
   - `aws-region` is your AWS region.

   macOS

   ```bash
 aws kendra start-data-source-sync-job \
 --id S3-connector-id \
 --index-id kendra-index-id \
 --region aws-region
   ```

   Where:
   - `S3-connector-id` is your saved S3-connector-id,
   - `kendra-index-id` is your saved kendra-index-id,
   - `aws-region` is your AWS region.

   Windows

   ```bash
 aws kendra start-data-source-sync-job ^
 --id S3-connector-id ^
   ```

At the end of this step, your Amazon S3 data source is connected to the index.
Syncing the Amazon Kendra index

```bash
--index-id kendra-index-id
--region aws-region
```

Where:
- **S3-connector-id** is your saved S3-connector-id,
- **kendra-index-id** is your saved kendra-index-id,
- **aws-region** is your AWS region.

2. To check the status of the index sync, use the `list-data-source-sync-jobs` command:

**Linux**

```bash
aws kendra list-data-source-sync-jobs
 --id S3-connector-id
 --index-id kendra-index-id
 --region aws-region
```

Where:
- **S3-connector-id** is your saved S3-connector-id,
- **kendra-index-id** is your saved kendra-index-id,
- **aws-region** is your AWS region.

**macOS**

```bash
aws kendra list-data-source-sync-jobs
 --id S3-connector-id
 --index-id kendra-index-id
 --region aws-region
```

Where:
- **S3-connector-id** is your saved S3-connector-id,
- **kendra-index-id** is your saved kendra-index-id,
- **aws-region** is your AWS region.

**Windows**

```bash
aws kendra list-data-source-sync-jobs
 --id S3-connector-id
 --index-id kendra-index-id
 --region aws-region
```

Where:
- **S3-connector-id** is your saved S3-connector-id,
- **kendra-index-id** is your saved kendra-index-id,
- **aws-region** is your AWS region.

At the end of this step, you have created a searchable and filterable Amazon Kendra index for your dataset.
Step 5: Querying the Amazon Kendra index

Your Amazon Kendra index is now ready for natural language queries. When you search your index, Amazon Kendra uses all the data and metadata you provided to return the most accurate answers to your search query.

There are three kinds of queries that Amazon Kendra can answer:

- Factoid queries ("who", "what", "when", or "where" questions)
- Descriptive queries ("how" questions)
- Keyword searches (questions whose intent and scope are not clear)

Topics

- Querying your Amazon Kendra index (p. 587)
- Filtering your search results (p. 591)

Querying your Amazon Kendra index

You can query your Amazon Kendra index using questions that correspond to the three kinds of queries that Amazon Kendra supports. For more information, see Queries.

The example questions in this section have been chosen based on the sample dataset.

To query your Amazon Kendra index (Console)

1. Open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. From the Indexes list, click on kendra-index.
3. From the left navigation menu, choose the option to search your index.
4. To run a sample factoid query, enter Who is Lewis Hamilton? in the search box and press enter.

The first returned result is the Amazon Kendra suggested answer, together with the data file containing the answer. The rest of the results form the set of recommended documents.
5. To run a descriptive query, enter **How does Formula One work?** in the search box and press enter.

You will see another result returned by the Amazon Kendra console, this time with the relevant phrase highlighted.

6. To run a keyword search, enter **Formula One** in the search box and press enter.

You will see another result returned by the Amazon Kendra console, followed by the results for all other mentions of the phrase in the dataset.
To query your Amazon Kendra index (AWS CLI)

1. To run a sample factoid query, use the `query` command:

   **Linux**
   ```
 aws kendra query
 --index-id kendra-index-id
 --query-text "Who is Lewis Hamilton?"
 --region aws-region
   ```

   Where:
   - `kendra-index-id` is your saved kendra-index-id,
   - `aws-region` is your AWS region.

   **macOS**
   ```
 aws kendra query
 --index-id kendra-index-id
 --query-text "Who is Lewis Hamilton?"
 --region aws-region
   ```

   Where:
   - `kendra-index-id` is your saved kendra-index-id,
   - `aws-region` is your AWS region.

   **Windows**
   ```
 aws kendra query ^
 --index-id kendra-index-id ^
 --query-text "Who is Lewis Hamilton?" ^
   ```
Querying your Amazon Kendra index

1. To run a sample descriptive query, use the `query` command:

   **Linux**
   ```
 aws kendra query
 --index-id kendra-index-id
 --query-text "How does Formula One work?"
 --region aws-region
   ```

   **macOS**
   ```
 aws kendra query
 --index-id kendra-index-id
 --query-text "How does Formula One work?"
 --region aws-region
   ```

   **Windows**
   ```
 aws kendra query
 --index-id kendra-index-id
 --query-text "How does Formula One work?"
 --region aws-region
   ```

   Where:
   - `kendra-index-id` is your saved kendra-index-id,
   - `aws-region` is your AWS region.

   The AWS CLI displays the results of your query.

2. To run a sample keyword search, use the `query` command:

   **Linux**
   ```
 aws kendra query
 --index-id kendra-index-id
 --query-text "Formula One"
   ```

   **macOS**
   ```
 aws kendra query
 --index-id kendra-index-id
 --query-text "Formula One"
   ```

   **Windows**
   ```
 aws kendra query
 --index-id kendra-index-id
 --query-text "Formula One"
   ```

   Where:
   - `kendra-index-id` is your saved kendra-index-id,
   - `aws-region` is your AWS region.

   The AWS CLI displays the results to your query.

3. To run a sample keyword search, use the `query` command:

   **Linux**
   ```
 aws kendra query
 --index-id kendra-index-id
   ```

   **macOS**
   ```
 aws kendra query
 --index-id kendra-index-id
   ```

   **Windows**
   ```
 aws kendra query
 --index-id kendra-index-id
   ```

   Where:
   - `kendra-index-id` is your saved kendra-index-id,
   - `aws-region` is your AWS region.
Filtering your search results

You can filter and sort your search results using custom document attributes in the Amazon Kendra console. For more information on how Amazon Kendra processes queries, see Filtering queries.

To filter your search results (Console)

1. Open the Amazon Kendra console at https://console.aws.amazon.com/kendra/.
2. From the Indexes list, click on kendra-index.
3. From the left navigation menu, choose the option to search your index.
4. In the search box, enter Soccer matches as a query and press enter.
5. From the left navigation menu, choose Filter search results to see a list of facets you can use to filter your search.
6. Select the check box for "Champions League" under the EVENT subheading, to see your search results filtered only by the results containing "Champions League".
Filtering your search results (AWS CLI)

1. To see the entities of a specific type (such as EVENT) that are available for a search, use the `query` command:

   **Linux**
   ```sh
 aws kendra query
 --index-id kendra-index-id
 --query-text "Soccer matches"
 --facets '[["DocumentAttributeKey":"EVENT"]]
 --region aws-region
   ```

   Where:

   - `kendra-index-id` is your saved kendra-index-id,
   - `aws-region` is your AWS region.

   **macOS**
   ```sh
 aws kendra query
 --index-id kendra-index-id
 --query-text "Soccer matches"
 --facets '[["DocumentAttributeKey":"EVENT"]]
 --region aws-region
   ```

   Where:
Filtering your search results

- `kendra-index-id` is your saved kendra-index-id,
- `aws-region` is your AWS region.

Windows

```
aws kendra query ^
 --index-id kendra-index-id ^
 --query-text "Soccer matches" ^
 --facets '[["DocumentAttributeKey":"EVENT"]]' ^
 --region aws-region
```

Where:
- `kendra-index-id` is your saved kendra-index-id,
- `aws-region` is your AWS region.

The AWS CLI displays the search results. To get a list of facets of type EVENT, navigate to the "FacetResults" section of the AWS CLI output to see a list of filterable facets with their counts. For example, one of the facets is "Champions League".

**Note**

Instead of EVENT, you can choose any of the index fields you created in the section called "Creating an Amazon Kendra index" (p. 571) for the DocumentAttributeKey value.

2. To run the same search but filter only by the results containing "Champions League", use the `query` command:

Linux

```
aws kendra query \
 --index-id kendra-index-id \
 --query-text "Soccer matches" \
 --attribute-filter '{"ContainsAny":{"Key":"EVENT","Value":
 {"StringListValue":"Champions League"}}}’ \
 --region aws-region
```

Where:
- `kendra-index-id` is your saved kendra-index-id,
- `aws-region` is your AWS region.

macOS

```
aws kendra query \
 --index-id kendra-index-id \
 --query-text "Soccer matches" \
 --attribute-filter '{"ContainsAny":{"Key":"EVENT","Value":
 {"StringListValue":"Champions League"}}}’ \
 --region aws-region
```

Where:
- `kendra-index-id` is your saved kendra-index-id,
- `aws-region` is your AWS region.
Step 6: Cleaning up

Cleaning up your files

To stop incurring charges in your AWS account after you complete this tutorial, you can take the following steps:

1. Delete your Amazon S3 bucket

   For information about deleting a bucket, see Deleting a bucket.

2. Delete your Amazon Kendra index

   For information about deleting an Amazon Kendra index, see Deleting an index.

3. Delete converter.py

   - **For Console**: Go to AWS CloudShell, and make sure the region is set to your AWS region. After the bash shell has loaded, type the following command into the environment and press enter.

     ```bash
 rm converter.py
     ```

   - **For AWS CLI**: Run the following command on a terminal window.

     Linux

     ```bash
 rm file/converter.py
     ```

     Where:

     - *file/* is the filepath to converter.py on your local device.

     macOS

     ```bash
 rm file/converter.py
     ```

     Where:

     - *file/* is the filepath to converter.py on your local device.
Cleaning up your files

Windows

```bash
rm file/converter.py
```

Where:
- `file/` is the filepath to `converter.py` on your local device.

Learn more

To learn more about integrating Amazon Kendra into your workflow, you can check out the following blogposts:

- [Content metadata tagging for enhanced search](#)
- [Build an intelligent search solution with automated content enrichment](#)

To learn more about Amazon Comprehend, you can look at the [Amazon Comprehend Developer Guide](#).
Monitoring and logging for Amazon Kendra

Topics

• Monitoring your index (console) (p. 596)
• Logging Amazon Kendra API calls with AWS CloudTrail logs (p. 599)
• Logging Amazon Kendra Intelligent Ranking API calls with AWS CloudTrail logs (p. 601)
• Monitoring Amazon Kendra with Amazon CloudWatch (p. 603)
• Monitoring Amazon Kendra with Amazon CloudWatch Logs (p. 607)

Monitoring your index (console)

Use the Amazon Kendra console to monitor the state of indexes and data sources. You can use this information to track the size and storage requirements of your index and to monitor the progress and success of synchronization between your index and data sources.

To view index metrics (console)

1. Sign into the AWS Management Console and open the Amazon Kendra console at https://console.aws.amazon.com/kendra/home.
2. From the list of indexes, choose the index to view.
3. Scroll the screen to see the index metrics.

You can see the following metrics about your index.

• Document count—The total number of documents indexed. This includes all documents from all data sources. Use this metric to determine if you need to purchase more or fewer storage units for your index.
• **Queries per second**—The number of index queries that are requested each second. Use this metric to determine if you need to purchase more or fewer query units for your index.

To monitor the progress and success of synchronization between your index and a data source, use the Amazon Kendra console. Use this information to help determine the health of your data source.

**To view synchronization metrics (console)**

2. From the list of indexes, choose the index to view synchronization metrics for.
3. From the left menu, choose **Data sources**.
4. From the list of data sources, choose the data source to view.
Monitor indexes

5. Scroll the screen to see the sync run metrics.

You can see the following information.

- **Sync run history**—Statistics about the synchronization run, including the start and end time, the number of documents added, deleted, and failed. If the sync run fails, there is a link to CloudWatch Logs with more information. Choose the settings icon in the upper left to change the columns that are displayed in the history. Use this information to determine the general health of your data source.

<table>
<thead>
<tr>
<th>Status / Summary</th>
<th>Start time</th>
<th>End time</th>
<th>Added / Modified</th>
<th>Deleted</th>
<th>Failed</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syncing - indexing</td>
<td>Apr 29, 2020, 9:53 AM PDT</td>
<td>Apr 29, 2020, 9:54 AM PDT</td>
<td>484</td>
<td>484</td>
<td>484</td>
<td>View in CloudWatch Logs</td>
</tr>
<tr>
<td>Succeeded</td>
<td>Apr 28, 2020, 1:35 PM PDT</td>
<td>Apr 28, 2020, 1:37 PM PDT</td>
<td>1484</td>
<td>0</td>
<td>2</td>
<td>Service is operating normally</td>
</tr>
<tr>
<td>Succeeded</td>
<td>Apr 28, 2020, 1:32 PM PDT</td>
<td>Apr 28, 2020, 1:32 PM PDT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Service is operating normally</td>
</tr>
<tr>
<td>Succeeded</td>
<td>Apr 28, 2020, 1:05 PM PDT</td>
<td>Apr 28, 2020, 1:06 PM PDT</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>Service is operating normally</td>
</tr>
<tr>
<td>Succeeded</td>
<td>Apr 28, 2020, 1:05 PM PDT</td>
<td>Apr 28, 2020, 1:05 PM PDT</td>
<td>298</td>
<td>0</td>
<td>1</td>
<td>Service is operating normally</td>
</tr>
</tbody>
</table>

- **Document count**—The total number of documents indexed from this data source. This is the total of all documents added to the data source minus the total of all documents deleted from the data source. Use this information to determine how many documents from this data source are included in the index.

![Document Count graph]

- **Document scans**—The total number of documents scanned during the sync run. This includes all documents in the data source, including those added, updated, deleted, or unchanged. Use this information to determine if Amazon Kendra is scanning all of the documents in the data source. The number of documents scanned affects the amount charged for the service.
• **Average sync run time in minutes**—The average length of time that it takes for a sync run to complete. The time that it takes to sync a data source affects the amount charged for the service.

