
Developer Guide

Amazon Keyspaces (for Apache Cassandra)

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces (for Apache Cassandra): Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Table of Contents

What is Amazon Keyspaces? ... 1
How it works ... 1

High-level architecture ... 2
Cassandra data model .. 4
Accessing Amazon Keyspaces ... 5

Use cases .. 6
What is CQL? ... 7

Compare Amazon Keyspaces with Cassandra .. 8
Functional differences with Apache Cassandra .. 8

Apache Cassandra APIs, operations, and data types ... 9
Asynchronous creation and deletion of keyspaces and tables .. 9
Authentication and authorization .. 9
Batch .. 10
Cluster configuration .. 10
Connections .. 10
IN keyword .. 11
CQL query throughput tuning ... 11
FROZEN collections ... 11
Lightweight transactions ... 12
Load balancing .. 12
Pagination ... 12
Partitioners ... 12
Prepared statements .. 13
Range delete .. 13
System tables .. 13
Timestamps .. 14

Supported Cassandra APIs, operations, functions, and data types .. 14
Cassandra API support ... 14
Cassandra control plane API support ... 16
Cassandra data plane API support .. 17
Cassandra function support ... 17
Cassandra data type support ... 18

Supported Cassandra consistency levels ... 19
Write consistency levels .. 19

iii

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Read consistency levels ... 20
Unsupported consistency levels .. 21

Accessing Amazon Keyspaces ... 23
Setting up AWS Identity and Access Management ... 23

Sign up for an AWS account .. 23
Create an administrative user .. 23

Setting up Amazon Keyspaces .. 24
Using the console ... 25
Using AWS CloudShell .. 26

Obtaining IAM permissions for AWS CloudShell .. 26
Interacting with Amazon Keyspaces using AWS CloudShell .. 27

Connecting programmatically ... 29
Creating credentials .. 30
Service endpoints .. 40
Using cqlsh .. 44
Using the AWS CLI ... 51
Using the API ... 56
Working with AWS SDKs ... 56
Using a Cassandra client driver ... 57
Connecting from Amazon EKS ... 85

Connecting with VPC endpoints ... 105
Prerequisites .. 106
Step 1: Launch an Amazon EC2 instance .. 106
Step 2: Configure your Amazon EC2 instance .. 108
Step 3: Create a VPC endpoint for Amazon Keyspaces .. 110
Step 4: Configure permissions for the VPC endpoint connection .. 115
Step 5: Configure monitoring .. 119
Step 6: (Optional) Best practices for connections ... 120
Step 7: (Optional) Clean up ... 122

Cross-account access ... 124
Cross-account access in a shared VPC ... 124
Cross-account access without a shared VPC ... 127

Getting started .. 129
Prerequisites .. 129
Step 1: Create a keyspace and a table .. 129

Creating a keyspace ... 130

iv

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Creating a table .. 132
Step 2: CRUD operations ... 136

Create .. 136
Read ... 138
Update .. 141
Delete .. 142

Step 3: Clean up (optional) ... 143
Deleting a table .. 143
Deleting a keyspace ... 144

Migrating to Amazon Keyspaces .. 146
Loading data using cqlsh ... 147

Prerequisites .. 147
Step 1: Create source and target .. 148
Step 2: Prepare the data .. 149
Step 3: Set throughput capacity for the table ... 151
Step 4: Configure cqlsh COPY FROM settings .. 152
Step 5: Run the cqlsh COPY FROM command ... 155
Troubleshooting .. 156

Loading data using DSBulk .. 158
Prerequisites .. 159
Step 1: Create source and target .. 161
Step 2: Prepare the data .. 163
Step 3: Set throughput capacity for the table ... 165
Step 4: Configure DSBulk settings .. 166
Step 5: Run the DSBulk load command .. 168

Code examples ... 170
Actions .. 175

Create a keyspace ... 176
Create a table .. 179
Delete a keyspace ... 186
Delete a table .. 189
Get data about a keyspace ... 193
Get data about a table .. 197
List keyspaces .. 202
List tables in a keyspace ... 206
Restore a table to a point in time .. 210

v

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Update a table .. 214
Scenarios .. 219

Get started with keyspaces and tables .. 219
Libraries and tools ... 281

Libraries and examples ... 281
Amazon Keyspaces (for Apache Cassandra) developer toolkit .. 281
Amazon Keyspaces (for Apache Cassandra) examples .. 281
AWS Signature Version 4 (SigV4) authentication plugins .. 281

Highlighted sample and developer tool repos .. 282
Amazon Keyspaces Protocol Buffers .. 282
AWS CloudFormation template to create Amazon CloudWatch dashboard for Amazon
Keyspaces (for Apache Cassandra) metrics ... 282
Using Amazon Keyspaces (for Apache Cassandra) with AWS Lambda 282
Using Amazon Keyspaces (for Apache Cassandra) with Spring ... 283
Using Amazon Keyspaces (for Apache Cassandra) with Scala ... 283
Using Amazon Keyspaces (for Apache Cassandra) with AWS Glue ... 283
Amazon Keyspaces (for Apache Cassandra) Cassandra query language (CQL) to AWS
CloudFormation converter .. 283
Amazon Keyspaces (for Apache Cassandra) helpers for Apache Cassandra driver for Java . 284
Amazon Keyspaces (for Apache Cassandra) snappy compression demo 284
Amazon Keyspaces (for Apache Cassandra) and Amazon S3 codec demo 284

Integrating with Apache Spark .. 285
Prerequisites .. 286
Step 1: Configure Amazon Keyspaces ... 286
Step 2: Configure the Apache Cassandra Spark Connector .. 288
Step 3: Create the app config file .. 290

Connect with SigV4 authentication .. 290
Connect with service-specific credentials .. 291
Connect with a fixed rate ... 292

Step 4: Prepare the source data and the target table ... 292
Step 5: Write and read Amazon Keyspaces data ... 294
Troubleshooting ... 297

Common errors and warnings ... 298
Troubleshooting ... 299

Connections ... 299
Errors connecting to an Amazon Keyspaces endpoint .. 299

vi

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Capacity management .. 311
Serverless capacity errors ... 311

Data definition language ... 316
Data definition language errors .. 316

Serverless resource management ... 321
Storage ... 321
Read/write capacity modes ... 322

On-demand capacity mode .. 322
Provisioned throughput capacity mode ... 324
Managing and viewing capacity modes ... 326
Considerations when changing capacity modes .. 327

Managing throughput capacity with auto scaling .. 328
How Amazon Keyspaces automatic scaling works ... 328
How auto scaling works for multi-Region tables .. 330
Usage notes ... 331
Using the console ... 332
Using CQL ... 336
Using the CLI ... 342

Burst Capacity ... 347
Working with Amazon Keyspaces ... 349

Working with keyspaces ... 349
System keyspaces ... 349
Creating keyspaces ... 355

Working with tables .. 356
Creating tables .. 356
Multi-Region tables .. 357
Static columns ... 359

Working with rows .. 362
Calculating row size ... 363

Working with queries .. 366
IN SELECT Statement ... 366
Ordering results .. 371
Paginating results ... 372

Working with partitioners .. 372
Working with tags ... 374

Tagging restrictions .. 375

vii

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Tagging operations .. 376
Cost allocation reports for Amazon Keyspaces .. 380

Best practices ... 382
NoSQL design ... 383

NoSQL vs. RDBMS .. 384
Two key concepts ... 384
General approach ... 385

Connections ... 386
How they work .. 386
How to configure connections ... 387
VPC endpoint connections ... 389
How to monitor connections ... 390
How to handle connection errors ... 391

Data modeling .. 391
Partition key design ... 392

Cost optimization ... 394
Evaluate your costs at the table level .. 394
Evaluate your table's capacity mode .. 396
Evaluate your table's Application Auto Scaling settings .. 400
Identify your unused resources ... 408
Evaluate your table usage patterns .. 413
Evaluate your provisioned capacity for right-sized provisioning .. 414

NoSQL Workbench .. 424
Download ... 425
Getting started ... 425
Data modeler .. 427

Creating a data model .. 428
Editing a data model ... 430

Data visualizer .. 432
Visualizing a Data Model .. 432
Aggregate View ... 433

Committing a data model ... 435
Before you begin .. 436
Connecting with service-specific credentials .. 437
Connecting with IAM credentials .. 440
Using a saved connection ... 443

viii

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Apache Cassandra ... 443
Sample data models ... 446

Employee data model ... 446
Credit card transactions data model .. 446
Airline operations data model ... 447

Release history ... 447
Multi-Region Replication .. 448

Benefits .. 448
Capacity modes and pricing .. 449
How it works ... 450

How it works ... 450
Conflict resolution .. 451
Disaster recovery .. 451
IAM permissions .. 452
Integration with PITR .. 453
Integration with AWS services ... 453

Usage notes .. 454
How to use Multi-Region Replication .. 455

Using the console ... 456
Using CQL ... 461
Using the AWS CLI ... 469

Point-in-time recovery .. 478
How it works ... 478

Enabling PITR .. 479
Restore Permissions ... 482
Continuous backups ... 484
Restore settings .. 485
PITR and encrypted tables ... 486
PITR and multi-Region tables .. 487
Table restore time .. 487
Integration with AWS services ... 453

Restoring a table to a point in time .. 488
Before you begin .. 489
Restoring a table to a point in time (console) ... 489
Restoring a table to a point in time with the AWS CLI .. 490
Restoring a table to a point in time with CQL ... 493

ix

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Restoring a deleted table with the AWS CLI .. 495
Restoring a deleted table with CQL ... 496

Expiring data with Time to Live ... 497
How it works ... 498

Default TTL value ... 498
Custom TTL values ... 499
Enabling TTL .. 499
Integration with AWS services ... 500

How to use Time to Live .. 500
To create a new table with default Time to Live (TTL) settings enabled (console) 501
To update default Time to Live (TTL) settings on existing tables (console) 501
To disable default Time to Live (TTL) settings on existing tables (console) 502
To create a new table with default Time to Live (TTL) settings enabled using CQL 502
To use ALTER TABLE to edit default Time to Live (TTL) settings using CQL 503
How to enable Time to Live (TTL) on new tables using custom properties 503
How to enable Time to Live (TTL) on existing tables using custom properties 503
To use INSERT to edit custom Time to Live (TTL) settings using CQL 504
To use UPDATE to edit custom Time to Live (TTL) settings using CQL 504

Client-side timestamps .. 506
How it works ... 506

Client-side timestamps in Amazon Keyspaces ... 507
Integration with AWS services ... 507

How to use client-side timestamps ... 508
Creating a new table with client-side timestamps turned on (console) 508
Turning on client-side timestamps on existing tables (console) ... 509
Creating a new table with client-side timestamps turned on (CQL) .. 509
Turning on client-side timestamps for existing tables using ALTER TABLE (CQL) 510
Creating a new table with client-side timestamps turned on (CLI) .. 510
Turning on client-side timestamps on an existing table (CLI) ... 512
Using client-side timestamps in Data Manipulation Language (DML) statements 514

AWS CloudFormation resources ... 515
Amazon Keyspaces and AWS CloudFormation templates ... 515
Learn more about AWS CloudFormation .. 515

Monitoring Amazon Keyspaces ... 516
Monitoring with CloudWatch .. 517

Using metrics ... 518

x

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metrics and dimensions .. 519
Creating alarms ... 539

Logging with CloudTrail ... 540
Configuring log file entries in CloudTrail .. 540
DDL information in CloudTrail ... 541
DML information in CloudTrail .. 542
Understanding log file entries ... 543

Security .. 554
Data protection .. 555

Encryption at rest ... 556
Encryption in transit .. 576
Internetwork traffic privacy .. 576

AWS Identity and Access Management ... 578
Audience ... 578
Authenticating with identities ... 579
Managing access using policies ... 582
How Amazon Keyspaces works with IAM .. 584
Identity-based policy examples ... 589
AWS managed policies .. 596
Troubleshooting .. 603
Using service-linked roles ... 606

Compliance validation .. 613
Resilience ... 614
Infrastructure security ... 615

Using interface VPC endpoints .. 616
Configuration and vulnerability analysis for Amazon Keyspaces ... 622
Security best practices .. 623

Preventative security best practices ... 623
Detective security best practices ... 624

CQL language reference .. 627
Language elements ... 627

Identifiers ... 627
Constants .. 628
Terms ... 628
Data types .. 628
JSON encoding of Amazon Keyspaces data types ... 632

xi

Amazon Keyspaces (for Apache Cassandra) Developer Guide

DDL statements .. 635
Keyspaces ... 636
Tables .. 638

DML statements ... 651
SELECT .. 651
INSERT ... 654
UPDATE ... 656
DELETE .. 657

Built-in functions ... 658
Scalar functions .. 658

Quotas .. 661
Amazon Keyspaces service quotas ... 661
Increasing or decreasing throughput (for provisioned tables) .. 666

Increasing provisioned throughput ... 666
Decreasing provisioned throughput ... 666

Amazon Keyspaces encryption at rest ... 667
Document history .. 668

xii

Amazon Keyspaces (for Apache Cassandra) Developer Guide

What is Amazon Keyspaces (for Apache Cassandra)?

Amazon Keyspaces (for Apache Cassandra) is a scalable, highly available, and managed Apache
Cassandra–compatible database service. With Amazon Keyspaces, you don’t have to provision,
patch, or manage servers, and you don’t have to install, maintain, or operate software.

Amazon Keyspaces is serverless, so you pay for only the resources that you use, and the service
automatically scales tables up and down in response to application traffic. You can build
applications that serve thousands of requests per second with virtually unlimited throughput and
storage.

Note

Apache Cassandra is an open-source, wide-column datastore that is designed to handle
large amounts of data. For more information, see Apache Cassandra.

Amazon Keyspaces makes it easy to migrate, run, and scale Cassandra workloads in the AWS Cloud.
With just a few clicks on the AWS Management Console or a few lines of code, you can create
keyspaces and tables in Amazon Keyspaces, without deploying any infrastructure or installing
software.

With Amazon Keyspaces, you can run your existing Cassandra workloads on AWS using the same
Cassandra application code and developer tools that you use today.

For a list of available AWS Regions and endpoints, see Service endpoints for Amazon Keyspaces.

We recommend that you start by reading the following sections:

Topics

• Amazon Keyspaces: How it works

• Amazon Keyspaces use cases

• What is Cassandra Query Language (CQL)?

Amazon Keyspaces: How it works

Amazon Keyspaces removes the administrative overhead of managing Cassandra. To understand
why, it's helpful to begin with Cassandra architecture and then compare it to Amazon Keyspaces.

How it works 1

http://cassandra.apache.org/
https://docs.aws.amazon.com/keyspaces/latest/devguide/programmatic.endpoints.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• High-level architecture: Apache Cassandra vs. Amazon Keyspaces

• Cassandra data model

• Accessing Amazon Keyspaces from an application

High-level architecture: Apache Cassandra vs. Amazon Keyspaces

Traditional Apache Cassandra is deployed in a cluster made up of one or more nodes. You are
responsible for managing each node and adding and removing nodes as your cluster scales.

A client program accesses Cassandra by connecting to one of the nodes and issuing Cassandra
Query Language (CQL) statements. CQL is similar to SQL, the popular language used in relational
databases. Even though Cassandra is not a relational database, CQL provides a familiar interface
for querying and manipulating data in Cassandra.

The following diagram shows a simple Apache Cassandra cluster, consisting of four nodes.

A production Cassandra deployment might consist of hundreds of nodes, running on hundreds
of physical computers across one or more physical data centers. This can cause an operational

High-level architecture 2

Amazon Keyspaces (for Apache Cassandra) Developer Guide

burden for application developers who need to provision, patch, and manage servers in addition to
installing, maintaining, and operating software.

With Amazon Keyspaces (for Apache Cassandra), you don’t need to provision, patch, or manage
servers, so you can focus on building better applications. Amazon Keyspaces offers two throughput
capacity modes for reads and writes: on-demand and provisioned. You can choose your table’s
throughput capacity mode to optimize the price of reads and writes based on the predictability and
variability of your workload.

With on-demand mode, you pay for only the reads and writes that your application actually
performs. You do not need to specify your table’s throughput capacity in advance. Amazon
Keyspaces accommodates your application traffic almost instantly as it ramps up or down, making
it a good option for applications with unpredictable traffic.

Provisioned capacity mode helps you optimize the price of throughput if you have predictable
application traffic and can forecast your table’s capacity requirements in advance. With provisioned
capacity mode, you specify the number of reads and writes per second that you expect your
application to perform. You can increase and decrease the provisioned capacity for your table
automatically by enabling automatic scaling.

You can change the capacity mode of your table once per day as you learn more about your
workload’s traffic patterns, or if you expect to have a large burst in traffic, such as from a major
event that you anticipate will drive a lot of table traffic. For more information about read and write
capacity provisioning, see the section called “Read/write capacity modes”.

Amazon Keyspaces (for Apache Cassandra) stores three copies of your data in multiple Availability
Zones for durability and high availability. In addition, you benefit from a data center and network
architecture that is built to meet the requirements of the most security-sensitive organizations.
Encryption at rest is automatically enabled when you create a new Amazon Keyspaces table and all
client connections require Transport Layer Security (TLS). Additional AWS security features include
monitoring, AWS Identity and Access Management, and virtual private cloud (VPC) endpoints. For
an overview of all available security features, see Security.

The following diagram shows the architecture of Amazon Keyspaces.

High-level architecture 3

https://docs.aws.amazon.com/keyspaces/latest/devguide/autoscaling.html
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/keyspaces/latest/devguide/monitoring.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

A client program accesses Amazon Keyspaces by connecting to a predetermined endpoint
(hostname and port number) and issuing CQL statements. For a list of available endpoints, see the
section called “Service endpoints”.

Cassandra data model

How you model your data for your business case is critical to achieving optimal performance from
Amazon Keyspaces. A poor data model can significantly degrade performance.

Even though CQL looks similar to SQL, the backends of Cassandra and relational databases are
very different and must be approached differently. The following are some of the more significant
issues to consider:

Storage

You can visualize your Cassandra data in tables, with each row representing a record and each
column a field within that record.

Table design: Query first

There are no JOINs in CQL. Therefore, you should design your tables with the shape of your
data and how you need to access it for your business use cases. This might result in de-
normalization with duplicated data. You should design each of your tables specifically for a
particular access pattern.

Cassandra data model 4

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Partitions

Your data is stored in partitions on disk. The number of partitions your data is stored in and
how it is distributed across the partitions is determined by your partition key. How you define
your partition key can have a significant impact upon the performance of your queries.

Primary key

In Cassandra, data is stored as a key-value pair. To that end, every Cassandra table must have
a primary key, which is the key to each row in the table. The primary key is the composite of a
required partition key and optional clustering columns. The data that comprises the primary key
must be unique across all records in a table.

• Partition key – The partition key portion of the primary key is required and determines which
partition of your cluster the data is stored in. The partition key can be a single column, or it
can be a compound value composed of two or more columns. You would use a compound
partition key if a single column partition key would result in a single partition or a very few
partitions having most of the data and thus bearing the majority of the disk I/O operations.

• Clustering column – The optional clustering column portion of your primary key determines
how the data is clustered and sorted within each partition. If you include a clustering column
in your primary key, the clustering column can have one or more columns. If there are
multiple columns in the clustering column, the sorting order is determined by the order that
the columns are listed in the clustering column, from left to right.

Accessing Amazon Keyspaces from an application

Amazon Keyspaces (for Apache Cassandra) implements the Apache Cassandra Query Language
(CQL) API, so you can use CQL and Cassandra drivers that you already use. Updating your
application is as easy as updating your Cassandra driver or cqlsh configuration to point to the
Amazon Keyspaces service endpoint.

Note

To help you get started, you can find end-to-end code samples of connecting to Amazon
Keyspaces by using various Cassandra client drivers in the Amazon Keyspaces code example
repository on GitHub.

Consider the following Python program, which connects to a Cassandra cluster and queries a table.

Accessing Amazon Keyspaces 5

https://github.com/aws-samples/amazon-keyspaces-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

from cassandra.cluster import Cluster
#TLS/SSL configuration goes here

ksp = 'MyKeyspace'
tbl = 'WeatherData'

cluster = Cluster(['NNN.NNN.NNN.NNN'], port=NNNN)
session = cluster.connect(ksp)

session.execute('USE ' + ksp)

rows = session.execute('SELECT * FROM ' + tbl)
for row in rows:
 print(row)

To run the same program against Amazon Keyspaces, you need to:

• Add the cluster endpoint and port: For example, the host can be replaced with a service
endpoint, such as cassandra.us-east-2.amazonaws.com and the port number with: 9142.

• Add the TLS/SSL configuration: For more information on adding the TLS/SSL configuration to
connect to Amazon Keyspaces by using a Cassandra client Python driver, see Using a Cassandra
Python client driver to access Amazon Keyspaces programmatically.

Amazon Keyspaces use cases

The following are just some of the ways in which you can use Amazon Keyspaces:

• Build applications that require low latency – Process data at high speeds for applications
that require single-digit-millisecond latency, such as industrial equipment maintenance, trade
monitoring, fleet management, and route optimization.

• Build applications using open-source technologies – Build applications on AWS using open-
source Cassandra APIs and drivers that are available for a wide range of programming languages,
such as Java, Python, Ruby, Microsoft .NET, Node.js, PHP, C++, Perl, and Go. For code examples,
see Libraries and tools.

• Move your Cassandra workloads to the cloud – Managing Cassandra tables yourself is time-
consuming and expensive. With Amazon Keyspaces, you can set up, secure, and scale Cassandra
tables in the AWS Cloud without managing infrastructure. For more information, see Serverless
resource management.

Use cases 6

Amazon Keyspaces (for Apache Cassandra) Developer Guide

What is Cassandra Query Language (CQL)?

Cassandra Query Language (CQL) is the primary language for communicating with Apache
Cassandra. Amazon Keyspaces (for Apache Cassandra) is compatible with the CQL 3.x API
(backward-compatible with version 2.x).

To run CQL queries, you can do one of the following:

• Use the CQL editor on the AWS Management Console.

• Run them on the cqlsh client.

• Run them programmatically using an Apache 2.0 licensed Cassandra client driver.

For more information about using these methods to access Amazon Keyspaces, see Accessing
Amazon Keyspaces (for Apache Cassandra).

For more information about CQL, see CQL language reference for Amazon Keyspaces (for Apache
Cassandra).

What is CQL? 7

Amazon Keyspaces (for Apache Cassandra) Developer Guide

How does Amazon Keyspaces (for Apache Cassandra)
compare to Apache Cassandra?

Amazon Keyspaces (for Apache Cassandra) appears as a nine-node, Apache Cassandra 3.11.2
cluster to clients and supports drivers and clients that are compatible with Apache Cassandra
3.11.2. Amazon Keyspaces supports the 3.x Cassandra Query Language (CQL) API and is backward-
compatible with version 2.x. With Amazon Keyspaces, you can run your Cassandra workloads on
AWS using the same Cassandra application code, Apache 2.0–licensed drivers, and tools that you
use today.

Amazon Keyspaces supports all commonly used Cassandra data-plane operations, such as creating
keyspaces and tables, reading data, and writing data. Amazon Keyspaces is serverless, so you don’t
have to provision, patch, or manage servers. You also don’t have to install, maintain, or operate
software. As a result, the Cassandra control plane API operations to manage cluster and node
settings are not required to use Amazon Keyspaces.

Settings such as replication factor and consistency level are configured automatically to provide
you with high availability, durability, and single-digit-millisecond performance.

Topics

• Functional differences: Amazon Keyspaces vs. Apache Cassandra

• Supported Cassandra APIs, operations, functions, and data types in Amazon Keyspaces

• Supported Apache Cassandra consistency levels in Amazon Keyspaces

Functional differences: Amazon Keyspaces vs. Apache
Cassandra

The following are the functional differences between Amazon Keyspaces and Apache Cassandra.

Topics

• Apache Cassandra APIs, operations, and data types

• Asynchronous creation and deletion of keyspaces and tables

• Authentication and authorization

• Batch

Functional differences with Apache Cassandra 8

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Cluster configuration

• Connections

• IN keyword

• CQL query throughput tuning

• FROZEN collections

• Lightweight transactions

• Load balancing

• Pagination

• Partitioners

• Prepared statements

• Range delete

• System tables

• Timestamps

Apache Cassandra APIs, operations, and data types

Amazon Keyspaces supports all commonly used Cassandra data-plane operations, such as creating
keyspaces and tables, reading data, and writing data. To see what is currently supported, see
Supported Cassandra APIs, operations, functions, and data types in Amazon Keyspaces.

Asynchronous creation and deletion of keyspaces and tables

Amazon Keyspaces performs data definition language (DDL) operations, such as creating and
deleting keyspaces and tables, asynchronously. To learn how to monitor the creation status of
resources, see the section called “Creating keyspaces” and the section called “Creating tables”. For a
list of DDL statements in the CQL language reference, see the section called “DDL statements”.

Authentication and authorization

Amazon Keyspaces (for Apache Cassandra) uses AWS Identity and Access Management (IAM)
for user authentication and authorization, and supports the equivalent authorization policies as
Apache Cassandra. As such, Amazon Keyspaces does not support Apache Cassandra's security
configuration commands.

Apache Cassandra APIs, operations, and data types 9

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Batch

Amazon Keyspaces supports unlogged batch commands with up to 30 commands in the batch.
Only unconditional INSERT, UPDATE, or DELETE commands are permitted in a batch. Logged
batches are not supported.

Cluster configuration

Amazon Keyspaces is serverless, so there are no clusters, hosts, or Java virtual machines (JVMs)
to configure. Cassandra’s settings for compaction, compression, caching, garbage collection, and
bloom filtering are not applicable to Amazon Keyspaces and are ignored if specified.

Connections

You can use existing Cassandra drivers to communicate with Amazon Keyspaces, but you need to
configure the drivers differently. Amazon Keyspaces supports up to 3,000 CQL queries per TCP
connection per second, but there is no limit on the number of connections a driver can establish.

Most open-source Cassandra drivers establish a connection pool to Cassandra and load balance
queries over that pool of connections. Amazon Keyspaces exposes 9 peer IP addresses to drivers,
and the default behavior of most drivers is to establish a single connection to each peer IP address.
Therefore, the maximum CQL query throughput of a driver using the default settings is 27,000 CQL
queries per second.

To increase this number, we recommend increasing the number of connections per IP address your
driver is maintaining in its connection pool. For example, setting the maximum connections per IP
address to 2 doubles the maximum throughput of your driver to 54,000 CQL queries per second.

As a best practice, we recommend configuring drivers to use 500 CQL queries per second per
connection to allow for overhead and to improve distribution. In this scenario, planning for 18,000
CQL queries per second requires 36 connections. Configuring the driver for 4 connections across 9
endpoints provides for 36 connections performing 500 request per second. For more information
about best practices for connections, see the section called “Connections”.

When connecting with VPC endpoints, there might be fewer endpoints available. This means that
you have to increase the number of connections in the driver configuration. For more information
about best practices for VPC connections, see the section called “VPC endpoint connections”.

Batch 10

Amazon Keyspaces (for Apache Cassandra) Developer Guide

IN keyword

Amazon Keyspaces supports the IN keyword in the SELECT statement. IN is not supported
with UPDATE and DELETE. When using the IN keyword in the SELECT statement, the results of
the query are returned in the order of how the keys are presented in the SELECT statement. In
Cassandra, the results are ordered lexicographically.

When using ORDER BY, full re-ordering with disabled pagination is not supported and results
are ordered within a page. Slice queries are not supported with the IN keyword. TOKENS are not
supported with the IN keyword. Amazon Keyspaces processes queries with the IN keyword by
creating subqueries. Each subquery counts as a connection towards the 3,000 CQL queries per TCP
connection per second limit. For more information, see the section called “IN SELECT Statement”.

CQL query throughput tuning

Amazon Keyspaces supports up to 3,000 CQL queries per TCP connection per second, but there is
no limit on the number of connections a driver can establish.

Most open-source Cassandra drivers establish a connection pool to Cassandra and load balance
queries over that pool of connections. Amazon Keyspaces exposes 9 peer IP addresses to drivers,
and the default behavior of most drivers is to establish a single connection to each peer IP address.
Therefore, the maximum CQL query throughput of a driver using the default settings will be
27,000 CQL queries per second.

To increase this number, we recommend increasing the number of connections per IP address your
driver is maintaining in its connection pool. For example, setting the maximum connections per IP
address to 2 will double the maximum throughput of your driver to 54,000 CQL queries per second.

FROZEN collections

The FROZEN keyword in Cassandra serializes multiple components of a collection data type into a
single immutable value that is treated like a BLOB. INSERT and UPDATE statements overwrite the
entire collection.

Amazon Keyspaces supports up to five levels of nesting for frozen collections by default. For more
information, see the section called “Amazon Keyspaces service quotas”.

Amazon Keyspaces doesn't support inequality comparisons that use the entire frozen collection in a
conditional UPDATE or SELECT statement. The behavior for collections and frozen collections is the
same in Amazon Keyspaces.

IN keyword 11

Amazon Keyspaces (for Apache Cassandra) Developer Guide

When you're using frozen collections with client-side timestamps, in the case where the timestamp
of a write operation is the same as the timestamp of an existing column that isn't expired or
tombstoned, Amazon Keyspaces doesn't perform comparisons. Instead, it lets the server determine
the latest writer, and the latest writer wins.

For more information about frozen collections, see the section called “Collection types”.

Lightweight transactions

Amazon Keyspaces (for Apache Cassandra) fully supports compare and set functionality on INSERT,
UPDATE, and DELETE commands, which are known as lightweight transactions (LWTs) in Apache
Cassandra. As a serverless offering, Amazon Keyspaces (for Apache Cassandra) provides consistent
performance at any scale, including for lightweight transactions. With Amazon Keyspaces, there is
no performance penalty for using lightweight transactions.

Load balancing

The system.peers table entries correspond to Amazon Keyspaces load balancers. For best results,
we recommend using a round robin load-balancing policy and tuning the number of connections
per IP to suit your application's needs.

Pagination

Amazon Keyspaces paginates results based on the number of rows that it reads to process a
request, not the number of rows returned in the result set. As a result, some pages might contain
fewer rows than you specify in PAGE SIZE for filtered queries. In addition, Amazon Keyspaces
paginates results automatically after reading 1 MB of data to provide customers with consistent,
single-digit millisecond read performance. For more information, see the section called “Paginating
results”.

Partitioners

The default partitioner in Amazon Keyspaces is the Cassandra-compatible Murmur3Partitioner.
In addition, you have the choice of using either the Amazon Keyspaces DefaultPartitioner or
the Cassandra-compatible RandomPartitioner.

With Amazon Keyspaces, you can safely change the partitioner for your account without having to
reload your Amazon Keyspaces data. After the configuration change has completed, which takes

Lightweight transactions 12

Amazon Keyspaces (for Apache Cassandra) Developer Guide

approximately 10 minutes, clients will see the new partitioner setting automatically the next time
they connect. For more information, see the section called “Working with partitioners”.

Prepared statements

Amazon Keyspaces supports the use of prepared statements for data manipulation language (DML)
operations, such as reading and writing data. Amazon Keyspaces does not currently support the
use of prepared statements for data definition language (DDL) operations, such as creating tables
and keyspaces. DDL operations must be run outside of prepared statements.

Range delete

Amazon Keyspaces supports deleting rows in range. A range is a contiguous set of rows within a
partition. You specify a range in a DELETE operation by using a WHERE clause. You can specify the
range to be an entire partition.

Furthermore, you can specify a range to be a subset of contiguous rows within a partition by using
relational operators (for example, '>', '<'), or by including the partition key and omitting one or
more clustering columns. With Amazon Keyspaces, you can delete up to 1,000 rows within a range
in a single operation. Additionally, range deletes are atomic, but not isolated.

System tables

Amazon Keyspaces populates the system tables that are required by Apache 2.0 open-source
Cassandra drivers. The system tables that are visible to a client contain information that's unique to
the authenticated user. The system tables are fully controlled by Amazon Keyspaces and are read-
only.

Read-only access to system tables is required, and you can control it with IAM access policies. For
more information, see the section called “Managing access using policies”. You must define tag-
based access control policies for system tables differently depending on whether you use the AWS
SDK or Cassandra Query Language (CQL) API calls through Cassandra drivers and developer tools.
To learn more about tag-based access control for system tables, see the section called “ Amazon
Keyspaces resource access based on tags”.

If you access Amazon Keyspaces using Amazon VPC endpoints, you see entries in the
system.peers table for each Amazon VPC endpoint that Amazon Keyspaces has permissions to
see. As a result, your Cassandra driver might issue a warning message about the control node itself
in the system.peers table. You can safely ignore this warning.

Prepared statements 13

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Timestamps

In Amazon Keyspaces, cell-level timestamps that are compatible with the default timestamps in
Apache Cassandra are an opt-in feature.

The USING TIMESTAMP clause and the WRITETIME function are only available when client-side
timestamps are turned on for a table. To learn more about client-side timestamps in Amazon
Keyspaces, see Client-side timestamps.

Supported Cassandra APIs, operations, functions, and data
types in Amazon Keyspaces

Amazon Keyspaces (for Apache Cassandra) is compatible with Cassandra Query Language (CQL)
3.11 API (backward-compatible with version 2.x).

Amazon Keyspaces supports all commonly used Cassandra data-plane operations, such as creating
keyspaces and tables, reading data, and writing data.

The following sections list the supported functionality.

Topics

• Cassandra API support

• Cassandra control plane API support

• Cassandra data plane API support

• Cassandra function support

• Cassandra data type support

Cassandra API support

API operation Supported

CREATE KEYSPACE Yes

ALTER KEYSPACE Yes

DROP KEYSPACE Yes

Timestamps 14

Amazon Keyspaces (for Apache Cassandra) Developer Guide

API operation Supported

CREATE TABLE Yes

ALTER TABLE Yes

DROP TABLE Yes

CREATE INDEX No

DROP INDEX No

UNLOGGED BATCH Yes

LOGGED BATCH No

SELECT Yes

INSERT Yes

DELETE Yes

UPDATE Yes

USE Yes

CREATE TYPE No

ALTER TYPE No

DROP TYPE No

CREATE TRIGGER No

DROP TRIGGER No

CREATE FUNCTION No

DROP FUNCTION No

CREATE AGGREGATE No

Cassandra API support 15

Amazon Keyspaces (for Apache Cassandra) Developer Guide

API operation Supported

DROP AGGREGATE No

CREATE MATERIALIZED VIEW No

ALTER MATERIALIZED VIEW No

DROP MATERIALIZED VIEW No

TRUNCATE No

Cassandra control plane API support

Because Amazon Keyspaces is managed, the Cassandra control plane API operations to manage
cluster and node settings are not required. As a result, the following Cassandra features are not
applicable.

Feature Reason

Durable writes toggle All writes are durable

Read repair settings Not applicable

GC grace seconds Not applicable

Bloom filter settings Not applicable

Compaction settings Not applicable

Compression settings Not applicable

Caching settings Not applicable

Security settings Replaced by IAM

Cassandra control plane API support 16

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Cassandra data plane API support

Feature Supported

JSON support for SELECT and INSERT
statements

Yes

Static columns Yes

Time to Live (TTL) Yes

Cassandra function support

For more information about the supported functions, see the section called “Built-in functions”.

Function Supported

Aggregate functions No

Blob conversion Yes

Cast Yes

Datetime functions Yes

Timeconversion functions Yes

TimeUuid functions Yes

Token Yes

User defined functions (UDF) No

Uuid Yes

Cassandra data plane API support 17

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Cassandra data type support

Data type Supported Note

ascii Yes

bigint Yes

blob Yes

boolean Yes

counter Yes

date Yes

decimal Yes

double Yes

float Yes

frozen Yes

inet Yes

int Yes

list Yes

map Yes

set Yes

smallint Yes

text Yes

time Yes

timestamp Yes

Cassandra data type support 18

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Data type Supported Note

timeuuid Yes

tinyint Yes

tuple Yes

user-defined types
(UDT)

No To refactor UDTs with
Protocol Buffers, see Amazon
Keyspaces Protocol Buffers.

uuid Yes

varchar Yes

varint Yes

Supported Apache Cassandra consistency levels in Amazon
Keyspaces

The topics in this section describe which Apache Cassandra consistency levels are supported for
read and write operations in Amazon Keyspaces (for Apache Cassandra).

Topics

• Write consistency levels

• Read consistency levels

• Unsupported consistency levels

Write consistency levels

Amazon Keyspaces replicates all write operations three times across multiple Availability Zones
for durability and high availability. Writes are durably stored before they are acknowledged using
the LOCAL_QUORUM consistency level. For each 1 KB write, you are billed 1 write capacity unit
(WCU) for tables using provisioned capacity mode or 1 write request unit (WRU) for tables using
on-demand mode.

Supported Cassandra consistency levels 19

https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/protobuf-user-defined-types
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/protobuf-user-defined-types

Amazon Keyspaces (for Apache Cassandra) Developer Guide

You can use cqlsh to set the consistency for all queries in the current session to LOCAL_QUORUM
using the following code.

CONSISTENCY LOCAL_QUORUM;

To configure the consistency level programmatically, you can set the consistency with the
appropriate Cassandra client drivers. For example, the 4.x version Java drivers allow you to set the
consistency level in the app config file as shown below.

basic.request.consistency = LOCAL_QUORUM

If you're using a 3.x version Java Cassandra driver, you can specify the
consistency level for the session by adding .withQueryOptions(new
QueryOptions().setConsistencyLevel(ConsistencyLevel.LOCAL_QUORUM) as shown in
the following code example.

Session session = Cluster.builder()
 .addContactPoint(endPoint)
 .withPort(portNumber)
 .withAuthProvider(new SigV4AuthProvider("us-east-2"))
 .withSSL()
 .withQueryOptions(new
 QueryOptions().setConsistencyLevel(ConsistencyLevel.LOCAL_QUORUM)
 .build()
 .connect();

To configure the consistency level for specific write operations, you can define the consistency
when you call QueryBuilder.insertInto with a setConsistencyLevel argument when
you're using the Java driver.

Read consistency levels

Amazon Keyspaces supports three read consistency levels: ONE, LOCAL_ONE, and LOCAL_QUORUM.
During a LOCAL_QUORUM read, Amazon Keyspaces returns a response reflecting the most recent
updates from all prior successful write operations. Using the consistency level ONE or LOCAL_ONE
can improve the performance and availability of your read requests, but the response might not
reflect the results of a recently completed write.

For each 4 KB read using ONE or LOCAL_ONE consistency, you are billed 0.5 read capacity units
(RCUs) for tables using provisioned capacity mode or 0.5 read request units (RRUs) for tables using

Read consistency levels 20

Amazon Keyspaces (for Apache Cassandra) Developer Guide

on-demand mode. For each 4 KB read using LOCAL_QUORUM consistency, you are billed 1 read
capacity unit (RCU) for tables using provisioned capacity mode or 1 read request units (RRU) for
tables using on-demand mode.

Billing based on read consistency and read capacity throughput mode per table for each 4 KB
of reads

Consistency level Provisioned On-demand

ONE 0.5 RCUs 0.5 RRUs

LOCAL_ONE 0.5 RCUs 0.5 RRUs

LOCAL_QUORUM 1 RCU 1 RRU

To specify a different consistency for read operations, call QueryBuilder.select with a
setConsistencyLevel argument when you're using the Java driver.

Unsupported consistency levels

The following consistency levels are not supported by Amazon Keyspaces and will result in
exceptions.

Unsupported consistency levels

Apache Cassandra Amazon Keyspaces

EACH_QUORUM Not supported

QUORUM Not supported

ALL Not supported

TWO Not supported

THREE Not supported

ANY Not supported

SERIAL Not supported

Unsupported consistency levels 21

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Apache Cassandra Amazon Keyspaces

LOCAL_SERIAL Not supported

Unsupported consistency levels 22

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Accessing Amazon Keyspaces (for Apache Cassandra)

You can access Amazon Keyspaces using the console, AWS CloudShell, programmatically by
running a cqlsh client, the AWS SDK, or by using an Apache 2.0 licensed Cassandra driver. Amazon
Keyspaces supports drivers and clients that are compatible with Apache Cassandra 3.11.2. Before
accessing Amazon Keyspaces, you must complete setting up AWS Identity and Access Management
and then grant an IAM identity access permissions to Amazon Keyspaces.

Setting up AWS Identity and Access Management

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Setting up AWS Identity and Access Management 23

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Setting up Amazon Keyspaces

Access to Amazon Keyspaces resources is managed using IAM. Using IAM, you can attach policies
to IAM users, roles, and federated identities that grant read and write permissions to specific
resources in Amazon Keyspaces.

Setting up Amazon Keyspaces 24

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

To get started with granting permissions to an IAM identity, you can use one of the AWS managed
policies for Amazon Keyspaces:

• AmazonKeyspacesFullAccess – this policy grants permissions to access all resources in Amazon
Keyspaces with full access to all features.

• AmazonKeyspacesReadOnlyAccess_v2 – this policy grants read-only permissions to Amazon
Keyspaces.

For a detailed explanation of the actions defined in the managed policies, see the section called
“AWS managed policies”.

To limit the scope of actions that an IAM identity can perform or limit the resources that the
identity can access, you can create a custom policy that uses the AmazonKeyspacesFullAccess
managed policy as a template and remove all permissions that you don't need. You can also limit
access to specific keyspaces or tables. For more information about how to restrict actions or limit
access to specific resources in Amazon Keyspaces, see the section called “How Amazon Keyspaces
works with IAM”.

To access Amazon Keyspaces after you have created the AWS account and created a policy that
grants an IAM identity access to Amazon Keyspaces, continue to one of the following sections:

• Using the console

• Using AWS CloudShell

• Connecting programmatically

Accessing Amazon Keyspaces using the console

You can access the console for Amazon Keyspaces at https://console.aws.amazon.com/keyspaces/
home. For more information about AWS Management Console access, see Controlling IAM users
access to the AWS Management Console in the IAM User Guide.

You can use the console to do the following in Amazon Keyspaces:

• Create, delete, and manage keyspaces and tables.

• Monitor important table metrics on a table's Monitor tab:

• Billable table size (Bytes)

• Capacity metrics

Using the console 25

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonKeyspacesFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonKeyspacesReadOnlyAccess_v2.html
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_controlling-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_controlling-access.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Run queries using the CQL editor, for example insert, update, and delete data.

• Change the partitioner configuration of the account.

• View performance and error metrics for the account on the dashboard.

To learn how to create an Amazon Keyspaces keyspace and table and set it up with sample
application data, see Getting started with Amazon Keyspaces (for Apache Cassandra).

Using AWS CloudShell to access Amazon Keyspaces

AWS CloudShell is a browser-based, pre-authenticated shell that you can launch directly from
the AWS Management Console. You can run AWS CLI commands against AWS services using your
preferred shell (Bash, PowerShell or Z shell). To work with Amazon Keyspaces using cqlsh, you
must install the cqlsh-expansion. For cqlsh-expansion installation instructions, see the
section called “Using the cqlsh-expansion”.

You launch AWS CloudShell from the AWS Management Console, and the AWS credentials
you used to sign in to the console are automatically available in a new shell session. This pre-
authentication of AWS CloudShell users allows you to skip configuring credentials when interacting
with AWS services such as Amazon Keyspaces using cqlsh or AWS CLI version 2 (pre-installed on
the shell's compute environment).

Obtaining IAM permissions for AWS CloudShell

Using the access management resources provided by AWS Identity and Access Management,
administrators can grant permissions to IAM users so they can access AWS CloudShell and use the
environment's features.

The quickest way for an administrator to grant access to users is through an AWS managed policy.
An AWS managed policy is a standalone policy that's created and administered by AWS. The
following AWS managed policy for CloudShell can be attached to IAM identities:

• AWSCloudShellFullAccess: Grants permission to use AWS CloudShell with full access to all
features.

If you want to limit the scope of actions that an IAM user can perform with AWS CloudShell, you
can create a custom policy that uses the AWSCloudShellFullAccess managed policy as a

Using AWS CloudShell 26

https://docs.aws.amazon.com/cloudshell/latest/userguide/working-with-cloudshell.html#launch-options
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Keyspaces (for Apache Cassandra) Developer Guide

template. For more information about limiting the actions that are available to users in CloudShell,
see Managing AWS CloudShell access and usage with IAM policies in the AWS CloudShell User
Guide.

Note

Your IAM identity also requires a policy that grants permission to make calls to Amazon
Keyspaces.

You can use an AWS managed policy to give your IAM identity access you Amazon Keyspaces, or
start with the managed policy as a template and remove the permissions that you don't need.
You can also limit access to specific keyspaces and tables to create a custom policy. The following
managed policy for Amazon Keyspaces can be attached to IAM identities:

• AmazonKeyspacesFullAccess – This policy grants permission to use Amazon Keyspaces with full
access to all features.

For a detailed explanation of the actions defined in the managed policy, see the section called
“AWS managed policies”.

For more information about how to restrict actions or limit access to specific resources in Amazon
Keyspaces, see the section called “How Amazon Keyspaces works with IAM”.

Interacting with Amazon Keyspaces using AWS CloudShell

After you launch AWS CloudShell from the AWS Management Console, you can immediately start
to interact with Amazon Keyspaces using cqlsh or the command line interface. If you haven't
already installed the cqlsh-expansion, see the section called “Using the cqlsh-expansion” for
detailed steps.

Note

When using the cqlsh-expansion in AWS CloudShell, you don't need to configure
credentials before making calls, because you're already authenticated within the shell.

Interacting with Amazon Keyspaces using AWS CloudShell 27

https://docs.aws.amazon.com/cloudshell/latest/userguide/sec-auth-with-identities.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonKeyspacesFullAccess.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Connect to Amazon Keyspaces and create a new keyspace. Then read from a system table to
confirm that the keyspace was created using AWS CloudShell

1. From the AWS Management Console, you can launch CloudShell by choosing the following
options available on the navigation bar:

• Choose the CloudShell icon.

• Start typing "cloudshell" in Search box and then choose the CloudShell option.

2. You can establish a connection to Amazon Keyspaces using the following command. Make
sure to replace cassandra.us-east-1.amazonaws.com with the correct endpoint for your
Region.

cqlsh-expansion cassandra.us-east-1.amazonaws.com 9142 --ssl

If the connection is successful, you should see output similar to the following example.

Connected to Amazon Keyspaces at cassandra.us-east-1.amazonaws.com:9142
[cqlsh 6.1.0 | Cassandra 3.11.2 | CQL spec 3.4.4 | Native protocol v4]
Use HELP for help.
cqlsh current consistency level is ONE.
cqlsh>

3. Create a new keyspace with the name mykeyspace. You can use the following command to do
that.

CREATE KEYSPACE mykeyspace WITH REPLICATION = {'class': 'SingleRegionStrategy'};

4. To confirm that the keyspace was created, you can read from a system table using the
following command.

SELECT * FROM system_schema_mcs.keyspaces WHERE keyspace_name = 'mykeyspace';

If the call is successful, the command line displays a response from the service similar to the
following output:

 keyspace_name | durable_writes | replication
----------------+----------------
+---

Interacting with Amazon Keyspaces using AWS CloudShell 28

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 mykeyspace | True | {'class':
 'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}

(1 rows)

Connecting programmatically to Amazon Keyspaces

This topic outlines the steps required to connect to Amazon Keyspaces programmatically. It guides
you through creating IAM credentials and lists the available AWS service endpoints. The last
section shows how to connect to Amazon Keyspaces using cqlsh. For step-by-step tutorials to
connect to Amazon Keyspaces using different Apache Cassandra drivers, see the section called
“Using a Cassandra client driver”. For a step-by-step tutorial that shows how to connect to Amazon
Keyspaces from an Amazon VPC endpoint, see the section called “Connecting with VPC endpoints”.

Note

To help you get started, you can find end-to-end code samples of connecting to Amazon
Keyspaces by using various Cassandra client drivers in the Amazon Keyspaces code example
repository on GitHub.

Amazon Keyspaces supports drivers and clients that are compatible with Apache Cassandra 3.11.2.
It assumes that you have already completed the AWS setup instructions in Accessing Amazon
Keyspaces.

If you already have an AWS account, see the following topics to learn how to access Amazon
Keyspaces using cqlsh programmatically:

Topics

• Creating credentials to access Amazon Keyspaces programmatically

• Service endpoints for Amazon Keyspaces

• Using cqlsh to connect to Amazon Keyspaces

• Using the AWS CLI

• Using the API

• Using Amazon Keyspaces with an AWS SDK

• Using a Cassandra client driver to access Amazon Keyspaces programmatically

Connecting programmatically 29

https://github.com/aws-samples/amazon-keyspaces-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Tutorial: Connecting to Amazon Keyspaces from Amazon Elastic Kubernetes Service

Creating credentials to access Amazon Keyspaces programmatically

To provide users and applications with credentials for programmatic access to Amazon Keyspaces
resources, you can do either of the following:

• Create service-specific credentials that are similar to the traditional username and password that
Cassandra uses for authentication and access management. AWS service-specific credentials
are associated with a specific AWS Identity and Access Management (IAM) user and can only be
used for the service they were created for. For more information, see Using IAM with Amazon
Keyspaces (for Apache Cassandra) in the IAM User Guide.

• For enhanced security, we recommend to create IAM access keys for IAM users and roles that are
used across all AWS services. The Amazon Keyspaces SigV4 authentication plugin for Cassandra
client drivers enables you to authenticate calls to Amazon Keyspaces using IAM access keys
instead of user name and password. To learn more about how the Amazon Keyspaces SigV4
plugin enables IAM users, roles, and federated identities to authenticate in Amazon Keyspaces
API requests, see AWS Signature Version 4 process (SigV4).

You can download the SigV4 plugins from the following locations.

• Java: https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin.

• Node.js: https://github.com/aws/aws-sigv4-auth-cassandra-nodejs-driver-plugin.

• Python: https://github.com/aws/aws-sigv4-auth-cassandra-python-driver-plugin.

• Go: https://github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin.

For code samples that show how to establish connections using the SigV4 authentication plugin,
see the section called “Using a Cassandra client driver”.

Topics

• Generate service-specific credentials

• How to create and configure AWS credentials for Amazon Keyspaces

Generate service-specific credentials

Service-specific credentials are similar to the traditional username and password that Cassandra
uses for authentication and access management. Service-specific credentials enable IAM users to

Creating credentials 30

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_keyspaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_keyspaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-nodejs-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-python-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin

Amazon Keyspaces (for Apache Cassandra) Developer Guide

access a specific AWS service. The credentials cannot be used to access other AWS services. They
are associated with a specific IAM user and cannot be used by other IAM users.

Important

Service-specific credentials are associated with a specific IAM user and can only be used for
the service they were created for. To give IAM roles or federated identities permissions to
access all your AWS resources, you should create IAM access keys for AWS authentication
and use the SigV4 authentication plugin.

Use one of the following procedures to generate a service-specific credential.

Generate service-specific credentials using the console

To generate service-specific credentials using the console

1. Sign in to the AWS Management Console and open the AWS Identity and Access Management
console at https://console.aws.amazon.com/iam/home.

2. In the navigation pane, choose Users, and then choose the user that you created earlier that
has Amazon Keyspaces permissions (policy attached).

3. Choose Security Credentials. Under Credentials for Amazon Keyspaces, choose Generate
credentials to generate the service-specific credentials.

Your service-specific credentials are now available. This is the only time you can download or
view the password. You cannot recover it later. However, you can reset your password at any
time. Save the user and password in a secure location, because you'll need them later.

Generate service-specific credentials using the AWS CLI

To generate service-specific credentials using the AWS CLI

Before generating service-specific credentials, you need to download, install, and configure the
AWS Command Line Interface (AWS CLI):

1. Download the AWS CLI at http://aws.amazon.com/cli.

Creating credentials 31

https://console.aws.amazon.com/iam/home
https://aws.amazon.com/cli

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

The AWS CLI runs on Windows, macOS, or Linux.

2. Follow the instructions for Installing the AWS CLI and Configuring the AWS CLI in the AWS
Command Line Interface User Guide.

3. Using the AWS CLI, run the following command to generate service-specific credentials for the
user alice, so that she can access Amazon Keyspaces.

aws iam create-service-specific-credential \
 --user-name alice \
 --service-name cassandra.amazonaws.com

The output looks like the following.

{
 "ServiceSpecificCredential": {
 "CreateDate": "2019-10-09T16:12:04Z",
 "ServiceName": "cassandra.amazonaws.com",
 "ServiceUserName": "alice-at-111122223333",
 "ServicePassword": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "ServiceSpecificCredentialId": "ACCAYFI33SINPGJEBYESF",
 "UserName": "alice",
 "Status": "Active"
 }
}

In the output, note the values for ServiceUserName and ServicePassword. Save these values
in a secure location, because you'll need them later.

Important

This is the only time that the ServicePassword will be available to you.

Creating credentials 32

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

How to create and configure AWS credentials for Amazon Keyspaces

To access Amazon Keyspaces programmatically with the AWS CLI, the AWS SDK, or with
Cassandra client drivers and the SigV4 plugin, you need an IAM user or role with access keys.
When you use AWS programmatically, you provide your AWS access keys so that AWS can verify
your identity in programmatic calls. Your access keys consist of an access key ID (for example,
AKIAIOSFODNN7EXAMPLE) and a secret access key (for example, wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY). This topic walks you through the required steps in this process.

Topics

• Credentials required by the AWS CLI, the AWS SDK, or the Amazon Keyspaces SigV4 plugin for
Cassandra client drivers

• Creating an IAM user for programmatic access to Amazon Keyspaces in your AWS account

• Creating new access keys for an IAM user

• How to manage access keys for IAM users

• Using temporary credentials to connect to Amazon Keyspaces using an IAM role and the SigV4
plugin

Credentials required by the AWS CLI, the AWS SDK, or the Amazon Keyspaces SigV4 plugin for
Cassandra client drivers

The following credentials are required to authenticate the IAM user or role:

AWS_ACCESS_KEY_ID

Specifies an AWS access key associated with an IAM user or role.

The access key aws_access_key_id is required to connect to Amazon Keyspaces
programmatically.

AWS_SECRET_ACCESS_KEY

Specifies the secret key associated with the access key. This is essentially the "password" for the
access key.

The aws_secret_access_key is required to connect to Amazon Keyspaces programmatically.

Creating credentials 33

Amazon Keyspaces (for Apache Cassandra) Developer Guide

AWS_SESSION_TOKEN – Optional

Specifies the session token value that is required if you are using temporary security credentials
that you retrieved directly from AWS Security Token Service operations. For more information,
see the section called “Using temporary credentials to connect to Amazon Keyspaces”.

If you are connecting with an IAM user, the aws_session_token is not required.

Creating an IAM user for programmatic access to Amazon Keyspaces in your AWS account

To obtain credentials for programmatic access to Amazon Keyspaces with the AWS CLI, the AWS
SDK, or the SigV4 plugin, you need to first create an IAM user or role. The process of creating a IAM
user and configuring that IAM user to have programmatic access to Amazon Keyspaces is shown in
the following steps:

1. Create the user in the AWS Management Console, the AWS CLI, Tools for Windows PowerShell,
or using an AWS API operation. If you create the user in the AWS Management Console, then the
credentials are created automatically.

2. If you create the user programmatically, then you must create an access key (access key ID and a
secret access key) for that user in an additional step.

3. Give the user permissions to access Amazon Keyspaces.

For information about the permissions that you need in order to create a user, see Permissions
required to access IAM resources.

Creating IAM users (console)

You can use the AWS Management Console to create IAM users.

To create an IAM user with programmatic access (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users and then choose Add users.

3. Type the user name for the new user. This is the sign-in name for AWS.

Creating credentials 34

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

User names can be a combination of up to 64 letters, digits, and these characters: plus
(+), equal (=), comma (,), period (.), at sign (@), underscore (_), and hyphen (-). Names
must be unique within an account. They are not distinguished by case. For example,
you cannot create two users named TESTUSER and testuser.

4. Select Access key - Programmatic access to create an access key for the new user. You can
view or download the access key when you get to the Final page.

Choose Next: Permissions.

5. On the Set permissions page, choose Attach existing policies directly to assign permissions
to the new user.

This option displays the list of AWS managed and customer managed policies available in your
account. You can enter keyspaces into the search field to display only the policies that are
related to Amazon Keyspaces.

For Amazon Keyspaces, the available managed policies are AmazonKeyspacesFullAccess
and AmazonKeyspacesReadOnlyAccess. For more information about each policy, see the
section called “AWS managed policies”.

For testing purposes and to follow the connection tutorials, select the
AmazonKeyspacesReadOnlyAccess policy for the new user. Note: As a best practice, we
recommend that you follow the principle of least privilege and create custom policies that
limit access to specific resources and only allow the required actions. For more information
about IAM policies and to view example policies for Amazon Keyspaces, see the section called
“Amazon Keyspaces identity-based policies”. After you have created custom policies, attach
your policies to groups and then make users members of the appropriate groups.

Choose Next: Tags.

6. On the Add tags (optional) page you can add tags for the user, or choose Next: Review.

7. On the Review page you can see all of the choices you made up to this point. When you're
ready to proceed, choose Create user.

8. To view the user's access keys (access key IDs and secret access keys), choose Show next to the
password and access key. To save the access keys, choose Download .csv and then save the file
to a safe location.

Creating credentials 35

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Important

This is your only opportunity to view or download the secret access keys, and you need
this information before they can use the SigV4 plugin. Save the user's new access key
ID and secret access key in a safe and secure place. You will not have access to the
secret keys again after this step.

Creating IAM users (AWS CLI)

You can use the AWS CLI to create an IAM user.

To create an IAM user with programmatic access (AWS CLI)

1. Create a user with the following AWS CLI code.

• aws iam create-user

2. Give the user programmatic access. This requires access keys, that can be generated in the
following ways.

• AWS CLI: aws iam create-access-key

• Tools for Windows PowerShell: New-IAMAccessKey

• IAM API: CreateAccessKey

Important

This is your only opportunity to view or download the secret access keys, and you
need this information before they can use the SigV4 plugin. Save the user's new
access key ID and secret access key in a safe and secure place. You will not have
access to the secret keys again after this step.

3. Attach the AmazonKeyspacesReadOnlyAccess policy to the user that defines the user's
permissions. Note: As a best practice, we recommend that you manage user permissions by
adding the user to a group and attaching a policy to the group instead of attaching directly to
a user.

• AWS CLI: aws iam attach-user-policy

Creating credentials 36

https://docs.aws.amazon.com/cli/latest/reference/iam/create-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=New-IAMAccessKey.html&tocid=New-IAMAccessKey
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Creating new access keys for an IAM user

If you already have an IAM user, you can create new access keys at any time. For more information
about key management, for example how to rotate access keys, see Managing access keys for IAM
users.

To create access keys for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose access keys you want to create.

4. On the Summary page of the user, choose the Security credentials tab.

5. In the Access keys section, choose Create access key.

To view the new access key pair, choose Show. Your credentials will look something like this:

• Access key ID: AKIAIOSFODNN7EXAMPLE

• Secret access key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Note

You will not have access to the secret access key again after this dialog box closes.

6. To download the key pair, choose Download .csv file. Store the keys in a secure location.

7. After you download the .csv file, choose Close.

When you create an access key, the key pair is active by default, and you can use the pair right
away.

How to manage access keys for IAM users

As a best practice, we recommend that you don't embed access keys directly into code. The AWS
SDKs and the AWS Command Line Tools enable you to put access keys in known locations so that
you do not have to keep them in code. Put access keys in one of the following locations:

• Environment variables – On a multitenant system, choose user environment variables, not
system environment variables.

Creating credentials 37

IAM%20User%20Guideid_credentials_access-keys.html
IAM%20User%20Guideid_credentials_access-keys.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• CLI credentials file – The credentials and config file are updated when you run the
command aws configure. The credentials file is located at ~/.aws/credentials on
Linux, macOS, or Unix, or at C:\Users\USERNAME\.aws\credentials on Windows. This file
can contain the credential details for the default profile and any named profiles.

• CLI configuration file – The credentials and config file are updated when you run the
command aws configure. The config file is located at ~/.aws/config on Linux, macOS,
or Unix, or at C:\Users\USERNAME\.aws\config on Windows. This file contains the
configuration settings for the default profile and any named profiles.

Storing access keys as environment variables is a pre-requisite for the the section called
“Authentication plugin for Java 4.x”. The client searches for credentials using the default
credentials provider chain, and access keys stored as environment variables take precedent over all
other locations, for example configuration files. For more information, see Configuration settings
and precedence.

The following examples show how you can configure environment variables for the default user.

Linux, macOS, or Unix

$ export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
$ export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
$ export AWS_SESSION_TOKEN=AQoDYXdzEJr...<remainder of security token>

Setting the environment variable changes the value used until the end of your shell session,
or until you set the variable to a different value. You can make the variables persistent across
future sessions by setting them in your shell's startup script.

Windows Command Prompt

C:\> setx AWS_ACCESS_KEY_ID AKIAIOSFODNN7EXAMPLE
C:\> setx AWS_SECRET_ACCESS_KEY wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
C:\> setx AWS_SESSION_TOKEN AQoDYXdzEJr...<remainder of security token>

Using set to set an environment variable changes the value used until the end of the current
command prompt session, or until you set the variable to a different value. Using setx to set an
environment variable changes the value used in both the current command prompt session and
all command prompt sessions that you create after running the command. It does not affect
other command shells that are already running at the time you run the command.

Creating credentials 38

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-precedence
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-precedence
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx

Amazon Keyspaces (for Apache Cassandra) Developer Guide

PowerShell

PS C:\> $Env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
PS C:\> $Env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
PS C:\> $Env:AWS_SESSION_TOKEN="AQoDYXdzEJr...<remainder of security token>"

If you set an environment variable at the PowerShell prompt as shown in the previous
examples, it saves the value for only the duration of the current session. To make the
environment variable setting persistent across all PowerShell and Command Prompt sessions,
store it by using the System application in Control Panel. Alternatively, you can set the variable
for all future PowerShell sessions by adding it to your PowerShell profile. See the PowerShell
documentation for more information about storing environment variables or persisting them
across sessions.

Using temporary credentials to connect to Amazon Keyspaces using an IAM role and the SigV4
plugin

For enhanced security, you can use temporary credentials to authenticate with the SigV4 plugin. In
many scenarios, you don't need long-term access keys that never expire (as you have with an IAM
user). Instead, you can create an IAM role and generate temporary security credentials. Temporary
security credentials consist of an access key ID and a secret access key, but they also include a
security token that indicates when the credentials expire. To learn more about how to use IAM roles
instead of long-term access keys, see Switching to an IAM role (AWS API).

To get started with temporary credentials, you first need to create an IAM role.

Create an IAM role that grants read-only access to Amazon Keyspaces

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, then Create role.

3. On the Create role page, under Select type of trusted entity, choose AWS service. Under
Choose a use case, choose Amazon EC2, then choose Next.

4. On the Add permissions page, under Permissions policies, choose Amazon Keyspaces Read
Only Access from the policy list, then choose Next.

5. On the Name, review, and create page, enter a name for the role, and review the Select
trusted entities and Add permissions sections. You can also add optional tags for the role on

Creating credentials 39

https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_environment_variables
https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_environment_variables
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

this page. When you are done, select Create role. Remember this name because you’ll need it
when you launch your Amazon EC2 instance.

To use temporary security credentials in code, you programmatically call an AWS Security Token
Service API like AssumeRole and extract the resulting credentials and session token from your
IAM role that you created in the previous step. You then use those values as credentials for
subsequent calls to AWS. The following example shows pseudocode for how to use temporary
security credentials:

assumeRoleResult = AssumeRole(role-arn);
tempCredentials = new SessionAWSCredentials(
 assumeRoleResult.AccessKeyId,
 assumeRoleResult.SecretAccessKey,
 assumeRoleResult.SessionToken);
cassandraRequest = CreateAmazoncassandraClient(tempCredentials);

For an example that implements temporary credentials using the Python driver to access Amazon
Keyspaces, see ???.

For details about how to call AssumeRole, GetFederationToken, and other API operations,
see the AWS Security Token Service API Reference. For information on getting the temporary
security credentials and session token from the result, see the documentation for the SDK that
you're working with. You can find the documentation for all the AWS SDKs on the main AWS
documentation page, in the SDKs and Toolkits section.

Service endpoints for Amazon Keyspaces

Topics

• Ports and Protocols

• Global endpoints

• AWS GovCloud (US) Region FIPS endpoints

• China Regions endpoints

Ports and Protocols

You can access Amazon Keyspaces programmatically by running a cqlsh client, with an Apache 2.0
licensed Cassandra driver, or by using the AWS CLI and the AWS SDK.

Service endpoints 40

https://docs.aws.amazon.com/STS/latest/APIReference/
http://aws.amazon.com/documentation
http://aws.amazon.com/documentation

Amazon Keyspaces (for Apache Cassandra) Developer Guide

The following table shows the ports and protocols for the different access mechanisms.

Programmatic Access Port Protocol

CQLSH 9142 TLS

Cassandra Driver 9142 TLS

AWS CLI 443 HTTPS

AWS SDK 443 HTTPS

For TLS connections, Amazon Keyspaces uses the Starfield CA to authenticate against the server.
For more information, see the section called “How to manually configure cqlsh connections for
TLS” or the Before you begin section of your driver in the the section called “Using a Cassandra
client driver” chapter.

Global endpoints

Amazon Keyspaces is available in the following AWS Regions. This table shows the available service
endpoint for each Region.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 cassandra.us-east-2.amazonaws.com HTTPS
and TLS

US
East (N.
Virginia)

us-east-1 cassandra.us-east-1.amazonaws.com

cassandra-fips.us-east-1.amazonaws.com

HTTPS
and TLS

TLS

US
West (N.
Californi
a)

us-
west-1

cassandra.us-west-1.amazonaws.com HTTPS
and TLS

Service endpoints 41

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Region
Name

Region Endpoint Protocol

US West
(Oregon)

us-
west-2

cassandra.us-west-2.amazonaws.com

cassandra-fips.us-west-2.amazonaws.com

HTTPS
and TLS

TLS

Asia
Pacific
(Hong
Kong)

ap-
east-1

cassandra.ap-east-1.amazonaws.com HTTPS
and TLS

Asia
Pacific
(Mumbai)

ap-
south-1

cassandra.ap-south-1.amazonaws.com HTTPS
and TLS

Asia
Pacific
(Seoul)

ap-
northe
ast-2

cassandra.ap-northeast-2.amazonaws.com HTTPS
and TLS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

cassandra.ap-southeast-1.amazonaws.com HTTPS
and TLS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

cassandra.ap-southeast-2.amazonaws.com HTTPS
and TLS

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

cassandra.ap-northeast-1.amazonaws.com HTTPS
and TLS

Canada
(Central)

ca-centra
l-1

cassandra.ca-central-1.amazonaws.com HTTPS
and TLS

Service endpoints 42

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Region
Name

Region Endpoint Protocol

Europe
(Frankfur
t)

eu-
central-1

cassandra.eu-central-1.amazonaws.com HTTPS
and TLS

Europe
(Ireland)

eu-
west-1

cassandra.eu-west-1.amazonaws.com HTTPS
and TLS

Europe
(London)

eu-
west-2

cassandra.eu-west-2.amazonaws.com HTTPS
and TLS

Europe
(Paris)

eu-
west-3

cassandra.eu-west-3.amazonaws.com HTTPS
and TLS

Europe
(Stockhol
m)

eu-
north-1

cassandra.eu-north-1.amazonaws.com HTTPS
and TLS

Middle
East
(Bahrain)

me-
south-1

cassandra.me-south-1.amazonaws.com HTTPS
and TLS

South
America
(São
Paulo)

sa-east-1 cassandra.sa-east-1.amazonaws.com HTTPS
and TLS

AWS
GovCloud
(US-East)

us-gov-
east-1

cassandra.us-gov-east-1.amazonaws.com HTTPS
and TLS

AWS
GovCloud
(US-
West)

us-gov-
west-1

cassandra.us-gov-west-1.amazonaws.com HTTPS
and TLS

Service endpoints 43

Amazon Keyspaces (for Apache Cassandra) Developer Guide

AWS GovCloud (US) Region FIPS endpoints

Available FIPS endpoints in the AWS GovCloud (US) Region. For more information, see Amazon
Keyspaces in the AWS GovCloud (US) User Guide.

Region
name

Region FIPS endpoint Protocol

AWS
GovCloud
(US-East)

us-gov-ea
st-1

cassandra.us-gov-east-1.amazonaws.com HTTPS and
TLS

AWS
GovCloud
(US-West)

us-gov-we
st-1

cassandra.us-gov-west-1.amazonaws.com HTTPS and
TLS

China Regions endpoints

The following Amazon Keyspaces endpoints are available in the AWS China Regions.

To access these endpoints, you have to sign up for a separate set of account credentials unique to
the China Regions. For more information, see China Signup, Accounts, and Credentials.

Region
name

Region Endpoint Protocol

China
(Beijing)

cn-north-1 cassandra.cn-north-1.amazonaws.com.cn HTTPS and
TLS

China
(Ningxia)

cn-northw
est-1

cassandra.cn-northwest-1.amazonaws.com.cn HTTPS and
TLS

Using cqlsh to connect to Amazon Keyspaces

To connect to Amazon Keyspaces using cqlsh, you can use the cqlsh-expansion. This is
a toolkit that contains common Apache Cassandra tooling like cqlsh and helpers that are

Using cqlsh 44

https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-keyspaces.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-keyspaces.html
https://docs.amazonaws.cn/en_us/aws/latest/userguide/accounts-and-credentials.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

preconfigured for Amazon Keyspaces while maintaining full compatibility with Apache Cassandra.
The cqlsh-expansion integrates the SigV4 authentication plugin and allows you to connect
using IAM access keys instead of user name and password. You only need to install the cqlsh
scripts to make a connection and not the full Apache Cassandra distribution, because Amazon
Keyspaces is serverless. This lightweight install package includes the cqlsh-expansion and the
classic cqlsh scripts that you can install on any platform that supports Python.

For general information about cqlsh, see cqlsh: the CQL shell.

Topics

• Using the cqlsh-expansion to connect to Amazon Keyspaces

• How to manually configure cqlsh connections for TLS

Using the cqlsh-expansion to connect to Amazon Keyspaces

Installing and configuring the cqlsh-expansion

1. To install the cqlsh-expansion Python package, you can run a pip command. This installs
the cqlsh-expansion scripts on your machine using a pip install along with a file containing
a list of dependencies. The --user flag tells pip to use the Python user install directory for
your platform. On a Unix based system, that should be the ~/.local/ directory.

You need Python 3 to install the cqlsh-expansion, to find out your Python version, use
Python --version. To install, you can run one of the following commands.

python3 -m pip install --user cqlsh-expansion

pip3 install --user cqlsh-expansion

The output should look similar to this.

Collecting cqlsh-expansion
 Downloading cqlsh_expansion-0.9.6-py3-none-any.whl (153 kB)
 ## 153.7/153.7 KB 3.3 MB/s eta 0:00:00
Collecting cassandra-driver
 Downloading cassandra_driver-3.28.0-cp310-cp310-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.1 MB)
 ## 19.1/19.1 MB 44.5 MB/s eta 0:00:00

Using cqlsh 45

http://cassandra.apache.org/doc/latest/tools/cqlsh.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Requirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from
 cqlsh-expansion) (1.16.0)
Collecting boto3
 Downloading boto3-1.29.2-py3-none-any.whl (135 kB)
 ## 135.8/135.8 KB 17.2 MB/s eta 0:00:00
Collecting cassandra-sigv4>=4.0.2
 Downloading cassandra_sigv4-4.0.2-py2.py3-none-any.whl (9.8 kB)
Collecting botocore<1.33.0,>=1.32.2
 Downloading botocore-1.32.2-py3-none-any.whl (11.4 MB)
 ## 11.4/11.4 MB 60.9 MB/s eta 0:00:00
Collecting s3transfer<0.8.0,>=0.7.0
 Downloading s3transfer-0.7.0-py3-none-any.whl (79 kB)
 ## 79.8/79.8 KB 13.1 MB/s eta 0:00:00
Collecting jmespath<2.0.0,>=0.7.1
 Downloading jmespath-1.0.1-py3-none-any.whl (20 kB)
Collecting geomet<0.3,>=0.1
 Downloading geomet-0.2.1.post1-py3-none-any.whl (18 kB)
Collecting python-dateutil<3.0.0,>=2.1
 Downloading python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)
 ## 247.7/247.7 KB 33.1 MB/s eta 0:00:00
Requirement already satisfied: urllib3<2.1,>=1.25.4 in /usr/lib/python3/dist-
packages (from botocore<1.33.0,>=1.32.2->boto3->cqlsh-expansion) (1.26.5)
Requirement already satisfied: click in /usr/lib/python3/dist-packages (from
 geomet<0.3,>=0.1->cassandra-driver->cqlsh-expansion) (8.0.3)
Installing collected packages: python-dateutil, jmespath, geomet, cassandra-driver,
 botocore, s3transfer, boto3, cassandra-sigv4, cqlsh-expansion
 WARNING: The script geomet is installed in '/home/ubuntu/.local/bin' which is not
 on PATH.
 Consider adding this directory to PATH or, if you prefer to suppress this
 warning, use --no-warn-script-location.
 WARNING: The scripts cqlsh, cqlsh-expansion and cqlsh-expansion.init are
 installed in '/home/ubuntu/.local/bin' which is not on PATH.
 Consider adding this directory to PATH or, if you prefer to suppress this
 warning, use --no-warn-script-location.
Successfully installed boto3-1.29.2 botocore-1.32.2 cassandra-driver-3.28.0
 cassandra-sigv4-4.0.2 cqlsh-expansion-0.9.6 geomet-0.2.1.post1 jmespath-1.0.1
 python-dateutil-2.8.2 s3transfer-0.7.0

If the install directory is not in the PATH, you need to add it following the instructions of your
operating system. Below is one example for Ubuntu Linux.

export PATH DEFAULT=${PATH}:/home/ubuntu/.local/bin

Using cqlsh 46

Amazon Keyspaces (for Apache Cassandra) Developer Guide

To confirm that the package is installed, you can run the following command.

cqlsh-expansion --version

The output should look like this.

cqlsh 6.1.0

2. To configure the cqlsh-expansion, you can run a post-install script to automatically
complete the following steps:

1. Create the .cassandra directory in the user home directory if it doesn't already exist.

2. Copy a preconfigured cqlshrc configuration file into the .cassandra directory.

3. Copy the Starfield digital certificate into the .cassandra directory. Amazon Keyspaces
uses this certificate to configure the secure connection with Transport Layer Security (TLS).
Encryption in transit provides an additional layer of data protection by encrypting your data
as it travels to and from Amazon Keyspaces.

To review the script first, you can access it in the Github repo at post_install.py.

To use the script, you can run the following command.

cqlsh-expansion.init

Note

The directory and file created by the post-install script are not removed when you
uninstall the cqlsh-expansion using pip uninstall, and have to be deleted
manually.

Connecting to Amazon Keyspaces using the cqlsh-expansion

1. Configure your AWS Region and add it as a user environment variable.

To add your default Region as an environment variable on a Unix based system, you can run
the following command. For this example, we use US East (N. Virginia).

Using cqlsh 47

https://github.com/aws-samples/amazon-keyspaces-toolkit/blob/master/cqlsh-expansion/cqlsh_expansion/post_install.py

Amazon Keyspaces (for Apache Cassandra) Developer Guide

export AWS_DEFAULT_REGION=us-east-1

For more information about how to set environment variables, including for other platforms,
see How to set environment variables.

2. Find your service endpoint.

Choose the appropriate service endpoint for your Region. To review the available endpoints
for Amazon Keyspaces, see the section called “Service endpoints”. For this example, we use the
endpoint cassandra.us-east-1.amazonaws.com.

3. Configure the authentication method.

Connecting with IAM access keys (IAM users, roles, and federated identities) is the
recommended method for enhanced security.

Before you can connect with IAM access keys, you need to complete the following steps:

a. Create an IAM user, or follow the best practice and create an IAM role that IAM users can
assume. For more information on how to create IAM access keys, see the section called
“IAM credentials for AWS authentication”.

b. Create an IAM policy that grants the role (or IAM user) at least read-only access to Amazon
Keyspaces. For more information about the permissions required for the IAM user or role
to connect to Amazon Keyspaces, see the section called “Accessing Amazon Keyspaces
tables”.

c. Add the access keys of the IAM user to the user's environment variables as shown in the
following example.

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

For more information about how to set environment variables, including for other
platforms, see How to set environment variables.

Note

If you're connecting from an Amazon EC2 instance, you also need to configure
an outbound rule in the security group that allows traffic from the instance
to Amazon Keyspaces. For more information about how to view and edit EC2

Using cqlsh 48

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html#envvars-set
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html#envvars-set

Amazon Keyspaces (for Apache Cassandra) Developer Guide

outbound rules, see Add rules to a security group in the Amazon EC2 User Guide
for Linux Instances.

4. Connect to Amazon Keyspaces using the cqlsh-expansion and SigV4 authentication.

To connect to Amazon Keyspaces with the cqlsh-expansion, you can use the following
command. Make sure to replace the service endpoint with the correct endpoint for your
Region.

cqlsh-expansion cassandra.us-east-1.amazonaws.com 9142 --ssl

If the connection is successful, you should see output similar to the following example.

Connected to Amazon Keyspaces at cassandra.us-east-1.amazonaws.com:9142
[cqlsh 6.1.0 | Cassandra 3.11.2 | CQL spec 3.4.4 | Native protocol v4]
Use HELP for help.
cqlsh current consistency level is ONE.
cqlsh>

If you encounter a connection error, see the section called “Cqlsh connection errors” for
troubleshooting information.

• Connect to Amazon Keyspaces with service-specific credentials.

To connect with the traditional username and password combination that Cassandra uses
for authentication, you must first create service-specific credentials for Amazon Keyspaces
as described in the section called “Service-specific credentials”. You also have to give that
user permissions to access Amazon Keyspaces, for more information see the section called
“Accessing Amazon Keyspaces tables”.

After you have created service-specific credentials and permissions for the user, you must
update the cqlshrc file, typically found in the user directory path ~/.cassandra/. In
the cqlshrc file, go to the Cassandra [authentication] section and comment out the
SigV4 module and class under [auth_provider] using the ";" character as shown in the
following example.

[auth_provider]

; module = cassandra_sigv4.auth

Using cqlsh 49

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule

Amazon Keyspaces (for Apache Cassandra) Developer Guide

; classname = SigV4AuthProvider

After you have updated the cqlshrc file, you can connect to Amazon Keyspaces with
service-specific credentials using the following command.

cqlsh-expansion cassandra.us-east-1.amazonaws.com 9142 -u myUserName -
p myPassword --ssl

Cleanup

• To remove the cqlsh-expansion package you can use the pip uninstall command.

pip3 uninstall cqlsh-expansion

The pip3 uninstall command doesn't remove the directory and related files created by
the post-install script. To remove the folder and files created by the post-install script, you can
delete the .cassandra directory.

How to manually configure cqlsh connections for TLS

Amazon Keyspaces only accepts secure connections using Transport Layer Security (TLS). You can
use the cqlsh-expansion utility that automatically downloads the certificate for you and installs
a preconfigured cqlshrc configuration file. For more information, see the section called “Using
the cqlsh-expansion” on this page.

If you want to download the certificate and configure the connection manually, you can do so using
the following steps.

1. Download the Starfield digital certificate using the following command and save sf-class2-
root.crt locally or in your home directory.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Note

You can also use the Amazon digital certificate to connect to Amazon Keyspaces and
can continue to do so if your client is connecting to Amazon Keyspaces successfully. The

Using cqlsh 50

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Starfield certificate provides additional backwards compatibility for clients using older
certificate authorities.

2. Open the cqlshrc configuration file in the Cassandra home directory, for example
${HOME}/.cassandra/cqlshrc and add the following lines.

[connection]
port = 9142
factory = cqlshlib.ssl.ssl_transport_factory

[ssl]
validate = true
certfile = path_to_file/sf-class2-root.crt

Using the AWS CLI

You can use the AWS Command Line Interface (AWS CLI) to control multiple AWS services from the
command line and automate them through scripts. With Amazon Keyspaces you can use the AWS
CLI for data definition language (DDL) operations, such as creating a table. In addition, you can use
infrastructure as code (IaC) services and tools such as AWS CloudFormation and Terraform.

Before you can use the AWS CLI with Amazon Keyspaces, you must get an access key ID and secret
access key. For more information, see the section called “IAM credentials for AWS authentication”.

For a complete listing of all the commands available for Amazon Keyspaces in the AWS CLI, see the
AWS CLI Command Reference.

Topics

• Downloading and Configuring the AWS CLI

• Using the AWS CLI with Amazon Keyspaces

Downloading and Configuring the AWS CLI

The AWS CLI is available at https://aws.amazon.com/cli. It runs on Windows, macOS, or Linux.
After downloading the AWS CLI, follow these steps to install and configure it:

1. Go to the AWS Command Line Interface User Guide

2. Follow the instructions for Installing the AWS CLI and Configuring the AWS CLI

Using the AWS CLI 51

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/keyspaces/index.html
https://aws.amazon.com/cli
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using the AWS CLI with Amazon Keyspaces

The command line format consists of a Amazon Keyspaces operation name followed by the
parameters for that operation. The AWS CLI supports a shorthand syntax for the parameter values,
as well as JSON. The following Amazon Keyspaces examples use AWS CLI shorthand syntax. For
more information, see Using shorthand syntax with the AWS CLI.

The following command creates a keyspace with the name catalog.

aws keyspaces create-keyspace --keyspace-name 'catalog'

The command returns the resource Amazon Resource Name (ARN) in the output.

{
 "resourceArn": "arn:aws:cassandra:us-east-1:111222333444:/keyspace/catalog/"
}

To confirm that the keyspace catalog exists, you can use the following command.

aws keyspaces get-keyspace --keyspace-name 'catalog'

The output of the command returns the following values.

{
 "keyspaceName": "catalog",
 "resourceArn": "arn:aws:cassandra:us-east-1:111222333444:/keyspace/catalog/"
}

The following command creates a table with the name book_awards. The partition key of the
table consists of the columns year and award and the clustering key consists of the columns
category and rank, both clustering columns use the ascending sort order. (For easier readability,
long commands in this section are broken into separate lines.)

aws keyspaces create-table --keyspace-name 'catalog' --table-name 'book_awards'
 --schema-definition 'allColumns=[{name=year,type=int},
{name=award,type=text},{name=rank,type=int},
 {name=category,type=text}, {name=author,type=text},
{name=book_title,type=text},{name=publisher,type=text}],
 partitionKeys=[{name=year},
{name=award}],clusteringKeys=[{name=category,orderBy=ASC},{name=rank,orderBy=ASC}]'

Using the AWS CLI 52

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-shorthand.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

This command results in the following output.

{
 "resourceArn": "arn:aws:cassandra:us-east-1:111222333444:/keyspace/catalog/table/
book_awards"
}

To confirm the metadata and properties of the table, you can use the following command.

aws keyspaces get-table --keyspace-name 'catalog' --table-name 'book_awards'

This command returns the following output.