Logging Amazon Kendra API calls with AWS CloudTrail logs

Amazon Kendra is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role, or an AWS service in Amazon Kendra. CloudTrail captures all API calls from Amazon Kendra as events, including calls from the Amazon Kendra console and from code calls to the Amazon Kendra APIs. If you create a trail, you can activate continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for Amazon Kendra. If you don't configure a trail, you can still view the most recent events in the CloudTrail console in **Event history**. Using the information collected by CloudTrail, you can determine the request that was made to Amazon Kendra, the IP address from which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, including how to configure and activate it, see the [AWS CloudTrail User Guide](#).
Amazon Kendra information in CloudTrail

CloudTrail is activated on your AWS account when you create the account. When activity occurs in Amazon Kendra, that activity is recorded in a CloudTrail event along with other AWS service events in the CloudTrail Event history. You can view, search, and download recent events in your AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Kendra, create a trail. A trail is a configuration that allows CloudTrail to deliver events as log files to a specified S3 bucket. By default, when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the AWS partition and delivers the log files to the S3 bucket that you specify. Additionally, you can configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs. For more information, see:

- Overview for Creating a Trail
- CloudTrail Supported Services and Integrations
- Configuring Amazon SNS Notifications for CloudTrail
- Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple Accounts

CloudTrail logs all Amazon Kendra actions, which are documented in the API Reference. For example, calls to the CreateIndex, CreateDataSource, and Query operations generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. For more information, see the CloudTrail userIdentity Element.

Example: Amazon Kendra log file entries

A trail is a configuration that allows delivery of events as log files to a specified S3 bucket. CloudTrail log files contain one or more log entries. An event represents a single request from any source and includes information about the requested action, the date and time of the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear in any specific order.

Calls to the Query operation creates the following entry.

```json
{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole | FederatedUser | IAMUser | Root | SAMLUser | WebIdentityUser",
 "principalId": "principal ID",
 "arn": "ARN",
 "accountId": "account ID",
 "accessKeyId": "access key ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "principal ID",
 "arn": "ARN",
 "accountId": "account ID",
 "userName": "user name"
 }
 },
 "webIdFederationData": {
 ...
 },
 "attributes": {
 ...
 }
 }
}
```
Logging Amazon Kendra Intelligent Ranking API calls with AWS CloudTrail logs

Amazon Kendra Intelligent Ranking is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role, or an AWS service in Amazon Kendra Intelligent Ranking. CloudTrail captures all API calls from Amazon Kendra intelligent Ranking as events, including code calls to the Amazon Kendra Intelligent Ranking APIs. If you create a trail, you can activate continuous delivery of CloudTrail events to and Amazon S3 bucket, including events for Amazon Kendra Intelligent Ranking. If you don't configure a trail, you can still view the most recent events in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can determine the request that was made to Amazon Kendra Intelligent Ranking, the IP address from which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, including how to configure and activate it, see the AWS CloudTrail User Guide.

Amazon Kendra Intelligent Ranking information in CloudTrail

CloudTrail is activated on your AWS account when you create the account. When activity occurs in Amazon Kendra Intelligent Ranking, that activity is recorded in a CloudTrail event along with other AWS service events in the CloudTrail Event history. You can view, search, and download recent events in your AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Kendra Intelligent Ranking, create a trail. A trail is a configuration that allows CloudTrail to deliver events as log files to a specified S3 bucket. By default, when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the AWS partition and delivers the log files to the S3 bucket that you specify. Additionally, you can configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs. For more information, see:

- Overview for Creating a Trail
- CloudTrail Supported Services and Integrations
- Configuring Amazon SNS Notifications for CloudTrail
CloudTrail logs all Amazon Kendra Intelligent Ranking actions, which are documented in the API Reference. For example, calls to the CreateRescoreExecutionPlan generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. For more information, see the CloudTrail userIdentity Element.

**Example: Amazon Kendra Intelligent Ranking log file entries**

A *trail* is a configuration that allows delivery of events as log files to a specified S3 bucket. CloudTrail log files contain one or more log entries. An *event* represents a single request from any source and includes information about the requested action, the date and time of the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear in any specific order.

Calls to the CreateRescoreExecutionPlan operation creates the following entry.

```json
{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "principal ID",
 "arn": "ARN",
 "accountId": "account ID",
 "accessKeyId": "access key ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "principal ID",
 "arn": "ARN",
 "accountId": "account ID",
 "userName": "user name"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "yyyy-mm-ddThh:mm:ssZ",
 "mfaAuthenticated": "false"
 }
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "yyyy-mm-ddThh:mm:ssZ",
 "mfaAuthenticated": "false"
 }
 },
 "eventTime": "yyyy-mm-ddThh:mm:ssZ",
 "eventSource": "kendra-ranking.amazonaws.com",
 "eventName": "CreateRescoreExecutionPlan",
 "awsRegion": "region",
 "sourceIPAddress": "source IP address",
 "userAgent": "user agent",
 "requestParameters": {
 "name": "name",
 "description": "description",
 "clientToken": "client token"
 },
 "responseElements": {
 "id": "rescore execution plan ID",
 "arn": "rescore execution plan ARN"
 },
 "requestID": "request ID",
 "eventID": "event ID"
}
```
Monitoring Amazon Kendra with Amazon CloudWatch

To track the health of your indexes, use Amazon CloudWatch. With CloudWatch, you can get metrics for document synchronization for your index. You can also set up CloudWatch alarms to be notified when one or more metrics exceeds a threshold that you define. For example, you can monitor the number of documents submitted to be indexed or the number of documents that failed to be indexed.

You must have the appropriate CloudWatch permissions to monitor Amazon Kendra with CloudWatch. For more information, see Authentication and Access Control for Amazon CloudWatch in the Amazon CloudWatch User Guide.

Viewing Amazon Kendra metrics

View Amazon Kendra metrics using the CloudWatch console.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. Choose Metrics, choose All Metrics and then choose Kendra.
3. Choose the dimension, choose a metric name, then choose Add to graph.
4. Choose a value for the date range. The metric count for the selected date range is displayed in the graph.

Creating an alarm

A CloudWatch alarm watches a single metric over a specified time period and performs one or more actions: sending a notification to an Amazon Simple Notification Service (Amazon SNS) topic or Auto Scaling policy. The actions or actions are based on the value of the metric relative to a given threshold over a number of time periods that you specify. CloudWatch can also send you an Amazon SNS message when the alarm changes state.

CloudWatch alarms invoke actions only when the state changes and has persisted for the period that you specify.

To set an alarm

1. Sign in to the AWS Management Console and open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. Choose Alarms and then choose Create Alarm.
3. Choose Kendra metrics and then choose a metric.
4. For **Time Range**, choose a time range to monitor, and then choose **Next**.
5. Enter a **Name** and **Description**.
6. For **Whenever**, choose >=, and type a maximum value.
7. If you want CloudWatch to send an email when the alarm state is reached, in the **Actions** section, for **Whenever this alarm**, choose **State is ALARM**. For **Send notification to**, choose a mailing list or choose **New list** and create a new mailing list.
8. Preview the alarm in the **Alarm Preview** section. If you are satisfied with the alarm, choose **Create Alarm**.

CloudWatch Metrics for index synchronization Jobs

The following table describes the Amazon Kendra metrics for data source synchronization jobs.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DocumentsCrawled</td>
<td>The number of documents that the synchronization job scanned or discovered during the run.</td>
</tr>
<tr>
<td></td>
<td>Dimensions:</td>
</tr>
<tr>
<td></td>
<td>• IndexId</td>
</tr>
<tr>
<td></td>
<td>• DataSourceId</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td>DocumentsSubmittedForIndexing</td>
<td>The number of documents that the synchronization job submitted to the index.</td>
</tr>
<tr>
<td></td>
<td>Dimensions:</td>
</tr>
<tr>
<td></td>
<td>• IndexId</td>
</tr>
<tr>
<td></td>
<td>• DataSourceId</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td>DocumentsSubmittedForIndexingFailed</td>
<td>The number of documents that failed indexing. Check the contents of the CloudWatch log for the synchronization job for details.</td>
</tr>
<tr>
<td></td>
<td>Dimensions:</td>
</tr>
<tr>
<td></td>
<td>• IndexId</td>
</tr>
<tr>
<td></td>
<td>• DataSourceId</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td>DocumentsSubmittedForDeletion</td>
<td>The number of documents that the synchronization job asked to be removed from the index.</td>
</tr>
<tr>
<td></td>
<td>Dimensions:</td>
</tr>
<tr>
<td></td>
<td>• IndexId</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>DocumentsSubmittedForDeletionFailed</td>
<td>The number of documents that failed to be deleted. Check the contents of the CloudWatch log for the synchronization job for details.</td>
</tr>
<tr>
<td></td>
<td>Dimensions:</td>
</tr>
<tr>
<td></td>
<td>• IndexId</td>
</tr>
<tr>
<td></td>
<td>• DataSourceId</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
</tbody>
</table>

### Metrics for Amazon Kendra data sources

The following table describes the Amazon Kendra metrics for data source synchronization jobs. Metrics marked with an asterisk (*) are used only for Amazon S3 data sources.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DocumentsSkippedNoChange *</td>
<td>The number of documents examined and found not to have changed so they weren't submitted for indexing.</td>
</tr>
<tr>
<td></td>
<td>Dimensions:</td>
</tr>
<tr>
<td></td>
<td>• IndexId</td>
</tr>
<tr>
<td></td>
<td>• DataSourceId</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td>DocumentsSkippedInvalidMetadata *</td>
<td>The number of documents skipped because there was a problem with the associated metadata file. Check the contents of the CloudWatch log for the synchronization run for details.</td>
</tr>
<tr>
<td></td>
<td>Dimensions:</td>
</tr>
<tr>
<td></td>
<td>• IndexId</td>
</tr>
<tr>
<td></td>
<td>• DataSourceId</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
</tbody>
</table>

DocumentsCrawled	The number of document files examined.
	Dimensions:
	• IndexId
	• DataSourceId
### Metrics for indexed documents

The following table describes the Amazon Kendra metrics for indexed documents. For documents that are indexed using the `[BatchPutDocument](https://docs.aws.amazon.com/kendra/latest/APIReference/API_BatchPutDocument.html)` operation, only the `IndexId` dimension is supported.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DocumentsCount</td>
<td>The number of documents examined.</td>
</tr>
<tr>
<td>DocumentsCountFailed</td>
<td>The number of documents that failed indexing.</td>
</tr>
<tr>
<td>DocumentsCountIndexed</td>
<td>The number of documents indexed.</td>
</tr>
<tr>
<td>DocumentsCountIndexedFailed</td>
<td>The number of documents submitted for indexing that couldn't be indexed.</td>
</tr>
</tbody>
</table>

### Metrics for indexed documents

The following table describes the Amazon Kendra metrics for indexed documents. For documents that are indexed using the `[BatchPutDocument](https://docs.aws.amazon.com/kendra/latest/APIReference/API_BatchPutDocument.html)` operation, only the `IndexId` dimension is supported.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DocumentsSubmittedForDeletion</td>
<td>The number of documents examined that were deleted from the data source and submitted for deletion. Dimensions: <code>IndexId</code>, <code>DataSourceId</code>.</td>
</tr>
<tr>
<td>DocumentsSubmittedForDeletionFailed</td>
<td>The number of documents that failed deletion from a data source. Dimensions: <code>IndexId</code>, <code>DataSourceId</code>.</td>
</tr>
<tr>
<td>DocumentsSubmittedForIndexing</td>
<td>The number of documents examined and submitted for indexing. Dimensions: <code>IndexId</code>, <code>DataSourceId</code>.</td>
</tr>
<tr>
<td>DocumentsSubmittedForIndexingFailed</td>
<td>The number of documents submitted for indexing that couldn't be indexed. Dimensions: <code>IndexId</code>, <code>DataSourceId</code>.</td>
</tr>
</tbody>
</table>
Monitoring Amazon Kendra with Amazon CloudWatch Logs

Amazon Kendra uses Amazon CloudWatch Logs to give you insight into the operation of your data sources. Amazon Kendra logs process details for the documents as they are indexed. It logs errors from your data source that occur while your documents are being indexed. You use CloudWatch Logs to monitor, store and access the log files.

CloudWatch Logs stores log events in a log stream that is part of a log group. Amazon Kendra uses these features as follows:

- **Log groups**—Amazon Kendra stores all of your log streams in a single log group for each index. Amazon Kendra creates the log group when the index is created. The log group identifier always begins with "aws/kendra/".
- **Log stream**—Amazon Kendra creates a new data source log stream in the log group for each index synchronization job that you run. It also creates a new document log stream when a stream reaches approximately 500 entries.
- **Log entries**—Amazon Kendra creates a log entry in the log stream as it indexes documents. Each entry provides information about processing the document or any errors that are encountered.

For more information about using CloudWatch Logs, see [What Is Amazon Cloud Watch Logs](https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/what-is-cloud-watch-logs.html) in the Amazon CloudWatch Logs User Guide.

Amazon Kendra creates two types of log streams:

---

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DocumentsFailedToIndex</td>
<td>The number of documents that could not be indexed. Check the contents of the CloudWatch log for details.</td>
</tr>
<tr>
<td>IndexQueryCount</td>
<td>The number of index queries per minute.</td>
</tr>
</tbody>
</table>

**Dimensions:**
- IndexId
- DataSourceId

**Unit:** Count
Data source log streams

Data source log streams publish entries about your index synchronization jobs. Each synchronization job creates a new log stream that it uses to publish entries. The log stream name is:

\[ \text{data source id/YYYY-MM-DD-HH/data source sync job ID} \]

A new log stream is created for each synchronization job run.

There are three types of log messages published to a data source log stream:

- A log message for a document that failed to be sent for indexing. The following is an example of this message for a document in an S3 data source:

  ```json
 {
 "DocumentId": "document ID",
 "S3Path": "s3://bucket/prefix/object",
 "Message": "Failed to ingest document via BatchPutDocument.",
 "ErrorCode": "InvalidRequest",
 "ErrorMessage": "No document metadata configuration found for document attribute key city."
 }
  ```

- A log message for a document that failed to be sent for deletion. The following is an example of this message:

  ```json
 {
 "DocumentId": "document ID",
 "Message": "Failed to delete document via BatchDeleteDocument.",
 "ErrorCode": "InvalidRequest",
 "ErrorMessage": "Document can't be deleted because it doesn't exist."
 }
  ```

- A log message when an invalid metadata file for a document in an Amazon S3 bucket is found. The following is an example of this message:

  ```json
 {
 "Message": "Found invalid metadata file bucket/prefix/filename.extension.metadata.json."
 }
  ```

- For SharePoint and database connectors, Amazon Kendra only writes messages to the log stream if a document can't be indexed. The following is an example of the error message that Amazon Kendra logs.

  ```json
 {
 "DocumentID": "document ID",
 "IndexID": "index ID",
 "SourceURI": ",",
 "CrawlStatus": "FAILED",
 "ErrorCode": "403",
 "ErrorMessage": "Access Denied",
 "DataSourceErrorCode": "403"
 }
  ```
Document log streams

Amazon Kendra logs information about processing documents while they are being indexed. It logs a set of messages for documents stored in an Amazon S3 data source. It logs errors only for documents stored in a Microsoft SharePoint or a database data source.