{
 "keyspaceName": "catalog",
 "tableName": "book_awards",
 "resourceArn": "arn:aws:cassandra:us-east-1:111222333444:/keyspace/catalog/table/
book_awards",
 "creationTimestamp": 1645564368.628,
 "status": "ACTIVE",
 "schemaDefinition": {
 "allColumns": [
 {
 "name": "year",
 "type": "int"
 },
 {
 "name": "award",
 "type": "text"
 },
 {
 "name": "category",
 "type": "text"
 },
 {
 "name": "rank",
 "type": "int"
 },
 {
 "name": "author",
 "type": "text"
 },
 {

Using the AWS CLI 53

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 "name": "book_title",
 "type": "text"
 },
 {
 "name": "publisher",
 "type": "text"
 }
],
 "partitionKeys": [
 {
 "name": "year"
 },
 {
 "name": "award"
 }
],
 "clusteringKeys": [
 {
 "name": "category",
 "orderBy": "ASC"
 },
 {
 "name": "rank",
 "orderBy": "ASC"
 }
],
 "staticColumns": []
 },
 "capacitySpecification": {
 "throughputMode": "PAY_PER_REQUEST",
 "lastUpdateToPayPerRequestTimestamp": 1645564368.628
 },
 "encryptionSpecification": {
 "type": "AWS_OWNED_KMS_KEY"
 },
 "pointInTimeRecovery": {
 "status": "DISABLED"
 },
 "ttl": {
 "status": "ENABLED"
 },
 "defaultTimeToLive": 0,
 "comment": {
 "message": ""

Using the AWS CLI 54

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 }
}

When creating tables with complex schemas, it can be helpful to load the table's schema definition
from a JSON file. The following is an example of this. Download the schema definition example
JSON file from schema_definition.zip and extract schema_definition.json, taking note of the
path to the file. In this example, the schema definition JSON file is located in the current directory.
For different file path options, see How to load parameters from a file.

aws keyspaces create-table --keyspace-name 'catalog'
 --table-name 'book_awards' --schema-definition 'file://
schema_definition.json'

The following examples show how to create a simple table with the name myTable with additional
options. Note that the commands are broken down into separate rows to improve readability. This
command shows how to create a table and:

• set the capacity mode of the table

• enable Point-in-time recovery for the table

• set the default Time to Live (TTL) value for the table to one year

• add two tags for the table

aws keyspaces create-table --keyspace-name 'catalog' --table-name 'myTable'
 --schema-definition 'allColumns=[{name=id,type=int},{name=name,type=text},
{name=date,type=timestamp}],partitionKeys=[{name=id}]'
 --capacity-specification
 'throughputMode=PROVISIONED,readCapacityUnits=5,writeCapacityUnits=5'
 --point-in-time-recovery 'status=ENABLED'
 --default-time-to-live '31536000'
 --tags 'key=env,value=test' 'key=dpt,value=sec'

This example shows how to create a new table that uses a customer managed key for encryption
and has TTL enabled to allow you to set expiration dates for columns and rows. To run this sample,
you must replace the resource ARN for the customer managed AWS KMS key with your own key
and ensure Amazon Keyspaces has access to it.

aws keyspaces create-table --keyspace-name 'catalog' --table-name 'myTable'

Using the AWS CLI 55

samples/schema_definition.zip
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html#cli-usage-parameters-file-how

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 --schema-definition 'allColumns=[{name=id,type=int},{name=name,type=text},
{name=date,type=timestamp}],partitionKeys=[{name=id}]'
 --encryption-specification
 'type=CUSTOMER_MANAGED_KMS_KEY,kmsKeyIdentifier=arn:aws:kms:us-
east-1:111222333444:key/11111111-2222-3333-4444-555555555555'
 --ttl 'status=ENABLED'

Using the API

You can use the AWS SDK and the AWS Command Line Interface (AWS CLI) to work interactively
with Amazon Keyspaces. You can use the API for data language definition (DDL) operations, such
as creating a keyspace or a table. In addition, you can use infrastructure as code (IaC) services and
tools such as AWS CloudFormation and Terraform.

Before you can use the AWS CLI with Amazon Keyspaces, you must get an access key ID and secret
access key. For more information, see the section called “IAM credentials for AWS authentication”.

For a complete listing of all operations available for Amazon Keyspaces in the API, see Amazon
Keyspaces API Reference.

Using Amazon Keyspaces with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

Using the API 56

https://docs.aws.amazon.com/keyspaces/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/keyspaces/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php

Amazon Keyspaces (for Apache Cassandra) Developer Guide

SDK documentation Code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Using a Cassandra client driver to access Amazon Keyspaces
programmatically

You can use many third-party, open-source Cassandra drivers to connect to Amazon Keyspaces.
Amazon Keyspaces is compatible with Cassandra drivers that support Apache Cassandra version
3.11.2. For more information about Cassandra drivers, see Apache Cassandra Client drivers.

Note

To help you get started, you can view and download end-to-end code examples that
establish connections to Amazon Keyspaces with popular drivers. See Amazon Keyspaces
examples on GitHub.

The tutorials in this chapter include a simple CQL query to confirm that the connection to Amazon
Keyspaces has been successfully established. To learn how to work with keyspaces and tables after
you connect to an Amazon Keyspaces endpoint, see CQL language reference. For a step-by-step
tutorial that shows how to connect to Amazon Keyspaces from an Amazon VPC endpoint, see the
section called “Connecting with VPC endpoints”.

Using a Cassandra client driver 57

https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rust_dev_preview
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift
http://cassandra.apache.org/doc/latest/getting_started/drivers.html
https://github.com/aws-samples/amazon-keyspaces-examples
https://github.com/aws-samples/amazon-keyspaces-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• Using a Cassandra Java client driver to access Amazon Keyspaces programmatically

• Using a Cassandra Python client driver to access Amazon Keyspaces programmatically

• Using a Cassandra Node.js client driver to access Amazon Keyspaces programmatically

• Using a Cassandra .NET Core client driver to access Amazon Keyspaces programmatically

• Using a Cassandra Go client driver to access Amazon Keyspaces programmatically

• Using a Cassandra Perl client driver to access Amazon Keyspaces programmatically

Using a Cassandra Java client driver to access Amazon Keyspaces
programmatically

This section shows you how to connect to Amazon Keyspaces by using a Java client driver.

Note

Java 17 and the DataStax Java Driver 4.17 are currently only in Beta support. For
more information, see https://docs.datastax.com/en/developer/java-driver/4.17/
upgrade_guide/.

To provide users and applications with credentials for programmatic access to Amazon Keyspaces
resources, you can do either of the following:

• Create service-specific credentials that are associated with a specific AWS Identity and Access
Management (IAM) user.

• For enhanced security, we recommend to create IAM access keys for IAM identities that are used
across all AWS services. The Amazon Keyspaces SigV4 authentication plugin for Cassandra client
drivers enables you to authenticate calls to Amazon Keyspaces using IAM access keys instead of
user name and password. For more information, see the section called “IAM credentials for AWS
authentication”.

Note

For an example how to use Amazon Keyspaces with Spring Boot, see https://github.com/
aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/spring.

Using a Cassandra client driver 58

https://docs.datastax.com/en/developer/java-driver/4.17/upgrade_guide/
https://docs.datastax.com/en/developer/java-driver/4.17/upgrade_guide/
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/spring
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/spring

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• Before you begin

• Step-by-step tutorial to connect to Amazon Keyspaces using the DataStax Java driver for Apache
Cassandra using service-specific credentials

• Step-by-step tutorial to connect to Amazon Keyspaces using the 4.x DataStax Java driver for
Apache Cassandra and the SigV4 authentication plugin

• Connect to Amazon Keyspaces using the 3.x DataStax Java driver for Apache Cassandra and the
SigV4 authentication plugin

Before you begin

To connect to Amazon Keyspaces, you need to complete the following tasks before you can start.

1. Amazon Keyspaces requires the use of Transport Layer Security (TLS) to help secure
connections with clients.

a. Download the Starfield digital certificate using the following command and save sf-
class2-root.crt locally or in your home directory.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Note

You can also use the Amazon digital certificate to connect to Amazon Keyspaces
and can continue to do so if your client is connecting to Amazon Keyspaces
successfully. The Starfield certificate provides additional backwards compatibility
for clients using older certificate authorities.

b. Convert the Starfield digital certificate into a trustStore file.

openssl x509 -outform der -in sf-class2-root.crt -out temp_file.der
keytool -import -alias cassandra -keystore cassandra_truststore.jks -file
 temp_file.der

In this step, you need to create a password for the keystore and trust this certificate. The
interactive command looks like this.

Using a Cassandra client driver 59

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Enter keystore password:
Re-enter new password:
Owner: OU=Starfield Class 2 Certification Authority, O="Starfield Technologies,
 Inc.", C=US
Issuer: OU=Starfield Class 2 Certification Authority, O="Starfield
 Technologies, Inc.", C=US
Serial number: 0
Valid from: Tue Jun 29 17:39:16 UTC 2004 until: Thu Jun 29 17:39:16 UTC 2034
Certificate fingerprints:
 MD5: 32:4A:4B:BB:C8:63:69:9B:BE:74:9A:C6:DD:1D:46:24
 SHA1: AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A
 SHA256:
 14:65:FA:20:53:97:B8:76:FA:A6:F0:A9:95:8E:55:90:E4:0F:CC:7F:AA:4F:B7:C2:C8:67:75:21:FB:5F:B6:58
Signature algorithm name: SHA1withRSA
Subject Public Key Algorithm: 2048-bit RSA key
Version: 3
Extensions:
#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: BF 5F B7 D1 CE DD 1F 86 F4 5B 55 AC DC D7 10 C2 ._.......[U.....
0010: 0E A9 88 E7
]
[OU=Starfield Class 2 Certification Authority, O="Starfield Technologies,
 Inc.", C=US]
SerialNumber: [00]
]
#2: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
 CA:true
 PathLen:2147483647
]
#3: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: BF 5F B7 D1 CE DD 1F 86 F4 5B 55 AC DC D7 10 C2 ._.......[U.....
0010: 0E A9 88 E7
]
]
Trust this certificate? [no]: y

2. Attach the trustStore file in the JVM arguments:

Using a Cassandra client driver 60

Amazon Keyspaces (for Apache Cassandra) Developer Guide

-Djavax.net.ssl.trustStore=path_to_file/cassandra_truststore.jks
-Djavax.net.ssl.trustStorePassword=my_password

Step-by-step tutorial to connect to Amazon Keyspaces using the DataStax Java driver for
Apache Cassandra using service-specific credentials

The following step-by-step tutorial walks you through connecting to Amazon Keyspaces using a
Java driver for Cassandra using service-specific credentials. Specifically, you'll use the 4.0 version of
the DataStax Java driver for Apache Cassandra.

Topics

• Step 1: Prerequisites

• Step 2: Configure the driver

• Step 3: Run the sample application

Step 1: Prerequisites

To follow this tutorial, you need to generate service-specific credentials and add the DataStax Java
driver for Apache Cassandra to your Java project.

• Generate service-specific credentials for your Amazon Keyspaces IAM user by completing the
steps in the section called “Service-specific credentials”. If you prefer to use IAM access keys for
authentication, see the section called “Authentication plugin for Java 4.x”.

• Add the DataStax Java driver for Apache Cassandra to your Java project. Ensure that you're using
a version of the driver that supports Apache Cassandra 3.11.2. For more information, see the
DataStax Java driver for Apache Cassandra documentation.

Step 2: Configure the driver

You can specify settings for the DataStax Java Cassandra driver by creating a configuration file
for your application. This configuration file overrides the default settings and tells the driver to
connect to the Amazon Keyspaces service endpoint using port 9142. For a list of available service
endpoints, see the section called “Service endpoints”.

Using a Cassandra client driver 61

https://github.com/datastax/java-driver

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Create a configuration file and save the file in the application's resources folder—for example,
src/main/resources/application.conf. Open application.conf and add the following
configuration settings.

1. Authentication provider – Create the authentication provider with the
PlainTextAuthProvider class. ServiceUserName and ServicePassword should match
the user name and password you obtained when you generated the service-specific credentials
by following the steps in Generate service-specific credentials.

Note

You can use short-term credentials by using the authentication plugin for the DataStax
Java driver for Apache Cassandra instead of hardcoding credentials in your driver
configuration file. To learn more, follow the instructions for the the section called
“Authentication plugin for Java 4.x”.

2. Local data center – Set the value for local-datacenter to the Region you're connecting to.
For example, if the application is connecting to cassandra.us-east-2.amazonaws.com,
then set the local data center to us-east-2. For all available AWS Regions, see ???. Set slow-
replica-avoidance = false to load balance against fewer nodes.

3. SSL/TLS – Initialize the SSLEngineFactory by adding a section in the configuration file with a
single line that specifies the class with class = DefaultSslEngineFactory. Provide the
path to the trustStore file and the password that you created previously. Amazon Keyspaces
doesn't support hostname-validation of peers, so set this option to false.

datastax-java-driver {

 basic.contact-points = ["cassandra.us-east-2.amazonaws.com:9142"]
 advanced.auth-provider{
 class = PlainTextAuthProvider
 username = "ServiceUserName"
 password = "ServicePassword"
 }
 basic.load-balancing-policy {
 local-datacenter = "us-east-2"
 slow-replica-avoidance = false
 }

 advanced.ssl-engine-factory {

Using a Cassandra client driver 62

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 class = DefaultSslEngineFactory
 truststore-path = "./src/main/resources/cassandra_truststore.jks"
 truststore-password = "my_password"
 hostname-validation = false
 }
}

Note

Instead of adding the path to the trustStore in the configuration file, you can also add the
trustStore path directly in the application code or you can add the path to the trustStore to
your JVM arguments.

Step 3: Run the sample application

This code example shows a simple command line application that creates a connection pool
to Amazon Keyspaces by using the configuration file we created earlier. It confirms that the
connection is established by running a simple query.

package <your package>;
// add the following imports to your project
import com.datastax.oss.driver.api.core.CqlSession;
import com.datastax.oss.driver.api.core.config.DriverConfigLoader;
import com.datastax.oss.driver.api.core.cql.ResultSet;
import com.datastax.oss.driver.api.core.cql.Row;

public class App
{

 public static void main(String[] args)
 {
 //Use DriverConfigLoader to load your configuration file
 DriverConfigLoader loader =
 DriverConfigLoader.fromClasspath("application.conf");
 try (CqlSession session = CqlSession.builder()
 .withConfigLoader(loader)
 .build()) {

 ResultSet rs = session.execute("select * from system_schema.keyspaces");
 Row row = rs.one();
 System.out.println(row.getString("keyspace_name"));

Using a Cassandra client driver 63

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 }
 }
}

Note

Use a try block to establish the connection to ensure that it's always closed. If you don't
use a try block, remember to close your connection to avoid leaking resources.

Step-by-step tutorial to connect to Amazon Keyspaces using the 4.x DataStax Java driver for
Apache Cassandra and the SigV4 authentication plugin

The following section describes how to use the SigV4 authentication plugin for the open-source 4.x
DataStax Java driver for Apache Cassandra to access Amazon Keyspaces (for Apache Cassandra).
The plugin is available from the GitHub repository.

The SigV4 authentication plugin allows you to use IAM credentials for users or roles when
connecting to Amazon Keyspaces. Instead of requiring a user name and password, this plugin signs
API requests using access keys. For more information, see the section called “IAM credentials for
AWS authentication”.

Step 1: Prerequisites

To follow this tutorial, you need to complete the following tasks.

• If you haven't already done so, create credentials for your IAM user or role following the steps at
the section called “IAM credentials for AWS authentication”. This tutorial assumes that the access
keys are stored as environment variables. For more information, see the section called “How to
manage access keys”.

• Add the DataStax Java driver for Apache Cassandra to your Java project. Ensure that you're using
a version of the driver that supports Apache Cassandra 3.11.2. For more information, see the
DataStax Java Driver for Apache Cassandra documentation.

• Add the authentication plugin to your application. The authentication plugin supports version
4.x of the DataStax Java driver for Apache Cassandra. If you’re using Apache Maven, or a build
system that can use Maven dependencies, add the following dependencies to your pom.xml file.

Using a Cassandra client driver 64

https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin
https://github.com/datastax/java-driver

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Important

Replace the version of the plugin with the latest version as shown at GitHub repository.

<dependency>
 <groupId>software.aws.mcs</groupId>
 <artifactId>aws-sigv4-auth-cassandra-java-driver-plugin</artifactId>
 <version>4.0.9</version>
</dependency>

Step 2: Configure the driver

You can specify settings for the DataStax Java Cassandra driver by creating a configuration file
for your application. This configuration file overrides the default settings and tells the driver to
connect to the Amazon Keyspaces service endpoint using port 9142. For a list of available service
endpoints, see the section called “Service endpoints”.

Create a configuration file and save the file in the application's resources folder—for example,
src/main/resources/application.conf. Open application.conf and add the following
configuration settings.

1. Authentication provider – Set the advanced.auth-provider.class to a new instance
of software.aws.mcs.auth.SigV4AuthProvider. The SigV4AuthProvider is the
authentication handler provided by the plugin for performing SigV4 authentication.

2. Local data center – Set the value for local-datacenter to the Region you're connecting to.
For example, if the application is connecting to cassandra.us-east-2.amazonaws.com,
then set the local data center to us-east-2. For all available AWS Regions, see ???. Set slow-
replica-avoidance = false to load balance against fewer nodes.

3. SSL/TLS – Initialize the SSLEngineFactory by adding a section in the configuration file with a
single line that specifies the class with class = DefaultSslEngineFactory. Provide the
path to the trustStore file and the password that you created previously. Amazon Keyspaces
doesn't support hostname-validation of peers, so set this option to false.

datastax-java-driver {
 basic.contact-points = ["cassandra.us-east-2.amazonaws.com:9142"]

Using a Cassandra client driver 65

https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin#add-the-authentication-plugin-to-the-application

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 basic.load-balancing-policy {
 class = DefaultLoadBalancingPolicy
 local-datacenter = us-east-2
 slow-replica-avoidance = false
 }
 advanced {
 auth-provider = {
 class = software.aws.mcs.auth.SigV4AuthProvider
 aws-region = us-east-2
 }
 ssl-engine-factory {
 class = DefaultSslEngineFactory
 truststore-path = "./src/main/resources/cassandra_truststore.jks"
 truststore-password = "my_password"
 hostname-validation = false
 }
 }
 }

Note

Instead of adding the path to the trustStore in the configuration file, you can also add the
trustStore path directly in the application code or you can add the path to the trustStore to
your JVM arguments.

Step 3: Run the application

This code example shows a simple command line application that creates a connection pool
to Amazon Keyspaces by using the configuration file we created earlier. It confirms that the
connection is established by running a simple query.

package <your package>;
// add the following imports to your project
import com.datastax.oss.driver.api.core.CqlSession;
import com.datastax.oss.driver.api.core.config.DriverConfigLoader;
import com.datastax.oss.driver.api.core.cql.ResultSet;
import com.datastax.oss.driver.api.core.cql.Row;

public class App
{

Using a Cassandra client driver 66

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 public static void main(String[] args)
 {
 //Use DriverConfigLoader to load your configuration file
 DriverConfigLoader loader =
 DriverConfigLoader.fromClasspath("application.conf");
 try (CqlSession session = CqlSession.builder()
 .withConfigLoader(loader)
 .build()) {

 ResultSet rs = session.execute("select * from system_schema.keyspaces");
 Row row = rs.one();
 System.out.println(row.getString("keyspace_name"));
 }
 }
}

Note

Use a try block to establish the connection to ensure that it's always closed. If you don't
use a try block, remember to close your connection to avoid leaking resources.

Connect to Amazon Keyspaces using the 3.x DataStax Java driver for Apache Cassandra and the
SigV4 authentication plugin

The following section describes how to use the SigV4 authentication plugin for the 3.x open-source
DataStax Java driver for Apache Cassandra to access Amazon Keyspaces. The plugin is available
from the GitHub repository.

The SigV4 authentication plugin allows you to use IAM credentials for users and roles when
connecting to Amazon Keyspaces. Instead of requiring a user name and password, this plugin signs
API requests using access keys. For more information, see the section called “IAM credentials for
AWS authentication”.

Step 1: Prerequisites

To run this code sample, you first need to complete the following tasks.

• Create credentials for your IAM user or role following the steps at the section called “IAM
credentials for AWS authentication”. This tutorial assumes that the access keys are stored as

Using a Cassandra client driver 67

https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin/tree/3.x-Driver-Compatible

Amazon Keyspaces (for Apache Cassandra) Developer Guide

environment variables. For more information, see the section called “How to manage access
keys”.

• Follow the steps at the section called “Before you begin” to download the Starfield digital
certificate, convert it to a trustStore file, and attach the trustStore file in the JVM arguments to
your application.

• Add the DataStax Java driver for Apache Cassandra to your Java project. Ensure that you're using
a version of the driver that supports Apache Cassandra 3.11.2. For more information, see the
DataStax Java Driver for Apache Cassandra documentation.

• Add the authentication plugin to your application. The authentication plugin supports version
3.x of the DataStax Java driver for Apache Cassandra. If you’re using Apache Maven, or a build
system that can use Maven dependencies, add the following dependencies to your pom.xml file.
Replace the version of the plugin with the latest version as shown at GitHub repository.

<dependency>
 <groupId>software.aws.mcs</groupId>
 <artifactId>aws-sigv4-auth-cassandra-java-driver-plugin_3</artifactId>
 <version>3.0.3</version>
</dependency>

Step 2: Run the application

This code example shows a simple command line application that creates a connection pool to
Amazon Keyspaces. It confirms that the connection is established by running a simple query.

package <your package>;
// add the following imports to your project

import software.aws.mcs.auth.SigV4AuthProvider;
import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.ResultSet;
import com.datastax.driver.core.Row;
import com.datastax.driver.core.Session;

public class App
{

 public static void main(String[] args)
 {
 String endPoint = "cassandra.us-east-2.amazonaws.com";

Using a Cassandra client driver 68

https://github.com/datastax/java-driver
https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin/tree/3.x-Driver-Compatible

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 int portNumber = 9142;
 Session session = Cluster.builder()
 .addContactPoint(endPoint)
 .withPort(portNumber)
 .withAuthProvider(new SigV4AuthProvider("us-east-2"))

 .withSSL()
 .build()
 .connect();

 ResultSet rs = session.execute("select * from system_schema.keyspaces");
 Row row = rs.one();
 System.out.println(row.getString("keyspace_name"));
 }
}

Usage notes:

For a list of available endpoints, see the section called “Service endpoints”.

See the following repository for helpful Java driver policies, examples, and best practices when
using the Java Driver with Amazon Keyspaces: https://github.com/aws-samples/amazon-
keyspaces-java-driver-helpers.

Using a Cassandra Python client driver to access Amazon Keyspaces
programmatically

In this section, we show you how to connect to Amazon Keyspaces using a Python client driver.
To provide users and applications with credentials for programmatic access to Amazon Keyspaces
resources, you can do either of the following:

• Create service-specific credentials that are associated with a specific AWS Identity and Access
Management (IAM) user.

• For enhanced security, we recommend to create IAM access keys for IAM users or roles that
are used across all AWS services. The Amazon Keyspaces SigV4 authentication plugin for
Cassandra client drivers enables you to authenticate calls to Amazon Keyspaces using IAM access
keys instead of user name and password. For more information, see the section called “IAM
credentials for AWS authentication”.

Topics

Using a Cassandra client driver 69

https://github.com/aws-samples/amazon-keyspaces-java-driver-helpers
https://github.com/aws-samples/amazon-keyspaces-java-driver-helpers

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Before you begin

• Connect to Amazon Keyspaces using the Python driver for Apache Cassandra and service-specific
credentials

• Connect to Amazon Keyspaces using the DataStax Python driver for Apache Cassandra and the
SigV4 authentication plugin

Before you begin

You need to complete the following task before you can start.

Amazon Keyspaces requires the use of Transport Layer Security (TLS) to help secure connections
with clients. To connect to Amazon Keyspaces using TLS, you need to download an Amazon digital
certificate and configure the Python driver to use TLS.

Download the Starfield digital certificate using the following command and save sf-class2-
root.crt locally or in your home directory.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Note

You can also use the Amazon digital certificate to connect to Amazon Keyspaces and
can continue to do so if your client is connecting to Amazon Keyspaces successfully. The
Starfield certificate provides additional backwards compatibility for clients using older
certificate authorities.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Connect to Amazon Keyspaces using the Python driver for Apache Cassandra and service-
specific credentials

The following code example shows you how to connect to Amazon Keyspaces with a Python client
driver and service-specific credentials.

from cassandra.cluster import Cluster
from ssl import SSLContext, PROTOCOL_TLSv1_2 , CERT_REQUIRED
from cassandra.auth import PlainTextAuthProvider

Using a Cassandra client driver 70

Amazon Keyspaces (for Apache Cassandra) Developer Guide

ssl_context = SSLContext(PROTOCOL_TLSv1_2)
ssl_context.load_verify_locations('path_to_file/sf-class2-root.crt')
ssl_context.verify_mode = CERT_REQUIRED
auth_provider = PlainTextAuthProvider(username='ServiceUserName',
 password='ServicePassword')
cluster = Cluster(['cassandra.us-east-2.amazonaws.com'], ssl_context=ssl_context,
 auth_provider=auth_provider, port=9142)
session = cluster.connect()
r = session.execute('select * from system_schema.keyspaces')
print(r.current_rows)

Usage notes:

1. Replace "path_to_file/sf-class2-root.crt" with the path to the certificate saved in the
first step.

2. Ensure that the ServiceUserName and ServicePassword match the user name and password
you obtained when you generated the service-specific credentials by following the steps to
Generate service-specific credentials.

3. For a list of available endpoints, see the section called “Service endpoints”.

Connect to Amazon Keyspaces using the DataStax Python driver for Apache Cassandra and the
SigV4 authentication plugin

The following section shows how to use the SigV4 authentication plugin for the open-source
DataStax Python driver for Apache Cassandra to access Amazon Keyspaces (for Apache Cassandra).

If you haven't already done so, begin with creating credentials for your IAM role following the
steps at the section called “IAM credentials for AWS authentication”. This tutorial uses temporary
credentials, which requires an IAM role. For more information about temporary credentials, see the
section called “Using temporary credentials to connect to Amazon Keyspaces”.

Then, add the Python SigV4 authentication plugin to your environment from the GitHub
repository.

pip install cassandra-sigv4

The following code example shows how to connect to Amazon Keyspaces by using the open-source
DataStax Python driver for Cassandra and the SigV4 authentication plugin. The plugin depends on
the AWS SDK for Python (Boto3). It uses boto3.session to obtain temporary credentials.

Using a Cassandra client driver 71

https://github.com/aws/aws-sigv4-auth-cassandra-python-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-python-driver-plugin

Amazon Keyspaces (for Apache Cassandra) Developer Guide

from cassandra.cluster import Cluster
from ssl import SSLContext, PROTOCOL_TLSv1_2 , CERT_REQUIRED
from cassandra.auth import PlainTextAuthProvider
import boto3
from cassandra_sigv4.auth import SigV4AuthProvider

ssl_context = SSLContext(PROTOCOL_TLSv1_2)
ssl_context.load_verify_locations('path_to_file/sf-class2-root.crt')
ssl_context.verify_mode = CERT_REQUIRED

use this if you want to use Boto to set the session parameters.
boto_session = boto3.Session(aws_access_key_id="AKIAIOSFODNN7EXAMPLE",
 aws_secret_access_key="wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY",
 aws_session_token="AQoDYXdzEJr...<remainder of token>",
 region_name="us-east-2")
auth_provider = SigV4AuthProvider(boto_session)

Use this instead of the above line if you want to use the Default Credentials and not
 bother with a session.
auth_provider = SigV4AuthProvider()

cluster = Cluster(['cassandra.us-east-2.amazonaws.com'], ssl_context=ssl_context,
 auth_provider=auth_provider,
 port=9142)
session = cluster.connect()
r = session.execute('select * from system_schema.keyspaces')
print(r.current_rows)

Usage notes:

1. Replace "path_to_file/sf-class2-root.crt" with the path to the certificate saved in the
first step.

2. Ensure that the aws_access_key_id, aws_secret_access_key, and the
aws_session_token match the Access Key, Secret Access Key, and Session Token
you obtained using boto3.session. For more information, see Credentials in the AWS SDK for
Python (Boto3).

3. For a list of available endpoints, see the section called “Service endpoints”.

Using a Cassandra client driver 72

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using a Cassandra Node.js client driver to access Amazon Keyspaces
programmatically

This section shows you how to connect to Amazon Keyspaces by using a Node.js client driver. To
provide users and applications with credentials for programmatic access to Amazon Keyspaces
resources, you can do either of the following:

• Create service-specific credentials that are associated with a specific AWS Identity and Access
Management (IAM) user.

• For enhanced security, we recommend to create IAM access keys for IAM users or roles that
are used across all AWS services. The Amazon Keyspaces SigV4 authentication plugin for
Cassandra client drivers enables you to authenticate calls to Amazon Keyspaces using IAM access
keys instead of user name and password. For more information, see the section called “IAM
credentials for AWS authentication”.

Topics

• Before you begin

• Connect to Amazon Keyspaces using the Node.js DataStax driver for Apache Cassandra and
service-specific credentials

• Connect to Amazon Keyspaces using the DataStax Node.js driver for Apache Cassandra and the
SigV4 authentication plugin

Before you begin

You need to complete the following task before you can start.

Amazon Keyspaces requires the use of Transport Layer Security (TLS) to help secure connections
with clients. To connect to Amazon Keyspaces using TLS, you need to download an Amazon digital
certificate and configure the Python driver to use TLS.

Download the Starfield digital certificate using the following command and save sf-class2-
root.crt locally or in your home directory.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Using a Cassandra client driver 73

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

You can also use the Amazon digital certificate to connect to Amazon Keyspaces and
can continue to do so if your client is connecting to Amazon Keyspaces successfully. The
Starfield certificate provides additional backwards compatibility for clients using older
certificate authorities.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Connect to Amazon Keyspaces using the Node.js DataStax driver for Apache Cassandra and
service-specific credentials

Configure your driver to use the Starfield digital certificate for TLS and authenticate using service-
specific credentials. For example:

const cassandra = require('cassandra-driver');
const fs = require('fs');
const auth = new cassandra.auth.PlainTextAuthProvider('ServiceUserName',
 'ServicePassword');
const sslOptions1 = {
 ca: [
 fs.readFileSync('path_to_file/sf-class2-root.crt', 'utf-8')],
 host: 'cassandra.us-west-2.amazonaws.com',
 rejectUnauthorized: true
 };
const client = new cassandra.Client({
 contactPoints: ['cassandra.us-west-2.amazonaws.com'],
 localDataCenter: 'us-west-2',
 authProvider: auth,
 sslOptions: sslOptions1,
 protocolOptions: { port: 9142 }
 });
const query = 'SELECT * FROM system_schema.keyspaces';

client.execute(query)
 .then(result => console.log('Row from Keyspaces %s',
 result.rows[0]))
 .catch(e=> console.log(`${e}`));

Usage notes:

Using a Cassandra client driver 74

Amazon Keyspaces (for Apache Cassandra) Developer Guide

1. Replace "path_to_file/sf-class2-root.crt" with the path to the certificate saved in the
first step.

2. Ensure that the ServiceUserName and ServicePassword match the user name and password
you obtained when you generated the service-specific credentials by following the steps to
Generate service-specific credentials.

3. For a list of available endpoints, see the section called “Service endpoints”.

Connect to Amazon Keyspaces using the DataStax Node.js driver for Apache Cassandra and the
SigV4 authentication plugin

The following section shows how to use the SigV4 authentication plugin for the open-source
DataStax Node.js driver for Apache Cassandra to access Amazon Keyspaces (for Apache Cassandra).

If you haven't already done so, create credentials for your IAM user or role following the steps at
the section called “IAM credentials for AWS authentication”.

Add the Node.js SigV4 authentication plugin to your application from the GitHub repository. The
plugin supports version 4.x of the DataStax Node.js driver for Cassandra and depends on the AWS
SDK for Node.js. It uses AWSCredentialsProvider to obtain credentials.

$ npm install aws-sigv4-auth-cassandra-plugin --save

This code example shows how to set a Region-specific instance of SigV4AuthProvider as the
authentication provider.

const cassandra = require('cassandra-driver');
const fs = require('fs');
const sigV4 = require('aws-sigv4-auth-cassandra-plugin');

const auth = new sigV4.SigV4AuthProvider({
 region: 'us-west-2',
 accessKeyId:'AKIAIOSFODNN7EXAMPLE',
 secretAccessKey: 'wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY'});

const sslOptions1 = {
 ca: [
 fs.readFileSync('path_to_filecassandra/sf-class2-root.crt', 'utf-8')],
 host: 'cassandra.us-west-2.amazonaws.com',
 rejectUnauthorized: true
};

Using a Cassandra client driver 75

https://github.com/aws/aws-sigv4-auth-cassandra-nodejs-driver-plugin

Amazon Keyspaces (for Apache Cassandra) Developer Guide

const client = new cassandra.Client({
 contactPoints: ['cassandra.us-west-2.amazonaws.com'],
 localDataCenter: 'us-west-2',
 authProvider: auth,
 sslOptions: sslOptions1,
 protocolOptions: { port: 9142 }
});

const query = 'SELECT * FROM system_schema.keyspaces';

client.execute(query).then(
 result => console.log('Row from Keyspaces %s', result.rows[0]))
 .catch(e=> console.log(`${e}`));

Usage notes:

1. Replace "path_to_file/sf-class2-root.crt" with the path to the certificate saved in the
first step.

2. Ensure that the accessKeyId and secretAccessKey match the Access Key and Secret
Access Key you obtained using AWSCredentialsProvider. For more information, see Setting
Credentials in Node.js in the AWS SDK for JavaScript in Node.js.

3. To store access keys outside of code, see best practices at the section called “How to manage
access keys”.

4. For a list of available endpoints, see the section called “Service endpoints”.

Using a Cassandra .NET Core client driver to access Amazon Keyspaces
programmatically

This section shows you how to connect to Amazon Keyspaces by using a .NET Core client driver.
The setup steps will vary depending on your environment and operating system, you might have
to modify them accordingly. Amazon Keyspaces requires the use of Transport Layer Security (TLS)
to help secure connections with clients. To connect to Amazon Keyspaces using TLS, you need to
download a Starfield digital certificate and configure your driver to use TLS.

1. Download the Starfield certificate and save it to a local directory, taking note of the path.
Following is an example using PowerShell.

Using a Cassandra client driver 76

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-credentials-node.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-credentials-node.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

$client = new-object System.Net.WebClient
$client.DownloadFile("https://certs.secureserver.net/repository/sf-class2-
root.crt","path_to_file\sf-class2-root.crt")

2. Install the CassandraCSharpDriver through nuget, using the nuget console.

PM> Install-Package CassandraCSharpDriver

3. The following example uses a .NET Core C# console project to connect to &MCS; and run a
query.

using Cassandra;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Security;
using System.Runtime.ConstrainedExecution;
using System.Security.Cryptography.X509Certificates;
using System.Text;
using System.Threading.Tasks;

namespace CSharpKeyspacesExample
{
 class Program
 {
 public Program(){}

 static void Main(string[] args)
 {
 X509Certificate2Collection certCollection = new
 X509Certificate2Collection();
 X509Certificate2 amazoncert = new X509Certificate2(@"path_to_file\sf-
class2-root.crt");
 var userName = "ServiceUserName";
 var pwd = "ServicePassword";
 certCollection.Add(amazoncert);

 var awsEndpoint = "cassandra.us-east-2.amazonaws.com" ;

 var cluster = Cluster.Builder()
 .AddContactPoints(awsEndpoint)
 .WithPort(9142)

Using a Cassandra client driver 77

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 .WithAuthProvider(new PlainTextAuthProvider(userName, pwd))
 .WithSSL(new
 SSLOptions().SetCertificateCollection(certCollection))
 .Build();

 var session = cluster.Connect();
 var rs = session.Execute("SELECT * FROM system_schema.tables;");
 foreach (var row in rs)
 {
 var name = row.GetValue<String>("keyspace_name");
 Console.WriteLine(name);
 }
 }
 }
}

Usage notes:

a. Replace "path_to_file/sf-class2-root.crt" with the path to the certificate saved in
the first step.

b. Ensure that the ServiceUserName and ServicePassword match the user name and
password you obtained when you generated the service-specific credentials by following the
steps to Generate service-specific credentials.

c. For a list of available endpoints, see the section called “Service endpoints”.

Using a Cassandra Go client driver to access Amazon Keyspaces programmatically

This section shows you how to connect to Amazon Keyspaces by using a Go client driver. To provide
users and applications with credentials for programmatic access to Amazon Keyspaces resources,
you can do either of the following:

• Create service-specific credentials that are associated with a specific AWS Identity and Access
Management (IAM) user.

• For enhanced security, we recommend to create IAM access keys for IAM users and roles that
are used across all AWS services. The Amazon Keyspaces SigV4 authentication plugin for
Cassandra client drivers enables you to authenticate calls to Amazon Keyspaces using IAM access
keys instead of user name and password. For more information, see the section called “IAM
credentials for AWS authentication”.

Using a Cassandra client driver 78

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• Before you begin

• Connect to Amazon Keyspaces using the Gocql driver for Apache Cassandra and service-specific
credentials

• Connect to Amazon Keyspaces using the Go driver for Apache Cassandra and the SigV4
authentication plugin

Before you begin

You need to complete the following task before you can start.

Amazon Keyspaces requires the use of Transport Layer Security (TLS) to help secure connections
with clients. To connect to Amazon Keyspaces using TLS, you need to download an Amazon digital
certificate and configure the Python driver to use TLS.

Download the Starfield digital certificate using the following command and save sf-class2-
root.crt locally or in your home directory.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Note

You can also use the Amazon digital certificate to connect to Amazon Keyspaces and
can continue to do so if your client is connecting to Amazon Keyspaces successfully. The
Starfield certificate provides additional backwards compatibility for clients using older
certificate authorities.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Connect to Amazon Keyspaces using the Gocql driver for Apache Cassandra and service-specific
credentials

1. Create a directory for your application.

mkdir ./gocqlexample

Using a Cassandra client driver 79

Amazon Keyspaces (for Apache Cassandra) Developer Guide

2. Navigate to the new directory.

cd gocqlexample

3. Create a file for your application.

touch cqlapp.go

4. Download the Go driver.

go get github.com/gocql/gocql

5. Add the following sample code to the cqlapp.go file.

package main

import (
 "fmt"
 "github.com/gocql/gocql"
 "log"
)

func main() {

 // add the Amazon Keyspaces service endpoint
 cluster := gocql.NewCluster("cassandra.us-east-2.amazonaws.com")
 cluster.Port=9142
 // add your service specific credentials
 cluster.Authenticator = gocql.PasswordAuthenticator{
 Username: "ServiceUserName",
 Password: "ServicePassword"}
 // provide the path to the sf-class2-root.crt
 cluster.SslOpts = &gocql.SslOptions{
 CaPath: "path_to_file/sf-class2-root.crt",
 EnableHostVerification: false,
 }

 // Override default Consistency to LocalQuorum
 cluster.Consistency = gocql.LocalQuorum
 cluster.DisableInitialHostLookup = false

 session, err := cluster.CreateSession()
 if err != nil {

Using a Cassandra client driver 80

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 fmt.Println("err>", err)
 }
 defer session.Close()

 // run a sample query from the system keyspace
 var text string
 iter := session.Query("SELECT keyspace_name FROM system_schema.tables;").Iter()
 for iter.Scan(&text) {
 fmt.Println("keyspace_name:", text)
 }
 if err := iter.Close(); err != nil {
 log.Fatal(err)
 }
 session.Close()
}

Usage notes:

a. Replace "path_to_file/sf-class2-root.crt" with the path to the certificate saved in
the first step.

b. Ensure that the ServiceUserName and ServicePassword match the user name and
password you obtained when you generated the service-specific credentials by following the
steps to Generate service-specific credentials.

c. For a list of available endpoints, see the section called “Service endpoints”.

6. Build the program.

go build cqlapp.go

7. Run the program.

./cqlapp

Connect to Amazon Keyspaces using the Go driver for Apache Cassandra and the SigV4
authentication plugin

The following code sample shows how to use the SigV4 authentication plugin for the open-source
Go driver to access Amazon Keyspaces (for Apache Cassandra).

If you haven't already done so, create credentials for your IAM user or role following the steps at
the section called “IAM credentials for AWS authentication”.

Using a Cassandra client driver 81

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Add the Go SigV4 authentication plugin to your application from the GitHub repository. The plugin
supports version 4.x of the open-source Go driver for Cassandra and depends on the AWS SDK for
Go.

$ go mod init
$ go get github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin

In this code sample, the Amazon Keyspaces endpoint is represented by the Cluster class. It uses
the AwsAuthenticator for the authenticator property of the cluster to obtain credentials.

package main

import (
 "fmt"
 "github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin/sigv4"
 "github.com/gocql/gocql"
 "log"
)

func main() {
 // configuring the cluster options
 cluster := gocql.NewCluster("cassandra.us-west-2.amazonaws.com")
 cluster.Port=9142
 var auth sigv4.AwsAuthenticator = sigv4.NewAwsAuthenticator()
 auth.Region = "us-west-2"
 auth.AccessKeyId = "AKIAIOSFODNN7EXAMPLE"
 auth.SecretAccessKey = "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

 cluster.Authenticator = auth

 cluster.SslOpts = &gocql.SslOptions{
 CaPath: "path_to_file/sf-class2-root.crt",
 EnableHostVerification: false,
 }
 cluster.Consistency = gocql.LocalQuorum
 cluster.DisableInitialHostLookup = false

 session, err := cluster.CreateSession()
 if err != nil {
 fmt.Println("err>", err)
 return
 }

Using a Cassandra client driver 82

https://github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 defer session.Close()

 // doing the query
 var text string
 iter := session.Query("SELECT keyspace_name FROM system_schema.tables;").Iter()
 for iter.Scan(&text) {
 fmt.Println("keyspace_name:", text)
 }
 if err := iter.Close(); err != nil {
 log.Fatal(err)
 }
}

Usage notes:

1. Replace "path_to_file/sf-class2-root.crt" with the path to the certificate saved in the
first step.

2. Ensure that the AccessKeyId and SecretAccessKey match the access key and secret access
key you obtained using AwsAuthenticator. For more information, see Configuring the AWS
SDK for Go in the AWS SDK for Go.

3. To store access keys outside of code, see best practices at the section called “How to manage
access keys”.

4. For a list of available endpoints, see the section called “Service endpoints”.

Using a Cassandra Perl client driver to access Amazon Keyspaces
programmatically

This section shows you how to connect to Amazon Keyspaces by using a Perl client driver. For this
code sample, we used Perl 5. Amazon Keyspaces requires the use of Transport Layer Security (TLS)
to help secure connections with clients.

Important

To create a secure connection, our code samples use the Starfield digital certificate to
authenticate the server before establishing the TLS connection. The Perl driver doesn't
validate the server's Amazon SSL certificate, which means that you can't confirm that you
are connecting to Amazon Keyspaces. The second step, to configure the driver to use TLS

Using a Cassandra client driver 83

https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

when connecting to Amazon Keyspaces is still required, and ensures that data transferred
between the client and server is encrypted.

1. Download the Cassandra DBI driver from https://metacpan.org/pod/DBD::Cassandra and install
the driver to your Perl environment. The exact steps depend on the environment. The following
is a common example.

cpanm DBD::Cassandra

2. Create a file for your application.

touch cqlapp.pl

3. Add the following sample code to the cqlapp.pl file.

use DBI;
my $user = "ServiceUserName";
my $password = "ServicePassword";
my $db = DBI->connect("dbi:Cassandra:host=cassandra.us-
east-2.amazonaws.com;port=9142;tls=1;",
$user, $password);

my $rows = $db->selectall_arrayref("select * from system_schema.keyspaces");
print "Found the following Keyspaces...\n";
for my $row (@$rows) {
 print join(" ",@$row['keyspace_name']),"\n";
}

$db->disconnect;

Important

Ensure that the ServiceUserName and ServicePassword match the user name and
password you obtained when you generated the service-specific credentials by following
the steps to Generate service-specific credentials.

Using a Cassandra client driver 84

https://metacpan.org/pod/DBD::Cassandra

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

For a list of available endpoints, see the section called “Service endpoints”.

4. Run the application.

perl cqlapp.pl

Tutorial: Connecting to Amazon Keyspaces from Amazon Elastic
Kubernetes Service

This tutorial walks you through the steps required to set up an Amazon Elastic Kubernetes Service
(Amazon EKS) cluster to host a containerized application that connects to Amazon Keyspaces using
SigV4 authentication.

Amazon EKS is a managed service that eliminates the need to install, operate, and maintain
your own Kubernetes control plane. Kubernetes is an open-source system that automates the
management, scaling, and deployment of containerized applications.

The tutorial provides step-by-step guidance to configure, build, and deploy a containerized Java
application to Amazon EKS. In the last step you run the application to write data to an Amazon
Keyspaces table.

Topics

• Tutorial prerequisites

• Step 1: Configure the Amazon EKS cluster and setup IAM permissions

• Step 2: Configure the application

• Step 3: Create the application image and upload the Docker file to your Amazon ECR repository

• Step 4: Deploy the application to Amazon EKS and write data to your Amazon Keyspaces table

• Step 5: (Optional) Cleanup

Connecting from Amazon EKS 85

https://kubernetes.io/docs/concepts/overview/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Tutorial prerequisites

Create the following AWS resources before you can begin with the tutorial

1. Before you start this tutorial, follow the AWS setup instructions in Accessing Amazon
Keyspaces (for Apache Cassandra). These steps include signing up for AWS and creating an
AWS Identity and Access Management (IAM) principal with access to Amazon Keyspaces.

2. Create an Amazon Keyspaces keyspace with the name aws and a table with the name user
that you can write to from the containerized application running in Amazon EKS later in this
tutorial. You can do this either with the AWS CLI or using cqlsh.

AWS CLI

aws keyspaces create-keyspace --keyspace-name 'aws'

To confirm that the keyspace was created, you can use the following command.

aws keyspaces list-keyspaces

To create the table, you can use the following command.

aws keyspaces create-table --keyspace-name 'aws' --table-name 'user' --schema-
definition 'allColumns=[
 {name=username,type=text}, {name=fname,type=text},
{name=last_update_date,type=timestamp},{name=lname,type=text}],
 partitionKeys=[{name=username}]'

To confirm that your table was created, you can use the following command.

aws keyspaces list-tables --keyspace-name 'aws'

For more information, see create keyspace and create table in the AWS CLI Command
Reference.

cqlsh

CREATE KEYSPACE aws WITH replication = {'class': 'SimpleStrategy',
 'replication_factor': '3'} AND durable_writes = true;
CREATE TABLE aws.user (

Connecting from Amazon EKS 86

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/keyspaces/create-keyspace.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/keyspaces/create-table.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 username text PRIMARY KEY,
 fname text,
 last_update_date timestamp,
 lname text
);

To verify that your table was created, you can use the following statement.

SELECT * FROM system_schema.tables WHERE keyspace_name = "aws";

Your table should be listed in the output of this statement. Note that there can be a delay
until the table is created. For more information, see the section called “CREATE TABLE”.

3. Create an Amazon EKS cluster with a Fargate - Linux node type. Fargate is a serverless
compute engine that lets you deploy Kubernetes Pods without managing Amazon Amazon EC2
instances. To follow this tutorial without having to update the cluster name in all the example
commands, create a cluster with the name my-eks-cluster following the instructions at
Getting started with Amazon EKS – eksctl in the Amazon EKS User Guide. When your cluster
is created, verify that your nodes and the two default Pods are running and healthy. You can
do so with the following command.

kubectl get pods -A -o wide

You should see something similar to this output.

NAMESPACE NAME READY STATUS RESTARTS AGE IP
 NODE NOMINATED NODE READINESS
 GATES
kube-system coredns-1234567890-abcde 1/1 Running 0 18m
 192.0.2.0 fargate-ip-192-0-2-0.region-code.compute.internal <none>
 <none>
kube-system coredns-1234567890-12345 1/1 Running 0 18m
 192.0.2.1 fargate-ip-192-0-2-1.region-code.compute.internal <none>
 <none>

4. Install Docker. For instructions on how to install Docker on an Amazon EC2 instance, see Install
Docker in the Amazon Elastic Container Registry User Guide.

Connecting from Amazon EKS 87

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#getting-started-cli-prereqs
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#getting-started-cli-prereqs

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Docker is available for many different operating systems, including most modern Linux
distributions, like Ubuntu, and even macOS and Windows. For more information about how to
install Docker on your particular operating system, go to the Docker installation guide.

5. Create an Amazon ECR repository. Amazon ECR is an AWS managed container image registry
service that you can use with your preferred CLI to push, pull, and manage Docker images. For
more information about Amazon ECR repositories, see the Amazon Elastic Container Registry
User Guide. You can use the following command to create a repository with the name my-
ecr-repository.

aws ecr create-repository --repository-name my-ecr-repository

After completing the prerequisite steps, proceed to the section called “Step 1: Configure the
Amazon EKS cluster”.

Step 1: Configure the Amazon EKS cluster and setup IAM permissions

Configure the Amazon EKS cluster and create the IAM resources that are required to allow an
Amazon EKS service account to connect to your Amazon Keyspaces table

1. Create an Open ID Connect (OIDC) provider for the Amazon EKS cluster. This is needed to use
IAM roles for service accounts. For more information about OIDC providers and how to create
them, see Creating an IAM OIDC provider for your cluster in the Amazon EKS User Guide.

a. Create an IAM OIDC identity provider for your cluster with the following command. This
example assumes that your cluster name is my-eks-cluster. If you have a cluster with a
different name, remember to update the name in all future commands.

eksctl utils associate-iam-oidc-provider --cluster my-eks-cluster --approve

b. Confirm that the OIDC identity provider has been registered with IAM with the following
command.

aws iam list-open-id-connect-providers --region aws-region

The output should look similar to this. Take note of the OIDC's Amazon Resource Name
(ARN), you need it in the next step when you create a trust policy for the service account.

Connecting from Amazon EKS 88

https://docs.docker.com/engine/install/#installation
https://docs.aws.amazon.com/AmazonECR/latest/userguide/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

{
 "OpenIDConnectProviderList": [
 ..
 {
 "Arn": "arn:aws:iam::111122223333:oidc-provider/oidc.eks.aws-
region.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE"
 }
]
}

2. Create a service account for the Amazon EKS cluster. Service accounts provide an identity for
processes that run in a Pod. A Pod is the smallest and simplest Kubernetes object that you can
use to deploy a containerized application. Next, create an IAM role that the service account
can assume to obtain permissions to resources. You can access any AWS service from a Pod
that has been configured to use a service account that can assume an IAM role with access
permissions to that service.

a. Create a new namespace for the service account. A namespace helps to isolate cluster
resources created for this tutorial. You can create a new namespace using the following
command.

kubectl create namespace my-eks-namespace

b. To use a custom namespace, you have to associate it with a Fargate profile. The following
code is an example of this.

eksctl create fargateprofile \
 --cluster my-eks-cluster \
 --name my-fargate-profile \
 --namespace my-eks-namespace \
 --labels *=*

c. Create a service account with the name my-eks-serviceaccount in the namespace my-
eks-namespace for your Amazon EKS cluster by using the following command.

cat >my-serviceaccount.yaml <<EOF
apiVersion: v1
kind: ServiceAccount
metadata:
 name: my-eks-serviceaccount

Connecting from Amazon EKS 89

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 namespace: my-eks-namespace
EOF
kubectl apply -f my-serviceaccount.yaml

d. Run the following command to create a trust policy file that instructs the IAM role to trust
your service account. This trust relationship is required before a principal can assume a
role. You need to make the following edits to the file:

• For the Principal, enter the ARN that IAM returned to the list-open-id-connect-
providers command. The ARN contains your account number and Region.

• In the condition statement, replace the AWS Region and the OIDC id.

• Confirm that the service account name and namespace are correct.

You need to attach the trust policy file in the next step when you create the IAM role.

cat >trust-relationship.json <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::111122223333:oidc-provider/
oidc.eks.aws-region.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "oidc.eks.aws-region.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": "system:serviceaccount:my-eks-
namespace:my-eks-serviceaccount",
 "oidc.eks.aws-region.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": "sts.amazonaws.com"
 }
 }
 }
]
}
EOF

Connecting from Amazon EKS 90

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Optional: You can also add multiple entries in the StringEquals or StringLike
conditions to allow multiple service accounts or namespaces to assume the role. To allow
your service account to assume an IAM role in a different AWS account, see Cross-account
IAM permissions in the Amazon EKS User Guide.

3. Create an IAM role with the name my-iam-role for the Amazon EKS service account to
assume. Attach the trust policy file created in the last step to the role. The trust policy specifies
the service account and OIDC provider that the IAM role can trust.

aws iam create-role --role-name my-iam-role --assume-role-policy-document file://
trust-relationship.json --description "EKS service account role"

4. Assign the IAM role permissions to Amazon Keyspaces by attaching an access policy.

a. Attach an access policy to define the actions the IAM role can perform on specific
Amazon Keyspaces resources. For this tutorial we use the AWS managed policy
AmazonKeyspacesFullAccess, because our application is going to write data to your
Amazon Keyspaces table. As a best practise however, it's recommended to create custom
access policies that implement the least privileges principle. For more information, see the
section called “How Amazon Keyspaces works with IAM”.

aws iam attach-role-policy --role-name my-iam-role --policy-
arn=arn:aws:iam::aws:policy/AmazonKeyspacesFullAccess

Confirm that the policy was successfully attached to the IAM role with the following
statement.

aws iam list-attached-role-policies --role-name my-iam-role

The output should look like this.

{
 "AttachedPolicies": [
 {
 "PolicyName": "AmazonKeyspacesFullAccess",
 "PolicyArn": "arn:aws:iam::aws:policy/AmazonKeyspacesFullAccess"
 }
]
}

Connecting from Amazon EKS 91

https://docs.aws.amazon.com/eks/latest/userguide/cross-account-access.html
https://docs.aws.amazon.com/eks/latest/userguide/cross-account-access.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

b. Annotate the service account with the Amazon Resource Name (ARN) of the IAM role it can
assume. Make sure to update the role ARN with your account ID.

kubectl annotate serviceaccount -n my-eks-namespace my-eks-serviceaccount
 eks.amazonaws.com/role-arn=arn:aws:iam::111122223333:role/my-iam-role

5. Confirm that the IAM role and the service account are correctly configured.

a. Confirm that the IAM role's trust policy is correctly configured with the following
statement.

aws iam get-role --role-name my-iam-role --query Role.AssumeRolePolicyDocument

The output should look similar to this.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::111122223333:oidc-provider/
oidc.eks.aws-region.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "oidc.eks.aws-region/id/
EXAMPLED539D4633E53DE1B71EXAMPLE:aud": "sts.amazonaws.com",
 "oidc.eks.aws-region.amazonaws.com/id/
EXAMPLED539D4633E53DE1B71EXAMPLE:sub": "system:serviceaccount:my-eks-
namespace:my-eks-serviceaccount"
 }
 }
 }
]
}

b. Confirm that the Amazon EKS service account is annotated with the IAM role.

kubectl describe serviceaccount my-eks-serviceaccount -n my-eks-namespace

Connecting from Amazon EKS 92

Amazon Keyspaces (for Apache Cassandra) Developer Guide

The output should look similar to this.

Name: my-eks-serviceaccount
Namespace:my-eks-namespace
Labels: <none>
Annotations: eks.amazonaws.com/role-arn: arn:aws:iam::111122223333:role/my-iam-
role
Image pull secrets: <none>
Mountable secrets: <none>
Tokens: <none>
[...]

After you created the Amazon EKS service account, the IAM role, and configured the required
relationships and permissions, proceed to the section called “Step 2: Configure the application”.

Step 2: Configure the application

In this step you build your application that connects to Amazon Keyspaces using the SigV4 plugin.
You can view and download the example Java application from the Amazon Keyspaces example
code repo on Github. Or you can follow along using your own application, making sure to complete
all configuration steps.

Configure your application and add the required dependencies.

1. You can download the example Java application by cloning the Github repository using the
following command.

git clone https://github.com/aws-samples/amazon-keyspaces-examples.git

2. After downloading the Github repo, unzip the downloaded file and navigate to the
resources directory to the application.conf file.

a. Application configuration

In this step you configure the SigV4 authentication plugin. You can use the following
example in your application. If you haven't already done so, you need to generate your
IAM access keys (an access key ID and a secret access key) and save them in your AWS
config file or as environment variables. For detailed instructions, see the section called
“Required credentials for AWS authentication”. Update the AWS Region and the service

Connecting from Amazon EKS 93

https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/eks

Amazon Keyspaces (for Apache Cassandra) Developer Guide

endpoint for Amazon Keyspaces as needed. For more service endpoints, see the section
called “Service endpoints”. Replace the truststore location, truststore name, and the
truststore password with your own.

datastax-java-driver {
 basic.contact-points = ["cassandra.aws-region.amazonaws.com:9142"]
 basic.load-balancing-policy.local-datacenter = "aws-region"
 advanced.auth-provider {
 class = software.aws.mcs.auth.SigV4AuthProvider
 aws-region = "aws-region"
 }
 advanced.ssl-engine-factory {
 class = DefaultSslEngineFactory
 truststore-path = "truststore_locationtruststore_name.jks"
 truststore-password = "truststore_password;"
 }
}

b. Add the STS module dependency.

This adds the ability to use a WebIdentityTokenCredentialsProvider that returns
the AWS credentials that the application needs to provide so that the service account can
assume the IAM role. You can do this based on the following example.

 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-sts</artifactId>
 <version>1.11.717</version>
 </dependency>

c. Add the SigV4 dependency.

This package implements the SigV4 authentication plugin that is needed to authenticate
to Amazon Keyspaces

 <dependency>
 <groupId>software.aws.mcs</groupId>
 <artifactId>aws-sigv4-auth-cassandra-java-driver-plugin</
artifactId>
 <version>4.0.3</version>
 </dependency>

Connecting from Amazon EKS 94

Amazon Keyspaces (for Apache Cassandra) Developer Guide

3. Add a logging dependency.

Without logs, troubleshooting connection issues is impossible. In this tutorial, we use slf4j
as the logging framework, and use logback.xml to store the log output. We set the logging
level to debug to establish the connection. You can use the following example to add the
dependency.

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>2.0.5</version>
 </dependency>

You can use the following code snippet to configure the logging.

<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</
pattern>
 </encoder>
 </appender>

 <root level="debug">
 <appender-ref ref="STDOUT" />
 </rootv
</configuration>

Note

The debug level is needed to investigate connection failures. After you have
successfully connected to Amazon Keyspaces from your application, you can change
the logging level to info or warning as needed.

Connecting from Amazon EKS 95

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Step 3: Create the application image and upload the Docker file to your Amazon
ECR repository

In this step, you compile the example application, build a Docker image, and push the image to
your Amazon ECR repository.

Build your application, build a Docker image, and submit it to Amazon Elastic Container
Registry

1. Set environment variables for the build that define your AWS Region. Replace the Regions in
the examples with your own.

export CASSANDRA_HOST=cassandra.aws-region.amazonaws.com:9142
export CASSANDRA_DC=aws-region

2. Compile your application with Apache Maven version 3.6.3 or higher using the following
command.

mvn clean install

This creates a JAR file with all dependencies included in the target directory.

3. Retrieve your ECR repository URI that's needed for the next step with the following command.
Make sure to update the Region to the one you've been using.

aws ecr describe-repositories --region aws-region

The output should look like in the following example.

"repositories": [
 {
 "repositoryArn": "arn:aws:ecr:aws-region:111122223333:repository/my-ecr-
repository",
 "registryId": "111122223333",
 "repositoryName": "my-ecr-repository",
 "repositoryUri": "111122223333.dkr.ecr.aws-region.amazonaws.com/my-ecr-
repository",
 "createdAt": "2023-11-02T03:46:34+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": false

Connecting from Amazon EKS 96

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 },

4. From the application's root directory build the Docker image using the repository URI from the
last step. Modify the Docker file as needed. In the build command, make sure to replace your
account ID and set the AWS Region to the Region where the Amazon ECR repository my-ecr-
repository is located.

docker build -t 111122223333.dkr.ecr.aws-region.amazonaws.com/my-ecr-
repository:latest .

5. Retrieve an authentication token to push the Docker image to Amazon ECR. You can do so with
the following command.

aws ecr get-login-password --region aws-region | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.aws-region.amazonaws.com

6. First, check for existing images in your Amazon ECR repository. You can use the following
command.

aws ecr describe-images --repository-name my-ecr-repository --region aws-region

Then, push the Docker image to the repo. You can use the following command.

docker push 111122223333.dkr.ecr.aws-region.amazonaws.com/my-ecr-repository:latest

Step 4: Deploy the application to Amazon EKS and write data to your Amazon
Keyspaces table

In this step of the tutorial, you configure the Amazon EKS deployment for your application, and
confirm that the application is running and can connect to Amazon Keyspaces.

To deploy an application to Amazon EKS, you need to configure all relevant settings in a file called
deployment.yaml. This file is then used by Amazon EKS to deploy the application. The metadata
in the file should contain the following information:

Connecting from Amazon EKS 97

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Application name the name of the application. For this tutorial, we use my-keyspaces-app.

• Kubernetes namespace the namespace of the Amazon EKS cluster. For this tutorial, we use my-
eks-namespace.

• Amazon EKS service account name the name of the Amazon EKS service account. For this
tutorial, we use my-eks-serviceaccount.

• image name the name of the application image. For this tutorial, we use my-keyspaces-app.

• Image URI the Docker image URI from Amazon ECR.

• AWS account ID your AWS account ID.

• IAM role ARN the ARN of the IAM role created for the service account to assume. For this
tutorial, we use my-iam-role.

• AWS Region of the Amazon EKS cluster the AWS Region you created your Amazon EKS cluster
in.

In this step, you deploy and run the application that connects to Amazon Keyspaces and writes
data to the table.

1. Configure the deployment.yaml file. You need to replace the following values:

• name

• namespace

• serviceAccountName

• image

• AWS_ROLE_ARN value

• The AWS Region in CASSANDRA_HOST

• AWS_REGION

You can use the following file as an example.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-keyspaces-app
 namespace: my-eks-namespace
spec:
 replicas: 1

Connecting from Amazon EKS 98

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 selector:
 matchLabels:
 app: my-keyspaces-app
 template:
 metadata:
 labels:
 app: my-keyspaces-app
 spec:
 serviceAccountName: my-eks-serviceaccount
 containers:
 - name: my-keyspaces-app
 image: 111122223333.dkr.ecr.aws-region.amazonaws.com/my-ecr-
repository:latest
 ports:
 - containerPort: 8080
 env:
 - name: CASSANDRA_HOST
 value: "cassandra.aws-region.amazonaws.com:9142"
 - name: CASSANDRA_DC
 value: "aws-region"
 - name: AWS_WEB_IDENTITY_TOKEN_FILE
 value: /var/run/secrets/eks.amazonaws.com/serviceaccount/token
 - name: AWS_ROLE_ARN
 value: "arn:aws:iam::111122223333:role/my-iam-role"
 - name: AWS_REGION
 value: "aws-region"

2. Deploy deployment.yaml.

kubectl apply -f deployment.yaml

The output should look like this.

deployment.apps/my-keyspaces-app created

3. Check the status of the Pod in your namespace of the Amazon EKS cluster.

kubectl get pods -n my-eks-namespace

The output should look similar to this example.

Connecting from Amazon EKS 99

Amazon Keyspaces (for Apache Cassandra) Developer Guide

NAME READY STATUS RESTARTS AGE
my-keyspaces-app-123abcde4f-g5hij 1/1 Running 0 75s

For more details, you can use the following command.

kubectl describe pod my-keyspaces-app-123abcde4f-g5hij -n my-eks-namespace

Name: my-keyspaces-app-123abcde4f-g5hij
Namespace: my-eks-namespace
Priority: 2000001000
Priority Class Name: system-node-critical
Service Account: my-eks-serviceaccount
Node: fargate-ip-192-168-102-209.ec2.internal/192.168.102.209
Start Time: Thu, 23 Nov 2023 12:15:43 +0000
Labels: app=my-keyspaces-app
 eks.amazonaws.com/fargate-profile=my-fargate-profile
 pod-template-hash=6c56fccc56
Annotations: CapacityProvisioned: 0.25vCPU 0.5GB
 Logging: LoggingDisabled: LOGGING_CONFIGMAP_NOT_FOUND
Status: Running
IP: 192.168.102.209
IPs:
 IP: 192.168.102.209
Controlled By: ReplicaSet/my-keyspaces-app-6c56fccc56
Containers:
 my-keyspaces-app:
 Container ID:
 containerd://41ff7811d33ae4bc398755800abcdc132335d51d74f218ba81da0700a6f8c67b
 Image: 111122223333.dkr.ecr.aws-region.amazonaws.com/
my_eks_repository:latest
 Image ID: 111122223333.dkr.ecr.aws-region.amazonaws.com/
my_eks_repository@sha256:fd3c6430fc5251661efce99741c72c1b4b03061474940200d0524b84a951439c
 Port: 8080/TCP
 Host Port: 0/TCP
 State: Running
 Started: Thu, 23 Nov 2023 12:15:19 +0000
 Finished: Thu, 23 Nov 2023 12:16:17 +0000
 Ready: True
 Restart Count: 1
 Environment:
 CASSANDRA_HOST: cassandra.aws-region.amazonaws.com:9142

Connecting from Amazon EKS 100

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 CASSANDRA_DC: aws-region
 AWS_WEB_IDENTITY_TOKEN_FILE: /var/run/secrets/eks.amazonaws.com/
serviceaccount/token
 AWS_ROLE_ARN: arn:aws:iam::111122223333:role/my-iam-role
 AWS_REGION: aws-region
 AWS_STS_REGIONAL_ENDPOINTS: regional
 Mounts:
 /var/run/secrets/eks.amazonaws.com/serviceaccount from aws-iam-token (ro)
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fssbf (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 aws-iam-token:
 Type: Projected (a volume that contains injected data from
 multiple sources)
 TokenExpirationSeconds: 86400
 kube-api-access-fssbf:
 Type: Projected (a volume that contains injected data from
 multiple sources)
 TokenExpirationSeconds: 3607
 ConfigMapName: kube-root-ca.crt
 ConfigMapOptional: <nil>
 DownwardAPI: true
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for
 300s
 node.kubernetes.io/unreachable:NoExecute op=Exists for
 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning LoggingDisabled 2m13s fargate-scheduler Disabled logging
 because aws-logging configmap was not found. configmap "aws-logging" not found
 Normal Scheduled 89s fargate-scheduler Successfully
 assigned my-eks-namespace/my-keyspaces-app-6c56fccc56-mgs2m to fargate-
ip-192-168-102-209.ec2.internal
 Normal Pulled 75s kubelet
 Successfully pulled image "111122223333.dkr.ecr.aws-region.amazonaws.com/
my_eks_repository:latest" in 13.027s (13.027s including waiting)

Connecting from Amazon EKS 101

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 Normal Pulling 54s (x2 over 88s) kubelet Pulling image
 "111122223333.dkr.ecr.aws-region.amazonaws.com/my_eks_repository:latest"
 Normal Created 54s (x2 over 75s) kubelet Created container
 my-keyspaces-app
 Normal Pulled 54s kubelet
 Successfully pulled image "111122223333.dkr.ecr.aws-region.amazonaws.com/
my_eks_repository:latest" in 222ms (222ms including waiting)
 Normal Started 53s (x2 over 75s) kubelet Started container
 my-keyspaces-app

4. Check the Pod's logs to confirm that your application is running and can connect to your
Amazon Keyspaces table. You can do so with the following command. Make sure to replace the
name of your deployment.

kubectl logs -f my-keyspaces-app-123abcde4f-g5hij -n my-eks-namespace

You should be able to see application log entries confirming the connection to Amazon
Keyspaces like in the example below.

2:47:20.553 [s0-admin-0] DEBUG c.d.o.d.i.c.metadata.MetadataManager
 - [s0] Adding initial contact points [Node(endPoint=cassandra.aws-
region.amazonaws.com/1.222.333.44:9142, hostId=null, hashCode=e750d92)]
22:47:20.562 [s0-admin-1] DEBUG c.d.o.d.i.c.c.ControlConnection - [s0] Initializing
 with event types [SCHEMA_CHANGE, STATUS_CHANGE, TOPOLOGY_CHANGE]
22:47:20.564 [s0-admin-1] DEBUG c.d.o.d.i.core.context.EventBus - [s0] Registering
 com.datastax.oss.driver.internal.core.metadata.LoadBalancingPolicyWrapper$$Lambda
$812/0x0000000801105e88@769afb95 for class
 com.datastax.oss.driver.internal.core.metadata.NodeStateEvent
22:47:20.566 [s0-admin-1] DEBUG c.d.o.d.i.c.c.ControlConnection -
 [s0] Trying to establish a connection to Node(endPoint=cassandra.us-
east-1.amazonaws.com/1.222.333.44:9142, hostId=null, hashCode=e750d92)

5. Run the following CQL query on your Amazon Keyspaces table to confirm that one row of data
has been written to your table:

SELECT * from aws.user;

You should see the following output:

fname | lname | username | last_update_date
----------+-------+----------+-----------------------------

Connecting from Amazon EKS 102

Amazon Keyspaces (for Apache Cassandra) Developer Guide

random | k | test | 2023-12-07 13:58:31.57+0000

Step 5: (Optional) Cleanup

Follow these steps to remove all the resources created in this tutorial.

Remove the resources created in this tutorial

1. Delete your deployment. You can use the following command to do so.

kubectl delete deployment my-keyspaces-app -n my-eks-namespace

2. Delete the Amazon EKS cluster and all Pods contained in it. This also deletes related resources
like the service account and OIDC identity provider. You can use the following command to do
so.

eksctl delete cluster --name my-eks-cluster --region aws-region

3. Delete the IAM role used for the Amazon EKS service account with access permissions to
Amazon Keyspaces. First, you have to remove the managed policy that is attached to the role.

aws iam detach-role-policy --role-name my-iam-role --policy-arn
 arn:aws:iam::aws:policy/AmazonKeyspacesFullAccess

Then you can delete the role using the following command.

aws iam delete-role --role-name my-iam-role

For more information, see Deleting an IAM role (AWS CLI) in the IAM User Guide.

4. Delete the Amazon ECR repository including all the images stored in it. You can do so using the
following command.

aws ecr delete-repository \
 --repository-name my-ecr-repository \
 --force \
 --region aws-region

Connecting from Amazon EKS 103

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html#roles-managingrole-deleting-cli

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note that the force flag is required to delete a repository that contains images. To delete
your image first, you can do so using the following command.

aws ecr batch-delete-image \
 --repository-name my-ecr-repository \
 --image-ids imageTag=latest \
 --region aws-region

For more information, see Delete an image in the Amazon Elastic Container Registry User
Guide.

5. Delete the Amazon Keyspaces keyspace and table. Deleting the keyspace automatically deletes
all tables in that keyspace. You can use one the following options to do so.

AWS CLI

aws keyspaces delete-keyspace --keyspace-name 'aws'

To confirm that the keyspace was deleted, you can use the following command.

aws keyspaces list-keyspaces

To delete the table first, you can use the following command.

aws keyspaces delete-table --keyspace-name 'aws' --table-name 'user'

To confirm that your table was deleted, you can use the following command.

aws keyspaces list-tables --keyspace-name 'aws'

For more information, see delete keyspace and delete table in the AWS CLI Command
Reference.

cqlsh

DROP KEYSPACE IF EXISTS "aws";

To verify that your keyspaces was deleted, you can use the following statement.

Connecting from Amazon EKS 104

https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-delete-image
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/keyspaces/delete-keyspace.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/keyspaces/delete-table.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

SELECT * FROM system_schema.keyspaces ;

Your keyspace should not be listed in the output of this statement. Note that there can be
a delay until the keyspaces is deleted. For more information, see the section called “DROP
KEYSPACE”.

To delete the table first, you can use the following command.

DROP TABLE "aws.user"

To confirm that your table was deleted, you can use the following command.

SELECT * FROM system_schema.tables WHERE keyspace_name = "aws";

Your table should not be listed in the output of this statement. Note that there can be a
delay until the table is deleted. For more information, see the section called “DROP TABLE”.

Tutorial: Connecting to Amazon Keyspaces using an interface
VPC endpoint

This tutorial walks you through setting up and using an interface VPC endpoint for Amazon
Keyspaces.

Interface VPC endpoints enable private communication between your virtual private cloud (VPC)
running in Amazon VPC and Amazon Keyspaces. Interface VPC endpoints are powered by AWS
PrivateLink, which is an AWS service that enables private communication between VPCs and AWS
services. For more information, see the section called “Using interface VPC endpoints”.

Topics

• Tutorial prerequisites and considerations

• Step 1: Launch an Amazon EC2 instance

• Step 2: Configure your Amazon EC2 instance

• Step 3: Create a VPC endpoint for Amazon Keyspaces

• Step 4: Configure permissions for the VPC endpoint connection

• Step 5: Configure monitoring with CloudWatch

Connecting with VPC endpoints 105

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Step 6: (Optional) Best practices to configure the connection pool size for your application

• Step 7: (Optional) Clean up

Tutorial prerequisites and considerations

Before you start this tutorial, follow the AWS setup instructions in Accessing Amazon Keyspaces
(for Apache Cassandra). These steps include signing up for AWS and creating an AWS Identity and
Access Management (IAM) principal with access to Amazon Keyspaces. Take note of the name of
the IAM user and the access keys because you'll need them later in this tutorial.

Create a keyspace with the name myKeyspaceand at least one table to test the connection using
the VPC endpoint later in this tutorial. You can find detailed instructions in Getting started.

After completing the prerequisite steps, proceed to Step 1: Launch an Amazon EC2 instance.

Step 1: Launch an Amazon EC2 instance

In this step, you launch an Amazon EC2 instance in your default Amazon VPC. You can then create
and use a VPC endpoint for Amazon Keyspaces.

To launch an Amazon EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance and do the following:

From the EC2 console dashboard, in the Launch instance box, choose Launch instance, and
then choose Launch instance from the options that appear.

Under Name and tags, for Name, enter a descriptive name for your instance.

Under Application and OS Images (Amazon Machine Image):

• Choose Quick Start, and then choose Ubuntu. This is the operating system (OS) for your
instance.

• Under Amazon Machine Image (AMI), you can use the default image that is marked as
Free tier eligible. An Amazon Machine Image (AMI) is a basic configuration that serves as a
template for your instance.

Under Instance Type:

Prerequisites 106

https://console.aws.amazon.com/ec2/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• From the Instance type list, choose the t2.micro instance type, which is selected by default.

Under Key pair (login), for Key pair name, choose one of the following options for this
tutorial:

• If you don't have an Amazon EC2 key pair, choose Create a new key pair and follow the
instructions. You will be asked to download a private key file (.pem file). You will need this
file later when you log in to your Amazon EC2 instance, so take note of the file path.

• If you already have an existing Amazon EC2 key pair, go to Select a key pair and choose your
key pair from the list. You must already have the private key file (.pem file) available in order
to log in to your Amazon EC2 instance.

Under Network Settings:

• Choose Edit.

• Choose Select an existing security group.

• In the list of security groups, choose default. This is the default security group for your VPC.

Continue to Summary.

• Review a summary of your instance configuration in the Summary panel. When you're ready,
choose Launch instance.

3. On the completion screen for the new Amazon EC2 instance, choose the Connect to instance
tile. The next screen shows the necessary information and the required steps to connect to
your new instance. Take note of the following information:

• The sample command to protect the key file

• The connection string

• The Public IPv4 DNS name

After taking note of the information on this page, you can continue to the next step in this
tutorial (Step 2: Configure your Amazon EC2 instance).

Step 1: Launch an Amazon EC2 instance 107

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

It takes a few minutes for your Amazon EC2 instance to become available. Before you go
on to the next step, ensure that the Instance State is running and that all of its Status
Checks have passed.

Step 2: Configure your Amazon EC2 instance

When your Amazon EC2 instance is available, you can log into it and prepare it for first use.

Note

The following steps assume that you're connecting to your Amazon EC2 instance from a
computer running Linux. For other ways to connect, see Connect to your Linux instance in
the Amazon EC2 User Guide for Linux Instances.

To configure your Amazon EC2 instance

1. You need to authorize inbound SSH traffic to your Amazon EC2 instance. To do this, create a
new EC2 security group, and then assign the security group to your EC2 instance.

a. In the navigation pane, choose Security Groups.

b. Choose Create Security Group. In the Create Security Group window, do the following:

• Security group name – Enter a name for your security group. For example: my-ssh-
access

• Description – Enter a short description for the security group.

• VPC – Choose your default VPC.

• In the Inbound rules section, choose Add Rule and do the following:

• Type – Choose SSH.

• Source – Choose My IP.

• Choose Add rule.

On the bottom of the page, confirm the configuration settings and choose Create
Security Group.

Step 2: Configure your Amazon EC2 instance 108

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

c. In the navigation pane, choose Instances.

d. Choose the Amazon EC2 instance that you launched in Step 1: Launch an Amazon EC2
instance.

e. Choose Actions, choose Security, and then choose Change Security Groups.

f. In Change Security Groups, select the security group that you created earlier in this
procedure (for example, my-ssh-access). The existing default security group should
also be selected. Confirm the configuration settings and choose Assign Security Groups.

2. Use the following command to protect your private key file from access. If you skip this step,
the connection fails.

chmod 400 path_to_file/my-keypair.pem

3. Use the ssh command to log in to your Amazon EC2 instance, as in the following example.

ssh -i path_to_file/my-keypair.pem ubuntu@public-dns-name

You need to specify your private key file (.pem file) and the public DNS name of your instance.
(See Step 1: Launch an Amazon EC2 instance).

The login ID is ubuntu. No password is required.

For more information about allowing connections to your Amazon EC2 instance and for AWS
CLI instructions, see Authorize inbound traffic for your Linux instances in the Amazon EC2 User
Guide for Linux Instances.

4. Download and install the latest version of the AWS Command Line Interface.

a. Install unzip.

sudo apt install unzip

b. Download the zip file with the AWS CLI.

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
 "awscliv2.zip"

c. Unzip the file.

unzip awscliv2.zip

Step 2: Configure your Amazon EC2 instance 109

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

d. Install the AWS CLI.

sudo ./aws/install

e. Confirm the version of the AWS CLI installation.

aws --version

The output should look like this:

aws-cli/2.9.19 Python/3.9.11 Linux/5.15.0-1028-aws exe/x86_64.ubuntu.22 prompt/
off

5. Configure your AWS credentials, as shown in the following example. Enter your AWS access key
ID, secret key, and default Region name when prompted.

aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]:

6. You have to use a cqlsh connection to Amazon Keyspaces to confirm that your VPC endpoint
has been configured correctly. If you use your local environment or the Amazon Keyspaces CQL
editor in the AWS Management Console, the connection automatically goes through the public
endpoint instead of your VPC endpoint. To use cqlsh to test your VPC endpoint connection in
this tutorial, complete the setup instructions in Using cqlsh to connect to Amazon Keyspaces.

You are now ready to create a VPC endpoint for Amazon Keyspaces.

Step 3: Create a VPC endpoint for Amazon Keyspaces

In this step, you create a VPC endpoint for Amazon Keyspaces using the AWS CLI. To create the VPC
endpoint using the VPC console, you can follow the Create a VPC endpoint instructions in the AWS
PrivateLink Guide. When filtering for the Service name, enter Cassandra.

Step 3: Create a VPC endpoint for Amazon Keyspaces 110

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint

Amazon Keyspaces (for Apache Cassandra) Developer Guide

To create a VPC endpoint using the AWS CLI

1. Before you begin, verify that you can communicate with Amazon Keyspaces using its public
endpoint.

aws keyspaces list-tables --keyspace-name 'myKeyspace'

The output shows a list of Amazon Keyspaces tables that are contained in the specified
keyspace. If you don't have any tables, the list is empty.

{
 "tables": [
 {
 "keyspaceName": "myKeyspace",
 "tableName": "myTable1",
 "resourceArn": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/
catalog/table/myTable1"
 },
 {
 "keyspaceName": "myKeyspace",
 "tableName": "myTable2",
 "resourceArn": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/
catalog/table/myTable2"
 }
]
}

2. Verify that Amazon Keyspaces is an available service for creating VPC endpoints in the current
AWS Region. (The command is shown in bold text, followed by example output.)

aws ec2 describe-vpc-endpoint-services

{
 "ServiceNames": [
 "com.amazonaws.us-east-1.cassandra",
 "com.amazonaws.us-east-1.cassandra-fips"
]
}

In the example output, Amazon Keyspaces is one of the services available, so you can proceed
with creating a VPC endpoint for it.

Step 3: Create a VPC endpoint for Amazon Keyspaces 111

Amazon Keyspaces (for Apache Cassandra) Developer Guide

3. Determine your VPC identifier.

aws ec2 describe-vpcs

{
 "Vpcs": [
 {
 "VpcId": "vpc-a1234bcd",
 "InstanceTenancy": "default",
 "State": "available",
 "DhcpOptionsId": "dopt-8454b7e1",
 "CidrBlock": "111.31.0.0/16",
 "IsDefault": true
 }
]
}

In the example output, the VPC ID is vpc-a1234bcd.

4. Use a filter to gather details about the subnets of the VPC.

aws ec2 describe-subnets --filters "Name=vpc-id,Values=vpc-a1234bcd"

{
 {
 "Subnets":[
 {
 "AvailabilityZone":"us-east-1a",
 "AvailabilityZoneId":"use2-az1",
 "AvailableIpAddressCount":4085,
 "CidrBlock":"111.31.0.0/20",
 "DefaultForAz":true,
 "MapPublicIpOnLaunch":true,
 "MapCustomerOwnedIpOnLaunch":false,
 "State":"available",
 "SubnetId":"subnet-920aacf9",
 "VpcId":"vpc-a1234bcd",
 "OwnerId":"111122223333",
 "AssignIpv6AddressOnCreation":false,
 "Ipv6CidrBlockAssociationSet":[

],
 "SubnetArn":"arn:aws:ec2:us-east-1:111122223333:subnet/subnet-920aacf9",

Step 3: Create a VPC endpoint for Amazon Keyspaces 112

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 "EnableDns64":false,
 "Ipv6Native":false,
 "PrivateDnsNameOptionsOnLaunch":{
 "HostnameType":"ip-name",
 "EnableResourceNameDnsARecord":false,
 "EnableResourceNameDnsAAAARecord":false
 }
 },
 {
 "AvailabilityZone":"us-east-1c",
 "AvailabilityZoneId":"use2-az3",
 "AvailableIpAddressCount":4085,
 "CidrBlock":"111.31.32.0/20",
 "DefaultForAz":true,
 "MapPublicIpOnLaunch":true,
 "MapCustomerOwnedIpOnLaunch":false,
 "State":"available",
 "SubnetId":"subnet-4c713600",
 "VpcId":"vpc-a1234bcd",
 "OwnerId":"111122223333",
 "AssignIpv6AddressOnCreation":false,
 "Ipv6CidrBlockAssociationSet":[

],
 "SubnetArn":"arn:aws:ec2:us-east-1:111122223333:subnet/subnet-4c713600",
 "EnableDns64":false,
 "Ipv6Native":false,
 "PrivateDnsNameOptionsOnLaunch":{
 "HostnameType":"ip-name",
 "EnableResourceNameDnsARecord":false,
 "EnableResourceNameDnsAAAARecord":false
 }
 },
 {
 "AvailabilityZone":"us-east-1b",
 "AvailabilityZoneId":"use2-az2",
 "AvailableIpAddressCount":4086,
 "CidrBlock":"111.31.16.0/20",
 "DefaultForAz":true,
 "MapPublicIpOnLaunch":true,

 }
]

Step 3: Create a VPC endpoint for Amazon Keyspaces 113

Amazon Keyspaces (for Apache Cassandra) Developer Guide

}

In the example output, there are two available subnet IDs: subnet-920aacf9 and
subnet-4c713600.