If the documents were added to the index using the BatchPutDocument operation, the log stream is named as follows:

```
YYYY-MM-DD-HH/UUID
```

If the documents were added to the index using a datasource, the log stream is named as follows:

```
dataSourceId/YYYY-MM-DD-HH/UUID
```

Each log stream contains up to 500 messages.

If indexing a document fails, this message is output to the log stream:

```
{
 "DocumentId": "document ID",
 "IndexName": "index name",
 "IndexId": "index ID",
 "SourceURI": "source URI",
 "IndexingStatus": "DocumentFailedToIndex",
 "ErrorCode": "400 | 500",
 "ErrorMessage": "message"
}
```
Security in Amazon Kendra

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this as security of the cloud and security in the cloud:

- **Security of the cloud**—AWS is responsible for protecting the infrastructure that runs AWS services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To learn about the compliance programs that apply to Amazon Kendra, see AWS Services in Scope by Compliance Program.
- **Security in the cloud**—Your responsibility is determined by the AWS service that you use. You are also responsible for other factors including the sensitivity of your data, your company’s requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using Amazon Kendra. The following topics show you how to configure Amazon Kendra to meet your security and compliance objectives. You also learn how to use other AWS services that help you to monitor and secure your Amazon Kendra resources.

**Topics**
- Data protection in Amazon Kendra (p. 610)
- Amazon Kendra and interface VPC endpoints (AWS PrivateLink) (p. 612)
- Identity and access management for Amazon Kendra (p. 613)
- Security best practices (p. 629)
- Logging and monitoring in Amazon Kendra (p. 629)
- Compliance validation for Amazon Kendra (p. 629)
- Resilience in Amazon Kendra (p. 630)
- Infrastructure security in Amazon Kendra (p. 630)
- Configuration and vulnerability analysis in AWS Identity and Access Management (p. 631)

Data protection in Amazon Kendra

The AWS shared responsibility model applies to data protection in Amazon Kendra. As described in this model, AWS is responsible for protecting the global infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on this infrastructure. This content includes the security configuration and management tasks for the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up individual users with AWS IAM Identity Center (successor to AWS Single Sign-On) or AWS Identity and Access Management (IAM). That way, each user is given only the permissions necessary to fulfill their job duties. We also recommend that you secure your data in the following ways:
• Use multi-factor authentication (MFA) with each account.
• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.
• Set up API and user activity logging with AWS CloudTrail.
• Use AWS encryption solutions, along with all default security controls within AWS services.
• Use advanced managed security services such as Amazon Macie, which assists in discovering and securing sensitive data that is stored in Amazon S3.
• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your customers' email addresses, into tags or free-form text fields such as a Name field. This includes when you work with Amazon Kendra or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not include credentials information in the URL to validate your request to that server.

Encryption at rest

Amazon Kendra encrypts your data at rest with your choice of an encryption key. You can choose one of the following:

• An AWS-owned AWS KMS key. If you don't specify an encryption key your data is encrypted with this key by default.
• An AWS-managed KMS key in your account. This key is created, managed, and used on your behalf by Amazon Kendra. The key name is aws/kendra.
• A customer-managed key. You can provide the ARN of an encryption key that you created in your account. When you use a customer-managed KMS key, you must give the key a key policy that allows Amazon Kendra to use the key. Select a symmetric encryption customer-managed KMS key. Amazon Kendra does not support asymmetric KMS keys. For more information, see Key management (p. 611).

Encryption in transit

Amazon Kendra uses the HTTPS protocol to communicate with your client application. It uses HTTPS and AWS signatures to communicate with other services on your application's behalf. If you use a VPC, you can use AWS PrivateLink to establish a private connection between your VPC and Amazon Kendra.

Key management

Amazon Kendra encrypts the contents of your index using one of three types of keys. You can choose one of the following:

• An AWS-owned AWS KMS. This is the default.
• An AWS-managed KMS key. This key is created in your account and is managed and used on your behalf by Amazon Kendra.
• A customer-managed KMS key. You can create the key when you are creating an Amazon Kendra index or data source, or you can create the key using the AWS KMS console. Select a symmetric encryption customer-managed KMS key. Amazon Kendra does not support asymmetric KMS keys. For more information, see Using Symmetric and Asymmetric Keys in the AWS Key Management Service Developer Guide.
Amazon Kendra and interface VPC endpoints (AWS PrivateLink)

You can establish a private connection between your VPC and Amazon Kendra by creating an interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that allows you to privately access Amazon Kendra APIs without an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP addresses to communicate with Amazon Kendra APIs. Traffic between your VPC and Amazon Kendra does not leave the Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

Considerations for Amazon Kendra VPC endpoints

Before you set up an interface VPC endpoint for Amazon Kendra, make sure that you review Interface endpoint properties and limitations in the Amazon VPC User Guide.

Amazon Kendra supports making calls to all of its API actions from your VPC.

Creating an interface VPC endpoint for Amazon Kendra

You can create a VPC endpoint for the Amazon Kendra service using either the Amazon VPC console or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for Amazon Kendra using the following service name:

- com.amazonaws.region.kendra

After you create a VPC endpoint, you can use the following example AWS CLI command that uses the endpoint-url parameter to specify an interface endpoint to the Amazon Kendra API:

```
aws kendra list-indices --endpoint-url https://VPC endpoint
```

where VPC endpoint is the DNS name generated when the interface endpoint is created. This name includes the VPC endpoint ID, Amazon Kendra service name and Region name. For example, vpce-1234-abcdef.kendra.us-west-2.vpce.amazonaws.com.

If you activate private DNS for the endpoint, you can make API requests to Amazon Kendra using its default DNS name for the Region, for example, kendra.us-east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC User Guide.

Creating a VPC endpoint policy for Amazon Kendra

You can attach an endpoint policy to your VPC endpoint that controls access to Amazon Kendra. The policy specifies the following information:

- The principal that can perform actions.
- The actions that can be performed.
- The resources on which actions can be performed.
For more information, see Controlling access to services with VPC endpoints in the Amazon VPC User Guide.

Example: VPC endpoint policy for Amazon Kendra actions

The following is an example of an endpoint policy for Amazon Kendra. When attached to an endpoint, this policy grants access to the listed Amazon Kendra actions for all principals on all resources.

```
{
 "Statement": [
 {
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "kendra:Query"
],
 "Resource": "*"
 }
]
}
```

Identity and access management for Amazon Kendra

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely control access to AWS resources. IAM administrators control who can be authenticated (signed in) and authorized (have permissions) to use Amazon Kendra resources. IAM is an AWS service that you can use with no additional charge.

Topics

- Audience (p. 613)
- Authenticating with identities (p. 614)
- Managing access using policies (p. 616)
- How Amazon Kendra works with IAM (p. 617)
- Amazon Kendra Identity-based policy examples (p. 620)
- AWS managed policies for Amazon Kendra (p. 624)
- Troubleshooting Amazon Kendra Identity and Access (p. 627)

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you do in Amazon Kendra.

Service user – If you use the Amazon Kendra service to do your job, then your administrator provides you with the credentials and permissions that you need. As you use more Amazon Kendra features to do your work, you might need additional permissions. Understanding how access is managed can help you request the right permissions from your administrator. If you cannot access a feature in Amazon Kendra, see Troubleshooting Amazon Kendra Identity and Access (p. 627).

Service administrator – If you're in charge of Amazon Kendra resources at your company, you probably have full access to Amazon Kendra. It's your job to determine which Amazon Kendra features and resources your service users should access. You must then submit requests to your IAM administrator to change the permissions of your service users. Review the information on this page to understand the
basic concepts of IAM. To learn more about how your company can use IAM with Amazon Kendra, see How Amazon Kendra works with IAM (p. 617).

IAM administrator – If you’re an IAM administrator, you might want to learn details about how you can write policies to manage access to Amazon Kendra. To view example Amazon Kendra identity-based policies that you can use in IAM, see Amazon Kendra Identity-based policy examples (p. 620).

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity source. AWS IAM Identity Center (successor to AWS Single Sign-On) (IAM Identity Center) users, your company’s single sign-on authentication, and your Google or Facebook credentials are examples of federated identities. When you sign in as a federated identity, your administrator previously set up identity federation using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a command line interface (CLI) to cryptographically sign your requests by using your credentials. If you don’t use AWS tools, you must sign requests yourself. For more information about using the recommended method to sign requests yourself, see Signing AWS API requests in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional security information. For example, AWS recommends that you use multi-factor authentication (MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the AWS IAM Identity Center (successor to AWS Single Sign-On) User Guide and Using multi-factor authentication (MFA) in AWS in the IAM User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to all AWS services and resources in the account. This identity is called the AWS account root user and is accessed by signing in with the email address and password that you used to create the account. We strongly recommend that you don’t use the root user for your everyday tasks. Safeguard your root user credentials and use them to perform the tasks that only the root user can perform. For the complete list of tasks that require you to sign in as the root user, see Tasks that require root user credentials in the AWS Account Management Reference Guide.

IAM Users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person or application. Where possible, we recommend relying on temporary credentials instead of creating IAM users who have long-term credentials such as passwords and access keys. However, if you have specific use cases that require long-term credentials with IAM users, we recommend that you rotate access keys. For more information, see Rotate access keys regularly for use cases that require long-term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can’t sign in as a group. You can use groups to specify permissions for multiple users at a time. Groups make permissions easier to manage for large sets of users. For example, you could have a group named IAMAdmins and give that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but
roles provide temporary credentials. To learn more, see When to create an IAM user (instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information about methods for using roles, see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

- **Federated user access** – To assign permissions to a federated identity, you create a role and define permissions for the role. When a federated identity authenticates, the identity is associated with the role and is granted the permissions that are defined by the role. For information about roles for federation, see Creating a role for a third-party Identity Provider in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control what your identities can access after they authenticate, IAM Identity Center correlates the permission set to a role in IAM. For information about permissions sets, see Permission sets in the AWS IAM Identity Center (successor to AWS Single Sign-On) User Guide.

- **Temporary IAM user permissions** – An IAM user or role can assume an IAM role to temporarily take on different permissions for a specific task.

- **Cross-account access** – You can use an IAM role to allow someone (a trusted principal) in a different account to access resources in your account. Roles are the primary way to grant cross-account access. However, with some AWS services, you can attach a policy directly to a resource (instead of using a role as a proxy). To learn the difference between roles and resource-based policies for cross-account access, see How IAM roles differ from resource-based policies in the IAM User Guide.

- **Cross-service access** – Some AWS services use features in other AWS services. For example, when you make a call in a service, it's common for that service to run applications in Amazon EC2 or store objects in Amazon S3. A service might do this using the calling principal's permissions, using a service role, or using a service-linked role.

- **Principal permissions** – When you use an IAM user or role to perform actions in AWS, you are considered a principal. Policies grant permissions to a principal. When you use some services, you might perform an action that then triggers another action in a different service. In this case, you must have permissions to perform both actions. To see whether an action requires additional dependent actions in a policy, see Actions, Resources, and Condition Keys for Amazon Kendra in the Service Authorization Reference.

- **Service role** – A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For more information, see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

- **Service-linked role** – A service-linked role is a type of service role that is linked to an AWS service. The service can assume the role to perform an action on your behalf. Service-linked roles appear in your AWS account and are owned by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

- **Applications running on Amazon EC2** – You can use an IAM role to manage temporary credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2 instance and make it available to all of its applications, you create an instance profile that is attached to the instance. An instance profile contains the role and enables programs that are running on the EC2 instance to get temporary credentials. For more information, see Using an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user) in the IAM User Guide.
Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. A policy is an object in AWS that, when associated with an identity or resource, defines their permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes a request. Permissions in the policies determine whether the request is allowed or denied. Most policies are stored in AWS as JSON documents. For more information about the structure and contents of JSON policy documents, see [Overview of JSON policies](#) in the [IAM User Guide](#).

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on the resources that they need, an IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the operation. For example, suppose that you have a policy that allows the `iam:GetRole` action. A user with that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such as an IAM user, group of users, or role. These policies control what actions users and roles can perform, on which resources, and under what conditions. To learn how to create an identity-based policy, see [Creating IAM policies](#) in the [IAM User Guide](#).

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies are embedded directly into a single user, group, or role. Managed policies are standalone policies that you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS managed policies and customer managed policies. To learn how to choose between a managed policy or an inline policy, see [Choosing between managed policies and inline policies](#) in the [IAM User Guide](#).

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-based policies, service administrators can use them to control access to a specific resource. For the resource where the policy is attached, the policy defines what actions a specified principal can perform on that resource and under what conditions. You must specify a principal in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS services.

Resource-based policies are inline policies that are located in that service. You can't use AWS managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more about ACLs, see [Access control list (ACL) overview](#) in the [Amazon Simple Storage Service Developer Guide](#).

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum permissions granted to you by the more common policy types.
• Permissions boundaries – A permissions boundary is an advanced feature in which you set the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role). You can set a permissions boundary for an entity. The resulting permissions are the intersection of an entity’s identity-based policies and its permissions boundaries. Resource-based policies that specify the user or role in the Principal field are not limited by the permissions boundary. An explicit deny in any of these policies overrides the allow. For more information about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for grouping and centrally managing multiple AWS accounts that your business owns. If you enable all features in an organization, then you can apply service control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in member accounts, including each AWS account root user. For more information about Organizations and SCPs, see How SCPs work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you programmatically create a temporary session for a role or federated user. The resulting session’s permissions are the intersection of the user or role’s identity-based policies and the session policies. Permissions can also come from a resource-based policy. An explicit deny in any of these policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated to understand. To learn how AWS determines whether to allow a request when multiple policy types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Kendra works with IAM

Before you use IAM to manage access to Amazon Kendra, you should understand what IAM features are available to use with Amazon Kendra. To get a high-level view of how Amazon Kendra and other AWS services work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Topics

• Amazon Kendra identity-based policies (p. 617)
• Amazon Kendra Resource-based policies (p. 619)
• Access control lists (ACLs) (p. 619)
• Authorization based on Amazon Kendra tags (p. 619)
• Amazon Kendra IAM Roles (p. 620)

Amazon Kendra identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the conditions under which actions are allowed or denied. Amazon Kendra supports specific actions, resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny access in a policy. Policy actions usually have the same name as the associated AWS API operation. There are some
exceptions, such as permission-only actions that don't have a matching API operation. There are also some operations that require multiple actions in a policy. These additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon Kendra use the following prefix before the action: kendra:. For example, to grant someone permission to list Amazon Kendra indexes with the ListIndices API operation, you include the kendra:ListIndices action in their policy. Policy statements must include either an Action or NotAction element. Amazon Kendra defines its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

```
"Action": [
 "kendra:action1",
 "kendra:action2"
]
```

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with the word Describe, include the following action:

```
"Action": "kendra:Describe*"
```

To see a list of Amazon Kendra actions, see Actions Defined by Amazon Kendra in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. Statements must include either a Resource or a NotResource element. As a best practice, specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard (*) to indicate that the statement applies to all resources.

```
"Resource": "*
```

The Amazon Kendra index resource has the following ARN:

```
arn:${Partition}:kendra:${Region}:${Account}:index/${IndexId}
```

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS Service Namespaces.