5. Create the VPC endpoint. For the --vpc-id parameter, specify the VPC ID from the previous
step. For the --subnet-id parameter, specify the subnet IDs from the previous step. Use
the --vpc-endpoint-type parameter to define the endpoint as an interface. For more
information about the command, see create-vpc-endpoint in the AWS CLI Command
Reference.

aws ec2 create-vpc-endpoint --vpc-endpoint-type Interface --vpc-id vpc-a1234bcd
 --service-name com.amazonaws.us-east-1.cassandra --subnet-id subnet-920aacf9
 subnet-4c713600

{
 "VpcEndpoint": {
 "VpcEndpointId": "vpce-000ab1cdef23456789",
 "VpcEndpointType": "Interface",
 "VpcId": "vpc-a1234bcd",
 "ServiceName": "com.amazonaws.us-east-1.cassandra",
 "State": "pending",
 "RouteTableIds": [],
 "SubnetIds": [
 "subnet-920aacf9",
 "subnet-4c713600"
],
 "Groups": [
 {
 "GroupId": "sg-ac1b0e8d",
 "GroupName": "default"
 }
],
 "IpAddressType": "ipv4",
 "DnsOptions": {
 "DnsRecordIpType": "ipv4"
 },
 "PrivateDnsEnabled": true,
 "RequesterManaged": false,
 "NetworkInterfaceIds": [
 "eni-043c30c78196ad82e",
 "eni-06ce37e3fd878d9fa"
],

Step 3: Create a VPC endpoint for Amazon Keyspaces 114

https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-endpoint.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 "DnsEntries": [
 {
 "DnsName": "vpce-000ab1cdef23456789-m2b22rtz.cassandra.us-
east-1.vpce.amazonaws.com",
 "HostedZoneId": "Z7HUB22UULQXV"
 },
 {
 "DnsName": "vpce-000ab1cdef23456789-m2b22rtz-us-
east-1a.cassandra.us-east-1.vpce.amazonaws.com",
 "HostedZoneId": "Z7HUB22UULQXV"
 },
 {
 "DnsName": "vpce-000ab1cdef23456789-m2b22rtz-us-
east-1c.cassandra.us-east-1.vpce.amazonaws.com",
 "HostedZoneId": "Z7HUB22UULQXV"
 },
 {
 "DnsName": "vpce-000ab1cdef23456789-m2b22rtz-us-
east-1b.cassandra.us-east-1.vpce.amazonaws.com",
 "HostedZoneId": "Z7HUB22UULQXV"
 },
 {
 "DnsName": "vpce-000ab1cdef23456789-m2b22rtz-us-
east-1d.cassandra.us-east-1.vpce.amazonaws.com",
 "HostedZoneId": "Z7HUB22UULQXV"
 },
 {
 "DnsName": "cassandra.us-east-1.amazonaws.com",
 "HostedZoneId": "ZONEIDPENDING"
 }
],
 "CreationTimestamp": "2023-01-27T16:12:36.834000+00:00",
 "OwnerId": "111122223333"
 }
}

}

Step 4: Configure permissions for the VPC endpoint connection

The procedures in this step demonstrate how to configure rules and permissions for using the VPC
endpoint with Amazon Keyspaces.

Step 4: Configure permissions for the VPC endpoint connection 115

Amazon Keyspaces (for Apache Cassandra) Developer Guide

To configure an inbound rule for the new endpoint to allow TCP inbound traffic

1. In the Amazon VPC console, on the left-side panel, choose Endpoints and choose the endpoint
you created in the earlier step.

2. Choose Security groups and then choose the security group associated with this endpoint.

3. Choose Inbound rules and then choose Edit inbound rules.

4. Add an inbound rule with Type as Custom TCP. For Port range, enter 9142.

5. To save the new inbound rule, choose Save rules.

To configure IAM user permissions

1. Confirm that the IAM user used to connect to Amazon Keyspaces has the appropriate
permissions. In AWS Identity and Access Management (IAM), you can use the AWS managed
policy AmazonKeyspacesReadOnlyAccess to grant the IAM user read access to Amazon
Keyspaces.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. On the IAM console dashboard, choose Users, and then choose your IAM user from the list.

c. On the Summary page, choose Add permissions.

d. Choose Attach existing policies directly.

e. From the list of policies, choose AmazonKeyspacesReadOnlyAccess, and then choose
Next: Review.

f. Choose Add permissions.

2. Verify that you can access Amazon Keyspaces through the VPC endpoint.

aws keyspaces list-tables --keyspace-name 'my_Keyspace'

If you want, you can try some other AWS CLI commands for Amazon Keyspaces. For more
information, see the AWS CLI Command Reference.

Note

The minimum permissions required for an IAM user or role to access Amazon Keyspaces
are read permissions to the system table, as shown in the following policy. For more

Step 4: Configure permissions for the VPC endpoint connection 116

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

information about policy-based permissions, see the section called “Identity-based
policy examples”.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "cassandra:Select"
],
 "Resource":[
 "arn:aws:cassandra:us-east-1:555555555555:/keyspace/system*"
]
 }
]
}

3. Grant the IAM user read access to the Amazon EC2 instance with the VPC.

When you use Amazon Keyspaces with VPC endpoints, you need to grant the IAM user or role
that accesses Amazon Keyspaces read-only permissions to your Amazon EC2 instance and the
VPC to gather endpoint and network interface data. Amazon Keyspaces stores this information
in the system.peers table and uses it to manage connections.

Note

The managed policies AmazonKeyspacesReadOnlyAccess_v2 and
AmazonKeyspacesFullAccess include the required permissions to let Amazon
Keyspaces access the Amazon EC2 instance to read information about available
interface VPC endpoints.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. On the IAM console dashboard, choose Policies.

c. Choose Create policy, and then choose the JSON tab.

d. Copy the following policy and choose Next: Tags.
Step 4: Configure permissions for the VPC endpoint connection 117

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ListVPCEndpoints",
 "Effect":"Allow",
 "Action":[
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcEndpoints"
],
 "Resource": "*"
 }
]
}

e. Choose Next: Review, enter the name keyspacesVPCendpoint for the policy, and
choose Create policy.

f. On the IAM console dashboard, choose Users, and then choose your IAM user from the list.

g. On the Summary page, choose Add permissions.

h. Choose Attach existing policies directly.

i. From the list of policies, choose keyspacesVPCendpoint, and then choose Next: Review.

j. Choose Add permissions.

4. To verify that the Amazon Keyspaces system.peers table is getting updated with VPC
information, run the following query from your Amazon EC2 instance using cqlsh. If you
haven't already installed cqlshon your Amazon EC2 instance in step 2, follow the instructions
in the section called “Using the cqlsh-expansion”.

SELECT peer FROM system.peers;

The output returns nodes with private IP addresses, depending on your VPC and subnet setup
in your AWS Region.

peer

112.11.22.123
112.11.22.124
112.11.22.125

Step 4: Configure permissions for the VPC endpoint connection 118

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

You have to use a cqlshconnection to Amazon Keyspaces to confirm that your VPC
endpoint has been configured correctly. If you use your local environment or the
Amazon Keyspaces CQL editor in the AWS Management Console, the connection
automatically goes through the public endpoint instead of your VPC endpoint. If you
see nine IP addresses, these are the entries Amazon Keyspaces automatically writes to
the system.peers table for public endpoint connections.

Step 5: Configure monitoring with CloudWatch

This step shows you how to use Amazon CloudWatch to monitor the VPC endpoint connection to
Amazon Keyspaces.

AWS PrivateLink publishes data points to CloudWatch about your interface endpoints. You can use
metrics to verify that your system is performing as expected. The AWS/PrivateLinkEndpoints
namespace in CloudWatch includes the metrics for interface endpoints. For more information, see
CloudWatch metrics for AWS PrivateLink in the AWS PrivateLink Guide.

To create a CloudWatch dashboard with VPC endpoint metrics

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Dashboards. Then choose Create dashboard. Enter a name for
the dashboard and choose Create.

3. Under Add widget, choose Number.

4. Under Metrics, choose AWS/PrivateLinkEndpoints.

5. Choose Endpoint Type, Service Name, VPC Endpoint ID, VPC ID.

6. Select the metrics ActiveConnections and NewConnections, and choose Create Widget.

7. Save the dashboard.

The ActiveConnections metric is defined as the number of concurrent active connections that
the endpoint received during the last one-minute period. The NewConnections metric is defined
as the number of new connections that were established through the endpoint during the last one-
minute period.

Step 5: Configure monitoring 119

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-cloudwatch-metrics.html
https://console.aws.amazon.com/cloudwatch/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

For more information about creating dashboards, see Create dashboard in the CloudWatch User
Guide.

Step 6: (Optional) Best practices to configure the connection pool size
for your application

In this section, we outline how to determine the ideal connection pool size based on the query
throughput requirements of your application.

Amazon Keyspaces allows a maximum of 3,000 CQL queries per second per TCP connection. So
there's virtually no limit on the number of connections that a driver can establish with Amazon
Keyspaces. However, we recommend that you match the connection pool size to the requirements
of your application and consider the available endpoints when you're using Amazon Keyspaces with
VPC endpoint connections.

You configure the connection pool size in the client driver. For example, based on a local pool
size of 2 and a VPC interface endpoint created across 3 Availability Zones, the driver establishes
6 connections for querying (7 in total, which includes a control connection). Using these 6
connections, you can support a maximum of 18,000 CQL queries per second.

If your application needs to support 40,000 CQL queries per second, work backwards from the
number of queries that are needed to determine the required connection pool size. To support
40,000 CQL queries per second, you need to configure the local pool size to be at least 5, which
supports a minimum of 45,000 CQL queries per second.

You can monitor if you exceed the quota for the maximum number of operations per second, per
connection by using the PerConnectionRequestRateExceeded CloudWatch metric in the AWS/
Cassandra namespace. The PerConnectionRequestRateExceeded metric shows the number
of requests to Amazon Keyspaces that exceed the quota for the per-connection request rate.

The code examples in this step show how to estimate and configure connection pooling when
you're using interface VPC endpoints.

Java

You can configure the number of connections per pool in the Java driver. For a complete
example of a Java client driver connection, see the section called “Using a Cassandra Java client
driver”.

Step 6: (Optional) Best practices for connections 120

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create_dashboard.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

When the client driver is started, first the control connection is established for administrative
tasks, such as for schema and topology changes. Then the additional connections are created.

In the following example, the local pool size driver configuration is specified as 2. If the VPC
endpoint is created across 3 subnets within the VPC, this results in 7 NewConnections in
CloudWatch for the interface endpoint, as shown in the following formula.

NewConnections = 3 (VPC subnet endpoints created across) * 2 (pool size) + 1
 (control connection)

datastax-java-driver {

 basic.contact-points = ["cassandra.us-east-1.amazonaws.com:9142"]
 advanced.auth-provider{
 class = PlainTextAuthProvider
 username = "ServiceUserName"
 password = "ServicePassword"
 }
 basic.load-balancing-policy {
 local-datacenter = "us-east-1"
 slow-replica-avoidance = false
 }

 advanced.ssl-engine-factory {
 class = DefaultSslEngineFactory
 truststore-path = "./src/main/resources/cassandra_truststore.jks"
 truststore-password = "my_password"
 hostname-validation = false
 }
 advanced.connection {
 pool.local.size = 2
 }
}

If the number of active connections doesn’t match your configured pool size (aggregation
across subnets) + 1 control connection, something is preventing the connections from being
created.

Step 6: (Optional) Best practices for connections 121

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Node.js

You can configure the number of connections per pool in the Node.js driver. For a complete
example of a Node.js client driver connection, see the section called “Using a Cassandra Node.js
client driver”.

For the following code example, the local pool size driver configuration is specified as 1. If the
VPC endpoint is created across 4 subnets within the VPC, this results in 5 NewConnections in
CloudWatch for the interface endpoint, as shown in the following formula.

NewConnections = 4 (VPC subnet endpoints created across) * 1 (pool size) + 1
 (control connection)

const cassandra = require('cassandra-driver');
const fs = require('fs');
const types = cassandra.types;
const auth = new cassandra.auth.PlainTextAuthProvider('ServiceUserName',
 'ServicePassword');
const sslOptions1 = {
 ca: [
 fs.readFileSync('/home/ec2-user/sf-class2-root.crt', 'utf-8')],
 host: 'cassandra.us-east-1.amazonaws.com',
 rejectUnauthorized: true
 };
const client = new cassandra.Client({
 contactPoints: ['cassandra.us-east-1.amazonaws.com'],
 localDataCenter: 'us-east-1',
 pooling: { coreConnectionsPerHost: { [types.distance.local]:
 1 } },
 consistency: types.consistencies.localQuorum,
 queryOptions: { isIdempotent: true },
 authProvider: auth,
 sslOptions: sslOptions1,
 protocolOptions: { port: 9142 }
 });

Step 7: (Optional) Clean up

If you want to delete the resources that you have created in this tutorial, follow these procedures.

Step 7: (Optional) Clean up 122

Amazon Keyspaces (for Apache Cassandra) Developer Guide

To remove your VPC endpoint for Amazon Keyspaces

1. Log in to your Amazon EC2 instance.

2. Determine the VPC endpoint ID that is used for Amazon Keyspaces. If you omit the grep
parameters, VPC endpoint information is shown for all services.

aws ec2 describe-vpc-endpoint-services | grep ServiceName | grep cassandra

{
 "VpcEndpoint": {
 "PolicyDocument": "{\"Version\":\"2008-10-17\",\"Statement\":[{\"Effect\":
\"Allow\",\"Principal\":\"*\",\"Action\":\"*\",\"Resource\":\"*\"}]}",
 "VpcId": "vpc-0bbc736e",
 "State": "available",
 "ServiceName": "com.amazonaws.us-east-1.cassandra",
 "RouteTableIds": [],
 "VpcEndpointId": "vpce-9b15e2f2",
 "CreationTimestamp": "2017-07-26T22:00:14Z"
 }
}

In the example output, the VPC endpoint ID is vpce-9b15e2f2.

3. Delete the VPC endpoint.

aws ec2 delete-vpc-endpoints --vpc-endpoint-ids vpce-9b15e2f2

{
 "Unsuccessful": []
}

The empty array [] indicates success (there were no unsuccessful requests).

To terminate your Amazon EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Choose your Amazon EC2 instance.

4. Choose Actions, choose Instance State, and then choose Terminate.

Step 7: (Optional) Clean up 123

https://console.aws.amazon.com/ec2/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

5. In the confirmation window, choose Yes, Terminate.

Configuring cross-account access for Amazon Keyspaces

You can create and use separate AWS accounts to isolate resources and for use in different
environments, for example development and production. This topic walks you through cross-
account access for Amazon Keyspaces using interface VPC endpoints in an Amazon Virtual Private
Cloud. For more information about IAM cross-account access configuration, see Example scenario
using separate development and production accounts in the IAM User Guide.

For more information about Amazon Keyspaces and private VPC endpoints, see the section called
“Using interface VPC endpoints”.

Topics

• Configuring cross-account access for Amazon Keyspaces in a shared VPC

• Configuring cross-account access for Amazon Keyspaces without a shared VPC

Configuring cross-account access for Amazon Keyspaces in a shared
VPC

You can create different AWS accounts to separate resources from applications. For example, you
can create one account for your Amazon Keyspaces tables, a different account for applications in
a development environment, and another account for applications in a production environment.
This topic walks you through the configuration steps required to set up cross-account access for
Amazon Keyspaces using interface VPC endpoints in a shared VPC.

For detailed steps how to configure a VPC endpoint for Amazon Keyspaces, see the section called
“Step 3: Create a VPC endpoint for Amazon Keyspaces”.

In this example we use the following three accounts in a shared VPC:

• Account A – This account contains infrastructure, including the VPC endpoints, the VPC
subnets, and Amazon Keyspaces tables.

• Account B – This account contains an application in a development environment that needs to
connect to the Amazon Keyspaces table in Account A.

• Account C – This account contains an application in a production environment that needs to
connect to the Amazon Keyspaces table in Account A.

Cross-account access 124

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html#id_roles_common-scenarios_aws-accounts-example
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html#id_roles_common-scenarios_aws-accounts-example

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Account A is the account that contains the resources that Account B and Account C need to
access, so Account A is the trusting account. Account B and Account C are the accounts with
the principals that need access to the resources in Account A, so Account B and Account C
are the trusted accounts. The trusting account grants the permissions to the trusted accounts by
sharing an IAM role. The following procedure outlines the configuration steps required in Account
A.

Configuration for Account A

1. Use AWS Resource Access Manager to create a resource share for the subnet and share the
private subnet with Account B and Account C.

Cross-account access in a shared VPC 125

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Account B and Account C can now see and create resources in the subnet that has been
shared with them.

2. Create an Amazon Keyspaces private VPC endpoint powered by AWS PrivateLink. This creates
multiple endpoints across shared subnets and DNS entries for the Amazon Keyspaces service
endpoint.

3. Create an Amazon Keyspaces keyspace and table.

4. Create an IAM role that has full access to the Amazon Keyspaces table, read access to the
Amazon Keyspaces system tables, and is able to describe the Amazon EC2 VPC resources as
shown in the following policy example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CrossAccountAccess",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcEndpoints",
 "cassandra:*"
],
 "Resource": "*"
 }
]
}

5. Configure the IAM role trust policy that Account B and Account C can assume as trusted
accounts as shown in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {}
 }

Cross-account access in a shared VPC 126

Amazon Keyspaces (for Apache Cassandra) Developer Guide

]
}

For more information about cross-account IAM policies, see Cross-account policies in the IAM
User Guide.

Configuration in Account B and Account C

1. In Account B and Account C, create new roles and attach the following policy that allows
the principal to assume the shared role created in Account A.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Allowing the principal to assume the shared role is implemented using the AssumeRole API of
the AWS Security Token Service (AWS STS). For more information, see Providing access to an
IAM user in another AWS account that you own in the IAM User Guide.

2. In Account B and Account C, you can create applications that utilize the SIGV4
authentication plugin, which allows an application to assume the shared role to connect to the
Amazon Keyspaces table located in Account A through the VPC endpoint in the shared VPC.
For more information about the SIGV4 authentication plugin, see the section called “Creating
credentials”.

Configuring cross-account access for Amazon Keyspaces without a
shared VPC

If the Amazon Keyspaces table and private VPC endpoint are owned by different accounts but are
not sharing a VPC, applications can still connect cross-account using VPC endpoints. Because the

Cross-account access without a shared VPC 127

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

accounts are not sharing the VPC endpoints, Account A, Account B, and Account C require
their own VPC endpoints. To the Cassandra client driver, Amazon Keyspaces appears like a single
node instead of a multi-node cluster. Upon connection, the client driver reaches the DNS server
which returns one of the available endpoints in the account’s VPC.

You can also access Amazon Keyspaces tables across different accounts without a shared VPC
endpoint by using the public endpoint or deploying a private VPC endpoint in each account. When
not using a shared VPC, each account requires its own VPC endpoint. In this example Account
A, Account B, and Account C require their own VPC endpoints to access the table in Account
A. When using VPC endpoints in this configuration, Amazon Keyspaces appears as a single node
cluster to the Cassandra client driver instead of a multi-node cluster. Upon connection, the client
driver reaches the DNS server which returns one of the available endpoints in the account’s
VPC. But the client driver is not able to access the system.peers table to discover additional
endpoints. Because there are less hosts available, the driver makes less connections. To adjust this,
increase the connection pool setting of the driver by a factor of three.

Cross-account access without a shared VPC 128

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Getting started with Amazon Keyspaces (for Apache
Cassandra)

This tutorial is for you if you're new to Apache Cassandra and Amazon Keyspaces (for Apache
Cassandra). In this tutorial, you install all the programs and drivers that you need to successfully
use Amazon Keyspaces.

For tutorials to connect programmatically to Amazon Keyspaces using different Cassandra client
drivers, see the section called “Using a Cassandra client driver”.

Topics

• Tutorial prerequisites and considerations

• Tutorial Step 1: Create a keyspace and a table in Amazon Keyspaces

• Tutorial Step 2: Create, read, update, and delete data (CRUD)

• Tutorial Step 3: Delete a table and keyspace in Amazon Keyspaces

Tutorial prerequisites and considerations

Before you start this tutorial, follow the AWS setup instructions in Accessing Amazon Keyspaces
(for Apache Cassandra). These steps include signing up for AWS and creating an AWS Identity and
Access Management (IAM) user with access to Amazon Keyspaces.

Additionally, if you're completing the tutorial using cqlsh or an Apache 2.0 licensed Cassandra
client driver, complete the setup instructions in Using cqlsh to connect to Amazon Keyspaces.

After completing the prerequisite steps, proceed to Tutorial Step 1: Create a keyspace and a table
in Amazon Keyspaces.

Tutorial Step 1: Create a keyspace and a table in Amazon
Keyspaces

In this section, you create a keyspace and add a table to it using the console.

Prerequisites 129

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

Before you begin, make sure that you have configured all the tutorial prerequisites.

Topics

• Creating a keyspace

• Creating a table

Creating a keyspace

A keyspace groups related tables that are relevant for one or more applications. A keyspace
contains one or more tables and defines the replication strategy for all the tables it contains. For
more information about keyspaces, see the following topics:

• Working with keyspaces: the section called “Creating keyspaces”

• Data definition language (DDL) statements: Keyspaces

• Quotas for Amazon Keyspaces (for Apache Cassandra)

When you create a keyspace, you must specify the keyspace name.

Note

The replication strategy of the keyspace must be SingleRegionStrategy.
SingleRegionStrategy replicates data across three Availability Zones in its AWS Region.

Using the console

To create a keyspace using the console

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https://
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Keyspaces.

3. Choose Create keyspace.

4. In the Keyspace name box, enter myGSGKeyspace as the name for your keyspace.

Creating a keyspace 130

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Name constraints:

• Cannot be empty.

• Allowed characters: alphanumeric characters and underscore (_).

• Maximum length is 48 characters.

5. To create the keyspace, choose Create keyspace.

6. Verify that the keyspace myGSGKeyspace was created by doing the following:

a. In the navigation pane, choose Keyspaces.

b. Locate your keyspace myGSGKeyspace in the list of keyspaces.

Using CQL

The following procedure creates a keyspace using CQL.

To create a keyspace using CQL

1. Open a command shell, and enter the following:

cqlsh

2. Create your keyspace using the following CQL command.

CREATE KEYSPACE IF NOT EXISTS "myGSGKeyspace"
 WITH REPLICATION = {'class': 'SingleRegionStrategy'};

SingleRegionStrategy uses a replication factor of three and replicates data across three
AWS Availability Zones in its Region.

Note

Amazon Keyspaces defaults all input to lowercase unless you enclose it in quotation
marks. In this case, note "myGSGKeyspace".

3. Verify that your keyspace was created.

SELECT * from system_schema.keyspaces ;

Creating a keyspace 131

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Your keyspace should be listed.

Creating a table

A table is where your data is organized and stored. The primary key of your table determines how
data will be partitioned in your table. The primary key is composed of a required partition key and
one or more optional clustering columns. The combined values that compose the primary key must
be unique across all the table’s data. For more information about tables, see the following topics:

• Working with tables: the section called “Creating tables”

• DDL statements: Tables

• Table resource management: Serverless resource management

• Monitoring table resource utilization: the section called “Monitoring with CloudWatch”

• Quotas for Amazon Keyspaces (for Apache Cassandra)

When you create a table, you specify the following:

• The name of the table.

• The name and data type of each column in the table.

• The primary key for the table.

• Partition key – Required

• Clustering columns – Optional

Use the following procedure to create a table with the specified columns, data types, partition key,
and clustering column.

Using the console

The following procedure creates the table employees_tbl with these columns and data types.

ID text
name text
region text
division text
project text
role text

Creating a table 132

Amazon Keyspaces (for Apache Cassandra) Developer Guide

pay_scale int
vacation_hrs float
manager_id text

To create a table using the console

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https://
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Keyspaces.

3. Choose myGSGKeyspace as the keyspace you want to create this table in.

4. Choose Create table.

5. In the Table name box, enter employees_tbl as a name for your table.

Name constraints:

• Cannot be empty.

• Allowed characters: alphanumeric characters and underscore (_).

• Maximum length is 48 characters.

6. In the Columns section, repeat the following steps for each column that you want to add to
this table.

Add the following columns and data types.

id text
name text
region text
division text
project text
role text
pay_scale int
vacation_hrs float
manager_id text

a. Name – Enter a name for the column.

Name constraints:

• Cannot be empty.

• Allowed characters: alphanumeric characters and underscore (_).

Creating a table 133

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Maximum length is 48 characters.

b. Type – In the list of data types, choose the data type for this column.

c. If you want to add another column, choose Add column.

7. Choose id as a partition key under Partition Key. A partition key is required for each table. A
partition key can be made of one or more columns.

8. Add division as a clustering column. Clustering columns are optional and determine the sort
order within each partition.

a. To add a clustering column, choose Add clustering column.

b. In the Column list, choose division. In the Order list, choose ASC to sort in ascending
order on the values in this column. (Choose DESC for descending order.)

9. In the Table settings section, choose Default settings.

10. Choose Create table.

11. Verify that your table was created.

a. In the navigation pane, choose Tables.

b. Confirm that your table is in the list of tables.

c. Choose the name of your table.

d. Confirm that all your columns and data types are correct.

Note

The columns might not be listed in the same order that you added them to the
table.

e. In the clustering column, confirm that division is identified with true. All other table
columns should be false.

Using CQL

The following procedure creates a table with the following columns and data types using CQL. The
id column is to be the partition key.

id text
name text
region text

Creating a table 134

Amazon Keyspaces (for Apache Cassandra) Developer Guide

division text
project text
role text
pay_scale int
vacation_hrs float
manager_id text

To create a table using CQL

1. Open a command shell and enter the following:

cqlsh

2. At the cqlsh prompt (cqlsh>), specify a keyspace to create your table in.

USE "myGSGKeyspace" ;

3. At the keyspace prompt (cqlsh:keyspace_name>), create your table by entering the
following code into your command window.

CREATE TABLE IF NOT EXISTS "myGSGKeyspace".employees_tbl (
 id text,
 name text,
 region text,
 division text,
 project text,
 role text,
 pay_scale int,
 vacation_hrs float,
 manager_id text,
 PRIMARY KEY (id,division))
 WITH CLUSTERING ORDER BY (division ASC) ;

Note

ASC is the default clustering order. You can also specify DESC for descending order.

Note that the id column is to be the partition key. Then, division is the clustering column
ordered by ascending order (ASC).

Creating a table 135

Amazon Keyspaces (for Apache Cassandra) Developer Guide

4. Verify that your table was created.

SELECT * from system_schema.tables WHERE keyspace_name='myGSGKeyspace' ;

Your table should be listed.

5. Verify your table's structure.

SELECT * FROM system_schema.columns WHERE keyspace_name = 'myGSGKeyspace' AND
 table_name = 'employees_tbl' ;

Confirm that all the columns and data types are as you expected. The order of the columns
might be different than in the CREATE statement.

To perform CRUD (create, read, update, and delete) operations on the data in your table, proceed
to the section called “Step 2: CRUD operations”.

Tutorial Step 2: Create, read, update, and delete data (CRUD)

In this section, you use the CQL editor on the console to perform CRUD (create, read, update, and
delete) operations on the data in your table. You can also run the commands using cqlsh.

Topics

• Tutorial: Inserting and loading data into an Amazon Keyspaces table

• Tutorial: Read from an Amazon Keyspaces table

• Tutorial: Update data in an Amazon Keyspaces table

• Tutorial: Delete data in an Amazon Keyspaces table

Tutorial: Inserting and loading data into an Amazon Keyspaces table

To create data in your employees_tbl table, use the INSERT statement to add a single row.

1. Before you can write data to your Amazon Keyspaces table using cqlsh, you must set the write
consistency for the current cqlsh session to LOCAL_QUORUM. For more information about
supported consistency levels, see the section called “Write consistency levels”. Note that this
step is not required if you are using the CQL editor in the AWS Management Console.

Step 2: CRUD operations 136

Amazon Keyspaces (for Apache Cassandra) Developer Guide

CONSISTENCY LOCAL_QUORUM;

2. To insert a single record, run the following command in the CQL editor.

INSERT INTO "myGSGKeyspace".employees_tbl (id, name, project, region, division,
 role, pay_scale, vacation_hrs, manager_id)
VALUES ('012-34-5678','Russ','NightFlight','US','Engineering','IC',3,12.5,
 '234-56-7890') ;

3. Verify that the data was correctly added to your table by running the following command.

SELECT * FROM "myGSGKeyspace".employees_tbl ;

To insert multiple records from a file using cqlsh

1. Download the sample data file (employees.csv) contained in the following archive file
sampledata.zip. This CSV (comma-separated values) file contains the following data.
Remember the path that you save the file to.

2. Open a command shell and enter the following:

cqlsh

3. At the cqlsh prompt (cqlsh>), specify a keyspace.

USE "myGSGKeyspace" ;

4. Set write consistency to LOCAL_QUORUM. For more information about supported consistency
levels, see the section called “Write consistency levels”.

CONSISTENCY LOCAL_QUORUM;

5. At the keyspace prompt (cqlsh:keyspace_name>), run the following query.

Create 137

samples/sampledata.zip

Amazon Keyspaces (for Apache Cassandra) Developer Guide

COPY employees_tbl
 (id,name,project,region,division,role,pay_scale,vacation_hrs,manager_id)
FROM 'path-to-the-csv-file/employees.csv' WITH delimiter=',' AND header=TRUE ;

6. Verify that the data was correctly added to your table by running the following query.

SELECT * FROM employees_tbl ;

Tutorial: Read from an Amazon Keyspaces table

In the Tutorial: Inserting and loading data into an Amazon Keyspaces table section, you used the
SELECT statement to verify that you had successfully added data to your table. In this section, you
refine your use of SELECT to display specific columns, and only rows that meet specific criteria.

The general form of the SELECT statement is as follows.

SELECT column_list FROM table_name [WHERE condition [ALLOW FILTERING]] ;

Topics

• Selecting all the data in your table

• Selecting a subset of columns

• Selecting a subset of rows

Selecting all the data in your table

The simplest form of the SELECT statement returns all the data in your table.

Important

In a production environment, it is typically not a best practice to run this command, which
returns all the data in your table.

To select all your table's data

• Run the following query.

Read 138

Amazon Keyspaces (for Apache Cassandra) Developer Guide

SELECT * FROM "myGSGKeyspace".employees_tbl ;

Using the wild-card character (*) for the column_list selects all columns.

Selecting a subset of columns

To query for a subset of columns

• To retrieve only the id, name, and manager_id columns, run the following query.

SELECT name, id, manager_id FROM "myGSGKeyspace".employees_tbl ;

The output will contain only the specified columns in the order listed in the SELECT
statement.

Selecting a subset of rows

When querying a large dataset, you might only want records that meet certain criteria. To do this,
you can append a WHERE clause to the end of our SELECT statement.

To query for a subset of rows

• To retrieve only the record for the employee with the id '234-56-7890', run the following
query.

SELECT * FROM "myGSGKeyspace".employees_tbl WHERE id='234-56-7890' ;

The preceding SELECT statement returns only the rows where the id is 234-56-7890.

Understanding the WHERE clause

The WHERE clause is used to filter the data and return only the data that meets the specified
criteria. The specified criteria can be a simple condition or a compound condition.

How to use conditions in a WHERE clause

• A simple condition – A single column.

Read 139

Amazon Keyspaces (for Apache Cassandra) Developer Guide

WHERE column_name=value

You can use a simple condition in a WHERE clause if any of the following conditions are met:

• The column is the only column in the table's primary key.

• You add ALLOW FILTERING after the condition in the WHERE clause.

Be aware that using ALLOW FILTERING can result in inconsistent performance, especially with
large, and multi-partitioned tables.

• A compound condition – Multiple simple conditions connected by AND.

WHERE column_name1=value1 AND column_name2=value2 AND column_name3=value3...

You can use compound conditions in a WHERE clause if any of the following conditions are met:

• The columns in the WHERE clause exactly match the columns in the table's primary key, no
more and no fewer.

• You add ALLOW FILTERING after the compound condition in the WHERE clause, as in the
following example.

SELECT * FROM my_table WHERE col1=5 AND col2='Bob' ALLOW FILTERING ;

Be aware that using ALLOW FILTERING can result in inconsistent performance, especially with
large, and multi-partitioned tables.

Try it

Create your own CQL queries to find the following from your employees_tbl table:

• Find the name, project, and id of all employees.

• Find what project Bob the intern is working on (include at least his name, project, and role in the
output).

• Advanced: Create an application to find all the employees who have the same manager as Bob
the intern. HINT: This might take more than one query.

• Advanced: Create an application to find selected columns of all employees working on the
project NightFlight. HINT: Solving this might require multiple statements.

Read 140

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Tutorial: Update data in an Amazon Keyspaces table

To update the data in your employees_tbl table, use the UPDATE statement.

The general form of the UPDATE statement is as follows.

UPDATE table_name SET column_name=new_value WHERE primary_key=value ;

Tip

• You can update multiple columns by using a comma-separated list of column_names
and values, as in the following example.

UPDATE my_table SET col1='new_value_1', col2='new_value2' WHERE id='12345' ;

• If the primary key is composed of multiple columns, all primary key columns and their
values must be included in the WHERE clause.

• You cannot update any column in the primary key because that would change the
primary key for the record.

To update a single cell

Using your employees_tbl table, give the employee with id 567-89-0123 a raise.

UPDATE "myGSGKeyspace".employees_tbl SET pay_scale=5 WHERE id='567-89-0123' AND
 division='Marketing' ;

Verify that employee's pay scale is now 5.

SELECT * FROM "myGSGKeyspace".employees_tbl WHERE id='567-89-0123' ;

Try it

Advanced: Your company has hired Bob the intern. Change his record so that his role is 'IC' and
his pay scale is 2.

Update 141

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Tutorial: Delete data in an Amazon Keyspaces table

To delete data in your employees_tbl table, use the DELETE statement.

You can delete data from a row or from a partition. Be careful when deleting data, because
deletions are irreversible.

Deleting one or all rows from a table does not delete the table. Thus you can repopulate it with
data. Deleting a table deletes the table and all data in it. To use the table again, you must re-create
it and add data to it. Deleting a keyspace deletes the keyspace and all tables within it. To use the
keyspace and tables, you must re-create them, and then populate them with data.

Deleting cells

Deleting a column from a row removes the data from the specified cell. When you display that
column using a SELECT statement, the data is displayed as null, though a null value is not stored
in that location.

The general syntax to delete one or more specific columns is as follows.

DELETE column_name1[, column_name2...] FROM table_name WHERE condition ;

In your employees_tbl table, you can see that the CEO has "None" for a manager. First, delete
that cell so that you're not carrying any data in it.

To delete a specific cell

1. Run the following DELETE query.

DELETE manager_id FROM "myGSGKeyspace".employees_tbl WHERE id='789-01-2345' AND
 division='Executive';

2. Verify that the delete was made as expected.

SELECT * FROM "myGSGKeyspace".employees_tbl WHERE id='789-01-2345' AND
 division='Executive';

Delete 142

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Deleting rows

There might be a time when you need to delete an entire row, such as when an employee retires.
The general syntax for deleting a row is as follows.

DELETE FROM table_name WHERE condition ;

To delete a row

1. Run the following DELETE query.

DELETE FROM "myGSGKeyspace".employees_tbl WHERE id='456-78-9012' AND
 division='Engineering';

2. Verify that the delete was made as expected.

SELECT * FROM "myGSGKeyspace".employees_tbl WHERE id='456-78-9012' AND
 division='Engineering';

Tutorial Step 3: Delete a table and keyspace in Amazon
Keyspaces

To avoid being charged for tables and data that you don't need, delete all the tables and keyspaces
that you're not using. When you delete a table, the table and its data are deleted and you stop
accruing charges for them. However, the keyspace remains. When you delete a keyspace, the
keyspace and all its tables are deleted and you stop accruing charges for them.

Deleting a table

You can delete a table using the console or CQL. When you delete a table, the table and all its data
are deleted.

Using the console

The following procedure deletes a table and all its data using the AWS Management Console.

Step 3: Clean up (optional) 143

Amazon Keyspaces (for Apache Cassandra) Developer Guide

To delete a table using the console

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https://
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables.

3. Choose the box to the left of the name of each table that you want to delete.

4. Choose Delete.

5. On the Delete table screen, enter Delete in the box. Then, choose Delete table.

6. To verify that the table was deleted, choose Tables in the navigation pane, and confirm that
the employees_tbl table is no longer listed.

Using CQL

The following procedure deletes a table and all its data using CQL.

To delete a table using CQL

1. Open a command shell and enter the following:

cqlsh

2. Delete your table by entering the following command at the keyspace prompt
(cqlsh:keyspace_name>).

DROP TABLE IF EXISTS "myGSGKeyspace".employees_tbl ;

3. Verify that your table was deleted.

SELECT * FROM system_schema.tables WHERE keyspace_name = 'myGSGKeyspace' ;

Your table should not be listed.

Deleting a keyspace

You can delete a keyspace using either the AWS Management Console or CQL. When you delete a
keyspace, the keyspace and all its tables and data are deleted.

Deleting a keyspace 144

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using the AWS Management Console

The following procedure deletes a keyspace and all its tables and data using the AWS Management
Console.

To delete a keyspace using the console

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https://
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Keyspaces.

3. Choose the box to the left of the name of each keyspace that you want to delete.

4. Choose Delete.

5. On the Delete keyspace screen, enter Delete in the box. Then, choose Delete keyspace.

6. To verify that the keyspace myGSGKeyspace was deleted, choose Keyspaces in the
navigation pane and confirm that it is no longer listed. Because you deleted its keyspace, the
employees_tbl table under Tables should also not be listed.

Using CQL

The following procedure deletes a keyspace and all its tables and data using CQL.

To delete a keyspace using CQL

1. Open a command shell and enter the following:

cqlsh

2. Delete your keyspace by entering the following command at the keyspace prompt
(cqlsh:keyspace_name>).

DROP KEYSPACE IF EXISTS "myGSGKeyspace" ;

3. Verify that your keyspace was deleted.

SELECT * from system_schema.keyspaces ;

Your keyspace should not be listed. Note that because this is an asynchronous operation, there
can be a delay until the keyspace is deleted.

Deleting a keyspace 145

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Migrating to Amazon Keyspaces

Amazon Keyspaces (for Apache Cassandra) is a scalable, highly available, and managed Apache
Cassandra–compatible database service. You can migrate your data to Amazon Keyspaces from
Cassandra databases running on premises or on Amazon Elastic Compute Cloud (Amazon EC2) by
using the steps in this section.

We recommend that you follow these best practices to ensure that your migration is successful:

• Break the migration down into smaller components.

Consider the following units of migration and their potential footprint in terms of raw data size.
Migrating smaller amounts of data in one or more phases may help simplify your migration.

By cluster – Migrate all of your Cassandra data at once. This approach may be fine for smaller
clusters.

By keyspace or table – Break up your migration into groups of keyspaces or tables. This
approach can help you migrate data in phases based on your requirements for each workload.

By data – Consider migrating data for a specific group of users or products, to bring the size of
data down even more.

• Prioritize what data to migrate first based on simplicity.

Consider if you have data that could be migrated first more easily—for example, data that does
not change during specific times, data from nightly batch jobs, data not used during offline
hours, or data from internal apps.

• Use specific tooling.

• Get started quickly with loading data into Amazon Keyspaces by using the cqlsh COPY FROM
command. cqlsh is included with Apache Cassandra and is best suited for loading small
datasets or test data. For step-by-step instructions, see the section called “Loading data using
cqlsh”.

• For production workloads with large datasets, you can use the DataStax Bulk Loader for
Apache Cassandra to load data into Amazon Keyspaces using the dsbulk command. DSBulk
provides more robust import capabilities and is available from the GitHub repository. For step-
by-step instructions, see the section called “Loading data using DSBulk”.

146

https://github.com/datastax/dsbulk

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• To learn how to use the Apache Cassandra Spark connector to write data to Amazon
Keyspaces, see Integrating with Apache Spark.

• For complex migrations, consider using an extract, transform, and load (ETL) tool. You can
use AWS Glue to quickly and effectively perform data transformation migrations. For more
information, see Migrate Apache Cassandra workloads to Amazon Keyspaces using AWS Glue.

Topics

• Tutorial: Loading data into Amazon Keyspaces using cqlsh

• Tutorial: Loading data into Amazon Keyspaces using DSBulk

Tutorial: Loading data into Amazon Keyspaces using cqlsh

This step-by-step tutorial guides you through migrating data from Apache Cassandra to Amazon
Keyspaces using the cqlsh COPY command. In this tutorial, you do the following:

Topics

• Prerequisites

• Step 1: Create the source CSV file and target table

• Step 2: Prepare the data

• Step 3: Set throughput capacity for the table

• Step 4: Configure cqlsh COPY FROM settings

• Step 5: Run the cqlsh COPY FROM command

• Troubleshooting

Prerequisites

You must complete the following tasks before you can start this tutorial.

1. If you have not already done so, sign up for an AWS account by following the steps at the
section called “Setting up AWS Identity and Access Management”.

2. Create service-specific credentials by following the steps at the section called “Generate
service-specific credentials using the console”.

3. Set up the Cassandra Query Language shell (cqlsh) connection and confirm that you can
connect to Amazon Keyspaces by following the steps at the section called “Using cqlsh”.

Loading data using cqlsh 147

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/migrate-apache-cassandra-workloads-to-amazon-keyspaces-using-aws-glue.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Step 1: Create the source CSV file and target table

For this tutorial, we use a comma-separated values (CSV) file with the name
keyspaces_sample_table.csv as the source file for the data migration. The provided sample
file contains a few rows of data for a table with the name book_awards.

1. Create the source file. You can choose one of the following options:

• Download the sample CSV file (keyspaces_sample_table.csv) contained in the
following archive file samplemigration.zip. Unzip the archive and take note of the path to
keyspaces_sample_table.csv.

• To populate a CSV file with your own data stored in an Apache Cassandra database, you
can populate the source CSV file by using the cqlsh COPY TO statement as shown in the
following example.

cqlsh localhost 9042 -u "username" -p "password" --execute
 "COPY mykeyspace.mytable TO 'keyspaces_sample_table.csv' WITH HEADER=true"

Make sure the CSV file you create meets the following requirements:

• The first row contains the column names.

• The column names in the source CSV file match the column names in the target table.

• The data is delimited with a comma.

• All data values are valid Amazon Keyspaces data types. See the section called “Data
types”.

2. Create the target keyspace and table in Amazon Keyspaces.

a. Connect to Amazon Keyspaces using cqlsh, replacing the service endpoint, user name,
and password in the following example with your own values.

cqlsh cassandra.us-east-2.amazonaws.com 9142 -u "111122223333" -
p "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY" --ssl

b. Create a new keyspace with the name catalog as shown in the following example.

CREATE KEYSPACE catalog WITH REPLICATION = {'class': 'SingleRegionStrategy'};

c. When the new keyspace is available, use the following code to create the target table
book_awards.

Step 1: Create source and target 148

samples/samplemigration.zip

Amazon Keyspaces (for Apache Cassandra) Developer Guide

CREATE TABLE "catalog.book_awards" (
 year int,
 award text,
 rank int,
 category text,
 book_title text,
 author text,
 publisher text,
 PRIMARY KEY ((year, award), category, rank)
);

If Apache Cassandra is your original data source, a simple way to create the Amazon Keyspaces
target table with matching headers is to generate the CREATE TABLE statement from the
source table, as shown in the following statement.

cqlsh localhost 9042 -u "username" -p "password" --execute "DESCRIBE
 TABLE mykeyspace.mytable;"

Then create the target table in Amazon Keyspaces with the column names and data types
matching the description from the Cassandra source table.

Step 2: Prepare the data

Preparing the source data for an efficient transfer is a two-step process. First, you randomize the
data. In the second step, you analyze the data to determine the appropriate cqlsh parameter
values and required table settings.

Randomize the data

The cqlsh COPY FROM command reads and writes data in the same order that it appears in the
CSV file. If you use the cqlsh COPY TO command to create the source file, the data is written
in key-sorted order in the CSV. Internally, Amazon Keyspaces partitions data using partition keys.
Although Amazon Keyspaces has built-in logic to help load balance requests for the same partition
key, loading the data is faster and more efficient if you randomize the order. This is because you
can take advantage of the built-in load balancing that occurs when Amazon Keyspaces is writing to
different partitions.

Step 2: Prepare the data 149

Amazon Keyspaces (for Apache Cassandra) Developer Guide

To spread the writes across the partitions evenly, you must randomize the data in the source file.
You can write an application to do this or use an open-source tool, such as Shuf. Shuf is freely
available on Linux distributions, on macOS (by installing coreutils in homebrew), and on Windows
(by using Windows Subsystem for Linux (WSL)). One extra step is required to prevent the header
row with the column names to get shuffled in this step.

To randomize the source file while preserving the header, enter the following code.

tail -n +2 keyspaces_sample_table.csv | shuf -o keyspace.table.csv && (head
 -1 keyspaces_sample_table.csv && cat keyspace.table.csv) > keyspace.table.csv1 &&
 mv keyspace.table.csv1 keyspace.table.csv

Shuf rewrites the data to a new CSV file called keyspace.table.csv. You can now delete the
keyspaces_sample_table.csv file—you no longer need it.

Analyze the data

Determine the average and maximum row size by analyzing the data.

You do this for the following reasons:

• The average row size helps to estimate the total amount of data to be transferred.

• You need the average row size to provision the write capacity needed for the data upload.

• You can make sure that each row is less than 1 MB in size, which is the maximum row size in
Amazon Keyspaces.

Note

This quota refers to row size, not partition size. Unlike Apache Cassandra partitions,
Amazon Keyspaces partitions can be virtually unbound in size. Partition keys and clustering
columns require additional storage for metadata, which you must add to the raw size of
rows. For more information, see the section called “Calculating row size”.

The following code uses AWK to analyze a CSV file and print the average and maximum row size.

awk -F, 'BEGIN {samp=10000;max=-1;}{if(NR>1){len=length($0);t+=len;avg=t/
NR;max=(len>max ? len : max)}}NR==samp{exit}END{printf("{lines: %d, average: %d bytes,
 max: %d bytes}\n",NR,avg,max);}' keyspace.table.csv

Step 2: Prepare the data 150

https://en.wikipedia.org/wiki/Shuf
https://brew.sh
https://en.wikipedia.org/wiki/AWK

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Running this code results in the following output.

using 10,000 samples:
{lines: 10000, avg: 123 bytes, max: 225 bytes}

You use the average row size in the next step of this tutorial to provision the write capacity for the
table.

Step 3: Set throughput capacity for the table

This tutorial shows you how to tune cqlsh to load data within a set time range. Because you know
how many reads and writes you perform in advance, use provisioned capacity mode. After you
finish the data transfer, you should set the capacity mode of the table to match your application’s
traffic patterns. To learn more about capacity management, see Serverless resource management.

With provisioned capacity mode, you specify how much read and write capacity you want
to provision to your table in advance. Write capacity is billed hourly and metered in write
capacity units (WCUs). Each WCU is enough write capacity to support writing 1 KB of data
per second. When you load the data, the write rate must be under the max WCUs (parameter:
write_capacity_units) that are set on the target table.

By default, you can provision up to 40,000 WCUs to a table and 80,000 WCUs across all the tables
in your account. If you need additional capacity, you can request a quota increase in the Service
Quotas console. For more information about quotas, see Quotas.

Calculate the average number of WCUs required for an insert

Inserting 1 KB of data per second requires 1 WCU. If your CSV file has 360,000 rows and you want
to load all the data in 1 hour, you must write 100 rows per second (360,000 rows / 60 minutes / 60
seconds = 100 rows per second). If each row has up to 1 KB of data, to insert 100 rows per second,
you must provision 100 WCUs to your table. If each row has 1.5 KB of data, you need two WCUs to
insert one row per second. Therefore, to insert 100 rows per second, you must provision 200 WCUs.

To determine how many WCUs you need to insert one row per second, divide the average row size
in bytes by 1024 and round up to the nearest whole number.

For example, if the average row size is 3000 bytes, you need three WCUs to insert one row per
second.

ROUNDUP(3000 / 1024) = ROUNDUP(2.93) = 3 WCUs

Step 3: Set throughput capacity for the table 151

https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Calculate data load time and capacity

Now that you know the average size and number of rows in your CSV file, you can calculate how
many WCUs you need to load the data in a given amount of time, and the approximate time it
takes to load all the data in your CSV file using different WCU settings.

For example, if each row in your file is 1 KB and you have 1,000,000 rows in your CSV file, to load
the data in 1 hour, you need to provision at least 278 WCUs to your table for that hour.

1,000,000 rows * 1 KBs = 1,000,000 KBs
1,000,000 KBs / 3600 seconds =277.8 KBs / second = 278 WCUs

Configure provisioned capacity settings

You can set a table’s write capacity settings when you create the table or by using the ALTER
TABLE CQL command. The following is the syntax for altering a table’s provisioned capacity
settings with the ALTER TABLE CQL statement.

ALTER TABLE mykeyspace.mytable WITH custom_properties={'capacity_mode':
{'throughput_mode': 'PROVISIONED', 'read_capacity_units': 100,
 'write_capacity_units': 278}} ;

For the complete language reference, see the section called “ALTER TABLE”.

Step 4: Configure cqlsh COPY FROM settings

This section outlines how to determine the parameter values for cqlsh COPY FROM. The cqlsh
COPY FROM command reads the CSV file that you prepared earlier and inserts the data into
Amazon Keyspaces using CQL. The command divides up the rows and distributes the INSERT
operations among a set of workers. Each worker establishes a connection with Amazon Keyspaces
and sends INSERT requests along this channel.

The cqlsh COPY command doesn’t have internal logic to distribute work evenly among its
workers. However, you can configure it manually to make sure that the work is distributed evenly.
Start by reviewing these key cqlsh parameters:

• DELIMITER – If you used a delimiter other than a comma, you can set this parameter, which
defaults to comma.

• INGESTRATE – The target number of rows that cqlsh COPY FROM attempts to process per
second. If unset, it defaults to 100,000.

Step 4: Configure cqlsh COPY FROM settings 152

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• NUMPROCESSES – The number of child worker processes that cqlsh creates for COPY FROM
tasks. The maximum for this setting is 16, the default is num_cores - 1, where num_cores is
the number of processing cores on the host running cqlsh.

• MAXBATCHSIZE – The batch size determines the maximal number of rows inserted into the
destination table in a single batch. If unset, cqlsh uses batches of 20 inserted rows.

• CHUNKSIZE – The size of the work unit that passes to the child worker. By default, it is set to
5,000.

• MAXATTEMPTS – The maximum number of times to retry a failed worker chunk. After the
maximum attempt is reached, the failed records are written to a new CSV file that you can run
again later after investigating the failure.

Set INGESTRATE based on the number of WCUs that you provisioned to the target destination
table. The INGESTRATE of the cqlsh COPY FROM command isn’t a limit—it’s a target average.
This means it can (and often does) burst above the number you set. To allow for bursts and make
sure that enough capacity is in place to handle the data load requests, set INGESTRATE to 90% of
the table’s write capacity.

INGESTRATE = WCUs * .90

Next, set the NUMPROCESSES parameter to equal to one less than the number of cores on your
system. To find out what the number of cores of your system is, you can run the following code.

python -c "import multiprocessing; print(multiprocessing.cpu_count())"

For this tutorial, we use the following value.

NUMPROCESSES = 4

Each process creates a worker, and each worker establishes a connection to Amazon Keyspaces.
Amazon Keyspaces can support up to 3,000 CQL requests per second on every connection. This
means that you have to make sure that each worker is processing fewer than 3,000 requests per
second.

As with INGESTRATE, the workers often burst above the number you set and aren’t limited by
clock seconds. Therefore, to account for bursts, set your cqlsh parameters to target each worker to
process 2,500 requests per second. To calculate the amount of work distributed to a worker, use
the following guideline.

Step 4: Configure cqlsh COPY FROM settings 153

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Divide INGESTRATE by NUMPROCESSES.

• If INGESTRATE / NUMPROCESSES > 2,500, lower the INGESTRATE to make this formula true.

INGESTRATE / NUMPROCESSES <= 2,500

Before you configure the settings to optimize the upload of our sample data, let's review the
cqlsh default settings and see how using them impacts the data upload process. Because cqlsh
COPY FROM uses the CHUNKSIZE to create chunks of work (INSERT statements) to distribute to
workers, the work is not automatically distributed evenly. Some workers might sit idle, depending
on the INGESTRATE setting.

To distribute work evenly among the workers and keep each worker at the optimal 2,500 requests
per second rate, you must set CHUNKSIZE, MAXBATCHSIZE, and INGESTRATE by changing the
input parameters. To optimize network traffic utilization during the data load, choose a value for
MAXBATCHSIZE that is close to the maximum value of 30. By changing CHUNKSIZE to 100 and
MAXBATCHSIZE to 25, the 10,000 rows are spread evenly among the four workers (10,000 / 2500 =
4).

The following code example illustrates this.

INGESTRATE = 10,000
NUMPROCESSES = 4
CHUNKSIZE = 100
MAXBATCHSIZE. = 25
Work Distribution:
Connection 1 / Worker 1 : 2,500 Requests per second
Connection 2 / Worker 2 : 2,500 Requests per second
Connection 3 / Worker 3 : 2,500 Requests per second
Connection 4 / Worker 4 : 2,500 Requests per second

To summarize, use the following formulas when setting cqlsh COPY FROM parameters:

• INGESTRATE = write_capacity_units * .90

• NUMPROCESSES = num_cores -1 (default)

• INGESTRATE / NUMPROCESSES = 2,500 (This must be a true statement.)

• MAXBATCHSIZE = 30 (Defaults to 20. Amazon Keyspaces accepts batches up to 30.)

• CHUNKSIZE = (INGESTRATE / NUMPROCESSES) / MAXBATCHSIZE

Step 4: Configure cqlsh COPY FROM settings 154

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Now that you have calculated NUMPROCESSES, INGESTRATE, and CHUNKSIZE, you’re ready to load
your data.

Step 5: Run the cqlsh COPY FROM command

To run the cqlsh COPY FROM command, complete the following steps.

1. Connect to Amazon Keyspaces using cqlsh.

2. Choose your keyspace with the following code.

USE catalog;

3. Set write consistency to LOCAL_QUORUM. To ensure data durability, Amazon Keyspaces doesn’t
allow other write consistency settings. See the following code.

CONSISTENCY LOCAL_QUORUM;

4. Prepare your cqlsh COPY FROM syntax using the following code example.

COPY book_awards FROM './keyspace.table.csv' WITH HEADER=true
AND INGESTRATE=calculated ingestrate
AND NUMPROCESSES=calculated numprocess
AND MAXBATCHSIZE=20
AND CHUNKSIZE=calculated chunksize;

5. Run the statement prepared in the previous step. cqlsh echoes back all the settings that you've
configured.

a. Make sure that the settings match your input. See the following example.

Reading options from the command line: {'chunksize': '120', 'header': 'true',
 'ingestrate': '36000', 'numprocesses': '15', 'maxbatchsize': '20'}
Using 15 child processes

b. Review the number of rows transferred and the current average rate, as shown in the
following example.

Processed: 57834 rows; Rate: 6561 rows/s; Avg. rate: 31751 rows/s

Step 5: Run the cqlsh COPY FROM command 155

Amazon Keyspaces (for Apache Cassandra) Developer Guide

c. When cqlsh has finished uploading the data, review the summary of the data load
statistics (the number of files read, runtime, and skipped rows) as shown in the following
example.

15556824 rows imported from 1 files in 8 minutes and 8.321 seconds (0 skipped).

In this final step of the tutorial, you have uploaded the data to Amazon Keyspaces.

Important

Now that you have transferred your data, adjust the capacity mode settings of your target
table to match your application’s regular traffic patterns. You incur charges at the hourly
rate for your provisioned capacity until you change it.

Troubleshooting

After the data upload has completed, check to see if rows were skipped. To do so, navigate to the
source directory of the source CSV file and search for a file with the following name.

import_yourcsvfilename.err.timestamp.csv

cqlsh writes any skipped rows of data into a file with that name. If the file exists in your source
directory and has data in it, these rows didn't upload to Amazon Keyspaces. To retry these rows,
first check for any errors that were encountered during the upload and adjust the data accordingly.
To retry these rows, you can rerun the process.

Common errors

The most common reasons why rows aren’t loaded are capacity errors and parsing errors.

Invalid request errors when uploading data to Amazon Keyspaces

In the following example, the source table contains a counter column, which results in logged
batch calls from the cqlsh COPY command. Logged batch calls are not supported by Amazon
Keyspaces.

Troubleshooting 156

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Failed to import 10 rows: InvalidRequest - Error from server: code=2200 [Invalid query]
 message=“Only UNLOGGED Batches are supported at this time.“, will retry later,
 attempt 22 of 25

To resolve this error, use DSBulk to migrate the data. For more information, see the section called
“Loading data using DSBulk”.

Parser errors when uploading data to Amazon Keyspaces

The following example shows a skipped row due to a ParseError.

Failed to import 1 rows: ParseError - Invalid ... –

To resolve this error, you need to make sure that the data to be imported matches the table
schema in Amazon Keyspaces. Review the import file for parsing errors. You can try using a single
row of data using an INSERT statement to isolate the error.

Capacity errors when uploading data to Amazon Keyspaces

Failed to import 1 rows: WriteTimeout - Error from server: code=1100 [Coordinator node
 timed out waiting for replica nodes' responses]
 message="Operation timed out - received only 0 responses." info={'received_responses':
 0, 'required_responses': 2, 'write_type': 'SIMPLE', 'consistency':
 'LOCAL_QUORUM'}, will retry later, attempt 1 of 100

Amazon Keyspaces uses the ReadTimeout and WriteTimeout exceptions to indicate when a
write request fails due to insufficient throughput capacity. To help diagnose insufficient capacity
exceptions, Amazon Keyspaces publishes WriteThrottleEvents and ReadThrottledEvents
metrics in Amazon CloudWatch. For more information, see the section called “Monitoring with
CloudWatch”.

cqlsh errors when uploading data to Amazon Keyspaces

To help troubleshoot cqlsh errors, rerun the failing command with the --debug flag.

When using an incompatible version of cqlsh, you see the following error.

AttributeError: 'NoneType' object has no attribute 'is_up'
Failed to import 3 rows: AttributeError - 'NoneType' object has no attribute 'is_up',
 given up after 1 attempts

Troubleshooting 157

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Confirm that the correct version of cqlsh is installed by running the following command.

cqlsh --version

You should see something like the following for output.

cqlsh 5.0.1

If you're using Windows, replace all instances of cqlsh with cqlsh.bat. For example, to check the
version of cqlsh in Windows, run the following command.

cqlsh.bat --version

The connection to Amazon Keyspaces fails after the cqlsh client receives three consecutive errors of
any type from the server. The cqlsh client fails with the following message.

Failed to import 1 rows: NoHostAvailable - , will retry later, attempt 3 of 100

To resolve this error, you need to make sure that the data to be imported matches the table
schema in Amazon Keyspaces. Review the import file for parsing errors. You can try using a single
row of data by using an INSERT statement to isolate the error.

The client automatically attempts to reestablish the connection.

Tutorial: Loading data into Amazon Keyspaces using DSBulk

This step-by-step tutorial guides you through migrating data from Apache Cassandra to Amazon
Keyspaces using the DataStax Bulk Loader (DSBulk) available on GitHub. In this tutorial, you
complete the following steps:

Topics

• Prerequisites

• Step 1: Create the source CSV file and target table

• Step 2: Prepare the data

• Step 3: Set throughput capacity for the table

• Step 4: Configure DSBulk settings

• Step 5: Run the DSBulk load command

Loading data using DSBulk 158

https://github.com/datastax/dsbulk.git

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Prerequisites

You must complete the following tasks before you can start this tutorial.

1. If you have not already done so, sign up for an AWS account by following the steps at the
section called “Setting up AWS Identity and Access Management”.

2. Create credentials by following the steps at the section called “IAM credentials for AWS
authentication”.

3. Create a JKS trust store file.

a. Download the Starfield digital certificate using the following command and save sf-
class2-root.crt locally or in your home directory.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Note

You can also use the Amazon digital certificate to connect to Amazon Keyspaces
and can continue to do so if your client is connecting to Amazon Keyspaces
successfully. The Starfield certificate provides additional backwards compatibility
for clients using older certificate authorities.

b. Convert the Starfield digital certificate into a trustStore file.

openssl x509 -outform der -in sf-class2-root.crt -out temp_file.der
keytool -import -alias cassandra -keystore cassandra_truststore.jks -file
 temp_file.der

In this step, you need to create a password for the keystore and trust this certificate. The
interactive command looks like this.

Enter keystore password:
Re-enter new password:
Owner: OU=Starfield Class 2 Certification Authority, O="Starfield Technologies,
 Inc.", C=US
Issuer: OU=Starfield Class 2 Certification Authority, O="Starfield
 Technologies, Inc.", C=US
Serial number: 0
Valid from: Tue Jun 29 17:39:16 UTC 2004 until: Thu Jun 29 17:39:16 UTC 2034

Prerequisites 159

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Certificate fingerprints:
 MD5: 32:4A:4B:BB:C8:63:69:9B:BE:74:9A:C6:DD:1D:46:24
 SHA1: AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A
 SHA256:
 14:65:FA:20:53:97:B8:76:FA:A6:F0:A9:95:8E:55:90:E4:0F:CC:7F:AA:4F:B7:C2:C8:67:75:21:FB:5F:B6:58
Signature algorithm name: SHA1withRSA
Subject Public Key Algorithm: 2048-bit RSA key
Version: 3
Extensions:
#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: BF 5F B7 D1 CE DD 1F 86 F4 5B 55 AC DC D7 10 C2 ._.......[U.....
0010: 0E A9 88 E7
]
[OU=Starfield Class 2 Certification Authority, O="Starfield Technologies,
 Inc.", C=US]
SerialNumber: [00]
]
#2: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
 CA:true
 PathLen:2147483647
]
#3: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: BF 5F B7 D1 CE DD 1F 86 F4 5B 55 AC DC D7 10 C2 ._.......[U.....
0010: 0E A9 88 E7
]
]
Trust this certificate? [no]: y

4. Set up the Cassandra Query Language shell (cqlsh) connection and confirm that you can
connect to Amazon Keyspaces by following the steps at the section called “Using cqlsh”.

5. Download and install DSBulk.

a. To download DSBulk, you can use the following code.

curl -OL https://downloads.datastax.com/dsbulk/dsbulk-1.8.0.tar.gz

b. Then unpack the tar file and add DSBulk to your PATH as shown in the following example.

Prerequisites 160

Amazon Keyspaces (for Apache Cassandra) Developer Guide

tar -zxvf dsbulk-1.8.0.tar.gz
add the DSBulk directory to the path
export PATH=$PATH:./dsbulk-1.8.0/bin

c. Create an application.conf file to store settings to be used by DSBulk. You can save
the following example as ./dsbulk_keyspaces.conf. Replace localhost with the
contact point of your local Cassandra cluster if you are not on the local node, for example
the DNS name or IP address. Take note of the file name and path, as you're going to need
to specify this later in the dsbulk load command.

datastax-java-driver {
 basic.contact-points = ["localhost"]
 advanced.auth-provider {
 class = software.aws.mcs.auth.SigV4AuthProvider
 aws-region = us-east-1
 }
}

d. To enable SigV4 support, download the shaded jar file from GitHub and place it in the
DSBulk lib folder as shown in the following example.

curl -O -L https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin/
releases/download/4.0.6-shaded-v2/aws-sigv4-auth-cassandra-java-driver-
plugin-4.0.6-shaded.jar

Step 1: Create the source CSV file and target table

For this tutorial, we use a comma-separated values (CSV) file with the name
keyspaces_sample_table.csv as the source file for the data migration. The provided sample
file contains a few rows of data for a table with the name book_awards.

1. Create the source file. You can choose one of the following options:

• Download the sample CSV file (keyspaces_sample_table.csv) contained in the
following archive file samplemigration.zip. Unzip the archive and take note of the path to
keyspaces_sample_table.csv.

Step 1: Create source and target 161

https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin/releases/
samples/samplemigration.zip

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• To populate a CSV file with your own data stored in an Apache Cassandra database, you
can populate the source CSV file by using dsbulk unload as shown in the following
example.

dsbulk unload -k mykeyspace -t mytable -f ./my_application.conf
 > keyspaces_sample_table.csv

Make sure the CSV file you create meets the following requirements:

• The first row contains the column names.

• The column names in the source CSV file match the column names in the target table.

• The data is delimited with a comma.

• All data values are valid Amazon Keyspaces data types. See the section called “Data
types”.

2. Create the target keyspace and table in Amazon Keyspaces.

a. Connect to Amazon Keyspaces using cqlsh, replacing the service endpoint, user name,
and password in the following example with your own values.

cqlsh cassandra.us-east-2.amazonaws.com 9142 -u "111122223333" -
p "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY" --ssl

b. Create a new keyspace with the name catalog as shown in the following example.

CREATE KEYSPACE catalog WITH REPLICATION = {'class': 'SingleRegionStrategy'};

c. After the new keyspace has a status of available, use the following code to create the
target table book_awards. To learn more about asynchronous resource creation and how
to check if a resource is available, see the section called “Creating keyspaces”.

CREATE TABLE catalog.book_awards (
 year int,
 award text,
 rank int,
 category text,
 book_title text,
 author text,
 publisher text,
 PRIMARY KEY ((year, award), category, rank)

Step 1: Create source and target 162

Amazon Keyspaces (for Apache Cassandra) Developer Guide

);

If Apache Cassandra is your original data source, a simple way to create the Amazon Keyspaces
target table with matching headers is to generate the CREATE TABLE statement from the
source table as shown in the following statement.

cqlsh localhost 9042 -u "username" -p "password" --execute "DESCRIBE
 TABLE mykeyspace.mytable;"

Then create the target table in Amazon Keyspaces with the column names and data types
matching the description from the Cassandra source table.

Step 2: Prepare the data

Preparing the source data for an efficient transfer is a two-step process. First, you randomize the
data. In the second step, you analyze the data to determine the appropriate dsbulk parameter
values and required table settings.

Randomize the data

The dsbulk command reads and writes data in the same order that it appears in the CSV file. If
you use the dsbulk command to create the source file, the data is written in key-sorted order
in the CSV. Internally, Amazon Keyspaces partitions data using partition keys. Although Amazon
Keyspaces has built-in logic to help load balance requests for the same partition key, loading the
data is faster and more efficient if you randomize the order. This is because you can take advantage
of the built-in load balancing that occurs when Amazon Keyspaces is writing to different partitions.

To spread the writes across the partitions evenly, you must randomize the data in the source file.
You can write an application to do this or use an open-source tool, such as Shuf. Shuf is freely
available on Linux distributions, on macOS (by installing coreutils in homebrew), and on Windows
(by using Windows Subsystem for Linux (WSL)). One extra step is required to prevent the header
row with the column names to get shuffled in this step.

To randomize the source file while preserving the header, enter the following code.

tail -n +2 keyspaces_sample_table.csv | shuf -o keyspace.table.csv && (head
 -1 keyspaces_sample_table.csv && cat keyspace.table.csv) > keyspace.table.csv1 &&
 mv keyspace.table.csv1 keyspace.table.csv

Step 2: Prepare the data 163

https://en.wikipedia.org/wiki/Shuf
https://brew.sh

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Shuf rewrites the data to a new CSV file called keyspace.table.csv. You can now delete the
keyspaces_sample_table.csv file—you no longer need it.

Analyze the data

Determine the average and maximum row size by analyzing the data.

You do this for the following reasons:

• The average row size helps to estimate the total amount of data to be transferred.

• You need the average row size to provision the write capacity needed for the data upload.

• You can make sure that each row is less than 1 MB in size, which is the maximum row size in
Amazon Keyspaces.

Note

This quota refers to row size, not partition size. Unlike Apache Cassandra partitions,
Amazon Keyspaces partitions can be virtually unbound in size. Partition keys and clustering
columns require additional storage for metadata, which you must add to the raw size of
rows. For more information, see the section called “Calculating row size”.

The following code uses AWK to analyze a CSV file and print the average and maximum row size.

awk -F, 'BEGIN {samp=10000;max=-1;}{if(NR>1){len=length($0);t+=len;avg=t/
NR;max=(len>max ? len : max)}}NR==samp{exit}END{printf("{lines: %d, average: %d bytes,
 max: %d bytes}\n",NR,avg,max);}' keyspace.table.csv

Running this code results in the following output.

using 10,000 samples:
{lines: 10000, avg: 123 bytes, max: 225 bytes}

Make sure that your maximum row size doesn't exceed 1 MB. If it does, you have to break up the
row or compress the data to bring the row size below 1 MB. In the next step of this tutorial, you use
the average row size to provision the write capacity for the table.

Step 2: Prepare the data 164

https://en.wikipedia.org/wiki/AWK

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Step 3: Set throughput capacity for the table

This tutorial shows you how to tune DSBulk to load data within a set time range. Because you know
how many reads and writes you perform in advance, use provisioned capacity mode. After you
finish the data transfer, you should set the capacity mode of the table to match your application’s
traffic patterns. To learn more about capacity management, see Serverless resource management.

With provisioned capacity mode, you specify how much read and write capacity you want
to provision to your table in advance. Write capacity is billed hourly and metered in write
capacity units (WCUs). Each WCU is enough write capacity to support writing 1 KB of data
per second. When you load the data, the write rate must be under the max WCUs (parameter:
write_capacity_units) that are set on the target table.

By default, you can provision up to 40,000 WCUs to a table and 80,000 WCUs across all the tables
in your account. If you need additional capacity, you can request a quota increase in the Service
Quotas console. For more information about quotas, see Quotas.

Calculate the average number of WCUs required for an insert

Inserting 1 KB of data per second requires 1 WCU. If your CSV file has 360,000 rows and you want
to load all the data in 1 hour, you must write 100 rows per second (360,000 rows / 60 minutes / 60
seconds = 100 rows per second). If each row has up to 1 KB of data, to insert 100 rows per second,
you must provision 100 WCUs to your table. If each row has 1.5 KB of data, you need two WCUs to
insert one row per second. Therefore, to insert 100 rows per second, you must provision 200 WCUs.

To determine how many WCUs you need to insert one row per second, divide the average row size
in bytes by 1024 and round up to the nearest whole number.

For example, if the average row size is 3000 bytes, you need three WCUs to insert one row per
second.

ROUNDUP(3000 / 1024) = ROUNDUP(2.93) = 3 WCUs

Calculate data load time and capacity

Now that you know the average size and number of rows in your CSV file, you can calculate how
many WCUs you need to load the data in a given amount of time, and the approximate time it
takes to load all the data in your CSV file using different WCU settings.

For example, if each row in your file is 1 KB and you have 1,000,000 rows in your CSV file, to load
the data in 1 hour, you need to provision at least 278 WCUs to your table for that hour.

Step 3: Set throughput capacity for the table 165

https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas

Amazon Keyspaces (for Apache Cassandra) Developer Guide

1,000,000 rows * 1 KBs = 1,000,000 KBs
1,000,000 KBs / 3600 seconds =277.8 KBs / second = 278 WCUs

Configure provisioned capacity settings

You can set a table’s write capacity settings when you create the table or by using the ALTER
TABLE command. The following is the syntax for altering a table’s provisioned capacity settings
with the ALTER TABLE command.

ALTER TABLE catalog.book_awards WITH custom_properties={'capacity_mode':
{'throughput_mode': 'PROVISIONED', 'read_capacity_units': 100, 'write_capacity_units':
 278}} ;

For the complete language reference, see the section called “CREATE TABLE” and the section called
“ALTER TABLE”.

Step 4: Configure DSBulk settings

This section outlines the steps required to configure DSBulk for data upload to Amazon Keyspaces.
You configure DSBulk by using a configuration file. You specify the configuration file directly from
the command line.

1. Create a DSBulk configuration file for the migration to Amazon Keyspaces, in this example we
use the file name dsbulk_keyspaces.conf. Specify the following settings in the DSBulk
configuration file.

a. PlainTextAuthProvider – Create the authentication provider with the
PlainTextAuthProvider class. ServiceUserName and ServicePassword should
match the user name and password you obtained when you generated the service-specific
credentials by following the steps at the section called “Creating credentials”.

b. local-datacenter – Set the value for local-datacenter to the AWS Region that
you're connecting to. For example, if the application is connecting to cassandra.us-
east-2.amazonaws.com, then set the local data center to us-east-2. For all available
AWS Regions, see the section called “Service endpoints”. To avoid replicas, set slow-
replica-avoidance to false.

c. SSLEngineFactory – To configure SSL/TLS, initialize the SSLEngineFactory
by adding a section in the configuration file with a single line that specifies

Step 4: Configure DSBulk settings 166

Amazon Keyspaces (for Apache Cassandra) Developer Guide

the class with class = DefaultSslEngineFactory. Provide the path to
cassandra_truststore.jks and the password that you created previously.

d. consistency – Set the consistency level to LOCAL QUORUM. Other write consistency
levels are not supported, for more information see the section called “Supported
Cassandra consistency levels”.

e. The number of connections per pool is configurable in the Java driver. For this example,
set advanced.connection.pool.local.size to 3.

The following is the complete sample configuration file.

datastax-java-driver {
basic.contact-points = ["cassandra.us-east-2.amazonaws.com:9142"]
advanced.auth-provider {
 class = PlainTextAuthProvider
 username = "ServiceUserName"
 password = "ServicePassword"
}

basic.load-balancing-policy {
 local-datacenter = "us-east-2"
 slow-replica-avoidance = false
}

basic.request {
 consistency = LOCAL_QUORUM
 default-idempotence = true
}
advanced.ssl-engine-factory {
 class = DefaultSslEngineFactory
 truststore-path = "./cassandra_truststore.jks"
 truststore-password = "my_password"
 hostname-validation = false
 }
advanced.connection.pool.local.size = 3
}

2. Review the parameters for the DSBulk load command.

a. executor.maxPerSecond – The maximum number of rows that the load command
attempts to process concurrently per second. If unset, this setting is disabled with -1.

Step 4: Configure DSBulk settings 167

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Set executor.maxPerSecond based on the number of WCUs that you provisioned to
the target destination table. The executor.maxPerSecond of the load command isn’t
a limit – it’s a target average. This means it can (and often does) burst above the number
you set. To allow for bursts and make sure that enough capacity is in place to handle the
data load requests, set executor.maxPerSecond to 90% of the table’s write capacity.

executor.maxPerSecond = WCUs * .90

In this tutorial, we set executor.maxPerSecond to 5.

Note

If you are using DSBulk 1.6.0 or higher, you can use
dsbulk.engine.maxConcurrentQueries instead.

b. Configure these additional parameters for the DSBulk load command.

• batch-mode – This parameter tells the system to group operations by partition key.
Because this could interfere with other settings, we recommend to disable batch mode.

• driver.advanced.retry-policy-max-retries – This determines how many times
to retry a failed query. If unset, the default is 10. You can adjust this value as needed.

• driver.basic.request.timeout – The time in minutes the system waits for a query
to return. If unset, the default is "5 minutes". You can adjust this value as needed.

Step 5: Run the DSBulk load command

In the final step of this tutorial, you upload the data into Amazon Keyspaces.

To run the DSBulk load command, complete the following steps.

1. Run the following code to upload the data from your csv file to your Amazon Keyspaces table.
Make sure to update the path to the application configuration file you created earlier.

dsbulk load -f ./dsbulk_keyspaces.conf --connector.csv.url keyspace.table.csv
 -header true --batch.mode DISABLED --executor.maxPerSecond 5 --
driver.basic.request.timeout "5 minutes" --driver.advanced.retry-policy.max-
retries 10 -k catalog -t book_awards

Step 5: Run the DSBulk load command 168

Amazon Keyspaces (for Apache Cassandra) Developer Guide

2. The output includes the location of a log file that details successful and unsuccessful
operations. The file is stored in the following directory.

Operation directory: /home/user_name/logs/UNLOAD_20210308-202317-801911

3. The log file entries will include metrics, as in the following example. Check to make sure that
the number of rows is consistent with the number of rows in your csv file.

total | failed | rows/s | p50ms | p99ms | p999ms
 200 | 0 | 200 | 21.63 | 21.89 | 21.89

Important

Now that you have transferred your data, adjust the capacity mode settings of your target
table to match your application’s regular traffic patterns. You incur charges at the hourly
rate for your provisioned capacity until you change it. For more information, see the section
called “Read/write capacity modes”.

Step 5: Run the DSBulk load command 169

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Code examples for Amazon Keyspaces using AWS SDKs

The following code examples show how to use Amazon Keyspaces with an AWS software
development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Get started

Hello Amazon Keyspaces

The following code examples show how to get started using Amazon Keyspaces.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace KeyspacesActions;

public class HelloKeyspaces
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {

170

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 // Set up dependency injection for Amazon Keyspaces (for Apache
 Cassandra).
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonKeyspaces>()
 .AddTransient<KeyspacesWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<HelloKeyspaces>();

 var keyspacesClient =
 host.Services.GetRequiredService<IAmazonKeyspaces>();
 var keyspacesWrapper = new KeyspacesWrapper(keyspacesClient);

 Console.WriteLine("Hello, Amazon Keyspaces! Let's list your keyspaces:");
 await keyspacesWrapper.ListKeyspaces();
 }
}

• For API details, see ListKeyspaces in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;

171

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListKeyspaces
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme

Amazon Keyspaces (for Apache Cassandra) Developer Guide

import software.amazon.awssdk.services.keyspaces.KeyspacesClient;
import software.amazon.awssdk.services.keyspaces.model.KeyspaceSummary;
import software.amazon.awssdk.services.keyspaces.model.KeyspacesException;
import software.amazon.awssdk.services.keyspaces.model.ListKeyspacesRequest;
import software.amazon.awssdk.services.keyspaces.model.ListKeyspacesResponse;
import java.util.List;

/**
 * Before running this Java (v2) code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class HelloKeyspaces {
 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 KeyspacesClient keyClient = KeyspacesClient.builder()
 .region(region)
 .build();

 listKeyspaces(keyClient);
 }

 public static void listKeyspaces(KeyspacesClient keyClient) {
 try {
 ListKeyspacesRequest keyspacesRequest =
 ListKeyspacesRequest.builder()
 .maxResults(10)
 .build();

 ListKeyspacesResponse response =
 keyClient.listKeyspaces(keyspacesRequest);
 List<KeyspaceSummary> keyspaces = response.keyspaces();
 for (KeyspaceSummary keyspace : keyspaces) {
 System.out.println("The name of the keyspace is " +
 keyspace.keyspaceName());
 }

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);

172

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 }
 }
}

• For API details, see ListKeyspaces in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
Before running this Kotlin code example, set up your development environment,
 including your credentials.

For more information, see the following documentation topic:

https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html
*/

suspend fun main() {
 listKeyspaces()
}

suspend fun listKeyspaces() {
 val keyspacesRequest = ListKeyspacesRequest {
 maxResults = 10
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response = keyClient.listKeyspaces(keyspacesRequest)
 response.keyspaces?.forEach { keyspace ->
 println("The name of the keyspace is ${keyspace.keyspaceName}")
 }
 }
}

173

https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/ListKeyspaces
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• For API details, see ListKeyspaces in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import boto3

def hello_keyspaces(keyspaces_client):
 """
 Use the AWS SDK for Python (Boto3) to create an Amazon Keyspaces (for Apache
 Cassandra)
 client and list the keyspaces in your account.
 This example uses the default settings specified in your shared credentials
 and config files.

 :param keyspaces_client: A Boto3 Amazon Keyspaces Client object. This object
 wraps
 the low-level Amazon Keyspaces service API.
 """
 print("Hello, Amazon Keyspaces! Let's list some of your keyspaces:\n")
 for ks in keyspaces_client.list_keyspaces(maxResults=5).get("keyspaces", []):
 print(ks["keyspaceName"])
 print(f"\t{ks['resourceArn']}")

if __name__ == "__main__":
 hello_keyspaces(boto3.client("keyspaces"))

• For API details, see ListKeyspaces in AWS SDK for Python (Boto3) API Reference.

174

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/ListKeyspaces

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Code examples

• Actions for Amazon Keyspaces using AWS SDKs

• Create an Amazon Keyspaces keyspace using an AWS SDK

• Create an Amazon Keyspaces table using an AWS SDK

• Delete an Amazon Keyspaces keyspace using an AWS SDK

• Delete an Amazon Keyspaces table using an AWS SDK

• Get data about an Amazon Keyspaces keyspace using an AWS SDK

• Get data about an Amazon Keyspaces table using an AWS SDK

• List Amazon Keyspaces keyspaces using an AWS SDK

• List Amazon Keyspaces tables in a keyspace using an AWS SDK

• Restore an Amazon Keyspaces table to a point in time using an AWS SDK

• Update an Amazon Keyspaces table using an AWS SDK

• Scenarios for Amazon Keyspaces using AWS SDKs

• Get started with Amazon Keyspaces keyspaces and tables using an AWS SDK

Actions for Amazon Keyspaces using AWS SDKs

The following code examples demonstrate how to perform individual Amazon Keyspaces actions
with AWS SDKs. These excerpts call the Amazon Keyspaces API and are code excerpts from larger
programs that must be run in context. Each example includes a link to GitHub, where you can find
instructions for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Keyspaces (for Apache Cassandra) API Reference.

Examples

• Create an Amazon Keyspaces keyspace using an AWS SDK

• Create an Amazon Keyspaces table using an AWS SDK

• Delete an Amazon Keyspaces keyspace using an AWS SDK

• Delete an Amazon Keyspaces table using an AWS SDK

• Get data about an Amazon Keyspaces keyspace using an AWS SDK

• Get data about an Amazon Keyspaces table using an AWS SDK

• List Amazon Keyspaces keyspaces using an AWS SDK

Actions 175

https://docs.aws.amazon.com/keyspaces/latest/APIReference/Welcome.html

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• List Amazon Keyspaces tables in a keyspace using an AWS SDK

• Restore an Amazon Keyspaces table to a point in time using an AWS SDK

• Update an Amazon Keyspaces table using an AWS SDK

Create an Amazon Keyspaces keyspace using an AWS SDK

The following code examples show how to create an Amazon Keyspaces keyspace.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a new keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name for the new keyspace.</param>
 /// <returns>The Amazon Resource Name (ARN) of the new keyspace.</returns>
 public async Task<string> CreateKeyspace(string keyspaceName)
 {
 var response =
 await _amazonKeyspaces.CreateKeyspaceAsync(
 new CreateKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.ResourceArn;
 }

• For API details, see CreateKeyspace in AWS SDK for .NET API Reference.

Create a keyspace 176

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/CreateKeyspace

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void createKeySpace(KeyspacesClient keyClient, String
 keyspaceName) {
 try {
 CreateKeyspaceRequest keyspaceRequest =
 CreateKeyspaceRequest.builder()
 .keyspaceName(keyspaceName)
 .build();

 CreateKeyspaceResponse response =
 keyClient.createKeyspace(keyspaceRequest);
 System.out.println("The ARN of the KeySpace is " +
 response.resourceArn());

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see CreateKeyspace in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a keyspace 177

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/CreateKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

suspend fun createKeySpace(keyspaceNameVal: String) {
 val keyspaceRequest = CreateKeyspaceRequest {
 keyspaceName = keyspaceNameVal
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response = keyClient.createKeyspace(keyspaceRequest)
 println("The ARN of the KeySpace is ${response.resourceArn}")
 }
}

• For API details, see CreateKeyspace in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

Create a keyspace 178

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 def create_keyspace(self, name):
 """
 Creates a keyspace.