For example, to specify an index in your statement, use the GUID of the index in the following ARN:

```
"Resource": "arn:aws:kendra:${Region}:${Account}:index/${GUID}"
```

To specify all indexes that belong to a specific account, use the wildcard (*):

```
"Resource": "arn:aws:${Region}:${Account}:index/"
```
Some Amazon Kendra actions, such as those for creating resources, cannot be performed on a specific resource. In those cases, you must use the wildcard (*).

```
"Resource": "*"
```

To see a list of Amazon Kendra resource types and their ARNs, see Resources Defined by Amazon Kendra in the IAM User Guide. To learn with which actions you can specify the ARN of each resource, see Actions Defined by Amazon Kendra.

**Condition keys**

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in effect. The Condition element is optional. You can create conditional expressions that use condition operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM user permission to access a resource only if it is tagged with their IAM user name. For more information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global condition keys, see AWS global condition context keys in the IAM User Guide.

Amazon Kendra does not provide any service-specific condition keys, but it does support using some global condition keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User Guide.

**Examples**

To view examples of Amazon Kendra identity-based policies, see Amazon Kendra Identity-based policy examples (p. 620).

**Amazon Kendra Resource-based policies**

Amazon Kendra does not support resource-based policies.

**Access control lists (ACLs)**

Amazon Kendra does not support access control lists (ACLs) for access to AWS services and resources.

**Authorization based on Amazon Kendra tags**

You can associate tags with certain types of Amazon Kendra resources to authorize access to those resources. To control access based on tags, provide tag information in the condition element of a policy by using the aws:RequestTag/key-name, or aws:TagKeys condition keys.

The following table lists the actions, corresponding resource types, and condition keys for tag-based access control. Each action is authorized based on the tags associated with the corresponding resource type.
Amazon Kendra Developer Guide
Identity-based policy examples

<table>
<thead>
<tr>
<th>Action</th>
<th>Resource type</th>
<th>Condition keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>CreateDataSource</td>
<td></td>
<td>aws:RequestTag, aws:TagKeys</td>
</tr>
<tr>
<td>CreateFaq</td>
<td></td>
<td>aws:RequestTag, aws:TagKeys</td>
</tr>
<tr>
<td>CreateIndex</td>
<td></td>
<td>aws:RequestTag, aws:TagKeys</td>
</tr>
<tr>
<td>API_ListTagsForResource</td>
<td>data source, FAQ, index</td>
<td></td>
</tr>
<tr>
<td>TagResource</td>
<td>data source, FAQ, index</td>
<td>aws:RequestTag, aws:TagKeys</td>
</tr>
<tr>
<td>UntagResource</td>
<td>data source, FAQ, index</td>
<td>aws:TagKeys</td>
</tr>
</tbody>
</table>

For information about tagging Amazon Kendra resources, see Tags (p. 11). For an example identity-based policy that limits access to a resource based on resource tags, see Tag-based policy examples (p. 623). For more information about using tags to limit access to resources, see Controlling access using tags in the IAM User Guide.

Amazon Kendra IAM Roles

An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials with Amazon Kendra

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a cross-account role. You obtain temporary security credentials by calling AWS STS API operations such as AssumeRole or GetFederationToken.

Amazon Kendra supports using temporary credentials.

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to access resources in other services to complete an action on your behalf. Service roles appear in your IAM account and are owned by the account. This means that an IAM administrator can change the permissions for this role. However, doing so might break the functionality of the service.

Amazon Kendra supports service roles.

Choosing an IAM role in Amazon Kendra

When you create an index, call the BatchPutDocument operation, create a data source or create an FAQ, you must provide an access role Amazon Resource Name (ARN) that Amazon Kendra uses to access the required resources on your behalf. If you have previously created a role, then the Amazon Kendra console provides you with a list of roles to choose from. It's important to choose a role that allows access to the resources that you require. For more information, see IAM access roles for Amazon Kendra (p. 15).

Amazon Kendra Identity-based policy examples

By default, users and roles don't have permission to create or modify Amazon Kendra resources. They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM administrator must create IAM policies that grant users and roles permission to perform specific API
operations on the specified resources they need. The administrator must then attach those policies to the users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, see Creating Policies on the JSON Tab in the IAM User Guide.

Topics
- Policy best practices (p. 621)
- AWS Managed (Predefined) Policies for Amazon Kendra (p. 621)
- Allow users to view their own permissions (p. 622)
- Accessing one Amazon Kendra index (p. 622)
- Tag-based policy examples (p. 623)

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon Kendra resources in your account. These actions can incur costs for your AWS account. When you create or edit identity-based policies, follow these guidelines and recommendations:

- Get started with AWS managed policies and move toward least-privilege permissions – To get started granting permissions to your users and workloads, use the AWS managed policies that grant permissions for many common use cases. They are available in your AWS account. We recommend that you reduce permissions further by defining AWS customer managed policies that are specific to your use cases. For more information, see AWS managed policies or AWS managed policies for job functions in the IAM User Guide.

- Apply least-privilege permissions – When you set permissions with IAM policies, grant only the permissions required to perform a task. You do this by defining the actions that can be taken on specific resources under specific conditions, also known as least-privilege permissions. For more information about using IAM to apply permissions, see Policies and permissions in IAM in the IAM User Guide.

- Use conditions in IAM policies to further restrict access – You can add a condition to your policies to limit access to actions and resources. For example, you can write a policy condition to specify that all requests must be sent using SSL. You can also use conditions to grant access to service actions if they are used through a specific AWS service, such as AWS CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM User Guide.

- Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions – IAM Access Analyzer validates new and existing policies so that the policies adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides more than 100 policy checks and actionable recommendations to help you author secure and functional policies. For more information, see IAM Access Analyzer policy validation in the IAM User Guide.

- Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a root user in your AWS account; turn on MFA for additional security. To require MFA when API operations are called, add MFA conditions to your policies. For more information, see Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User Guide.

AWS Managed (Predefined) Policies for Amazon Kendra

AWS addresses many common use cases by providing standalone IAM policies that are created and administered by AWS. These policies are called AWS managed policies. AWS managed policies make it easier for you to assign permissions to users, groups, and roles than if you had to write the policies yourself. For more information, see Adding Permissions to a User in the IAM User Guide.
The following AWS managed policies, which you can attach to groups and roles in your account, are specific to Amazon Kendra:

- **AmazonKendraReadOnly** — Grants read-only access to Amazon Kendra resources.
- **AmazonKendraFullAccess** — Grants full access to create, read, update, delete, tag, and run all Amazon Kendra resources.

For the console, your role must also have `iam:CreateRole`, `iam:CreatePolicy`, `iam:AttachRolePolicy`, and `s3:ListBucket` permissions.

**Note**
You can review these permissions by signing in to the IAM console and searching for specific policies.

You can also create your own custom policies to allow permissions for Amazon Kendra API actions. You can attach these custom policies to the IAM roles or groups that require those permissions. For examples of IAM policies for Amazon Kendra, see [Amazon Kendra Identity-based policy examples](p. 620).

### Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and managed policies that are attached to their user identity. This policy includes permissions to complete this action on the console or programmatically using the AWS CLI or AWS API.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}
```

### Accessing one Amazon Kendra index

In this example, you want to grant an user in your AWS account access to query an index.
Identity-based policy examples

Tag-based policy examples

Tag-based policies are JSON policy documents that specify the actions that a principal can perform on tagged resources.

Example: Use a tag to access a resource

This example policy grants a user or role in your AWS account permission to use the Query operation with any resource tagged with the key department and the value finance.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kendra:Query"
],
 "Resource": "arn:aws:kendra:${Region}:${Account}:index/${Index ID}"
 }
]
}
```

Example: Use a tag to activate Amazon Kendra operations

This example policy grants a user or role in your AWS account permission to use any Amazon Kendra operation except TagResource operation with any resource tagged with the key department and the value finance.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kendra:*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "kendra:TagResource"
]
 }
]
}
```
Example: Use a tag to restrict access to an operation

This example policy restricts access for a user or role in your AWS account to use the CreateIndex operation unless the user provides the department tag and it has the allowed values finance and IT.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kendra:CreateIndex",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "kendra:CreateIndex",
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:RequestTag/department": "true"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": "kendra:CreateIndex",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringNotEquals": {
 "aws:RequestTag/department": ["finance", "IT"
 }
 }
 }
]
}
```

AWS managed policies for Amazon Kendra

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to write policies yourself. It takes time and expertise to create IAM customer managed policies that provide your team with only the permissions they need. To get started quickly, you can use our AWS managed policies. These policies cover common use cases and are available in your AWS account. For more information about AWS managed policies, see AWS managed policies in the IAM User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in AWS managed policies. Services occasionally add additional permissions to an AWS managed policy to
support new features. This type of update affects all identities (users, groups, and roles) where the policy is attached. Services are most likely to update an AWS managed policy when a new feature is launched or when new operations become available. Services do not remove permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For example, the **ReadOnlyAccess** AWS managed policy provides read-only access to all AWS services and resources. When a service launches a new feature, AWS adds read-only permissions for new operations and resources. For a list and descriptions of job function policies, see [AWS managed policies for job functions](https://docs.aws.amazon.com/IAM/latest/UserGuide/id SAF-managed-policies.html) in the *IAM User Guide*.

### AWS managed policy: AmazonKendraReadOnly

Grants read-only access to Amazon Kendra resources. This policy includes the following permissions.

- **kendra** — Allows users to perform actions that return either a list of items or details about an item. This includes API operations that start with Describe, List, Query, BatchGetDocumentStatus, GetQuerySuggestions, or GetSnapshots.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "kendra:Describe*",
 "kendra:List*",
 "kendra:Query",
 "kendra:BatchGetDocumentStatus",
 "kendra:GetQuerySuggestions",
 "kendra:GetSnapshots"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}
```

### AWS managed policy: AmazonKendraFullAccess

Grants full access to create, read, update, delete, tag, and run all Amazon Kendra resources. This policy includes the following permissions.

- **kendra** — Allows principals read and write access to all actions in the Amazon Kendra.
- **s3** — Allows principals get Amazon S3 bucket locations and list buckets.
- **iam** — Allows principals to pass and list roles.
- **kms** — Allows principals to describe and list AWS KMS keys and aliases.
- **secretsmanager** — Allows principals to create, describe, and list secrets.
- **ec2** — Allows principals to describe security groups, VCPs (Virtual Private Cloud), and subnets.
- **cloudwatch** — Allows principals to view Cloud Watch metrics.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "kendra:*",
 "s3:Get*",
 "s3:List*",
 "iam:Pass*",
 "iam:List*",
 "kms:Describe*",
 "kms:List*",
 "secretsmanager:*",
 "ec2:*",
 "cloudwatch:*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}
```
"Statement": [
    {
      "Effect": "Allow",
      "Action": "iam:PassRole",
      "Resource": "*",
      "Condition": {
        "StringEquals": {
          "iam:PassedToService": "kendra.amazonaws.com"
        }
      }
    },
    {
      "Effect": "Allow",
      "Action": ["iam:ListRoles"],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": ["ec2:DescribeSecurityGroups", "ec2:DescribeVpcs", "ec2:DescribeSubnets"],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": ["kms:ListKeys", "kms:ListAliases", "kms:DescribeKey"],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": ["s3:ListAllMyBuckets", "s3:GetBucketLocation"],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": ["secretsmanager:ListSecrets"],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": ["cloudwatch:GetMetricData"],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": ["secretsmanager:CreateSecret", "secretsmanager:DescribeSecret"],
      "Resource": "arn:aws:secretsmanager::*:secret:AmazonKendra-*"
    }],
  "Version": "2012-10-17"}
Amazon Kendra Developer Guide
Troubleshooting

Amazon Kendra updates to AWS managed policies

View details about updates to AWS managed policies for Amazon Kendra since this service began tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the Amazon Kendra Document history page.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmazonKendraReadOnly — Add permission to support GetSnapshots, BatchGetDocumentStatus APIs</td>
<td>Amazon Kendra added new APIs GetSnapshots and BatchGetDocumentStatus. GetSnapshots provides data that shows how your users interact with your search application. BatchGetDocumentStatus monitors the progress of indexing your documents.</td>
<td>January 3, 2022</td>
</tr>
<tr>
<td>AmazonKendraReadOnly — Add permission to support GetQuerySuggestions operation</td>
<td>Amazon Kendra added a new API GetQuerySuggestions that allows access to get query suggestions for popular search queries, helping guide your users' search. When users type their search query, the suggested query helps autocomplete their search.</td>
<td>May 27, 2021</td>
</tr>
</tbody>
</table>

Amazon Kendra started tracking changes | Amazon Kendra started tracking changes for its AWS managed policies. | May 27, 2021 |

Troubleshooting Amazon Kendra Identity and Access

Use the following information to help you diagnose and fix common issues that you might encounter when working with Amazon Kendra and IAM.

Topics
- I am not authorized to perform an action in Amazon Kendra (p. 628)
- I am not authorized to perform iam:PassRole (p. 628)
- I'm an administrator and I want to allow others to access Amazon Kendra (p. 628)
- I want to allow people outside of my AWS account to access my Amazon Kendra resources (p. 628)
I am not authorized to perform an action in Amazon Kendra

If the AWS Management Console tells you that you're not authorized to perform an action, then you must contact your administrator for assistance. Your administrator is the person that provided you with your sign-in credentials.

The following example error occurs when the mateojackson user tries to use the console to view details about an index but does not have kendra: DescribeIndex permissions.

```
User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: kendra:DescribeIndex on resource: index ARN
```

In this case, Mateo asks his administrator to update his policies to allow him to access the index resource using the kendra: DescribeIndex action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam: PassRole action, your policies must be updated to allow you to pass a role to Amazon Kendra.

Some AWS services allow you to pass an existing role to that service instead of creating a new service role or service-linked role. To do this, you must have permissions to pass the role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console to perform an action in Amazon Kendra. However, the action requires the service to have permissions that are granted by a service role. Mary does not have permissions to pass the role to the service.

```
User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole
```

In this case, Mary's policies must be updated to allow her to perform the iam: PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided you with your sign-in credentials.

I'm an administrator and I want to allow others to access Amazon Kendra

To allow others to access Amazon Kendra, you must create an IAM entity (user or role) for the person or application that needs access. They will use the credentials for that entity to access AWS. You must then attach a policy to the entity that grants them the correct permissions in Amazon Kendra.

To get started right away, see Creating your first IAM delegated user and group in the IAM User Guide.

I want to allow people outside of my AWS account to access my Amazon Kendra resources

You can create a role that users in other accounts or people outside of your organization can use to access your resources. You can specify who is trusted to assume the role. For services that support resource-based policies or access control lists (ACLs), you can use those policies to grant people access to your resources.

To learn more, consult the following:

- To learn whether Amazon Kendra supports these features, see How Amazon Kendra works with IAM (p. 617).
Security best practices

Amazon Kendra provides a number of security features to consider as you develop and implement your own security policies. The following best practices are general guidelines and don’t represent a complete security solution. Because these best practices might not be appropriate or sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Apply principle of least privilege

Amazon Kendra provides a granular access policy for applications using IAM roles. We recommend that the roles be granted only the minimum set of privileges required by the job, such as covering your application and access to log destination. We also recommend auditing the jobs for permissions on a regular basis and upon any change to your application.

Role-based access control (RBAC) permissions

Administrators should strictly control Role-based access control (RBAC) permissions for Amazon Kendra applications.

Logging and monitoring in Amazon Kendra

Monitoring is an important part of maintaining the reliability, availability, and performance of your Amazon Kendra applications. To monitor Amazon Kendra API calls, you can use AWS CloudTrail. To monitor the status of your jobs, use Amazon CloudWatch Logs.

- **Amazon CloudWatch Alarms**—Using CloudWatch alarms, you watch a single metric over a time period that you specify. If the metric exceeds a policy, CloudWatch alarms do not invoke actions when a metric is in a particular state. Rather the state must have changed and been maintained for a specified number of periods. For more information, see Monitoring Amazon Kendra with Amazon CloudWatch (p. 603).

- **AWS CloudTrail Logs**—CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon Kendra or Amazon Kendra Intelligent Ranking. Using the information collected by CloudTrail, you can determine the request that was made to Amazon Kendra, the IP address from which the request was made, who made the request, when it was made, and additional details. For more information, see Logging Amazon Kendra API calls with AWS CloudTrail logs (p. 599) and Logging Amazon Kendra Intelligent Ranking API calls with AWS CloudTrail logs (p. 601).

Compliance validation for Amazon Kendra

Third-party auditors assess the security and compliance of Amazon Kendra as part of multiple Amazon Kendra compliance programs. Amazon Kendra is compliant with the following:
Health Insurance Portability and Accountability Act (HIPAA)
System and Organization Controls (SOC) 2
Information Security Registered Assessors Program (IRAP)
Federal Risk and Authorization Management Program (FedRAMP) Moderate in the US East/West regions
Federal Risk and Authorization Management Program (FedRAMP) High in the AWS GovCloud (US-West) region

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading Reports in AWS Artifact.

Your compliance responsibility when using Amazon Kendra is determined by the sensitivity of your data, your company's compliance objectives, and applicable laws and regulations. AWS provides the following resources to help with compliance:

- **Security and Compliance Quick Start Guides**—These deployment guides discuss architectural considerations and provide steps for deploying security- and compliance-focused baseline environments on AWS.
- **Architecting for HIPAA Security and Compliance Whitepaper**—This whitepaper describes how companies can use AWS to create HIPAA-compliant applications.
- **AWS Compliance Resources**—This collection of workbooks and guides might apply to your industry and location.
- **Evaluating Resources with Rules** in the AWS Config Developer Guide—The AWS Config service assesses how well your resource configurations comply with internal practices, industry guidelines, and regulations.
- **AWS Security Hub**—This AWS service provides a comprehensive view of your security state within AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Kendra

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide multiple physically separated and isolated Availability Zones, which are connected with low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can design and operate applications and databases that automatically fail over between zones without interruption. Availability Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

With AWS global infrastructure, Amazon Kendra Enterprise Edition is fault tolerant, scalable, and highly available. Rolling back to previous versions of an index is not currently supported, but you can refresh or recreate portions of your index by deleting and adding existing data sources back into your index.

Infrastructure security in Amazon Kendra

As a managed service, Amazon Kendra is protected by AWS global network security. For information about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well-Architected Framework.
You use AWS published API calls to access Amazon Kendra through the network. Clients must support the following:

- Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.
- Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary security credentials to sign requests.

Configuration and vulnerability analysis in AWS Identity and Access Management

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall configuration, and disaster recovery. These procedures have been reviewed and certified by the appropriate third parties. For more details, see the following resources:

- Shared Responsibility Model
- AWS: Overview of Security Processes (whitepaper)

The following resources also address configuration and vulnerability analysis in AWS Identity and Access Management (IAM):

- Compliance validation for AWS Identity and Access Management
Quotas for Amazon Kendra

Supported regions

For a list of AWS regions where Amazon Kendra is available, see Amazon Kendra regions and endpoints in the Amazon Web Services General Reference.

Quotas

Service quotas, also referred to as limits, are the maximum number of service resources for your AWS account. For more information, see Amazon Kendra service quotas in the AWS General Reference.

<table>
<thead>
<tr>
<th>Description</th>
<th>Default</th>
<th>Edition</th>
<th>Adjustable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of indexes per account</td>
<td>5</td>
<td>Developer</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of indexes per account</td>
<td>5</td>
<td>Enterprise</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of data sources per index</td>
<td>5</td>
<td>Developer</td>
<td>No</td>
</tr>
<tr>
<td>Maximum number of data sources per index</td>
<td>50</td>
<td>Enterprise</td>
<td>Yes</td>
</tr>
<tr>
<td>Amount of text extracted for an index in a single unit. You can't add extra units for extracting text for the Developer Edition.</td>
<td>3 GB</td>
<td>Developer</td>
<td>No</td>
</tr>
<tr>
<td>Amount of text extracted for an index in a single unit. You can add up to 100 extra units for extracting text for the Enterprise Edition, or simply contact Support.</td>
<td>30 GB</td>
<td>Enterprise</td>
<td>Yes</td>
</tr>
<tr>
<td>Amount of queries per second for an index in a single unit. You can't add extra units for queries for the Developer Edition.</td>
<td>0.05</td>
<td>Developer</td>
<td>No</td>
</tr>
<tr>
<td>Amount of queries per second for an index in</td>
<td>0.1</td>
<td>Enterprise</td>
<td>Yes</td>
</tr>
<tr>
<td>Description</td>
<td>Default</td>
<td>Edition</td>
<td>Adjustable</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>a single unit. You can add up to 100 extra units for queries for the Enterprise Edition, or simply contact Support.</td>
<td>100</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of search results per query. Default is 100. To allow more than 100 results, simply contact Support.</td>
<td>100</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of search results per page</td>
<td>100</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of featured documents per featured results set</td>
<td>4</td>
<td>Enterprise</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of query texts per featured results set</td>
<td>49</td>
<td>Enterprise</td>
<td>No</td>
</tr>
<tr>
<td>Maximum number of characters per query text in a featured results set</td>
<td>1000</td>
<td>Enterprise</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of featured results sets per index</td>
<td>50</td>
<td>Enterprise</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of token words per query text before truncation. Default is 30. To allow more than 30 words, simply contact Support.</td>
<td>30</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum size of a single document</td>
<td>50 MB</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum amount of text extracted from a single document</td>
<td>5 MB</td>
<td>All editions</td>
<td>No</td>
</tr>
<tr>
<td>Maximum user group list size per query attribute</td>
<td>10</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum string list size per query attribute</td>
<td>10</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of custom attributes per index</td>
<td>500</td>
<td>All editions</td>
<td>No</td>
</tr>
<tr>
<td>Description</td>
<td>Default</td>
<td>Edition</td>
<td>Adjustable</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Maximum number of FAQs per index</td>
<td>30</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum size of 1 FAQ</td>
<td>5 MB</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of results returned for FAQ</td>
<td>4</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of characters displayed in the result for a FAQ question</td>
<td>200</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of thesauri per index</td>
<td>1</td>
<td>All editions</td>
<td>No</td>
</tr>
<tr>
<td>Maximum size of a thesaurus file</td>
<td>5 MB</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of synonym rules per thesaurus</td>
<td>10,000</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of synonyms per term in all thesauri in an index</td>
<td>10</td>
<td>All editions</td>
<td>No</td>
</tr>
<tr>
<td>Maximum number of query suggestions returned per GetQuerySuggestions call</td>
<td>10</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of fields/attributes for query suggestions per GetQuerySuggestions call</td>
<td>10</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of additional fields/attributes for query suggestions per GetQuerySuggestions call</td>
<td>5</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of block lists per index</td>
<td>1</td>
<td>All editions</td>
<td>No</td>
</tr>
<tr>
<td>Maximum size of a block list text file</td>
<td>2 MB</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of items (words or phrases) in a block list</td>
<td>20,000</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Description</td>
<td>Default</td>
<td>Edition</td>
<td>Adjustable</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Maximum number of Amazon Kendra experiences per index</td>
<td>50</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of spell-corrected query suggestions to return in a Query API call.</td>
<td>1</td>
<td>All editions</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of Rescore requests per second for a rescore execution plan or a single unit of capacity. You can add up to 1000 extra units.</td>
<td>0.01</td>
<td>Enterprise</td>
<td>No</td>
</tr>
<tr>
<td>Maximum number of rescore execution plans per account.</td>
<td>50</td>
<td>Enterprise</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of tokens in Title for a document in a Rescore request.</td>
<td>100</td>
<td>Enterprise</td>
<td>No</td>
</tr>
<tr>
<td>Maximum number of tokens in Body for a document in a Rescore request.</td>
<td>200</td>
<td>Enterprise</td>
<td>No</td>
</tr>
<tr>
<td>Maximum number of documents in a Rescore request.</td>
<td>25</td>
<td>Enterprise</td>
<td>No</td>
</tr>
<tr>
<td>Maximum number of documents per group in a Rescore request.</td>
<td>3</td>
<td>Enterprise</td>
<td>No</td>
</tr>
</tbody>
</table>

For more information about Amazon Kendra service quotas and to request a quota increase, see Service Quotas.
Troubleshooting data sources

This section can help you fix issues with Amazon Kendra data source connectors.

My documents were not indexed

When you synchronize your Amazon Kendra index with a data source, you may run into issues that prevent the documents from being indexed. Indexing is a two-step process. First, the data source is checked for new and updated documents to index, and to find documents to remove from the index. Second, at the document level, each document is accessed and indexed.

An error can occur in either of these steps. Data source level errors are reported in the console in the Sync run history section of the data source details page. The status of the synchronization job can be Succeeded, Incomplete, or Failed. You can also see the number of documents indexed and deleted during the job. If the status is Failed, a message is shown in the Details column.

Document level errors are reported in Amazon CloudWatch Logs. You can see the errors using the CloudWatch console.

My synchronization job failed

A synchronization job typically fails when there is a configuration error in the index or the data source. In the console, you can find the error message in the Sync run history section of the data source details page, under the Details column. Document level errors are reported in Amazon CloudWatch Logs. The error message gives information about what went wrong. The problem is usually that the index or the data source does not have the proper IAM permissions. The error message describes the missing permissions. Here are some of the error messages that you can receive:

Failed to create log group for job. Please make sure that the IAM role provided has sufficient permissions.

If your index role does not have permission to use CloudWatch, the data source will not be able to create a CloudWatch log. If you get this error, you must add CloudWatch permissions to the index role.

Failed to access Amazon S3 file prefix (bucket name) while trying to crawl your metadata files. Please make sure the IAM role (ARN) provided has sufficient permissions.
When you are using an Amazon S3 data source, Amazon Kendra must have permission to access the bucket that contains the documents. You need to add permission for Amazon Kendra to read the bucket to the data source IAM role.

The provided IAM role (ARN) could not be assumed. Please make sure Amazon Kendra is a trusted entity that is allowed to assume the role.

Amazon Kendra needs permission to assume the index and data source IAM roles. You need to add a trust policy to the roles with permission for the sts:AssumeRole action.

For the IAM policies that Amazon Kendra needs to index a data source, see IAM roles.

My synchronization job is incomplete

Jobs are generally incomplete when they have completed the data source level process but have some error during the document level process. When a job is incomplete, some of the documents might not have successfully indexed. For an Amazon S3 data source, an incomplete job is typically caused by:

- The metadata for one or more documents was invalid.
- When documents are submitted for indexing but at least one document was not submitted.
- When documents are submitted for deleting from the index but at least one document was not submitted.

To troubleshoot an incomplete synchronization job, look first to your CloudWatch logs.

1. From the details column, choose View details in CloudWatch.
2. Review the error messages to see what caused the document to fail.

My synchronization job succeeded but there are no indexed documents

Occasionally, an index synchronization job run will be marked as Succeeded but there are no new or updated documents indexed when you expect them. Possible reasons include:

- Check CloudWatch DocumentsSubmittedForIndexingFailed metric to see if any documents failed to synchronize. Check your CloudWatch logs for details.
- For an Amazon S3 data source, you may have given Amazon Kendra the wrong bucket name or prefix. Make sure that the bucket that Amazon Kendra is using is the one that contains the documents to index.
- When re-indexing a document that failed to be indexed in an earlier job, Amazon Kendra won't index it unless you've changed the document or its associated metadata file.

I am running into file format issues while syncing my data source

If you run into file format issues while adding files to your data source or syncing your data source, make sure that your document types are Amazon Kendra supported. For a list of document types supported by Amazon Kendra see Document types or formats.

If you are using the BatchPutDocument API with plain text files, specify PLAIN_TEXT as content type.
How much time does syncing a data source take?

If there are no updates to documents, sync time for an Amazon Kendra index increases in linear proportion to the number of documents. For example, 1,000 documents without any updates would take about five minutes to sync and 2,000 documents without any updates will take about 10 minutes. If there are any updates to the documents, then the sync time will increase based on the number of documents updated.

What is the charge for syncing a data source?

When you sync your index, it takes two minutes to warm up and activate Amazon EC2 to establish the necessary connections. You are not charged during this process. Your usage meter begins only after the sync job starts. For more information on Amazon Kendra pricing, see Amazon Kendra pricing.