 :param name: The name to give the keyspace.
 :return: The Amazon Resource Name (ARN) of the new keyspace.
 """
 try:
 response = self.keyspaces_client.create_keyspace(keyspaceName=name)
 self.ks_name = name
 self.ks_arn = response["resourceArn"]
 except ClientError as err:
 logger.error(
 "Couldn't create %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return self.ks_arn

• For API details, see CreateKeyspace in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create an Amazon Keyspaces table using an AWS SDK

The following code examples show how to create an Amazon Keyspaces table.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

Create a table 179

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/CreateKeyspace

Amazon Keyspaces (for Apache Cassandra) Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a new Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace where the table will be
 created.</param>
 /// <param name="schema">The schema for the new table.</param>
 /// <param name="tableName">The name of the new table.</param>
 /// <returns>The Amazon Resource Name (ARN) of the new table.</returns>
 public async Task<string> CreateTable(string keyspaceName, SchemaDefinition
 schema, string tableName)
 {
 var request = new CreateTableRequest
 {
 KeyspaceName = keyspaceName,
 SchemaDefinition = schema,
 TableName = tableName,
 PointInTimeRecovery = new PointInTimeRecovery { Status =
 PointInTimeRecoveryStatus.ENABLED }
 };

 var response = await _amazonKeyspaces.CreateTableAsync(request);
 return response.ResourceArn;
 }

• For API details, see CreateTable in AWS SDK for .NET API Reference.

Create a table 180

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/CreateTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void createTable(KeyspacesClient keyClient, String keySpace,
 String tableName) {
 try {
 // Set the columns.
 ColumnDefinition defTitle = ColumnDefinition.builder()
 .name("title")
 .type("text")
 .build();

 ColumnDefinition defYear = ColumnDefinition.builder()
 .name("year")
 .type("int")
 .build();

 ColumnDefinition defReleaseDate = ColumnDefinition.builder()
 .name("release_date")
 .type("timestamp")
 .build();

 ColumnDefinition defPlot = ColumnDefinition.builder()
 .name("plot")
 .type("text")
 .build();

 List<ColumnDefinition> colList = new ArrayList<>();
 colList.add(defTitle);
 colList.add(defYear);
 colList.add(defReleaseDate);
 colList.add(defPlot);

 // Set the keys.
 PartitionKey yearKey = PartitionKey.builder()

Create a table 181

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 .name("year")
 .build();

 PartitionKey titleKey = PartitionKey.builder()
 .name("title")
 .build();

 List<PartitionKey> keyList = new ArrayList<>();
 keyList.add(yearKey);
 keyList.add(titleKey);

 SchemaDefinition schemaDefinition = SchemaDefinition.builder()
 .partitionKeys(keyList)
 .allColumns(colList)
 .build();

 PointInTimeRecovery timeRecovery = PointInTimeRecovery.builder()
 .status(PointInTimeRecoveryStatus.ENABLED)
 .build();

 CreateTableRequest tableRequest = CreateTableRequest.builder()
 .keyspaceName(keySpace)
 .tableName(tableName)
 .schemaDefinition(schemaDefinition)
 .pointInTimeRecovery(timeRecovery)
 .build();

 CreateTableResponse response = keyClient.createTable(tableRequest);
 System.out.println("The table ARN is " + response.resourceArn());

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see CreateTable in AWS SDK for Java 2.x API Reference.

Create a table 182

https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/CreateTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createTable(keySpaceVal: String?, tableNameVal: String?) {
 // Set the columns.
 val defTitle = ColumnDefinition {
 name = "title"
 type = "text"
 }

 val defYear = ColumnDefinition {
 name = "year"
 type = "int"
 }

 val defReleaseDate = ColumnDefinition {
 name = "release_date"
 type = "timestamp"
 }

 val defPlot = ColumnDefinition {
 name = "plot"
 type = "text"
 }

 val colList = ArrayList<ColumnDefinition>()
 colList.add(defTitle)
 colList.add(defYear)
 colList.add(defReleaseDate)
 colList.add(defPlot)

 // Set the keys.
 val yearKey = PartitionKey {
 name = "year"
 }

Create a table 183

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 val titleKey = PartitionKey {
 name = "title"
 }

 val keyList = ArrayList<PartitionKey>()
 keyList.add(yearKey)
 keyList.add(titleKey)

 val schemaDefinitionOb = SchemaDefinition {
 partitionKeys = keyList
 allColumns = colList
 }

 val timeRecovery = PointInTimeRecovery {
 status = PointInTimeRecoveryStatus.Enabled
 }

 val tableRequest = CreateTableRequest {
 keyspaceName = keySpaceVal
 tableName = tableNameVal
 schemaDefinition = schemaDefinitionOb
 pointInTimeRecovery = timeRecovery
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response = keyClient.createTable(tableRequest)
 println("The table ARN is ${response.resourceArn}")
 }
}

• For API details, see CreateTable in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a table 184

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def create_table(self, table_name):
 """
 Creates a table in the keyspace.
 The table is created with a schema for storing movie data
 and has point-in-time recovery enabled.

 :param table_name: The name to give the table.
 :return: The ARN of the new table.
 """
 try:
 response = self.keyspaces_client.create_table(
 keyspaceName=self.ks_name,
 tableName=table_name,
 schemaDefinition={
 "allColumns": [
 {"name": "title", "type": "text"},
 {"name": "year", "type": "int"},
 {"name": "release_date", "type": "timestamp"},
 {"name": "plot", "type": "text"},
],
 "partitionKeys": [{"name": "year"}, {"name": "title"}],
 },
 pointInTimeRecovery={"status": "ENABLED"},
)

Create a table 185

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 except ClientError as err:
 logger.error(
 "Couldn't create table %s. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["resourceArn"]

• For API details, see CreateTable in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Delete an Amazon Keyspaces keyspace using an AWS SDK

The following code examples show how to delete an Amazon Keyspaces keyspace.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>

Delete a keyspace 186

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 /// Delete an existing keyspace.
 /// </summary>
 /// <param name="keyspaceName"></param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteKeyspace(string keyspaceName)
 {
 var response = await _amazonKeyspaces.DeleteKeyspaceAsync(
 new DeleteKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteKeyspace in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void deleteKeyspace(KeyspacesClient keyClient, String
 keyspaceName) {
 try {
 DeleteKeyspaceRequest deleteKeyspaceRequest =
 DeleteKeyspaceRequest.builder()
 .keyspaceName(keyspaceName)
 .build();

 keyClient.deleteKeyspace(deleteKeyspaceRequest);

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Delete a keyspace 187

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/DeleteKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• For API details, see DeleteKeyspace in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteKeyspace(keyspaceNameVal: String?) {
 val deleteKeyspaceRequest = DeleteKeyspaceRequest {
 keyspaceName = keyspaceNameVal
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.deleteKeyspace(deleteKeyspaceRequest)
 }
}

• For API details, see DeleteKeyspace in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

Delete a keyspace 188

https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/DeleteKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def delete_keyspace(self):
 """
 Deletes the keyspace.
 """
 try:
 self.keyspaces_client.delete_keyspace(keyspaceName=self.ks_name)
 self.ks_name = None
 except ClientError as err:
 logger.error(
 "Couldn't delete keyspace %s. Here's why: %s: %s",
 self.ks_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteKeyspace in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Delete an Amazon Keyspaces table using an AWS SDK

The following code examples show how to delete an Amazon Keyspaces table.

Delete a table 189

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/DeleteKeyspace

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteTable(string keyspaceName, string tableName)
 {
 var response = await _amazonKeyspaces.DeleteTableAsync(
 new DeleteTableRequest { KeyspaceName = keyspaceName, TableName =
 tableName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteTable in AWS SDK for .NET API Reference.

Delete a table 190

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/DeleteTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void deleteTable(KeyspacesClient keyClient, String
 keyspaceName, String tableName) {
 try {
 DeleteTableRequest tableRequest = DeleteTableRequest.builder()
 .keyspaceName(keyspaceName)
 .tableName(tableName)
 .build();

 keyClient.deleteTable(tableRequest);

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see DeleteTable in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteTable(keyspaceNameVal: String?, tableNameVal: String?) {

Delete a table 191

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 val tableRequest = DeleteTableRequest {
 keyspaceName = keyspaceNameVal
 tableName = tableNameVal
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.deleteTable(tableRequest)
 }
}

• For API details, see DeleteTable in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

Delete a table 192

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 def delete_table(self):
 """
 Deletes the table from the keyspace.
 """
 try:
 self.keyspaces_client.delete_table(
 keyspaceName=self.ks_name, tableName=self.table_name
)
 self.table_name = None
 except ClientError as err:
 logger.error(
 "Couldn't delete table %s. Here's why: %s: %s",
 self.table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteTable in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Get data about an Amazon Keyspaces keyspace using an AWS SDK

The following code examples show how to get data about an Amazon Keyspaces keyspace.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

Get data about a keyspace 193

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/DeleteTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get data about a keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name of the keyspace.</param>
 /// <returns>The Amazon Resource Name (ARN) of the keyspace.</returns>
 public async Task<string> GetKeyspace(string keyspaceName)
 {
 var response = await _amazonKeyspaces.GetKeyspaceAsync(
 new GetKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.ResourceArn;
 }

• For API details, see GetKeyspace in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void checkKeyspaceExistence(KeyspacesClient keyClient, String
 keyspaceName) {
 try {
 GetKeyspaceRequest keyspaceRequest = GetKeyspaceRequest.builder()

Get data about a keyspace 194

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/GetKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 .keyspaceName(keyspaceName)
 .build();

 GetKeyspaceResponse response =
 keyClient.getKeyspace(keyspaceRequest);
 String name = response.keyspaceName();
 System.out.println("The " + name + " KeySpace is ready");

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see GetKeyspace in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun checkKeyspaceExistence(keyspaceNameVal: String?) {
 val keyspaceRequest = GetKeyspaceRequest {
 keyspaceName = keyspaceNameVal
 }
 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response: GetKeyspaceResponse =
 keyClient.getKeyspace(keyspaceRequest)
 val name = response.keyspaceName
 println("The $name KeySpace is ready")
 }
}

• For API details, see GetKeyspace in AWS SDK for Kotlin API reference.

Get data about a keyspace 195

https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/GetKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def exists_keyspace(self, name):
 """
 Checks whether a keyspace exists.

 :param name: The name of the keyspace to look up.
 :return: True when the keyspace exists. Otherwise, False.
 """
 try:
 response = self.keyspaces_client.get_keyspace(keyspaceName=name)
 self.ks_name = response["keyspaceName"]
 self.ks_arn = response["resourceArn"]
 exists = True
 except ClientError as err:

Get data about a keyspace 196

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.info("Keyspace %s does not exist.", name)
 exists = False
 else:
 logger.error(
 "Couldn't verify %s exists. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return exists

• For API details, see GetKeyspace in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Get data about an Amazon Keyspaces table using an AWS SDK

The following code examples show how to get data about an Amazon Keyspaces table.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get data about a table 197

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/GetKeyspace
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 /// <summary>
 /// Get information about an Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the Amazon Keyspaces table.</param>
 /// <returns>The response containing data about the table.</returns>
 public async Task<GetTableResponse> GetTable(string keyspaceName, string
 tableName)
 {
 var response = await _amazonKeyspaces.GetTableAsync(
 new GetTableRequest { KeyspaceName = keyspaceName, TableName =
 tableName });
 return response;
 }

• For API details, see GetTable in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void checkTable(KeyspacesClient keyClient, String keyspaceName,
 String tableName)
 throws InterruptedException {
 try {
 boolean tableStatus = false;
 String status;
 GetTableResponse response = null;
 GetTableRequest tableRequest = GetTableRequest.builder()
 .keyspaceName(keyspaceName)
 .tableName(tableName)
 .build();

Get data about a table 198

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/GetTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 while (!tableStatus) {
 response = keyClient.getTable(tableRequest);
 status = response.statusAsString();
 System.out.println(". The table status is " + status);

 if (status.compareTo("ACTIVE") == 0) {
 tableStatus = true;
 }
 Thread.sleep(500);
 }

 List<ColumnDefinition> cols =
 response.schemaDefinition().allColumns();
 for (ColumnDefinition def : cols) {
 System.out.println("The column name is " + def.name());
 System.out.println("The column type is " + def.type());
 }

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see GetTable in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun checkTable(keyspaceNameVal: String?, tableNameVal: String?) {
 var tableStatus = false
 var status: String
 var response: GetTableResponse? = null

Get data about a table 199

https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/GetTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 val tableRequest = GetTableRequest {
 keyspaceName = keyspaceNameVal
 tableName = tableNameVal
 }
 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 while (!tableStatus) {
 response = keyClient.getTable(tableRequest)
 status = response!!.status.toString()
 println(". The table status is $status")
 if (status.compareTo("ACTIVE") == 0) {
 tableStatus = true
 }
 delay(500)
 }
 val cols: List<ColumnDefinition>? =
 response!!.schemaDefinition?.allColumns
 if (cols != null) {
 for (def in cols) {
 println("The column name is ${def.name}")
 println("The column type is ${def.type}")
 }
 }
 }
}

• For API details, see GetTable in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

Get data about a table 200

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def get_table(self, table_name):
 """
 Gets data about a table in the keyspace.

 :param table_name: The name of the table to look up.
 :return: Data about the table.
 """
 try:
 response = self.keyspaces_client.get_table(
 keyspaceName=self.ks_name, tableName=table_name
)
 self.table_name = table_name
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.info("Table %s does not exist.", table_name)
 self.table_name = None
 response = None
 else:
 logger.error(
 "Couldn't verify %s exists. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return response

Get data about a table 201

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• For API details, see GetTable in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

List Amazon Keyspaces keyspaces using an AWS SDK

The following code examples show how to list Amazon Keyspaces keyspaces.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Lists all keyspaces for the account.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task ListKeyspaces()
 {
 var paginator = _amazonKeyspaces.Paginators.ListKeyspaces(new
 ListKeyspacesRequest());

 Console.WriteLine("{0, -30}\t{1}", "Keyspace name", "Keyspace ARN");
 Console.WriteLine(new string('-', Console.WindowWidth));
 await foreach (var keyspace in paginator.Keyspaces)
 {

 Console.WriteLine($"{keyspace.KeyspaceName,-30}\t{keyspace.ResourceArn}");

List keyspaces 202

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/GetTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 }
 }

• For API details, see ListKeyspaces in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void listKeyspacesPaginator(KeyspacesClient keyClient) {
 try {
 ListKeyspacesRequest keyspacesRequest =
 ListKeyspacesRequest.builder()
 .maxResults(10)
 .build();

 ListKeyspacesIterable listRes =
 keyClient.listKeyspacesPaginator(keyspacesRequest);
 listRes.stream()
 .flatMap(r -> r.keyspaces().stream())
 .forEach(content -> System.out.println(" Name: " +
 content.keyspaceName()));

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see ListKeyspaces in AWS SDK for Java 2.x API Reference.

List keyspaces 203

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListKeyspaces
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/ListKeyspaces

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listKeyspacesPaginator() {
 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.listKeyspacesPaginated(ListKeyspacesRequest {})
 .transform { it.keyspaces?.forEach { obj -> emit(obj) } }
 .collect { obj ->
 println("Name: ${obj.keyspaceName}")
 }
 }
}

• For API details, see ListKeyspaces in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.

List keyspaces 204

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def list_keyspaces(self, limit):
 """
 Lists the keyspaces in your account.

 :param limit: The maximum number of keyspaces to list.
 """
 try:
 ks_paginator = self.keyspaces_client.get_paginator("list_keyspaces")
 for page in ks_paginator.paginate(PaginationConfig={"MaxItems":
 limit}):
 for ks in page["keyspaces"]:
 print(ks["keyspaceName"])
 print(f"\t{ks['resourceArn']}")
 except ClientError as err:
 logger.error(
 "Couldn't list keyspaces. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListKeyspaces in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

List keyspaces 205

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/ListKeyspaces

Amazon Keyspaces (for Apache Cassandra) Developer Guide

List Amazon Keyspaces tables in a keyspace using an AWS SDK

The following code examples show how to list Amazon Keyspaces tables in a keyspace.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Lists the Amazon Keyspaces tables in a keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name of the keyspace.</param>
 /// <returns>A list of TableSummary objects.</returns>
 public async Task<List<TableSummary>> ListTables(string keyspaceName)
 {
 var response = await _amazonKeyspaces.ListTablesAsync(new
 ListTablesRequest { KeyspaceName = keyspaceName });
 response.Tables.ForEach(table =>
 {

 Console.WriteLine($"{table.KeyspaceName}\t{table.TableName}\t{table.ResourceArn}");
 });

 return response.Tables;
 }

• For API details, see ListTables in AWS SDK for .NET API Reference.

List tables in a keyspace 206

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListTables

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void listTables(KeyspacesClient keyClient, String keyspaceName)
 {
 try {
 ListTablesRequest tablesRequest = ListTablesRequest.builder()
 .keyspaceName(keyspaceName)
 .build();

 ListTablesIterable listRes =
 keyClient.listTablesPaginator(tablesRequest);
 listRes.stream()
 .flatMap(r -> r.tables().stream())
 .forEach(content -> System.out.println(" ARN: " +
 content.resourceArn() +
 " Table name: " + content.tableName()));

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see ListTables in AWS SDK for Java 2.x API Reference.

List tables in a keyspace 207

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/ListTables

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listTables(keyspaceNameVal: String?) {
 val tablesRequest = ListTablesRequest {
 keyspaceName = keyspaceNameVal
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.listTablesPaginated(tablesRequest)
 .transform { it.tables?.forEach { obj -> emit(obj) } }
 .collect { obj ->
 println(
 " ARN: " + obj.resourceArn.toString() +
 " Table name: " + obj.tableName
)
 }
 }
}

• For API details, see ListTables in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List tables in a keyspace 208

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def list_tables(self):
 """
 Lists the tables in the keyspace.
 """
 try:
 table_paginator = self.keyspaces_client.get_paginator("list_tables")
 for page in table_paginator.paginate(keyspaceName=self.ks_name):
 for table in page["tables"]:
 print(table["tableName"])
 print(f"\t{table['resourceArn']}")
 except ClientError as err:
 logger.error(
 "Couldn't list tables in keyspace %s. Here's why: %s: %s",
 self.ks_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListTables in AWS SDK for Python (Boto3) API Reference.

List tables in a keyspace 209

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/ListTables

Amazon Keyspaces (for Apache Cassandra) Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Restore an Amazon Keyspaces table to a point in time using an AWS
SDK

The following code examples show how to restore an Amazon Keyspaces table to a point in time.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Restores the specified table to the specified point in time.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to restore.</param>
 /// <param name="timestamp">The time to which the table will be restored.</
param>
 /// <returns>The Amazon Resource Name (ARN) of the restored table.</returns>
 public async Task<string> RestoreTable(string keyspaceName, string tableName,
 string restoredTableName, DateTime timestamp)
 {
 var request = new RestoreTableRequest
 {
 RestoreTimestamp = timestamp,
 SourceKeyspaceName = keyspaceName,
 SourceTableName = tableName,

Restore a table to a point in time 210

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 TargetKeyspaceName = keyspaceName,
 TargetTableName = restoredTableName
 };

 var response = await _amazonKeyspaces.RestoreTableAsync(request);
 return response.RestoredTableARN;
 }

• For API details, see RestoreTable in AWS SDK for .NET API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void restoreTable(KeyspacesClient keyClient, String
 keyspaceName, ZonedDateTime utc) {
 try {
 Instant myTime = utc.toInstant();
 RestoreTableRequest restoreTableRequest =
 RestoreTableRequest.builder()
 .restoreTimestamp(myTime)
 .sourceTableName("Movie")
 .targetKeyspaceName(keyspaceName)
 .targetTableName("MovieRestore")
 .sourceKeyspaceName(keyspaceName)
 .build();

 RestoreTableResponse response =
 keyClient.restoreTable(restoreTableRequest);
 System.out.println("The ARN of the restored table is " +
 response.restoredTableARN());

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());

Restore a table to a point in time 211

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/RestoreTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 System.exit(1);
 }
 }

• For API details, see RestoreTable in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun restoreTable(keyspaceName: String?, utc: ZonedDateTime) {
 // Create an aws.smithy.kotlin.runtime.time.Instant value.
 val timeStamp = aws.smithy.kotlin.runtime.time.Instant(utc.toInstant())
 val restoreTableRequest = RestoreTableRequest {
 restoreTimestamp = timeStamp
 sourceTableName = "MovieKotlin"
 targetKeyspaceName = keyspaceName
 targetTableName = "MovieRestore"
 sourceKeyspaceName = keyspaceName
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response = keyClient.restoreTable(restoreTableRequest)
 println("The ARN of the restored table is ${response.restoredTableArn}")
 }
}

• For API details, see RestoreTable in AWS SDK for Kotlin API reference.

Restore a table to a point in time 212

https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/RestoreTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def restore_table(self, restore_timestamp):
 """
 Restores the table to a previous point in time. The table is restored
 to a new table in the same keyspace.

 :param restore_timestamp: The point in time to restore the table. This
 time
 must be in UTC format.
 :return: The name of the restored table.
 """
 try:
 restored_table_name = f"{self.table_name}_restored"
 self.keyspaces_client.restore_table(

Restore a table to a point in time 213

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 sourceKeyspaceName=self.ks_name,
 sourceTableName=self.table_name,
 targetKeyspaceName=self.ks_name,
 targetTableName=restored_table_name,
 restoreTimestamp=restore_timestamp,
)
 except ClientError as err:
 logger.error(
 "Couldn't restore table %s. Here's why: %s: %s",
 restore_timestamp,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return restored_table_name

• For API details, see RestoreTable in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Update an Amazon Keyspaces table using an AWS SDK

The following code examples show how to update an Amazon Keyspaces table.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with keyspaces and tables

Update a table 214

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/RestoreTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Updates the movie table to add a boolean column named watched.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to change.</param>
 /// <returns>The Amazon Resource Name (ARN) of the updated table.</returns>
 public async Task<string> UpdateTable(string keyspaceName, string tableName)
 {
 var newColumn = new ColumnDefinition { Name = "watched", Type =
 "boolean" };
 var request = new UpdateTableRequest
 {
 KeyspaceName = keyspaceName,
 TableName = tableName,
 AddColumns = new List<ColumnDefinition> { newColumn }
 };
 var response = await _amazonKeyspaces.UpdateTableAsync(request);
 return response.ResourceArn;
 }

• For API details, see UpdateTable in AWS SDK for .NET API Reference.

Update a table 215

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/UpdateTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void updateTable(KeyspacesClient keyClient, String keySpace,
 String tableName) {
 try {
 ColumnDefinition def = ColumnDefinition.builder()
 .name("watched")
 .type("boolean")
 .build();

 UpdateTableRequest tableRequest = UpdateTableRequest.builder()
 .keyspaceName(keySpace)
 .tableName(tableName)
 .addColumns(def)
 .build();

 keyClient.updateTable(tableRequest);

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see UpdateTable in AWS SDK for Java 2.x API Reference.

Update a table 216

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/UpdateTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun updateTable(keySpace: String?, tableNameVal: String?) {
 val def = ColumnDefinition {
 name = "watched"
 type = "boolean"
 }

 val tableRequest = UpdateTableRequest {
 keyspaceName = keySpace
 tableName = tableNameVal
 addColumns = listOf(def)
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.updateTable(tableRequest)
 }
}

• For API details, see UpdateTable in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Update a table 217

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def update_table(self):
 """
 Updates the schema of the table.

 This example updates a table of movie data by adding a new column
 that tracks whether the movie has been watched.
 """
 try:
 self.keyspaces_client.update_table(
 keyspaceName=self.ks_name,
 tableName=self.table_name,
 addColumns=[{"name": "watched", "type": "boolean"}],
)
 except ClientError as err:
 logger.error(
 "Couldn't update table %s. Here's why: %s: %s",
 self.table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Update a table 218

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• For API details, see UpdateTable in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Scenarios for Amazon Keyspaces using AWS SDKs

The following code examples show you how to implement common scenarios in Amazon Keyspaces
with AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple
functions within Amazon Keyspaces. Each scenario includes a link to GitHub, where you can find
instructions on how to set up and run the code.

Examples

• Get started with Amazon Keyspaces keyspaces and tables using an AWS SDK

Get started with Amazon Keyspaces keyspaces and tables using an AWS
SDK

The following code examples show how to:

• Create a keyspace and table. The table schema holds movie data and has point-in-time recovery
enabled.

• Connect to the keyspace using a secure TLS connection with SigV4 authentication.

• Query the table. Add, retrieve, and update movie data.

• Update the table. Add a column to track watched movies.

• Restore the table to its previous state and clean up resources.

Scenarios 219

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/UpdateTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

global using System.Security.Cryptography.X509Certificates;
global using Amazon.Keyspaces;
global using Amazon.Keyspaces.Model;
global using KeyspacesActions;
global using KeyspacesScenario;
global using Microsoft.Extensions.Configuration;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;
global using Newtonsoft.Json;

namespace KeyspacesBasics;

/// <summary>
/// Amazon Keyspaces (for Apache Cassandra) scenario. Shows some of the basic
/// actions performed with Amazon Keyspaces.
/// </summary>
public class KeyspacesBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)

Get started with keyspaces and tables 220

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonKeyspaces>()
 .AddTransient<KeyspacesWrapper>()
 .AddTransient<CassandraWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<KeyspacesBasics>();

 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 var keyspacesWrapper =
 host.Services.GetRequiredService<KeyspacesWrapper>();
 var uiMethods = new UiMethods();

 var keyspaceName = configuration["KeyspaceName"];
 var tableName = configuration["TableName"];

 bool success; // Used to track the results of some operations.

 uiMethods.DisplayOverview();
 uiMethods.PressEnter();

 // Create the keyspace.
 var keyspaceArn = await keyspacesWrapper.CreateKeyspace(keyspaceName);

 // Wait for the keyspace to be available. GetKeyspace results in a
 // resource not found error until it is ready for use.
 try
 {
 var getKeyspaceArn = "";
 Console.Write($"Created {keyspaceName}. Waiting for it to become
 available. ");
 do
 {

Get started with keyspaces and tables 221

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 getKeyspaceArn = await
 keyspacesWrapper.GetKeyspace(keyspaceName);
 Console.Write(". ");
 } while (getKeyspaceArn != keyspaceArn);
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("Waiting for keyspace to be created.");
 }

 Console.WriteLine($"\nThe keyspace {keyspaceName} is ready for use.");

 uiMethods.PressEnter();

 // Create the table.
 // First define the schema.
 var allColumns = new List<ColumnDefinition>
 {
 new ColumnDefinition { Name = "title", Type = "text" },
 new ColumnDefinition { Name = "year", Type = "int" },
 new ColumnDefinition { Name = "release_date", Type = "timestamp" },
 new ColumnDefinition { Name = "plot", Type = "text" },
 };

 var partitionKeys = new List<PartitionKey>
 {
 new PartitionKey { Name = "year", },
 new PartitionKey { Name = "title" },
 };

 var tableSchema = new SchemaDefinition
 {
 AllColumns = allColumns,
 PartitionKeys = partitionKeys,
 };

 var tableArn = await keyspacesWrapper.CreateTable(keyspaceName,
 tableSchema, tableName);

 // Wait for the table to be active.
 try
 {
 var resp = new GetTableResponse();
 Console.Write("Waiting for the new table to be active. ");

Get started with keyspaces and tables 222

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 do
 {
 try
 {
 resp = await keyspacesWrapper.GetTable(keyspaceName,
 tableName);
 Console.Write(".");
 }
 catch (ResourceNotFoundException)
 {
 Console.Write(".");
 }
 } while (resp.Status != TableStatus.ACTIVE);

 // Display the table's schema.
 Console.WriteLine($"\nTable {tableName} has been created in
 {keyspaceName}");
 Console.WriteLine("Let's take a look at the schema.");
 uiMethods.DisplayTitle("All columns");
 resp.SchemaDefinition.AllColumns.ForEach(column =>
 {
 Console.WriteLine($"{column.Name,-40}\t{column.Type,-20}");
 });

 uiMethods.DisplayTitle("Cluster keys");
 resp.SchemaDefinition.ClusteringKeys.ForEach(clusterKey =>
 {

 Console.WriteLine($"{clusterKey.Name,-40}\t{clusterKey.OrderBy,-20}");
 });

 uiMethods.DisplayTitle("Partition keys");
 resp.SchemaDefinition.PartitionKeys.ForEach(partitionKey =>
 {
 Console.WriteLine($"{partitionKey.Name}");
 });

 uiMethods.PressEnter();
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }

Get started with keyspaces and tables 223

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 // Access Apache Cassandra using the Cassandra drive for C#.
 var cassandraWrapper =
 host.Services.GetRequiredService<CassandraWrapper>();
 var movieFilePath = configuration["MovieFile"];

 Console.WriteLine("Let's add some movies to the table we created.");
 var inserted = await cassandraWrapper.InsertIntoMovieTable(keyspaceName,
 tableName, movieFilePath);

 uiMethods.PressEnter();

 Console.WriteLine("Added the following movies to the table:");
 var rows = await cassandraWrapper.GetMovies(keyspaceName, tableName);
 uiMethods.DisplayTitle("All Movies");

 foreach (var row in rows)
 {
 var title = row.GetValue<string>("title");
 var year = row.GetValue<int>("year");
 var plot = row.GetValue<string>("plot");
 var release_date = row.GetValue<DateTime>("release_date");
 Console.WriteLine($"{release_date}\t{title}\t{year}\n{plot}");
 Console.WriteLine(uiMethods.SepBar);
 }

 // Update the table schema
 uiMethods.DisplayTitle("Update table schema");
 Console.WriteLine("Now we will update the table to add a boolean field
 called watched.");

 // First save the current time as a UTC Date so the original
 // table can be restored later.
 var timeChanged = DateTime.UtcNow;

 // Now update the schema.
 var resourceArn = await keyspacesWrapper.UpdateTable(keyspaceName,
 tableName);
 uiMethods.PressEnter();

 Console.WriteLine("Now let's mark some of the movies as watched.");

 // Pick some files to mark as watched.
 var movieToWatch = rows[2].GetValue<string>("title");
 var watchedMovieYear = rows[2].GetValue<int>("year");

Get started with keyspaces and tables 224

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 var changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 movieToWatch = rows[6].GetValue<string>("title");
 watchedMovieYear = rows[6].GetValue<int>("year");
 changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 movieToWatch = rows[9].GetValue<string>("title");
 watchedMovieYear = rows[9].GetValue<int>("year");
 changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 movieToWatch = rows[10].GetValue<string>("title");
 watchedMovieYear = rows[10].GetValue<int>("year");
 changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 movieToWatch = rows[13].GetValue<string>("title");
 watchedMovieYear = rows[13].GetValue<int>("year");
 changedRows = await cassandraWrapper.MarkMovieAsWatched(keyspaceName,
 tableName, movieToWatch, watchedMovieYear);

 uiMethods.DisplayTitle("Watched movies");
 Console.WriteLine("These movies have been marked as watched:");
 rows = await cassandraWrapper.GetWatchedMovies(keyspaceName, tableName);
 foreach (var row in rows)
 {
 var title = row.GetValue<string>("title");
 var year = row.GetValue<int>("year");
 Console.WriteLine($"{title,-40}\t{year,8}");
 }
 uiMethods.PressEnter();

 Console.WriteLine("We can restore the table to its previous state but
 that can take up to 20 minutes to complete.");
 string answer;
 do
 {
 Console.WriteLine("Do you want to restore the table? (y/n)");
 answer = Console.ReadLine();
 } while (answer.ToLower() != "y" && answer.ToLower() != "n");

 if (answer == "y")

Get started with keyspaces and tables 225

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 {
 var restoredTableName = $"{tableName}_restored";
 var restoredTableArn = await keyspacesWrapper.RestoreTable(
 keyspaceName,
 tableName,
 restoredTableName,
 timeChanged);
 // Loop and call GetTable until the table is gone. Once it has been
 // deleted completely, GetTable will raise a
 ResourceNotFoundException.
 bool wasRestored = false;

 try
 {
 do
 {
 var resp = await keyspacesWrapper.GetTable(keyspaceName,
 restoredTableName);
 wasRestored = (resp.Status == TableStatus.ACTIVE);
 } while (!wasRestored);
 }
 catch (ResourceNotFoundException)
 {
 // If the restored table raised an error, it isn't
 // ready yet.
 Console.Write(".");
 }
 }

 uiMethods.DisplayTitle("Clean up resources.");

 // Delete the table.
 success = await keyspacesWrapper.DeleteTable(keyspaceName, tableName);

 Console.WriteLine($"Table {tableName} successfully deleted from
 {keyspaceName}.");
 Console.WriteLine("Waiting for the table to be removed completely. ");

 // Loop and call GetTable until the table is gone. Once it has been
 // deleted completely, GetTable will raise a ResourceNotFoundException.
 bool wasDeleted = false;

 try
 {

Get started with keyspaces and tables 226

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 do
 {
 var resp = await keyspacesWrapper.GetTable(keyspaceName,
 tableName);
 } while (!wasDeleted);
 }
 catch (ResourceNotFoundException ex)
 {
 wasDeleted = true;
 Console.WriteLine($"{ex.Message} indicates that the table has been
 deleted.");
 }

 // Delete the keyspace.
 success = await keyspacesWrapper.DeleteKeyspace(keyspaceName);
 Console.WriteLine("The keyspace has been deleted and the demo is now
 complete.");
 }
}

namespace KeyspacesActions;

/// <summary>
/// Performs Amazon Keyspaces (for Apache Cassandra) actions.
/// </summary>
public class KeyspacesWrapper
{
 private readonly IAmazonKeyspaces _amazonKeyspaces;

 /// <summary>
 /// Constructor for the KeyspaceWrapper.
 /// </summary>
 /// <param name="amazonKeyspaces">An Amazon Keyspaces client object.</param>
 public KeyspacesWrapper(IAmazonKeyspaces amazonKeyspaces)
 {
 _amazonKeyspaces = amazonKeyspaces;
 }

 /// <summary>
 /// Create a new keyspace.
 /// </summary>

Get started with keyspaces and tables 227

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 /// <param name="keyspaceName">The name for the new keyspace.</param>
 /// <returns>The Amazon Resource Name (ARN) of the new keyspace.</returns>
 public async Task<string> CreateKeyspace(string keyspaceName)
 {
 var response =
 await _amazonKeyspaces.CreateKeyspaceAsync(
 new CreateKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.ResourceArn;
 }

 /// <summary>
 /// Create a new Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace where the table will be
 created.</param>
 /// <param name="schema">The schema for the new table.</param>
 /// <param name="tableName">The name of the new table.</param>
 /// <returns>The Amazon Resource Name (ARN) of the new table.</returns>
 public async Task<string> CreateTable(string keyspaceName, SchemaDefinition
 schema, string tableName)
 {
 var request = new CreateTableRequest
 {
 KeyspaceName = keyspaceName,
 SchemaDefinition = schema,
 TableName = tableName,
 PointInTimeRecovery = new PointInTimeRecovery { Status =
 PointInTimeRecoveryStatus.ENABLED }
 };

 var response = await _amazonKeyspaces.CreateTableAsync(request);
 return response.ResourceArn;
 }

 /// <summary>
 /// Delete an existing keyspace.
 /// </summary>
 /// <param name="keyspaceName"></param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteKeyspace(string keyspaceName)
 {
 var response = await _amazonKeyspaces.DeleteKeyspaceAsync(

Get started with keyspaces and tables 228

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 new DeleteKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete an Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to delete.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> DeleteTable(string keyspaceName, string tableName)
 {
 var response = await _amazonKeyspaces.DeleteTableAsync(
 new DeleteTableRequest { KeyspaceName = keyspaceName, TableName =
 tableName });
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Get data about a keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name of the keyspace.</param>
 /// <returns>The Amazon Resource Name (ARN) of the keyspace.</returns>
 public async Task<string> GetKeyspace(string keyspaceName)
 {
 var response = await _amazonKeyspaces.GetKeyspaceAsync(
 new GetKeyspaceRequest { KeyspaceName = keyspaceName });
 return response.ResourceArn;
 }

 /// <summary>
 /// Get information about an Amazon Keyspaces table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the Amazon Keyspaces table.</param>
 /// <returns>The response containing data about the table.</returns>
 public async Task<GetTableResponse> GetTable(string keyspaceName, string
 tableName)
 {
 var response = await _amazonKeyspaces.GetTableAsync(

Get started with keyspaces and tables 229

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 new GetTableRequest { KeyspaceName = keyspaceName, TableName =
 tableName });
 return response;
 }

 /// <summary>
 /// Lists all keyspaces for the account.
 /// </summary>
 /// <returns>Async task.</returns>
 public async Task ListKeyspaces()
 {
 var paginator = _amazonKeyspaces.Paginators.ListKeyspaces(new
 ListKeyspacesRequest());

 Console.WriteLine("{0, -30}\t{1}", "Keyspace name", "Keyspace ARN");
 Console.WriteLine(new string('-', Console.WindowWidth));
 await foreach (var keyspace in paginator.Keyspaces)
 {

 Console.WriteLine($"{keyspace.KeyspaceName,-30}\t{keyspace.ResourceArn}");
 }
 }

 /// <summary>
 /// Lists the Amazon Keyspaces tables in a keyspace.
 /// </summary>
 /// <param name="keyspaceName">The name of the keyspace.</param>
 /// <returns>A list of TableSummary objects.</returns>
 public async Task<List<TableSummary>> ListTables(string keyspaceName)
 {
 var response = await _amazonKeyspaces.ListTablesAsync(new
 ListTablesRequest { KeyspaceName = keyspaceName });
 response.Tables.ForEach(table =>
 {

 Console.WriteLine($"{table.KeyspaceName}\t{table.TableName}\t{table.ResourceArn}");
 });

 return response.Tables;
 }

Get started with keyspaces and tables 230

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 /// <summary>
 /// Restores the specified table to the specified point in time.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to restore.</param>
 /// <param name="timestamp">The time to which the table will be restored.</
param>
 /// <returns>The Amazon Resource Name (ARN) of the restored table.</returns>
 public async Task<string> RestoreTable(string keyspaceName, string tableName,
 string restoredTableName, DateTime timestamp)
 {
 var request = new RestoreTableRequest
 {
 RestoreTimestamp = timestamp,
 SourceKeyspaceName = keyspaceName,
 SourceTableName = tableName,
 TargetKeyspaceName = keyspaceName,
 TargetTableName = restoredTableName
 };

 var response = await _amazonKeyspaces.RestoreTableAsync(request);
 return response.RestoredTableARN;
 }

 /// <summary>
 /// Updates the movie table to add a boolean column named watched.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table to change.</param>
 /// <returns>The Amazon Resource Name (ARN) of the updated table.</returns>
 public async Task<string> UpdateTable(string keyspaceName, string tableName)
 {
 var newColumn = new ColumnDefinition { Name = "watched", Type =
 "boolean" };
 var request = new UpdateTableRequest
 {
 KeyspaceName = keyspaceName,
 TableName = tableName,
 AddColumns = new List<ColumnDefinition> { newColumn }
 };
 var response = await _amazonKeyspaces.UpdateTableAsync(request);
 return response.ResourceArn;
 }

Get started with keyspaces and tables 231

Amazon Keyspaces (for Apache Cassandra) Developer Guide

}

using System.Net;
using Cassandra;

namespace KeyspacesScenario;

/// <summary>
/// Class to perform CRUD methods on an Amazon Keyspaces (for Apache Cassandra)
 database.
///
/// NOTE: This sample uses a plain text authenticator for example purposes only.
/// Recommended best practice is to use a SigV4 authentication plugin, if
 available.
/// </summary>
public class CassandraWrapper
{
 private readonly IConfiguration _configuration;
 private readonly string _localPathToFile;
 private const string _certLocation = "https://certs.secureserver.net/
repository/sf-class2-root.crt";
 private const string _certFileName = "sf-class2-root.crt";
 private readonly X509Certificate2Collection _certCollection;
 private X509Certificate2 _amazoncert;
 private Cluster _cluster;

 // User name and password for the service.
 private string _userName = null!;
 private string _pwd = null!;

 public CassandraWrapper()
 {
 _configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 _localPathToFile = Path.GetTempPath();

Get started with keyspaces and tables 232

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 // Get the Starfield digital certificate and save it locally.
 var client = new WebClient();
 client.DownloadFile(_certLocation, $"{_localPathToFile}/
{_certFileName}");

 //var httpClient = new HttpClient();
 //var httpResult = httpClient.Get(fileUrl);
 //using var resultStream = await httpResult.Content.ReadAsStreamAsync();
 //using var fileStream = File.Create(pathToSave);
 //resultStream.CopyTo(fileStream);

 _certCollection = new X509Certificate2Collection();
 _amazoncert = new X509Certificate2($"{_localPathToFile}/
{_certFileName}");

 // Get the user name and password stored in the configuration file.
 _userName = _configuration["UserName"]!;
 _pwd = _configuration["Password"]!;

 // For a list of Service Endpoints for Amazon Keyspaces, see:
 // https://docs.aws.amazon.com/keyspaces/latest/devguide/
programmatic.endpoints.html
 var awsEndpoint = _configuration["ServiceEndpoint"];

 _cluster = Cluster.Builder()
 .AddContactPoints(awsEndpoint)
 .WithPort(9142)
 .WithAuthProvider(new PlainTextAuthProvider(_userName, _pwd))
 .WithSSL(new SSLOptions().SetCertificateCollection(_certCollection))
 .WithQueryOptions(
 new QueryOptions()
 .SetConsistencyLevel(ConsistencyLevel.LocalQuorum)
 .SetSerialConsistencyLevel(ConsistencyLevel.LocalSerial))
 .Build();
 }

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the Apache Cassandra table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A list of movie objects.</returns>

Get started with keyspaces and tables 233

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 public List<Movie> ImportMoviesFromJson(string movieFileName, int numToImport
 = 0)
 {
 if (!File.Exists(movieFileName))
 {
 return null!;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();

 var allMovies = JsonConvert.DeserializeObject<List<Movie>>(json);

 // If numToImport = 0, return all movies in the collection.
 if (numToImport == 0)
 {
 // Now return the entire list of movies.
 return allMovies;
 }
 else
 {
 // Now return the first numToImport entries.
 return allMovies.GetRange(0, numToImport);
 }
 }

 /// <summary>
 /// Insert movies into the movie table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="movieTableName">The Amazon Keyspaces table.</param>
 /// <param name="movieFilePath">The path to the resource file containing
 /// movie data to insert into the table.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> InsertIntoMovieTable(string keyspaceName, string
 movieTableName, string movieFilePath, int numToImport = 20)
 {
 // Get some movie data from the movies.json file
 var movies = ImportMoviesFromJson(movieFilePath, numToImport);

 var session = _cluster.Connect(keyspaceName);

 string insertCql;

Get started with keyspaces and tables 234

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 RowSet rs;

 // Now we insert the numToImport movies into the table.
 foreach (var movie in movies)
 {
 // Escape single quote characters in the plot.
 insertCql = $"INSERT INTO {keyspaceName}.{movieTableName}
 (title, year, release_date, plot) values($${movie.Title}$$, {movie.Year},
 '{movie.Info.Release_Date.ToString("yyyy-MM-dd")}', $${movie.Info.Plot}$$)";
 rs = await session.ExecuteAsync(new SimpleStatement(insertCql));
 }

 return true;
 }

 /// <summary>
 /// Gets all of the movies in the movies table.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table.</param>
 /// <returns>A list of row objects containing movie data.</returns>
 public async Task<List<Row>> GetMovies(string keyspaceName, string tableName)
 {
 var session = _cluster.Connect();
 RowSet rs;
 try
 {
 rs = await session.ExecuteAsync(new SimpleStatement($"SELECT * FROM
 {keyspaceName}.{tableName}"));

 // Extract the row data from the returned RowSet.
 var rows = rs.GetRows().ToList();
 return rows;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 return null!;
 }
 }

 /// <summary>
 /// Mark a movie in the movie table as watched.
 /// </summary>

Get started with keyspaces and tables 235

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="title">The title of the movie to mark as watched.</param>
 /// <param name="year">The year the movie was released.</param>
 /// <returns>A set of rows containing the changed data.</returns>
 public async Task<List<Row>> MarkMovieAsWatched(string keyspaceName, string
 tableName, string title, int year)
 {
 var session = _cluster.Connect();
 string updateCql = $"UPDATE {keyspaceName}.{tableName} SET watched=true
 WHERE title = $${title}$$ AND year = {year};";
 var rs = await session.ExecuteAsync(new SimpleStatement(updateCql));
 var rows = rs.GetRows().ToList();
 return rows;
 }

 /// <summary>
 /// Retrieve the movies in the movies table where watched is true.
 /// </summary>
 /// <param name="keyspaceName">The keyspace containing the table.</param>
 /// <param name="tableName">The name of the table.</param>
 /// <returns>A list of row objects containing information about movies
 /// where watched is true.</returns>
 public async Task<List<Row>> GetWatchedMovies(string keyspaceName, string
 tableName)
 {
 var session = _cluster.Connect();
 RowSet rs;
 try
 {
 rs = await session.ExecuteAsync(new SimpleStatement($"SELECT
 title, year, plot FROM {keyspaceName}.{tableName} WHERE watched = true ALLOW
 FILTERING"));

 // Extract the row data from the returned RowSet.
 var rows = rs.GetRows().ToList();
 return rows;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 return null!;
 }
 }

Get started with keyspaces and tables 236

Amazon Keyspaces (for Apache Cassandra) Developer Guide

}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateKeyspace

• CreateTable

• DeleteKeyspace

• DeleteTable

• GetKeyspace

• GetTable

• ListKeyspaces

• ListTables

• RestoreTable

• UpdateTable

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
 * Before running this Java (v2) code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * Before running this Java code example, you must create a
 * Java keystore (JKS) file and place it in your project's resources folder.

Get started with keyspaces and tables 237

https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/CreateKeyspace
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/CreateTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/DeleteKeyspace
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/DeleteTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/GetKeyspace
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/GetTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListKeyspaces
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/ListTables
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/RestoreTable
https://docs.aws.amazon.com/goto/DotNetSDKV3/keyspaces-2022-02-10/UpdateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/keyspaces#readme

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 *
 * This file is a secure file format used to hold certificate information for
 * Java applications. This is required to make a connection to Amazon Keyspaces.
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/keyspaces/latest/devguide/using_java_driver.html
 *
 * This Java example performs the following tasks:
 *
 * 1. Create a keyspace.
 * 2. Check for keyspace existence.
 * 3. List keyspaces using a paginator.
 * 4. Create a table with a simple movie data schema and enable point-in-time
 * recovery.
 * 5. Check for the table to be in an Active state.
 * 6. List all tables in the keyspace.
 * 7. Use a Cassandra driver to insert some records into the Movie table.
 * 8. Get all records from the Movie table.
 * 9. Get a specific Movie.
 * 10. Get a UTC timestamp for the current time.
 * 11. Update the table schema to add a ‘watched’ Boolean column.
 * 12. Update an item as watched.
 * 13. Query for items with watched = True.
 * 14. Restore the table back to the previous state using the timestamp.
 * 15. Check for completion of the restore action.
 * 16. Delete the table.
 * 17. Confirm that both tables are deleted.
 * 18. Delete the keyspace.
 */

public class ScenarioKeyspaces {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 /*
 * Usage:
 * fileName - The name of the JSON file that contains movie data. (Get this
 file
 * from the GitHub repo at resources/sample_file.)
 * keyspaceName - The name of the keyspace to create.
 */
 public static void main(String[] args) throws InterruptedException,
 IOException {

Get started with keyspaces and tables 238

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 String fileName = "<Replace with the JSON file that contains movie
 data>";
 String keyspaceName = "<Replace with the name of the keyspace to
 create>";
 String titleUpdate = "The Family";
 int yearUpdate = 2013;
 String tableName = "Movie";
 String tableNameRestore = "MovieRestore";
 Region region = Region.US_EAST_1;
 KeyspacesClient keyClient = KeyspacesClient.builder()
 .region(region)
 .build();

 DriverConfigLoader loader =
 DriverConfigLoader.fromClasspath("application.conf");
 CqlSession session = CqlSession.builder()
 .withConfigLoader(loader)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the Amazon Keyspaces example scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("1. Create a keyspace.");
 createKeySpace(keyClient, keyspaceName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 Thread.sleep(5000);
 System.out.println("2. Check for keyspace existence.");
 checkKeyspaceExistence(keyClient, keyspaceName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. List keyspaces using a paginator.");
 listKeyspacesPaginator(keyClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Create a table with a simple movie data schema and
 enable point-in-time recovery.");
 createTable(keyClient, keyspaceName, tableName);
 System.out.println(DASHES);

Get started with keyspaces and tables 239

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 System.out.println(DASHES);
 System.out.println("5. Check for the table to be in an Active state.");
 Thread.sleep(6000);
 checkTable(keyClient, keyspaceName, tableName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. List all tables in the keyspace.");
 listTables(keyClient, keyspaceName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Use a Cassandra driver to insert some records into
 the Movie table.");
 Thread.sleep(6000);
 loadData(session, fileName, keyspaceName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Get all records from the Movie table.");
 getMovieData(session, keyspaceName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("9. Get a specific Movie.");
 getSpecificMovie(session, keyspaceName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("10. Get a UTC timestamp for the current time.");
 ZonedDateTime utc = ZonedDateTime.now(ZoneOffset.UTC);
 System.out.println("DATETIME = " + Date.from(utc.toInstant()));
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("11. Update the table schema to add a watched Boolean
 column.");
 updateTable(keyClient, keyspaceName, tableName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("12. Update an item as watched.");
 Thread.sleep(10000); // Wait 10 secs for the update.

Get started with keyspaces and tables 240

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 updateRecord(session, keyspaceName, titleUpdate, yearUpdate);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("13. Query for items with watched = True.");
 getWatchedData(session, keyspaceName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("14. Restore the table back to the previous state
 using the timestamp.");
 System.out.println("Note that the restore operation can take up to 20
 minutes.");
 restoreTable(keyClient, keyspaceName, utc);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("15. Check for completion of the restore action.");
 Thread.sleep(5000);
 checkRestoredTable(keyClient, keyspaceName, "MovieRestore");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("16. Delete both tables.");
 deleteTable(keyClient, keyspaceName, tableName);
 deleteTable(keyClient, keyspaceName, tableNameRestore);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("17. Confirm that both tables are deleted.");
 checkTableDelete(keyClient, keyspaceName, tableName);
 checkTableDelete(keyClient, keyspaceName, tableNameRestore);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("18. Delete the keyspace.");
 deleteKeyspace(keyClient, keyspaceName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("The scenario has completed successfully.");
 System.out.println(DASHES);
 }

Get started with keyspaces and tables 241

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 public static void deleteKeyspace(KeyspacesClient keyClient, String
 keyspaceName) {
 try {
 DeleteKeyspaceRequest deleteKeyspaceRequest =
 DeleteKeyspaceRequest.builder()
 .keyspaceName(keyspaceName)
 .build();

 keyClient.deleteKeyspace(deleteKeyspaceRequest);

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void checkTableDelete(KeyspacesClient keyClient, String
 keyspaceName, String tableName)
 throws InterruptedException {
 try {
 String status;
 GetTableResponse response;
 GetTableRequest tableRequest = GetTableRequest.builder()
 .keyspaceName(keyspaceName)
 .tableName(tableName)
 .build();

 // Keep looping until table cannot be found and a
 ResourceNotFoundException is
 // thrown.
 while (true) {
 response = keyClient.getTable(tableRequest);
 status = response.statusAsString();
 System.out.println(". The table status is " + status);
 Thread.sleep(500);
 }

 } catch (ResourceNotFoundException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 System.out.println("The table is deleted");
 }

Get started with keyspaces and tables 242

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 public static void deleteTable(KeyspacesClient keyClient, String
 keyspaceName, String tableName) {
 try {
 DeleteTableRequest tableRequest = DeleteTableRequest.builder()
 .keyspaceName(keyspaceName)
 .tableName(tableName)
 .build();

 keyClient.deleteTable(tableRequest);

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void checkRestoredTable(KeyspacesClient keyClient, String
 keyspaceName, String tableName)
 throws InterruptedException {
 try {
 boolean tableStatus = false;
 String status;
 GetTableResponse response = null;
 GetTableRequest tableRequest = GetTableRequest.builder()
 .keyspaceName(keyspaceName)
 .tableName(tableName)
 .build();

 while (!tableStatus) {
 response = keyClient.getTable(tableRequest);
 status = response.statusAsString();
 System.out.println("The table status is " + status);

 if (status.compareTo("ACTIVE") == 0) {
 tableStatus = true;
 }
 Thread.sleep(500);
 }

 List<ColumnDefinition> cols =
 response.schemaDefinition().allColumns();
 for (ColumnDefinition def : cols) {
 System.out.println("The column name is " + def.name());
 System.out.println("The column type is " + def.type());

Get started with keyspaces and tables 243

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 }

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void restoreTable(KeyspacesClient keyClient, String
 keyspaceName, ZonedDateTime utc) {
 try {
 Instant myTime = utc.toInstant();
 RestoreTableRequest restoreTableRequest =
 RestoreTableRequest.builder()
 .restoreTimestamp(myTime)
 .sourceTableName("Movie")
 .targetKeyspaceName(keyspaceName)
 .targetTableName("MovieRestore")
 .sourceKeyspaceName(keyspaceName)
 .build();

 RestoreTableResponse response =
 keyClient.restoreTable(restoreTableRequest);
 System.out.println("The ARN of the restored table is " +
 response.restoredTableARN());

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void getWatchedData(CqlSession session, String keyspaceName) {
 ResultSet resultSet = session
 .execute("SELECT * FROM \"" + keyspaceName + "\".\"Movie\" WHERE
 watched = true ALLOW FILTERING;");
 resultSet.forEach(item -> {
 System.out.println("The Movie title is " + item.getString("title"));
 System.out.println("The Movie year is " + item.getInt("year"));
 System.out.println("The plot is " + item.getString("plot"));
 });
 }

Get started with keyspaces and tables 244

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 public static void updateRecord(CqlSession session, String keySpace, String
 titleUpdate, int yearUpdate) {
 String sqlStatement = "UPDATE \"" + keySpace
 + "\".\"Movie\" SET watched=true WHERE title = :k0 AND year
 = :k1;";
 BatchStatementBuilder builder =
 BatchStatement.builder(DefaultBatchType.UNLOGGED);
 builder.setConsistencyLevel(ConsistencyLevel.LOCAL_QUORUM);
 PreparedStatement preparedStatement = session.prepare(sqlStatement);
 builder.addStatement(preparedStatement.boundStatementBuilder()
 .setString("k0", titleUpdate)
 .setInt("k1", yearUpdate)
 .build());

 BatchStatement batchStatement = builder.build();
 session.execute(batchStatement);
 }

 public static void updateTable(KeyspacesClient keyClient, String keySpace,
 String tableName) {
 try {
 ColumnDefinition def = ColumnDefinition.builder()
 .name("watched")
 .type("boolean")
 .build();

 UpdateTableRequest tableRequest = UpdateTableRequest.builder()
 .keyspaceName(keySpace)
 .tableName(tableName)
 .addColumns(def)
 .build();

 keyClient.updateTable(tableRequest);

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void getSpecificMovie(CqlSession session, String keyspaceName)
 {
 ResultSet resultSet = session.execute(

Get started with keyspaces and tables 245

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 "SELECT * FROM \"" + keyspaceName + "\".\"Movie\" WHERE title =
 'The Family' ALLOW FILTERING ;");
 resultSet.forEach(item -> {
 System.out.println("The Movie title is " + item.getString("title"));
 System.out.println("The Movie year is " + item.getInt("year"));
 System.out.println("The plot is " + item.getString("plot"));
 });
 }

 // Get records from the Movie table.
 public static void getMovieData(CqlSession session, String keyspaceName) {
 ResultSet resultSet = session.execute("SELECT * FROM \"" + keyspaceName +
 "\".\"Movie\";");
 resultSet.forEach(item -> {
 System.out.println("The Movie title is " + item.getString("title"));
 System.out.println("The Movie year is " + item.getInt("year"));
 System.out.println("The plot is " + item.getString("plot"));
 });
 }

 // Load data into the table.
 public static void loadData(CqlSession session, String fileName, String
 keySpace) throws IOException {
 String sqlStatement = "INSERT INTO \"" + keySpace + "\".\"Movie\" (title,
 year, plot) values (:k0, :k1, :k2)";
 JsonParser parser = new JsonFactory().createParser(new File(fileName));
 com.fasterxml.jackson.databind.JsonNode rootNode = new
 ObjectMapper().readTree(parser);
 Iterator<JsonNode> iter = rootNode.iterator();
 ObjectNode currentNode;
 int t = 0;
 while (iter.hasNext()) {

 // Add 20 movies to the table.
 if (t == 20)
 break;
 currentNode = (ObjectNode) iter.next();

 int year = currentNode.path("year").asInt();
 String title = currentNode.path("title").asText();
 String plot = currentNode.path("info").path("plot").toString();

 // Insert the data into the Amazon Keyspaces table.

Get started with keyspaces and tables 246

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 BatchStatementBuilder builder =
 BatchStatement.builder(DefaultBatchType.UNLOGGED);
 builder.setConsistencyLevel(ConsistencyLevel.LOCAL_QUORUM);
 PreparedStatement preparedStatement = session.prepare(sqlStatement);
 builder.addStatement(preparedStatement.boundStatementBuilder()
 .setString("k0", title)
 .setInt("k1", year)
 .setString("k2", plot)
 .build());

 BatchStatement batchStatement = builder.build();
 session.execute(batchStatement);
 t++;
 }

 System.out.println("You have added " + t + " records successfully!");
 }

 public static void listTables(KeyspacesClient keyClient, String keyspaceName)
 {
 try {
 ListTablesRequest tablesRequest = ListTablesRequest.builder()
 .keyspaceName(keyspaceName)
 .build();

 ListTablesIterable listRes =
 keyClient.listTablesPaginator(tablesRequest);
 listRes.stream()
 .flatMap(r -> r.tables().stream())
 .forEach(content -> System.out.println(" ARN: " +
 content.resourceArn() +
 " Table name: " + content.tableName()));

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void checkTable(KeyspacesClient keyClient, String keyspaceName,
 String tableName)
 throws InterruptedException {
 try {
 boolean tableStatus = false;

Get started with keyspaces and tables 247

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 String status;
 GetTableResponse response = null;
 GetTableRequest tableRequest = GetTableRequest.builder()
 .keyspaceName(keyspaceName)
 .tableName(tableName)
 .build();

 while (!tableStatus) {
 response = keyClient.getTable(tableRequest);
 status = response.statusAsString();
 System.out.println(". The table status is " + status);

 if (status.compareTo("ACTIVE") == 0) {
 tableStatus = true;
 }
 Thread.sleep(500);
 }

 List<ColumnDefinition> cols =
 response.schemaDefinition().allColumns();
 for (ColumnDefinition def : cols) {
 System.out.println("The column name is " + def.name());
 System.out.println("The column type is " + def.type());
 }

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void createTable(KeyspacesClient keyClient, String keySpace,
 String tableName) {
 try {
 // Set the columns.
 ColumnDefinition defTitle = ColumnDefinition.builder()
 .name("title")
 .type("text")
 .build();

 ColumnDefinition defYear = ColumnDefinition.builder()
 .name("year")
 .type("int")
 .build();

Get started with keyspaces and tables 248

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 ColumnDefinition defReleaseDate = ColumnDefinition.builder()
 .name("release_date")
 .type("timestamp")
 .build();

 ColumnDefinition defPlot = ColumnDefinition.builder()
 .name("plot")
 .type("text")
 .build();

 List<ColumnDefinition> colList = new ArrayList<>();
 colList.add(defTitle);
 colList.add(defYear);
 colList.add(defReleaseDate);
 colList.add(defPlot);

 // Set the keys.
 PartitionKey yearKey = PartitionKey.builder()
 .name("year")
 .build();

 PartitionKey titleKey = PartitionKey.builder()
 .name("title")
 .build();

 List<PartitionKey> keyList = new ArrayList<>();
 keyList.add(yearKey);
 keyList.add(titleKey);

 SchemaDefinition schemaDefinition = SchemaDefinition.builder()
 .partitionKeys(keyList)
 .allColumns(colList)
 .build();

 PointInTimeRecovery timeRecovery = PointInTimeRecovery.builder()
 .status(PointInTimeRecoveryStatus.ENABLED)
 .build();

 CreateTableRequest tableRequest = CreateTableRequest.builder()
 .keyspaceName(keySpace)
 .tableName(tableName)
 .schemaDefinition(schemaDefinition)
 .pointInTimeRecovery(timeRecovery)

Get started with keyspaces and tables 249

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 .build();

 CreateTableResponse response = keyClient.createTable(tableRequest);
 System.out.println("The table ARN is " + response.resourceArn());

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void listKeyspacesPaginator(KeyspacesClient keyClient) {
 try {
 ListKeyspacesRequest keyspacesRequest =
 ListKeyspacesRequest.builder()
 .maxResults(10)
 .build();

 ListKeyspacesIterable listRes =
 keyClient.listKeyspacesPaginator(keyspacesRequest);
 listRes.stream()
 .flatMap(r -> r.keyspaces().stream())
 .forEach(content -> System.out.println(" Name: " +
 content.keyspaceName()));

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void checkKeyspaceExistence(KeyspacesClient keyClient, String
 keyspaceName) {
 try {
 GetKeyspaceRequest keyspaceRequest = GetKeyspaceRequest.builder()
 .keyspaceName(keyspaceName)
 .build();

 GetKeyspaceResponse response =
 keyClient.getKeyspace(keyspaceRequest);
 String name = response.keyspaceName();
 System.out.println("The " + name + " KeySpace is ready");

 } catch (KeyspacesException e) {

Get started with keyspaces and tables 250

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void createKeySpace(KeyspacesClient keyClient, String
 keyspaceName) {
 try {
 CreateKeyspaceRequest keyspaceRequest =
 CreateKeyspaceRequest.builder()
 .keyspaceName(keyspaceName)
 .build();

 CreateKeyspaceResponse response =
 keyClient.createKeyspace(keyspaceRequest);
 System.out.println("The ARN of the KeySpace is " +
 response.resourceArn());

 } catch (KeyspacesException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateKeyspace

• CreateTable

• DeleteKeyspace

• DeleteTable

• GetKeyspace

• GetTable

• ListKeyspaces

• ListTables

• RestoreTable

• UpdateTable

Get started with keyspaces and tables 251

https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/CreateKeyspace
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/CreateTable
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/DeleteKeyspace
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/DeleteTable
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/GetKeyspace
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/GetTable
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/ListKeyspaces
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/ListTables
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/RestoreTable
https://docs.aws.amazon.com/goto/SdkForJavaV2/keyspaces-2022-02-10/UpdateTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
 Before running this Kotlin code example, set up your development environment,
 including your credentials.

 For more information, see the following documentation topic:

 https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html

 This example uses a secure file format to hold certificate information for
 Kotlin applications. This is required to make a connection to Amazon Keyspaces.
 For more information, see the following documentation topic:

 https://docs.aws.amazon.com/keyspaces/latest/devguide/using_java_driver.html

 This Kotlin example performs the following tasks:

 1. Create a keyspace.
 2. Check for keyspace existence.
 3. List keyspaces using a paginator.
 4. Create a table with a simple movie data schema and enable point-in-time
 recovery.
 5. Check for the table to be in an Active state.
 6. List all tables in the keyspace.
 7. Use a Cassandra driver to insert some records into the Movie table.
 8. Get all records from the Movie table.
 9. Get a specific Movie.
 10. Get a UTC timestamp for the current time.
 11. Update the table schema to add a ‘watched’ Boolean column.
 12. Update an item as watched.
 13. Query for items with watched = True.
 14. Restore the table back to the previous state using the timestamp.
 15. Check for completion of the restore action.

Get started with keyspaces and tables 252

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 16. Delete the table.
 17. Confirm that both tables are deleted.
 18. Delete the keyspace.
 */

/*
 Usage:
 fileName - The name of the JSON file that contains movie data. (Get this
 file from the GitHub repo at resources/sample_file.)
 keyspaceName - The name of the keyspace to create.
 */
val DASHES: String = String(CharArray(80)).replace("\u0000", "-")
suspend fun main() {
 val fileName = "<Replace with the JSON file that contains movie data>"
 val keyspaceName = "<Replace with the name of the keyspace to create>"
 val titleUpdate = "The Family"
 val yearUpdate = 2013
 val tableName = "MovieKotlin"
 val tableNameRestore = "MovieRestore"

 val loader = DriverConfigLoader.fromClasspath("application.conf")
 val session = CqlSession.builder()
 .withConfigLoader(loader)
 .build()

 println(DASHES)
 println("Welcome to the Amazon Keyspaces example scenario.")
 println(DASHES)

 println(DASHES)
 println("1. Create a keyspace.")
 createKeySpace(keyspaceName)
 println(DASHES)

 println(DASHES)
 delay(5000)
 println("2. Check for keyspace existence.")
 checkKeyspaceExistence(keyspaceName)
 println(DASHES)

 println(DASHES)
 println("3. List keyspaces using a paginator.")
 listKeyspacesPaginator()
 println(DASHES)

Get started with keyspaces and tables 253

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 println(DASHES)
 println("4. Create a table with a simple movie data schema and enable point-
in-time recovery.")
 createTable(keyspaceName, tableName)
 println(DASHES)

 println(DASHES)
 println("5. Check for the table to be in an Active state.")
 delay(6000)
 checkTable(keyspaceName, tableName)
 println(DASHES)

 println(DASHES)
 println("6. List all tables in the keyspace.")
 listTables(keyspaceName)
 println(DASHES)

 println(DASHES)
 println("7. Use a Cassandra driver to insert some records into the Movie
 table.")
 delay(6000)
 loadData(session, fileName, keyspaceName)
 println(DASHES)

 println(DASHES)
 println("8. Get all records from the Movie table.")
 getMovieData(session, keyspaceName)
 println(DASHES)

 println(DASHES)
 println("9. Get a specific Movie.")
 getSpecificMovie(session, keyspaceName)
 println(DASHES)

 println(DASHES)
 println("10. Get a UTC timestamp for the current time.")
 val utc = ZonedDateTime.now(ZoneOffset.UTC)
 println("DATETIME = ${Date.from(utc.toInstant())}")
 println(DASHES)

 println(DASHES)
 println("11. Update the table schema to add a watched Boolean column.")
 updateTable(keyspaceName, tableName)

Get started with keyspaces and tables 254

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 println(DASHES)

 println(DASHES)
 println("12. Update an item as watched.")
 delay(10000) // Wait 10 seconds for the update.
 updateRecord(session, keyspaceName, titleUpdate, yearUpdate)
 println(DASHES)

 println(DASHES)
 println("13. Query for items with watched = True.")
 getWatchedData(session, keyspaceName)
 println(DASHES)

 println(DASHES)
 println("14. Restore the table back to the previous state using the
 timestamp.")
 println("Note that the restore operation can take up to 20 minutes.")
 restoreTable(keyspaceName, utc)
 println(DASHES)

 println(DASHES)
 println("15. Check for completion of the restore action.")
 delay(5000)
 checkRestoredTable(keyspaceName, "MovieRestore")
 println(DASHES)

 println(DASHES)
 println("16. Delete both tables.")
 deleteTable(keyspaceName, tableName)
 deleteTable(keyspaceName, tableNameRestore)
 println(DASHES)

 println(DASHES)
 println("17. Confirm that both tables are deleted.")
 checkTableDelete(keyspaceName, tableName)
 checkTableDelete(keyspaceName, tableNameRestore)
 println(DASHES)

 println(DASHES)
 println("18. Delete the keyspace.")
 deleteKeyspace(keyspaceName)
 println(DASHES)

 println(DASHES)

Get started with keyspaces and tables 255

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 println("The scenario has completed successfully.")
 println(DASHES)
}

suspend fun deleteKeyspace(keyspaceNameVal: String?) {
 val deleteKeyspaceRequest = DeleteKeyspaceRequest {
 keyspaceName = keyspaceNameVal
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.deleteKeyspace(deleteKeyspaceRequest)
 }
}

suspend fun checkTableDelete(keyspaceNameVal: String?, tableNameVal: String?) {
 var status: String
 var response: GetTableResponse
 val tableRequest = GetTableRequest {
 keyspaceName = keyspaceNameVal
 tableName = tableNameVal
 }

 try {
 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 // Keep looping until the table cannot be found and a
 ResourceNotFoundException is thrown.
 while (true) {
 response = keyClient.getTable(tableRequest)
 status = response.status.toString()
 println(". The table status is $status")
 delay(500)
 }
 }
 } catch (e: ResourceNotFoundException) {
 println(e.message)
 }
 println("The table is deleted")
}

suspend fun deleteTable(keyspaceNameVal: String?, tableNameVal: String?) {
 val tableRequest = DeleteTableRequest {
 keyspaceName = keyspaceNameVal
 tableName = tableNameVal
 }

Get started with keyspaces and tables 256

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.deleteTable(tableRequest)
 }
}

suspend fun checkRestoredTable(keyspaceNameVal: String?, tableNameVal: String?) {
 var tableStatus = false
 var status: String
 var response: GetTableResponse? = null

 val tableRequest = GetTableRequest {
 keyspaceName = keyspaceNameVal
 tableName = tableNameVal
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 while (!tableStatus) {
 response = keyClient.getTable(tableRequest)
 status = response!!.status.toString()
 println("The table status is $status")

 if (status.compareTo("ACTIVE") == 0) {
 tableStatus = true
 }
 delay(500)
 }

 val cols = response!!.schemaDefinition?.allColumns
 if (cols != null) {
 for (def in cols) {
 println("The column name is ${def.name}")
 println("The column type is ${def.type}")
 }
 }
 }
}

suspend fun restoreTable(keyspaceName: String?, utc: ZonedDateTime) {
 // Create an aws.smithy.kotlin.runtime.time.Instant value.
 val timeStamp = aws.smithy.kotlin.runtime.time.Instant(utc.toInstant())
 val restoreTableRequest = RestoreTableRequest {
 restoreTimestamp = timeStamp
 sourceTableName = "MovieKotlin"

Get started with keyspaces and tables 257

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 targetKeyspaceName = keyspaceName
 targetTableName = "MovieRestore"
 sourceKeyspaceName = keyspaceName
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response = keyClient.restoreTable(restoreTableRequest)
 println("The ARN of the restored table is ${response.restoredTableArn}")
 }
}

fun getWatchedData(session: CqlSession, keyspaceName: String) {
 val resultSet = session.execute("SELECT * FROM \"$keyspaceName\".
\"MovieKotlin\" WHERE watched = true ALLOW FILTERING;")
 resultSet.forEach { item: Row ->
 println("The Movie title is ${item.getString("title")}")
 println("The Movie year is ${item.getInt("year")}")
 println("The plot is ${item.getString("plot")}")
 }
}

fun updateRecord(session: CqlSession, keySpace: String, titleUpdate: String?,
 yearUpdate: Int) {
 val sqlStatement =
 "UPDATE \"$keySpace\".\"MovieKotlin\" SET watched=true WHERE title = :k0
 AND year = :k1;"
 val builder = BatchStatement.builder(DefaultBatchType.UNLOGGED)
 builder.setConsistencyLevel(ConsistencyLevel.LOCAL_QUORUM)
 val preparedStatement = session.prepare(sqlStatement)
 builder.addStatement(
 preparedStatement.boundStatementBuilder()
 .setString("k0", titleUpdate)
 .setInt("k1", yearUpdate)
 .build()
)
 val batchStatement = builder.build()
 session.execute(batchStatement)
}

suspend fun updateTable(keySpace: String?, tableNameVal: String?) {
 val def = ColumnDefinition {
 name = "watched"
 type = "boolean"
 }

Get started with keyspaces and tables 258

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 val tableRequest = UpdateTableRequest {
 keyspaceName = keySpace
 tableName = tableNameVal
 addColumns = listOf(def)
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.updateTable(tableRequest)
 }
}

fun getSpecificMovie(session: CqlSession, keyspaceName: String) {
 val resultSet =
 session.execute("SELECT * FROM \"$keyspaceName\".\"MovieKotlin\" WHERE
 title = 'The Family' ALLOW FILTERING ;")

 resultSet.forEach { item: Row ->
 println("The Movie title is ${item.getString("title")}")
 println("The Movie year is ${item.getInt("year")}")
 println("The plot is ${item.getString("plot")}")
 }
}

// Get records from the Movie table.
fun getMovieData(session: CqlSession, keyspaceName: String) {
 val resultSet = session.execute("SELECT * FROM \"$keyspaceName\".
\"MovieKotlin\";")
 resultSet.forEach { item: Row ->
 println("The Movie title is ${item.getString("title")}")
 println("The Movie year is ${item.getInt("year")}")
 println("The plot is ${item.getString("plot")}")
 }
}

// Load data into the table.
fun loadData(session: CqlSession, fileName: String, keySpace: String) {
 val sqlStatement =
 "INSERT INTO \"$keySpace\".\"MovieKotlin\" (title, year, plot) values
 (:k0, :k1, :k2)"
 val parser = JsonFactory().createParser(File(fileName))
 val rootNode = ObjectMapper().readTree<JsonNode>(parser)
 val iter: Iterator<JsonNode> = rootNode.iterator()
 var currentNode: ObjectNode

Get started with keyspaces and tables 259

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 var t = 0
 while (iter.hasNext()) {
 if (t == 50) {
 break
 }

 currentNode = iter.next() as ObjectNode
 val year = currentNode.path("year").asInt()
 val title = currentNode.path("title").asText()
 val info = currentNode.path("info").toString()

 // Insert the data into the Amazon Keyspaces table.
 val builder = BatchStatement.builder(DefaultBatchType.UNLOGGED)
 builder.setConsistencyLevel(ConsistencyLevel.LOCAL_QUORUM)
 val preparedStatement: PreparedStatement = session.prepare(sqlStatement)
 builder.addStatement(
 preparedStatement.boundStatementBuilder()
 .setString("k0", title)
 .setInt("k1", year)
 .setString("k2", info)
 .build()
)

 val batchStatement = builder.build()
 session.execute(batchStatement)
 t++
 }
}

suspend fun listTables(keyspaceNameVal: String?) {
 val tablesRequest = ListTablesRequest {
 keyspaceName = keyspaceNameVal
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.listTablesPaginated(tablesRequest)
 .transform { it.tables?.forEach { obj -> emit(obj) } }
 .collect { obj ->
 println(
 " ARN: " + obj.resourceArn.toString() +
 " Table name: " + obj.tableName
)
 }

Get started with keyspaces and tables 260

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 }
}

suspend fun checkTable(keyspaceNameVal: String?, tableNameVal: String?) {
 var tableStatus = false
 var status: String
 var response: GetTableResponse? = null

 val tableRequest = GetTableRequest {
 keyspaceName = keyspaceNameVal
 tableName = tableNameVal
 }
 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 while (!tableStatus) {
 response = keyClient.getTable(tableRequest)
 status = response!!.status.toString()
 println(". The table status is $status")
 if (status.compareTo("ACTIVE") == 0) {
 tableStatus = true
 }
 delay(500)
 }
 val cols: List<ColumnDefinition>? =
 response!!.schemaDefinition?.allColumns
 if (cols != null) {
 for (def in cols) {
 println("The column name is ${def.name}")
 println("The column type is ${def.type}")
 }
 }
 }
}

suspend fun createTable(keySpaceVal: String?, tableNameVal: String?) {
 // Set the columns.
 val defTitle = ColumnDefinition {
 name = "title"
 type = "text"
 }

 val defYear = ColumnDefinition {
 name = "year"
 type = "int"
 }

Get started with keyspaces and tables 261

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 val defReleaseDate = ColumnDefinition {
 name = "release_date"
 type = "timestamp"
 }

 val defPlot = ColumnDefinition {
 name = "plot"
 type = "text"
 }

 val colList = ArrayList<ColumnDefinition>()
 colList.add(defTitle)
 colList.add(defYear)
 colList.add(defReleaseDate)
 colList.add(defPlot)

 // Set the keys.
 val yearKey = PartitionKey {
 name = "year"
 }

 val titleKey = PartitionKey {
 name = "title"
 }

 val keyList = ArrayList<PartitionKey>()
 keyList.add(yearKey)
 keyList.add(titleKey)

 val schemaDefinitionOb = SchemaDefinition {
 partitionKeys = keyList
 allColumns = colList
 }

 val timeRecovery = PointInTimeRecovery {
 status = PointInTimeRecoveryStatus.Enabled
 }

 val tableRequest = CreateTableRequest {
 keyspaceName = keySpaceVal
 tableName = tableNameVal
 schemaDefinition = schemaDefinitionOb
 pointInTimeRecovery = timeRecovery

Get started with keyspaces and tables 262

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response = keyClient.createTable(tableRequest)
 println("The table ARN is ${response.resourceArn}")
 }
}

suspend fun listKeyspacesPaginator() {
 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 keyClient.listKeyspacesPaginated(ListKeyspacesRequest {})
 .transform { it.keyspaces?.forEach { obj -> emit(obj) } }
 .collect { obj ->
 println("Name: ${obj.keyspaceName}")
 }
 }
}

suspend fun checkKeyspaceExistence(keyspaceNameVal: String?) {
 val keyspaceRequest = GetKeyspaceRequest {
 keyspaceName = keyspaceNameVal
 }
 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response: GetKeyspaceResponse =
 keyClient.getKeyspace(keyspaceRequest)
 val name = response.keyspaceName
 println("The $name KeySpace is ready")
 }
}

suspend fun createKeySpace(keyspaceNameVal: String) {
 val keyspaceRequest = CreateKeyspaceRequest {
 keyspaceName = keyspaceNameVal
 }

 KeyspacesClient { region = "us-east-1" }.use { keyClient ->
 val response = keyClient.createKeyspace(keyspaceRequest)
 println("The ARN of the KeySpace is ${response.resourceArn}")
 }
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

Get started with keyspaces and tables 263

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• CreateKeyspace

• CreateTable

• DeleteKeyspace

• DeleteTable

• GetKeyspace

• GetTable

• ListKeyspaces

• ListTables

• RestoreTable

• UpdateTable

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

class KeyspaceScenario:
 """Runs an interactive scenario that shows how to get started using Amazon
 Keyspaces."""

 def __init__(self, ks_wrapper):
 """
 :param ks_wrapper: An object that wraps Amazon Keyspace actions.
 """
 self.ks_wrapper = ks_wrapper

 @demo_func
 def create_keyspace(self):
 """
 1. Creates a keyspace.
 2. Lists up to 10 keyspaces in your account.

Get started with keyspaces and tables 264

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/keyspaces#code-examples

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 """
 print("Let's create a keyspace.")
 ks_name = q.ask(
 "Enter a name for your new keyspace.\nThe name can contain only
 letters, "
 "numbers and underscores: ",
 q.non_empty,
)
 if self.ks_wrapper.exists_keyspace(ks_name):
 print(f"A keyspace named {ks_name} exists.")
 else:
 ks_arn = self.ks_wrapper.create_keyspace(ks_name)
 ks_exists = False
 while not ks_exists:
 wait(3)
 ks_exists = self.ks_wrapper.exists_keyspace(ks_name)
 print(f"Created a new keyspace.\n\t{ks_arn}.")
 print("The first 10 keyspaces in your account are:\n")
 self.ks_wrapper.list_keyspaces(10)

 @demo_func
 def create_table(self):
 """
 1. Creates a table in the keyspace. The table is configured with a schema
 to hold
 movie data and has point-in-time recovery enabled.
 2. Waits for the table to be in an active state.
 3. Displays schema information for the table.
 4. Lists tables in the keyspace.
 """
 print("Let's create a table for movies in your keyspace.")
 table_name = q.ask("Enter a name for your table: ", q.non_empty)
 table = self.ks_wrapper.get_table(table_name)
 if table is not None:
 print(
 f"A table named {table_name} already exists in keyspace "
 f"{self.ks_wrapper.ks_name}."
)
 else:
 table_arn = self.ks_wrapper.create_table(table_name)
 print(f"Created table {table_name}:\n\t{table_arn}")
 table = {"status": None}
 print("Waiting for your table to be ready...")
 while table["status"] != "ACTIVE":

Get started with keyspaces and tables 265

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 wait(5)
 table = self.ks_wrapper.get_table(table_name)
 print(f"Your table is {table['status']}. Its schema is:")
 pp(table["schemaDefinition"])
 print("\nThe tables in your keyspace are:\n")
 self.ks_wrapper.list_tables()

 @demo_func
 def ensure_tls_cert(self):
 """
 Ensures you have a TLS certificate available to use to secure the
 connection
 to the keyspace. This function downloads a default certificate or lets
 you
 specify your own.
 """
 print("To connect to your keyspace, you must have a TLS certificate.")
 print("Checking for TLS certificate...")
 cert_path = os.path.join(
 os.path.dirname(__file__), QueryManager.DEFAULT_CERT_FILE
)
 if not os.path.exists(cert_path):
 cert_choice = q.ask(
 f"Press enter to download a certificate from
 {QueryManager.CERT_URL} "
 f"or enter the full path to the certificate you want to use: "
)
 if cert_choice:
 cert_path = cert_choice
 else:
 cert = requests.get(QueryManager.CERT_URL).text
 with open(cert_path, "w") as cert_file:
 cert_file.write(cert)
 else:
 q.ask(f"Certificate {cert_path} found. Press Enter to continue.")
 print(
 f"Certificate {cert_path} will be used to secure the connection to
 your keyspace."
)
 return cert_path

 @demo_func
 def query_table(self, qm, movie_file):
 """

Get started with keyspaces and tables 266

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 1. Adds movies to the table from a sample movie data file.
 2. Gets a list of movies from the table and lets you select one.
 3. Displays more information about the selected movie.
 """
 qm.add_movies(self.ks_wrapper.table_name, movie_file)
 movies = qm.get_movies(self.ks_wrapper.table_name)
 print(f"Added {len(movies)} movies to the table:")
 sel = q.choose("Pick one to learn more about it: ", [m.title for m in
 movies])
 movie_choice = qm.get_movie(
 self.ks_wrapper.table_name, movies[sel].title, movies[sel].year
)
 print(movie_choice.title)
 print(f"\tReleased: {movie_choice.release_date}")
 print(f"\tPlot: {movie_choice.plot}")

 @demo_func
 def update_and_restore_table(self, qm):
 """
 1. Updates the table by adding a column to track watched movies.
 2. Marks some of the movies as watched.
 3. Gets the list of watched movies from the table.
 4. Restores to a movies_restored table at a previous point in time.
 5. Gets the list of movies from the restored table.
 """
 print("Let's add a column to record which movies you've watched.")
 pre_update_timestamp = datetime.utcnow()
 print(
 f"Recorded the current UTC time of {pre_update_timestamp} so we can
 restore the table later."
)
 self.ks_wrapper.update_table()
 print("Waiting for your table to update...")
 table = {"status": "UPDATING"}
 while table["status"] != "ACTIVE":
 wait(5)
 table = self.ks_wrapper.get_table(self.ks_wrapper.table_name)
 print("Column 'watched' added to table.")
 q.ask(
 "Let's mark some of the movies as watched. Press Enter when you're
 ready.\n"
)
 movies = qm.get_movies(self.ks_wrapper.table_name)
 for movie in movies[:10]:

Get started with keyspaces and tables 267

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 qm.watched_movie(self.ks_wrapper.table_name, movie.title, movie.year)
 print(f"Marked {movie.title} as watched.")
 movies = qm.get_movies(self.ks_wrapper.table_name, watched=True)
 print("-" * 88)
 print("The watched movies in our table are:\n")
 for movie in movies:
 print(movie.title)
 print("-" * 88)
 if q.ask(
 "Do you want to restore the table to the way it was before all of
 these\n"
 "updates? Keep in mind, this can take up to 20 minutes. (y/n) ",
 q.is_yesno,
):
 starting_table_name = self.ks_wrapper.table_name
 table_name_restored =
 self.ks_wrapper.restore_table(pre_update_timestamp)
 table = {"status": "RESTORING"}
 while table["status"] != "ACTIVE":
 wait(10)
 table = self.ks_wrapper.get_table(table_name_restored)
 print(
 f"Restored {starting_table_name} to {table_name_restored} "
 f"at a point in time of {pre_update_timestamp}."
)
 movies = qm.get_movies(table_name_restored)
 print("Now the movies in our table are:")
 for movie in movies:
 print(movie.title)

 def cleanup(self, cert_path):
 """
 1. Deletes the table and waits for it to be removed.
 2. Deletes the keyspace.