I am getting an Amazon EC2 authorization error

If an Amazon EC2 unauthorized operation error occurs during a sync for a virtual private cloud (VPC) data source, it’s likely that your VPC IAM role lacks required permissions. Please check that the IAM role you use for your data source has the attached permissions. For more information, see Virtual private cloud IAM role.

I am unable to use search index links to open my Amazon S3 objects

Your Amazon Kendra index can only access files that an Amazon S3 data source grants it permissions to access. For example, Amazon Kendra cannot modify the Amazon S3 permissions that determine if an object is meant to be public or encrypted. Amazon Kendra also doesn’t have the default permissions to create or return a signed link for Amazon S3 objects. If you want to activate signed linking for Amazon S3 objects in an Amazon Kendra index, you have two options:

- You can use sign your index query results with the source uri object before returning the result to the search page. For a step-by-step walkthrough of this process, see Sharing objects using presigned URLs.
- You can override the Amazon S3 object metadata source uri and make your service available through an CloudFront content delivery network (CDN) connected to an Amazon S3 bucket. Or, you can use an API Gateway proxy endpoint that returns a presigned URL and redirect to it.

I am getting an AccessDenied When Using SSL Certificate File error message

If you are getting an access denied error when using an SSL certificate with your data source, make sure that your IAM role has the permission to access the SSL certificate file in its specified location. If the certificate is encrypted with an AWS KMS key, your IAM role should also have permission to decrypt using the AWS KMS key. For more information, see Authentication and access control for AWS KMS.

I am getting an authorization error when using a SharePoint data source

If you are getting an authorization error while syncing your index with a SharePoint data source, confirm that you have a Site Admin role assigned to you in SharePoint.
My index does not crawl documents from my Confluence data source

If your Amazon Kendra index is not crawling documents from your Confluence data source during the syncing process, confirm that you are part of Administrator Groups in Confluence.

Troubleshooting document search results

This section can help you fix issues in your Amazon Kendra search results.

My search results are not relevant to my search query

If your search results seem irrelevant, it might be for the following reasons:

- Results with LOW confidence are included in the results. You can filter out results with LOW confidence by using the QueryResultItem's ScoreAttributes field to exclude any result with a value of LOW. Amazon Kendra assigns each result a confidence bucket value of either VERY_HIGH, HIGH, MEDIUM and LOW. These values indicate the level of confidence that a result is relevant to a query. Also, irrespective of confidence buckets, Amazon Kendra returns three types of results in the following order: ANSWER (suggested answer excerpt), QUESTION_ANSWER (FAQ) and DOCUMENT (document excerpt). Therefore, it is possible for a LOW confidence QUESTION_ANSWER result to be positioned above a VERY_HIGH confidence DOCUMENT result. However, it isn't always necessarily true that LOW confidence QUESTION_ANSWER is a better result than the VERY_HIGH confidence DOCUMENT.

- Certain metadata fields or attributes are boosted to a very high value, affecting the ranking of results. Amazon Kendra searches your index using multiple parameters such as document title, text, date, and custom text fields or attributes. You can experiment with different boosting values to get the best results across all queries. You can also use dynamic relevance tuning at the query level to use different boosting values for each query.

- Your users are using specialized terms when they query for information and there's no custom synonyms set up for your index to handle these specialized terms. For more details on how and when to use synonyms, see Adding custom synonyms to an index.

Why do I only see 100 results?

Amazon Kendra returns the total count of relevant documents. The top 100 are returned per query by default. The results are paginated. You can use PageNumber to access different pages.

You can configure Amazon Kendra to return up to 1,000 documents or search results per query, with up to 100 results per page. To return more than 100 results, you can request this by contacting Quotas Support. Increasing the number of search results could impact latency.

Why are documents that I expect to see missing?

Amazon Kendra supports access control lists (ACLs) based on user and groups. Amazon Kendra ingests ACL policies via connectors. If an index does not configure an ACL, only documents matching the attribute filter for user and group will be shown. If a user or group attribute filter is provided, documents without an ACL will not be shown.

If you are using token-based access control, documents without an ACL policy and documents that match the user and groups will be shown.
Why do I see documents that have an ACL policy?

If an index does not configure an access control policy, then user and groups can be provided by the filter. If no user and group filter is applied, then all related documents will be returned. Any ACL policy will be ignored.

Troubleshooting general issues

Amazon Kendra uses CloudWatch metrics and logs to provide insight into synchronizing your data sources. You can use the metrics and logs to determine what went wrong with a synchronization run and how to fix it.

For general troubleshooting, start with your CloudWatch metrics.

- Check the `DocumentsCrawled` metric to see how many documents your data source checked. For an Amazon S3 bucket, if the number is less than you expect, check that your data source is pointing to the right bucket.
- Check the `DocumentsSkippedNoChange` metric to see how many documents were skipped because they haven't changed since the last synchronization. If the number does not match what you expect, check that your repository was updated correctly.
- Check the `DocumentsSkippedInvalidMetadata` metric to see how many documents had invalid metadata. Check your CloudWatch logs to see the specific errors that occurred.
- Check the `DocumentsSubmittedForIndexingFailed` metric to see how many documents were sent from the data source to the index but failed to be indexed. For example, if you use a metadata attribute in an Amazon S3 data source that hasn't been defined as a custom index field, the document will not be indexed. Check your CloudWatch logs to see the specific errors that occurred.
- Check the `DocumentsSubmittedForDeletionFailed` metric to see how many documents that the data source attempted to remove from the index failed to be deleted from the index. Check your CloudWatch logs to see the specific errors that occurred.

You can look at the CloudWatch logs for a particular synchronization run to get details of the errors that occurred during the run. For more information about CloudWatch logs with Amazon Kendra, see CloudWatch Logs.
Amazon Kendra Intelligent Ranking

Amazon Kendra Intelligent Ranking uses Amazon Kendra semantic search capabilities to intelligently re-rank a search service’s results.

Topics

• Amazon Kendra Intelligent Ranking for self-managed OpenSearch (p. 641)
• Semantically ranking a search service’s results (p. 650)

Amazon Kendra Intelligent Ranking for self-managed OpenSearch

You can leverage Amazon Kendra's semantic search capabilities to improve search results from OpenSearch, the self managed open source search service based on the Apache 2.0 License. The Amazon Kendra Intelligent Ranking plugin semantically re-ranks OpenSearch’s results using Amazon Kendra. It does this by understanding the meaning and context of a search query using specific fields, such as the document body or title, from the default OpenSearch search results.

Take, for example, this query: "main keynote address". Since 'address' has several meanings, Amazon Kendra can infer the meaning behind the query to return relevant information aligned with the intended meaning. In this context, it’s a conference keynote address. A simpler search service might not take into account the intent and could possibly return results for a street address on Main Street, for example.

The Intelligent Ranking plugin for OpenSearch is available for OpenSearch (self managed) version 2.4.0 and later. You can install the plugin using a quick start Bash script to build a new Docker image of OpenSearch with the Intelligent Ranking plugin included. See Setting up the intelligent search plugin (p. 642)—this is an example of a setup to get you up and running quickly.

How the intelligent search plugin works

The overall process of the Intelligent Ranking plugin for OpenSearch (self managed) is as follows:

1. An OpenSearch user issues a query, and OpenSearch provides a query response or a list of documents that are relevant to the query.
2. The Intelligent Ranking plugin takes the query response and extracts information from the documents.
3. The Intelligent Ranking plugin makes a call to Amazon Kendra Intelligent Ranking's Rescore API.
4. The Rescore API takes the extracted information from the documents and semantically re-ranks the search results.
5. The Rescore API sends the re-ranked search results back to the plugin. The plugin re-arranges the search results in the OpenSearch search response to reflect the new semantic ranking.

The Intelligent Ranking plugin re-ranks results using the "body" and "title" fields. These plugin fields can be mapped to fields in your OpenSearch index that would most fit the definition of a document body and title. For example, if your index contains chapters of a book with fields like "chapter_heading" and "chapter_contents", you can map the former to "title" and the latter to "body" to get the best results.
Setting up the intelligent search plugin

The following outlines how to quickly set up OpenSearch (self managed) with the Intelligent Ranking plugin.

Setting up OpenSearch (self managed) with the Intelligent Ranking plugin (quick setup)

If you are already using Docker image opensearch:2.4.0, you can use this Dockerfile to build a new image of OpenSearch 2.4.0 with the Intelligent Ranking plugin. You include a container for the new image in your docker-compose.yml file or opensearch.yml file. You also include your generated rescore execution plan ID from creating a rescore execution plan, along with your region and endpoint information—see step 2 for creating a rescore execution plan.

If you had previously downloaded a version of the opensearch Docker image that's older than 2.4.0, you must use Docker image opensearch:2.4.0 or later and build a new image with the Intelligent Ranking plugin included.

1. Download and install Docker Desktop for your operating system. Docker Desktop includes Docker Compose and Docker Engine. It's recommended that you check whether your computer meets the system requirements mentioned in the Docker installation details.

   You can also increase your memory usage requirements within the settings of your Docker Desktop. You are responsible for the usage requirements of Docker outside the freely available usage limits for Docker services. See Docker subscriptions.

   Check Docker Desktop status is "running".

2. Provision Amazon Kendra Intelligent Ranking and your capacity requirements. Once you provision Amazon Kendra Intelligent Ranking, you are charged hourly based on your set capacity units. See free tier and pricing information.

   You use the `CreateRescoreExecutionPlan` API to provision the Rescore API. If you don't need more capacity units than the single unit default, don't add more units and provide only a name for your rescore execution plan. You can also update your capacity requirements by using the `UpdateRescoreExecutionPlan` API. For more information, see Semantically ranking a search service's results.

   Optionally, you can go to step 3 to create a default rescore execution plan when you run the quick start Bash script.

   Note for step 4 the rescore execution plan ID included in the response.

   CLI

   ```bash
 aws kendra-ranking create-rescore-execution-plan \
 --name MyRescoreExecutionPlan \
 --capacity-units '{"RescoreCapacityUnits":<integer number of additional capacity units>}'
   ```

   Response:

   ```json
 {
 "Id": "<rescore execution plan ID>",
 }
   ```

   Python

   ```python
 import boto3
   ```
from botocore.exceptions import ClientError
import pprint
import time

kendra_ranking = boto3.client("kendra-ranking")

print("Create a rescore execution plan.")

# Provide a name for the rescore execution plan
name = "MyRescoreExecutionPlan"
# Set your required additional capacity units
# Don't set capacity units if you don't require more than 1 unit given by default
capacity_units = 1

try:
    rescore_execution_plan_response = kendra_ranking.create_rescore_execution_plan(
        Name = name,
        CapacityUnits = {"RescoreCapacityUnits":capacity_units}
    )

    pprint.pprint(rescore_execution_plan_response)

    rescore_execution_plan_id = rescore_execution_plan_response["Id"]

    print("Wait for Amazon Kendra to create the rescore execution plan.")

    while True:
        # Get the details of the rescore execution plan, such as the status
        rescore_execution_plan_description = kendra_ranking.describe_rescore_execution_plan(
            Id = rescore_execution_plan_id
        )

        # When status is not CREATING quit.
        status = rescore_execution_plan_description["Status"]
        print(" Creating rescore execution plan. Status: "+status)
        time.sleep(60)
        if status != "CREATING":
            break

    except ClientError as e:
        print("%s" % e)

    print("Program ends.")

3. Download the quick start Bash script from GitHub for your version of OpenSearch by selecting the version branch from the main branch dropdown.

4. Open your terminal and in the directory of the Bash script, run the following command.

   bash search_processing_kendra_quickstart.sh -p <execution-plan-id> -r <region>

When you run this command, you provide the rescore execution plan ID that you noted in step 2 when you provisioned Amazon Kendra Intelligent Ranking, along with your region information. Optionally, you can instead provision Amazon Kendra Intelligent Ranking by using the --create-execution-plan option. This creates a rescore execution plan with a default name and default capacity. If AWS credentials cannot be obtained from either environment variables, default profile, or Amazon EC2 instance, then provide your credentials using the --profile option.

To not lose your index when the default ephemeral container is removed, you can have your index persist across executions by providing the data volume name using the --volume-name option. If you previously created an index, you can specify the volume in your docker-compose.yml or opensearch.yml file.
This script uses Docker images for OpenSearch and OpenSearch Dashboards using your version you selected on the GitHub repository for the script. It downloads a zip file for the Intelligent Ranking plugin, and generates a Dockerfile to build a new Docker image of OpenSearch that includes the plugin. It also creates a docker-compose.yml file that includes containers for OpenSearch with the Intelligent Ranking plugin and OpenSearch Dashboards. The script adds your rescore execution plan ID, region information, and endpoint (uses the region) to the docker-compose.yml file. The script then runs docker-compose up to start the containers for OpenSearch with Intelligent Ranking included and OpenSearch Dashboards. To stop the containers without removing them, run docker-compose stop. To remove the containers, run docker-compose down. To leave your volumes intact, don't run docker-compose down -v.

Example of docker-compose.yml

An example of a docker-compose.yml file using OpenSearch 2.4.0 or later with the Intelligent Ranking plugin and OpenSearch Dashboards 2.4.0 or later.

```
version: '3'
networks:
 opensearch-net:
volumes:
 <volume-name>:
services:
 opensearch-node:
 image: <Docker image tag name of OpenSearch with Intelligent Ranking plugin>
 container_name: opensearch-node
 environment:
 - cluster.name=opensearch-cluster
 - node.name=opensearch-node
 - discovery.type=single-node
 - kendra_intelligent_ranking.service.endpoint=https://kendra-ranking.<region>.api.aws
 - kendra_intelligent_ranking.service.region=<region>
 - kendra_intelligent_ranking.service.execution_plan_id=<rescore-execution-plan-id>
 ulimits:
 memlock:
 soft: -1
 hard: -1
 nofile:
 soft: 65536
 hard: 65536
 ports:
 - 9200:9200
 - 9600:9600
 networks:
 - opensearch-net
 volumes:
 <docker-volume-name>:/usr/share/opensearch/data

 opensearch-dashboard:
 image: opensearchproject/opensearch-dashboards:<your-version>
 container_name: opensearch-dashboards
 ports:
 - 5601:5601
 environment:
 OPENSEARCH_HOSTS: '\["https://opensearch-node:9200\']'
 networks:
 - opensearch-net
```

Example of a Dockerfile and building an image

An example of a Dockerfile for using OpenSearch 2.4.0 or later with the Intelligent Ranking plugin.
Building a Docker image for OpenSearch with the Intelligent Ranking plugin.

docker build --tag=<Docker image tag name of OpenSearch with Intelligent Ranking plugin>

Interacting with the intelligent search plugin

Once you have set up OpenSearch (self managed) with the Intelligent Ranking plugin, you can interact with the plugin using curl commands or OpenSearch client libraries. The default credentials for accessing OpenSearch with the Intelligent Ranking plugin are user name 'admin' and password 'admin'.