 :param cert_path: The path of the TLS certificate used in the demo. If
 the
 certificate was downloaded during the demo, it is
 removed.
 """
 if q.ask(
 f"Do you want to delete your {self.ks_wrapper.table_name} table and "
 f"{self.ks_wrapper.ks_name} keyspace? (y/n) ",
 q.is_yesno,

Get started with keyspaces and tables 268

Amazon Keyspaces (for Apache Cassandra) Developer Guide

):
 table_name = self.ks_wrapper.table_name
 self.ks_wrapper.delete_table()
 table = self.ks_wrapper.get_table(table_name)
 print("Waiting for the table to be deleted.")
 while table is not None:
 wait(5)
 table = self.ks_wrapper.get_table(table_name)
 print("Table deleted.")
 self.ks_wrapper.delete_keyspace()
 print(
 "Keyspace deleted. If you chose to restore your table during the
 "
 "demo, the original table is also deleted."
)
 if cert_path == os.path.join(
 os.path.dirname(__file__), QueryManager.DEFAULT_CERT_FILE
) and os.path.exists(cert_path):
 os.remove(cert_path)
 print("Removed certificate that was downloaded for this demo.")

 def run_scenario(self):
 logging.basicConfig(level=logging.INFO, format="%(levelname)s:
 %(message)s")

 print("-" * 88)
 print("Welcome to the Amazon Keyspaces (for Apache Cassandra) demo.")
 print("-" * 88)

 self.create_keyspace()
 self.create_table()
 cert_file_path = self.ensure_tls_cert()
 # Use a context manager to ensure the connection to the keyspace is
 closed.
 with QueryManager(
 cert_file_path, boto3.DEFAULT_SESSION, self.ks_wrapper.ks_name
) as qm:
 self.query_table(qm, "../../../resources/sample_files/movies.json")
 self.update_and_restore_table(qm)
 self.cleanup(cert_file_path)

 print("\nThanks for watching!")
 print("-" * 88)

Get started with keyspaces and tables 269

Amazon Keyspaces (for Apache Cassandra) Developer Guide

if __name__ == "__main__":
 try:
 scenario = KeyspaceScenario(KeyspaceWrapper.from_client())
 scenario.run_scenario()
 except Exception:
 logging.exception("Something went wrong with the demo.")

Define a class that wraps keyspace and table actions.

class KeyspaceWrapper:
 """Encapsulates Amazon Keyspaces (for Apache Cassandra) keyspace and table
 actions."""

 def __init__(self, keyspaces_client):
 """
 :param keyspaces_client: A Boto3 Amazon Keyspaces client.
 """
 self.keyspaces_client = keyspaces_client
 self.ks_name = None
 self.ks_arn = None
 self.table_name = None

 @classmethod
 def from_client(cls):
 keyspaces_client = boto3.client("keyspaces")
 return cls(keyspaces_client)

 def create_keyspace(self, name):
 """
 Creates a keyspace.

 :param name: The name to give the keyspace.
 :return: The Amazon Resource Name (ARN) of the new keyspace.
 """
 try:
 response = self.keyspaces_client.create_keyspace(keyspaceName=name)
 self.ks_name = name
 self.ks_arn = response["resourceArn"]
 except ClientError as err:
 logger.error(

Get started with keyspaces and tables 270

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 "Couldn't create %s. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return self.ks_arn

 def exists_keyspace(self, name):
 """
 Checks whether a keyspace exists.

 :param name: The name of the keyspace to look up.
 :return: True when the keyspace exists. Otherwise, False.
 """
 try:
 response = self.keyspaces_client.get_keyspace(keyspaceName=name)
 self.ks_name = response["keyspaceName"]
 self.ks_arn = response["resourceArn"]
 exists = True
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.info("Keyspace %s does not exist.", name)
 exists = False
 else:
 logger.error(
 "Couldn't verify %s exists. Here's why: %s: %s",
 name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return exists

 def list_keyspaces(self, limit):
 """
 Lists the keyspaces in your account.

 :param limit: The maximum number of keyspaces to list.
 """
 try:

Get started with keyspaces and tables 271

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 ks_paginator = self.keyspaces_client.get_paginator("list_keyspaces")
 for page in ks_paginator.paginate(PaginationConfig={"MaxItems":
 limit}):
 for ks in page["keyspaces"]:
 print(ks["keyspaceName"])
 print(f"\t{ks['resourceArn']}")
 except ClientError as err:
 logger.error(
 "Couldn't list keyspaces. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def create_table(self, table_name):
 """
 Creates a table in the keyspace.
 The table is created with a schema for storing movie data
 and has point-in-time recovery enabled.

 :param table_name: The name to give the table.
 :return: The ARN of the new table.
 """
 try:
 response = self.keyspaces_client.create_table(
 keyspaceName=self.ks_name,
 tableName=table_name,
 schemaDefinition={
 "allColumns": [
 {"name": "title", "type": "text"},
 {"name": "year", "type": "int"},
 {"name": "release_date", "type": "timestamp"},
 {"name": "plot", "type": "text"},
],
 "partitionKeys": [{"name": "year"}, {"name": "title"}],
 },
 pointInTimeRecovery={"status": "ENABLED"},
)
 except ClientError as err:
 logger.error(
 "Couldn't create table %s. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],

Get started with keyspaces and tables 272

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 err.response["Error"]["Message"],
)
 raise
 else:
 return response["resourceArn"]

 def get_table(self, table_name):
 """
 Gets data about a table in the keyspace.

 :param table_name: The name of the table to look up.
 :return: Data about the table.
 """
 try:
 response = self.keyspaces_client.get_table(
 keyspaceName=self.ks_name, tableName=table_name
)
 self.table_name = table_name
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.info("Table %s does not exist.", table_name)
 self.table_name = None
 response = None
 else:
 logger.error(
 "Couldn't verify %s exists. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return response

 def list_tables(self):
 """
 Lists the tables in the keyspace.
 """
 try:
 table_paginator = self.keyspaces_client.get_paginator("list_tables")
 for page in table_paginator.paginate(keyspaceName=self.ks_name):
 for table in page["tables"]:
 print(table["tableName"])

Get started with keyspaces and tables 273

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 print(f"\t{table['resourceArn']}")
 except ClientError as err:
 logger.error(
 "Couldn't list tables in keyspace %s. Here's why: %s: %s",
 self.ks_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def update_table(self):
 """
 Updates the schema of the table.

 This example updates a table of movie data by adding a new column
 that tracks whether the movie has been watched.
 """
 try:
 self.keyspaces_client.update_table(
 keyspaceName=self.ks_name,
 tableName=self.table_name,
 addColumns=[{"name": "watched", "type": "boolean"}],
)
 except ClientError as err:
 logger.error(
 "Couldn't update table %s. Here's why: %s: %s",
 self.table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def restore_table(self, restore_timestamp):
 """
 Restores the table to a previous point in time. The table is restored
 to a new table in the same keyspace.

 :param restore_timestamp: The point in time to restore the table. This
 time
 must be in UTC format.
 :return: The name of the restored table.
 """

Get started with keyspaces and tables 274

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 try:
 restored_table_name = f"{self.table_name}_restored"
 self.keyspaces_client.restore_table(
 sourceKeyspaceName=self.ks_name,
 sourceTableName=self.table_name,
 targetKeyspaceName=self.ks_name,
 targetTableName=restored_table_name,
 restoreTimestamp=restore_timestamp,
)
 except ClientError as err:
 logger.error(
 "Couldn't restore table %s. Here's why: %s: %s",
 restore_timestamp,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return restored_table_name

 def delete_table(self):
 """
 Deletes the table from the keyspace.
 """
 try:
 self.keyspaces_client.delete_table(
 keyspaceName=self.ks_name, tableName=self.table_name
)
 self.table_name = None
 except ClientError as err:
 logger.error(
 "Couldn't delete table %s. Here's why: %s: %s",
 self.table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def delete_keyspace(self):
 """
 Deletes the keyspace.
 """

Get started with keyspaces and tables 275

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 try:
 self.keyspaces_client.delete_keyspace(keyspaceName=self.ks_name)
 self.ks_name = None
 except ClientError as err:
 logger.error(
 "Couldn't delete keyspace %s. Here's why: %s: %s",
 self.ks_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Define a class that creates a TLS connection to a keyspace, authenticates with SigV4, and
sends CQL queries to a table in the keyspace.

class QueryManager:
 """
 Manages queries to an Amazon Keyspaces (for Apache Cassandra) keyspace.
 Queries are secured by TLS and authenticated by using the Signature V4
 (SigV4)
 AWS signing protocol. This is more secure than sending username and password
 with a plain-text authentication provider.

 This example downloads a default certificate to secure TLS, or lets you
 specify
 your own.

 This example uses a table of movie data to demonstrate basic queries.
 """

 DEFAULT_CERT_FILE = "sf-class2-root.crt"
 CERT_URL = f"https://certs.secureserver.net/repository/sf-class2-root.crt"

 def __init__(self, cert_file_path, boto_session, keyspace_name):
 """
 :param cert_file_path: The path and file name of the certificate used for
 TLS.
 :param boto_session: A Boto3 session. This is used to acquire your AWS
 credentials.

Get started with keyspaces and tables 276

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 :param keyspace_name: The name of the keyspace to connect.
 """
 self.cert_file_path = cert_file_path
 self.boto_session = boto_session
 self.ks_name = keyspace_name
 self.cluster = None
 self.session = None

 def __enter__(self):
 """
 Creates a session connection to the keyspace that is secured by TLS and
 authenticated by SigV4.
 """
 ssl_context = SSLContext(PROTOCOL_TLSv1_2)
 ssl_context.load_verify_locations(self.cert_file_path)
 ssl_context.verify_mode = CERT_REQUIRED
 auth_provider = SigV4AuthProvider(self.boto_session)
 contact_point = f"cassandra.
{self.boto_session.region_name}.amazonaws.com"
 exec_profile = ExecutionProfile(
 consistency_level=ConsistencyLevel.LOCAL_QUORUM,
 load_balancing_policy=DCAwareRoundRobinPolicy(),
)
 self.cluster = Cluster(
 [contact_point],
 ssl_context=ssl_context,
 auth_provider=auth_provider,
 port=9142,
 execution_profiles={EXEC_PROFILE_DEFAULT: exec_profile},
 protocol_version=4,
)
 self.cluster.__enter__()
 self.session = self.cluster.connect(self.ks_name)
 return self

 def __exit__(self, *args):
 """
 Exits the cluster. This shuts down all existing session connections.
 """
 self.cluster.__exit__(*args)

 def add_movies(self, table_name, movie_file_path):
 """
 Gets movies from a JSON file and adds them to a table in the keyspace.

Get started with keyspaces and tables 277

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 :param table_name: The name of the table.
 :param movie_file_path: The path and file name of a JSON file that
 contains movie data.
 """
 with open(movie_file_path, "r") as movie_file:
 movies = json.loads(movie_file.read())
 stmt = self.session.prepare(
 f"INSERT INTO {table_name} (year, title, release_date, plot) VALUES
 (?, ?, ?, ?);"
)
 for movie in movies[:20]:
 self.session.execute(
 stmt,
 parameters=[
 movie["year"],
 movie["title"],
 date.fromisoformat(movie["info"]
["release_date"].partition("T")[0]),
 movie["info"]["plot"],
],
)

 def get_movies(self, table_name, watched=None):
 """
 Gets the title and year of the full list of movies from the table.

 :param table_name: The name of the movie table.
 :param watched: When specified, the returned list of movies is filtered
 to
 either movies that have been watched or movies that have
 not
 been watched. Otherwise, all movies are returned.
 :return: A list of movies in the table.
 """
 if watched is None:
 stmt = SimpleStatement(f"SELECT title, year from {table_name}")
 params = None
 else:
 stmt = SimpleStatement(
 f"SELECT title, year from {table_name} WHERE watched = %s ALLOW
 FILTERING"
)
 params = [watched]

Get started with keyspaces and tables 278

Amazon Keyspaces (for Apache Cassandra) Developer Guide

 return self.session.execute(stmt, parameters=params).all()

 def get_movie(self, table_name, title, year):
 """
 Gets a single movie from the table, by title and year.

 :param table_name: The name of the movie table.
 :param title: The title of the movie.
 :param year: The year of the movie's release.
 :return: The requested movie.
 """
 return self.session.execute(
 SimpleStatement(
 f"SELECT * from {table_name} WHERE title = %s AND year = %s"
),
 parameters=[title, year],
).one()

 def watched_movie(self, table_name, title, year):
 """
 Updates a movie as having been watched.

 :param table_name: The name of the movie table.
 :param title: The title of the movie.
 :param year: The year of the movie's release.
 """
 self.session.execute(
 SimpleStatement(
 f"UPDATE {table_name} SET watched=true WHERE title = %s AND year
 = %s"
),
 parameters=[title, year],
)

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateKeyspace

• CreateTable

• DeleteKeyspace

• DeleteTable

Get started with keyspaces and tables 279

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/CreateKeyspace
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/CreateTable
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/DeleteKeyspace
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/DeleteTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

• GetKeyspace

• GetTable

• ListKeyspaces

• ListTables

• RestoreTable

• UpdateTable

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Keyspaces
with an AWS SDK. This topic also includes information about getting started and details about
previous SDK versions.

Get started with keyspaces and tables 280

https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/GetKeyspace
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/GetTable
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/ListKeyspaces
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/ListTables
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/RestoreTable
https://docs.aws.amazon.com/goto/boto3/keyspaces-2022-02-10/UpdateTable

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces (for Apache Cassandra) libraries and
tools

This section provides information about Amazon Keyspaces (for Apache Cassandra) libraries, code
examples, and tools.

Topics

• Libraries and examples

• Highlighted sample and developer tool repos

Libraries and examples

You can find Amazon Keyspaces open-source libraries and developer tools on GitHub in the AWS
and AWS samples repos.

Amazon Keyspaces (for Apache Cassandra) developer toolkit

This repository provides a docker image with helpful developer tools for Amazon Keyspaces.
For example, it includes a CQLSHRC file with best practices, an optional AWS authentication
expansion for cqlsh, and helper tools to perform common tasks. The toolkit is optimized for
Amazon Keyspaces, but also works with Apache Cassandra clusters.

https://github.com/aws-samples/amazon-keyspaces-toolkit.

Amazon Keyspaces (for Apache Cassandra) examples

This repo is our official list of Amazon Keyspaces example code. The repo is subdivided into
sections by language (see Examples). Each language has its own subsection of examples. These
examples demonstrate common Amazon Keyspaces service implementations and patterns that you
can use when building applications.

https://github.com/aws-samples/amazon-keyspaces-examples/.

AWS Signature Version 4 (SigV4) authentication plugins

The plugins enable you to manage access to Amazon Keyspaces by using AWS Identity and Access
Management (IAM) users and roles.

Libraries and examples 281

https://github.com/aws
https://github.com/aws-samples
https://github.com/aws-samples/amazon-keyspaces-toolkit
https://github.com/aws-samples/amazon-keyspaces-examples#Examples/
https://github.com/aws-samples/amazon-keyspaces-examples/

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Java: https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin.

Node.js: https://github.com/aws/aws-sigv4-auth-cassandra-nodejs-driver-plugin.

Python: https://github.com/aws/aws-sigv4-auth-cassandra-python-driver-plugin.

Go: https://github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin.

Highlighted sample and developer tool repos

Below are a selection of helpful community tools for Amazon Keyspaces (for Apache Cassandra).

Amazon Keyspaces Protocol Buffers

You can use Protocol Buffers (Protobuf) with Amazon Keyspaces to provide an alternative to
Apache Cassandra User Defined Types (UDTs). Protobuf is a free and open-source cross-platform
data format which is used to serialize structured data. You can store Protobuf data using the
CQL BLOB data type and refactor UDTs while preserving structured data across applications and
programming languages.

This repository provides a code example that connects to Amazon Keyspaces, creates a new table,
and inserts a row containing a Protobuf message. Then the row is read with strong consistency.

https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/
protobuf-user-defined-types

AWS CloudFormation template to create Amazon CloudWatch
dashboard for Amazon Keyspaces (for Apache Cassandra) metrics

This repository provides AWS CloudFormation templates to quickly set up CloudWatch metrics
for Amazon Keyspaces. Using this template will allow you to get started more easily by providing
deployable prebuilt CloudWatch dashboards with commonly used metrics.

https://github.com/aws-samples/amazon-keyspaces-cloudwatch-cloudformation-templates.

Using Amazon Keyspaces (for Apache Cassandra) with AWS Lambda

The repository contains examples that show how to connect to Amazon Keyspaces from Lambda.
Below are some examples.

Highlighted sample and developer tool repos 282

https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-nodejs-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-python-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/protobuf-user-defined-types
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/protobuf-user-defined-types
https://github.com/aws-samples/amazon-keyspaces-cloudwatch-cloudformation-templates

Amazon Keyspaces (for Apache Cassandra) Developer Guide

C#/.NET: https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/dotnet/
datastax-v3/connection-lambda.

Java: https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/
connection-lambda.

Another Lambda example that shows how to deploy and use Amazon Keyspaces from a Python
Lambda is available from the following repo.

https://github.com/aws-samples/aws-keyspaces-lambda-python

Using Amazon Keyspaces (for Apache Cassandra) with Spring

This is an example that shows you how to use Amazon Keyspaces with Spring Boot.

https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/spring

Using Amazon Keyspaces (for Apache Cassandra) with Scala

This is an example that shows how to connect to Amazon Keyspaces using the SigV4 authentication
plugin with Scala.

https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/scala/datastax-v4/
connection-sigv4

Using Amazon Keyspaces (for Apache Cassandra) with AWS Glue

This is an example that shows how to use Amazon Keyspaces with AWS Glue.

https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/scala/datastax-v4/aws-
glue

Amazon Keyspaces (for Apache Cassandra) Cassandra query language
(CQL) to AWS CloudFormation converter

This package implements a command-line tool for converting Apache Cassandra Query Language
(CQL) scripts to AWS CloudFormation (CloudFormation) templates, which allows Amazon
Keyspaces schemas to be easily managed in CloudFormation stacks.

https://github.com/aws/amazon-keyspaces-cql-to-cfn-converter.

Using Amazon Keyspaces (for Apache Cassandra) with Spring 283

https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/dotnet/datastax-v3/connection-lambda
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/dotnet/datastax-v3/connection-lambda
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/connection-lambda
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/connection-lambda
https://github.com/aws-samples/aws-keyspaces-lambda-python
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/java/datastax-v4/spring
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/scala/datastax-v4/connection-sigv4
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/scala/datastax-v4/connection-sigv4
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/scala/datastax-v4/aws-glue
https://github.com/aws-samples/amazon-keyspaces-examples/tree/main/scala/datastax-v4/aws-glue
https://github.com/aws/amazon-keyspaces-cql-to-cfn-converter

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces (for Apache Cassandra) helpers for Apache
Cassandra driver for Java

This repository contains driver policies, examples, and best practices when using the DataStax Java
Driver with Amazon Keyspaces (for Apache Cassandra).

https://github.com/aws-samples/amazon-keyspaces-java-driver-helpers.

Amazon Keyspaces (for Apache Cassandra) snappy compression demo

This repository demonstrates how to compress, store, and read/write large objects for faster
performance and lower throughput and storage costs.

https://github.com/aws-samples/amazon-keyspaces-compression-example.

Amazon Keyspaces (for Apache Cassandra) and Amazon S3 codec demo

Custom Amazon S3 Codec supports transparent, user-configurable mapping of UUID pointers to
Amazon S3 objects.

https://github.com/aws-samples/amazon-keyspaces-large-object-s3-demo.

Amazon Keyspaces (for Apache Cassandra) helpers for Apache Cassandra driver for Java 284

https://github.com/aws-samples/amazon-keyspaces-java-driver-helpers
https://github.com/aws-samples/amazon-keyspaces-compression-example
https://github.com/aws-samples/amazon-keyspaces-large-object-s3-demo

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Integrating Amazon Keyspaces with Apache Spark

Apache Spark is an open-source engine for large-scale data analytics. Apache Spark enables you to
perform analytics on data stored in Amazon Keyspaces more efficiently. You can also use Amazon
Keyspaces to provide applications with consistent, single-digit-millisecond read access to analytics
data from Spark. The open-source Spark Cassandra Connector simplifies reading and writing data
between Amazon Keyspaces and Spark.

Amazon Keyspaces support for the Spark Cassandra Connector streamlines running Cassandra
workloads in Spark-based analytics pipelines by using a fully managed and serverless database
service. With Amazon Keyspaces, you don’t need to worry about Spark competing for the same
underlying infrastructure resources as your tables. Amazon Keyspaces tables scale up and down
automatically based on your application traffic.

The following tutorial walks you through steps and best practices required to read and write data
to Amazon Keyspaces using the Spark Cassandra Connector. The tutorial demonstrates how to
migrate data to Amazon Keyspaces by loading data from a file with the Spark Cassandra Connector
and writing it to an Amazon Keyspaces table. Then, the tutorial shows how to read the data back
from Amazon Keyspaces using the Spark Cassandra Connector. You would do this to run Cassandra
workloads in Spark-based analytics pipelines.

Topics

• Prerequisites for establishing connections to Amazon Keyspaces with the Spark Cassandra
Connector

• Step 1: Configure Amazon Keyspaces for integration with the Apache Cassandra Spark Connector

• Step 2: Configure the Apache Cassandra Spark Connector

• Step 3: Create the application configuration file

• Step 4: Prepare the source data and the target table in Amazon Keyspaces

• Step 5: Write and read Amazon Keyspaces data using the Apache Cassandra Spark Connector

• Troubleshooting common errors when using the Spark Cassandra Connector with Amazon
Keyspaces

285

Amazon Keyspaces (for Apache Cassandra) Developer Guide

Prerequisites for establishing connections to Amazon
Keyspaces with the Spark Cassandra Connector

Before you connect to Amazon Keyspaces with the Spark Cassandra Connector, you need to make
sure that you've installed the following. The compatibility of Amazon Keyspaces with the Spark
Cassandra Connector has been tested with the following recommended versions:

• Java version 8

• Scala 2.12

• Spark 3.4

• Cassandra Connector 2.5 and higher

• Cassandra driver 4.12

1. To install Scala, follow the instructions at https://www.scala-lang.org/download/scala2.html.

2. To install Spark 3.4.1, follow this example.

curl -o spark-3.4.1-bin-hadoop3.tgz -k https://dlcdn.apache.org/spark/spark-3.4.1/
spark-3.4.1-bin-hadoop3.tgz

now to untar
tar -zxvf spark-3.4.1-bin-hadoop3.tgz

set this variable.
export SPARK_HOME=$PWD/spark-3.4.1-bin-hadoop3
``` 

Step 1: Configure Amazon Keyspaces for integration with the 
Apache Cassandra Spark Connector

In this step, you confirm that the partitioner for your account is compatible with the Apache 
Spark Connector and setup the required IAM permissions. The following best practices help you to 
provision sufficient read/write capacity for the table.

1. Confirm that the Murmur3Partitioner partitioner is the default partitioner for your 
account. This partitioner is compatible with the Spark Cassandra Connector. For more 

Prerequisites 286

https://www.scala-lang.org/download/scala2.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

information on partitioners and how to change them, see the section called “Working with 
partitioners”.

2. Setup your IAM permissions for Amazon Keyspaces, using interface VPC endpoints, with 
Apache Spark.

• Assign read/write access to the user table and read access to the system tables as shown in 
the IAM policy example listed below.

• Populating the system.peers table with your available interface VPC endpoints is required 
for clients accessing Amazon Keyspaces with Spark over VPC endpoints.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Effect":"Allow", 
         "Action":[ 
            "cassandra:Select", 
            "cassandra:Modify" 
         ], 
         "Resource":[ 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/table/
mytable", 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
         ] 
      }, 
      { 
         "Sid":"ListVPCEndpoints", 
         "Effect":"Allow", 
         "Action":[ 
            "ec2:DescribeNetworkInterfaces", 
            "ec2:DescribeVpcEndpoints" 
         ], 
         "Resource":"*" 
      } 
   ]
}

3. Consider the following best practices to configure sufficient read/write throughput capacity 
for your Amazon Keyspaces table to support the traffic from the Spark Cassandra Connector.

• Start using on-demand capacity to help you test the scenario.

Step 1: Configure Amazon Keyspaces 287

https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• To optimize the cost of table throughput for production environments, use a rate limiter 
for traffic from the connector, and configure your table to use provisioned capacity with 
automatic scaling. For more information, see the section called “Managing throughput 
capacity with auto scaling”.

• You can use a fixed rate limiter that comes with the Cassandra driver. There are some rate 
limiters tailored to Amazon Keyspaces in the AWS samples repo.

• For more information about capacity management, see the section called “Read/write 
capacity modes”.

Step 2: Configure the Apache Cassandra Spark Connector

Apache Spark is a general-purpose compute platform that you can configure in different ways. To 
configure Spark and the Spark Cassandra Connector for integration with Amazon Keyspaces, we 
recommend that you start with the minimum configuration settings described in the following 
section, and then increase them later as appropriate for your workload.

• Create Spark partition sizes smaller than 8 MBs.

In Spark, partitions represent an atomic chunk of data that can be run in parallel. When you 
are writing data to Amazon Keyspaces with the Spark Cassandra Connector, the smaller the 
Spark partition, the smaller the amount of records that the task is going to write. If a Spark task 
encounters multiple errors, it fails after the designated number of retries has been exhausted. 
To avoid replaying large tasks and reprocessing a lot of data, keep the size of the Spark partition 
small.

• Use a low concurrent number of writes per executor with a large number of retries.

Amazon Keyspaces returns insufficient capacity errors back to Cassandra drivers as operation 
timeouts. You can't address timeouts caused by insufficient capacity by changing the configured 
timeout duration because the Spark Cassandra Connector attempts to retry requests 
transparently using the MultipleRetryPolicy. To ensure that retries don’t overwhelm 
the driver’s connection pool, use a low concurrent number of writes per executor with a large 
number of retries. The following code snippet is an example of this.

spark.cassandra.query.retry.count = 500
spark.cassandra.output.concurrent.writes = 3

• Break down the total throughput and distribute it across multiple Cassandra sessions.

Step 2: Configure the Apache Cassandra Spark Connector 288

https://github.com/aws-samples/amazon-keyspaces-java-driver-helpers
https://github.com/aws-samples/amazon-keyspaces-java-driver-helpers
https://github.com/aws-samples


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• The Cassandra Spark Connector creates one session for each Spark executor. Think about 
this session as the unit of scale to determine the required throughput and the number of 
connections required.

• When defining the number of cores per executor and the number of cores per task, start low 
and increase as needed.

• Set Spark task failures to allow processing in the event of transient errors. After you become 
familiar with your application's traffic characteristics and requirements, we recommend setting
spark.task.maxFailures to a bounded value.

• For example, the following configuration can handle two concurrent tasks per executor, per 
session:

spark.executor.instances = configurable -> number of executors for the session.
spark.executor.cores = 2 -> Number of cores per executor.
spark.task.cpus = 1 -> Number of cores per task.
spark.task.maxFailures = -1

• Turn off batching.

• We recommend that you turn off batching to improve random access patterns. The following 
code snippet is an example of this.

spark.cassandra.output.batch.size.rows = 1 (Default = None)
spark.cassandra.output.batch.grouping.key = none (Default = Partition)
spark.cassandra.output.batch.grouping.buffer.size = 100 (Default = 1000)

• Set SPARK_LOCAL_DIRS to a fast, local disk with enough space.

• By default, Spark saves map output files and resilient distributed datasets (RDDs) to a /tmp
folder. Depending on your Spark host’s configuration, this can result in no space left on the 
device style errors.

• To set the SPARK_LOCAL_DIRS environment variable to a directory called /example/spark-
dir, you can use the following command.

export SPARK_LOCAL_DIRS=/example/spark-dir

Step 2: Configure the Apache Cassandra Spark Connector 289



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Step 3: Create the application configuration file

To use the open-source Spark Cassandra Connector with Amazon Keyspaces, you need to provide 
an application configuration file that contains the settings required to connect with the DataStax 
Java driver. You can use either service-specific credentials or the SigV4 plugin to connect.

If you haven't already done so, you need to convert the Starfield digital certificate into a trustStore 
file. You can follow the detailed steps at the section called “Before you begin” from the Java driver 
connection tutorial. Take note of the trustStore file path and password because you need this 
information when you create the application config file.

Connect with SigV4 authentication

This section shows you an example application.conf file that you can use when connecting 
with AWS credentials and the SigV4 plugin. If you haven't already done so, you need to generate 
your IAM access keys (an access key ID and a secret access key) and save them in your AWS 
config file or as environment variables. For detailed instructions, see the section called “Required 
credentials for AWS authentication”.

In the following example, replace the file path to your trustStore file, and replace the password.

datastax-java-driver { 
        basic.contact-points = ["cassandra.us-east-1.amazonaws.com:9142"] 
        basic.load-balancing-policy { 
            class = DefaultLoadBalancingPolicy 
            local-datacenter = us-east-1
            slow-replica-avoidance = false 
        } 
        basic.request { 
              consistency = LOCAL_QUORUM 
        } 
        advanced { 
                auth-provider = { 
                   class = software.aws.mcs.auth.SigV4AuthProvider 
                   aws-region = us-east-1
                 } 
            ssl-engine-factory { 
                class = DefaultSslEngineFactory 
                truststore-path = "path_to_file/cassandra_truststore.jks" 
                truststore-password = "password" 
        hostname-validation=false 

Step 3: Create the app config file 290



Amazon Keyspaces (for Apache Cassandra) Developer Guide

            } 
   } 
        advanced.connection.pool.local.size = 3    
}

Update and save this configuration file as /home/user1/application.conf. The following 
examples use this path.

Connect with service-specific credentials

This section shows you an example application.conf file that you can use when connecting 
with service-specific credentials. If you haven't already done so, you need to generate service-
specific credentials for Amazon Keyspaces. For detailed instructions, see the section called “Service-
specific credentials”.

In the following example, replace username and password with your own credentials. Also, 
replace the file path to your trustStore file, and replace the password.

datastax-java-driver { 
        basic.contact-points = ["cassandra.us-east-1.amazonaws.com:9142"] 
        basic.load-balancing-policy { 
            class = DefaultLoadBalancingPolicy 
            local-datacenter = us-east-1 
        } 
        basic.request { 
              consistency = LOCAL_QUORUM 
        } 
        advanced { 
            auth-provider = { 
            class = PlainTextAuthProvider 
                    username = "username" 
                    password = "password" 
                    aws-region = "us-east-1" 
            } 
            ssl-engine-factory { 
                class = DefaultSslEngineFactory 
                truststore-path = "path_to_file/cassandra_truststore.jks" 
                truststore-password = "password" 
                hostname-validation=false 
            } 
            metadata = { 
                schema { 

Connect with service-specific credentials 291



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                     token-map.enabled = true 
                } 
            } 
        }     
}

Update and save this configuration file as /home/user1/application.conf to use with the 
code example.

Connect with a fixed rate

To force a fixed rate per Spark executor, you can define a request throttler. This request throttler 
limits the rate of requests per second. The Spark Cassandra Connector deploys a Cassandra session 
per executor. Using the following formula can help you achieve consistent throughput against a 
table.

max-request-per-second * numberOfExecutors = total throughput against a table

You can add this example to the application config file that you created earlier.

datastax-java-driver { 
  advanced.throttler { 
    class = RateLimitingRequestThrottler 

    max-requests-per-second = 3000 
    max-queue-size = 30000 
    drain-interval = 1 millisecond 
  }
}

Step 4: Prepare the source data and the target table in Amazon 
Keyspaces

In this step, you create a source file with sample data and an Amazon Keyspaces table.

1. Create the source file. You can choose one of the following options:

• For this tutorial, you use a comma-separated values (CSV) file with the name
keyspaces_sample_table.csv as the source file for the data migration. The provided 
sample file contains a few rows of data for a table with the name book_awards.

Connect with a fixed rate 292



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Download the sample CSV file (keyspaces_sample_table.csv) that is contained 
in the following archive file samplemigration.zip. Unzip the archive and take note of 
the path to keyspaces_sample_table.csv.

• If you want to follow along with your own CSV file to write data to Amazon Keyspaces, 
make sure that the data is randomized. Data that is read directly from a database or 
exported to flat files is typically ordered by the partition and primary key. Importing 
ordered data to Amazon Keyspaces can cause it to be written to smaller segments of 
Amazon Keyspaces partitions, which results in an uneven traffic distribution. This can lead 
to slower performance and higher error rates.

In contrast, randomizing data helps to take advantage of the built-in load balancing 
capabilities of Amazon Keyspaces by distributing traffic across partitions more evenly. 
There are various tools that you can use for randomizing data. For an example that uses 
the open-source tool Shuf, see the section called “Step 2: Prepare the data” in the data 
migration tutorial. The following is an example that shows how to shuffle data as a
DataFrame.

import org.apache.spark.sql.functions.randval
shuffledDF = dataframe.orderBy(rand())

2. Create the target keyspace and table in Amazon Keyspaces.

a. Connect to Amazon Keyspaces using cqlsh, and replace the service endpoint, user name, 
and password in the following example with your own values.

cqlsh cassandra.us-east-2.amazonaws.com 9142 -u "111122223333" -
p "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY" --ssl

b. Create a new keyspace with the name catalog as shown in the following example.

CREATE KEYSPACE catalog WITH REPLICATION = {'class': 'SingleRegionStrategy'};

c. After the new keyspace has a status of available, use the following code to create the 
target table book_awards. To learn more about asynchronous resource creation and how 
to check if a resource is available, see the section called “Creating keyspaces”.

CREATE TABLE catalog.book_awards ( 
   year int, 

Step 4: Prepare the source data and the target table 293

samples/samplemigration.zip
https://en.wikipedia.org/wiki/Shuf


Amazon Keyspaces (for Apache Cassandra) Developer Guide

   award text, 
   rank int,  
   category text, 
   book_title text, 
   author text,  
   publisher text, 
   PRIMARY KEY ((year, award), category, rank) 
   );

Step 5: Write and read Amazon Keyspaces data using the 
Apache Cassandra Spark Connector

In this step, you start by loading the data from the sample file into a DataFrame with the Spark 
Cassandra Connector. Next, you write the data from the DataFrame into your Amazon Keyspaces 
table. You can also use this part independently, for example, to migrate data into an Amazon 
Keyspaces table. Finally, you read the data from your table into a DataFrame using the Spark 
Cassandra Connector. You can also use this part independently, for example, to read data from an 
Amazon Keyspaces table to perform data analytics with Apache Spark.

1. Start the Spark Shell as shown in the following example. Note that this example is using SigV4 
authentication.

./spark-shell --files application.conf --conf 
 spark.cassandra.connection.config.profile.path=application.conf 
 --packages software.aws.mcs:aws-sigv4-auth-cassandra-java-driver-
plugin:4.0.5,com.datastax.spark:spark-cassandra-connector_2.12:3.1.0 --conf 
 spark.sql.extensions=com.datastax.spark.connector.CassandraSparkExtensions

2. Import the Spark Cassandra Connector with the following code.

import org.apache.spark.sql.cassandra._

3. To read data from the CSV file and store it in a DataFrame, you can use the following code 
example.

var df = 
 spark.read.option("header","true").option("inferSchema","true").csv("keyspaces_sample_table.csv")

You can display the result with the following command.

Step 5: Write and read Amazon Keyspaces data 294



Amazon Keyspaces (for Apache Cassandra) Developer Guide

scala> df.show();

The output should look similar to this.

+----------------+----+-----------+----+------------------+--------------------
+-------------+
|           award|year|   category|rank|            author|          book_title|    
 publisher|
+----------------+----+-----------+----+------------------+--------------------
+-------------+
|Kwesi Manu Prize|2020|    Fiction|   1|        Akua Mansa|   Where did you go?|
SomePublisher|
|Kwesi Manu Prize|2020|    Fiction|   2|       John Stiles|           Yesterday|
Example Books|
|Kwesi Manu Prize|2020|    Fiction|   3|        Nikki Wolf|Moving to the Cha...| 
 AnyPublisher|
|            Wolf|2020|Non-Fiction|   1|       Wang Xiulan|    History of Ideas|
Example Books|
|            Wolf|2020|Non-Fiction|   2|Ana Carolina Silva|       Science Today|
SomePublisher|
|            Wolf|2020|Non-Fiction|   3| Shirley Rodriguez|The Future of Sea...| 
 AnyPublisher|
|     Richard Roe|2020|    Fiction|   1| Alejandro Rosalez|         Long Summer|
SomePublisher|
|     Richard Roe|2020|    Fiction|   2|       Arnav Desai|             The Key|
Example Books|
|     Richard Roe|2020|    Fiction|   3|     Mateo Jackson|    Inside the Whale| 
 AnyPublisher|
+----------------+----+-----------+----+------------------+--------------------
+-------------+

You can confirm the schema of the data in the DataFrame as shown in the following example.

scala> df.printSchema

The output should look like this.

root
|-- award: string (nullable = true)
|-- year: integer (nullable = true)

Step 5: Write and read Amazon Keyspaces data 295



Amazon Keyspaces (for Apache Cassandra) Developer Guide

|-- category: string (nullable = true)
|-- rank: integer (nullable = true)
|-- author: string (nullable = true)
|-- book_title: string (nullable = true)
|-- publisher: string (nullable = true)

4. Use the following command to write the data in the DataFrame to the Amazon Keyspaces 
table.

df.write.cassandraFormat("book_awards", "catalog").mode("APPEND").save()

5. To confirm that the data was saved, you can read it back to a dataframe, as shown in the 
following example.

var newDf = spark.read.cassandraFormat("book_awards", "catalog").load()

Then you can show the data that is now contained in the dataframe.

scala> newDf.show()

The output of that command should look like this.

+--------------------+------------------+----------------+-----------+-------------
+----+----+
|          book_title|            author|           award|   category|    
 publisher|rank|year|
+--------------------+------------------+----------------+-----------+-------------
+----+----+
|         Long Summer| Alejandro Rosalez|     Richard Roe|    Fiction|
SomePublisher|   1|2020|
|    History of Ideas|       Wang Xiulan|            Wolf|Non-Fiction|Example 
 Books|   1|2020|
|   Where did you go?|        Akua Mansa|Kwesi Manu Prize|    Fiction|
SomePublisher|   1|2020|
|    Inside the Whale|     Mateo Jackson|     Richard Roe|    Fiction| 
 AnyPublisher|   3|2020|
|           Yesterday|       John Stiles|Kwesi Manu Prize|    Fiction|Example 
 Books|   2|2020|
|Moving to the Cha...|        Nikki Wolf|Kwesi Manu Prize|    Fiction| 
 AnyPublisher|   3|2020|

Step 5: Write and read Amazon Keyspaces data 296



Amazon Keyspaces (for Apache Cassandra) Developer Guide

|The Future of Sea...| Shirley Rodriguez|            Wolf|Non-Fiction| 
 AnyPublisher|   3|2020|
|       Science Today|Ana Carolina Silva|            Wolf|Non-Fiction|
SomePublisher|   2|2020|
|             The Key|       Arnav Desai|     Richard Roe|    Fiction|Example 
 Books|   2|2020|
+--------------------+------------------+----------------+-----------+-------------
+----+----+

Troubleshooting common errors when using the Spark 
Cassandra Connector with Amazon Keyspaces

If you're using Amazon Virtual Private Cloud and you connect to Amazon Keyspaces, the most 
common errors experienced when using the Spark connector are caused by the following 
configuration issues.

• The IAM user or role used in the VPC lacks the required permissions to access the system.peers
table in Amazon Keyspaces. For more information, see the section called “Populating
system.peers table entries with interface VPC endpoint information”.

• The IAM user or role lacks the required read/write permissions to the user table and read access 
to the system tables in Amazon Keyspaces. For more information, see the section called “Step 1: 
Configure Amazon Keyspaces”.

• The Java driver configuration doesn't disable hostname verification when creating the SSL/TLS 
connection. For examples, see the section called “Step 2: Configure the driver”.

For detailed connection troubleshooting steps, see the section called “VPC endpoint connection 
errors”.

In addition, you can use Amazon CloudWatch metrics to help you troubleshoot issues with your 
Spark Cassandra Connector configuration in Amazon Keyspaces. To learn more about using 
Amazon Keyspaces with CloudWatch, see the section called “Monitoring with CloudWatch”.

The following section describes the most useful metrics to observe when you're using the Spark 
Cassandra Connector.

Troubleshooting 297



Amazon Keyspaces (for Apache Cassandra) Developer Guide

PerConnectionRequestRateExceeded

Amazon Keyspaces has a quota of 3,000 requests per second, per connection. Each Spark 
executor establishes a connection with Amazon Keyspaces. Running multiple retries can exhaust 
your per-connection request rate quota. If you exceed this quota, Amazon Keyspaces emits a
PerConnectionRequestRateExceeded metric in CloudWatch.

If you see PerConnectionRequestRateExceeded events present along with other system or user 
errors, it's likely that Spark is running multiple retries beyond the allotted number of requests 
per connection.

If you see PerConnectionRequestRateExceeded events without other errors, then you 
might need to increase the number of connections in your driver settings to allow for more 
throughput, or you might need to increase the number of executors in your Spark job.

StoragePartitionThroughputCapacityExceeded

Amazon Keyspaces has a quota of 1,000 WCUs or WRUs per second/3,000 RCUs or RRUs per 
second, per-partition. If you're seeing StoragePartitionThroughputCapacityExceeded
CloudWatch events, it could indicate that data is not randomized on load. For examples how to 
shuffle data, see the section called “Step 4: Prepare the source data and the target table”.

Common errors and warnings

If you're using Amazon Virtual Private Cloud and you connect to Amazon Keyspaces, the Cassandra 
driver might issue a warning message about the control node itself in the system.peers table. 
For more information, see the section called “Common errors and warnings”. You can safely ignore 
this warning.

Common errors and warnings 298



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Troubleshooting Amazon Keyspaces (for Apache 
Cassandra)

The following sections provide information about how to troubleshoot common configuration 
issues that you might encounter when using Amazon Keyspaces (for Apache Cassandra).

For troubleshooting guidance specific to IAM access, see the section called “Troubleshooting”.

For more information about security best practices, see the section called “Security best practices”.

Topics

• Troubleshooting connections in Amazon Keyspaces

• Troubleshooting capacity management in Amazon Keyspaces

• Troubleshooting data definition language in Amazon Keyspaces

Troubleshooting connections in Amazon Keyspaces

Having trouble connecting? Here are some common issues and how to resolve them.

Errors connecting to an Amazon Keyspaces endpoint

Failed connections and connection errors can result in different error messages. The following 
section covers the most common scenarios.

Topics

• I can't connect to Amazon Keyspaces with cqlsh

• I can't connect to Amazon Keyspaces using a Cassandra client driver

• My VPC endpoint connection doesn't work properly

• I can't connect using cassandra-stress

• I can't connect using IAM identities

• I'm trying to import data with cqlsh and the connection to my Amazon Keyspaces table is lost

Connections 299



Amazon Keyspaces (for Apache Cassandra) Developer Guide

I can't connect to Amazon Keyspaces with cqlsh

You're trying to connect to an Amazon Keyspaces endpoint using cqlsh and the connection fails 
with a Connection error.

If you try to connect to an Amazon Keyspaces table and cqlsh hasn't been configured properly, 
the connection fails. The following section provides examples of the most common configuration 
issues that result in connection errors when you're trying to establish a connection using cqlsh.

Note

If you're trying to connect to Amazon Keyspaces from a VPC, additional permissions are 
required. To successfully configure a connection using VPC endpoints, follow the steps in 
the the section called “Connecting with VPC endpoints”.

You're trying to connect to Amazon Keyspaces using cqlsh, but you get a connection timed 
out error.

This might be the case if you didn't supply the correct port, which results in the following error.

#  cqlsh cassandra.us-east-1.amazonaws.com 9140 -u "USERNAME" -p "PASSWORD" --ssl
Connection error: ('Unable to connect to any servers', {'3.234.248.199': error(None, 
 "Tried connecting to [('3.234.248.199', 9140)]. Last error: timed out")})

To resolve this issue, verify that you're using port 9142 for the connection.

You're trying to connect to Amazon Keyspaces using cqlsh, but you get a Name or service 
not known error.

This might be the case if you used an endpoint that is misspelled or doesn't exist. In the following 
example, the name of the endpoint is misspelled.

#  cqlsh cassandra.us-east-1.amazon.com 9142 -u "USERNAME" -p "PASSWORD" --ssl
Traceback (most recent call last): 
  File "/usr/bin/cqlsh.py", line 2458, in >module> 
    main(*read_options(sys.argv[1:], os.environ)) 
  File "/usr/bin/cqlsh.py", line 2436, in main 
    encoding=options.encoding) 

Errors connecting to an Amazon Keyspaces endpoint 300



Amazon Keyspaces (for Apache Cassandra) Developer Guide

  File "/usr/bin/cqlsh.py", line 484, in __init__ 
    load_balancing_policy=WhiteListRoundRobinPolicy([self.hostname]), 
  File "/usr/share/cassandra/lib/cassandra-driver-internal-only-3.11.0-bb96859b.zip/
cassandra-driver-3.11.0-bb96859b/cassandra/policies.py", line 417, in __init__
socket.gaierror: [Errno -2] Name or service not known

To resolve this issue when you're using public endpoints to connect, select an available endpoint 
from the section called “Service endpoints”, and verify that the name of the endpoint doesn't have 
any errors. If you're using VPC endpoints to connect, verify that the VPC endpoint information is 
correct in your cqlsh configuration.

You're trying to connect to Amazon Keyspaces using cqlsh, but you receive an
OperationTimedOut error.

Amazon Keyspaces requires that SSL is enabled for connections to ensure strong security. The SSL 
parameter might be missing if you receive the following error.

# cqlsh cassandra.us-east-1.amazonaws.com -u "USERNAME" -p "PASSWORD"
Connection error: ('Unable to connect to any servers', {'3.234.248.192': 
 OperationTimedOut('errors=Timed out creating connection (5 seconds), 
 last_host=None',)})
#

To resolve this issue, add the following flag to the cqlsh connection command.

--ssl

You're trying to connect to Amazon Keyspaces using cqlsh, and you receive a SSL transport 
factory requires a valid certfile to be specified error.

In this case, the path to the SSL/TLS certificate is missing, which results in the following error.

# cat .cassandra/cqlshrc
[connection]
port = 9142
factory = cqlshlib.ssl.ssl_transport_factory
#

# cqlsh cassandra.us-east-1.amazonaws.com -u "USERNAME" -p "PASSWORD" --ssl

Errors connecting to an Amazon Keyspaces endpoint 301



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Validation is enabled; SSL transport factory requires a valid certfile to be specified. 
 Please provide path to the certfile in [ssl] section as 'certfile' option in /
root/.cassandra/cqlshrc (or use [certfiles] section) or set SSL_CERTFILE environment 
 variable.
#

To resolve this issue, add the path to the certfile on your computer.

certfile =   path_to_file/sf-class2-root.crt

You're trying to connect to Amazon Keyspaces using cqlsh, but you receive a No such file or 
directory error.

This might be the case if the path to the certificate file on your computer is wrong, which results in 
the following error.

# cat .cassandra/cqlshrc
[connection]
port = 9142
factory = cqlshlib.ssl.ssl_transport_factory

[ssl]
validate = true
certfile = /root/wrong_path/sf-class2-root.crt
#

# cqlsh cassandra.us-east-1.amazonaws.com -u "USERNAME" -p "PASSWORD" --ssl
Connection error: ('Unable to connect to any servers', {'3.234.248.192': IOError(2, 'No 
 such file or directory')})
#

To resolve this issue, verify that the path to the certfile on your computer is correct.

You're trying to connect to Amazon Keyspaces using cqlsh, but you receive a [X509] PEM lib
error.

This might be the case if the SSL/TLS certificate file sf-class2-root.crt is not valid, which 
results in the following error.

# cqlsh cassandra.us-east-1.amazonaws.com -u "USERNAME" -p "PASSWORD" --ssl

Errors connecting to an Amazon Keyspaces endpoint 302



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Connection error: ('Unable to connect to any servers', {'3.234.248.241': 
 error(185090057, u"Tried connecting to [('3.234.248.241', 9142)]. Last error: [X509] 
 PEM lib (_ssl.c:3063)")})
#

To resolve this issue, download the Starfield digital certificate using the following command. Save
sf-class2-root.crt locally or in your home directory.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

You're trying to connect to Amazon Keyspaces using cqlsh, but you receive an unknown SSL 
error.

This might be the case if the SSL/TLS certificate file sf-class2-root.crt is empty, which results 
in the following error.

# cqlsh cassandra.us-east-1.amazonaws.com -u "USERNAME" -p "PASSWORD" --ssl
Connection error: ('Unable to connect to any servers', {'3.234.248.220': error(0, 
 u"Tried connecting to [('3.234.248.220', 9142)]. Last error: unknown error 
 (_ssl.c:3063)")})
#

To resolve this issue, download the Starfield digital certificate using the following command. Save
sf-class2-root.crt locally or in your home directory.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

You're trying to connect to Amazon Keyspaces using cqlsh, but you receive a SSL: 
CERTIFICATE_VERIFY_FAILED error.

This might be the case if the SSL/TLS certificate file could not be verified, which results in the 
following error.

Connection error: ('Unable to connect to any servers', {'3.234.248.223': 
 error(1, u"Tried connecting to [('3.234.248.223', 9142)]. Last error: [SSL: 
 CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:727)")})

To resolve this issue, download the certificate file again using the following command. Save sf-
class2-root.crt locally or in your home directory.

Errors connecting to an Amazon Keyspaces endpoint 303



Amazon Keyspaces (for Apache Cassandra) Developer Guide

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

You're trying to connect to Amazon Keyspaces using cqlsh, but you're receiving a Last error: 
timed out error.

This might be the case if you didn't configure an outbound rule for Amazon Keyspaces in your 
Amazon EC2 security group, which results in the following error.

# cqlsh cassandra.us-east-1.amazonaws.com 9142 -u  "USERNAME" -p "PASSWORD" --ssl
Connection error: ('Unable to connect to any servers', {'3.234.248.206': error(None, 
 "Tried connecting to [('3.234.248.206', 9142)]. Last error: timed out")})
#

To confirm that this issue is caused by the configuration of the Amazon EC2 instance and not
cqlsh, you can try to connect to your keyspace using the AWS CLI, for example with the following 
command.

aws keyspaces list-tables --keyspace-name 'my_keyspace'

If this command also times out, the Amazon EC2 instance is not correctly configured.

To confirm that you have sufficient permissions to access Amazon Keyspaces, you can use the AWS 
CloudShell to connect with cqlsh. If that connections gets established, you need to configure the 
Amazon EC2 instance.

To resolve this issue, confirm that your Amazon EC2 instance has an outbound rule that allows 
traffic to Amazon Keyspaces. If that is not the case, you need to create a new security group for 
the EC2 instance, and add a rule that allows outbound traffic to Amazon Keyspaces resources. To 
update the outbound rule to allow traffic to Amazon Keyspaces, choose CQLSH/CASSANDRA from 
the Type drop-down menu.

After creating the new security group with the outbound traffic rule, you need to add it to the 
instance. Select the instance and then choose Actions, then Security, and then Change security 
groups. Add the new security group with the outbound rule, but make sure that the default group 
also remains available.

For more information about how to view and edit EC2 outbound rules, see Add rules to a security 
group in the Amazon EC2 User Guide for Linux Instances.

Errors connecting to an Amazon Keyspaces endpoint 304

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule


Amazon Keyspaces (for Apache Cassandra) Developer Guide

You're trying to connect to Amazon Keyspaces using cqlsh, but you receive an Unauthorized
error.

This might be the case if you're missing Amazon Keyspaces permissions in the IAM user policy, 
which results in the following error.

# cqlsh cassandra.us-east-1.amazonaws.com 9142 -u  "testuser-at-12345678910" -p 
 "PASSWORD" --ssl
Connection error: ('Unable to connect to any servers', {'3.234.248.241': 
 AuthenticationFailed('Failed to authenticate to 3.234.248.241: Error from server: 
 code=2100 [Unauthorized] message="User arn:aws:iam::12345678910:user/testuser has no 
 permissions."',)})
#

To resolve this issue, ensure that the IAM user testuser-at-12345678910 has permissions to 
access Amazon Keyspaces. For examples of IAM policies that grant access to Amazon Keyspaces, see
the section called “Identity-based policy examples”.

For troubleshooting guidance that's specific to IAM access, see the section called 
“Troubleshooting”.

You're trying to connect to Amazon Keyspaces using cqlsh, but you receive a Bad credentials
error.

This might be the case if the user name or password is wrong, which results in the following error.

# cqlsh cassandra.us-east-1.amazonaws.com 9142 -u   "USERNAME" -p "PASSWORD" --ssl
Connection error: ('Unable to connect to any servers', {'3.234.248.248': 
 AuthenticationFailed('Failed to authenticate to 3.234.248.248: Error from server: 
 code=0100 [Bad credentials] message="Provided username USERNAME and/or password are 
 incorrect"',)})
# 

To resolve this issue, verify that the USERNAME and PASSWORD in your code match the user name 
and password you obtained when you generated service-specific credentials.

Important

If you continue to see errors when trying to connect with cqlsh, rerun the command with 
the --debug option and include the detailed output when contacting AWS Support.

Errors connecting to an Amazon Keyspaces endpoint 305



Amazon Keyspaces (for Apache Cassandra) Developer Guide

I can't connect to Amazon Keyspaces using a Cassandra client driver

The following sections shows the most common errors when connecting with a Cassandra client 
driver.

You're trying to connect to an Amazon Keyspaces table using a driver and the SigV4 plugin, but 
you receive an AttributeError error.

If the credentials are not correctly configured, it results in the following error.

cassandra.cluster.NoHostAvailable: (‘Unable to connect to any servers’, 
 {‘44.234.22.154:9142’: AttributeError(“‘NoneType’ object has no attribute 
 ‘access_key’“)})

To resolve this issue, verify that you're passing the credentials associated with your IAM user or role 
when using the SigV4 plugin. The SigV4 plugin requires the following credentials.

• AWS_ACCESS_KEY_ID – Specifies an AWS access key associated with an IAM user or role.

• AWS_SECRET_ACCESS_KEY– Specifies the secret key associated with the access key. This is 
essentially the "password" for the access key.

To learn more about access keys and the SigV4 plugin, see the section called “IAM credentials for 
AWS authentication”.

You're trying to connect to an Amazon Keyspaces table using a driver, but you receive a
PartialCredentialsError error.

If the AWS_SECRET_ACCESS_KEY is missing, it can result in the following error.

cassandra.cluster.NoHostAvailable: (‘Unable to connect to any servers’, 
 {‘44.234.22.153:9142’:  
 PartialCredentialsError(‘Partial credentials found in config-file, missing: 
 aws_secret_access_key’)})

To resolve this issue, verify that you're passing both the AWS_ACCESS_KEY_ID and the
AWS_SECRET_ACCESS_KEY when using the SigV4 plugin. To learn more about access keys and the 
SigV4 plugin, see the section called “IAM credentials for AWS authentication”.

You're trying to connect to an Amazon Keyspaces table using a driver, but you receive an
Invalid signature error.

Errors connecting to an Amazon Keyspaces endpoint 306



Amazon Keyspaces (for Apache Cassandra) Developer Guide

This might be the case if you used wrong credentials, which results in the following error.

cassandra.cluster.NoHostAvailable: (‘Unable to connect to any servers’, 
 {‘44.234.22.134:9142’:  
 AuthenticationFailed(‘Failed to authenticate to 44.234.22.134:9142: Error from server: 
 code=0100  
 [Bad credentials] message=“Authentication failure: Invalid signature”’)})

To resolve this issue, verify that the credentials you're passing are associated with the IAM user or 
role that you configured to access Amazon Keyspaces. To learn more about access keys and the 
SigV4 plugin, see the section called “IAM credentials for AWS authentication”.

My VPC endpoint connection doesn't work properly

You're trying to connect to Amazon Keyspaces using VPC endpoints, but you're receiving token 
map errors or you are experiencing low throughput.

This might be the case if the VPC endpoint connection isn't correctly configured.

To resolve these issues, verify the following configuration details. To follow a step-by-step tutorial 
to learn how to configure a connection over interface VPC endpoints for Amazon Keyspaces see the 
section called “Connecting with VPC endpoints”.

1. Confirm that the IAM entity used to connect to Amazon Keyspaces has read/write access to the 
user table and read access to the system tables as shown in the following example.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Effect":"Allow", 
         "Action":[ 
            "cassandra:Select", 
            "cassandra:Modify" 
         ], 
         "Resource":[ 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/table/
mytable", 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
         ] 
      } 

Errors connecting to an Amazon Keyspaces endpoint 307



Amazon Keyspaces (for Apache Cassandra) Developer Guide

   ]
}

2. Confirm that the IAM entity used to connect to Amazon Keyspaces has the required read 
permissions to access the VPC endpoint information on your Amazon EC2 instance as shown in 
the following example.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Sid":"ListVPCEndpoints", 
         "Effect":"Allow", 
         "Action":[ 
            "ec2:DescribeNetworkInterfaces", 
            "ec2:DescribeVpcEndpoints" 
         ], 
         "Resource":"*" 
      } 
   ]
}

Note

The managed policies AmazonKeyspacesReadOnlyAccess_v2 and
AmazonKeyspacesFullAccess include the required permissions to let Amazon 
Keyspaces access the Amazon EC2 instance to read information about available 
interface VPC endpoints.

For more information about VPC endpoints, see the section called “Using interface VPC 
endpoints for Amazon Keyspaces”

3. Confirm that the SSL configuration of the Java driver sets hostname validation to false as 
shown in this example.

hostname-validation = false

For more information about driver configuration, see the section called “Step 2: Configure the 
driver”.

Errors connecting to an Amazon Keyspaces endpoint 308



Amazon Keyspaces (for Apache Cassandra) Developer Guide

4. To confirm that the VPC endpoint has been configured correctly, you can run the following 
statement from within your VPC.

Note

You can't use your local developer environment or the Amazon Keyspaces CQL editor 
to confirm this configuration, because they use the public endpoint.

SELECT peer FROM system.peers;

The output should look similar to this example and return between 2 to 6 nodes with private 
IP addresses, depending on your VPC setup and AWS Region.

peer
--------------- 
 192.0.2.0.15 
 192.0.2.0.24 
 192.0.2.0.13 
 192.0.2.0.7 
 192.0.2.0.8

(5 rows)

I can't connect using cassandra-stress

You're trying to connect to Amazon Keyspaces using the cassandra-stress command, but 
you're receiving an SSL context error.

This happens if you try to connect to Amazon Keyspaces, but you don't have the trustStore setup 
correctly. Amazon Keyspaces requires the use of Transport Layer Security (TLS) to help secure 
connections with clients.

In this case, you see the following error.

Error creating the initializing the SSL Context

To resolve this issue, follow the instructions to set up a trustStore as shown in this topic the section 
called “Before you begin”.

Errors connecting to an Amazon Keyspaces endpoint 309



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Once the trustStore is setup, you should be able to connect with the following command.

./cassandra-stress user profile=./profile.yaml n=100 "ops(insert=1,select=1)" 
 cl=LOCAL_QUORUM -node "cassandra.eu-north-1.amazonaws.com" -port native=9142 
 -transport ssl-alg="PKIX" truststore="./cassandra_truststore.jks" truststore-
password="trustStore_pw" -mode native cql3 user="user_name" password="password"

I can't connect using IAM identities

You're trying to connect to an Amazon Keyspaces table using an IAM identity, but you're 
receiving an Unauthorized error.

This happens if you try to connect to an Amazon Keyspaces table using an IAM identity (for 
example, an IAM user) without implementing the policy and giving the user the required 
permissions first.

In this case, you see the following error.

Connection error: ('Unable to connect to any servers', {'3.234.248.202': 
 AuthenticationFailed('Failed to authenticate to 3.234.248.202:  
Error from server: code=2100 [Unauthorized] message="User 
 arn:aws:iam::1234567890123:user/testuser has no permissions."',)})

To resolve this issue, verify the permissions of the IAM user. To connect with a standard driver, a 
user must have at least SELECT access to the system tables, because most drivers read the system 
keyspaces/tables when they establish the connection.

For example IAM policies that grant access to Amazon Keyspaces system and user tables, see the 
section called “Accessing Amazon Keyspaces tables”.

To review the troubleshooting section specific to IAM, see the section called “Troubleshooting”.

I'm trying to import data with cqlsh and the connection to my Amazon Keyspaces 
table is lost

You're trying to upload data to Amazon Keyspaces with cqlsh, but you're receiving connection 
errors.

The connection to Amazon Keyspaces fails after the cqlsh client receives three consecutive errors of 
any type from the server. The cqlsh client fails with the following message.

Errors connecting to an Amazon Keyspaces endpoint 310



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Failed to import 1 rows: NoHostAvailable - , will retry later, attempt 3 of 100

To resolve this error, you need to make sure that the data to be imported matches the table 
schema in Amazon Keyspaces. Review the import file for parsing errors. You can try using a single 
row of data by using an INSERT statement to isolate the error.

The client automatically attempts to reestablish the connection.

Troubleshooting capacity management in Amazon Keyspaces

Having trouble with serverless capacity? Here are some common issues and how to resolve them.

Serverless capacity errors

This section outlines how to recognize errors related to serverless capacity management and how 
to resolve them. For example, you might observe insufficient capacity events when your application 
exceeds your provisioned throughput capacity.

Because Apache Cassandra is cluster-based software that is designed to run on a fleet of nodes, 
it doesn’t have exception messages related to serverless features such as throughput capacity. 
Most drivers only understand the error codes that are available in Apache Cassandra, so Amazon 
Keyspaces uses that same set of error codes to maintain compatibility.

To map Cassandra errors to the underlying capacity events, you can use Amazon CloudWatch to 
monitor the relevant Amazon Keyspaces metrics. Insufficient-capacity events that result in client-
side errors can be categorized into these three groups based on the resource that is causing the 
event:

• Table – If you choose Provisioned capacity mode for a table, and your application exceeds your 
provisioned throughput, you might observe insufficient-capacity errors. For more information, 
see the section called “Read/write capacity modes”.

• Partition – You might experience insufficient-capacity events if traffic against a given partition 
exceeds 3,000 RCUs or 1,000 WCUs. We recommend distributing traffic uniformly across 
partitions as a best practice. For more information, see the section called “Data modeling”.

• Connection – You might experience insufficient throughput if you exceed the quota for the 
maximum number of operations per second, per connection. To increase throughput, you can 
increase the number of default connections when configuring the connection with the driver. For 

Capacity management 311



Amazon Keyspaces (for Apache Cassandra) Developer Guide

more information, see the section called “CQL query throughput tuning” and the section called 
“Load balancing”.

To determine which resource is causing the insufficient-capacity event that is returning the client-
side error, you can check the dashboard in the Amazon Keyspaces console. By default, the console 
provides an aggregated view of the most common capacity and traffic related CloudWatch metrics 
in the Capacity and related metrics section on the Capacity tab for the table.

To create your own dashboard using Amazon CloudWatch, check the following Amazon Keyspaces 
metrics.

• PerConnectionRequestRateExceeded – Requests to Amazon Keyspaces that exceed the 
quota for the per-connection request rate. Each client connection to Amazon Keyspaces can 
support up to 3000 CQL requests per second. You can perform more than 3000 requests per 
second by creating multiple connections.

• ReadThrottleEvents – Requests to Amazon Keyspaces that exceed the read capacity for a 
table.

• StoragePartitionThroughputCapacityExceeded – Requests to an Amazon Keyspaces 
storage partition that exceed the throughput capacity of the partition. Amazon Keyspaces 
storage partitions can support up to 1000 WCU/WRU per second and 3000 RCU/RRU per second. 
To mitigate these exceptions, we recommend that you review your data model to distribute 
read/write traffic across more partitions.

• WriteThrottleEvents – Requests to Amazon Keyspaces that exceed the write capacity for a 
table.

To learn more about CloudWatch, see the section called “Monitoring with CloudWatch”. For a list 
of all available CloudWatch metrics for Amazon Keyspaces, see the section called “Metrics and 
dimensions”.

Note

To get started with a custom dashboard that shows all commonly observed metrics for 
Amazon Keyspaces, you can use a prebuilt CloudWatch template available on GitHub in the
AWS samples repository.

Topics

Serverless capacity errors 312

https://github.com/aws-samples/amazon-keyspaces-cloudwatch-cloudformation-templates


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• I'm receiving NoHostAvailable insufficient capacity errors from my client driver

• I'm receiving write timeout errors during data import

• I can't see the actual storage size of a keyspace or table

I'm receiving NoHostAvailable insufficient capacity errors from my client driver

You're seeing Read_Timeout or Write_Timeout exceptions for a table.

Repeatedly trying to write to or read from an Amazon Keyspaces table with insufficient capacity 
can result in client-side errors that are specific to the driver.

Use CloudWatch to monitor your provisioned and actual throughput metrics, and insufficient 
capacity events for the table. For example, a read request that doesn’t have enough throughput 
capacity fails with a Read_Timeout exception and is posted to the ReadThrottleEvents metric. 
A write request that doesn’t have enough throughput capacity fails with a Write_Timeout
exception and is posted to the WriteThrottleEvents metric. For more information about these 
metrics, see the section called “Metrics and dimensions”.

To resolve these issues, consider one of the following options.

• Increase the provisioned throughput for the table, which is the maximum amount of throughput 
capacity an application can consume. For more information, see the section called “Read capacity 
units and write capacity units”.

• Let the service manage throughput capacity on your behalf with automatic scaling. For more 
information, see the section called “Managing throughput capacity with auto scaling”.

• Chose On-demand capacity mode for the table. For more information, see the section called 
“On-demand capacity mode”.

If you need to increase the default capacity quota for your account, see Quotas.

You're seeing errors related to exceeded partition capacity.

Partition throttling can occur when the partition capacity is temporarily exceeded (which might be 
automatically handled by adaptive capacity or on-demand capacity). This error might also point 
to a problem with your data model. Amazon Keyspaces storage partitions can support up to 1000 
WCU/WRU per second and 3000 RCU/RRU per second. To learn more about how to improve your 
data model to distribute read/write traffic across more partitions, see the section called “Data 
modeling”.

Serverless capacity errors 313



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Write_Timeout exceptions can also be caused by an elevated rate of concurrent write operations 
that include static and nonstatic data in the same logical partition. If traffic is expected to run 
multiple concurrent write operations that include static and nonstatic data within the same logical 
partition, we recommend writing static and nonstatic data separately. Writing the data separately 
also helps to optimize the throughput costs.

You're seeing errors related to exceeded connection request rate.

Connection throttling can be due to one of the following causes.

• You might not have enough connections configured per session.

• You might be getting fewer connections than available peers, because you don't have the VPC 
endpoint permissions configured correctly. For more information about VPC endpoint policies, 
see the section called “Using interface VPC endpoints for Amazon Keyspaces”.

• If you're using a 4.x driver, check to see if you have hostname validation enabled. The driver 
enables TLS hostname verification by default. This configuration leads to Amazon Keyspaces 
appearing as a single-node cluster to the driver. We recommend that you turn hostname 
verification off.

We recommend that you follow these best practices to ensure that your connections and 
throughput are optimized:

• Configure CQL query throughput tuning.

Amazon Keyspaces supports up to 3,000 CQL queries per TCP connection per second, but there is 
no limit on the number of connections a driver can establish.

Most open-source Cassandra drivers establish a connection pool to Cassandra and load balance 
queries over that pool of connections. Amazon Keyspaces exposes 9 peer IP addresses to drivers. 
The default behavior of most drivers is to establish a single connection to each peer IP address. 
Therefore, the maximum CQL query throughput of a driver using the default settings will be 
27,000 CQL queries per second.

To increase this number, we recommend that you increase the number of connections per IP 
address that your driver is maintaining in its connection pool. For example, setting the maximum 
connections per IP address to 2 will double the maximum throughput of your driver to 54,000 
CQL queries per second.

• Optimize your single-node connections.

Serverless capacity errors 314



Amazon Keyspaces (for Apache Cassandra) Developer Guide

By default, most open-source Cassandra drivers establish one or more connections to every IP 
address advertised in the system.peers table when establishing a session. However, certain 
configurations can lead to a driver connecting to a single Amazon Keyspaces IP address. This 
can happen if the driver is attempting SSL hostname validation of the peer nodes (for example, 
DataStax Java drivers), or when it's connecting through a VPC endpoint.

To get the same availability and performance as a driver with connections to multiple IP 
addresses, we recommend that you do the following:

• Increase the number of connections per IP to 9 or higher depending on the desired client 
throughput.

• Create a custom retry policy that ensures that retries are run against the same node.

• If you use VPC endpoints, grant the IAM entity that is used to connect to Amazon Keyspaces 
access permissions to query your VPC for the endpoint and network interface information. This 
improves load balancing and increases read/write throughput. For more information, see ???.

I'm receiving write timeout errors during data import

You're receiving a timeout error when uploading data using the cqlsh COPY command.

Failed to import 1 rows: WriteTimeout - Error from server: code=1100 [Coordinator node 
 timed out waiting for replica nodes' responses] 
 message="Operation timed out - received only 0 responses." info={'received_responses': 
 0, 'required_responses': 2, 'write_type': 'SIMPLE', 'consistency':  
 'LOCAL_QUORUM'}, will retry later, attempt 1 of 100

Amazon Keyspaces uses the ReadTimeout and WriteTimeout exceptions to indicate when a 
write request fails due to insufficient throughput capacity. To help diagnose insufficient capacity 
exceptions, Amazon Keyspaces publishes the following metrics in Amazon CloudWatch.

• WriteThrottleEvents

• ReadThrottledEvents

• StoragePartitionThroughputCapacityExceeded

To resolve insufficient-capacity errors during a data load, lower the write rate per worker or the 
total ingest rate, and then retry to upload the rows. For more information, see the section called 
“Step 4: Configure cqlsh COPY FROM settings”. For a more robust data upload option, consider 

Serverless capacity errors 315



Amazon Keyspaces (for Apache Cassandra) Developer Guide

using DSBulk, which is available from the GitHub repository. For step-by-step instructions, see the 
section called “Loading data using DSBulk”.

I can't see the actual storage size of a keyspace or table

You can't see the actual storage size of the keyspace or table.

You can estimate storage size by starting to calculate the row size in a table. Detailed instructions 
for calculating the row size are available at the section called “Calculating row size”.

Troubleshooting data definition language in Amazon Keyspaces

Having trouble creating resources? Here are some common issues and how to resolve them.

Data definition language errors

Amazon Keyspaces performs data definition language (DDL) operations asynchronously—for 
example, creating and deleting keyspaces and tables. If an application is trying to use the resource 
before it's ready, the operation fails.

You can monitor the creation status of new keyspaces and tables in the AWS Management Console, 
which indicates when a keyspace or table is pending or active. You can also monitor the creation 
status of a new keyspace or table programmatically by querying the system schema table. A 
keyspace or table becomes visible in the system schema when it's ready for use.

Note

To optimize the creation of keyspaces using AWS CloudFormation, you can use this utility 
to convert CQL scripts into CloudFormation templates. The tool is available from the
GitHub repository.

Topics

• I created a new keyspace, but I can't view or access it

• I created a new table, but I can't view or access it

• I'm trying to restore a table using Amazon Keyspaces point-in-time recovery (PITR), but the 
restore fails

• I'm trying to use INSERT/UPDATE to edit custom Time to Live (TTL) settings, but the operation 
fails

Data definition language 316

https://github.com/datastax/dsbulk
https://github.com/aws/amazon-keyspaces-cql-to-cfn-converter


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• I'm trying to upload data to my Amazon Keyspaces table and I get an error about exceeding the 
number of columns

• I'm trying to delete data in my Amazon Keyspaces table and the deletion fails for the range

I created a new keyspace, but I can't view or access it

You're receiving errors from your application that is trying to access a new keyspace.

If you try to access a newly created Amazon Keyspaces keyspace that is still being created 
asynchronously, you will get an error. The following error is an example.

InvalidRequest: Error from server: code=2200 [Invalid query] message="unconfigured 
 keyspace mykeyspace"

The recommended design pattern to check when a new keyspace is ready for use is to poll the 
Amazon Keyspaces system schema tables (system_schema_mcs.*).

For more information, see the section called “Creating keyspaces”.

I created a new table, but I can't view or access it

You're receiving errors from your application that is trying to access a new table.

If you try to access a newly created Amazon Keyspaces table that is still being created 
asynchronously, you will get an error. For example, trying to query a table that isn't available yet 
fails with an unconfigured table error.

InvalidRequest: Error from server: code=2200 [Invalid query] message="unconfigured 
 table mykeyspace.mytable"

Trying to view the table with sync_table() fails with a KeyError.

KeyError: 'mytable'

The recommended design pattern to check when a new table is ready for use is to poll the Amazon 
Keyspaces system schema tables (system_schema_mcs.*).

This is the example output for a table that is being created.

Data definition language errors 317



Amazon Keyspaces (for Apache Cassandra) Developer Guide

user-at-123@cqlsh:system_schema_mcs> select table_name,status from 
 system_schema_mcs.tables where keyspace_name='example_keyspace' and 
 table_name='example_table';

table_name | status

------------+----------

example_table | CREATING

(1 rows)

This is the example output for a table that is active.

user-at-123@cqlsh:system_schema_mcs> select table_name,status from 
 system_schema_mcs.tables where keyspace_name='example_keyspace' and 
 table_name='example_table';

table_name | status

------------+----------

example_table | ACTIVE

(1 rows)

For more information, see the section called “Creating tables”.

I'm trying to restore a table using Amazon Keyspaces point-in-time recovery 
(PITR), but the restore fails

If you're trying to restore an Amazon Keyspaces table with point-in-time recovery (PITR), and you 
see the restore process begin but not complete successfully, you might not have configured all of 
the required permissions that are needed by the restore process for this particular table.

In addition to user permissions, Amazon Keyspaces might require permissions to perform actions 
during the restore process on your principal's behalf. This is the case if the table is encrypted with a 
customer managed key, or if you're using IAM policies that restrict incoming traffic.

For example, if you're using condition keys in your IAM policy to restrict source traffic to specific 
endpoints or IP ranges, the restore operation fails. To allow Amazon Keyspaces to perform the 

Data definition language errors 318



Amazon Keyspaces (for Apache Cassandra) Developer Guide

table restore operation on your principal's behalf, you must add an aws:ViaAWSService global 
condition key in the IAM policy.

For more information about permissions to restore tables, see the section called “Restore 
Permissions”.

I'm trying to use INSERT/UPDATE to edit custom Time to Live (TTL) settings, but 
the operation fails

If you're trying to insert or update a custom TTL value, the operation might fail with the following 
error.

TTL is not yet supported.

To specify custom TTL values for rows or columns by using INSERT or UPDATE operations, you 
must first enable TTL for the table. You can enable TTL for a table using the ttl custom property.

For more information about enabling custom TTL settings for tables, see the section called “How 
to enable Time to Live (TTL) on existing tables using custom properties”.

I'm trying to upload data to my Amazon Keyspaces table and I get an error about 
exceeding the number of columns

You're uploading data and have exceeded the number of columns that can be updated 
simultaneously.

This error occurs when your table schema exceeds the maximum size of 350 KB. For more 
information, see Quotas.

I'm trying to delete data in my Amazon Keyspaces table and the deletion fails for 
the range

You're trying to delete data by partition key and receive a range delete error.

This error occurs when you're trying to delete more than 1,000 rows in one delete operation.

Range delete requests are limited by the amount of items that can be deleted in a 
 single range.

For more information, see the section called “Range delete”.

Data definition language errors 319



Amazon Keyspaces (for Apache Cassandra) Developer Guide

To delete more than 1,000 rows within a single partition, consider the following options.

• Delete by partition – If the majority of partitions are under 1,000 rows, you can attempt to 
delete data by partition. If the partitions contain more than 1,000 rows, attempt to delete by the 
clustering column instead.

• Delete by clustering column – If your model contains multiple clustering columns, you can use 
the column hierarchy to delete multiple rows. Clustering columns are a nested structure, and you 
can delete many rows by operating against the top-level column.

• Delete by individual row – You can iterate through the rows and delete each row by its full 
primary key (partition columns and clustering columns).

• As a best practice, consider splitting your rows across partitions – In Amazon Keyspaces, we 
recommend that you distribute your throughput across table partitions. This distributes data 
and access evenly across physical resources, which provides the best throughput. For more 
information, see the section called “Data modeling”.

Consider also the following recommendations when you're planning delete operations for heavy 
workloads.

• With Amazon Keyspaces, partitions can contain a virtually unbounded number of rows. This 
allows you to scale partitions “wider” than the traditional Cassandra guidance of 100 MB. It’s not 
uncommon for time series or ledgers to grow over a gigabyte of data over time.

• With Amazon Keyspaces, there are no compaction strategies or tombstones to consider when 
you have to perform delete operations for heavy workloads. You can delete as much data as you 
want without impacting read performance.

Data definition language errors 320



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Serverless resource management in Amazon Keyspaces 
(for Apache Cassandra)

Amazon Keyspaces (for Apache Cassandra) is serverless. Instead of deploying, managing, and 
maintaining storage and compute resources for your workload through nodes in a cluster, Amazon 
Keyspaces allocates storage and read/write throughput resources directly to tables.

This chapter provides details about serverless resource management in Amazon Keyspaces. 
To learn how to monitor serverless resources with Amazon CloudWatch, see the section called 
“Monitoring with CloudWatch”.

Topics

• Storage in Amazon Keyspaces

• Read/write capacity modes in Amazon Keyspaces

• Managing throughput capacity automatically with Amazon Keyspaces auto scaling

• Using Burst Capacity Effectively in Amazon Keyspaces

Storage in Amazon Keyspaces

Amazon Keyspaces (for Apache Cassandra) provisions storage to tables automatically based on the 
actual data stored in your table. You do not need to provision storage to tables upfront. Amazon 
Keyspaces scales your table storage up and down automatically as your application writes, updates, 
and deletes data. Unlike traditional Apache Cassandra clusters, Amazon Keyspaces does not require 
additional storage to support low-level system operations such as compaction. You pay only for 
the storage you use.

Amazon Keyspaces configures keyspaces with a replication factor of three by default. You cannot 
modify the replication factor. Amazon Keyspaces replicates table data three times automatically 
in multiple AWS Availability Zones for high availability. The per-GB price of Amazon Keyspaces 
storage already includes replication. See Amazon Keyspaces (for Apache Cassandra) Pricing for 
more information.

Amazon Keyspaces monitors the size of your tables continuously to determine your storage 
charges. For more information about how Amazon Keyspaces calculates the billable size of the 
data, see the section called “Calculating row size”.

Storage 321

https://aws.amazon.com/keyspaces/pricing


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Read/write capacity modes in Amazon Keyspaces

Amazon Keyspaces has two read/write capacity modes for processing reads and writes on your 
tables:

• On-demand (default)

• Provisioned

The read/write capacity mode that you choose controls how you are charged for read and write 
throughput and how table throughput capacity is managed.

Topics

• On-demand capacity mode

• Provisioned throughput capacity mode

• Managing and viewing capacity modes

• Considerations when changing capacity modes

On-demand capacity mode

Amazon Keyspaces (for Apache Cassandra) on-demand capacity mode is a flexible billing option 
capable of serving thousands of requests per second without capacity planning. This option offers 
pay-per-request pricing for read and write requests so that you pay only for what you use.

When you choose on-demand mode, Amazon Keyspaces can scale the throughput capacity for your 
table up to any previously reached traffic level instantly, and then back down when application 
traffic decreases. If a workload’s traffic level hits a new peak, the service adapts rapidly to increase 
throughput capacity for your table. You can enable on-demand capacity mode for both new and 
existing tables.

On-demand mode is a good option if any of the following is true:

• You create new tables with unknown workloads.

• You have unpredictable application traffic.

• You prefer the ease of paying for only what you use.

Read/write capacity modes 322



Amazon Keyspaces (for Apache Cassandra) Developer Guide

To get started with on-demand mode, you can create a new table or update an existing table to 
use on-demand capacity mode using the console or with a few lines of Cassandra Query Language 
(CQL) code. For more information, see the section called “Tables”.

Topics

• Read request units and write request units

• Peak traffic and scaling properties

• Initial throughput for on-demand capacity mode

Read request units and write request units

With on-demand capacity mode tables, you don't need to specify how much read and write 
throughput you expect your application to use in advance. Amazon Keyspaces charges you for the 
reads and writes that you perform on your tables in terms of read request units (RRUs) and write 
request units (WRUs).

• One RRU represents one LOCAL_QUORUM read request, or two LOCAL_ONE read requests, for a 
row up to 4 KB in size. If you need to read a row that is larger than 4 KB, the read operation uses 
additional RRUs. The total number of RRUs required depends on the row size, and whether you 
want to use LOCAL_QUORUM or LOCAL_ONE read consistency. For example, reading an 8 KB row 
requires 2 RRUs using LOCAL_QUORUM read consistency, and 1 RRU if you choose LOCAL_ONE
read consistency.

• One WRU represents one write for a row up to 1 KB in size. All writes are using LOCAL_QUORUM
consistency, and there is no additional charge for using lightweight transactions (LWTs). If you 
need to write a row that is larger than 1 KB, the write operation uses additional WRUs. The total 
number of WRUs required depends on the row size. For example, if your row size is 2 KB, you 
require 2 WRUs to perform one write request.

For information about supported consistency levels, see the section called “Supported Cassandra 
consistency levels”.

Peak traffic and scaling properties

Amazon Keyspaces tables that use on-demand capacity mode automatically adapt to your 
application’s traffic volume. On-demand capacity mode instantly accommodates up to double the 
previous peak traffic on a table. For example, your application's traffic pattern might vary between 

On-demand capacity mode 323



Amazon Keyspaces (for Apache Cassandra) Developer Guide

5,000 and 10,000 LOCAL_QUORUM reads per second, where 10,000 reads per second is the previous 
traffic peak.

With this pattern, on-demand capacity mode instantly accommodates sustained traffic of up to 
20,000 reads per second. If your application sustains traffic of 20,000 reads per second, that peak 
becomes your new previous peak, enabling subsequent traffic to reach up to 40,000 reads per 
second.

If you need more than double your previous peak on a table, Amazon Keyspaces automatically 
allocates more capacity as your traffic volume increases. This helps ensure that your table has 
enough throughput capacity to process the additional requests. However, you might observe 
insufficient throughput capacity errors if you exceed double your previous peak within 30 minutes.

For example, suppose that your application's traffic pattern varies between 5,000 and 10,000 
strongly consistent reads per second, where 20,000 reads per second is the previously reached 
traffic peak. In this case, the service recommends that you space your traffic growth over at least 
30 minutes before driving up to 40,000 reads per second.

To learn more about default quotas for your account and how to increase them, see Quotas.

Initial throughput for on-demand capacity mode

If you create a new table with on-demand capacity mode enabled or switch an existing table to on-
demand capacity mode for the first time, the table has the following previous peak settings, even 
though it hasn't served traffic previously using on-demand capacity mode:

• Newly created table with on-demand capacity mode: The previous peak is 2,000 WRUs and 
6,000 RRUs. You can drive up to double the previous peak immediately. Doing this enables newly 
created on-demand tables to serve up to 4,000 WRUs and 12,000 RRUs.

• Existing table switched to on-demand capacity mode: The previous peak is half the previous 
WCUs and RCUs provisioned for the table or the settings for a newly created table with on-
demand capacity mode, whichever is higher.

Provisioned throughput capacity mode

If you choose provisioned throughput capacity mode, you specify the number of reads and writes 
per second that are required for your application. This helps you manage your Amazon Keyspaces 
usage to stay at or below a defined request rate to optimize price and maintain predictability. To 

Provisioned throughput capacity mode 324



Amazon Keyspaces (for Apache Cassandra) Developer Guide

learn more about automatic scaling for provisioned throughput see the section called “Managing 
throughput capacity with auto scaling”.

Provisioned throughput capacity mode is a good option if any of the following is true:

• You have predictable application traffic.

• You run applications whose traffic is consistent or ramps up gradually.

• You can forecast capacity requirements to optimize price.

Read capacity units and write capacity units

For provisioned throughput capacity mode tables, you specify throughput capacity in terms of read 
capacity units (RCUs) and write capacity units (WCUs):

• One RCU represents one LOCAL_QUORUM read per second, or two LOCAL_ONE reads per second, 
for a row up to 4 KB in size. If you need to read a row that is larger than 4 KB, the read operation 
uses additional RCUs.

The total number of RCUs required depends on the row size, and whether you want
LOCAL_QUORUM or LOCAL_ONE reads. For example, if your row size is 8 KB, you require 2 RCUs to 
sustain one LOCAL_QUORUM read per second, and 1 RCU if you choose LOCAL_ONE reads.

• One WCU represents one write per second for a row up to 1 KB in size. All writes are using
LOCAL_QUORUM consistency, and there is no additional charge for using lightweight transactions 
(LWTs). If you need to write a row that is larger than 1 KB, the write operation uses additional 
WCUs.

The total number of WCUs required depends on the row size. For example, if your row size is 2 
KB, you require 2 WCUs to sustain one write request per second.

If your application reads or writes larger rows (up to the Amazon Keyspaces maximum row size of 
1 MB), it consumes more capacity units. To learn more about how to estimate the row size, see the 
section called “Calculating row size”. For example, suppose that you create a provisioned table with 
6 RCUs and 6 WCUs. With these settings, your application could do the following:

• Perform LOCAL_QUORUM reads of up to 24 KB per second (4 KB × 6 RCUs).

• Perform LOCAL_ONE reads of up to 48 KB per second (twice as much read throughput).

• Write up to 6 KB per second (1 KB × 6 WCUs).

Provisioned throughput capacity mode 325



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Provisioned throughput is the maximum amount of throughput capacity an application can 
consume from a table. If your application exceeds your provisioned throughput capacity, you might 
observe insufficient capacity errors.

For example, a read request that doesn’t have enough throughput capacity fails with a
Read_Timeout exception and is posted to the ReadThrottleEvents metric. A write request that 
doesn’t have enough throughput capacity fails with a Write_Timeout exception and is posted to 
the WriteThrottleEvents metric.

You can use Amazon CloudWatch to monitor your provisioned and actual throughput metrics 
and insufficient capacity events. For more information about these metrics, see the section called 
“Metrics and dimensions”.

Note

Repeated errors due to insufficient capacity can lead to client-side driver 
specific exceptions, for example the DataStax Java driver fails with a
NoHostAvailableException.

To change the throughput capacity settings for tables, you can use the AWS Management Console 
or the ALTER TABLE statement using CQL, for more information see the section called “ALTER 
TABLE”.

To learn more about default quotas for your account and how to increase them, see Quotas.

Managing and viewing capacity modes

You can query the system table in the Amazon Keyspaces system keyspace to review capacity mode 
information about a table. You can also see whether a table is using on-demand or provisioned 
throughput capacity mode. If the table is configured with provisioned throughput capacity mode, 
you can see the throughput capacity provisioned for the table.

Example

SELECT * from system_schema_mcs.tables where keyspace_name = 'mykeyspace' and 
 table_name = 'mytable';

A table configured with on-demand capacity mode returns the following.

Managing and viewing capacity modes 326



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                    { 
                        'capacity_mode': { 
                            'last_update_to_pay_per_request_timestamp': 
 '1579551547603', 
                            'throughput_mode': 'PAY_PER_REQUEST' 
                         } 
                    }                     
                 

A table configured with provisioned throughput capacity mode returns the following.

                    { 
                        'capacity_mode': { 
                            'last_update_to_pay_per_request_timestamp': 
 '1579048006000',  
                            'read_capacity_units': '5000',  
                            'throughput_mode': 'PROVISIONED',  
                            'write_capacity_units': '6000' 
                        } 
                     } 
                 

The last_update_to_pay_per_request_timestamp value is measured in milliseconds.

To change the provisioned throughput capacity for a table, use the section called “ALTER TABLE”.

Considerations when changing capacity modes

When you switch a table from provisioned capacity mode to on-demand capacity mode, Amazon 
Keyspaces makes several changes to the structure of your table and partitions. This process can 
take several minutes. During the switching period, your table delivers throughput that is consistent 
with the previously provisioned WCU and RCU amounts.

When you switch from on-demand capacity mode back to provisioned capacity mode, your table 
delivers throughput that is consistent with the previous peak reached when the table was set to 
on-demand capacity mode.

Considerations when changing capacity modes 327



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

You can switch between read/write capacity modes twice in a 24-hour period.

Managing throughput capacity automatically with Amazon 
Keyspaces auto scaling

Many database workloads are cyclical in nature or are difficult to predict in advance. For example, 
consider a social networking app where most of the users are active during daytime hours. The 
database must be able to handle the daytime activity, but there's no need for the same levels of 
throughput at night.

Another example might be a new mobile gaming app that is experiencing rapid adoption. If the 
game becomes very popular, it could exceed the available database resources, which would result 
in slow performance and unhappy customers. These kinds of workloads often require manual 
intervention to scale database resources up or down in response to varying usage levels.

Amazon Keyspaces (for Apache Cassandra) helps you provision throughput capacity efficiently 
for variable workloads by adjusting throughput capacity automatically in response to actual 
application traffic. Amazon Keyspaces uses the Application Auto Scaling service to increase and 
decrease a table's read and write capacity on your behalf. For more information about Application 
Auto Scaling, see the Application Auto Scaling User Guide.

Note

To get started with Amazon Keyspaces automatic scaling quickly, see the section called 
“Using the console”. To manage Amazon Keyspaces scaling policies with Cassandra Query 
Language (CQL), see the section called “Using CQL”. To learn how to manage Amazon 
Keyspaces scaling policies using the CLI, see the section called “Using the CLI”.

How Amazon Keyspaces automatic scaling works

The following diagram provides a high-level overview of how Amazon Keyspaces automatic scaling 
manages throughput capacity for a table.

Managing throughput capacity with auto scaling 328

https://docs.aws.amazon.com/autoscaling/application/userguide/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

To enable automatic scaling for a table, you create a scaling policy. The scaling policy specifies 
whether you want to scale read capacity or write capacity (or both), and the minimum and 
maximum provisioned capacity unit settings for the table.

The scaling policy also defines a target utilization. Target utilization is the ratio of consumed 
capacity units to provisioned capacity units at a point in time, expressed as a percentage. 
Automatic scaling uses a target tracking algorithm to adjust the provisioned throughput of the 
table upward or downward in response to actual workloads. It does this so that the actual capacity 
utilization remains at or near your target utilization.

You can set the automatic scaling target utilization values between 20 and 90 percent for your 
read and write capacity. The default target utilization rate is 70 percent. You can set the target 
utilization to be a lower percentage if your traffic changes quickly and you want capacity to begin 
scaling up sooner. You can also set the target utilization rate to a higher rate if your application 
traffic changes more slowly and you want to reduce the cost of throughput.

For more information about scaling policies, see  Target tracking scaling policies for Application 
Auto Scaling in the Application Auto Scaling User Guide.

When you create a scaling policy, Amazon Keyspaces creates two pairs of Amazon CloudWatch 
alarms on your behalf. Each pair represents your upper and lower boundaries for provisioned and 
consumed throughput settings. These CloudWatch alarms are triggered when the table's actual 
utilization deviates from your target utilization for a sustained period of time. To learn more about 
Amazon CloudWatch, see the Amazon CloudWatch User Guide.

How Amazon Keyspaces automatic scaling works 329

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

When one of the CloudWatch alarms is triggered, Amazon Simple Notification Service (Amazon 
SNS) sends you a notification (if you have enabled it). The CloudWatch alarm then invokes 
Application Auto Scaling to evaluate your scaling policy. This in turn issues an Alter Table 
request to Amazon Keyspaces to adjust the table's provisioned capacity upward or downward 
as appropriate. To learn more about Amazon SNS notifications, see  Setting up Amazon SNS 
notifications.

Amazon Keyspaces processes the Alter Table request by increasing (or decreasing) the table's 
provisioned throughput capacity so that it approaches your target utilization.

Note

Amazon Keyspaces auto scaling modifies provisioned throughput settings only when the 
actual workload stays elevated (or depressed) for a sustained period of several minutes. 
The target tracking algorithm seeks to keep the target utilization at or near your chosen 
value over the long term. Sudden, short-duration spikes of activity are accommodated by 
the table's built-in burst capacity.

How auto scaling works for multi-Region tables

To ensure that there's always enough read and write capacity for all table replicas in all AWS 
Regions of a multi-Region table in provisioned capacity mode, we recommend that you configure 
Amazon Keyspaces auto scaling.

When you use a multi-Region table in provisioned mode with auto scaling, you can't disable 
auto scaling for a single table replica. But you can adjust the table's read auto scaling settings 
for different Regions. For example, you can specify different read capacity and read auto scaling 
settings for each Region that the table is replicated in.

The read auto scaling settings that you configure for a table replica in a specified Region overwrite 
the general auto scaling settings of the table. The write capacity, however, has to remain 
synchronized across all table replicas to ensure that there's enough capacity to replicate writes in 
all Regions.

Amazon Keyspaces auto scaling independently updates the provisioned capacity of the table in 
each AWS Region based on the usage in that Region. As a result, the provisioned capacity in each 
Region for a multi-Region table might be different when auto scaling is active.

How auto scaling works for multi-Region tables 330

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

You can configure the auto scaling settings of a multi-Region table and its replicas using the 
Amazon Keyspaces console, API, AWS CLI, or CQL. For more information on how to create and 
update auto scaling settings for multi-Region tables, see the section called “How to use Multi-
Region Replication”.

Note

If you use auto scaling for multi-Region tables, you must always use Amazon Keyspaces 
API operations to configure auto scaling settings. If you use Application Auto Scaling API 
operations directly to configure auto scaling settings, you don't have the ability to specify 
the AWS Regions of the multi-Region table. This can result in unsupported configurations.

Usage notes

Before you begin using Amazon Keyspaces automatic scaling, you should be aware of the 
following:

• Amazon Keyspaces automatic scaling can increase read capacity or write capacity as often as 
necessary, in accordance with your scaling policy. All Amazon Keyspaces quotas remain in effect, 
as described in Quotas.

• Amazon Keyspaces automatic scaling doesn't prevent you from manually modifying provisioned 
throughput settings. These manual adjustments don't affect any existing CloudWatch alarms 
that are attached to the scaling policy.

• If you use the console to create a table with provisioned throughput capacity, Amazon Keyspaces 
automatic scaling is enabled by default. You can modify your automatic scaling settings at any 
time. For more information, see the section called “Using the console”.

• If you're using AWS CloudFormation to create scaling policies, you should manage the scaling 
policies from AWS CloudFormation so that the stack is in sync with the stack template. If you 
change scaling policies from Amazon Keyspaces, they will get overwritten with the original 
values from the AWS CloudFormation stack template when the stack is reset.

• If you use CloudTrail to monitor Amazon Keyspaces automatic scaling, you might see alerts 
for calls made by Application Auto Scaling as part of its configuration validation process. 
You can filter out these alerts by using the invokedBy field, which contains application-
autoscaling.amazonaws.com for these validation checks.

Usage notes 331



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Managing Amazon Keyspaces automatic scaling policies with the 
console

You can use the console to enable Amazon Keyspaces automatic scaling for new and existing 
tables. You can also use the console to modify automatic scaling settings or disable automatic 
scaling.

Note

For more advanced features like setting scale-in and scale-out cooldown times, use CQL or 
the AWS Command Line Interface (AWS CLI) to manage Amazon Keyspaces scaling policies 
programmatically. For more information, see Managing Amazon Keyspaces auto scaling 
with Cassandra Query Language (CQL) or Managing Amazon Keyspaces scaling policies with 
the CLI.

Topics

• Before you begin: Granting user permissions for Amazon Keyspaces automatic scaling

• Creating a new table with Amazon Keyspaces automatic scaling enabled

• Enabling Amazon Keyspaces automatic scaling on existing tables

• Modifying or disabling Amazon Keyspaces automatic scaling settings

• Viewing Amazon Keyspaces automatic scaling activities on the console

Before you begin: Granting user permissions for Amazon Keyspaces automatic 
scaling

To get started, confirm that the user has the appropriate permissions to create and manage 
automatic scaling settings. In AWS Identity and Access Management (IAM), the AWS managed 
policy AmazonKeyspacesFullAccess is required to manage Amazon Keyspaces scaling policies.

Important

application-autoscaling:* permissions are required to disable automatic scaling on 
a table. You must turn off auto scaling for a table before you can delete it.

Using the console 332



Amazon Keyspaces (for Apache Cassandra) Developer Guide

To set up an IAM user for Amazon Keyspaces console access and Amazon Keyspaces automatic 
scaling, add the following policy.

To attach the AmazonKeyspacesFullAccess policy

1. Sign in to the AWS Management Console and open the IAM console at https:// 
console.aws.amazon.com/iam/.

2. On the IAM console dashboard, choose Users, and then choose your IAM user from the list.

3. On the Summary page, choose Add permissions.

4. Choose Attach existing policies directly.

5. From the list of policies, choose AmazonKeyspacesFullAccess, and then choose Next: Review.

6. Choose Add permissions.

Creating a new table with Amazon Keyspaces automatic scaling enabled

Note

Amazon Keyspaces automatic scaling requires the presence of a service-linked role 
(AWSServiceRoleForApplicationAutoScaling_CassandraTable) that performs 
automatic scaling actions on your behalf. This role is created automatically for you. For 
more information, see the section called “Using service-linked roles”.

To create a new table with automatic scaling enabled

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables, and then choose Create table.

3. On the Create table page in the Table details section, select a keyspace and provide a name 
for the new table.

4. In the Columns section, create the schema for your table.

5. In the Primary key section, define the primary key of the table and select optional clustering 
columns.

6. In the Table settings section, choose Customize settings.

7. Continue to Read/write capacity settings.

Using the console 333

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

8. For Capacity mode, choose Provisioned.

9. In the Read capacity section, confirm that Scale automatically is selected.

In this step, you select the minimum and maximum read capacity units for the table, as well as 
the target utilization.

• Minimum capacity units – Enter the value for the minimum level of throughput that the 
table should always be ready to support. The value must be between 1 and the maximum 
throughput per second quota for your account (40,000 by default).

• Maximum capacity units – Enter the maximum amount of throughput you want to provision 
for the table. The value must be between 1 and the maximum throughput per second quota 
for your account (40,000 by default).

• Target utilization – Enter a target utilization rate between 20% and 90%. When traffic 
exceeds the defined target utilization rate, capacity is automatically scaled up. When traffic 
falls below the defined target, it is automatically scaled down again.

Note

To learn more about default quotas for your account and how to increase them, see
Quotas.

10. In the Write capacity section, choose the same settings as defined in the previous step for 
read capacity, or configure capacity values manually.

11. Choose Create table. Your table is created with the specified automatic scaling parameters.

Enabling Amazon Keyspaces automatic scaling on existing tables

Note

Amazon Keyspaces automatic scaling requires the presence of a service-linked role 
(AWSServiceRoleForApplicationAutoScaling_CassandraTable) that performs 
automatic scaling actions on your behalf. This role is created automatically for you. For 
more information, see the section called “Using service-linked roles”.

Using the console 334



Amazon Keyspaces (for Apache Cassandra) Developer Guide

To enable Amazon Keyspaces automatic scaling for an existing table

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose the table that you want to work with, and go to the Capacity tab.

3. In the Capacity settings section, choose Edit.

4. Under Capacity mode, make sure that the table is using Provisioned capacity mode.

5. Select Scale automatically and see step 6 in Creating a new table with Amazon Keyspaces 
automatic scaling enabled to edit read and write capacity.

6. When the automatic scaling settings are defined, choose Save.

Modifying or disabling Amazon Keyspaces automatic scaling settings

You can use the AWS Management Console to modify your Amazon Keyspaces automatic scaling 
settings. To do this, choose the table you want to edit and go to the Capacity tab. In the Capacity 
settings section, choose Edit. You can now modify the settings in the Read capacity or Write 
capacity sections. For more information about these settings, see Creating a new table with 
Amazon Keyspaces automatic scaling enabled.

To disable Amazon Keyspaces automatic scaling, clear the Scale automatically check box. Disabling 
automatic scaling deregisters the table as a scalable target with Application Auto Scaling. To delete 
the service-linked role used by Application Auto Scaling to access your Amazon Keyspaces table, 
follow the steps in the section called “Deleting a service-linked role for Amazon Keyspaces”.

Note

To delete the service-linked role that Application Auto Scaling uses, you must disable 
automatic scaling on all tables in the account across all AWS Regions.

Viewing Amazon Keyspaces automatic scaling activities on the console

You can monitor how Amazon Keyspaces automatic scaling uses resources by using Amazon 
CloudWatch, which generates metrics about your usage and performance. Follow the steps in the
Application Auto Scaling User Guide to create a CloudWatch dashboard.

Using the console 335

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://docs.aws.amazon.com/autoscaling/application/userguide/monitoring-cloudwatch.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Managing Amazon Keyspaces auto scaling with Cassandra Query 
Language (CQL)

To create and manage auto scaling settings for Amazon Keyspaces tables with Cassandra Query 
Language (CQL), you can use cqlsh. This topic gives an overview of the auto scaling tasks that you 
can manage programmatically using CQL.

For more information about the CQL statements described in this topic, see the section called “DDL 
statements”.

Topics

• Before you begin

• Create a new table with automatic scaling using CQL

• Enable automatic scaling on an existing table using CQL

• View your table's Amazon Keyspaces auto scaling configuration using CQL

• Turn off Amazon Keyspaces auto scaling for a table using CQL

Before you begin

You need to complete the following tasks before you can start.

Configure permissions

If you haven't already done so, you must configure the appropriate permissions for the user 
to create and manage automatic scaling settings. In AWS Identity and Access Management 
(IAM), the AWS managed policy AmazonKeyspacesFullAccess is required to manage Amazon 
Keyspaces scaling policies. For detailed steps, see the section called “Before you begin: Granting 
user permissions for Amazon Keyspaces automatic scaling”.

Configure cqlsh

If you haven't already done so, you must install and configure cqlsh. To do this, follow the 
instructions at the section called “Using the cqlsh-expansion”. You can then use the AWS 
CloudShell to run the commands in the following sections.

Create a new table with automatic scaling using CQL

When you create a new Amazon Keyspaces table, you can automatically enable auto scaling for the 
table's write or read capacity in the CREATE TABLE statement. This allows Amazon Keyspaces to 

Using CQL 336



Amazon Keyspaces (for Apache Cassandra) Developer Guide

contact Application Auto Scaling on your behalf to register the table as a scalable target and adjust 
the provisioned write or read capacity.

For more information on how to create a multi-Region table and configure different auto scaling 
settings for table replicas, see the section called “Creating a multi-Region table with default 
settings (CQL)”.

Note

Amazon Keyspaces auto scaling requires the presence of a service-linked role 
(AWSServiceRoleForApplicationAutoScaling_CassandraTable) to perform 
automatic scaling actions on your behalf. This role is created automatically for you. For 
more information, see the section called “Using service-linked roles”.

To configure auto scaling settings for a table programmatically, you use the
AUTOSCALING_SETTINGS statement that contains the parameters for Amazon Keyspaces auto 
scaling. The parameters define the conditions that direct Amazon Keyspaces to adjust your table's 
provisioned throughput, and what additional optional actions to take. In this example, you define 
the auto scaling settings for mytable.

The policy contains the following elements:

• AUTOSCALING_SETTINGS – Specifies if Amazon Keyspaces is allowed to adjust throughput 
capacity on your behalf. The following values are required:

• provisioned_write_capacity_autoscaling_update:

• minimum_units

• maximum_units

• provisioned_read_capacity_autoscaling_update:

• minimum_units

• maximum_units

• scaling_policy – Amazon Keyspaces supports the target tracking policy. To define the 
target tracking policy, you configure the following parameters.

• target_value – Amazon Keyspaces auto scaling ensures that the ratio of consumed 
capacity to provisioned capacity stays at or near this value. You define target_value as a 
percentage.

Using CQL 337



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• disableScaleIn: (Optional) A boolean that specifies if scale-in is disabled or enabled 
for the table. This parameter is disabled by default. To turn on scale-in, set the boolean
value to FALSE. This means that capacity is automatically scaled down for a table on your 
behalf.

• scale_out_cooldown – A scale-out activity increases the provisioned throughput of 
your table. To add a cooldown period for scale-out activities, specify a value, in seconds, 
for scale_out_cooldown. If you don't specify a value, the default value is 0. For more 
information about target tracking and cooldown periods, see  Target Tracking Scaling 
Policies in the Application Auto Scaling User Guide.

• scale_in_cooldown – A scale-in activity decreases the provisioned throughput of 
your table. To add a cooldown period for scale-in activities, specify a value, in seconds, 
for scale_in_cooldown. If you don't specify a value, the default value is 0. For more 
information about target tracking and cooldown periods, see  Target Tracking Scaling 
Policies in the Application Auto Scaling User Guide.

Note

To further understand how target_value works, suppose that you have a table with a 
provisioned throughput setting of 200 write capacity units. You decide to create a scaling 
policy for this table, with a target_value of 70 percent.
Now suppose that you begin driving write traffic to the table so that the actual write 
throughput is 150 capacity units. The consumed-to-provisioned ratio is now (150 / 200), 
or 75 percent. This ratio exceeds your target, so auto scaling increases the provisioned 
write capacity to 215 so that the ratio is (150 / 215), or 69.77 percent—as close to your
target_value as possible, but not exceeding it.

For mytable, you set TargetValue for both read and write capacity to 50 percent. Amazon 
Keyspaces auto scaling adjusts the table's provisioned throughput within the range of 5–10 
capacity units so that the consumed-to-provisioned ratio remains at or near 50 percent. For read 
capacity, you set the values for ScaleOutCooldown and ScaleInCooldown to 60 seconds.

You can use the following statement to create a new Amazon Keyspaces table with auto scaling 
enabled.

CREATE TABLE mykeyspace.mytable(pk int, ck int, PRIMARY KEY (pk, ck))

Using CQL 338

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

WITH CUSTOM_PROPERTIES = {   
    'capacity_mode': {   
        'throughput_mode': 'PROVISIONED',   
        'read_capacity_units': 1,   
        'write_capacity_units': 1   
    }
} AND AUTOSCALING_SETTINGS = { 
    'provisioned_write_capacity_autoscaling_update': { 
        'maximum_units': 10,   
        'minimum_units': 5,   
        'scaling_policy': { 
            'target_tracking_scaling_policy_configuration': { 
                'target_value': 50 
            }   
        }   
    },   
    'provisioned_read_capacity_autoscaling_update': {   
        'maximum_units': 10,   
        'minimum_units': 5,   
        'scaling_policy': {   
            'target_tracking_scaling_policy_configuration': {   
                'target_value': 50, 
                'scale_in_cooldown': 60,   
                'scale_out_cooldown': 60 
            }   
        }   
    }
};

Enable automatic scaling on an existing table using CQL

For an existing Amazon Keyspaces table, you can turn on auto scaling for the table's write or read 
capacity using the ALTER TABLE statement. If you're updating a table that is currently in on-
demand capacity mode, than capacity_mode is required. If your table is already in provisioned 
capacity mode, this field can be omitted.

Note

Amazon Keyspaces automatic scaling requires the presence of a service-linked role 
(AWSServiceRoleForApplicationAutoScaling_CassandraTable) that performs 

Using CQL 339



Amazon Keyspaces (for Apache Cassandra) Developer Guide

automatic scaling actions on your behalf. This role is created automatically for you. For 
more information, see the section called “Using service-linked roles”.

In the following example, the statement updates the table mytable, which is in on-demand 
capacity mode. The statement changes the capacity mode of the table to provisioned mode with 
auto scaling enabled.

The write capacity is configured within the range of 5–10 capacity units with a target value of 50%. 
The read capacity is also configured within the range of 5–10 capacity units with a target value of 
50%. For read capacity, you set the values for scale_out_cooldown and scale_in_cooldown
to 60 seconds.

ALTER TABLE mykeyspace.mytable
WITH CUSTOM_PROPERTIES = {   
    'capacity_mode': {   
        'throughput_mode': 'PROVISIONED',   
        'read_capacity_units': 1,   
        'write_capacity_units': 1   
    }
} AND AUTOSCALING_SETTINGS = { 
    'provisioned_write_capacity_autoscaling_update': { 
        'maximum_units': 10,   
        'minimum_units': 5,   
        'scaling_policy': { 
            'target_tracking_scaling_policy_configuration': { 
                'target_value': 50 
            }   
        }   
    }, 
    'provisioned_read_capacity_autoscaling_update': {   
        'maximum_units': 10,   
        'minimum_units': 5,   
        'scaling_policy': {   
            'target_tracking_scaling_policy_configuration': {   
                'target_value': 50, 
                'scale_in_cooldown': 60,   
                'scale_out_cooldown': 60 
            }   
        }   
    }

Using CQL 340



Amazon Keyspaces (for Apache Cassandra) Developer Guide

};

View your table's Amazon Keyspaces auto scaling configuration using CQL

To view details of the auto scaling configuration of a table, use the following command.

SELECT * FROM system_schema_mcs.autoscaling WHERE keyspace_name = 'mykeyspace' AND 
 table_name = 'mytable';

The output for this command looks like this.

 keyspace_name | table_name | provisioned_read_capacity_autoscaling_update       
                                                                                 
                                                                                | 
 provisioned_write_capacity_autoscaling_update
---------------+------------
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 mykeyspace    | mytable    | {'minimum_units': 5, 'maximum_units': 
 10, 'scaling_policy': {'target_tracking_scaling_policy_configuration': 
 {'scale_out_cooldown': 60, 'disable_scale_in': false, 'target_value': 
 50, 'scale_in_cooldown': 60}}} | {'minimum_units': 5, 'maximum_units': 
 10, 'scaling_policy': {'target_tracking_scaling_policy_configuration': 
 {'scale_out_cooldown': 0, 'disable_scale_in': false, 'target_value': 50, 
 'scale_in_cooldown': 0}}}

Turn off Amazon Keyspaces auto scaling for a table using CQL

You can turn off Amazon Keyspaces auto scaling for your table at any time. If you no longer need 
to scale your table's read or write capacity, you should consider turning off auto scaling so that 
Amazon Keyspaces doesn't continue modifying your table’s read or write capacity settings. You can 
update the table with an ALTER TABLE statement.

The following statement turns off auto scaling for write capacity of the table mytable. It also 
deletes the CloudWatch alarms that were created on your behalf.

ALTER TABLE mykeyspace.mytable
WITH AUTOSCALING_SETTINGS = { 
    'provisioned_write_capacity_autoscaling_update': { 
        'autoscaling_disabled': true 
    }

Using CQL 341



Amazon Keyspaces (for Apache Cassandra) Developer Guide

};

Note

To delete the service-linked role that Application Auto Scaling uses, you must disable 
automatic scaling on all tables in the account across all AWS Regions.

Managing Amazon Keyspaces scaling policies with the CLI

To update and manage Amazon Keyspaces auto scaling settings programmatically, you can use 
the AWS Command Line Interface (AWS CLI) or the AWS API. To manage Amazon Keyspaces auto 
scaling policies using Cassandra Query Language (CQL), see the section called “Using CQL”. This 
topic gives an overview of the auto scaling tasks that you can manage programmatically using the 
AWS CLI.

For more information about the Amazon Keyspaces AWS CLI commands described in this topic, see 
the AWS CLI Command Reference.

Topics

• Before you begin

• Create a new table with automatic scaling using the AWS CLI

• Enable automatic scaling on an existing table using the AWS CLI

• View your table's Amazon Keyspaces auto scaling configuration using the AWS CLI

• Turn off Amazon Keyspaces auto scaling for a table using the AWS CLI

Before you begin

You need to complete the following tasks before you can start.

Configure permissions

If you haven't already done so, you must configure the appropriate permissions for the user 
to create and manage automatic scaling settings. In AWS Identity and Access Management 
(IAM), the AWS managed policy AmazonKeyspacesFullAccess is required to manage Amazon 
Keyspaces scaling policies. For detailed steps, see the section called “Before you begin: Granting 
user permissions for Amazon Keyspaces automatic scaling”.

Using the CLI 342

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/keyspaces/index.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Install the AWS CLI

If you haven't already done so, you must install and configure the AWS CLI. To do this, go to the 
AWS Command Line Interface User Guide and follow these instructions:

• Installing the AWS CLI

• Configuring the AWS CLI

Create a new table with automatic scaling using the AWS CLI

When you create a new Amazon Keyspaces table, you can automatically enable auto scaling for 
the table's write or read capacity in the CreateTable operation. This allows Amazon Keyspaces to 
contact Application Auto Scaling on your behalf to register the table that you specify as a scalable 
target, and adjust the provisioned write or read capacity.

For more information on how to create a multi-Region table with auto scaling configuration, see
the section called “Creating a new multi-Region table in provisioned mode with auto scaling (CLI)”.

Note

Amazon Keyspaces auto scaling requires the presence of a service-linked role 
(AWSServiceRoleForApplicationAutoScaling_CassandraTable) to perform 
automatic scaling actions on your behalf. This role is created automatically for you. For 
more information, see the section called “Using service-linked roles”.

To configure auto scaling settings for a table programmatically, you use the
autoScalingSpecification action that defines the parameters for Amazon Keyspaces auto 
scaling. The parameters define the conditions that direct Amazon Keyspaces to adjust your table's 
provisioned throughput, and what additional optional actions to take. In this example, you define 
the auto scaling settings for mytable.

The policy contains the following elements:

• autoScalingSpecification – Specifies if Amazon Keyspaces is allowed to adjust capacity 
throughput on your behalf. You can enable auto scaling for read and for write capacity 
separately. Then you must specify the following parameters for autoScalingSpecification:

• writeCapacityAutoScaling – The maximum and minimum write capacity units.

Using the CLI 343

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• readCapacityAutoScaling – The maximum and minimum read capacity units.

• scalingPolicy – Amazon Keyspaces supports the target tracking policy. To define the target 
tracking policy, you configure the following parameters.

• targetValue – Amazon Keyspaces auto scaling ensures that the ratio of consumed 
capacity to provisioned capacity stays at or near this value. You define targetValue as a 
percentage.

• disableScaleIn: (Optional) A boolean that specifies if scale-in is disabled or enabled 
for the table. This parameter is disabled by default. To turn on scale-in, set the boolean
value to FALSE. This means that capacity is automatically scaled down for a table on your 
behalf.

• scaleOutCooldown – A scale-out activity increases the provisioned throughput of your 
table. To add a cooldown period for scale-out activities, specify a value, in seconds, for
ScaleOutCooldown. The default value is 0. For more information about target tracking and 
cooldown periods, see  Target Tracking Scaling Policies in the Application Auto Scaling User 
Guide.

• scaleInCooldown – A scale-in activity decreases the provisioned throughput of your 
table. To add a cooldown period for scale-in activities, specify a value, in seconds, for
ScaleInCooldown. The default value is 0. For more information about target tracking and 
cooldown periods, see  Target Tracking Scaling Policies in the Application Auto Scaling User 
Guide.

Note

To further understand how TargetValue works, suppose that you have a table with a 
provisioned throughput setting of 200 write capacity units. You decide to create a scaling 
policy for this table, with a TargetValue of 70 percent.
Now suppose that you begin driving write traffic to the table so that the actual write 
throughput is 150 capacity units. The consumed-to-provisioned ratio is now (150 / 200), 
or 75 percent. This ratio exceeds your target, so auto scaling increases the provisioned 
write capacity to 215 so that the ratio is (150 / 215), or 69.77 percent—as close to your
TargetValue as possible, but not exceeding it.

For mytable, you set TargetValue for both read and write capacity to 50 percent. Amazon 
Keyspaces auto scaling adjusts the table's provisioned throughput within the range of 5–10 

Using the CLI 344

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

capacity units so that the consumed-to-provisioned ratio remains at or near 50 percent. For read 
capacity, you set the values for ScaleOutCooldown and ScaleInCooldown to 60 seconds.

When creating tables with complex auto scaling settings, it's helpful to load the auto scaling 
settings from a JSON file. For the following example, you can download the example JSON file 
from auto-scaling.zip and extract auto-scaling.json, taking note of the path to the file. In this 
example, the JSON file is located in the current directory. For different file path options, see  How 
to load parameters from a file.

aws keyspaces create-table --keyspace-name mykeyspace --table-name mytable  
            \ --schema-definition 'allColumns=[{name=pk,type=int},
{name=ck,type=int}],partitionKeys=[{name=pk},{name=ck}]'  
            \ --capacity-specification 
 throughputMode=PROVISIONED,readCapacityUnits=1,writeCapacityUnits=1  
            \ --auto-scaling-specification file://auto-scaling.json

Enable automatic scaling on an existing table using the AWS CLI

For an existing Amazon Keyspaces table, you can turn on auto scaling for the table's write or read 
capacity using the UpdateTable operation. For more information on how to update auto scaling 
settings for a multi-Region table, see the section called “Updating the provisioned capacity and 
auto scaling settings of a multi-Region table (CLI)”.

Note

Amazon Keyspaces automatic scaling requires the presence of a service-linked role 
(AWSServiceRoleForApplicationAutoScaling_CassandraTable) that performs 
automatic scaling actions on your behalf. This role is created automatically for you. For 
more information, see the section called “Using service-linked roles”.

You can use the following command to turn on Amazon Keyspaces auto scaling for an existing 
table. The auto scaling settings for the table are loaded from a JSON file. For the following 
example, you can download the example JSON file from auto-scaling.zip and extract auto-
scaling.json, taking note of the path to the file. In this example, the JSON file is located in the 
current directory. For different file path options, see  How to load parameters from a file.

For more information about the auto scaling settings used in the following example, see the 
section called “Create a new table with automatic scaling using the AWS CLI”.

Using the CLI 345

samples/auto-scaling.zip
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html#cli-usage-parameters-file-how
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html#cli-usage-parameters-file-how
samples/auto-scaling.zip
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html#cli-usage-parameters-file-how


Amazon Keyspaces (for Apache Cassandra) Developer Guide

aws keyspaces update-table --keyspace-name mykeyspace --table-name mytable  
            \ --capacity-specification 
 throughputMode=PROVISIONED,readCapacityUnits=1,writeCapacityUnits=1  
            \ --auto-scaling-specification file://auto-scaling.json

View your table's Amazon Keyspaces auto scaling configuration using the AWS CLI

To view the auto scaling configuration of a table, you can use the get-table-auto-scaling-
settings operation. The following CLI command is an example of this.

aws keyspaces get-table-auto-scaling-settings --keyspace-name mykeyspace --table-name 
 mytable

The output for this command looks like this.

{ 
    "keyspaceName": "mykeyspace", 
    "tableName": "mytable", 
    "resourceArn": "arn:aws:cassandra:us-east-1:5555-5555-5555:/keyspace/mykeyspace/
table/mytable", 
    "autoScalingSpecification": { 
        "writeCapacityAutoScaling": { 
            "autoScalingDisabled": false, 
            "minimumUnits": 5, 
            "maximumUnits": 10, 
            "scalingPolicy": { 
                "targetTrackingScalingPolicyConfiguration": { 
                    "disableScaleIn": false, 
                    "scaleInCooldown": 0, 
                    "scaleOutCooldown": 0, 
                    "targetValue": 50.0 
                } 
            } 
        }, 
        "readCapacityAutoScaling": { 
            "autoScalingDisabled": false, 
            "minimumUnits": 5, 
            "maximumUnits": 10, 
            "scalingPolicy": { 
                "targetTrackingScalingPolicyConfiguration": { 
                    "disableScaleIn": false, 
                    "scaleInCooldown": 60, 

Using the CLI 346



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                    "scaleOutCooldown": 60, 
                    "targetValue": 50.0 
                } 
            } 
        } 
    }
}

Turn off Amazon Keyspaces auto scaling for a table using the AWS CLI

You can turn off Amazon Keyspaces auto scaling for your table at any time. If you no longer need 
to scale your table's read or write capacity, you should consider turning off auto scaling so that 
Amazon Keyspaces doesn't continue modifying your table’s read or write capacity settings. You can 
update the table with an UpdateTable operation.

The following command turns off auto scaling for the table's read capacity. It also deletes the 
CloudWatch alarms that were created on your behalf.

aws keyspaces update-table --keyspace-name mykeyspace --table-name mytable  
            \ --auto-scaling-specification 
 readCapacityAutoScaling={autoScalingDisabled=true}

Note

To delete the service-linked role that Application Auto Scaling uses, you must disable 
automatic scaling on all tables in the account across all AWS Regions.

Using Burst Capacity Effectively in Amazon Keyspaces

Amazon Keyspaces provides some flexibility in your per-partition throughput provisioning by 
providing burst capacity. Whenever you're not fully using a partition's throughput, Amazon 
Keyspaces reserves a portion of that unused capacity for later bursts of throughput to handle 
usage spikes.

Amazon Keyspaces currently retains up to 5 minutes (300 seconds) of unused read and write 
capacity. During an occasional burst of read or write activity, these extra capacity units can be 
consumed quickly—even faster than the per-second provisioned throughput capacity that you've 
defined for your table.

Burst Capacity 347



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces can also consume burst capacity for background maintenance and other tasks 
without prior notice.

Note that these burst capacity details might change in the future.

Burst Capacity 348



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Working with keyspaces, tables, and rows in Amazon 
Keyspaces (for Apache Cassandra)

This chapter provides details about working with keyspaces, tables, rows, and more in Amazon 
Keyspaces (for Apache Cassandra). To learn how to monitor keyspaces and tables with Amazon 
CloudWatch, see the section called “Monitoring with CloudWatch”.

Topics

• Working with keyspaces in Amazon Keyspaces

• Working with tables in Amazon Keyspaces

• Working with rows in Amazon Keyspaces

• Working with queries in Amazon Keyspaces

• Working with partitioners in Amazon Keyspaces

• Working with tags and labels for Amazon Keyspaces resources

Working with keyspaces in Amazon Keyspaces

This section provides details about working with keyspaces in Amazon Keyspaces (for Apache 
Cassandra).

Topics

• Working with system keyspaces in Amazon Keyspaces

• Creating keyspaces in Amazon Keyspaces

Working with system keyspaces in Amazon Keyspaces

Amazon Keyspaces uses four system keyspaces:

• system

• system_schema

• system_schema_mcs

• system_multiregion_info

Working with keyspaces 349



Amazon Keyspaces (for Apache Cassandra) Developer Guide

The following sections provide details about the system keyspaces and the system tables that are 
supported in Amazon Keyspaces.

system

This is a Cassandra keyspace. Amazon Keyspaces uses the following tables.

Table names Column names Comments

local key, bootstrap 
ped, broadcast 
_address, cluster_n 
ame, cql_versi 
on, data_cent 
er, gossip_ge 
neration, host_id, 
listen_address, 
native_protocol_ve 
rsion, partition 
er, rack, release_v 
ersion, rpc_addre 
ss, schema_version, 
thrift_version, 
tokens, truncated_at

Information about the local 
keyspace.

peers peer, data_center, 
host_id, preferred 
_ip, rack, release_v 
ersion, rpc_addre 
ss, schema_version, 
tokens

Query this table to see 
the available endpoints 
. For example, if you're 
connecting through a public 
endpoint, you see a list of 
nine available IP addresses. 
If you're connecting through 
a FIPS endpoint, you see a 
list of three IP addresses. If 
you're connecting through 
an AWS PrivateLink VPC 
endpoint, you see the 
list of IP addresses that 

System keyspaces 350



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Table names Column names Comments

you have configured. For 
more information, see the 
section called “Populati 
ng system.peers  table 
entries with interface VPC 
endpoint information”.

size_estimates keyspace_name, 
table_name, range_sta 
rt, range_end, 
mean_partition_size, 
partitions_count

This table defines the total 
size and number of partition 
s for each token range for 
every table. This is needed for 
the Apache Cassandra Spark 
Connector, which uses the 
estimated partition size to 
distribute the work.

prepared_statements prepared_id, 
logged_keyspace, 
query_string

This table contains informati 
on about saved queries.

system_schema

This is a Cassandra keyspace. Amazon Keyspaces uses the following tables.

Table names Column names Comments

keyspaces keyspace_name, 
durable_writes, 
replication

Information about a specific 
keyspace.

tables keyspace_name, 
table_name, bloom_fil 
ter_fp_chance, 
caching, comment, 
compaction, compressi 

Information about a specific 
table.

System keyspaces 351



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Table names Column names Comments

on, crc_check 
_chance, dclocal_r 
ead_repair_chance, 
default_time_to_li 
ve, extensions, 
flags, gc_grace_ 
seconds, id, 
max_index_interval 
, memtable_flush_per 
iod_in_ms, min_index 
_interval, read_repa 
ir_chance, speculati 
ve_retry

columns keyspace_name, 
table_name, column_na 
me, clusterin 
g_order, column_na 
me_bytes, kind, 
position, type

Information about a specific 
column.

system_schema_mcs

This is an Amazon Keyspaces keyspace that stores information about AWS or Amazon Keyspaces 
specific settings.

Table names Column names Comments

keyspaces keyspace_name, 
durable_writes, 
replication

Query this table to find 
out programmatically if a 
keyspace has been created. 
For more information, see
the section called “Creating 
keyspaces”.

System keyspaces 352



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Table names Column names Comments

tables keyspace_name, 
creation_time, 
speculative_retry, 
cdc, gc_grace_ 
seconds, crc_check 
_chance, min_index 
_interval, bloom_fil 
ter_fp_chance, 
flags, custom_pr 
operties, dclocal_r 
ead_repair_chance, 
table_name, caching, 
default_time_to_li 
ve, read_repa 
ir_chance, max_index 
_interval, extension 
s, compaction, 
comment, id, compressi 
on, memtable_ 
flush_period_in_ms, 
status

Query this table to find out 
the status of a specific table. 
For more information, see
the section called “Creating 
tables”.

You can also query this 
table to list settings that are 
specific to Amazon Keyspaces 
and are stored as custom_pr 
operties . For example:

• capacity_mode

• client_side_timest 
amps

• encryption_specifi 
cation

• point_in_time_reco 
very

• ttl

tables_history keyspace_name, 
table_name, event_tim 
e, creation_time, 
custom_properties, 
event

Query this table to learn 
about schema changes for a 
specific table.

columns keyspace_name, 
table_name, column_na 
me, clusterin 
g_order, column_na 
me_bytes, kind, 
position, type

This table is identical to 
the Cassandra table in the
system_schema  keyspace.

System keyspaces 353



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Table names Column names Comments

tags resource_id, 
keyspace_name, 
resource_name, 
resource_type, tags

Query this table to find out if 
a keyspace has tags. For more 
information, see the section 
called “Adding tags to new or 
existing keyspaces and tables 
using CQL”.

autoscaling keyspace_name, 
table_name, provision 
ed_read_capacity_a 
utoscaling_update, 
 provisioned_write_ 
capacity_autoscali 
ng_update

Query this table to get the 
auto scaling settings of a 
provisioned table. Note 
that these settings won't 
be available until the table 
is active. To query this 
table, you have to specify
keyspace_name  and
table_name  in the WHERE
clause. For more information, 
see the section called “Using 
CQL”.

system_multiregion_info

This is an Amazon Keyspaces keyspace that stores information about Multi-Region Replication.

Table names Column names Comments

tables keyspace_name, 
table_name, region, 
status

This table contains informati 
on about multi-Region tables
—for example, the AWS 
Regions that the table is 
replicated in and the table's 
status. You can also query this 
table to list settings that are 
specific to Amazon Keyspaces 

System keyspaces 354



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Table names Column names Comments

that are stored as custom_pr 
operties . For example:

• capacity_mode

To query this table, you 
have to specify keyspace_ 
name  and table_name  in 
the WHERE clause. For more 
information, see the section 
called “Creating a multi-Reg 
ion keyspace (CQL)”.

autoscaling keyspace_name, 
table_name, provision 
ed_read_capacity_a 
utoscaling_update, 
 provisioned_write_ 
capacity_autoscali 
ng_update, region

Query this table to get the 
auto scaling settings of 
a multi-Region provision 
ed table. Note that these 
settings won't be available 
until the table is active. To 
query this table, you have to 
specify keyspace_name
and table_name  in the
WHERE clause. For more 
information, see the section 
called “Using CQL”.

Creating keyspaces in Amazon Keyspaces

Amazon Keyspaces performs data definition language (DDL) operations, such as creating and 
deleting keyspaces, asynchronously.

You can monitor the creation status of new keyspaces in the AWS Management Console, which 
indicates when a keyspace is pending or active. You can also monitor the creation status of a new 
keyspace programmatically by using the system_schema_mcs keyspace. A keyspace becomes 