To apply the Intelligent Ranking plugin settings to an OpenSearch index:

Curl

```
curl -XPUT "https://localhost:9200/<your-docs-index>/_settings" -u 'admin:admin' --insecure -H 'Content-Type: application/json' -d'
{
 "index": {
 "plugin": {
 "searchrelevance": {
 "result_transformer": {
 "kendra_intelligent_ranking": {
 "order": 1,
 "properties": {
 "title_field": "title_field_name_here",
 "body_field": "body_field_name_here"
 }
 }
 }
 }
 }
 }
}
```

Python

```
import opensearchpy

host = 'localhost'
port = 9200
auth = ('admin', 'admin')

client = opensearchpy.OpenSearch(hosts=[{'host': host, 'port': port}])
```

```
import opensearchpy

host = 'localhost'
port = 9200
auth = ('admin', 'admin')

client = opensearchpy.OpenSearch(
 hosts=[{'host': host, 'port': port}]
)
You must include the name of the main text field you want to use to re-rank on, such as a document body or document contents field. You can also include other text fields, such as document title or document summary.

Now you can issue any query and the results are ranked using the Intelligent Ranking plugin.

Curl

```bash
  "query" : {
    "match" : {
      "body_field_name_here": "intelligent systems"
    }
  }
}
```

Python

```python
from opensearchpy import OpenSearch
host = 'localhost'
port = 9200
auth = ('admin', 'admin')

client = OpenSearch(
    hosts = [['host': host, 'port': port]],
    http_compress = True, # enables gzip compression for request bodies
    http_auth = auth,
    # client_cert = True, # enables SSL client certificate validation
    # client_key = client_key_path,
    use_ssl = True,
    verify_certs = False,
    ssl_assert_hostname = False,
    ssl_show_warn = False,
    ca_certs = ca_certs_path
)

query = {
    'size': 10,
    ...}  # query specification
```
To remove the Intelligent Ranking plugin settings for an OpenSearch index:

Curl

```bash
curl -XPUT "http://localhost:9200/<your-docs-index>/_settings" -H 'Content-Type: application/json' -d
{
  "index": {
    "plugin": {
      "searchrelevance": {
        "result_transformer": {
          "kendra_intelligent_ranking.*": null
        }
      }
    }
  }
}
```

Python

```python
from opensearchpy import OpenSearch
host = 'localhost'
port = 9200
auth = ('admin', 'admin')

client = OpenSearch(
    hosts = [{'host': host, 'port': port}],
    http_compress = True,  # enables gzip compression for request bodies
    http_auth = auth,
    # client_cert = client_cert_path,
    # client_key = client_key_path,
    use_ssl = True,
    verify_certs = False,
    ssl_assert_hostname = False,
    ssl_show_warn = False,
    ca_certs = ca_certs_path
)

setting_body = {
    "index": {
        "plugin": {
            "searchrelevance": {
                "result_transformer": {
                    "kendra_intelligent_ranking.*": null
                }
            }
        }
    }
}
```
To test the Intelligent Ranking plugin on a certain query or to test on certain body and title fields:

Curl

```bash
curl -XGET "https://localhost:9200/<your-docs-index>/_search?pretty" -u 'admin:admin' --insecure -H 'Content-Type: application/json' -d

{
  "query": {
    "multi-match": {
      "query": "intelligent systems",
      "fields": ["body_field_name_here", "title_field_name_here"]
    }
  },
  "size": 25,
  "ext": {
    "search_configuration": {
      "result_transformer": {
        "kendra_intelligent_ranking": {
          "order": 1,
          "properties": {
            "title_field": "title_field_name_here",
            "body_field": "body_field_name_here"
          }
        }
      }
    }
  }
}
```

Python

```python
from opensearchpy import OpenSearch
host = 'localhost'
port = 9200
auth = ('admin', 'admin')

client = OpenSearch(
    hosts = [{'host': host, 'port': port}],
    http_compress = True,  # enables gzip compression for request bodies
    http_auth = auth,
    # client_cert = client_cert_path,
    # client_key = client_key_path,
    use_ssl = True,
    verify_certs = False,
    ssl_assert_hostname = False,
    ssl_show_warn = False,
    ca_certs = ca_certs_path
)

# Index settings null for kendra_intelligent_ranking

query = {
    "query": {
        "multi_match": {
            "query": "intelligent systems",
            "fields": ["body_field_name_here", "title_field_name_here"]
        }
    },
    "size": 25,
    "ext": {
        "search_configuration": {
            "result_transformer": {
                "kendra_intelligent_ranking": {
                    "order": 1,
                    "properties": {
                        "title_field": "title_field_name_here",
                        "body_field": "body_field_name_here"
                    }
                }
            }
        }
    }
}
```
Comparing OpenSearch results with Amazon Kendra results

You can compare side-by-side OpenSearch (self managed) ranked results against Amazon Kendra's re-ranked results. OpenSearch Dashboards version 2.4.0 and later offers side-by-side results so that you can compare how OpenSearch ranks documents with how Amazon Kendra or the plugin ranks documents for a search query.

Before you can compare OpenSearch ranked results against Amazon Kendra re-ranked results, make sure your OpenSearch Dashboards is backed by an OpenSearch server with the Intelligent Ranking plugin. You can set this up using Docker and a quick start Bash script. See [Setting up the intelligent search plugin](p. 642).

The following outlines how to compare OpenSearch and Amazon Kendra search results in OpenSearch Dashboards. For more information, see the [OpenSearch Documentation](#).

Comparing search results in OpenSearch Dashboards

1. Open http://localhost:5601 and sign in to OpenSearch Dashboards. The default credentials are username 'admin' and password 'admin'.
2. Select **Search Relevance** from the OpenSearch plugins in the navigation menu.
3. Enter the search text in the search bar.
4. Select your index for **Query 1** and enter a query in the OpenSearch Query DSL. You can use the %SearchText% variable to refer to the search text you entered in the search bar. For an example of this query, see [OpenSearch Documentation](#). The results returned for this query are the OpenSearch results without using the Intelligent Ranking plugin.
5. Select the same index for **Query 2** and enter the same query in the OpenSearch Query DSL. In addition, include the extension with kendra_intelligent_ranking and specify the mandatory body_field to rank on. You can also specify the title field, but the body field is mandatory. For an example of this query, see [OpenSearch Documentation](#). The results returned for this query are the
Amazon Kendra re-ranked results using the Intelligent Ranking plugin. The plugin ranks up to 25 results.

6. Select **Search** to return and compare results.

Semantically ranking a search service's results

Amazon Kendra Intelligent Ranking uses Amazon Kendra's semantic search capabilities to re-rank a search service's results. It does this by taking into account the search query's context, plus all the available information from the search service documents. Amazon Kendra Intelligent Ranking can improve simple keyword matching.

The [CreateRescoreExecutionPlan](https://docs.aws.amazon.com/kendra-ranking/latest/APIReference/API_CreateRescoreExecutionPlan.html) API creates an Amazon Kendra Intelligent Ranking resource used for provisioning the [Rescore](https://docs.aws.amazon.com/kendra-ranking/latest/APIReference/API_Rescore.html) API. The Rescore API re-ranks search results from a search service such as OpenSearch (self managed).

When you call CreateRescoreExecutionPlan, you set your required capacity units for re-ranking a search service's results. If you don't need more capacity units beyond the single unit default, don't change the default. Provide only a name for your rescore execution plan. You can set up to 1000 extra units. For information on what is included in a single capacity unit, see [Adjusting capacity](https://docs.aws.amazon.com/kendra-ranking/latest/guides/adjusting-capacity.html). Once you provision Amazon Kendra Intelligent Ranking, you are charged hourly based on your set capacity units. See [free tier and pricing information](https://aws.amazon.com/kendra/ranking/pricing/).

A rescore execution plan ID is generated and returned in the response when you call CreateRescoreExecutionPlan. The Rescore API uses the rescore execution plan ID to re-rank a search service's results using the capacity you set. You include the rescore execution plan ID in the configuration files of your search service. For example, if you use OpenSearch (self managed), you include the rescore execution plan ID in your docker-compose.yml or opensearch.yml file—see [Intelligently ranking OpenSearch (self service) results](https://docs.aws.amazon.com/kendra-ranking/latest/guides/intelligently-ranking-opensearch-results.html).

An Amazon Resource Name (ARN) is also generated in the response when you call CreateRescoreExecutionPlan. You can use this ARN to create a permissions policy in AWS Identity and Access Management (IAM) to restrict user access to a specific ARN for a specific rescore execution plan.

The following is an example of creating a rescore execution plan with capacity units set to 1.

CLI

```bash
aws kendra-ranking create-rescore-execution-plan \
--name MyRescoreExecutionPlan \
--capacity-units '{"RescoreCapacityUnits":1}'

Response:

```json```
{
 "Id": "<rescore execution plan ID>",
}
```
```

Python

```python
import boto3
from botocore.exceptions import ClientError
import pprint

import time

```

650
kendra_ranking = boto3.client("kendra-ranking")

print("Create a rescore execution plan.")

Provide a name for the rescore execution plan
name = "MyRescoreExecutionPlan"
Set your required additional capacity units
Don\'t set capacity units if you don\'t require more than 1 unit given by default
capacity_units = 1

try:
 rescore_execution_plan_response = kendra_ranking.create_rescore_execution_plan(
 Name = name,
 CapacityUnits = {"RescoreCapacityUnits":capacity_units}
)
 pprint.pprint(rescore_execution_plan_response)
 rescore_execution_plan_id = rescore_execution_plan_response["Id"]
 print("Wait for Amazon Kendra to create the rescore execution plan.")
 while True:
 # Get the details of the rescore execution plan, such as the status
 rescore_execution_plan_description = kendra_ranking.describe_rescore_execution_plan(
 Id = rescore_execution_plan_id
)
 # When status is not CREATING quit.
 status = rescore_execution_plan_description["Status"]
 print(" Creating rescore execution plan. Status: "+status)
 time.sleep(60)
 if status != "CREATING":
 break
except ClientError as e:
 print("%s" % e)

print("Program ends.")

Java

```java
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.services.kendraranking.KendraRankingClient;
import software.amazon.awssdk.services.kendraranking.model.CapacityUnitsConfiguration;
import software.amazon.awssdk.services.kendraranking.model.CreateRescoreExecutionPlanRequest;
import software.amazon.awssdk.services.kendraranking.model.CreateRescoreExecutionPlanResponse;
import software.amazon.awssdk.services.kendraranking.model.DescribeRescoreExecutionPlanRequest;
import software.amazon.awssdk.services.kendraranking.model.DescribeRescoreExecutionPlanResponse;
import software.amazon.awssdk.services.kendraranking.model.RescoreExecutionPlanStatus;

public class CreateRescoreExecutionPlanExample {
    public static void main(String[] args) throws InterruptedException {
        String rescoreExecutionPlanName = "MyRescoreExecutionPlan";
        int capacityUnits = 1;

        KendraRankingClient kendraRankingClient = KendraRankingClient.builder().build();
```
System.out.println(String.format("Creating a rescore execution plan named %s", rescoreExecutionPlanName));

CreateRescoreExecutionPlanResponse createResponse = kendraRankingClient.createRescoreExecutionPlan(
 CreateRescoreExecutionPlanRequest.builder()
 .name(rescoreExecutionPlanName)
 .capacityUnits(
 CapacityUnitsConfiguration.builder()
 .rescoreCapacityUnits(capacityUnits)
 .build()
)
 .build()
);

String rescoreExecutionPlanId = createResponse.id();
System.out.println(String.format("Waiting for rescore execution plan with id %s to finish creating.", rescoreExecutionPlanId));
while (true) {
 DescribeRescoreExecutionPlanResponse describeResponse = kendraRankingClient.describeRescoreExecutionPlan(
 DescribeRescoreExecutionPlanRequest.builder()
 .id(rescoreExecutionPlanId)
 .build()
);
 RescoreExecutionPlanStatus rescoreExecutionPlanStatus = describeResponse.status();
 if (rescoreExecutionPlanStatus != RescoreExecutionPlanStatus.CREATING) {
 break;
 }
 TimeUnit.SECONDS.sleep(60);
}
System.out.println("Rescore execution plan creation is complete.");
}

The following is an example of updating a rescore execution plan to set capacity units to 2.

CLI

```
aws kendra-ranking update-rescore-execution-plan \
  --id <rescore execution plan ID> \
  --capacity-units '{"RescoreCapacityUnits":2}'
```

Python

```python
import boto3
from botocore.exceptions import ClientError
import pprint
import time

kendra_ranking = boto3.client("kendra-ranking")

print("Update a rescore execution plan.")

# Provide the ID of the rescore execution plan
id = <rescore execution plan ID>
# Re-set your required additional capacity units
capacity_units = 2

try:
```
Semantically ranking a search service's results

```java
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.services.kendraranking.KendraRankingClient;
import software.amazon.awssdk.services.kendraranking.model.CapacityUnitsConfiguration;
import software.amazon.awssdk.services.kendraranking.model.DescribeRescoreExecutionPlanRequest;
import software.amazon.awssdk.services.kendraranking.model.DescribeRescoreExecutionPlanResponse;
import software.amazon.awssdk.services.kendraranking.model.RescoreExecutionPlanStatus;
import software.amazon.awssdk.services.kendraranking.model.UpdateRescoreExecutionPlanRequest;
import software.amazon.awssdk.services.kendraranking.model.UpdateRescoreExecutionPlanResponse;

public class UpdateRescoreExecutionPlanExample {
    public static void main(String[] args) throws InterruptedException {
        String rescoreExecutionPlanId = <rescore execution plan ID>;
        int newCapacityUnits = 2;

        KendraRankingClient kendraRankingClient = KendraRankingClient.builder().build();

        System.out.println(String.format("Updating a rescore execution plan named \s",
            rescoreExecutionPlanId));

        UpdateRescoreExecutionPlanResponse updateResponse =
            kendraRankingClient.updateRescoreExecutionPlan(
                UpdateRescoreExecutionPlanRequest.builder()
                    .id(rescoreExecutionPlanId)
                    .capacityUnits(
                        CapacityUnitsConfiguration.builder()
                            .rescoreCapacityUnits(newCapacityUnits)
                            .build()
                    )
                    .build()
            );
    }
}
```
System.out.println(String.format("Waiting for rescore execution plan with id %s to finish updating.", rescoreExecutionPlanId));
while (true) {
 DescribeRescoreExecutionPlanResponse describeResponse = kendraRankingClient.describeRescoreExecutionPlan(
 DescribeRescoreExecutionPlanRequest.builder()
 .id(rescoreExecutionPlanId)
 .build()
);
 RescoreExecutionPlanStatus rescoreExecutionPlanStatus = describeResponse.status();
 if (rescoreExecutionPlanStatus != RescoreExecutionPlanStatus.UPDATING) {
 break;
 }
 TimeUnit.SECONDS.sleep(60);
}
System.out.println("Rescore execution plan update is complete.");

The following is an example of using the Rescore API.

CLI

```bash
aws kendra-ranking rescore 
  --rescore-execution-plan-id <rescore execution plan ID> 
  --search-query "intelligent systems" 
  --documents "["Id": "DocId1","Title": "Smart systems", "Body": "intelligent systems in everyday life", "OriginalScore": 2.0}, {"Id": "DocId2", "Title": "Smarter systems", "Body": "living with intelligent systems", "OriginalScore": 1.0}"
```

Python

```python
import boto3
from botocore.exceptions import ClientError
import pprint

kendra_ranking = boto3.client("kendra-ranking")
print("Use the Rescore API.")