visible in the system_schema_mcs keyspaces table when it's ready for use.

Creating keyspaces 355



Amazon Keyspaces (for Apache Cassandra) Developer Guide

The recommended design pattern to check when a new keyspace is ready for use is to poll the 
Amazon Keyspaces system_schema_mcs keyspaces table (system_schema_mcs.*). For a list of 
DDL statements for keyspaces, see the the section called “Keyspaces” section in the CQL language 
reference.

The following query shows whether a keyspace has been successfully created.

SELECT * FROM system_schema_mcs.keyspaces WHERE keyspace_name = 'mykeyspace';

For a keyspace that has been successfully created, the output of the query looks like the following.

keyspace_name | durable_writes  | replication
--------------+-----------------+-------------- 
   mykeyspace | true            |{...} 1 item 
             
          

Working with tables in Amazon Keyspaces

This section provides details about working with tables in Amazon Keyspaces (for Apache 
Cassandra).

Topics

• Creating tables in Amazon Keyspaces

• Working with multi-Region tables in Amazon Keyspaces

• Static columns in Amazon Keyspaces

Creating tables in Amazon Keyspaces

Amazon Keyspaces performs data definition language (DDL) operations, such as creating and 
deleting tables, asynchronously. You can monitor the creation status of new tables in the AWS 
Management Console, which indicates when a table is pending or active. You can also monitor the 
creation status of a new table programmatically by using the system schema table.

A table shows as active in the system schema when it's ready for use. The recommended design 
pattern to check when a new table is ready for use is to poll the Amazon Keyspaces system schema 

Working with tables 356



Amazon Keyspaces (for Apache Cassandra) Developer Guide

tables (system_schema_mcs.*). For a list of DDL statements for tables, see the the section called 
“Tables” section in the CQL language reference.

The following query shows the status of a table.

SELECT keyspace_name, table_name, status FROM system_schema_mcs.tables WHERE 
 keyspace_name = 'mykeyspace' AND table_name = 'mytable';

For a table that is still being created and is pending,the output of the query looks like this.

keyspace_name | table_name | status
--------------+------------+-------- 
   mykeyspace |    mytable | CREATING 

For a table that has been successfully created and is active, the output of the query looks like the 
following.

keyspace_name | table_name | status
--------------+------------+-------- 
   mykeyspace |    mytable | ACTIVE 

Working with multi-Region tables in Amazon Keyspaces

A multi-Region table must have the write throughput capacity configured in one of two ways:

• On-demand capacity mode, measured in write request units (WRUs)

• Provisioned capacity mode with auto scaling, measured in write capacity units (WCUs)

You can use provisioned capacity mode with auto scaling or on-demand capacity mode to help 
ensure that a multi-Region table has sufficient capacity to perform replicated writes to all AWS 
Regions.

Note

Changing the capacity mode of the table in one of the Regions changes the capacity mode 
for all replicas.

Multi-Region tables 357



Amazon Keyspaces (for Apache Cassandra) Developer Guide

By default, Amazon Keyspaces uses on-demand mode for multi-Region tables. With on-demand 
mode, you don't need to specify how much read and write throughput that you expect your 
application to perform. Amazon Keyspaces instantly accommodates your workloads as they ramp 
up or down to any previously reached traffic level. If a workload’s traffic level hits a new peak, 
Amazon Keyspaces adapts rapidly to accommodate the workload.

If you choose provisioned capacity mode for a table, you have to configure the number of read 
capacity units (RCUs) and write capacity units (WCUs) per second that your application requires.

To plan a multi-Region table's throughput capacity needs, you should first estimate the number of 
WCUs per second needed for each Region. Then you add the writes from all Regions that your table 
is replicated in, and use the sum to provision capacity for each Region. This is required because 
every write that is performed in one Region must also be repeated in each replica Region.

If the table doesn't have enough capacity to handle the writes from all Regions, capacity exceptions 
will occur. In addition, inter-Regional replication wait times will rise.

For example, if you have a multi-Region table where you expect 5 writes per second in US East (N. 
Virginia), 10 writes per second in US East (Ohio), and 5 writes per second in Europe (Ireland), you 
should expect the table to consume 20 WCUs in each Region: US East (N. Virginia), US East (Ohio), 
and Europe (Ireland). That means that in this example, you need to provision 20 WCUs for each of 
the table's replicas. You can monitor your table's capacity consumption using Amazon CloudWatch. 
For more information, see the section called “Monitoring with CloudWatch”.

Because each multi-Region write is billed as 1.25 times WCUs, you would see a total of 75 WCUs 
billed in this example. For more information about pricing, see Amazon Keyspaces (for Apache 
Cassandra) pricing.

For more information about provisioned capacity with Amazon Keyspaces auto scaling, see the 
section called “Managing throughput capacity with auto scaling”.

Note

If a table is running in provisioned capacity mode with auto scaling, the provisioned write 
capacity is allowed to float within those auto scaling settings for each Region.

Multi-Region tables 358

https://aws.amazon.com/keyspaces/pricing
https://aws.amazon.com/keyspaces/pricing


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Static columns in Amazon Keyspaces

In an Amazon Keyspaces table with clustering columns, you can use the STATIC keyword to create 
a static column. The value stored in a static column is shared between all rows in a logical partition. 
When you update the value of this column, Amazon Keyspaces applies the change automatically to 
all rows in the partition.

This section describes how to calculate the encoded size of data when you're writing to static 
columns. This process is handled separately from the process that writes data to the nonstatic 
columns of a row. In addition to size quotas for static data, read and write operations on static 
columns also affect metering and throughput capacity for tables independently.

Calculating static column size per logical partition in Amazon Keyspaces

This section provides details about how to estimate the encoded size of static columns in Amazon 
Keyspaces. The encoded size is used when you're calculating your bill and quota use. You should 
also use the encoded size when you calculate provisioned throughput capacity requirements for 
tables. To calculate the encoded size of static columns in Amazon Keyspaces, you can use the 
following guidelines.

• Partition keys can contain up to 2048 bytes of data. Each key column in the partition key 
requires up to 3 bytes of metadata. These metadata bytes count towards your static data size 
quota of 1 MB per partition. When calculating the size of your static data, you should assume 
that each partition key column uses the full 3 bytes of metadata.

• Use the raw size of the static column data values based on the data type. For more information 
about data types, see the section called “Data types”.

• Add 104 bytes to the size of the static data for metadata.

• Clustering columns and regular, nonprimary key columns do not count towards the size of static 
data. To learn how to estimate the size of nonstatic data within rows, see the section called 
“Calculating row size”.

The total encoded size of a static column is based on the following formula:

partition key columns + static columns + metadata = total encoded size of static data

Consider the following example of a table where all columns are of type integer. The table has two 
partition key columns, two clustering columns, one regular column, and one static column.

Static columns 359



Amazon Keyspaces (for Apache Cassandra) Developer Guide

CREATE TABLE mykeyspace.mytable(pk_col1 int, pk_col2 int, ck_col1 int, ck_col2 
 int, reg_col1 int, static_col1 int static, primary key((pk_col1, pk_col2),ck_col1, 
 ck_col2));

In this example, we calculate the size of static data of the following statement:

INSERT INTO mykeyspace.mytable (pk_col1, pk_col2, static_col1) values(1,2,6);

To estimate the total bytes required by this write operation, you can use the following steps.

1. Calculate the size of a partition key column by adding the bytes for the data type stored in the 
column and the metadata bytes. Repeat this for all partition key columns.

a. Calculate the size of the first column of the partition key (pk_col1):

4 bytes for the integer data type + 3 bytes for partition key metadata = 7 
 bytes

b. Calculate the size of the second column of the partition key (pk_col2):

4 bytes for the integer data type + 3 bytes for partition key metadata = 7 
 bytes

c. Add both columns to get the total estimated size of the partition key columns:

7 bytes + 7 bytes = 14 bytes for the partition key columns

2. Add the size of the static columns. In this example, we only have one static column that stores 
an integer (which requires 4 bytes).

3. Finally, to get the total encoded size of the static column data, add up the bytes for the 
primary key columns and static columns, and add the additional 104 bytes for metadata:

14 bytes for the partition key columns + 4 bytes for the static column + 104 bytes 
 for metadata = 122 bytes.

You can also update static and nonstatic data with the same statement. To estimate the total 
size of the write operation, you must first calculate the size of the nonstatic data update. Then 

Static columns 360



Amazon Keyspaces (for Apache Cassandra) Developer Guide

calculate the size of the row update as shown in the example at the section called “Calculating row 
size”, and add the results.

In this case, you can write a total of 2 MB—1 MB is the maximum row size quota, and 1 MB is the 
quota for the maximum static data size per logical partition.

To calculate the total size of an update of static and nonstatic data in the same statement, you can 
use the following formula:

(partition key columns + static columns + metadata = total encoded size of static data) 
 + (partition key columns + clustering columns + regular columns + row metadata = total 
 encoded size of row)
= total encoded size of data written

Consider the following example of a table where all columns are of type integer. The table has two 
partition key columns, two clustering columns, one regular column, and one static column.

CREATE TABLE mykeyspace.mytable(pk_col1 int, pk_col2 int, ck_col1 int, ck_col2 
 int, reg_col1 int, static_col1 int static, primary key((pk_col1, pk_col2),ck_col1, 
 ck_col2));

In this example, we calculate the size of data when we write a row to the table, as shown in the 
following statement:

INSERT INTO mykeyspace.mytable (pk_col1, pk_col2, ck_col1, ck_col2, reg_col1, 
 static_col1) values(2,3,4,5,6,7);

To estimate the total bytes required by this write operation, you can use the following steps.

1. Calculate the total encoded size of static data as shown earlier. In this example, it's 122 bytes.

2. Add the size of the total encoded size of the row based on the update of nonstatic data, 
following the steps at the section called “Calculating row size”. In this example, the total size 
of the row update is 134 bytes.

122 bytes for static data + 134 bytes for nonstatic data = 256 bytes.

Static columns 361



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metering read/write operations of static data in Amazon Keyspaces

Static data is associated with logical partitions in Cassandra, not individual rows. Logical partitions 
in Amazon Keyspaces can be virtually unbound in size by spanning across multiple physical storage 
partitions. As a result, Amazon Keyspaces meters write operations on static and nonstatic data 
separately. Furthermore, writes that include both static and nonstatic data require additional 
underlying operations to provide data consistency.

If you perform a mixed write operation of both static and nonstatic data, this results in two 
separate write operations—one for nonstatic and one for static data. This applies to both on-
demand and provisioned read/write capacity modes.

The following example provides details about how to estimate the required read capacity units 
(RCUs) and write capacity units (WCUs) when you're calculating provisioned throughput capacity 
requirements for tables in Amazon Keyspaces that have static columns. You can estimate how 
much capacity your table needs to process writes that include both static and nonstatic data by 
using the following formula:

2 x WCUs required for nonstatic data + 2 x WCUs required for static data

For example, if your application writes 27 KBs of data per second and each write includes 25.5 KBs 
of nonstatic data and 1.5 KBs of static data, then your table requires 56 WCUs (2 x 26 WCUs + 2 x 2 
WCUs).

Amazon Keyspaces meters the reads of static and nonstatic data the same as reads of multiple 
rows. As a result, the price of reading static and nonstatic data in the same operation is based on 
the aggregate size of the data processed to perform the read.

To learn how to monitor serverless resources with Amazon CloudWatch, see the section called 
“Monitoring with CloudWatch”.

Working with rows in Amazon Keyspaces

This section provides details about working with rows in Amazon Keyspaces (for Apache 
Cassandra). Tables are the primary data structures in Amazon Keyspaces and data in tables is 
organized into columns and rows.

Topics

Working with rows 362



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Calculating row size in Amazon Keyspaces

Calculating row size in Amazon Keyspaces

Amazon Keyspaces provides fully managed storage that offers single-digit millisecond read and 
write performance and stores data durably across multiple AWS Availability Zones. Amazon 
Keyspaces attaches metadata to all rows and primary key columns to support efficient data access 
and high availability.

This section provides details about how to estimate the encoded size of rows in Amazon Keyspaces. 
The encoded row size is used when calculating your bill and quota use. You should also use the 
encoded row size when calculating provisioned throughput capacity requirements for tables. To 
calculate the encoded size of rows in Amazon Keyspaces, you can use the following guidelines.

• For regular columns, which are columns that aren't primary keys, clustering columns, or STATIC
columns, use the raw size of the cell data based on the data type and add the required metadata. 
For more information about the data types supported in Amazon Keyspaces, see the section 
called “Data types”. Some key differences in how Amazon Keyspaces stores data type values and 
metadata are listed below.

• The space required for each column name is stored using a column identifier and added to each 
data value stored in the column. The storage value of the column identifier depends on the 
overall number of columns in your table:

• 1–62 columns: 1 byte

• 63–124 columns: 2 bytes

• 125–186 columns: 3 bytes

For each additional 62 columns add 1 byte. Note that in Amazon Keyspaces, up to 225 regular 
columns can be modified with a single INSERT or UPDATE statement. For more information, see
the section called “Amazon Keyspaces service quotas”.

• Partition keys can contain up to 2048 bytes of data. Each key column in the partition key 
requires up to 3 bytes of metadata. When calculating the size of your row, you should assume 
each partition key column uses the full 3 bytes of metadata.

• Clustering columns can store up to 850 bytes of data. In addition to the size of the data value, 
each clustering column requires up to 20% of the data value size for metadata. When calculating 
the size of your row, you should add 1 byte of metadata for each 5 bytes of clustering column 
data value.

Calculating row size 363



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Amazon Keyspaces stores the data value of each partition key and clustering key column twice. 
The extra overhead is used for efficient querying and built-in indexing.

• Cassandra ASCII, TEXT, and VARCHAR string data types are all stored in Amazon Keyspaces 
using Unicode with UTF-8 binary encoding. The size of a string in Amazon Keyspaces equals the 
number of UTF-8 encoded bytes.

• Cassandra INT, BIGINT, SMALLINT, and TINYINT data types are stored in Amazon Keyspaces as 
data values with variable length, with up to 38 significant digits. Leading and trailing zeroes are 
trimmed. The size of any of these data types is approximately 1 byte per two significant digits + 
1 byte.

• A BLOB in Amazon Keyspaces is stored with the value's raw byte length.

• The size of a Null value or a Boolean value is 1 byte.

• A column that stores collection data types like LIST or MAP requires 3 bytes of metadata, 
regardless of its contents. The size of a LIST or MAP is (column id) + sum (size of nested 
elements) + (3 bytes). The size of an empty LIST or MAP is (column id) + (3 bytes). Each 
individual LIST or MAP element also requires 1 byte of metadata.

• STATIC column data doesn't count towards the maximum row size of 1 MB. To calculate the 
data size of static columns, see the section called “Calculating static column size per logical 
partition”.

• Client-side timestamps are stored for every column in each row when the feature is turned on. 
These timestamps take up approximately 20–40 bytes (depending on your data), and contribute 
to the storage and throughput cost for the row. For more information, see the section called 
“Client-side timestamps in Amazon Keyspaces”.

• Add 100 bytes to the size of each row for row metadata.

The total size of an encoded row of data is based on the following formula:

partition key columns + clustering columns + regular columns + row metadata = total 
 encoded size of row

Important

All column metadata, for example column ids, partition key metadata, clustering column 
metadata, as well as client-side timestamps and row metadata count towards the 
maximum row size of 1 MB.

Calculating row size 364



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Consider the following example of a table where all columns are of type integer. The table has two 
partition key columns, two clustering columns, and one regular column. Because this table has five 
columns, the space required for the column name identifier is 1 byte.

CREATE TABLE mykeyspace.mytable(pk_col1 int, pk_col2 int, ck_col1 int, ck_col2 int, 
 reg_col1 int, primary key((pk_col1, pk_col2),ck_col1, ck_col2));

In this example, we calculate the size of data when we write a row to the table as shown in the 
following statement:

INSERT INTO mykeyspace.mytable (pk_col1, pk_col2, ck_col1, ck_col2, reg_col1) 
 values(1,2,3,4,5);

To estimate the total bytes required by this write operation, you can use the following steps.

1. Calculate the size of a partition key column by adding the bytes for the data type stored in the 
column and the metadata bytes. Repeat this for all partition key columns.

a. Calculate the size of the first column of the partition key (pk_col1):

(2 bytes for the integer data type) x 2 + 1 byte for the column id + 3 bytes 
 for partition key metadata = 8 bytes

b. Calculate the size of the second column of the partition key (pk_col2):

(2 bytes for the integer data type) x 2 + 1 byte for the column id + 3 bytes 
 for partition key metadata = 8 bytes

c. Add both columns to get the total estimated size of the partition key columns:

8 bytes + 8 bytes = 16 bytes for the partition key columns

2. Calculate the size of the clustering column by adding the bytes for the data type stored in the 
column and the metadata bytes. Repeat this for all clustering columns.

a. Calculate the size of the first column of the clustering column (ck_col1):

(2 bytes for the integer data type) x 2 + 20% of the data value (2 bytes) for 
 clustering column metadata + 1 byte for the column id  = 6 bytes

b. Calculate the size of the second column of the clustering column (ck_col2):

Calculating row size 365



Amazon Keyspaces (for Apache Cassandra) Developer Guide

(2 bytes for the integer data type) x 2 + 20% of the data value (2 bytes) for 
 clustering column metadata + 1 byte for the column id = 6 bytes

c. Add both columns to get the total estimated size of the clustering columns:

6 bytes + 6 bytes = 12 bytes for the clustering columns

3. Add the size of the regular columns. In this example we only have one column that stores a 
single digit integer, which requires 2 bytes with 1 byte for the column id.

4. Finally, to get the total encoded row size, add up the bytes for all columns and add the 
additional 100 bytes for row metadata:

16 bytes for the partition key columns + 12 bytes for clustering columns + 3 bytes 
 for the regular column + 100 bytes for row metadata = 131 bytes.

To learn how to monitor serverless resources with Amazon CloudWatch, see the section called 
“Monitoring with CloudWatch”.

Working with queries in Amazon Keyspaces

This section gives an introduction into working with queries in Amazon Keyspaces (for Apache 
Cassandra). The CQL statements available to query, transform, and manage data are SELECT,
INSERT, UPDATE, and DELETE. The following topics outline some of the more complex options 
available when working with queries. For the complete language syntax with examples, see the 
section called “DML statements”.

Topics

• Using the IN operator with the SELECT Statement in Amazon Keyspaces

• Ordering results in Amazon Keyspaces

• Paginating results in Amazon Keyspaces

Using the IN operator with the SELECT Statement in Amazon 
Keyspaces

SELECT IN

Working with queries 366



Amazon Keyspaces (for Apache Cassandra) Developer Guide

You can query data from tables using the SELECT statement, which reads one or more columns 
for one or more rows in a table and returns a result-set containing the rows matching the request. 
A SELECT statement contains a select_clause that determines which columns to read and to 
return in the result-set. The clause can contain instructions to transform the data before returning 
it. The optional WHERE clause specifies which rows must be queried and is composed of relations 
on the columns that are part of the primary key. Amazon Keyspaces supports the IN keyword in 
the WHERE clause. This section uses examples to show how Amazon Keyspaces processes SELECT
statements with the IN keyword.

This examples demonstrates how Amazon Keyspaces breaks down the SELECT statement 
with the IN keyword into subqueries. In this example we use a table with the name
my_keyspace.customers. The table has one primary key column department_id, two 
clustering columns sales_region_id and sales_representative_id, and one column that 
contains the name of the customer in the customer_name column.

SELECT * FROM my_keyspace.customers; 

         department_id | sales_region_id | sales_representative_id | customer_name 
        ---------------+-----------------+-------------------------+-------------- 
          0            |        0        |            0            |    a 
          0            |        0        |            1            |    b 
          0            |        1        |            0            |    c 
          0            |        1        |            1            |    d 
          1            |        0        |            0            |    e 
          1            |        0        |            1            |    f 
          1            |        1        |            0            |    g 
          1            |        1        |            1            |    h

Using this table, you can run the following SELECT statement to find the customers in the 
departments and sales regions that you are interested in with the IN keyword in the WHERE clause. 
The following statement is an example of this.

SELECT * FROM my_keyspace.customers WHERE department_id IN (0, 1) AND sales_region_id 
 IN (0, 1);

Amazon Keyspaces divides this statement into four subqueries as shown in the following output.

SELECT * FROM my_keyspace.customers WHERE department_id = 0 AND sales_region_id = 0; 

IN SELECT Statement 367



Amazon Keyspaces (for Apache Cassandra) Developer Guide

 department_id | sales_region_id | sales_representative_id | customer_name
---------------+-----------------+-------------------------+-------------- 
  0            |        0        |           0             |    a 
  0            |        0        |           1             |    b

SELECT * FROM my_keyspace.customers WHERE department_id = 0 AND sales_region_id = 1; 

 department_id | sales_region_id | sales_representative_id | customer_name
---------------+-----------------+-------------------------+-------------- 
  0            |        1        |          0              |    c 
  0            |        1        |          1              |    d

SELECT * FROM my_keyspace.customers WHERE department_id = 1 AND sales_region_id = 0; 

 department_id | sales_region_id | sales_representative_id | customer_name
---------------+-----------------+-------------------------+-------------- 
  1            |        0        |          0              |    e 
  1            |        0        |          1              |    f

SELECT * FROM my_keyspace.customers WHERE department_id = 1 AND sales_region_id = 1; 

 department_id | sales_region_id | sales_representative_id | customer_name
---------------+-----------------+-------------------------+-------------- 
  1            |        1        |           0             |    g 
  1            |        1        |           1             |    h

When the IN keyword is used, Amazon Keyspaces automatically paginates the results in any of the 
following cases:

• After every 10th subquery is processed.

• After processing 1MB of logical IO.

• If you configured a PAGE SIZE, Amazon Keyspaces paginates after reading the number of 
queries for processing based on the set PAGE SIZE.

• When you use the LIMIT keyword to reduce the number of rows returned, Amazon Keyspaces 
paginates after reading the number of queries for processing based on the set LIMIT.

The following table is used to illustrate this with an example.

For more information about pagination, see the section called “Paginating results”.

SELECT * FROM my_keyspace.customers; 

IN SELECT Statement 368



Amazon Keyspaces (for Apache Cassandra) Developer Guide

         department_id | sales_region_id | sales_representative_id | customer_name 
        ---------------+-----------------+-------------------------+-------------- 
          2            |        0        |          0              |    g 
          2            |        1        |          1              |    h 
          2            |        2        |          2              |    i 
          0            |        0        |          0              |    a 
          0            |        1        |          1              |    b 
          0            |        2        |          2              |    c 
          1            |        0        |          0              |    d 
          1            |        1        |          1              |    e 
          1            |        2        |          2              |    f 
          3            |        0        |          0              |    j 
          3            |        1        |          1              |    k 
          3            |        2        |          2              |    l

You can run the following statement on this table to see how pagination works.

SELECT * FROM my_keyspace.customers WHERE department_id IN (0, 1, 2, 3) AND 
 sales_region_id IN (0, 1, 2) AND sales_representative_id IN (0, 1);

Amazon Keyspaces processes this statement as 24 subqueries, because the cardinality of the 
Cartesian product of all the IN terms contained in this query is 24.

 department_id | sales_region_id | sales_representative_id | customer_name
---------------+-----------------+-------------------------+-------------- 
  0            |        0        |          0              |    a 
  0            |        1        |          1              |    b 
  1            |        0        |          0              |    d 
  1            |        1        |          1              |    e

---MORE--- 
 department_id | sales_region_id | sales_representative_id | customer_name
---------------+-----------------+-------------------------+-------------- 
  2            |        0        |          0              |    g 
  2            |        1        |          1              |    h 
  3            |        0        |          0              |    j

---MORE--- 
 department_id | sales_region_id | sales_representative_id | customer_name
---------------+-----------------+-------------------------+-------------- 
  3            |        1        |          1              |    k

IN SELECT Statement 369



Amazon Keyspaces (for Apache Cassandra) Developer Guide

This example shows how you can use the ORDER BY clause in a SELECT statement with the IN
keyword.

SELECT * FROM my_keyspace.customers WHERE department_id IN (3, 2, 1) ORDER BY 
 sales_region_id DESC; 
         
         department_id | sales_region_id | sales_representative_id | customer_name 
        ---------------+-----------------+-------------------------+-------------- 
          3            |        2        |          2              |    l 
          3            |        1        |          1              |    k 
          3            |        0        |          0              |    j 
          2            |        2        |          2              |    i 
          2            |        1        |          1              |    h 
          2            |        0        |          0              |    g 
          1            |        2        |          2              |    f 
          1            |        1        |          1              |    e 
          1            |        0        |          0              |    d

Subqueries are processed in the order in which the partition key and clustering key columns are 
presented in the query. In the example below, subqueries for partition key value ”2“ are processed 
first, followed by subqueries for partition key value ”3“ and ”1“. Results of a given subquery are 
ordered according to the query's ordering clause, if present, or the table's clustering order defined 
during table creation.

SELECT * FROM my_keyspace.customers WHERE department_id IN (2, 3, 1) ORDER BY 
 sales_region_id DESC; 

         department_id | sales_region_id | sales_representative_id | customer_name 
        ---------------+-----------------+-------------------------+-------------- 
          2            |        2        |          2              |    i 
          2            |        1        |          1              |    h 
          2            |        0        |          0              |    g 
          3            |        2        |          2              |    l 
          3            |        1        |          1              |    k 
          3            |        0        |          0              |    j 
          1            |        2        |          2              |    f 
          1            |        1        |          1              |    e 
          1            |        0        |          0              |    d

IN SELECT Statement 370



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Ordering results in Amazon Keyspaces

The ORDER BY clause specifies the sort order of the results returned in a SELECT statement. The 
statement takes a list of column names as arguments and for each column you can specify the 
sort order for the data. You can only specify clustering columns in ordering clauses, non-clustering 
columns are not allowed.

The two available sort order options for the returned results are ASC for ascending and DESC for 
descending sort order.

SELECT * FROM my_keyspace.my_table ORDER BY (col1 ASC, col2 DESC, col3 ASC); 

         col1 | col2 | col3   
        ------+------+------ 
          0   |  6   |  a    
          1   |  5   |  b    
          2   |  4   |  c    
          3   |  3   |  d    
          4   |  2   |  e    
          5   |  1   |  f    
          6   |  0   |  g

SELECT * FROM my_keyspace.my_table ORDER BY (col1 DESC, col2 ASC, col3 DESC); 

         col1 | col2 | col3   
        ------+------+------ 
          6   |  0   |  g    
          5   |  1   |  f    
          4   |  2   |  e    
          3   |  3   |  d    
          2   |  4   |  c    
          1   |  5   |  b    
          0   |  6   |  a

If you don't specify the sort order in the query statement, the default ordering of the clustering 
column is used.

The possible sort orders you can use in an ordering clause depend on the sort order assigned to 
each clustering column at table creation. Query results can only be sorted in the order defined 
for all clustering columns at table creation or the inverse of the defined sort order. Other possible 
combinations are not allowed.

Ordering results 371



Amazon Keyspaces (for Apache Cassandra) Developer Guide

For example, if the table's CLUSTERING ORDER is (col1 ASC, col2 DESC, col3 ASC), then the valid 
parameters for ORDER BY are either (col1 ASC, col2 DESC, col3 ASC) or (col1 DESC, col2 ASC, col3 
DESC). For more information on CLUSTERING ORDER, see table_options under the section 
called “CREATE TABLE”.

Paginating results in Amazon Keyspaces

Amazon Keyspaces automatically paginates the results from SELECT statements when the data 
read to process the SELECT statement exceeds 1 MB. With pagination, the SELECT statement 
results are divided into "pages" of data that are 1 MB in size (or less). An application can process the 
first page of results, then the second page, and so on. Clients should always check for pagination 
tokens when processing SELECT queries that return multiple rows.

If a client supplies a PAGE SIZE that requires reading more than 1 MB of data, Amazon Keyspaces 
breaks up the results automatically into multiple pages based on the 1 MB data-read increments.

For example, if the average size of a row is 100 KB and you specify a PAGE SIZE of 20, Amazon 
Keyspaces paginates data automatically after it reads 10 rows (1000 KB of data read).

Because Amazon Keyspaces paginates results based on the number of rows that it reads to process 
a request and not the number of rows returned in the result set, some pages may not contain any 
rows if you are running filtered queries.

For example, if you set PAGE SIZE to 10 and Keyspaces evaluates 30 rows to process your SELECT
query, Amazon Keyspaces will return three pages. If only a subset of the rows matched your query, 
some pages may have less than 10 rows.

Working with partitioners in Amazon Keyspaces

In Apache Cassandra, partitioners control which nodes data is stored on in the cluster. Partitioners 
create a numeric token using a hashed value of the partition key. Cassandra uses this token to 
distribute data across nodes. Clients can also use these tokens in SELECT operations and WHERE
clauses to optimize read and write operations. For example, clients can efficiently perform parallel 
queries on large tables by specifying distinct token ranges to query in each parallel job.

Amazon Keyspaces provides three different partitioners.

Paginating results 372



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Murmur3Partitioner (Default)

Apache Cassandra-compatible Murmur3Partitioner. The Murmur3Partitioner is the 
default Cassandra partitioner in Amazon Keyspaces and in Cassandra 1.2 and later versions.

RandomPartitioner

Apache Cassandra-compatible RandomPartitioner. The RandomPartitioner is the default 
Cassandra partitioner for versions earlier than Cassandra 1.2.

Keyspaces Default Partitioner

The DefaultPartitioner returns the same token function results as the
RandomPartitioner.

The partitioner setting is applied per Region at the account level. For example, if you change the 
partitioner in US East (N. Virginia), the change is applied to all tables in the same account in this 
Region. You can safely change your partitioner at any time. Note that the configuration change 
takes approximately 10 minutes to complete. You do not need to reload your Amazon Keyspaces 
data when you change the partitioner setting. Clients will automatically use the new partitioner 
setting the next time they connect.

You can change the partitioner by using the AWS Management Console or Cassandra Query 
Language (CQL).

AWS Management Console

To change the partitioner using the Amazon Keyspaces console

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at
https://console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Configuration.

3. On the Configuration page, go to Edit partitioner.

4. Select the partitioner compatible with your version of Cassandra. The partitioner change 
takes approximately 10 minutes to apply.

Note

After the configuration change is complete, you have to disconnect and reconnect 
to Amazon Keyspaces for requests to use the new partitioner.

Working with partitioners 373

https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Cassandra Query Language (CQL)

1. To see which partitioner is configured for the account, you can use the following query.

SELECT partitioner from system.local;

If the partitioner hasn't been changed, the query has the following output.

partitioner
--------------------------------------------
com.amazonaws.cassandra.DefaultPartitioner

2. To update the partitioner to the Murmur3 partitioner, you can use the following statement.

UPDATE system.local set 
 partitioner='org.apache.cassandra.dht.Murmur3Partitioner' where key='local';

3. Note that this configuration change takes approximately 10 minutes to complete. To 
confirm that the partitioner has been set, you can run the SELECT query again. Note that 
due to eventual read consistency, the response might not reflect the results of the recently 
completed partitioner change yet. If you repeat the SELECT operation again after a short 
time, the response should return the latest data.

SELECT partitioner from system.local;

Note

You have to disconnect and reconnect to Amazon Keyspaces so that requests use 
the new partitioner.

Working with tags and labels for Amazon Keyspaces resources

You can label Amazon Keyspaces (for Apache Cassandra) resources using tags. Tags let you 
categorize your resources in different ways—for example, by purpose, owner, environment, or other 
criteria. Tags can help you do the following:

• Quickly identify a resource based on the tags that you assigned to it.

Working with tags 374



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• See AWS bills broken down by tags.

• Control access to Amazon Keyspaces resources based on tags. For IAM policy examples using 
tags, see the section called “Authorization based on Amazon Keyspaces tags”.

Tagging is supported by AWS services like Amazon Elastic Compute Cloud (Amazon EC2), Amazon 
Simple Storage Service (Amazon S3), Amazon Keyspaces, and more. Efficient tagging can provide 
cost insights by enabling you to create reports across services that carry a specific tag.

To get started with tagging, do the following:

1. Understand Tagging restrictions for Amazon Keyspaces.

2. Create tags by using Tagging operations for Amazon Keyspaces.

3. Use Cost allocation reports for Amazon Keyspaces to track your AWS costs per active tag.

Finally, it is good practice to follow optimal tagging strategies. For information, see AWS tagging 
strategies.

Tagging restrictions for Amazon Keyspaces

Each tag consists of a key and a value, both of which you define. The following restrictions apply:

• Each Amazon Keyspaces keyspace or table can have only one tag with the same key. If you try to 
add an existing tag (same key), the existing tag value is updated to the new value.

• Tags applied to a keyspace do not automatically apply to tables within that keyspace. To apply 
the same tag to a keyspace and all its tables, each resource must be individually tagged.

• When you create a multi-Region keyspace or table, any tags that you define during the creation 
process are automatically applied to all keyspaces and tables in all Regions. When you change 
existing tags using ALTER KEYSPACE or ALTER TABLE, the update is only applied to the 
keyspace or table in the Region where you're making the change.

• A value acts as a descriptor within a tag category (key). In Amazon Keyspaces the value cannot be 
empty or null.

• Tag keys and values are case sensitive.

• The maximum key length is 128 Unicode characters.

• The maximum value length is 256 Unicode characters.

• The allowed characters are letters, white space, and numbers, plus the following special 
characters: + - = . _ : /

Tagging restrictions 375

https://d0.awsstatic.com/aws-answers/AWS_Tagging_Strategies.pdf
https://d0.awsstatic.com/aws-answers/AWS_Tagging_Strategies.pdf


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• The maximum number of tags per resource is 50.

• AWS-assigned tag names and values are automatically assigned the aws: prefix, which you can't 
assign. AWS-assigned tag names don't count toward the tag limit of 50. User-assigned tag names 
have the prefix user: in the cost allocation report.

• You can't backdate the application of a tag.

Tagging operations for Amazon Keyspaces

You can add, list, edit, or delete tags for keyspaces and tables using the Amazon Keyspaces (for 
Apache Cassandra) console, the AWS CLI, or Cassandra Query Language (CQL). You can then 
activate these user-defined tags so that they appear on the AWS Billing and Cost Management 
console for cost allocation tracking. For more information, see Cost allocation reports for Amazon 
Keyspaces.

For bulk editing, you can also use Tag Editor on the console. For more information, see Working 
with Tag Editor in the AWS Resource Groups User Guide.

Topics

• Adding tags to new or existing keyspaces and tables using the console

• Adding tags to new or existing keyspaces and tables using the AWS CLI

• Adding tags to new or existing keyspaces and tables using CQL

Adding tags to new or existing keyspaces and tables using the console

You can use the Amazon Keyspaces console to add tags to new keyspaces and tables when you 
create them. You can also add, edit, or delete tags for existing tables.

To tag keyspaces when creating them (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Keyspaces, and then choose Create keyspace.

3. On the Create keyspace page, provide a name for the keyspace. Enter a key and value for the 
tag, and then choose Add new tag.

4. Choose Create keyspace.

Tagging operations 376

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

To tag tables when creating them (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables, and then choose Create table.

3. On the Create table page in the Table details section, select a keyspace and provide a name 
for the table.

4. In the Schema section, create the schema for your table.

5. In the Table settings section, choose Customize settings.

6. Continue to the Table tags – optional section, and choose Add new tag to create new tags.

7. Choose Create table.

To tag existing resources (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Keyspaces or Tables.

3. Choose a keyspace or table in the list. Then choose Manage tags to add, edit, or delete your 
tags.

For information about tag structure, see Tagging restrictions for Amazon Keyspaces.

Adding tags to new or existing keyspaces and tables using the AWS CLI

The examples in this section demonstrate how to use the AWS CLI to specify tags when you create 
keyspaces and tables, how to add or remove tags from existing resources, and how to list tags.

The following example shows how to create a new table with tags. The command creates a table
myTable in an already existing keyspace myKeyspace. Note that the command has been broken up 
into different lines to help with readability.

aws keyspaces create-table --keyspace-name 'myKeyspace' --table-name 'myTable'  
            --schema-definition 'allColumns=[{name=id,type=int},{name=name,type=text},
{name=date,type=timestamp}],partitionKeys=[{name=id}]'  
            --tags 'key=key1,value=val1' 'key=key2,value=val2'

The following example shows how to add new tags to an existing table.

Tagging operations 377

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

aws keyspaces tag-resource --resource-arn 'arn:aws:cassandra:us-east-1:111222333444:/
keyspace/myKeyspace/table/myTable' --tags 'key=key3,value=val3' 'key=key4,value=val4'

The next example shows how to list the tags of the specified resource.

aws keyspaces list-tags-for-resource --resource-arn 'arn:aws:cassandra:us-
east-1:111222333444:/keyspace/myKeyspace/table/myTable'

The output of the last command looks like this.

{ 
    "tags": [ 
        { 
            "key": "key1", 
            "value": "val1" 
        }, 
        { 
            "key": "key2", 
            "value": "val2" 
        }, 
        { 
            "key": "key3", 
            "value": "val3" 
        }, 
        { 
            "key": "key4", 
            "value": "val4" 
        } 
    ]
}

Adding tags to new or existing keyspaces and tables using CQL

The following examples show how to use CQL to specify tags when you create keyspaces and 
tables, how to tag existing resources, and how to read tags.

The following example creates a new keyspace with tags.

CREATE KEYSPACE mykeyspace WITH TAGS = {'key1':'val1', 'key2':'val2'} ; 
                 

Tagging operations 378



Amazon Keyspaces (for Apache Cassandra) Developer Guide

The following example creates a new table with tags.

CREATE TABLE mytable(...) WITH TAGS = {'key1':'val1', 'key2':'val2'}; 
                 

To tag resources in a statement with other commands.

CREATE KEYSPACE mykeyspace WITH REPLICATION = {'class': 'Simple Strategy'} AND TAGS 
 = {'key1':'val1', 'key2':'val2'}; 
                 

The following example shows how to add or remove tags on existing keyspaces and tables.

ALTER KEYSPACE mykeyspace ADD TAGS {'key1':'val1', 'key2':'val2'};

ALTER TABLE mytable DROP TAGS {'key1':'val1', 'key2':'val2'};

To read the tags attached to a resource, use the following CQL statement.

SELECT * FROM system_schema_mcs.tags WHERE valid_where_clause;

The WHERE clause is required, and must be one of the following formats:

• keyspace_name = 'mykeyspace' AND resource_type = 'keyspace'

• keyspace_name = 'mykeyspace' AND resource_name = 'mytable'

• resource_id = arn

Examples:

The following query shows whether a keyspace has tags.

SELECT * FROM system_schema_mcs.tags WHERE keyspace_name = 'mykeyspace' AND 
 resource_type = 'keyspace';

The output of the query looks like the following.

Tagging operations 379



Amazon Keyspaces (for Apache Cassandra) Developer Guide

resource_id                                                      | keyspace_name | 
 resource_name | resource_type | tags
-----------------------------------------------------------------+---------------
+---------------+---------------+------
arn:aws:cassandra:us-east-1:123456789:/keyspace/mykeyspace/      | mykeyspace    | 
 mykeyspace    | keyspace      | {'key1': 'val1', 'key2': 'val2'} 
             
          

The following query is showing the tags for a table.

SELECT * FROM system_schema_mcs.tags WHERE keyspace_name = 'mykeyspace' AND 
 resource_name = 'mytable';

The output of that query looks like the following.

resource_id                                                                 | 
 keyspace_name | resource_name | resource_type | tags
----------------------------------------------------------------------------
+---------------+---------------+---------------+------
arn:aws:cassandra:us-east-1:123456789:/keyspace/mykeyspace/table/mytable    | 
 mykeyspace    | mytable       | table         | {'key1': 'val1', 'key2': 'val2'}  
             
         

Cost allocation reports for Amazon Keyspaces

AWS uses tags to organize resource costs on your cost allocation report. AWS provides two types of 
cost allocation tags:

• An AWS-generated tag. AWS defines, creates, and applies this tag for you.

• User-defined tags. You define, create, and apply these tags.

You must activate both types of tags separately before they can appear in Cost Explorer or on a 
cost allocation report.

To activate AWS-generated tags:

Cost allocation reports for Amazon Keyspaces 380



Amazon Keyspaces (for Apache Cassandra) Developer Guide

1. Sign in to the AWS Management Console and open the Billing and Cost Management console at
https://console.aws.amazon.com/billing/home#/.

2. In the navigation pane, choose Cost Allocation Tags.

3. Under AWS-Generated Cost Allocation Tags, choose Activate.

To activate user-defined tags:

1. Sign in to the AWS Management Console and open the Billing and Cost Management console at
https://console.aws.amazon.com/billing/home#/.

2. In the navigation pane, choose Cost Allocation Tags.

3. Under User-Defined Cost Allocation Tags, choose Activate.

After you create and activate tags, AWS generates a cost allocation report with your usage and 
costs grouped by your active tags. The cost allocation report includes all of your AWS costs for each 
billing period. The report includes both tagged and untagged resources, so that you can clearly 
organize the charges for resources.

Note

Currently, any data transferred out from Amazon Keyspaces won't be broken down by tags 
on cost allocation reports.

For more information, see Using cost allocation tags.

Cost allocation reports for Amazon Keyspaces 381

https://console.aws.amazon.com/billing/home#/
https://console.aws.amazon.com/billing/home#/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Best practices for designing and architecting with 
Amazon Keyspaces

Use this section to quickly find recommendations for maximizing performance and minimizing 
throughput costs when working with Amazon Keyspaces.

Contents

• NoSQL design for Amazon Keyspaces

• Differences between relational data design and NoSQL

• Two key concepts for NoSQL design

• Approaching NoSQL design

• Client driver connections to Amazon Keyspaces (for Apache Cassandra)

• How connections work in Amazon Keyspaces

• How to configure connections in Amazon Keyspaces

• How to configure connections over VPC endpoints in Amazon Keyspaces

• How to monitor connections in Amazon Keyspaces

• How to handle connection errors in Amazon Keyspaces

• Data modeling in Amazon Keyspaces (for Apache Cassandra)

• How to use partition keys effectively in Amazon Keyspaces

• Using write sharding to distribute workloads evenly in Amazon Keyspaces

• Sharding using compound partition keys and random values

• Sharding using compound partition keys and calculated values

• Optimizing costs of Amazon Keyspaces tables

• Evaluate your costs at the table level

• How to view the costs of a single Amazon Keyspaces table

• Cost Explorer's default view

• How to use and apply table tags in Cost Explorer

• Evaluate your table's capacity mode

• What table capacity modes are available

• When to select on-demand capacity mode

• When to select provisioned capacity mode

382



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Additional factors to consider when choosing a table capacity mode

• Evaluate your table's Application Auto Scaling settings

• Understanding your Application Auto Scaling settings

• How to identify tables with low target utilization (<=50%)

• How to address workloads with seasonal variance

• How to address spiky workloads with unknown patterns

• How to address workloads with linked applications

• Identify your unused resources

• How to identify unused resources

• Identifying unused table resources

• Cleaning up unused table resources

• Cleaning up unused point-in-time recovery (PITR) backups

• Evaluate your table usage patterns

• Perform fewer strongly-consistent read operations

• Enable Time to Live (TTL)

• Evaluate your provisioned capacity for right-sized provisioning

• How to retrieve consumption metrics from your Amazon Keyspaces tables

• How to identify under-provisioned Amazon Keyspaces tables

• How to identify over-provisioned Amazon Keyspaces tables

NoSQL design for Amazon Keyspaces

NoSQL database systems like Amazon Keyspaces use alternative models for data management, 
such as key-value pairs or document storage. When you switch from a relational database 
management system to a NoSQL database system like Amazon Keyspaces, it's important to 
understand the key differences and specific design approaches.

Topics

• Differences between relational data design and NoSQL

• Two key concepts for NoSQL design

• Approaching NoSQL design
NoSQL design 383



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Differences between relational data design and NoSQL

Relational database systems (RDBMS) and NoSQL databases have different strengths and 
weaknesses:

• In RDBMS, data can be queried flexibly, but queries are relatively expensive and don't scale well 
in high-traffic situations (see the section called “Data modeling”).

• In a NoSQL database such as Amazon Keyspaces, data can be queried efficiently in a limited 
number of ways, outside of which queries can be expensive and slow.

These differences make database design different between the two systems:

• In RDBMS, you design for flexibility without worrying about implementation details or 
performance. Query optimization generally doesn't affect schema design, but normalization is 
important.

• In Amazon Keyspaces, you design your schema specifically to make the most common and 
important queries as fast and as inexpensive as possible. Your data structures are tailored to the 
specific requirements of your business use cases.

Two key concepts for NoSQL design

NoSQL design requires a different mindset than RDBMS design. For an RDBMS, you can go ahead 
and create a normalized data model without thinking about access patterns. You can then extend it 
later when new questions and query requirements arise. You can organize each type of data into its 
own table.

How NoSQL design is different

• By contrast, you shouldn't start designing your schema for Amazon Keyspaces until you know the 
questions it needs to answer. Understanding the business problems and the application use cases 
up front is essential.

• You should maintain as few tables as possible in an Amazon Keyspaces application. Having fewer 
tables keeps things more scalable, requires less permissions management, and reduces overhead 
for your Amazon Keyspaces application. It can also help keep backup costs lower overall.

NoSQL vs. RDBMS 384



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Approaching NoSQL design

The first step in designing your Amazon Keyspaces application is to identify the specific query 
patterns that the system must satisfy.

In particular, it is important to understand three fundamental properties of your application's 
access patterns before you begin:

• Data size: Knowing how much data will be stored and requested at one time helps to determine 
the most effective way to partition the data.

• Data shape: Instead of reshaping data when a query is processed (as an RDBMS system does), a 
NoSQL database organizes data so that its shape in the database corresponds with what will be 
queried. This is a key factor in increasing speed and scalability.

• Data velocity: Amazon Keyspaces scales by increasing the number of physical partitions that are 
available to process queries, and by efficiently distributing data across those partitions. Knowing 
in advance what the peak query loads will be might help determine how to partition data to best 
use I/O capacity.

After you identify specific query requirements, you can organize data according to general 
principles that govern performance:

• Keep related data together.   Research on routing-table optimization 20 years ago found that 
"locality of reference" was the single most important factor in speeding up response time: 
keeping related data together in one place. This is equally true in NoSQL systems today, where 
keeping related data in close proximity has a major impact on cost and performance. Instead 
of distributing related data items across multiple tables, you should keep related items in your 
NoSQL system as close together as possible.

As a general rule, you should maintain as few tables as possible in an Amazon Keyspaces 
application.

Exceptions are cases where high-volume time series data are involved, or datasets that have very 
different access patterns. A single table with inverted indexes can usually enable simple queries 
to create and retrieve the complex hierarchical data structures required by your application.

• Use sort order.   Related items can be grouped together and queried efficiently if their key 
design causes them to sort together. This is an important NoSQL design strategy.

General approach 385



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Distribute queries.   It is also important that a high volume of queries not be focused on one 
part of the database, where they can exceed I/O capacity. Instead, you should design data keys 
to distribute traffic evenly across partitions as much as possible, avoiding "hot spots."

These general principles translate into some common design patterns that you can use to model 
data efficiently in Amazon Keyspaces.

Client driver connections to Amazon Keyspaces (for Apache 
Cassandra)

To communicate with Amazon Keyspaces, you can use any of the existing Apache Cassandra client 
drivers of your choice. Because Amazon Keyspaces is a serverless service, we recommend that 
you optimize the connection configuration of your client driver for the throughput needs of your 
application. This topic introduces best practices including how to calculate how many connections 
your application requires, as well as monitoring and error handling of connections.

Topics

• How connections work in Amazon Keyspaces

• How to configure connections in Amazon Keyspaces

• How to configure connections over VPC endpoints in Amazon Keyspaces

• How to monitor connections in Amazon Keyspaces

• How to handle connection errors in Amazon Keyspaces

How connections work in Amazon Keyspaces

This sections gives an overview of how client driver connections work in Amazon Keyspaces. 
Because Cassandra client driver misconfiguration can result in PerConnectionRequestExceeded
events in Amazon Keyspaces, configuring the right amount of connections in the client driver 
configuration is required to avoid these and similar connection errors.

When connecting to Amazon Keyspaces, the driver requires a seed endpoint to establish an initial 
connection. Amazon Keyspaces uses DNS to route the initial connection to one of the many 
available endpoints. The endpoints are attached to network load balancers that in turn establish 
a connection to one of the request handlers in the fleet. After the initial connection is established, 
the client driver gathers information about all available endpoints from the system.peers

Connections 386



Amazon Keyspaces (for Apache Cassandra) Developer Guide

table. With this information, the client driver can create additional connections to the listed 
endpoints. The number of connections the client driver can create is limited by the number of local 
connections specified in the client driver settings. By default, most client drivers establish one 
connection per endpoint and establish a connection pool to Cassandra and load balance queries 
over that pool of connections. Although multiple connections can be established to the same 
endpoint, behind the network load balancer they may be connected to many different request 
handlers. When connecting through the public endpoint, establishing one connection to each 
of the nine endpoints listed in the system.peers table results in nine connections to different 
request handlers.

How to configure connections in Amazon Keyspaces

Amazon Keyspaces supports up to 3,000 CQL queries per TCP connection per second. Because 
there's no limit on the number of connections a driver can establish, we recommend to target only
500 CQL requests per second per connection to allow for overhead, traffic bursts, and better load 
balancing. Follow these steps to ensure that your driver's connection is correctly configured for the 
needs of your application.

Increase the number of connections per IP address your driver is maintaining in its connection 
pool.

• Most Cassandra drivers establish a connection pool to Cassandra and load balance queries 
over that pool of connections. The default behavior of most drivers is to establish a single 
connection to each endpoint. Amazon Keyspaces exposes nine peer IP addresses to drivers, so 
based on the default behavior of most drivers, this results in 9 connections. Amazon Keyspaces 
supports up to 3,000 CQL queries per TCP connection per second, therefore, the maximum 

How to configure connections 387



Amazon Keyspaces (for Apache Cassandra) Developer Guide

CQL query throughput of a driver using the default settings is 27,000 CQL queries per second. 
If you use the driver's default settings, a single connection may have to process more than 
the maximum CQL query throughput of 3,000 CQL queries per second. This could result in
PerConnectionRequestExceeded events.

• To avoid PerConnectionRequestExceeded events, you must configure the driver to create 
additional connections per endpoint to distribute the throughput.

• As a best practice in Amazon Keyspaces, assume that each connection can support 500 CQL 
queries per second.

• That means that for a production application that needs to support an estimated 27,000 
CQL queries per second distributed over the nine available endpoints, you must configure six 
connections per endpoint. This ensures that each connection processes no more than 500 
requests per second.

Calculate the number of connections per IP address you need to configure for your driver based 
on the needs of your application.

To determine the number of connections you need to configure per endpoint for your application, 
consider the following example. You have an application that needs to support 20,000 CQL queries 
per second consisting of 10,000 INSERT, 5,000 SELECT, and 5,000 DELETE operations. The Java 
application is running on three instances on Amazon Elastic Container Service (Amazon ECS) where 
each instance establishes a single session to Amazon Keyspaces. The calculation you can use to 
estimate how many connections you need to configure for your driver uses the following input.

1. The number of requests per second your application needs to support.

2. The number of the available instances with one subtracted to account for maintenance or 
failure.

3. The number of available endpoints. If you're connecting over public endpoints, you have nine 
available endpoints. If you're using VPC endpoints, you have between two and five available 
endpoints, depending on the Region.

4. Use 500 CQL queries per second per connection as a best practice for Amazon Keyspaces.

5. Round up the result.

For this example, the formula looks like this.

How to configure connections 388



Amazon Keyspaces (for Apache Cassandra) Developer Guide

20,000 CQL queries / (3 instances - 1 failure) / 9 public endpoints / 500 CQL queries 
 per second = ROUND(2.22) = 3 

Based on this calculation, you need to specify three local connections per endpoint in the driver 
configuration. For remote connections, configure only one connection per endpoint.

How to configure connections over VPC endpoints in Amazon 
Keyspaces

When connecting over private VPC endpoints, you have most likely less than 9 endpoints available. 
In addition, the number of VPC endpoints can be different per Region, based on the number of 
Availability Zones, and the number of subnets in the assigned VPC. US East (N. Virginia) Region 
has five Availability Zones and you can have up to five Amazon Keyspaces endpoints. US West 
(N. California) Region has two Availability Zones and you can have up to two Amazon Keyspaces 
endpoints. The number of endpoints does not impact scale, but it does increase the number of 
connections you need to establish in the driver configuration. Consider the following example. Your 
application needs to support 20,000 CQL queries and is running on three instances on Amazon ECS 
where each instance establishes a single session to Amazon Keyspaces. The only difference is how 
many endpoints are available in the different AWS Regions.

Connections required in the US East (N. Virginia) Region:

20,000 CQL queries / (3 instances - 1 failure) / 5 private VPC endpoints / 500 CQL 
 queries per second = 4 local connections

Connections required in the US West (N. California) Region:

20,000 CQL queries / (3 instances - 1 failure) / 2 private VPC endpoints / 500 CQL 
 queries per second = 10 local connections

Important

When using private VPC endpoints, additional permissions are required for Amazon 
Keyspaces to discover the available VPC endpoints dynamically and populate the
system.peers table. For more information, see the section called “Populating
system.peers table entries with interface VPC endpoint information”.

VPC endpoint connections 389



Amazon Keyspaces (for Apache Cassandra) Developer Guide

When accessing Amazon Keyspaces through a private VPC endpoint using a different AWS account, 
it’s likely that you only see a single Amazon Keyspaces endpoint. Again this doesn't impact the 
scale of possible throughput to Amazon Keyspaces, but it may require you to increase the number 
of connections in your driver configuration. This example shows the same calculation for a single 
available endpoint.

20,000 CQL queries / (3 instances - 1 failure) / 1 private VPC endpoints / 500 CQL 
 queries per second = 20 local connections

To learn more about cross-account access to Amazon Keyspaces using a shared VPC, see the section 
called “Cross-account access in a shared VPC”.

How to monitor connections in Amazon Keyspaces

To help identify the number of endpoints your application is connected to, you can log the number 
of peers discovered in the system.peers table. The following example is an example of Java code 
which prints the number of peers after the connection has been established.

ResultSet result = session.execute(new SimpleStatement("SELECT * FROM system.peers"));

logger.info("number of Amazon Keyspaces endpoints:" + result.all().stream().count());

Note

The CQL console or AWS console are not deployed within a VPC and therefore use the 
public endpoint. As a result, running the system.peers query from applications located 
outside of the VPCE often results in 9 peers. It may also be helpful to print the IP addresses 
of each peer.

You can also observe the number of peers when using a VPC endpoint by setting up VPCE Amazon 
CloudWatch metrics. In CloudWatch, you can see the number of connections established to the VPC 
endpoint. The Cassandra drivers establish a connection for each endpoint to send CQL queries and 
a control connection to gather system table information. The image below shows the VPC endpoint 
CloudWatch metrics after connecting to Amazon Keyspaces with 1 connection configured in the 
driver settings. The metric is showing six active connections consisting of one control connection 
and five connections (1 per endpoint across Availability Zones).

How to monitor connections 390



Amazon Keyspaces (for Apache Cassandra) Developer Guide

To get started with monitoring the number of connections using a CloudWatch graph, you can 
deploy this AWS CloudFormation template available on GitHub in the Amazon Keyspaces template
repository.

How to handle connection errors in Amazon Keyspaces

When exceeding the 3,000 request per connection quota, Amazon Keyspaces returns a
PerConnectionRequestExceededevent and the Cassandra driver receives a WriteTimeout
or ReadTimeout exception. You should retry this exception with exponential backoff in your 
Cassandra retry policy or in your application. You should provide exponential backoff to avoid 
sending additional request.

The default retry policy attempts to try next host in the query plan. Because Amazon 
Keyspaces may have one to three available endpoints when connecting to the VPC endpoint, 
you may also see the NoHostAvailableException in addition to the WriteTimeout and
ReadTimeout exceptions in your application logs. You can use Amazon Keyspaces provided retry 
policies, which retry on the same endpoint but across different connections.

You can find examples for exponential retry policies for Java on GitHub in the  Amazon Keyspaces 
Java code examples repository. You can find additional language examples on Github in the
Amazon Keyspaces code examples repository.

Data modeling in Amazon Keyspaces (for Apache Cassandra)

This topic introduces data modeling concepts in Amazon Keyspaces (for Apache Cassandra). Use 
this section to find recommendations for designing data models that align with your application's 
data access patterns. Implementing data modeling best practices improves performance and 
minimizes throughput costs when working with Amazon Keyspaces.

To visualize and design data models more easily, you can use the NoSQL Workbench.

Topics

• How to use partition keys effectively in Amazon Keyspaces

How to handle connection errors 391

https://github.com/aws-samples/amazon-keyspaces-cloudwatch-cloudformation-templates
https://github.com/aws-samples/amazon-keyspaces-java-driver-helpers/blob/main/src/main/java/com/aws/ssa/keyspaces/retry/AmazonKeyspacesExponentialRetryPolicy.java
https://github.com/aws-samples/amazon-keyspaces-java-driver-helpers/blob/main/src/main/java/com/aws/ssa/keyspaces/retry/AmazonKeyspacesExponentialRetryPolicy.java
https://github.com/aws-samples/amazon-keyspaces-examples


Amazon Keyspaces (for Apache Cassandra) Developer Guide

How to use partition keys effectively in Amazon Keyspaces

The primary key that uniquely identifies each row in an Amazon Keyspaces table can consist of 
one or multiple partition key columns, which determine which partitions the data is stored in, and 
one or more optional clustering column, which define how data is clustered and sorted within a 
partition.

Because the partition key establishes the number of partitions your data is stored in and how the 
data is distributed across these partitions, how you chose your partition key can have a significant 
impact upon the performance of your queries. In general, you should design your application for 
uniform activity across all partitions on disk.

Distributing read and write activity of your application evenly across all partitions helps to 
minimize throughput costs and this applies to on-demand as well as provisioned read/write 
capacity modes. For example, if you are using provisioned capacity mode, you can determine 
the access patterns that your application needs, and estimate the total read capacity units (RCU) 
and write capacity units (WCU) that each table requires. Amazon Keyspaces supports your access 
patterns using the throughput that you provisioned as long as the traffic against a given partition 
does not exceed 3,000 RCUs and 1,000 WCUs.

Amazon Keyspaces offers additional flexibility in your per-partition throughput provisioning by 
providing burst capacity, for more information see the section called “Burst Capacity”.

Topics

• Using write sharding to distribute workloads evenly in Amazon Keyspaces

Using write sharding to distribute workloads evenly in Amazon Keyspaces

One way to better distribute writes across a partition in Amazon Keyspaces is to expand the space. 
You can do this in several different ways. You can add an additional partition key column to which 
you write random numbers to distribute the rows among partitions. Or you can use a number that 
is calculated based on something that you're querying on.

Sharding using compound partition keys and random values

One strategy for distributing loads more evenly across a partition is to add an additional partition 
key column to which you write random numbers. Then you randomize the writes across the larger 
space.

For example, consider the following table which has a single partition key representing a date.

Partition key design 392



Amazon Keyspaces (for Apache Cassandra) Developer Guide

CREATE TABLE IF NOT EXISTS tracker.blogs ( 
   publish_date date, 
   title text, 
   description int, 
   PRIMARY KEY (publish_date));

To more evenly distribute this table across partitions, you could include an additional partition key 
column shard that stores random numbers. For example:

CREATE TABLE IF NOT EXISTS tracker.blogs ( 
   publish_date date,  
   shard int,  
   title text,  
   description int,  
   PRIMARY KEY ((publish_date, shard)));

When inserting data you might choose a random number between 1 and 200 for the shard
column. This yields compound partition key values like (2020-07-09, 1), (2020-07-09, 2), 
and so on, through (2020-07-09, 200). Because you are randomizing the partition key, the 
writes to the table on each day are spread evenly across multiple partitions. This results in better 
parallelism and higher overall throughput.

However, to read all the rows for a given day, you would have to query the rows for all the shards 
and then merge the results. For example, you would first issue a SELECT statement for the 
partition key value (2020-07-09, 1). Then issue another SELECT statement for (2020-07-09, 
2), and so on, through (2020-07-09, 200). Finally, your application would have to merge the 
results from all those SELECT statements.

Sharding using compound partition keys and calculated values

A randomizing strategy can greatly improve write throughput. But it's difficult to read a specific 
row because you don't know which value was written to the shard column when the row was 
written. To make it easier to read individual rows, you can use a different strategy. Instead of using 
a random number to distribute the rows among partitions, use a number that you can calculate 
based upon something that you want to query on.

Consider the previous example, in which a table uses today's date in the partition key. Now suppose 
that each row has an accessible title column, and that you most often need to find rows by title 
in addition to date. Before your application writes the row to the table, it could calculate a hash 

Partition key design 393



Amazon Keyspaces (for Apache Cassandra) Developer Guide

value based on the title and use it to populate the shard column. The calculation might generate 
a number between 1 and 200 that is fairly evenly distributed, similar to what the random strategy 
produces.

A simple calculation would likely suffice, such as the product of the UTF-8 code point values for 
the characters in the title, modulo 200, + 1. The compound partition key value would then be the 
combination of the date and calculation result.

With this strategy, the writes are spread evenly across the partition key values, and thus across 
the physical partitions. You can easily perform a SELECT statement for a particular row and date 
because you can calculate the partition key value for a specific title value.

To read all the rows for a given day, you still must SELECT each of the (2020-07-09, N) keys 
(where N is 1–200), and your application then has to merge all the results. The benefit is that you 
avoid having a single "hot" partition key value taking all of the workload.

Optimizing costs of Amazon Keyspaces tables

This section covers best practices on how to optimize costs for your existing Amazon Keyspaces 
tables. You should look at the following strategies to see which cost optimization strategy best 
suits your needs and approach them iteratively. Each strategy provides an overview of what might 
be impacting your costs, how to look for opportunities to optimize costs, and prescriptive guidance 
on how to implement these best practices to help you save.

Topics

• Evaluate your costs at the table level

• Evaluate your table's capacity mode

• Evaluate your table's Application Auto Scaling settings

• Identify your unused resources

• Evaluate your table usage patterns

• Evaluate your provisioned capacity for right-sized provisioning

Evaluate your costs at the table level

The Cost Explorer tool found within the AWS Management Console allows you to see costs broken 
down by type, such as read, write, storage and backup charges. You can also see these costs 
summarized by period such as month or day.

Cost optimization 394



Amazon Keyspaces (for Apache Cassandra) Developer Guide

One challenge administrators can face is when the costs of only one particular table need to 
be reviewed. Some of this data is available via the Amazon Keyspaces console or via calls to 
the GetTable API, however Cost Explorer does not, by default, allow you to filter or group by 
costs associated with a specific table. This section will show you how to use tagging to perform 
individual table cost analysis in Cost Explorer.

Topics

• How to view the costs of a single Amazon Keyspaces table

• Cost Explorer's default view

• How to use and apply table tags in Cost Explorer

How to view the costs of a single Amazon Keyspaces table

Both the Amazon Keyspaces console and the GetTable API show you information about a single 
table, including the primary key schema and the size and row count of the table. The size of the 
table, can be used to calculate the monthly storage cost for your table. For example, $0.25 per GB 
in the us-east-1 AWS Region.

If the table is using provisioned capacity mode, the current read capacity unit (RCU) and write 
capacity unit (WCU) settings are returned as well. These can be used to calculate the current 
read and write costs for the table, but these costs could change, especially if the table has been 
configured with Application Auto Scaling.

Note

If the table is using on-demand capacity mode, then GetTable doesn't help estimate 
throughput costs, as these are billed based on actual, not provisioned usage in any one 
period.

Cost Explorer's default view

The default view in Cost Explorer provides charts showing the cost of consumed resources, for 
example throughput and storage. You can choose to group these costs by period, such as totals by 
month or by day. The costs of storage, reads, writes, and other categories can be broken out and 
compared as well.

Evaluate your costs at the table level 395



Amazon Keyspaces (for Apache Cassandra) Developer Guide

How to use and apply table tags in Cost Explorer

By default, Cost Explorer does not provide a summary of the costs for any one specific table, 
because it combines the costs of multiple tables into a total. However, you can use AWS resource 
tagging to identify each table by a metadata tag. Tags are key-value pairs that you can use for a 
variety of purposes, for example to identify all resources belonging to a project or department. For 
this example, we use a table with the name MyTable.

1. Set a tag with the key of table_name and the value of MyTable.

2. Activate the tag within Cost Explorer and then filter on the tag value to gain more visibility 
into each table's costs.

Note

It may take one or two days for the tag to start appearing in Cost Explorer

You can set metadata tags yourself in the console, or programmatically with the AWS CLI or AWS 
SDK. Consider requiring a table_name tag to be set as part of your organization’s new table 
creation process.

Evaluate your table's capacity mode

This section provides an overview of how to select the appropriate capacity mode for your Amazon 
Keyspaces table. Each mode is tuned to meet the needs of a different workload in terms of 
responsiveness to change in throughput, as well as how that usage is billed. You must balance 
these factors when making your decision.

Evaluate your table's capacity mode 396

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/activating-tags.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• What table capacity modes are available

• When to select on-demand capacity mode

• When to select provisioned capacity mode

• Additional factors to consider when choosing a table capacity mode

What table capacity modes are available

When you create an Amazon Keyspaces table, you must select either on-demand or provisioned 
capacity mode. For more information, see the section called “Read/write capacity modes”.

On-demand capacity mode

The on-demand capacity mode is designed to eliminate the need to plan or provision the capacity 
of your Amazon Keyspaces table. In this mode, your table instantly accommodates requests 
without the need to scale any resources up or down (up to twice the previous peak throughput of 
the table).

On-demand tables are billed by counting the number of actual requests against the table, so you 
only pay for what you use rather than what has been provisioned.

Provisioned capacity mode

The provisioned capacity mode is a more traditional model where you can define how much 
capacity the table has available for requests either directly or with the assistance of Application 
Auto Scaling. Because a specific capacity is provisioned for the table at any given time, billing is 
based off of the capacity provisioned rather than the number of requests. Going over the allocated 
capacity can also cause the table to reject requests and reduce the experience of your application's 
users.

Provisioned capacity mode requires a balance between not over-provisioning or under provisioning 
the table to achieve both, low occurrence of insufficient throughput capacity errors, and optimized 
costs.

When to select on-demand capacity mode

When optimizing for cost, on-demand mode is your best choice when you have an unpredictable 
workload similar to the one shown in the following graph.

Evaluate your table's capacity mode 397



Amazon Keyspaces (for Apache Cassandra) Developer Guide

These factors contribute to this type of workload:

• Unpredictable request timing (resulting in traffic spikes)

• Variable volume of requests (resulting from batch workloads)

• Drops to zero or below 18% of the peak for a given hour (resulting from development or test 
environments)

For workloads with the above characteristics, using Application Auto Scaling to maintain enough 
capacity for the table to respond to spikes in traffic may lead to undesirable outcomes. Either the 
table could be over-provisioned and costing more than necessary, or the table could be under 
provisioned and requests are leading to unnecessary low capacity throughput errors. In cases like 
this, on-demand tables are the better choice.

Because on-demand tables are billed by request, there is nothing further you need to do at the 
table level to optimize for cost. You should regularly evaluate your on-demand tables to verify the 
workload still has the above characteristics. If the workload has stabilized, consider changing to 
provisioned mode to maintain cost optimization.

When to select provisioned capacity mode

An ideal workload for provisioned capacity mode is one with a more predictable usage pattern like 
shown in the graph below.

The following factors contribute to a predictable workload:

• Predicable/cyclical traffic for a given hour or day

• Limited short term bursts of traffic

Evaluate your table's capacity mode 398



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Since the traffic volumes within a given time or day are more stable, you can set the provisioned 
capacity relatively close to the actual consumed capacity of the table. Cost optimizing a 
provisioned capacity table is ultimately an exercise in getting the provisioned capacity (blue line) as 
close to the consumed capacity (orange line) as possible without increasing ThrottledRequests
events for the table. The space between the two lines is both, wasted capacity as well as insurance 
against a bad user experience due to insufficient throughput capacity errors.

Amazon Keyspaces provides Application Auto Scaling for provisioned capacity tables, which 
automatically balances this on your behalf. You can track your consumed capacity throughout the 
day and configure the provisioned capacity of the table based on a handful of variables.

Minimum capacity units

You can set the minimum capacity of a table to limit the occurrence of insufficient throughput 
capacity errors, but it doesn't reduce the cost of the table. If your table has periods of low usage 
followed by a sudden burst of high usage, setting the minimum can prevent Application Auto 
Scaling from setting the table capacity too low.

Maximum capacity units

You can set the maximum capacity of a table to limit a table scaling higher than intended. Consider 
applying a maximum for development or test tables, where large-scale load testing is not desired. 
You can set a maximum for any table, but be sure to regularly evaluate this setting against the 
table baseline when using it in production, to prevent accidental insufficient throughput capacity 
errors.

Target utilization

Evaluate your table's capacity mode 399



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Setting the target utilization of the table is the primary means of cost optimization for a 
provisioned capacity table. Setting a lower percent value here increases how much the table is 
over-provisioned, increasing cost, but reducing the risk of insufficient throughput capacity errors. 
Setting a higher percentage value decreases by how much the table is over-provisioned, but 
increases the risk of insufficient throughput capacity errors.

Additional factors to consider when choosing a table capacity mode

When deciding between the two capacity modes, there are some additional factors worth 
considering.

When deciding between the two table modes, consider how much this additional discount affects 
the cost of the table. In many cases, even a relatively unpredictable workload can be more cost 
effective to run on an over-provisioned provisioned capacity table with reserved capacity.

Improving predictability of your workload

In some situations, a workload may seemingly have both, a predictable and an unpredictable 
pattern. While this can be easily supported with an on-demand table, costs will likely be lower if 
the unpredictable patterns in the workload can be improved.

One of the most common causes of these patterns are batch imports. This type of traffic can often 
exceed the baseline capacity of the table to such a degree that insufficient throughput capacity 
errors would occur if it were to run. To keep a workload like this running on a provisioned capacity 
table, consider the following options:

• If the batch occurs at scheduled times, you can schedule an increase to your application auto- 
scaling capacity before it runs.

• If the batch occurs randomly, consider trying to extend the time it takes to run rather than 
executing as fast as possible.

• Add a ramp up period to the import, where the velocity of the import starts small but is slowly 
increased over a few minutes until Application Auto Scaling has had the opportunity to start 
adjusting table capacity.

Evaluate your table's Application Auto Scaling settings

This section provides an overview of how to evaluate the Application Auto Scaling settings on your 
Amazon Keyspaces tables. Amazon Keyspaces Application Auto Scaling is a feature that manages 

Evaluate your table's Application Auto Scaling settings 400



Amazon Keyspaces (for Apache Cassandra) Developer Guide

table throughput based on your application traffic and your target utilization metric. This ensures 
your tables have the required capacity required for your application patterns.

The Application Auto Scaling service monitors your current table utilization and compares it to 
the target utilization value: TargetValue. It notifies you if it is time to increase or decrease the 
allocated capacity.

Topics

• Understanding your Application Auto Scaling settings

• How to identify tables with low target utilization (<=50%)

• How to address workloads with seasonal variance

• How to address spiky workloads with unknown patterns

• How to address workloads with linked applications

Understanding your Application Auto Scaling settings

Defining the correct value for the target utilization, initial step, and final values is an activity that 
requires involvement from your operations team. This allows you to properly define the values 
based on historical application usage, which is used to trigger the Application Auto Scaling policies. 
The utilization target is the percentage of your total capacity that needs to be met during a period 
of time before the Application Auto Scaling rules apply.

When you set a high utilization target (a target around 90%) it means your traffic needs to be 
higher than 90% for a period of time before the Application Auto Scaling is activated. You should 
not use a high utilization target unless your application is very constant and doesn’t receive spikes 
in traffic.

When you set a very low utilization (a target less than 50%) it means your application would 
need to reach 50% of the provisioned capacity before it triggers an Application Auto Scaling policy. 
Unless your application traffic grows at a very aggressive rate, this usually translates into unused 
capacity and wasted resources.

How to identify tables with low target utilization (<=50%)

You can use either the AWS CLI or AWS Management Console to monitor and identify the
TargetValues for your Application Auto Scaling policies in your Amazon Keyspaces resources:

Evaluate your table's Application Auto Scaling settings 401



Amazon Keyspaces (for Apache Cassandra) Developer Guide

AWS CLI

1. Return the entire list of resources by running the following command:

aws application-autoscaling describe-scaling-policies --service-namespace 
 cassandra

This command will return the entire list of Application Auto Scaling policies that are issued 
to any Amazon Keyspaces resource. If you only want to retrieve the resources from a 
particular table, you can add the –resource-id parameter. For example:

aws application-autoscaling describe-scaling-policies --service-namespace 
 cassandra --resource-id "keyspace/keyspace-name/table/table-name”

2. Return only the auto scaling policies for a particular table by running the following 
command

aws application-autoscaling describe-scaling-policies --service-namespace 
 cassandra --resource-id "keyspace/keyspace-name/table/table-name”

The values for the Application Auto Scaling policies are highlighted below. You need to 
ensure that the target value is greater than 50% to avoid over-provisioning. You should 
obtain a result similar to the following:

{ 
    "ScalingPolicies": [ 
        { 
            "PolicyARN": "arn:aws:autoscaling:<region>:<account-
id>:scalingPolicy:<uuid>:resource/keyspaces/table/table-name-scaling-policy", 
            "PolicyName": $<full-gsi-name>”, 
            "ServiceNamespace": "cassandra", 
            "ResourceId": "keyspace/keyspace-name/table/table-name", 
            "ScalableDimension": "cassandra:index:WriteCapacityUnits", 
            "PolicyType": "TargetTrackingScaling", 
            "TargetTrackingScalingPolicyConfiguration": { 
                 "TargetValue": 70.0, 
                "PredefinedMetricSpecification": { 
                    "PredefinedMetricType": "KeyspacesWriteCapacityUtilization" 
                } 
            }, 
            "Alarms": [ 

Evaluate your table's Application Auto Scaling settings 402



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                ... 
            ], 
            "CreationTime": "2022-03-04T16:23:48.641000+10:00" 
        }, 
        { 
            "PolicyARN": "arn:aws:autoscaling:<region>:<account-
id>:scalingPolicy:<uuid>:resource/keyspaces/table/table-name/index/<index-
name>:policyName/$<full-gsi-name>-scaling-policy", 
            "PolicyName":$<full-table-name>”, 
            "ServiceNamespace": "cassandra", 
            "ResourceId": "keyspace/keyspace-name/table/table-name", 
            "ScalableDimension": "cassandra:index:ReadCapacityUnits", 
            "PolicyType": "TargetTrackingScaling", 
            "TargetTrackingScalingPolicyConfiguration": { 
                 "TargetValue": 70.0, 
                "PredefinedMetricSpecification": { 
                    "PredefinedMetricType": "CassandraReadCapacityUtilization" 
                } 
            }, 
            "Alarms": [ 
                ... 
            ], 
            "CreationTime": "2022-03-04T16:23:47.820000+10:00" 
        } 
    ]
} 
               

AWS Management Console

1. Log into the AWS Management Console and navigate to the CloudWatch service page at
Getting Started with the AWS Management Console. Select the appropriate AWS Region if 
necessary.

2. On the left navigation bar, select Tables. On the Tables page, select the table's Name.

3. On the Table Details page on the Capacity tab, review your table's Application Auto 
Scaling settings.

If your target utilization values are less than or equal to 50%, you should explore your table 
utilization metrics to see if they are under-provisioned or over-provisioned.

Evaluate your table's Application Auto Scaling settings 403

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

How to address workloads with seasonal variance

Consider the following scenario: your application is operating under a minimum average value 
most of the time, but the utilization target is low so your application can react quickly to events 
that happen at certain hours in the day and you have enough capacity and avoid getting throttled. 
This scenario is common when you have an application that is very busy during normal office 
hours (9 AM to 5 PM) but then it works at a base level during after hours. Since some users start 
to connect before 9 am, the application uses this low threshold to ramp up quickly to get to the
required capacity during peak hours.

This scenario could look like this:

• Between 5 PM and 9 AM the ConsumedWriteCapacityUnits units stay between 90 and 100

• Users start to connect to the application before 9 AM and the capacity units increases 
considerably (the maximum value you’ve seen is 1500 WCU)

• On average, your application usage varies between 800 to 1200 during working hours

If the previous scenario applies to your application, consider using scheduled application auto 
scaling, where your table could still have an Application Auto Scaling rule configured, but with a 
less aggressive target utilization that only provisions the extra capacity at the specific intervals you 
require.

You can use the AWS CLI to execute the following steps to create a scheduled auto scaling rule that 
executes based on the time of day and the day of the week.

1. Register your Amazon Keyspaces table as a scalable target with Application Auto Scaling. A 
scalable target is a resource that Application Auto Scaling can scale out or in.

aws application-autoscaling register-scalable-target \ 
    --service-namespace cassandra \ 
    --scalable-dimension cassandra:table:WriteCapacityUnits \ 
    --resource-id keyspace/keyspace-name/table/table-name \ 
    --min-capacity 90 \ 
    --max-capacity 1500

2. Set up scheduled actions according to your requirements.

You need two rules to cover the scenario: one to scale up and another to scale down. The first 
rule to scale up the scheduled action is shown in the following example.

Evaluate your table's Application Auto Scaling settings 404

https://docs.aws.amazon.com/autoscaling/application/userguide/examples-scheduled-actions.html
https://docs.aws.amazon.com/autoscaling/application/userguide/examples-scheduled-actions.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

aws application-autoscaling put-scheduled-action \ 
    --service-namespace cassandra \ 
    --scalable-dimension cassandra:table:WriteCapacityUnits \ 
    --resource-id keyspace/keyspace-name/table/table-name \ 
    --scheduled-action-name my-8-5-scheduled-action \ 
    --scalable-target-action MinCapacity=800,MaxCapacity=1500 \ 
    --schedule "cron(45 8 ? * MON-FRI *)" \ 
    --timezone "Australia/Brisbane"

The second rule to scale down the scheduled action is shown in this example.

aws application-autoscaling put-scheduled-action \ 
    --service-namespace cassandra \ 
    --scalable-dimension cassandra:table:WriteCapacityUnits \ 
    --resource-id keyspace/keyspace-name/table/table-name \ 
    --scheduled-action-name my-5-8-scheduled-down-action \ 
    --scalable-target-action MinCapacity=90,MaxCapacity=1500 \ 
    --schedule "cron(15 17 ? * MON-FRI *)" \ 
    --timezone "Australia/Brisbane"

3. Run the following command to validate both rules have been activated:

aws application-autoscaling describe-scheduled-actions --service-namespace 
 cassandra

You should get a result like this:

{ 
    "ScheduledActions": [ 
        { 
            "ScheduledActionName": "my-5-8-scheduled-down-action", 
            "ScheduledActionARN": 
 "arn:aws:autoscaling:<region>:<account>:scheduledAction:<uuid>:resource/keyspaces/
table/table-name:scheduledActionName/my-5-8-scheduled-down-action", 
            "ServiceNamespace": "cassandra", 
            "Schedule": "cron(15 17 ? * MON-FRI *)", 
            "Timezone": "Australia/Brisbane", 
            "ResourceId": "keyspace/keyspace-name/table/table-name", 
            "ScalableDimension": "cassandra:table:WriteCapacityUnits", 
            "ScalableTargetAction": { 
                "MinCapacity": 90, 

Evaluate your table's Application Auto Scaling settings 405



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                "MaxCapacity": 1500 
            }, 
            "CreationTime": "2022-03-15T17:30:25.100000+10:00" 
        }, 
        { 
            "ScheduledActionName": "my-8-5-scheduled-action", 
            "ScheduledActionARN": 
 "arn:aws:autoscaling:<region>:<account>:scheduledAction:<uuid>:resource/keyspaces/
table/table-name:scheduledActionName/my-8-5-scheduled-action", 
            "ServiceNamespace": "cassandra", 
            "Schedule": "cron(45 8 ? * MON-FRI *)", 
            "Timezone": "Australia/Brisbane", 
            "ResourceId": "keyspace/keyspace-name/table/table-name", 
            "ScalableDimension": "cassandra:table:WriteCapacityUnits", 
            "ScalableTargetAction": { 
                "MinCapacity": 800, 
                "MaxCapacity": 1500 
            }, 
            "CreationTime": "2022-03-15T17:28:57.816000+10:00" 
        } 
    ]
}

The following picture shows a sample workload that always keeps the 70% target utilization. 
Notice how the auto scaling rules are still applying and the throughput is not getting reduced.

Zooming in, we can see there was a spike in the application that triggered the 70% auto scaling 
threshold, forcing the autoscaling to kick in and provide the extra capacity required for the 
table. The scheduled auto scaling action will affect maximum and minimum values, and it is your 
responsibility to set them up.

Evaluate your table's Application Auto Scaling settings 406



Amazon Keyspaces (for Apache Cassandra) Developer Guide

How to address spiky workloads with unknown patterns

In this scenario, the application uses a very low utilization target, because you don’t know the 
application patterns yet, and you want to ensure your workload is not experiencing low capacity 
throughput errors.

Consider using on-demand capacity mode instead. On-demand tables are perfect for spiky 
workloads where you don’t know the traffic patterns. With on-demand capacity mode, you pay per 
request for the data reads and writes your application performs on your tables. You do not need to 
specify how much read and write throughput you expect your application to perform, as Amazon 
Keyspaces instantly accommodates your workloads as they ramp up or down.

How to address workloads with linked applications

In this scenario, the application depends on other systems, like batch processing scenarios where 
you can have big spikes in traffic according to events in the application logic.

Evaluate your table's Application Auto Scaling settings 407



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Consider developing custom application auto-scaling logic that reacts to those events where 
you can increase table capacity and TargetValues depending on your specific needs. You 
could benefit from Amazon EventBridge and use a combination of AWS services like Λ and Step 
Functions to react to your specific application needs.

Identify your unused resources

This section provides an overview of how to evaluate your unused resources regularly. As your 
application requirements evolve, you should ensure no resources are unused and contributing to 
unnecessary Amazon Keyspaces costs. The procedures described below use Amazon CloudWatch 
metrics to identify unused resources and take action to reduce costs.

You can monitor Amazon Keyspaces using CloudWatch, which collects and processes raw data from 
Amazon Keyspaces into readable, near real-time metrics. These statistics are retained for a period 
of time, so that you can access historical information to better understand your utilization. By 
default, Amazon Keyspaces metric data is sent to CloudWatch automatically. For more information, 
see What is Amazon CloudWatch? and Metrics retention in the Amazon CloudWatch User Guide.

Topics

• How to identify unused resources

• Identifying unused table resources

• Cleaning up unused table resources

• Cleaning up unused point-in-time recovery (PITR) backups

How to identify unused resources

To identify unused tables you can take a look at the following CloudWatch metrics over a period of 
30 days to understand if there are any active reads or writes on a specific table:

ConsumedReadCapacityUnits

The number of read capacity units consumed over the specified time period, so you can track how 
much consumed capacity you have used. You can retrieve the total consumed read capacity for a 
table.

ConsumedWriteCapacityUnits

Identify your unused resources 408

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#metrics-retention


Amazon Keyspaces (for Apache Cassandra) Developer Guide

The number of write capacity units consumed over the specified time period, so you can track how 
much consumed capacity you have used. You can retrieve the total consumed write capacity for a 
table.

Identifying unused table resources

Amazon CloudWatch is a monitoring and observability service which provides the Amazon 
Keyspaces table metrics you can use to identify unused resources. CloudWatch metrics can be 
viewed through the AWS Management Console as well as through the AWS Command Line 
Interface.

AWS Command Line Interface

To view your tables metrics through the AWS Command Line Interface, you can use the 
following commands.

1. First, evaluate your table's reads:

Note

If the table name is not unique within your account, you must also specify the name 
of the keyspace.

aws cloudwatch get-metric-statistics --metric-name
ConsumedReadCapacityUnits --start-time <start-time> --end-time <end-
time> --period <period> --namespace AWS/Cassandra --statistics Sum --
dimensions Name=TableName,Value=<table-name>

To avoid falsely identifying a table as unused, evaluate metrics over a longer period. 
Choose an appropriate start-time and end-time range, such as  30 days, and an appropriate 
period, such as 86400.

In the returned data, any Sum above 0 indicates that the table you are evaluating received 
read traffic during that period.

The following result shows a table receiving read traffic in the evaluated period:

        { 
            "Timestamp": "2022-08-25T19:40:00Z", 

Identify your unused resources 409



Amazon Keyspaces (for Apache Cassandra) Developer Guide

            "Sum": 36023355.0, 
            "Unit": "Count" 
        }, 
        { 
            "Timestamp": "2022-08-12T19:40:00Z", 
            "Sum": 38025777.5, 
            "Unit": "Count" 
        },

The following result shows a table not receiving read traffic in the evaluated period:

        { 
            "Timestamp": "2022-08-01T19:50:00Z", 
            "Sum": 0.0, 
            "Unit": "Count" 
        }, 
        { 
            "Timestamp": "2022-08-20T19:50:00Z", 
            "Sum": 0.0, 
            "Unit": "Count" 
        },

2. Next, evaluate your table’s writes:

aws cloudwatch get-metric-statistics --metric-name
ConsumedWriteCapacityUnits --start-time <start-time> --end-time <end-
time> --period <period> --namespace AWS/Cassandra --statistics Sum --
dimensions Name=TableName,Value=<table-name>

To avoid falsely identifying a table as unused, you will want to evaluate metrics over a 
longer period. Choose an appropriate start-time and end-time range, such as 30 days, and 
an appropriate period, such as 86400.

In the returned data, any Sum above 0 indicates that the table you are evaluating received 
read traffic during that period.

The following result shows a table receiving write traffic in the evaluated period:

        { 
            "Timestamp": "2022-08-19T20:15:00Z", 
            "Sum": 41014457.0, 
            "Unit": "Count" 

Identify your unused resources 410



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        }, 
        { 
            "Timestamp": "2022-08-18T20:15:00Z", 
            "Sum": 40048531.0, 
            "Unit": "Count" 
        },

The following result shows a table not receiving write traffic in the evaluated period:

        { 
            "Timestamp": "2022-07-31T20:15:00Z", 
            "Sum": 0.0, 
            "Unit": "Count" 
        }, 
        { 
            "Timestamp": "2022-08-19T20:15:00Z", 
            "Sum": 0.0, 
            "Unit": "Count" 
        },

AWS Management Console

The following steps allow you to evaluate your resource utilization through the AWS 
Management Console.

1. Log into the AWS Management Console and navigate to the CloudWatch service page at
https://console.aws.amazon.com/cloudwatch/. Select the appropriate AWS Region in the 
top right of the console, if necessary.

2. On the left navigation bar, locate the Metrics section and choose All metrics.

3. The action above opens a dashboard with two panels. In the top panel, you can see 
currently graphed metrics. On the bottom you can select the metrics available to graph. 
Choose Amazon Keyspaces in the bottom panel.

4. In the Amazon Keyspaces metrics selection panel, choose the Table Metrics category to 
show the metrics for your tables in the current region.

5. Identify your table name by scrolling down the menu, then choose the metrics
ConsumedReadCapacityUnits and ConsumedWriteCapacityUnits for your table.

6. Choose the Graphed metrics (2) tab and adjust the Statistic column to Sum.

Identify your unused resources 411

https://console.aws.amazon.com/cloudwatch/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

7. To avoid falsely identifying a table as unused, evaluate the table metrics over a longer 
period. At the top of the graph panel, choose an appropriate time frame, such as 1 month, 
to evaluate your table. Choose Custom, choose 1 Months in the drop-down menu, and 
choose Apply.

8. Evaluate the graphed metrics for your table to determine if it is being used. Metrics that 
have gone above 0 indicate that a table has been used during the evaluated time period. A 
flat graph at 0 for both read and write indicates that a table is unused.

Cleaning up unused table resources

If you have identified unused table resources, you can reduce their ongoing costs in the following 
ways.

Note

If you have identified an unused table but would still like to keep it available in case it 
needs to be accessed in the future, consider switching it to on-demand mode. Otherwise, 
you can consider deleting the table.

Capacity modes

Amazon Keyspaces charges for reading, writing, and storing data in your Amazon Keyspaces tables.

Amazon Keyspaces has two capacity modes, which come with specific billing options for processing 
reads and writes on your tables: on-demand and provisioned. The read/write capacity mode 
controls how you are charged for read and write throughput and how you manage capacity.

For on-demand mode tables, you don't need to specify how much read and write throughput you 
expect your application to perform. Amazon Keyspaces charges you for the reads and writes that 
your application performs on your tables in terms of read request units and write request units. 
If there is no activity on your table, you do not pay for throughput but you still incur a storage 
charge.

Deleting tables

If you’ve discovered an unused table and would like to delete it, consider to make a backup or 
export the data first.

Identify your unused resources 412



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Backups taken through AWS Backup can leverage cold storage tiering, further reducing cost. Refer 
to the Managing backup plans documentation for information on how to use a lifecycle to move 
your backup to cold storage.

After your table has been backed up, you may choose to delete it either through the AWS 
Management Console or through the AWS Command Line Interface.

Cleaning up unused point-in-time recovery (PITR) backups

Amazon Keyspaces offers Point-in-time recovery, which provides continuous backups for 35 days 
to help you protect against accidental writes or deletes. PITR backups have costs associated with 
them.

Refer to the documentation at Point-in-time recovery to determine if your tables have backups 
enabled that may no longer be needed.

Evaluate your table usage patterns

This section provides an overview of how to evaluate if you are efficiently using your Amazon 
Keyspaces tables. There are certain usage patterns which are not optimal for Amazon Keyspaces, 
and they allow room for optimization from both a performance and a cost perspective.

Topics

• Perform fewer strongly-consistent read operations

• Enable Time to Live (TTL)

Perform fewer strongly-consistent read operations

Amazon Keyspaces allows you to configure read consistency on a per-request basis. Read requests 
are eventually consistent by default. Eventually consistent reads are charged at 0.5 RCU for up to 4 
KB of data.

Most parts of distributed workloads are flexible and can tolerate eventual consistency. However, 
there can be access patterns requiring strongly consistent reads. Strongly consistent reads are 
charged at 1 RCU for up to 4 KB of data, essentially doubling your read costs. Amazon Keyspaces 
provides you with the flexibility to use both consistency models on the same table.

You can evaluate your workload and application code to confirm if strongly consistent reads are 
used only where required.

Evaluate your table usage patterns 413

https://docs.aws.amazon.com/aws-backup/latest/devguide/about-backup-plans


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Enable Time to Live (TTL)

Time to Live (TTL) helps you simplify your application logic and optimize the price of storage by 
expiring data from tables automatically. Data that you no longer need is automatically deleted 
from your table based on the Time to Live value that you set.

Evaluate your provisioned capacity for right-sized provisioning

This section provides an overview of how to evaluate if you have right-sized provisioning on 
your Amazon Keyspaces tables. As your workload evolves, you should modify your operational 
procedures appropriately, especially when your Amazon Keyspaces table is configured in 
provisioned mode and you have the risk to over-provision or under-provision your tables.

The procedures described in this section require statistical information that should be captured 
from the Amazon Keyspaces tables that are supporting your production application. To understand 
your application behavior, you should define a period of time that is significant enough to capture 
the data seasonality of your application. For example, if your application shows weekly patterns, 
using a three week period should give you enough room for analysing application throughput 
needs.

If you don’t know where to start, use at least one month’s worth of data usage for the calculations 
below.

While evaluating capacity, for Amazon Keyspaces tables you can configure Read Capacity Units 
(RCUs) and Write Capacity Units (WCU) independently.

Topics

• How to retrieve consumption metrics from your Amazon Keyspaces tables

• How to identify under-provisioned Amazon Keyspaces tables

• How to identify over-provisioned Amazon Keyspaces tables

How to retrieve consumption metrics from your Amazon Keyspaces tables

To evaluate the table capacity, monitor the following CloudWatch metrics and select the 
appropriate dimension to retrieve table information:

Evaluate your provisioned capacity for right-sized provisioning 414



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Read Capacity Units Write Capacity Units

ConsumedReadCapacityUnits ConsumedWriteCapacityUnits

ProvisionedReadCapacityUnits ProvisionedWriteCapacityUnits

ReadThrottleEvents WriteThrottleEvents

You can do this either through the AWS CLI or the AWS Management Console.

AWS CLI

Before you retrieve the table consumption metrics, you need to start by capturing some 
historical data points using the CloudWatch API.

Start by creating two files: write-calc.json and read-calc.json. These files represent 
the calculations for the table. You need to update some of the fields, as indicated in the table 
below, to match your environment.

Note

If the table name is not unique within your account, you must also specify the name of 
the keyspace.

Field Name Definition Example

<table-name> The name of the table that 
you are analysing

SampleTable

<period> The period of time that you 
are using to evaluate the 
utilization target, based in 
seconds

For a 1-hour period you 
should specify: 3600

<start-time> The beginning of your 
evaluation interval, specified 
in ISO8601 format

2022-02-21T23:00:00

Evaluate your provisioned capacity for right-sized provisioning 415



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Field Name Definition Example

<end-time> The end of your evaluatio 
n interval, specified in 
ISO8601 format

2022-02-22T06:00:00

The write calculations file retrieves the number of WCU provisioned and consumed in the time 
period for the date range specified. It also generates a utilization percentage that can be used 
for analysis. The full content of the write-calc.json file should look like in the following 
example.

{ 
  "MetricDataQueries": [ 
    { 
      "Id": "provisionedWCU", 
      "MetricStat": { 
        "Metric": { 
          "Namespace": "AWS/Cassandra", 
          "MetricName": "ProvisionedWriteCapacityUnits", 
          "Dimensions": [ 
            { 
              "Name": "TableName", 
              "Value": "<table-name>" 
            } 
          ] 
        }, 
        "Period": <period>, 
        "Stat": "Average" 
      }, 
      "Label": "Provisioned", 
      "ReturnData": false 
    }, 
    { 
      "Id": "consumedWCU", 
      "MetricStat": { 
        "Metric": { 
          "Namespace": "AWS/Cassandra", 
          "MetricName": "ConsumedWriteCapacityUnits", 
          "Dimensions": [ 
            { 
              "Name": "TableName", 

Evaluate your provisioned capacity for right-sized provisioning 416



Amazon Keyspaces (for Apache Cassandra) Developer Guide

              "Value": "<table-name>"" 
            } 
          ] 
        }, 
        "Period": <period>, 
        "Stat": "Sum" 
      }, 
      "Label": "", 
      "ReturnData": false 
    }, 
    { 
      "Id": "m1", 
      "Expression": "consumedWCU/PERIOD(consumedWCU)", 
      "Label": "Consumed WCUs", 
      "ReturnData": false 
    }, 
    { 
      "Id": "utilizationPercentage", 
      "Expression": "100*(m1/provisionedWCU)", 
      "Label": "Utilization Percentage", 
      "ReturnData": true 
    } 
  ], 
  "StartTime": "<start-time>", 
  "EndTime": "<end-time>", 
  "ScanBy": "TimestampDescending", 
  "MaxDatapoints": 24
}      

The read calculations file uses a similar metrics. This file retrieves how many RCUs were 
provisioned and consumed during the time period for the date range specified. The contents of 
the read-calc.json file should look like in this example.

{ 
  "MetricDataQueries": [ 
    { 
      "Id": "provisionedRCU", 
      "MetricStat": { 
        "Metric": { 
          "Namespace": "AWS/Cassandra", 
          "MetricName": "ProvisionedReadCapacityUnits", 
          "Dimensions": [ 
            { 

Evaluate your provisioned capacity for right-sized provisioning 417



Amazon Keyspaces (for Apache Cassandra) Developer Guide

              "Name": "TableName", 
              "Value": "<table-name>" 
            } 
          ] 
        }, 
        "Period": <period>, 
        "Stat": "Average" 
      }, 
      "Label": "Provisioned", 
      "ReturnData": false 
    }, 
    { 
      "Id": "consumedRCU", 
      "MetricStat": { 
        "Metric": { 
          "Namespace": "AWS/Cassandra", 
          "MetricName": "ConsumedReadCapacityUnits", 
          "Dimensions": [ 
            { 
              "Name": "TableName", 
              "Value": "<table-name>" 
            } 
          ] 
        }, 
        "Period": <period>, 
        "Stat": "Sum" 
      }, 
      "Label": "", 
      "ReturnData": false 
    }, 
    { 
      "Id": "m1", 
      "Expression": "consumedRCU/PERIOD(consumedRCU)", 
      "Label": "Consumed RCUs", 
      "ReturnData": false 
    }, 
    { 
      "Id": "utilizationPercentage", 
      "Expression": "100*(m1/provisionedRCU)", 
      "Label": "Utilization Percentage", 
      "ReturnData": true 
    } 
  ], 
  "StartTime": "<start-time>", 

Evaluate your provisioned capacity for right-sized provisioning 418



Amazon Keyspaces (for Apache Cassandra) Developer Guide

  "EndTime": "<end-time>", 
  "ScanBy": "TimestampDescending", 
  "MaxDatapoints": 24
}       

Once you've created the files, you can start retrieving utilization data.

1. To retrieve the write utilization data, issue the following command:

aws cloudwatch get-metric-data --cli-input-json file://write-calc.json

2. To retrieve the read utilization data, issue the following command:

aws cloudwatch get-metric-data --cli-input-json file://read-calc.json

The result for both queries is a series of data points in JSON format that can be used for 
analysis. Your results depend on the number of data points you specified, the period, and your 
own specific workload data. It could look like in the following example.

{ 
    "MetricDataResults": [ 
        { 
            "Id": "utilizationPercentage", 
            "Label": "Utilization Percentage", 
            "Timestamps": [ 
                "2022-02-22T05:00:00+00:00", 
                "2022-02-22T04:00:00+00:00", 
                "2022-02-22T03:00:00+00:00", 
                "2022-02-22T02:00:00+00:00", 
                "2022-02-22T01:00:00+00:00", 
                "2022-02-22T00:00:00+00:00", 
                "2022-02-21T23:00:00+00:00" 
            ], 
            "Values": [ 
                91.55364583333333, 
                55.066631944444445, 
                2.6114930555555556, 
                24.9496875, 
                40.94725694444445, 
                25.61819444444444, 
                0.0 

Evaluate your provisioned capacity for right-sized provisioning 419



Amazon Keyspaces (for Apache Cassandra) Developer Guide

            ], 
            "StatusCode": "Complete" 
        } 
    ], 
    "Messages": []
}      

Note

If you specify a short period and a long time range, you might need to modify the
MaxDatapoints value, which is by default set to 24 in the script. This represents one 
data point per hour and 24 per day.

AWS Management Console

1. Log into the AWS Management Console and navigate to the CloudWatch service page at
Getting Started with the AWS Management Console. Select the appropriate AWS Region if 
necessary.

2. Locate the Metrics section on the left navigation bar and choose All metrics.

3. This opens a dashboard with two panels. The top panel shows you the graphic, and the 
bottom panel has the metrics that you want to graph. Choose the Amazon Keyspaces 
panel.

4. Choose the Table Metrics category from the sub panels. This shows you the tables in your 
current AWS Region.

5. Identify your table name by scrolling down the menu and selecting the write operation 
metrics: ConsumedWriteCapacityUnits and ProvisionedWriteCapacityUnits

Note

This example talks about write operation metrics, but you can also use these steps 
to graph the read operation metrics.

6. Select the Graphed metrics (2) tab to modify the formulas. By default CloudWatch chooses 
the statistical function Average for the graphs.

Evaluate your provisioned capacity for right-sized provisioning 420

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

7. While having both graphed metrics selected (the checkbox on the left) select the menu
Add math, followed by Common, and then select the Percentage function. Repeat the 
procedure twice.

First time selecting the Percentage function.

Second time selecting the Percentage function.

8. At this point you should have four metrics in the bottom menu. Let’s work on the
ConsumedWriteCapacityUnits calculation. To be consistent, you need to match the 
names with the ones you used in the AWS CLI section. Click on the m1 ID and change this 
value to consumedWCU.

9. Change the statistic from Average to Sum. This action automatically creates another metric 
called ANOMALY_DETECTION_BAND. For the scope of this procedure, you can ignore this 
by removing the checkbox on the newly generated ad1 metric.

10. Repeat step 8 to rename the m2 ID to provisionedWCU. Leave the statistic set to Average.

11. Choose the Expression1 label and update the value to m1 and the label to Consumed 
WCUs.

Note

Make sure you have only selected m1 (checkbox on the left) and provisionedWCU
to properly visualize the data. Update the formula by clicking in Details and 
changing the formula to consumedWCU/PERIOD(consumedWCU). This step might 
also generate another ANOMALY_DETECTION_BAND metric, but for the scope of 
this procedure you can ignore it.

12. You should now have two graphics: one that indicates your provisioned WCUs on the table 
and another that indicates the consumed WCUs.

13. Update the percentage formula by selecting the Expression2 graphic (e2). Rename 
the labels and IDs to utilizationPercentage. Rename the formula to match 100*(m1/
provisionedWCU).

14. Remove the checkbox from all the metrics except utilizationPercentage to visualize your 
utilization patterns. The default interval is set to 1 minute, but feel free to modify it as 
needed.

Evaluate your provisioned capacity for right-sized provisioning 421



Amazon Keyspaces (for Apache Cassandra) Developer Guide

The results you get depend on the actual data from your workload. Intervals with more than 
100% utilization are prone to low throughput capacity error events. Amazon Keyspaces 
offers burst capacity, but as soon as the burst capacity is exhausted, anything above 100% 
experiences low throughput capacity error events.

How to identify under-provisioned Amazon Keyspaces tables

For most workloads, a table is considered under-provisioned when it constantly consumes more 
than 80% of its provisioned capacity.

Burst capacity is an Amazon Keyspaces feature that allow customers to temporarily consume more 
RCUs/WCUs than originally provisioned (more than the per-second provisioned throughput that 
was defined for the table). The burst capacity was created to absorb sudden increases in traffic due 
to special events or usage spikes. This burst capacity limited, for more information, see the section 
called “Burst Capacity”. As soon as the unused RCUs and WCUs are depleted, you can experience 