# Provide the ID of the rescore execution plan
id = <rescore execution plan ID>
# The search query from the search service query = "intelligent systems"
# The list of documents for Intelligent Ranking to rescore
document_list = [
    {"Id": "DocId1", "Title": "Smart systems", "Body": "intelligent systems in everyday life", "OriginalScore": 2.0},
    {"Id": "DocId2", "Title": "Smarter systems", "Body": "living with intelligent systems", "OriginalScore": 1.0}]

try:
    rescore_response = kendra_ranking.rescore(
        rescore_execution_plan_id = id,
        search_query = query,
        documents = document_list
    )
```
print(rescore_response["RescoreId"])
print(rescore_response["ResultItems"])

except ClientError as e:
 print("%s" % e)

print("Program ends.")

Java

```java
import java.util.ArrayList;
import java.util.List;
import software.amazon.awssdk.services.kendraranking.KendraRankingClient;
import software.amazon.awssdk.services.kendraranking.model.RescoreRequest;
import software.amazon.awssdk.services.kendraranking.model.RescoreResponse;
import software.amazon.awssdk.services.kendraranking.model.Document;

public class RescoreExample {
    public static void main(String[] args) {
        String rescoreExecutionPlanId = "<rescore execution plan ID>";
        String query = "intelligent systems";

        List<Document> documentList = new ArrayList<>();
        documentList.add(
            Document.builder()
            .id("DocId1")
            .originalScore(2.0F)
            .body("intelligent systems in everyday life")
            .title("Smart systems")
            .build()
        );
        documentList.add(
            Document.builder()
            .id("DocId2")
            .originalScore(1.0F)
            .body("living with intelligent systems")
            .title("Smarter systems")
            .build()
        );

        KendraRankingClient kendraRankingClient = KendraRankingClient.builder().build();

        RescoreResponse rescoreResponse = kendraRankingClient.rescore(
            RescoreRequest.builder()
            .rescoreExecutionPlanId(rescoreExecutionPlanId)
            .searchQuery(query)
            .documents(documentList)
            .build()
        );

        System.out.println(rescoreResponse.rescoreId());
        System.out.println(rescoreResponse.resultItems());
    }
}```
Document history for Amazon Kendra

- **Latest documentation update:** June 22, 2023

The following table describes important changes in each release of Amazon Kendra. For notification about updates to this documentation, you can subscribe to the [RSS feed](#).

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>New feature</strong></td>
<td>Retrieve semantically relevant passages using the Amazon Kendra Retrieve API for retrieval augmented generation (RAG) systems.</td>
<td>June 22, 2023</td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td>Amazon Kendra now supports an updated version of the Amazon Kendra Web Crawler data source connector. For more information, see <a href="#">Amazon Kendra Web Crawler v2.0</a>.</td>
<td>June 21, 2023</td>
</tr>
<tr>
<td><strong>Region expansion</strong></td>
<td>Amazon Kendra is now available in Europe (London) (eu-west-2).</td>
<td>June 5, 2023</td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td>Amazon Kendra now supports an updated version of the Alfresco data source connector. For more information, see <a href="#">Alfresco</a>.</td>
<td>May 16, 2023</td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td>Amazon Kendra now provides a data source connector for Adobe Experience Manager. For more information, see <a href="#">Adobe Experience Manager</a>.</td>
<td>May 11, 2023</td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td>Amazon Kendra now supports configuring document fields/attributes when you call GetQuerySuggestions. You can now base query suggestions on the contents of document fields. For more information, see <a href="#">Query suggestions</a>.</td>
<td>May 2, 2023</td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td>Amazon Kendra now provides a data source connector for Gmail. For more information, see <a href="#">Gmail</a>.</td>
<td>April 13, 2023</td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td>Amazon Kendra now supports an updated version of the Microsoft OneDrive data source connector.</td>
<td>April 3, 2023</td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td>**Improve the visibility of new documents or promote certain documents when your users type certain queries using <strong>Featured results</strong>.</td>
<td><strong>March 30, 2023</strong></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td><strong>Amazon Kendra now supports an updated data source connector for Microsoft SharePoint.</strong> For more information, see <strong>Microsoft SharePoint</strong>.</td>
<td><strong>March 2, 2023</strong></td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td><strong>Amazon Kendra now supports an updated version of the Confluence data source connector.</strong> For more information, see <strong>Confluence</strong>.</td>
<td><strong>March 1, 2023</strong></td>
</tr>
<tr>
<td><strong>Region expansion</strong></td>
<td><strong>Amazon Kendra is now available in Asia Pacific (Tokyo) (ap-northeast-1).</strong></td>
<td><strong>February 7, 2023</strong></td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td><strong>Amazon Kendra now provides a data source connector for Microsoft Exchange.</strong> For more information, see <strong>Microsoft Exchange</strong>.</td>
<td><strong>January 12, 2023</strong></td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td><strong>Amazon Kendra now provides a data source connector for Microsoft Yammer.</strong> For more information, see <strong>Microsoft Yammer</strong>.</td>
<td><strong>January 12, 2023</strong></td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td><strong>Amazon Kendra now supports indexing RTF, XML, XSLT, MS_EXCEL, CSV, JSON, and MD document types.</strong> For more information, see <strong>Types of documents</strong>.</td>
<td><strong>January 11, 2023</strong></td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td><strong>Amazon Kendra now supports an updated version of the Amazon S3 data source connector.</strong> For more information, see <strong>Amazon S3</strong>.</td>
<td><strong>January 10, 2023</strong></td>
</tr>
<tr>
<td><strong>New feature</strong></td>
<td><strong>OpenSearch (self managed) search results can be semantically ranked using Amazon Kendra Intelligent Ranking.</strong></td>
<td><strong>January 9, 2023</strong></td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Microsoft Teams. For more information, see Microsoft Teams.</td>
<td>January 5, 2023</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra has an updated data source connector for Google Drive. For more information, see Google Drive.</td>
<td>January 5, 2023</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra has an updated data source connector for ServiceNow. For more information, see ServiceNow.</td>
<td>December 21, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra has an updated data source connector for Salesforce. For more information, see Salesforce.</td>
<td>December 21, 2022</td>
</tr>
<tr>
<td>Region expansion</td>
<td>Amazon Kendra is now available in Asia Pacific (Mumbai) (ap-south-1).</td>
<td>December 14, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra's tabular search feature can search and extract answers from tables embedded in HTML documents.</td>
<td>November 27, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra supports semantic search for a select set of languages.</td>
<td>November 27, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Dropbox. For more information, see Dropbox.</td>
<td>September 27, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Zendesk. For more information, see Zendesk.</td>
<td>August 17, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Document level access control can now be re-configured after you index your documents. For more information, see Access control configuration.</td>
<td>July 14, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Alfresco. For more information, see Alfresco.</td>
<td>June 30, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for GitHub. For more information, see GitHub.</td>
<td>June 2, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Jira. For more information, see <a href="#">Jira</a>.</td>
<td>May 12, 2022</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>New feature</td>
<td>Nested facets within a facet can be displayed in the search results. For more information, see <a href="#">Facets</a>.</td>
<td>May 5, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Quip. For more information, see <a href="#">Quip</a>.</td>
<td>April 19, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Box. For more information, see <a href="#">Box</a>.</td>
<td>April 6, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Slack. For more information, see <a href="#">Slack</a>.</td>
<td>March 14, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Amazon FSx. For more information, see <a href="#">Amazon FSx</a>.</td>
<td>February 8, 2022</td>
</tr>
<tr>
<td><strong>AWS managed policy updates</strong> - New policies (p. 656)</td>
<td>Amazon Kendra added new AWS managed policies. For more information, see <a href="#">AWS Managed policies for Amazon Kendra</a>.</td>
<td>January 3, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra search application can be deployed in a few clicks without the need for any front-end code. For more information, see <a href="#">Deploying a search application with no code</a>.</td>
<td>December 1, 2021</td>
</tr>
<tr>
<td>New feature</td>
<td>Document metadata and content can be enriched during the document ingestion process. For more information, see <a href="#">Customizing document metadata during the ingestion process</a>.</td>
<td>December 1, 2021</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra offers search analytics to gain useful insights into your search application. For more information, see <a href="#">Gaining insights with search analytics</a>.</td>
<td>December 1, 2021</td>
</tr>
<tr>
<td><strong>Region expansion</strong></td>
<td>Amazon Kendra is now available in AWS GovCloud (US-West) (us-gov-west-1).</td>
<td>October 13, 2021</td>
</tr>
<tr>
<td>Date</td>
<td>Feature Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>October 7, 2021</td>
<td>Amazon Kendra can now index documents in multiple languages and filter search results by language. See <a href="#">Adding documents in languages other than English</a> and <a href="#">Searching in languages</a>.</td>
<td></td>
</tr>
<tr>
<td>October 6, 2021</td>
<td>Amazon Kendra now integrates with Identity Center directory to fetch access levels of groups and users for <a href="#">user context filtering</a>. See <a href="#">User-group configuration for IAM Identity Center</a>.</td>
<td></td>
</tr>
<tr>
<td>August 13, 2021</td>
<td>Amazon Kendra now provides a tutorial that walks you through how to build a metadata-enriched search solution. See <a href="#">Building an intelligent search solution</a>.</td>
<td></td>
</tr>
<tr>
<td>July 20, 2021</td>
<td>Amazon Kendra now provides a data source connector for Amazon WorkDocs. For more information, see <a href="#">Amazon WorkDocs</a>.</td>
<td></td>
</tr>
<tr>
<td>June 17, 2021</td>
<td>Amazon Kendra now provides a web crawler to crawl and index webpages. For more information, see <a href="#">Web crawler</a>.</td>
<td></td>
</tr>
<tr>
<td>June 16, 2021</td>
<td>Amazon Kendra is now available in Canada (Central) (ca-central-1).</td>
<td></td>
</tr>
<tr>
<td>June 7, 2021</td>
<td>Amazon Kendra is now available in US East (Ohio) (us-east-2).</td>
<td></td>
</tr>
<tr>
<td>May 27, 2021</td>
<td>Amazon Kendra now supports query suggestions, where users are suggested popular queries relevant to their search. For more information, see <a href="#">Suggesting popular search queries</a>.</td>
<td></td>
</tr>
<tr>
<td>May 27, 2021</td>
<td>Amazon Kendra added new AWS managed policies. For more information, see <a href="#">AWS Managed policies for Amazon Kendra</a>.</td>
<td></td>
</tr>
<tr>
<td>May 5, 2021</td>
<td>Amazon Kendra is now available in Asia Pacific (Singapore) (ap-southeast-1).</td>
<td></td>
</tr>
<tr>
<td>Feature Type</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------------------------------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now supports tuning search relevance in the query by overriding tuning configurations set at the index level. For more information, see <a href="#">Tuning search relevance</a> and <a href="#">Tuning responses</a>.</td>
<td>April 20, 2021</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now supports OAuth 2.0 authentication and using ServiceNow queries to select documents for indexing. For more information, see <a href="#">ServiceNow</a>.</td>
<td>April 1, 2021</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now supports incremental learning for FAQ documents. For more information, see <a href="#">Submitting feedback for incremental learning</a>.</td>
<td>February 17, 2021</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now supports index synonyms. For more information, see <a href="#">Adding synonyms to an index</a>.</td>
<td>December 10, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data base connector for Google Workspace Drive. For more information, see <a href="#">Using a Google Workspace Drive data source</a>.</td>
<td>December 8, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a JavaScript library that makes it easier for you to provide query feedback to Amazon Kendra. For more information, see <a href="#">Submitting feedback</a>.</td>
<td>December 8, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now supports token-based user access control. For more information, see <a href="#">Controlling access to documents in an index</a>.</td>
<td>November 5, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>The Amazon Kendra Confluence data source connector now works with Confluence cloud. For more information, see <a href="#">Using a Confluence data source</a>.</td>
<td>November 5, 2020</td>
</tr>
<tr>
<td>Region expansion</td>
<td>Amazon Kendra is now available in Asia Pacific (Sydney) (ap-southeast-2).</td>
<td>November 2, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source connector for Confluence server. For more information, see Using a Confluence data source.</td>
<td>October 26, 2020</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now provides a data source that you can use to generate statistics for your custom connectors. For more information, see Using a custom data source.</td>
<td>October 21, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now supports custom attributes for frequently asked questions. For more information, see Adding questions and answers.</td>
<td>September 17, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra now returns confidence scores for query results. For more information, see QueryResultItem.</td>
<td>September 15, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>AWS CloudFormation now supports Amazon Kendra. For more information, see Amazon Kendra resource type reference - AWS CloudFormation.</td>
<td>September 10, 2020</td>
</tr>
<tr>
<td>New feature</td>
<td>Amazon Kendra adds support for AWS PrivateLink. For more information, see Amazon Kendra and interface VPC endpoints (AWS PrivateLink).</td>
<td>July 7, 2020</td>
</tr>
<tr>
<td>New guide</td>
<td>This is the first release of the Amazon Kendra Developer Guide.</td>
<td>May 11, 2020</td>
</tr>
</tbody>
</table>
API reference

The API reference documentation is now a separate guide.
AWS glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.