low capacity throughput error events if you try to consume more capacity than provisioned. When 
your application traffic is getting close to the 80% utilization rate, your risk of experiencing low 
capacity throughput error events is significantly higher.

The 80% utilization rate rule varies from the seasonality of your data and your traffic growth. 
Consider the following scenarios:

• If your traffic has been stable at ~90% utilization rate for the last 12 months, your table has just 
the right capacity

• If your application traffic is growing at a rate of 8% monthly in less than 3 months, you will 
arrive at 100%

• If your application traffic is growing at a rate of 5% in a little more than 4 months, you will still 
arrive at 100%

The results from the queries above provide a picture of your utilization rate. Use them as a guide to 
further evaluate other metrics that can help you choose to increase your table capacity as required 
(for example: a monthly or weekly growth rate). Work with your operations team to define what is 
a good percentage for your workload and your tables.

There are special scenarios where the data is skewed when you analyse it on a daily or weekly 
basis. For example, with seasonal applications that have spikes in usage during working hours (but 
then drop to almost zero outside of working hours), you could benefit from scheduling application 

Evaluate your provisioned capacity for right-sized provisioning 422

https://docs.aws.amazon.com/autoscaling/application/userguide/examples-scheduled-actions.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

auto-scaling, where you specify the hours of the day (and the days of the week) to increase 
the provisioned capacity, as well as when to reduce it. Instead of aiming for higher capacity so 
you can cover the busy hours, you can also benefit from Amazon Keyspaces table auto-scaling
configurations if your seasonality is less pronounced.

How to identify over-provisioned Amazon Keyspaces tables

The query results obtained from the scripts above provide the data points required to perform 
some initial analysis. If your data set presents values lower than 20% utilization for several 
intervals, your table might be over-provisioned. To further define if you need to reduce the number 
of WCUs and RCUS, you should revisit the other readings in the intervals.

When your table contains several low usage intervals, you can benefit from using Application Auto 
Scaling policies, either by scheduling Application Auto Scaling or by just configuring the default 
Application Auto Scaling policies for the table that are based on utilization.

If you have a workload with a low utilization to high throttle ratio (Max(ThrottleEvents)/
Min(ThrottleEvents) in the interval), this could happen when you have a very spiky workload 
where traffic increases significantly on specific days (or times of day), but is otherwise consistently 
low. In these scenarios, it might be beneficial to use scheduled Application Auto Scaling.

Evaluate your provisioned capacity for right-sized provisioning 423

https://docs.aws.amazon.com/autoscaling/application/userguide/examples-scheduled-actions.html
https://docs.aws.amazon.com/autoscaling/application/userguide/examples-scheduled-actions.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using NoSQL Workbench with Amazon Keyspaces (for 
Apache Cassandra)

NoSQL Workbench is a client-side application that helps you design and visualize nonrelational 
data models for Amazon Keyspaces more easily. NoSQL Workbench clients are available for 
Windows, macOS, and Linux.

Designing data models and creating resources automatically

NoSQL Workbench provides you a point-and-click interface to design and create Amazon 
Keyspaces data models. You can easily create new data models from scratch by defining 
keyspaces, tables, and columns. You can also import existing data models and make 
modifications (such as adding, editing, or removing columns) to adapt the data models for 
new applications. NoSQL Workbench then enables you to commit the data models to Amazon 
Keyspaces or Apache Cassandra, and create the keyspaces and tables automatically. To learn 
how to build data models, see the section called “Data modeler”.

Visualizing data models

Using NoSQL Workbench, you can visualize your data models to help ensure that the data 
models can support your application’s queries and access patterns. You can also save and export 
your data models in a variety of formats for collaboration, documentation, and presentations. 
For more information, see the section called “Data visualizer”.

Topics

• Download NoSQL Workbench

• Getting started with NoSQL Workbench

• How to build data models

• How to visualize data models

• How to commit data models to Amazon Keyspaces and Apache Cassandra

• Sample data models in NoSQL Workbench

• Release history for NoSQL Workbench

424



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Download NoSQL Workbench

Follow these instructions to download and install NoSQL Workbench.

To download and install NoSQL Workbench

1. Use one of the following links to download NoSQL Workbench for free.

Operating System Download Link

macOS Download for macOS

Linux* Download for Linux

Windows Download for Windows

* NoSQL Workbench supports Ubuntu 12.04, Fedora 21, and Debian 8 or any newer versions of 
these Linux distributions.

2. After the download completes, start the application and follow the onscreen instructions to 
complete the installation.

Getting started with NoSQL Workbench

To get started with NoSQL Workbench, on the Database Catalog page in NoSQL Workbench, 
choose Amazon Keyspaces, and then choose Launch.

Download 425

https://s3.amazonaws.com/nosql-workbench/WorkbenchDDBLocal-mac.zip
https://s3.amazonaws.com/nosql-workbench/workbenchDDBLocal-linux.run
https://s3.amazonaws.com/nosql-workbench/WorkbenchDDBLocal-win.exe


Amazon Keyspaces (for Apache Cassandra) Developer Guide

This opens the NoSQL Workbench home page for Amazon Keyspaces where you have the following 
options to get started:

1. Create a new data model.

2. Import an existing data model in JSON format.

3. Open a recently edited data model.

4. Open one of the available sample models.

Getting started 426



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Each of the options opens the NoSQL Workbench data modeler. To continue creating a new data 
model, see the section called “Creating a data model”. To edit an existing data model, see the 
section called “Editing a data model”.

How to build data models

You can use the NoSQL Workbench data modeler to design new data models based on your 
application's data access patterns. You can use the data modeler to design new data models or 
import and modify existing data models created using NoSQL Workbench. The data modeler also 
includes a few sample data models to help you get started with data modeling.

Topics

• Building new data models with NoSQL Workbench

• Editing existing data models with NoSQL Workbench

Data modeler 427



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Building new data models with NoSQL Workbench

To create a new data model for Amazon Keyspaces, you can use the NoSQL Workbench data 
modeler to create keyspaces, tables, and columns. Follow these steps to create a new data model.

1. To create a new keyspace, choose the plus sign under Keyspace.

In this step, choose the following properties and settings.

• Keyspace name – Enter the name of the new keyspace.

• Replication strategy – Choose the replication strategy for the keyspace. Amazon Keyspaces 
uses the SingleRegionStrategy to replicate data three times automatically in multiple AWS 
Availability Zones. If you're planning to commit the data model to an Apache Cassandra 
cluster, you can choose SimpleStrategy or NetworkTopologyStrategy.

• Keyspaces tags – Resource tags are optional and let you categorize your resources in 
different ways—for example, by purpose, owner, environment, or other criteria. To learn 
more about tags for Amazon Keyspaces resources, see the section called “Working with 
tags”.

2. Choose Add keyspace definition to create the keyspace.

3. To create a new table, choose the plus sign next to Tables. In this step, you define the 
following properties and settings.

Creating a data model 428



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Table name – The name of the new table.

• Columns – Add a column name and choose the data type. Repeat these steps for every 
column in your schema.

• Partition key – Choose columns for the partition key.

• Clustering columns – Choose clustering columns (optional).

• Capacity mode – Choose the read/write capacity mode for the table. You can choose 
provisioned or on-demand capacity. To learn more about capacity modes, see the section 
called “Read/write capacity modes”.

• Table tags – Resource tags are optional and let you categorize your resources in different 
ways—for example, by purpose, owner, environment, or other criteria. To learn more about 
tags for Amazon Keyspaces resources, see the section called “Working with tags”.

4. Choose Add table definition to create the new table.

5. Repeat these steps to create additional tables.

6. Continue to the section called “Visualizing a Data Model” to visualize the data model that you 
created.

Creating a data model 429



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Editing existing data models with NoSQL Workbench

With the NoSQL Workbench data modeler, you can edit existing data models in Amazon Keyspaces. 
These can be data models that are imported from a file, the provided sample data models, or data 
models that you created previously.

1. To edit a keyspace, choose the edit symbol under Keyspace.

In this step, you can edit the following properties and settings.

• Keyspace name – Enter the name of the new keyspace.

• Replication strategy – Choose the replication strategy for the keyspace. Amazon Keyspaces 
uses the SingleRegionStrategy to replicate data three times automatically in multiple AWS 
Availability Zones. If you're planning to commit the data model to an Apache Cassandra 
cluster, you can choose SimpleStrategy or NetworkTopologyStrategy.

• Keyspaces tags – Resource tags are optional and let you categorize your resources in 
different ways—for example, by purpose, owner, environment, or other criteria. To learn 

Editing a data model 430



Amazon Keyspaces (for Apache Cassandra) Developer Guide

more about tags for Amazon Keyspaces resources, see the section called “Working with 
tags”.

2. Choose Save edits to update the keyspace.

3. To edit a table, choose Edit next to the table name. In this step, you can update the following 
properties and settings.

• Table name – The name of the new table.

• Columns – Add a column name and choose the data type. Repeat these steps for every 
column in your schema.

• Partition key – Choose columns for the partition key.

• Clustering columns – Choose clustering columns (optional).

• Capacity mode – Choose the read/write capacity mode for the table. You can choose 
provisioned or on-demand capacity. To learn more about capacity modes, see the section 
called “Read/write capacity modes”.

• Table tags – Resource tags are optional and let you categorize your resources in different 
ways—for example, by purpose, owner, environment, or other criteria. To learn more about 
tags for Amazon Keyspaces resources, see the section called “Working with tags”.

4. Choose Save edits to update the table.

Editing a data model 431



Amazon Keyspaces (for Apache Cassandra) Developer Guide

5. Continue to the section called “Visualizing a Data Model” to visualize the data model that you 
updated.

How to visualize data models

Using NoSQL Workbench, you can visualize your data models to help ensure that the data models 
can support your application’s queries and access patterns. You also can save and export your data 
models in a variety of formats for collaboration, documentation, and presentations.

After you have created a new data model or edited an existing data model, you can visualize the 
model.

Visualizing data models with NoSQL Workbench

When you have completed the data model in the data modeler, choose Visualize data model.

This takes you to the data visualizer in NoSQL Workbench. The data visualizer provides a visual 
representation of the table's schema and lets you add sample data. To add sample data to a table, 

Data visualizer 432



Amazon Keyspaces (for Apache Cassandra) Developer Guide

choose a table from the model, and then choose Edit. To add a new row of data, choose Add new 
row at the bottom of the screen. Choose Save when you're done.

Aggregate view

After you have confirmed the table's schema, you can aggregate data model visualizations.

Aggregate View 433



Amazon Keyspaces (for Apache Cassandra) Developer Guide

After you have aggregated the view of the data model, you can export the view to a PNG file. To 
export the data model to a JSON file, choose the upload sign under the data model name.

Note

You can export the data model in JSON format at any time in the design process.

Aggregate View 434



Amazon Keyspaces (for Apache Cassandra) Developer Guide

You have the following options to commit the changes:

• Commit to Amazon Keyspaces

• Commit to an Apache Cassandra cluster

To learn more about how to commit changes, see the section called “Committing a data model”.

How to commit data models to Amazon Keyspaces and Apache 
Cassandra

This section shows you how to commit completed data models to Amazon Keyspaces and Apache 
Cassandra clusters. This process automatically creates the server-side resources for keyspaces and 
tables based on the settings that you defined in the data model.

Committing a data model 435



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• Before you begin

• Connecting to Amazon Keyspaces with service-specific credentials

• Connecting to Amazon Keyspaces with AWS Identity and Access Management (IAM) credentials

• Using a saved connection

• Committing to Apache Cassandra

Before you begin

Amazon Keyspaces requires the use of Transport Layer Security (TLS) to help secure connections 
with clients. To connect to Amazon Keyspaces using TLS, you need to complete the following task 
before you can start.

• Download the Starfield digital certificate using the following command and save sf-class2-
root.crt locally or in your home directory.

Before you begin 436



Amazon Keyspaces (for Apache Cassandra) Developer Guide

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

Note

You can also use the Amazon digital certificate to connect to Amazon Keyspaces and 
can continue to do so if your client is connecting to Amazon Keyspaces successfully. The 
Starfield certificate provides additional backwards compatibility for clients using older 
certificate authorities.

curl https://certs.secureserver.net/repository/sf-class2-root.crt -O

After you have saved the certificate file, you can connect to Amazon Keyspaces. One option is 
to connect by using service-specific credentials. Service-specific credentials are a user name and 
password that are associated with a specific IAM user and can only be used with the specified 
service. The second option is to connect with IAM credentials that are using the AWS Signature 
Version 4 process (SigV4). To learn more about these two options, see the section called “Creating 
credentials”.

To connect with service-specific credentials, see the section called “Connecting with service-specific 
credentials”.

To connect with IAM credentials, see the section called “Connecting with IAM credentials”.

Connecting to Amazon Keyspaces with service-specific credentials

This section shows how to use service-specific credentials to commit the data model you created or 
edited with NoSQL Workbench.

1. To create a new connection using service-specific credentials, choose the Connect by using 
user name and password tab.

• Before you begin, you must create service-specific credentials using the process 
documented at the section called “Service-specific credentials”.

Connecting with service-specific credentials 437

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

After you have obtained the service-specific credentials, you can continue to set up the 
connection. Continue with one of the following:

• User name – Enter the user name.

• Password – Enter the password.

• AWS Region – For available Regions, see the section called “Service endpoints”.

• Port – Amazon Keyspaces uses port 9142.

Alternatively, you can import saved credentials from a file.

2. Choose Commit to update Amazon Keyspaces with the data model.

Connecting with service-specific credentials 438



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Connecting with service-specific credentials 439



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Connecting to Amazon Keyspaces with AWS Identity and Access 
Management (IAM) credentials

This section shows how to use IAM credentials to commit the data model created or edited with 
NoSQL Workbench.

1. To create a new connection using IAM credentials, choose the Connect by using IAM 
credentials tab.

• Before you begin, you must create IAM credentials using one of the following methods.

• For console access, use your IAM user name and password to sign in to the AWS 
Management Console from the IAM sign-in page. For information about AWS security 
credentials, including programmatic access and alternatives to long-term credentials, 
see AWS security credentials in the IAM User Guide. For details about signing in to your 
AWS account, see How to sign in to AWS in the AWS Sign-In User Guide.

• For CLI access, you need an access key ID and a secret access key. Use temporary 
credentials instead of long-term access keys when possible. Temporary credentials 
include an access key ID, a secret access key, and a security token that indicates when 
the credentials expire. For more information, see  Using temporary credentials with AWS 
resources in the IAM User Guide.

• For API access, you need an access key ID and secret access key. Use IAM user access 
keys instead of AWS account root user access keys. For more information about creating 
access keys, see Managing access keys for IAM users in the IAM User Guide.

For more information, see Managing access keys for IAM users.

After you have obtained the IAM credentials, you can continue to set up the connection.

• Connection name – The name of the connection.

• AWS Region – For available Regions, see the section called “Service endpoints”.

• Access key ID – Enter the access key ID.

• Secret access key – Enter the secret access key.

• Port – Amazon Keyspaces uses port 9142.

• AWS public certificate – Point to the AWS certificate that was downloaded in the first step.

Connecting with IAM credentials 440

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Persist connection – Select this check box if you want to save the AWS connection secrets 
locally.

2. Choose Commit to update Amazon Keyspaces with the data model.

Connecting with IAM credentials 441



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Connecting with IAM credentials 442



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using a saved connection

If you have previously set up a connection to Amazon Keyspaces, you can use that as the default 
connection to commit data model changes. Choose the Use saved connections tab and continue to 
commit the updates.

Committing to Apache Cassandra

This section walks you through making the connections to an Apache Cassandra cluster to commit 
the data model created or edited with NoSQL Workbench.

Using a saved connection 443



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

Only data models that have been created with SimpleStrategy or
NetworkTopologyStrategy can be committed to Apache Cassandra clusters. To change 
the replication strategy, edit the keyspace in the data modeler.

1. • User name – Enter the user name if authentication is enabled on the cluster.

• Password – Enter the password if authentication is enabled on the cluster.

• Contact points – Enter the contact points.

• Local data center – Enter the name of the local data center.

• Port – The connection uses port 9042.

2. Choose Commit to update the Apache Cassandra cluster with the data model.

Apache Cassandra 444



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Apache Cassandra 445



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Sample data models in NoSQL Workbench

The home page for the modeler and visualizer displays a number of sample models that ship with 
NoSQL Workbench. This section describes these models and their potential uses.

Topics

• Employee data model

• Credit card transactions data model

• Airline operations data model

Employee data model

This data model represents an Amazon Keyspaces schema for an employee database application.

Applications that access employee information for a given company can use this data model.

The access patterns supported by this data model are:

• Retrieval of an employee record with a given ID.

• Retrieval of an employee record with a given ID and division.

• Retrieval of an employee record with a given ID and name.

Credit card transactions data model

This data model represents an Amazon Keyspaces schema for credit card transactions at retail 
stores.

The storage of credit card transactions not only helps stores with bookkeeping, but also helps store 
managers analyze purchase trends, which can help them with forecasting and planning.

The access patterns supported by this data model are:

• Retrieval of transactions by credit card number, month and year, and date.

• Retrieval of transactions by credit card number, category, and date.

• Retrieval of transactions by category, location, and credit card number.

• Retrieval of transactions by credit card number and dispute status.

Sample data models 446



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Airline operations data model

This data model shows data about plane flights, including airports, airlines, and flight routes.

Key components of Amazon Keyspaces modeling that are demonstrated are key-value pairs, 
wide-column data stores, composite keys, and complex data types such as maps to demonstrate 
common NoSQL data-access patterns.

The access patterns supported by this data model are:

• Retrieval of routes originating from a given airline at a given airport.

• Retrieval of routes with a given destination airport.

• Retrieval of airports with direct flights.

• Retrieval of airport details and airline details.

Release history for NoSQL Workbench

The following table describes the important changes in each release of the NoSQL Workbench
client-side application.

Change Description Date

NoSQL Workbench for 
Amazon Keyspaces – GA.

NoSQL Workbench for 
Amazon Keyspaces is 
generally available.

October 28, 2020

NoSQL Workbench preview 
released.

NoSQL Workbench is a client-
side application that helps 
you design and visualize 
nonrelational data models 
for Amazon Keyspaces more 
easily. NoSQL Workbench 
clients are available for 
Windows, macOS, and Linux. 
For more information, see
NoSQL Workbench for 
Amazon Keyspaces.

October 5, 2020

Airline operations data model 447

https://docs.aws.amazon.com/keyspaces/latest/devguide/workbench.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/workbench.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Multi-Region Replication for Amazon Keyspaces (for 
Apache Cassandra)

You can use Amazon Keyspaces Multi-Region Replication to replicate your data with automated, 
fully managed, active-active replication across the AWS Regions of your choice. With active-active 
replication, each Region is able to perform reads and writes in isolation. You can improve both 
availability and resiliency from Regional degradation, while also benefiting from low-latency local 
reads and writes for global applications.

With Multi-Region Replication, Amazon Keyspaces asynchronously replicates data between 
Regions, and data is typically propagated across Regions within a second. Also, with Multi-Region 
Replication, you no longer have the difficult work of resolving conflicts and correcting data 
divergence issues, so you can focus on your application.

By default, Amazon Keyspaces replicates data across three  Availability Zones within the same AWS 
Region for durability and high availability. With Multi-Region Replication, you can create multi-
Region keyspaces that replicate your tables in up to six different geographic AWS Regions of your 
choice.

Topics

• Benefits of using Multi-Region Replication

• Capacity modes and pricing

• How Multi-Region Replication works in Amazon Keyspaces

• Amazon Keyspaces Multi-Region Replication usage notes

• How to use Multi-Region Replication

Benefits of using Multi-Region Replication

Multi-Region Replication provides the following benefits.

• Global reads and writes with single-digit millisecond latency – In Amazon Keyspaces, 
replication is active-active. You can serve both reads and writes locally from the Regions closest 
to your customers with single-digit millisecond latency at any scale. You can use Amazon 
Keyspaces multi-Region tables for global applications that need a fast response time anywhere 
in the world.

Benefits 448

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Improved business continuity and protection from single-Region degradation – With Multi-
Region Replication, you can recover from degradation in a single AWS Region by redirecting your 
application to a different Region in your multi-Region keyspace. Because Amazon Keyspaces 
offers active-active replication, there is no impact to your reads and writes.

Amazon Keyspaces keeps track of any writes that have been performed on your multi-Region 
keyspace but haven't been propagated to all replica Regions. After the Region comes back online, 
Amazon Keyspaces automatically syncs any missing changes so that you can recover without any 
application impact.

• High-speed replication across Regions – Multi-Region Replication uses fast, storage-based 
physical replication of data across Regions, with a replication lag that is typically less than 1 
second.

Replication in Amazon Keyspaces has little to no impact on your database queries because it 
doesn’t share compute resources with your application. This means that you can address high-
write throughput use cases or use cases with sudden spikes or bursts in throughput without any 
application impact.

• Consistency and conflict resolution – Any changes made to data in any Region are replicated to 
the other Regions in a multi-Region keyspace. If applications update the same data in different 
Regions at the same time, conflicts can arise.

To help provide eventual consistency, Amazon Keyspaces uses cell-level timestamps and a last 
writer wins reconciliation between concurrent updates. Conflict resolution is fully managed and 
happens in the background without any application impact.

For more information about supported configurations and features, see the section called “Usage 
notes”.

Capacity modes and pricing

For a multi-Region keyspace, you can either use on-demand capacity mode or provisioned capacity 
mode. For more information, see the section called “Read/write capacity modes”.

For on-demand mode, you're billed 1.25 write request units (WRUs) to write up to 1 KB of data per 
row. You're billed for writes in each Region of your multi-Region keyspace. For example, writing a 
row of 3 KB of data in a multi-Region keyspace with two Regions requires 7.5 WRUs: 3 * 1.25 * 2 = 

Capacity modes and pricing 449



Amazon Keyspaces (for Apache Cassandra) Developer Guide

7.5 WRUs. Additionally, writes that include both static and non-static data require additional write 
operations.

For provisioned mode, you're billed 1.25 write capacity units (WCUs) to write up to 1 KB of data per 
row. You're billed for writes in each Region of your multi-Region keyspace. For example, writing a 
row of 3 KB of data per second in a multi-Region keyspace with two Regions requires 7.5 WCUs: 
3 * 1.25 * 2 = 7.5 WCUs. Additionally, writes that include both static and non-static data require 
additional write operations.

For more information about pricing, see Amazon Keyspaces (for Apache Cassandra) pricing.

How Multi-Region Replication works in Amazon Keyspaces

This section provides an overview of how Amazon Keyspaces Multi-Region Replication works. For 
more information about pricing, see Amazon Keyspaces (for Apache Cassandra) pricing.

Topics

• How Multi-Region Replication works in Amazon Keyspaces

• Multi-Region Replication conflict resolution

• Multi-Region Replication disaster recovery

• IAM permissions required to create multi-Region keyspaces and tables

• Multi-Region Replication and integration with point-in-time recovery (PITR)

• Multi-Region Replication and integration with AWS services

How Multi-Region Replication works in Amazon Keyspaces

Amazon Keyspaces Multi-Region Replication implements a data resiliency architecture that 
distributes your data across independent and geographically distributed AWS Regions. It uses
active-active replication, which provides local low latency with each Region being able to perform 
reads and writes in isolation.

When you create an Amazon Keyspaces multi-Region keyspace, you can select up to five additional 
Regions where the data is going to be replicated to. Each table you create in a multi-Region 
keyspace consists of multiple replica tables (one per Region) that Amazon Keyspaces considers as a 
single unit.

How it works 450

https://aws.amazon.com/keyspaces/pricing
https://aws.amazon.com/keyspaces/pricing


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Every replica has the same table name and the same primary key schema. When an application 
writes data to a local table in one Region, the data is durably written using the LOCAL_QUORUM
consistency level. Amazon Keyspaces automatically replicates the data asynchronously to the other 
replication Regions. The replication lag across Regions is typically less than one second and doesn't 
impact your application’s performance or throughput.

After the data is written, you can read it from the multi-Region table in another replication Region 
with the LOCAL_ONE/LOCAL_QUORUM consistency levels. For more information about supported 
configurations and features, see the section called “Usage notes”.

Multi-Region Replication conflict resolution

Amazon Keyspaces Multi-Region Replication is fully managed, which means that you don't 
have to perform replication tasks such as regularly running repair operations to clean-up data 
synchronization issues. Amazon Keyspaces monitors data consistency between tables in different 
AWS Regions by detecting and repairing conflicts, and synchronizes replicas automatically.

Amazon Keyspaces uses the last writer wins method of data reconciliation. With this conflict 
resolution mechanism, all of the Regions in a multi-Region keyspace agree on the latest update 
and converge toward a state in which they all have identical data. The reconciliation process has 
no impact on application performance. To support conflict resolution, client-side timestamps are 
automatically turned on for multi-Region tables and can't be turned off. For more information, see
Client-side timestamps.

Multi-Region Replication disaster recovery

With Amazon Keyspaces Multi-Region Replication, both reads and writes are replicated 
asynchronously across each Region. In the rare event of a single Region degradation or failure, 
Multi-Region Replication helps you to recover from disaster with little to no impact to your 
application. Recovery from disaster is typically measured using values for Recovery time objective 
(RTO) and Recovery point objective (RPO).

Recovery time objective – The time it takes a system to return to a working state after a disaster. 
RTO measures the amount of downtime your workload can tolerate, measured in time. For disaster 
recovery plans that use Multi-Region Replication to fail over to an unaffected Region, the RTO can 
be nearly zero. The RTO is limited by how quickly your application can detect the failure condition 
and redirect traffic to another Region.

Recovery point objective – The amount of data that can be lost (measured in time). For disaster 
recovery plans that use Multi-Region Replication to fail over to an unaffected Region, the RPO 

Conflict resolution 451



Amazon Keyspaces (for Apache Cassandra) Developer Guide

is typically single-digit seconds. The RPO is limited by replication latency to the failover target 
replica.

In the event of a Regional failure or degradation, you don't need to promote a secondary Region 
or perform database failover procedures because replication in Amazon Keyspaces is active-active. 
Instead, you can use Amazon Route 53 to route your application to the nearest healthy Region. To 
learn more about Route 53, see What is Amazon Route 53?.

If a single AWS Region becomes isolated or degraded, your application can redirect traffic to a 
different Region using Route 53 to perform reads and writes against a different replica table. You 
can also apply custom business logic to determine when to redirect requests to other Regions. An 
example of this is making your application aware of the multiple endpoints that are available.

When the Region comes back online, Amazon Keyspaces resumes propagating any pending writes 
from that Region to the replica tables in other Regions. It also resumes propagating writes from 
other replica tables to the Region that is now back online.

IAM permissions required to create multi-Region keyspaces and tables

To successfully create multi-Region keyspaces and tables, the IAM principal needs to be able to 
create a service-linked role. This service-linked role is a unique type of IAM role that is predefined 
by Amazon Keyspaces. It includes all the permissions that Amazon Keyspaces requires to perform 
actions on your behalf. For more information about the service-linked role, see the section called 
“Multi-Region Replication”.

To create the service-linked role required by Multi-Region Replication, the policy for the IAM 
principal requires the following elements:

• iam:CreateServiceLinkedRole – The action the principal can perform.

• arn:aws:iam::*:role/aws-service-role/replication.cassandra.amazonaws.com/
AWSServiceRoleForKeyspacesReplication – The resource that the action can be 
performed on.

• iam:AWSServiceName": "replication.cassandra.amazonaws.com – The only AWS 
service that this role can be attached to is Amazon Keyspaces.

The following is an example of the policy that grants the minimum required permissions to a 
principal to create multi-Region keyspaces and tables.

{ 

IAM permissions 452

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

            "Effect": "Allow", 
            "Action": "iam:CreateServiceLinkedRole", 
            "Resource": "arn:aws:iam::*:role/aws-service-role/
replication.cassandra.amazonaws.com/AWSServiceRoleForKeyspacesReplication", 
            "Condition": {"StringLike": {"iam:AWSServiceName": 
 "replication.cassandra.amazonaws.com"}}
}

For additional IAM permissions for multi-Region keyspaces and tables, see the Actions, resources, 
and condition keys for Amazon Keyspaces (for Apache Cassandra) in the Service Authorization 
Reference.

Multi-Region Replication and integration with point-in-time recovery 
(PITR)

Point-in-time recovery is supported in multi-Region tables. To successfully restore a multi-Region 
table with PITR, the following conditions have to be met.

• The source and the target table must be configured as multi-Region tables.

• The replication Regions for the keyspace of the source table and for the keyspace of the target 
table must be the same.

You can run the restore statement from any of the Regions that the source table is available in. 
Amazon Keyspaces automatically restores the target table in each Region. For more information 
about PITR, see the section called “How it works”.

Multi-Region Replication and integration with AWS services

You can monitor replication performance between tables in different AWS Regions by using 
Amazon CloudWatch metrics. The following metric provides continuous monitoring of multi-
Region keyspaces.

• ReplicationLatency – This metric measures the time it took to replicate updates, inserts, 
or deletes from one replica table to another replica table in a multi-Region keyspace.

For more information about how to monitor CloudWatch metrics, see the section called 
“Monitoring with CloudWatch”.

Integration with PITR 453

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces Multi-Region Replication usage notes

Consider the following when you're using Multi-Region Replication with Amazon Keyspaces.

• You can select up to six of the available public AWS Regions. AWS GovCloud (US) Regions, China 
Regions, and AWS Regions that are disabled by default are not supported.

• Select the replication Regions for the keyspace carefully because you can't add or remove them 
later.

• Finalize the table schema before creating a multi-Region table because you can't add new 
columns later.

• For encryption at rest, use an AWS owned key. Customer managed keys are not supported for 
multi-Region tables. For more information, see

the section called “How it works”.

• When you're using provisioned capacity management with Amazon Keyspaces auto scaling, make 
sure to use the Amazon Keyspaces API operations to create and configure your multi-Region 
tables. The underlying Application Auto Scaling API operations that Amazon Keyspaces calls on 
your behalf don't have multi-Region capabilities.

For more information, see the section called “How to use Multi-Region Replication”. For more 
information on how to estimate the write capacity throughput of provisioned multi-Region 
tables, see the section called “Multi-Region tables”.

• Decide if the table needs Time to Live (TTL). You won't be able to turn it on later. For more 
information, see Expiring data with Time to Live.

• Although data is automatically replicated across the selected Regions of a multi-Region table, 
when a client connects to an endpoint in one Region and queries the system.peers table, the 
query returns only local information. The query result appears like a single data center cluster to 
the client.

• Amazon Keyspaces Multi-Region Replication is asynchronous, and it supports LOCAL_QUORUM
consistency for writes. LOCAL_QUORUM consistency requires that an update to a row is durably 
persisted on two replicas in the local Region before returning success to the client. The 
propagation of writes to the replicated Region (or Regions) is then performed asynchronously.

Amazon Keyspaces Multi-Region Replication doesn't support synchronous replication or QUORUM
consistency.

Usage notes 454

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#rande-manage-enable


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• When you create a multi-Region keyspace or table, any tags that you define during the creation 
process are automatically applied to all keyspaces and tables in all Regions. When you change 
the existing tags using ALTER KEYSPACE or ALTER TABLE, the update is only applied to the 
keyspace or table in the Region where you're making the change.

• Amazon CloudWatch provides a ReplicationLatency metric for each replicated Region. It 
calculates this metric by tracking arriving rows, comparing their arrival time with their initial 
write time, and computing an average. Timings are stored within CloudWatch in the source 
Region. For more information, see the section called “Monitoring with CloudWatch”.

It can be useful to view the average and maximum timings to determine the average and worst-
case replication lag. There is no SLA on this latency.

How to use Multi-Region Replication

You can create and manage multi-Region keyspaces and tables using the Amazon Keyspaces 
(for Apache Cassandra) console, Cassandra Query Language (CQL), the AWS SDK, and the AWS 
Command Line Interface (AWS CLI).

This section provides examples of how to create multi-Region keyspaces and tables with the 
console, with CQL, and with the AWS CLI, using both on-demand and provisioned capacity mode. 
All of the tables created in a multi-Region keyspace automatically inherit the multi-Region settings 
from the keyspace.

This section also includes examples of how to use the console, CQL, and the AWS CLI to manage 
the Amazon Keyspaces auto scaling settings of provisioned multi-Region tables. For more 
information about general auto scaling configuration options and how they work, see the section 
called “Managing throughput capacity with auto scaling”.

Note that if you're using provisioned capacity mode for multi-Region tables, you must always use 
Amazon Keyspaces API calls to configure auto scaling. This is because the underlying Application 
Auto Scaling API operations are not Region-aware.

For more information on how to estimate write capacity throughput of provisioned multi-Region 
tables, see the section called “Multi-Region tables”.

For more information about the Amazon Keyspaces API, see Amazon Keyspaces API Reference.

For more information about supported configurations and Multi-Region Replication features, see
the section called “Usage notes”.

How to use Multi-Region Replication 455

https://docs.aws.amazon.com/keyspaces/latest/APIReference/Welcome.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• Using the console to create and manage multi-Region tables

• Using CQL to create and manage multi-Region tables

• Using the AWS CLI to create and manage multi-Region tables

Using the console to create and manage multi-Region tables

This section provides examples of how to create multi-Region keyspaces and tables in on-demand 
and provisioned capacity mode using the Amazon Keyspaces (for Apache Cassandra) console. All 
tables that you create in a multi-Region keyspace automatically inherit the multi-Region settings 
from the keyspace.

For CQL examples, see the section called “Using CQL”. For AWS CLI examples, see the section called 
“Using the AWS CLI”.

Topics

• Creating a multi-Region keyspace (console)

• Creating a multi-Region table with default settings (console)

• Creating a multi-Region table in provisioned mode with auto scaling enabled (console)

• Enabling auto scaling for an existing multi-Region table (console)

• Turning off auto scaling for a multi-Region table (console)

• Viewing Amazon Keyspaces auto scaling activities on the console

Creating a multi-Region keyspace (console)

Follow these steps to create a new multi-Region keyspace using the Amazon Keyspaces console.

To create a multi-Region keyspace (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Keyspaces, and then choose Create keyspace.

3. For Keyspace name, enter the name for the keyspace.

4. In the Multi-Region replication section, you can add up to five additional Regions that are 
available in the list.

Using the console 456

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

5. To finish, choose Create keyspace.

Note

When creating a multi-Region keyspace, Amazon Keyspaces creates a service-linked 
role with the name AWSServiceRoleForAmazonKeyspacesReplication in your 
account. This role allows Amazon Keyspaces to replicate writes to all replicas of a 
multi-Region table on your behalf. To learn more, see the section called “Multi-Region 
Replication”.

Creating a multi-Region table with default settings (console)

Follow these steps to create a multi-Region table using the Amazon Keyspaces console.

To create a multi-Region table (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose a multi-Region keyspace.

3. On the Tables tab, choose Create table.

4. For Table name, enter the name for the table. The AWS Regions that this table is being 
replicated in are shown in the info box.

5. Continue with the table schema.

6. Under Table settings, continue with the Default settings option. Note the following default 
settings for multi-Region tables.

• Capacity mode – The default capacity mode is On-demand. For more information about 
configuring provisioned mode, see the section called “Creating a multi-Region table in 
provisioned mode with auto scaling enabled (console)”.

• Encryption key management – Only the AWS owned key option is supported.

• Client-side timestamps – This feature is required for multi-Region tables.

• Choose Customize settings if you need to turn on Time to Live (TTL) for the table and all 
its replicas.

Using the console 457

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

You won't be able to change TTL settings on an existing multi-Region table.

7. To finish, choose Create table.

Creating a multi-Region table in provisioned mode with auto scaling enabled 
(console)

Note

Amazon Keyspaces automatic scaling requires the presence of a service-linked role 
(AWSServiceRoleForApplicationAutoScaling_CassandraTable) that performs 
automatic scaling actions on your behalf. This role is created automatically for you. For 
more information, see the section called “Using service-linked roles”.

To create a new multi-Region table with automatic scaling enabled

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose a multi-Region keyspace.

3. On the Tables tab, choose Create table.

4. On the Create table page in the Table details section, select a keyspace and provide a name 
for the new table.

5. In the Columns section, create the schema for your table.

6. In the Primary key section, define the primary key of the table and select optional clustering 
columns.

7. In the Table settings section, choose Customize settings.

8. Continue to Read/write capacity settings.

9. For Capacity mode, choose Provisioned.

10. In the Read capacity section, confirm that Scale automatically is selected.

Using the console 458

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

You can select to configure the same read capacity units for all AWS Regions that the table 
is replicated in. Alternatively, you can clear the check box and configure the read capacity for 
each Region differently.

If you choose to configure each Region differently, you select the minimum and maximum read 
capacity units for each table replica, as well as the target utilization.

• Minimum capacity units – Enter the value for the minimum level of throughput that the 
table should always be ready to support. The value must be between 1 and the maximum 
throughput per second quota for your account (40,000 by default).

• Maximum capacity units – Enter the maximum amount of throughput that you want to 
provision for the table. The value must be between 1 and the maximum throughput per 
second quota for your account (40,000 by default).

• Target utilization – Enter a target utilization rate between 20% and 90%. When traffic 
exceeds the defined target utilization rate, capacity is automatically scaled up. When traffic 
falls below the defined target, it is automatically scaled down again.

• Clear the Scale automatically check box if you want to provision the table's read capacity 
manually. This setting applies to all replicas of the table.

Note

To ensure that there's enough read capacity for all replicas, we recommend 
Amazon Keyspaces automatic scaling for provisioned multi-Region tables.

Note

To learn more about default quotas for your account and how to increase them, see
Quotas.

11. In the Write capacity section, confirm that Scale automatically is selected. Then configure 
the capacity units for the table. The write capacity units stay synced across all AWS Regions to 
ensure that there is enough capacity to replicate write events across the Regions.

• Clear Scale automatically if you want to provision the table's write capacity manually. 
This setting applies to all replicas of the table.

Using the console 459



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

To ensure that there's enough write capacity for all replicas, we recommend 
Amazon Keyspaces automatic scaling for provisioned multi-Region tables.

12. Choose Create table. Your table is created with the specified automatic scaling parameters.

Enabling auto scaling for an existing multi-Region table (console)

Follow these steps to enable auto scaling for a multi-Region table in provisioned mode with the 
Amazon Keyspaces console.

Note

Amazon Keyspaces automatic scaling requires the presence of a service-linked role 
(AWSServiceRoleForApplicationAutoScaling_CassandraTable) that performs 
automatic scaling actions on your behalf. This role is created automatically for you. For 
more information, see the section called “Using service-linked roles”.

To enable Amazon Keyspaces automatic scaling for an existing multi-Region table

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose the table that you want to work with, and go to the Capacity tab.

3. In the Capacity settings section, choose Edit.

4. Under Capacity mode, make sure that the table is using Provisioned capacity mode.

5. Select Scale automatically, and see step 9 in Creating a multi-Region table in provisioned 
mode with auto scaling enabled (console) to edit read and write capacity.

6. When the automatic scaling settings are defined, choose Save.

Turning off auto scaling for a multi-Region table (console)

Follow these steps to turn off auto scaling for a multi-Region table in provisioned mode with the 
Amazon Keyspaces console.

Using the console 460

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

To turn off Amazon Keyspaces automatic scaling for an existing multi-Region table

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose the table that you want to work with and choose the Capacity tab.

3. In the Capacity settings section, choose Edit.

4. To disable Amazon Keyspaces automatic scaling, clear the Scale automatically check box. 
Disabling automatic scaling deregisters the table as a scalable target with Application Auto 
Scaling. To delete the service-linked role that Application Auto Scaling uses to access your 
Amazon Keyspaces table, follow the steps in the section called “Deleting a service-linked role 
for Amazon Keyspaces”.

Note

To delete the service-linked role that Application Auto Scaling uses, you must disable 
automatic scaling on all tables in the account across all AWS Regions.

5. When the automatic scaling settings are defined, choose Save.

Viewing Amazon Keyspaces auto scaling activities on the console

You can monitor how Amazon Keyspaces automatic scaling uses resources by using Amazon 
CloudWatch, which generates metrics about your usage and performance. Follow the steps in the
Application Auto Scaling User Guide to create a CloudWatch dashboard.

Using CQL to create and manage multi-Region tables

You can use Cassandra Query Language (CQL) to create and manage multi-Region keyspaces and 
tables in Amazon Keyspaces.

This section provides examples of how to create and manage multi-Region tables with CQL. All 
tables that you create in a multi-Region keyspace automatically inherit the multi-Region settings 
from the keyspace. For more information about CQL, see the Amazon Keyspaces CQL language 
reference.

For more information about supported configurations and features, see the section called “Usage 
notes”.

Using CQL 461

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://docs.aws.amazon.com/autoscaling/application/userguide/monitoring-cloudwatch.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• Creating a multi-Region keyspace (CQL)

• Creating a multi-Region table with default settings (CQL)

• Creating a multi-Region table with provisioned capacity mode and auto scaling (CQL)

• Updating the provisioned capacity and auto scaling settings of a multi-Region table (CQL)

• Viewing the provisioned capacity and auto scaling settings of a multi-Region table (CQL)

• Turning off auto scaling for a multi-Region table (CQL)

• Setting the provisioned capacity of a multi-Region table manually (CQL)

Creating a multi-Region keyspace (CQL)

To create a multi-Region keyspace, use NetworkTopologyStrategy to specify the AWS Regions 
that the keyspace is going to be replicated in. You must include your current Region and at least 
one additional Region. The following CQL statement is an example of this.

CREATE KEYSPACE mykeyspace
WITH REPLICATION = {'class':'NetworkTopologyStrategy', 'us-east-1':'3', 'ap-
southeast-1':'3','eu-west-1':'3' };

All tables in the keyspace use the same replication strategy as the keyspace. You can't change the 
replication strategy at the table level.

NetworkTopologyStrategy – The replication factor for each Region is three because Amazon 
Keyspaces replicates data across three Availability Zones within the same AWS Region, by default.

Note

When creating a multi-Region keyspace, Amazon Keyspaces creates a service-linked role 
with the name AWSServiceRoleForAmazonKeyspacesReplication in your account. 
This role allows Amazon Keyspaces to replicate writes to all replicas of a multi-Region table 
on your behalf. To learn more, see the section called “Multi-Region Replication”.

You can use a CQL statement to query the tables table in the system_multiregion_info
keyspace to programmatically list the Regions and the status of the multi-Region table that you 
specify. The following code is an example of this.

Using CQL 462

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

SELECT * from system_multiregion_info.tables WHERE keyspace_name = 'mykeyspace' AND 
 table_name = 'mytable';

The output of the statement looks like the following:

 keyspace_name  | table_name     | region         | status
----------------+----------------+----------------+-------- 
 mykeyspace     | mytable        | us-east-1      | ACTIVE 
 mykeyspace     | mytable        | ap-southeast-1 | ACTIVE 
 mykeyspace     | mytable        | eu-west-1      | ACTIVE

Creating a multi-Region table with default settings (CQL)

To create a multi-Region table with default settings, you can use the following example.

CREATE TABLE mykeyspace.mytable(pk int, ck int, PRIMARY KEY (pk, ck)) 
    WITH CUSTOM_PROPERTIES = { 
 'capacity_mode':{ 
  'throughput_mode':'PAY_PER_REQUEST' 
 }, 
 'point_in_time_recovery':{ 
  'status':'enabled' 
 }, 
 'encryption_specification':{ 
  'encryption_type':'AWS_OWNED_KMS_KEY' 
 }, 
 'client_side_timestamps':{ 
  'status':'enabled' 
 }
};

Creating a multi-Region table with provisioned capacity mode and auto scaling 
(CQL)

To create a multi-Region table in provisioned mode with auto scaling, you must first 
specify the capacity mode by defining CUSTOM_PROPERTIES for the table. After specifying 
provisioned capacity mode, you can configure the auto scaling settings for the table using
AUTOSCALING_SETTINGS.

For detailed information about auto scaling settings, the target tracking policy, target value, and 
optional settings, see the section called “Create a new table with automatic scaling using CQL”.

Using CQL 463



Amazon Keyspaces (for Apache Cassandra) Developer Guide

When you're creating a multi-Region table, you can also specify different read capacity and read 
auto scaling settings for each replica of the table. The settings that you specify overwrite the 
general settings of the table for the specified AWS Region. The write capacity, however, remains 
synchronized between all replicas to ensure that there's enough capacity to replicate writes across 
all Regions.

To define the read capacity for a table replica in a specific Region, you can configure the following 
parameters as part of the table's replica_updates:

• The Region

• The provisioned read capacity units (optional)

• Auto scaling settings for read capacity (optional)

The following example shows a CREATE TABLE statement for a multi-Region table in provisioned 
mode. The general write and read capacity auto scaling settings are the same. However, the read 
auto scaling settings specify additional cooldown periods of 60 seconds before scaling the table's 
read capacity up or down. In addition, the read capacity auto scaling settings for the Region US 
East (N. Virginia) are higher than those for other replicas. Also, the target value is set to 70% 
instead of 50%.

CREATE TABLE mykeyspace.mytable(pk int, ck int, PRIMARY KEY (pk, ck))
WITH CUSTOM_PROPERTIES = {   
    'capacity_mode': {   
        'throughput_mode': 'PROVISIONED',   
        'read_capacity_units': 5,   
        'write_capacity_units': 5   
    }
} AND AUTOSCALING_SETTINGS = { 
    'provisioned_write_capacity_autoscaling_update': { 
        'maximum_units': 10,   
        'minimum_units': 5,   
        'scaling_policy': { 
            'target_tracking_scaling_policy_configuration': { 
                'target_value': 50 
            }   
        }   
    }, 
    'provisioned_read_capacity_autoscaling_update': {   
        'maximum_units': 10,   
        'minimum_units': 5,   

Using CQL 464



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        'scaling_policy': {   
            'target_tracking_scaling_policy_configuration': {   
                'target_value': 50, 
                'scale_in_cooldown': 60,   
                'scale_out_cooldown': 60 
            }   
        }   
    }, 
    'replica_updates': { 
        'us-east-1': { 
            'provisioned_read_capacity_autoscaling_update': { 
                'maximum_units': 20, 
                'minimum_units': 5, 
                'scaling_policy': { 
                    'target_tracking_scaling_policy_configuration': { 
                        'target_value': 70 
                    }  
                } 
            } 
        } 
    }
};

Updating the provisioned capacity and auto scaling settings of a multi-Region 
table (CQL)

You can use ALTER TABLE to update the capacity mode and auto scaling settings of an existing 
table. If you're updating a table that is currently in on-demand capacity mode, capacity_mode is 
required. If your table is already in provisioned capacity mode, this field can be omitted.

For detailed information about auto scaling settings, the target tracking policy, target value, and 
optional settings, see the section called “Create a new table with automatic scaling using CQL”.

In the same statement, you can also update the read capacity and auto scaling settings of table 
replicas in specific Regions by updating the table's replica_updates property. The following 
statement is an example of this.

ALTER TABLE mykeyspace.mytable
WITH CUSTOM_PROPERTIES = {   
    'capacity_mode': {   
        'throughput_mode': 'PROVISIONED',   
        'read_capacity_units': 1,   

Using CQL 465



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        'write_capacity_units': 1   
    }
} AND AUTOSCALING_SETTINGS = { 
    'provisioned_write_capacity_autoscaling_update': { 
        'maximum_units': 10,   
        'minimum_units': 5,   
        'scaling_policy': { 
            'target_tracking_scaling_policy_configuration': { 
                'target_value': 50 
            }   
        }   
    }, 
    'provisioned_read_capacity_autoscaling_update': {   
        'maximum_units': 10,   
        'minimum_units': 5,   
        'scaling_policy': {   
            'target_tracking_scaling_policy_configuration': {   
                'target_value': 50, 
                'scale_in_cooldown': 60,   
                'scale_out_cooldown': 60 
            }   
        }   
    }, 
    'replica_updates': { 
        'us-east-1': { 
            'provisioned_read_capacity_autoscaling_update': { 
                'maximum_units': 20, 
                'minimum_units': 5, 
                'scaling_policy': { 
                    'target_tracking_scaling_policy_configuration': { 
                        'target_value': 70 
                    }  
                } 
            } 
        } 
    }
};

Viewing the provisioned capacity and auto scaling settings of a multi-Region 
table (CQL)

To view the auto scaling configuration of a multi-Region table, use the following command.

Using CQL 466



Amazon Keyspaces (for Apache Cassandra) Developer Guide

SELECT * FROM system_multiregion_info.autoscaling WHERE keyspace_name = 'mykeyspace' 
 AND table_name = 'mytable';

The output for this command looks like the following:

 keyspace_name  | table_name | region         | 
 provisioned_read_capacity_autoscaling_update                                           
                                                                                        
                                     | provisioned_write_capacity_autoscaling_update
----------------+------------+----------------
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  mykeyspace    |  mytable   | ap-southeast-1 | {'minimum_units': 5, 'maximum_units': 
 10, 'scaling_policy': {'target_tracking_scaling_policy_configuration': 
 {'scale_out_cooldown': 60, 'disable_scale_in': false, 'target_value': 
 50, 'scale_in_cooldown': 60}}} | {'minimum_units': 5, 'maximum_units': 
 10, 'scaling_policy': {'target_tracking_scaling_policy_configuration': 
 {'scale_out_cooldown': 0, 'disable_scale_in': false, 'target_value': 50, 
 'scale_in_cooldown': 0}}} 
  mykeyspace    |  mytable   | us-east-1      | {'minimum_units': 5, 'maximum_units': 
 20, 'scaling_policy': {'target_tracking_scaling_policy_configuration': 
 {'scale_out_cooldown': 60, 'disable_scale_in': false, 'target_value': 
 70, 'scale_in_cooldown': 60}}} | {'minimum_units': 5, 'maximum_units': 
 10, 'scaling_policy': {'target_tracking_scaling_policy_configuration': 
 {'scale_out_cooldown': 0, 'disable_scale_in': false, 'target_value': 50, 
 'scale_in_cooldown': 0}}} 
  mykeyspace    |  mytable   | eu-west-1      | {'minimum_units': 5, 'maximum_units': 
 10, 'scaling_policy': {'target_tracking_scaling_policy_configuration': 
 {'scale_out_cooldown': 60, 'disable_scale_in': false, 'target_value': 
 50, 'scale_in_cooldown': 60}}} | {'minimum_units': 5, 'maximum_units': 
 10, 'scaling_policy': {'target_tracking_scaling_policy_configuration': 
 {'scale_out_cooldown': 0, 'disable_scale_in': false, 'target_value': 50, 
 'scale_in_cooldown': 0}}}

Turning off auto scaling for a multi-Region table (CQL)

You can use ALTER TABLE to turn off auto scaling for an existing table. Note that you can't turn 
off auto scaling for an individual table replica.

In the following example, auto scaling is turned off for the table's read capacity.

ALTER TABLE mykeyspace.mytable

Using CQL 467



Amazon Keyspaces (for Apache Cassandra) Developer Guide

WITH AUTOSCALING_SETTINGS = { 
    'provisioned_read_capacity_autoscaling_update': { 
        'autoscaling_disabled': true 
    }
};

Note

To delete the service-linked role used by Application Auto Scaling, you must disable 
automatic scaling on all tables in the account across all AWS Regions.

Setting the provisioned capacity of a multi-Region table manually (CQL)

If you have to turn off auto scaling for a multi-Region table, you can use ALTER TABLE to 
provision the table's read capacity for a replica table manually.

ALTER TABLE mykeyspace.mytable
WITH CUSTOM_PROPERTIES = {   
    'capacity_mode': {   
        'throughput_mode': 'PROVISIONED',   
        'read_capacity_units': 1,   
        'write_capacity_units': 1   
    }, 
    'replica_updates': { 
        'us-east-1': { 
            'read_capacity_units': 2 
         } 
    }
};

Note

We recommend using auto scaling for multi-Region tables that use provisioned capacity. 
For more information, see the section called “Multi-Region tables”.

Using CQL 468



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using the AWS CLI to create and manage multi-Region tables

You can use the AWS Command Line Interface (AWS CLI) to create and manage multi-Region 
keyspaces and tables in Amazon Keyspaces.

This section provides examples of how to create and manage multi-Region tables with the AWS 
CLI. All tables that you create in a multi-Region keyspace automatically inherit the multi-Region 
settings from the keyspace.

For more information about the Amazon Keyspaces AWS CLI commands described in this topic, see 
the AWS CLI Command Reference for Amazon Keyspaces.

Topics

• Creating a new multi-Region keyspace (CLI)

• Creating a new multi-Region table with default settings (CLI)

• Creating a new multi-Region table in provisioned mode with auto scaling (CLI)

• Updating the provisioned capacity and auto scaling settings of a multi-Region table (CLI)

• Viewing the provisioned capacity and auto scaling settings of a multi-Region table (CLI)

• Turning off auto scaling for a multi-Region table (CLI)

• Setting the provisioned capacity of a multi-Region table manually (CLI)

Creating a new multi-Region keyspace (CLI)

To create a multi-Region keyspace, you can use the following CLI statement. Specify your current 
Region and at least one additional Region in the regionList.

aws keyspaces create-keyspace --keyspace-name mykeyspace 
             \ --replication-specification 
 replicationStrategy=MULTI_REGION,regionList=us-east-1,eu-west-1

Note

When creating a multi-Region keyspace, Amazon Keyspaces creates a service-linked role 
with the name AWSServiceRoleForAmazonKeyspacesReplication in your account. 
This role allows Amazon Keyspaces to replicate writes to all replicas of a multi-Region table 
on your behalf. To learn more, see the section called “Multi-Region Replication”.

Using the AWS CLI 469

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/keyspaces/index.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Creating a new multi-Region table with default settings (CLI)

To create a multi-Region table with default settings, you only need to specify the schema. You can 
use the following example.

aws keyspaces create-table --keyspace-name mykeyspace --table-name mytable  
            \ --schema-definition 'allColumns=[{name=pk,type=int}],partitionKeys={name= 
 pk}'

The output of the command is:

{ 
    "resourceArn": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/
table/mytable"
}

To confirm the table's settings, you can use the following statement.

aws keyspaces get-table --keyspace-name mykeyspace --table-name mytable

The output shows all default settings of a multi-Region table.

{ 
    "keyspaceName": "mykeyspace", 
    "tableName": "mytable", 
    "resourceArn": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/
table/mytable", 
    "creationTimestamp": "2023-12-19T16:50:37.639000+00:00", 
    "status": "ACTIVE", 
    "schemaDefinition": { 
        "allColumns": [ 
            { 
                "name": "pk", 
                "type": "int" 
            } 
        ], 
        "partitionKeys": [ 
            { 
                "name": "pk" 
            } 
        ], 
        "clusteringKeys": [], 

Using the AWS CLI 470



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        "staticColumns": [] 
    }, 
    "capacitySpecification": { 
        "throughputMode": "PAY_PER_REQUEST", 
        "lastUpdateToPayPerRequestTimestamp": "2023-12-19T16:50:37.639000+00:00" 
    }, 
    "encryptionSpecification": { 
        "type": "AWS_OWNED_KMS_KEY" 
    }, 
    "pointInTimeRecovery": { 
        "status": "DISABLED" 
    }, 
    "defaultTimeToLive": 0, 
    "comment": { 
        "message": "" 
    }, 
    "clientSideTimestamps": { 
        "status": "ENABLED" 
    }, 
    "replicaSpecifications": [ 
        { 
            "region": "us-east-1", 
            "status": "ACTIVE", 
            "capacitySpecification": { 
                "throughputMode": "PAY_PER_REQUEST", 
                "lastUpdateToPayPerRequestTimestamp": 1702895811.469 
            } 
        }, 
        { 
            "region": "eu-north-1", 
            "status": "ACTIVE", 
            "capacitySpecification": { 
                "throughputMode": "PAY_PER_REQUEST", 
                "lastUpdateToPayPerRequestTimestamp": 1702895811.121 
            } 
        } 
    ]
}

Creating a new multi-Region table in provisioned mode with auto scaling (CLI)

To create a multi-Region table in provisioned mode with auto scaling configuration, you can use 
the AWS CLI. Note that you must use the Amazon Keyspaces CLI create-table command to 

Using the AWS CLI 471



Amazon Keyspaces (for Apache Cassandra) Developer Guide

configure multi-Region auto scaling settings. This is because Application Auto Scaling, the service 
that Amazon Keyspaces uses to perform auto scaling on your behalf, doesn't support multiple 
Regions.

For more information about auto scaling settings, the target tracking policy, target value, and 
optional settings, see the section called “Create a new table with automatic scaling using the AWS 
CLI”.

When you create a new multi-Region table in provisioned mode with auto scaling settings, you 
can specify the general settings for the table that are valid for all AWS Regions that the table is 
replicated in. You can then overwrite read capacity settings and read auto scaling settings for each 
replica. The write capacity, however, remains synchronized between all replicas to ensure that 
there's enough capacity to replicate writes across all Regions.

To define the read capacity for a table replica in a specific Region, you can configure the following 
parameters as part of the table's replicaSpecifications:

• The Region

• The provisioned read capacity units (optional)

• Auto scaling settings for read capacity (optional)

When you're creating provisioned multi-Region tables with complex auto scaling settings and 
different configurations for table replicas, it's helpful to load the table's auto scaling settings and 
replica configurations from JSON files.

To use the following code example, you can download the example JSON files from auto-
scaling.zip, and extract auto-scaling.json and replication.json. Take note of the path to 
the files.

In this example, the JSON files are located in the current directory. For different file path options, 
see  How to load parameters from a file.

aws keyspaces create-table --keyspace-name mykeyspace --table-name mytable  
           \ --schema-definition 'allColumns=[{name=pk,type=int},
{name=ck,type=int}],partitionKeys=[{name=pk},{name=ck}]'  
           \ --capacity-specification 
 throughputMode=PROVISIONED,readCapacityUnits=1,writeCapacityUnits=1  
           \ --auto-scaling-specification file://auto-scaling.json  
           \ --replica-specifications file://replication.json

Using the AWS CLI 472

samples/auto-scaling.zip
samples/auto-scaling.zip
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html#cli-usage-parameters-file-how


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Updating the provisioned capacity and auto scaling settings of a multi-Region 
table (CLI)

To update the provisioned mode and auto scaling configuration of an existing table, you can use 
the AWS CLI update-table command.

Note that you must use the Amazon Keyspaces CLI commands to create or modify multi-Region 
auto scaling settings. This is because Application Auto Scaling, the service that Amazon Keyspaces 
uses to perform auto scaling of table capacity on your behalf, doesn't support multiple AWS 
Regions.

When you update the provisioned mode or auto scaling settings of a multi-Region table, you can 
update read capacity settings and the read auto scaling configuration for each replica of the table.

The write capacity, however, remains synchronized between all replicas to ensure that there's 
enough capacity to replicate writes across all Regions. To update the read capacity for a table 
replica in a specific Region, you can change one of the following optional parameters of the table's
replicaSpecifications:

• The provisioned read capacity units (optional)

• Auto scaling settings for read capacity (optional)

When you're updating multi-Region tables with complex auto scaling settings and different 
configurations for table replicas, it's helpful to load the table's auto scaling settings and replica 
configurations from JSON files.

To use the following code example, you can download the example JSON files from auto-
scaling.zip, and extract auto-scaling.json and replication.json. Take note of the path to 
the files.

In this example, the JSON files are located in the current directory. For different file path options, 
see  How to load parameters from a file.

aws keyspaces update-table --keyspace-name mykeyspace --table-name mytable  
           \ --capacity-specification 
 throughputMode=PROVISIONED,readCapacityUnits=1,writeCapacityUnits=1  
           \ --auto-scaling-specification file://auto-scaling.json  
           \ --replica-specifications file://replication.json

Using the AWS CLI 473

samples/auto-scaling.zip
samples/auto-scaling.zip
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html#cli-usage-parameters-file-how


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Viewing the provisioned capacity and auto scaling settings of a multi-Region 
table (CLI)

To view the auto scaling configuration of a multi-Region table, you can use the get-table-auto-
scaling-settings operation. The following CLI command is an example of this.

aws keyspaces get-table-auto-scaling-settings --keyspace-name mykeyspace --table-name 
 mytable

You should see the following output.

{ 
    "keyspaceName": "mykeyspace", 
    "tableName": "mytable", 
    "resourceArn": "arn:aws:cassandra:us-east-1:777788889999:/keyspace/mykeyspace/
table/mytable", 
    "autoScalingSpecification": { 
        "writeCapacityAutoScaling": { 
            "autoScalingDisabled": false, 
            "minimumUnits": 5, 
            "maximumUnits": 10, 
            "scalingPolicy": { 
                "targetTrackingScalingPolicyConfiguration": { 
                    "disableScaleIn": false, 
                    "scaleInCooldown": 0, 
                    "scaleOutCooldown": 0, 
                    "targetValue": 50.0 
                } 
            } 
        }, 
        "readCapacityAutoScaling": { 
            "autoScalingDisabled": false, 
            "minimumUnits": 5, 
            "maximumUnits": 20, 
            "scalingPolicy": { 
                "targetTrackingScalingPolicyConfiguration": { 
                    "disableScaleIn": false, 
                    "scaleInCooldown": 60, 
                    "scaleOutCooldown": 60, 
                    "targetValue": 70.0 
                } 
            } 

Using the AWS CLI 474



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        } 
    }, 
    "replicaSpecifications": [ 
        { 
            "region": "us-east-1", 
            "autoScalingSpecification": { 
                "writeCapacityAutoScaling": { 
                    "autoScalingDisabled": false, 
                    "minimumUnits": 5, 
                    "maximumUnits": 10, 
                    "scalingPolicy": { 
                        "targetTrackingScalingPolicyConfiguration": { 
                            "disableScaleIn": false, 
                            "scaleInCooldown": 0, 
                            "scaleOutCooldown": 0, 
                            "targetValue": 50.0 
                        } 
                    } 
                }, 
                "readCapacityAutoScaling": { 
                    "autoScalingDisabled": false, 
                    "minimumUnits": 5, 
                    "maximumUnits": 20, 
                    "scalingPolicy": { 
                        "targetTrackingScalingPolicyConfiguration": { 
                            "disableScaleIn": false, 
                            "scaleInCooldown": 60, 
                            "scaleOutCooldown": 60, 
                            "targetValue": 70.0 
                        } 
                    } 
                } 
            } 
        }, 
        { 
            "region": "eu-north-1", 
            "autoScalingSpecification": { 
                "writeCapacityAutoScaling": { 
                    "autoScalingDisabled": false, 
                    "minimumUnits": 5, 
                    "maximumUnits": 10, 
                    "scalingPolicy": { 
                        "targetTrackingScalingPolicyConfiguration": { 
                            "disableScaleIn": false, 

Using the AWS CLI 475



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                            "scaleInCooldown": 0, 
                            "scaleOutCooldown": 0, 
                            "targetValue": 50.0 
                        } 
                    } 
                }, 
                "readCapacityAutoScaling": { 
                    "autoScalingDisabled": false, 
                    "minimumUnits": 5, 
                    "maximumUnits": 10, 
                    "scalingPolicy": { 
                        "targetTrackingScalingPolicyConfiguration": { 
                            "disableScaleIn": false, 
                            "scaleInCooldown": 60, 
                            "scaleOutCooldown": 60, 
                            "targetValue": 50.0 
                        } 
                    } 
                } 
            } 
        } 
    ]
}

Turning off auto scaling for a multi-Region table (CLI)

You can use the AWS CLI update-table command to turn off auto scaling for an existing table. 
Note that you can't turn off auto scaling for an individual table replica.

In the following example, auto scaling is turned off for the table's read capacity.

aws keyspaces update-table --keyspace-name mykeyspace --table-name mytable  
           \ --auto-scaling-specification 
 readCapacityAutoScaling={autoScalingDisabled=true}

Note

To delete the service-linked role that's used by Application Auto Scaling, you must disable 
automatic scaling on all tables in the account across all AWS Regions.

Using the AWS CLI 476



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Setting the provisioned capacity of a multi-Region table manually (CLI)

If you have to turn off auto scaling for a multi-Region table, you can use update-table to 
provision the table's read capacity for a replica table manually.

aws keyspaces update-table --keyspace-name mykeyspace --table-name mytable  
           \ --capacity-specification 
 throughputMode=PROVISIONED,readCapacityUnits=1,writeCapacityUnits=1  
           \ --replica-specifications region="us-east-1",readCapacityUnits=5

Note

We recommend using auto scaling for multi-Region tables that use provisioned capacity. 
For more information, see the section called “Multi-Region tables”.

Using the AWS CLI 477



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Point-in-time recovery for Amazon Keyspaces (for 
Apache Cassandra)

Point-in-time recovery (PITR) helps protect your Amazon Keyspaces tables from accidental write or 
delete operations by providing you continuous backups of your table data.

For example, suppose that a test script writes accidentally to a production Amazon Keyspaces 
table. With point-in-time recovery, you can restore that table's data to any second in time since 
PITR was enabled within the last 35 days. If you delete a table with point-in-time recovery enabled, 
you can query for the deleted table's data for 35 days (at no additional cost), and restore it to the 
state it was in just before the point of deletion.

You can restore an Amazon Keyspaces table to a point in time by using the console, the AWS SDK 
and the AWS Command Line Interface (AWS CLI), or Cassandra Query Language (CQL). For more 
information, see Restoring an Amazon Keyspaces table to a point in time.

Point-in-time operations have no performance or availability impact on the base table, and 
restoring a table doesn't consume additional throughput.

For information about PITR quotas, see Quotas.

For information about pricing, see Amazon Keyspaces (for Apache Cassandra) pricing.

Topics

• How point-in-time recovery works in Amazon Keyspaces

• Restoring an Amazon Keyspaces table to a point in time

How point-in-time recovery works in Amazon Keyspaces

This section provides an overview of how Amazon Keyspaces point-in-time recovery (PITR) works. 
For more information about pricing, see Amazon Keyspaces (for Apache Cassandra) pricing.

Topics

• Enabling point-in-time recovery (PITR)

• Permissions required to restore a table

• Time window for PITR continuous backups

• PITR restore settings

How it works 478

https://aws.amazon.com/keyspaces/pricing
https://aws.amazon.com/keyspaces/pricing


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• PITR restore of encrypted tables

• PITR restore of multi-Region tables

• Table restore time with PITR

• Amazon Keyspaces PITR and integration with AWS services

Enabling point-in-time recovery (PITR)

You can enable PITR by using the console, or you can enable it programmatically.

Enabling PITR with the console

PITR settings for new tables can be managed under the Customized settings option. By default, 
PITR is enabled on new tables created through the console.

To enable PITR for an existing table, complete the following steps.

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables and select the table you want to edit.

3. On the Backups tab, choose Edit.

4. In the Edit point-in-time recovery settings section, select Enable Point-in-time recovery.

You can disable PITR on a table at any time with the following steps.

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables and select the table you want to edit.

3. On the Backups tab, choose Edit.

4. In the Edit point-in-time recovery settings section, clear the Enable Point-in-time recovery
check box.

Important

Disabling PITR deletes your backup history immediately, even if you reenable PITR on the 
table within 35 days.

Enabling PITR 479

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

To learn how to restore a table using the console, see the section called “Restoring a table to a 
point in time (console)”.

Enabling PITR using the AWS CLI

You can manage PITR settings for tables by using the UpdateTable API.

When creating a new table using AWS CLI, you must explicitly enable PITR when you create the 
new table.

To enable PITR when you're creating a new table, you can use the following AWS CLI command as 
an example. The command has been broken into separate lines to improve readability.

aws keyspaces create-table --keyspace-name 'myKeyspace' --table-name 'myTable'  
            --schema-definition 'allColumns=[{name=id,type=int},{name=name,type=text},
{name=date,type=timestamp}],partitionKeys=[{name=id}]'  
            --point-in-time-recovery 'status=ENABLED'

Note

If no point-in-time recovery value is specified, point-in-time recovery is disabled by default.

To confirm the point-in-time recovery setting for a table, you can use the following AWS CLI 
command.

aws keyspaces get-table --keyspace-name 'myKeyspace' --table-name 'myTable'

To enable PITR for an existing table using the AWS CLI, run the following command.

aws keyspaces update-table --keyspace-name 'myKeyspace' --table-name 'myTable' --point-
in-time-recovery 'status=ENABLED'

To disable PITR on an existing table, run the following AWS CLI command.

aws keyspaces update-table --keyspace-name 'myKeyspace' --table-name 'myTable' --point-
in-time-recovery 'status=DISABLED'

Enabling PITR 480



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Important

Disabling PITR deletes your backup history immediately, even if you reenable PITR on the 
table within 35 days.

Enabling PITR using CQL

You can manage PITR settings for tables by using the point_in_time_recovery custom 
property.

When creating a new table using CQL, you must explicitly enable PITR when you create the new 
table.

To enable PITR when you're creating a new table, you can use the following CQL command as an 
example.

CREATE TABLE "my_keyspace1"."my_table1"( 
 "id" int, 
 "name" ascii, 
 "date" timestamp, 
 PRIMARY KEY("id"))
WITH CUSTOM_PROPERTIES = { 
 'capacity_mode':{'throughput_mode':'PAY_PER_REQUEST'},  
 'point_in_time_recovery':{'status':'enabled'}
}

Note

If no point-in-time recovery custom property is specified, point-in-time recovery is disabled 
by default.

To enable PITR for an existing table using CQL, run the following CQL command.

ALTER TABLE mykeyspace.mytable
WITH custom_properties = {'point_in_time_recovery': {'status': 'enabled'}}

To disable PITR on an existing table, run the following CQL command.

Enabling PITR 481



Amazon Keyspaces (for Apache Cassandra) Developer Guide

ALTER TABLE mykeyspace.mytable
WITH custom_properties = {'point_in_time_recovery': {'status': 'disabled'}}

Important

Disabling PITR deletes your backup history immediately, even if you reenable PITR on the 
table within 35 days.

For more information in the CQL Language Reference, see the section called “CREATE TABLE” and
the section called “ALTER TABLE”. To learn how to restore a table using CQL, see the section called 
“Restoring a table to a point in time with CQL”.

Permissions required to restore a table

To successfully restore a table, the IAM user or role needs the following minimum permissions:

• cassandra:Restore – The restore action is required for the target table to be restored.

• cassandra:Select – The select action is required to read from the source table.

• cassandra:TagResource – The tag action is optional, and only required if the restore 
operation adds tags.

The following is an example of a policy that grants minimum required permissions to a user to 
restore tables in keyspace mykeyspace.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Effect":"Allow", 
         "Action":[ 
            "cassandra:Restore", 
            "cassandra:Select" 
         ], 
         "Resource":[ 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/*", 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
         ] 
      } 

Restore Permissions 482



Amazon Keyspaces (for Apache Cassandra) Developer Guide

   ]
}

Additional permissions to restore a table might be required based on other selected features. For 
example, if the source table is encrypted at rest with a customer managed key, Amazon Keyspaces 
must have permissions to access the customer managed key of the source table to successfully 
restore the table. For more information, see the section called “PITR and encrypted tables”.

If you are using IAM policies with condition keys to restrict incoming traffic to specific sources, 
you must ensure that Amazon Keyspaces has permission to perform a restore operation on your 
principal's behalf. You must add an aws:ViaAWSService condition key to your IAM policy if your 
policy restricts incoming traffic to any of the following:

• VPC endpoints with aws:SourceVpce

• IP ranges with aws:SourceIp

• VPCs with aws:SourceVpc

The aws:ViaAWSService condition key allows access when any AWS service makes a request 
using the principal's credentials. For more information, see IAM JSON policy elements: Condition 
key in the IAM User Guide.

The following is an example of a policy that restricts source traffic to a specific IP address and 
allows Amazon Keyspaces to restore a table on the principal's behalf.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Sid":"CassandraAccessForCustomIp", 
         "Effect":"Allow", 
         "Action":"cassandra:*", 
         "Resource":"*", 
         "Condition":{ 
            "Bool":{ 
               "aws:ViaAWSService":"false" 
            }, 
            "ForAnyValue:IpAddress":{ 
               "aws:SourceIp":[ 
                  "123.45.167.89" 
               ] 

Restore Permissions 483

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

            } 
         } 
      }, 
      { 
         "Sid":"CassandraAccessForAwsService", 
         "Effect":"Allow", 
         "Action":"cassandra:*", 
         "Resource":"*", 
         "Condition":{ 
            "Bool":{ 
               "aws:ViaAWSService":"true" 
            } 
         } 
      } 
   ]
}

For an example policy using the aws:ViaAWSService global condition key, see the section called 
“VPC endpoint policies and Amazon Keyspaces point-in-time recovery (PITR)”.

Time window for PITR continuous backups

Amazon Keyspaces PITR uses two timestamps to maintain the time frame for which restorable 
backups are available for a table.

• Earliest restorable time – Marks the time of the earliest restorable backup. The earliest restorable 
backup goes back up to 35 days or when PITR was enabled, whichever is more recent. The 
maximum backup window of 35 days can't be modified.

• Current time – The timestamp for the latest restorable backup is the current time. If no 
timestamp is provided during a restore, current time is used.

When PITR is enabled, you can restore to any point in time between
EarliestRestorableDateTime and CurrentTime. You can only restore table data to a time 
when PITR was enabled.

If you disable PITR and later reenable it again, you reset the start time for the first available backup 
to when PITR was reenabled. This means that disabling PITR erases your backup history.

Continuous backups 484



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

Data definition language (DDL) operations on tables, such as schema changes, are 
performed asynchronously. You can only see completed operations in your restored 
table data, but you might see additional actions on your source table if they were in 
progress at the time of the restore. For a list of DDL statements, see the section called “DDL 
statements”.

A table doesn't have to be active to be restored. You can also restore deleted tables if PITR was 
enabled on the deleted table and the deletion occurred within the backup window (or within the 
last 35 days).

Note

If a new table is created with the same qualified name (for example, mykeyspace.mytable) 
as a previously deleted table, the deleted table will no longer be restorable. If you attempt 
to do this from the console, a warning is displayed.

PITR restore settings

When you restore a table using PITR, Amazon Keyspaces restores your source table's schema and 
data to the state based on the selected timestamp (day:hour:minute:second) to a new table. 
PITR doesn't overwrite existing tables.

In addition to the table's schema and data, PITR restores the custom_properties from the 
source table. Unlike the table's data, which is restored based on the selected timestamp between 
earliest restore time and current time, custom properties are always restored based on the table's 
settings as of the current time.

The settings of the restored table match the settings of the source table with the timestamp of 
when the restore was initiated. If you want to overwrite these settings during restore, you can do 
so using WITH custom_properties. Custom properties include the following settings.

• Read/write capacity mode

• Provisioned throughput capacity settings

• PITR settings

Restore settings 485



Amazon Keyspaces (for Apache Cassandra) Developer Guide

If the table is in provisioned capacity mode with auto scaling enabled, the restore 
operation also restores the table's auto scaling settings. You can overwrite them using the
autoscaling_settings parameter in CQL or autoScalingSpecification with the CLI. For 
more information on auto scaling settings, see the section called “Managing throughput capacity 
with auto scaling”.

When you do a full table restore, all table settings for the restored table come from the current 
settings of the source table at the time of the restore.

For example, suppose that a table's provisioned throughput was recently lowered to 50 read 
capacity units and 50 write capacity units. You then restore the table's state to three weeks ago. 
At this time, its provisioned throughput was set to 100 read capacity units and 100 write capacity 
units. In this case, Amazon Keyspaces restores your table data to that point in time, but uses the 
current provisioned throughput settings (50 read capacity units and 50 write capacity units).

The following settings are not restored, and you must configure them manually for the new table.

• AWS Identity and Access Management (IAM) policies

• Amazon CloudWatch metrics and alarms

• Tags (can be added to the CQL RESTORE statement using WITH TAGS)

PITR restore of encrypted tables

When you restore a table using PITR, Amazon Keyspaces restores your source table's encryption 
settings. If the table was encrypted with an AWS owned key (default), the table is restored with 
the same setting automatically. If the table you want to restore was encrypted using a customer 
managed key, the same customer managed key needs to be accessible to Amazon Keyspaces to 
restore the table data.

You can change the encryption settings of the table at the time of restore. To change from an 
AWS owned key to a customer managed key, you need to supply a valid and accessible customer 
managed key at the time of restore.

If you want to change from a customer managed key to an AWS owned key, confirm that Amazon 
Keyspaces has access to the customer managed key of the source table to restore the table with an 
AWS owned key. For more information about encryption at rest settings for tables, see the section 
called “How it works”.

PITR and encrypted tables 486



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

If the table was deleted because Amazon Keyspaces lost access to your customer managed 
key, you need to ensure the customer managed key is accessible to Amazon Keyspaces 
before trying to restore the table. A table that was encrypted with a customer managed 
key can't be restored if Amazon Keyspaces doesn't have access to that key. For more 
information, see Troubleshooting key access in the AWS Key Management Service 
Developer Guide.

PITR restore of multi-Region tables

You can restore a multi-Region table using PITR. For the restore operation to be successful, both 
the source and the destination table have to be replicated to the same AWS Regions.

Amazon Keyspaces restores the settings of the source table in each of the replicated Regions that 
are part of the keyspace. You can also override settings during the restore operation. For more 
information about settings that can be changed during the restore, see the section called “Restore 
settings”.

For more information about Multi-Region Replication, see the section called “How it works”.

Table restore time with PITR

The time it takes you to restore a table is based on multiple factors and isn't always correlated 
directly to the size of the table.

The following are some considerations for restore times.

• You restore backups to a new table. It can take up to 20 minutes (even if the table is empty) to 
perform all the actions to create the new table and initiate the restore process.

• Restore times for large tables with well-distributed data models can be several hours or longer.

• If your source table contains data that is significantly skewed, the time to restore might increase. 
For example, if your table’s primary key is using the month of the year as a partition key, and all 
your data is from the month of December, you have skewed data.

A best practice when planning for disaster recovery is to regularly document average restore 
completion times and establish how these times affect your overall Recovery Time Objective.

PITR and multi-Region tables 487

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces PITR and integration with AWS services

The following PITR operations are logged using AWS CloudTrail to enable continuous monitoring 
and auditing.

• Create a new table with PITR enabled or disabled.

• Enable or disable PITR on an existing table.

• Restore an active or a deleted table.

For more information, see Logging Amazon Keyspaces API calls with AWS CloudTrail.

You can perform the following PITR actions using AWS CloudFormation.

• Create a new table with PITR enabled or disabled.

• Enable or disable PITR on an existing table.

For more information, see the Cassandra Resource Type Reference in the AWS CloudFormation User 
Guide.

Restoring an Amazon Keyspaces table to a point in time

Amazon Keyspaces (for Apache Cassandra) point-in-time recovery (PITR) allows you to restore 
Amazon Keyspaces table data to any point in time within the last 35 days. The first part of this 
tutorial shows you how to restore a table to a point in time by using the Amazon Keyspaces 
console, the AWS Command Line Interface (AWS CLI), and Cassandra Query Language (CQL). The 
second part shows you how to restore a deleted table using the AWS CLI and CQL.

Topics

• Before you begin

• Restoring a table to a point in time (console)

• Restoring a table to a point in time with the AWS CLI

• Restoring a table to a point in time with CQL

• Restoring a deleted table with the AWS CLI

• Restoring a deleted table with CQL

Integration with AWS services 488

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Cassandra.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Before you begin

If you haven't already done so, you must configure the appropriate permissions for the user 
to restore Amazon Keyspaces tables. In AWS Identity and Access Management (IAM), the AWS 
managed policy AmazonKeyspacesFullAccess includes the permissions to restore Amazon 
Keyspaces tables. For detailed steps to implement a policy with minimum required permissions, see
the section called “Restore Permissions”.

Restoring a table to a point in time (console)

The following example demonstrates how to use the Amazon Keyspaces console to restore an 
existing table named mytable to a point in time.

Note

This procedure assumes that you have enabled point-in-time recovery. To enable PITR for 
the mytable table, follow the steps in the section called “Using the console”.

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane on the left side of the console, choose Tables.

3. In the list of tables, choose the mytable table.

4. On the Backups tab of the mytable table, in the Point-in-time recovery section, choose
Restore.

5. For the new table name, enter mytable_restored.

6. To define the point in time for the restore operation, you can choose between two options:

• Select the preconfigured Earliest time.

• Select Specify date and time and enter the date and time you want to restore the new 
table to.

Before you begin 489

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

You can restore to any point in time within Earliest time and the current time. Amazon 
Keyspaces restores your table data to the state based on the selected date and time 
(day:hour:minute:second).

7. Choose Restore to start the restore process.

The table that is being restored is shown with the status Restoring. After the restore process is 
finished, the status of the mytable_restored table changes to Active.

Important

While a restore is in progress, don't modify or delete the AWS Identity and Access 
Management (IAM) policies that grant the IAM entity (for example, user, group, or role) 
permission to perform the restore. Otherwise, unexpected behavior can result. For 
example, suppose that you removed write permissions for a table while that table was 
being restored. In this case, the underlying RestoreTableToPointInTime operation 
can't write any of the restored data to the table.
You can modify or delete permissions only after the restore operation is completed.

Restoring a table to a point in time with the AWS CLI

The following procedure shows how to use the AWS CLI to restore an existing table named
myTable to a point in time.

1. In the first step, you create a simple table named myTable that has PITR enabled. The 
command has been broken up into separate lines for readability.

aws keyspaces create-table --keyspace-name 'myKeyspace' --table-name 'myTable'  
            --schema-definition 'allColumns=[{name=id,type=int},
{name=name,type=text},{name=date,type=timestamp}],partitionKeys=[{name=id}]'  
            --point-in-time-recovery 'status=ENABLED'

2. Confirm the properties of the new table and review the earliestRestorableTimestamp
for PITR.

Restoring a table to a point in time with the AWS CLI 490



Amazon Keyspaces (for Apache Cassandra) Developer Guide

aws keyspaces get-table --keyspace-name 'myKeyspace' --table-name 'myTable'

The output of this command returns the following.

{ 
    "keyspaceName": "myKeyspace", 
    "tableName": "myTable", 
    "resourceArn": "arn:aws:cassandra:us-east-1:111222333444:/keyspace/myKeyspace/
table/myTable", 
    "creationTimestamp": "2022-06-20T14:34:57.049000-07:00", 
    "status": "ACTIVE", 
    "schemaDefinition": { 
        "allColumns": [ 
            { 
                "name": "id", 
                "type": "int" 
            }, 
            { 
                "name": "date", 
                "type": "timestamp" 
            }, 
            { 
                "name": "name", 
                "type": "text" 
            } 
        ], 
        "partitionKeys": [ 
            { 
                "name": "id" 
            } 
        ], 
        "clusteringKeys": [], 
        "staticColumns": [] 
    }, 
    "capacitySpecification": { 
        "throughputMode": "PAY_PER_REQUEST", 
        "lastUpdateToPayPerRequestTimestamp": "2022-06-20T14:34:57.049000-07:00" 
    }, 
    "encryptionSpecification": { 
        "type": "AWS_OWNED_KMS_KEY" 
    }, 
    "pointInTimeRecovery": { 

Restoring a table to a point in time with the AWS CLI 491



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        "status": "ENABLED", 
        "earliestRestorableTimestamp": "2022-06-20T14:35:13.693000-07:00" 
    }, 
    "defaultTimeToLive": 0, 
    "comment": { 
        "message": "" 
    }
}

You can restore an active table to any point-in-time between the
earliestRestorableTimestamp and the current time in one second intervals. Current time 
is the default.

3. To restore a table to a point in time, specify a restore_timestamp in ISO 8601 format. You 
can chose any point in time during the last 35 days in one second intervals. For example, the 
following command restores the table to the EarliestRestorableDateTime.

aws keyspaces restore-table --source-keyspace-name 'myKeyspace' --source-
table-name 'myTable' --target-keyspace-name 'myKeyspace' --target-table-name 
 'myTable_restored' --restore-timestamp "2022-06-20 21:35:14.693"

The output of this command returns the ARN of the restored table.

{ 
    "restoredTableARN": "arn:aws:cassandra:us-east-1:111222333444:/keyspace/
myKeyspace/table/myTable_restored"
}

To restore the table to the current time, you can omit the restore-timestamp.

aws keyspaces restore-table --source-keyspace-name 'myKeyspace' --source-
table-name 'myTable' --target-keyspace-name 'myKeyspace' --target-table-name 
 'myTable_restored1'"

Important

While a restore is in progress, don't modify or delete the AWS Identity and Access 
Management (IAM) policies that grant the IAM entity (for example, user, group, or role) 
permission to perform the restore. Otherwise, unexpected behavior can result. For 

Restoring a table to a point in time with the AWS CLI 492



Amazon Keyspaces (for Apache Cassandra) Developer Guide

example, suppose that you removed write permissions for a table while that table was 
being restored. In this case, the underlying RestoreTableToPointInTime operation 
can't write any of the restored data to the table.
You can modify or delete permissions only after the restore operation is completed.

Restoring a table to a point in time with CQL

The following procedure shows how to use CQL to restore an existing table named mytable to a 
point in time.

Note

This procedure assumes that you have enabled point-in-time recovery. To enable PITR on 
the table, follow the steps in the section called “CQL”.

1. You can restore an active table to a point-in-time between
earliest_restorable_timestamp and the current time. Current time is the default.

To confirm that point-in-time recovery is enabled for the mytable table, query the
system_schema_mcs.tables as follows.

SELECT custom_properties
FROM system_schema_mcs.tables
WHERE keyspace_name = 'mykeyspace' AND table_name = 'mytable';

Point-in-time recovery is enabled as shown in the following sample output.

custom_properties
-----------------
{ 
  ..., 
    "point_in_time_recovery": { 
    "earliest_restorable_timestamp":"2020-06-30T19:19:21.175Z" 
    "status":"enabled" 
  }
}

Restoring a table to a point in time with CQL 493



Amazon Keyspaces (for Apache Cassandra) Developer Guide

2. Restore the table to a point in time, specified by a restore_timestamp in ISO 8601 format. 
In this case, the mytable table is restored to the current time. You can omit the WITH 
restore_timestamp = ... clause. Without the clause, the current timestamp is used.

RESTORE TABLE mykeyspace.mytable_restored
FROM TABLE mykeyspace.mytable;

You can also restore to a specific point in time. You can specify any point in time 
during the last 35 days. For example, the following command restores the table to the
EarliestRestorableDateTime.

RESTORE TABLE mykeyspace.mytable_restored
FROM TABLE mykeyspace.mytable
WITH restore_timestamp = '2020-06-30T19:19:21.175Z';

For a full syntax description, see the section called “RESTORE TABLE” in the language 
reference.

To verify that the restore of the table was successful, query the system_schema_mcs.tables to 
confirm the status of the table.

SELECT status
FROM system_schema_mcs.tables
WHERE keyspace_name = 'mykeyspace' AND table_name = 'mytable_restored'

The query shows the following output.

status
------
RESTORING

The table that is being restored is shown with the status Restoring. After the restore process is 
finished, the status of the mytable_restored table changes to Active.

Important

While a restore is in progress, don't modify or delete the AWS Identity and Access 
Management (IAM) policies that grant the IAM entity (for example, user, group, or role) 

Restoring a table to a point in time with CQL 494



Amazon Keyspaces (for Apache Cassandra) Developer Guide

permission to perform the restore. Otherwise, unexpected behavior can result. For 
example, suppose that you removed write permissions for a table while that table was 
being restored. In this case, the underlying RestoreTableToPointInTime operation 
can't write any of the restored data to the table.
You can modify or delete permissions only after the restore operation is completed.

Restoring a deleted table with the AWS CLI

The following procedure shows how to use the AWS CLI to restore a deleted table named myTable
to the time of deletion.

Note

This procedure assumes that PITR was enabled on the deleted table.

1. Delete the table that you created in the previous tutorial.

aws keyspaces delete-table --keyspace-name 'myKeyspace' --table-name 'myTable'

2. Restore the deleted table to the time of deletion with the following command.

aws keyspaces restore-table --source-keyspace-name 'myKeyspace' --source-
table-name 'myTable' --target-keyspace-name 'myKeyspace' --target-table-name 
 'myTable_restored2'

The output of this command returns the ARN of the restored table.

{ 
    "restoredTableARN": "arn:aws:cassandra:us-east-1:111222333444:/keyspace/
myKeyspace/table/myTable_restored2"
}

Restoring a deleted table with the AWS CLI 495



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Restoring a deleted table with CQL

The following procedure shows how to use CQL to restore a deleted table named mytable to the 
time of deletion.

Note

This procedure assumes that PITR was enabled on the deleted table.

1. To confirm that point-in-time recovery is enabled for a deleted table, query the system table. 
Only tables with point-in-time recovery enabled are shown.

SELECT custom_properties
FROM system_schema_mcs.tables_history  
WHERE keyspace_name = 'mykeyspace' AND table_name = 'my_table';

The query shows the following output.

custom_properties
------------------
{ 
    ..., 
   "point_in_time_recovery":{ 
      "restorable_until_time":"2020-08-04T00:48:58.381Z", 
      "status":"enabled" 
   }
}

2. Restore the table to the time of deletion with the following sample statement.

RESTORE TABLE mykeyspace.mytable_restored
FROM TABLE mykeyspace.mytable;

Restoring a deleted table with CQL 496



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Expiring data by using Amazon Keyspaces Time to Live 
(TTL)

Amazon Keyspaces (for Apache Cassandra) Time to Live (TTL) helps you simplify your application 
logic and optimize the price of storage by expiring data from tables automatically. Data that you 
no longer need is automatically deleted from your table based on the Time to Live value that you 
set. This makes it easier to comply with data retention policies based on business, industry, or 
regulatory requirements that define how long data needs to be retained or specify when data must 
be deleted.

For example, you can use TTL in an AdTech application to schedule when data for specific ads 
expires and is no longer visible to clients. You can also use TTL to retire older data automatically 
and save on your storage costs. You can set a default TTL value for the entire table, and overwrite 
that value for individual rows and columns. TTL operations don't impact your application's 
performance. Also, the number of rows and columns marked to expire with TTL doesn't affect your 
table's availability.

Amazon Keyspaces automatically filters out expired data so that expired data isn't returned in 
query results or available for use in data manipulation language (DML) statements. Amazon 
Keyspaces typically deletes expired data from storage within 10 days of the expiration date. In 
rare cases, Amazon Keyspaces may not be able to delete data within 10 days if there is sustained 
activity on the underlying storage partition to protect availability. In these cases, Amazon 
Keyspaces continues to attempt to delete the expired data once traffic on the partition decreases. 
After the data is permanently deleted from storage, you stop incurring storage fees. For more 
information, see the section called “How it works”.

You can set, modify, or disable default TTL settings for new and existing tables by using the 
console or Cassandra Query Language (CQL). On tables with default TTL configured, you can use 
Cassandra Query Language (CQL) to override the default TTL settings and apply custom TTL values 
to rows and columns. For more information, see the section called “How to use Time to Live”.

TTL pricing is based on the size of the rows being deleted or updated by using Time to Live. TTL 
operations are metered in units of TTL deletes. One TTL delete is consumed per KB of data 
per row that is deleted or updated. For example, to update a row that stores 2.5 KB of data and 
to delete one or more columns within the row at the same time requires three TTL deletes. Or, 
to delete an entire row that contains 3.5 KB of data requires four TTL deletes. One TTL delete 

497



Amazon Keyspaces (for Apache Cassandra) Developer Guide

is consumed per KB of deleted data per row. For more information about pricing, see Amazon 
Keyspaces (for Apache Cassandra) pricing.

Topics

• How it works: Amazon Keyspaces Time to Live (TTL)

• How to use Time to Live (TTL)

How it works: Amazon Keyspaces Time to Live (TTL)

Amazon Keyspaces Time to Live (TTL) is fully managed. You don’t have to manage low-level 
system settings such as compaction strategies. Data expires at the time you specify, and Amazon 
Keyspaces removes expired data automatically (typically within 10 days) without impacting your 
application performance or availability.

Expired data is marked for deletion and isn't available for data manipulation language (DML) 
statements. As you continue to perform reads and writes on rows that contain expired data, the 
expired data continues to count towards read capacity units (RCUs) and write capacity units (WCUs) 
until it's deleted from storage.

Topics

• Setting the default TTL value for a table

• Setting custom TTL values for rows and columns

• Enabling TTL on tables

• Amazon Keyspaces Time to Live and integration with AWS services

Setting the default TTL value for a table

In Amazon Keyspaces, you can set a default TTL value for all rows in a table when the table is 
created. You can also edit an existing table to set or change the default TTL value for new rows 
inserted into the table. Changing the default TTL value of a table doesn't modify the TTL value 
of any existing data in the table. The default TTL value for a table is zero, which means that data 
doesn't expire automatically. If the default TTL value for a table is greater than zero, an expiration 
timestamp is added to each row.

Amazon Keyspaces calculates a new TTL timestamp each time the data is updated. TTL values 
are set in seconds, and the maximum configurable value is 630,720,000 seconds, which is the 

How it works 498

https://aws.amazon.com/keyspaces/pricing
https://aws.amazon.com/keyspaces/pricing


Amazon Keyspaces (for Apache Cassandra) Developer Guide

equivalent of 20 years. For more information about how to set, modify, and disable the default TTL 
value for tables using the AWS Management Console or CQL, see the section called “How to use 
Time to Live”.

Setting custom TTL values for rows and columns

Note

Before setting custom TTL values for rows and columns, TTL must be enabled on the table 
first. For more information, see the section called “How to enable Time to Live (TTL) on 
existing tables using custom properties”.

To overwrite a table's default TTL value or to set expiration dates for individual rows, you can use 
the following CQL data manipulation language (DML) statements:

• INSERT – Use to insert a new row of data with a TTL value set.

• UPDATE – Use to modify an existing row of data with a new TTL value.

Setting TTL values for rows takes precedence over the default TTL setting for the table.

For CQL syntax and examples, see the section called “To use INSERT to edit custom Time to Live 
(TTL) settings using CQL”.

To overwrite or set TTL values for individual columns, you can update the TTL setting for a subset 
of columns within existing rows using the following CQL DML statement:

• UPDATE – Use to update a column of data.

Setting TTL values for columns takes precedence over the default TTL setting for the table and 
any custom TTL setting for the row. For CQL syntax and examples, see the section called “To use
UPDATE to edit custom Time to Live (TTL) settings using CQL”.

Enabling TTL on tables

TTL is automatically enabled for tables when you specify a default_time_to_live value 
greater than 0 in either CREATE TABLE or ALTER TABLE statements. If you don’t specify a
default_time_to_live for the table, but you want to specify custom TTL values for rows or 

Custom TTL values 499



Amazon Keyspaces (for Apache Cassandra) Developer Guide

columns by using INSERT or UPDATE operations, you must first enable TTL for the table. You can 
enable TTL for a table using the ttl custom property.

When you enable TTL on a table, Amazon Keyspaces begins to store additional TTL-related 
metadata for each row. In addition, TTL uses expiration timestamps to track when rows or columns 
expire. The timestamps are stored as row metadata and contribute to the storage cost for the row.

After the TTL feature is enabled, you can't disable it for a table. Setting the table’s
default_time_to_live to 0 disables default expiration times for new data, but it doesn't 
deactivate the TTL feature or revert the table back to the original Amazon Keyspaces storage 
metadata or write behavior.

Amazon Keyspaces Time to Live and integration with AWS services

The following TTL metric is available in Amazon CloudWatch to enable continuous monitoring.

• TTLDeletes – The units consumed to delete or update data in a row by using Time to Live 
(TTL).

For more information about how to monitor CloudWatch metrics, see the section called 
“Monitoring with CloudWatch”.

When you use AWS CloudFormation, you can turn on TTL when creating an Amazon Keyspaces 
table. For more information, see the AWS CloudFormation User Guide.

How to use Time to Live (TTL)

You can use the Amazon Keyspaces (for Apache Cassandra) console or CQL to enable, update, and 
disable Time to Live settings.

Topics

• To create a new table with default Time to Live (TTL) settings enabled (console)

• To update default Time to Live (TTL) settings on existing tables (console)

• To disable default Time to Live (TTL) settings on existing tables (console)

• To create a new table with default Time to Live (TTL) settings enabled using CQL

• To use ALTER TABLE to edit default Time to Live (TTL) settings using CQL

• How to enable Time to Live (TTL) on new tables using custom properties

• How to enable Time to Live (TTL) on existing tables using custom properties

Integration with AWS services 500

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cassandra-table.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• To use INSERT to edit custom Time to Live (TTL) settings using CQL

• To use UPDATE to edit custom Time to Live (TTL) settings using CQL

To create a new table with default Time to Live (TTL) settings enabled 
(console)

Follow these steps to create a new table with Time to Live settings enabled using the Amazon 
Keyspaces console.

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables, and then choose Create table.

3. On the Create table page in the Table details section, select a keyspace and provide a name 
for the new table.

4. In the Schema section, create the schema for your table.

5. In the Table settings section, choose Customize settings.

6. Continue to Time to Live (TTL).

In this step, you select the default TTL settings for the table.

For the Default TTL period, enter the expiration time and choose the unit of time you entered, 
for example seconds, days, or years. Amazon Keyspaces will store the value in seconds.

7. Choose Create table. Your table is created with the specified default TTL value.

Note

You can overwrite the table's default TTL setting for specific rows or columns by using the 
data manipulation language (DML) in the CQL editor.

To update default Time to Live (TTL) settings on existing tables 
(console)

Follow these steps to update Time to Live settings for existing tables using the Amazon Keyspaces 
console.

To create a new table with default Time to Live (TTL) settings enabled (console) 501

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose the table that you want to update, and then choose the Additional settings tab.

3. Continue to Time to Live (TTL) and choose Edit.

4. For the Default TTL period, enter the expiration time and choose the unit of time you entered, 
for example seconds, days, or years. Amazon Keyspaces will store the value in seconds. This 
doesn't change the TTL value of existing rows.

5. When the TTL settings are defined, choose Save changes.

To disable default Time to Live (TTL) settings on existing tables 
(console)

Follow these steps to disable Time to Live settings for existing tables using the Amazon Keyspaces 
AWS Management Console.

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose the table that you want to update, and then choose the Additional settings tab.

3. Continue to Time to Live (TTL) and choose Edit.

4. Select Default TTL Period and set the value to zero. This disables TTL for the table by default 
for future data. It doesn't change the TTL value for existing rows.

5. When the TTL settings are defined, choose Save changes.

To create a new table with default Time to Live (TTL) settings enabled 
using CQL

Enable TTL when you're creating a new table with the default TTL value set to 3,024,000 seconds, 
which represents 35 days.

CREATE TABLE my_table ( 
                userid uuid, 
                time timeuuid, 
                subject text, 
                body text, 
                user inet, 

To disable default Time to Live (TTL) settings on existing tables (console) 502

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

                PRIMARY KEY (userid, time) 
                ) WITH default_time_to_live = 3024000;

To confirm the TTL settings for the new table, use the cqlsh describe statement as 
shown in the following example. The output shows the default TTL setting for the table as
default_time_to_live.

describe my_table;

To use ALTER TABLE to edit default Time to Live (TTL) settings using 
CQL

Update the TTL settings of the existing table to 2,592,000 seconds, which represents 30 days.

ALTER TABLE my_table WITH default_time_to_live = 2592000;

To confirm the TTL settings for the updated table, use the cqlsh describe statement as 
shown in the following example. The output shows the default TTL setting for the table as
default_time_to_live.

describe my_table;

How to enable Time to Live (TTL) on new tables using custom 
properties

To enable Time to Live custom settings that can be applied to rows and columns without enabling 
TTL default settings for the entire table, you can use the following CQL statement.

CREATE TABLE my_keyspace.my_table (id int primary key) WITH CUSTOM_PROPERTIES={'ttl':
{'status': 'enabled'}};

After ttl is enabled, you can't disable it for the table.

How to enable Time to Live (TTL) on existing tables using custom 
properties

To enable Time to Live custom settings that can be applied to rows and columns without enabling 
TTL default settings for the entire table, you can use the following CQL statement.

To use ALTER TABLE to edit default Time to Live (TTL) settings using CQL 503



Amazon Keyspaces (for Apache Cassandra) Developer Guide

ALTER TABLE my_table WITH CUSTOM_PROPERTIES={'ttl':{'status': 'enabled'}};

After ttl is enabled, you can't disable it for the table.

To use INSERT to edit custom Time to Live (TTL) settings using CQL

The following CQL statement inserts a row of data into the table and changes the default TTL 
setting to 259,200 seconds (which is equivalent to 3 days).

INSERT INTO my_table (userid, time, subject, body, user) 
        VALUES (B79CB3BA-745E-5D9A-8903-4A02327A7E09, 96a29100-5e25-11ec-90d7-
b5d91eceda0a, 'Message', 'Hello','205.212.123.123') 
        USING TTL 259200;

To confirm the TTL settings for the inserted row, use the following statement.

SELECT TTL (subject) from my_table;

To use UPDATE to edit custom Time to Live (TTL) settings using CQL

To change the TTL settings of the 'subject' column inserted earlier from 259,200 seconds (3 days) 
to 86,400 seconds (one day), use the following statement.

UPDATE my_table USING TTL 86400 set subject = 'Updated Message' WHERE userid = 
 B79CB3BA-745E-5D9A-8903-4A02327A7E09 and time = 96a29100-5e25-11ec-90d7-b5d91eceda0a;

You can run a simple select query to see the updated record before the expiration time.

SELECT * from my_table;

The query shows the following output.

userid                               | time                                 | body  | 
 subject         | user
--------------------------------------+--------------------------------------+-------
+-----------------+-----------------
b79cb3ba-745e-5d9a-8903-4a02327a7e09  | 96a29100-5e25-11ec-90d7-b5d91eceda0a | Hello | 
 Updated Message | 205.212.123.123

To use INSERT to edit custom Time to Live (TTL) settings using CQL 504



Amazon Keyspaces (for Apache Cassandra) Developer Guide

50554d6e-29bb-11e5-b345-feff819cdc9f  | cf03fb21-59b5-11ec-b371-dff626ab9620 | Hello |  
        Message | 205.212.123.123

To confirm that the expiration was successful, run the same query again after the configured 
expiration time.

SELECT * from my_table;

The query shows the following output after the 'subject' column has expired.

userid                               | time                                 | body  | 
 subject | user
--------------------------------------+--------------------------------------+-------
+---------+-----------------
b79cb3ba-745e-5d9a-8903-4a02327a7e09  | 96a29100-5e25-11ec-90d7-b5d91eceda0a | Hello |  
   null | 205.212.123.123
50554d6e-29bb-11e5-b345-feff819cdc9f  | cf03fb21-59b5-11ec-b371-dff626ab9620 | Hello | 
 Message | 205.212.123.123

To use UPDATE to edit custom Time to Live (TTL) settings using CQL 505



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Working with client-side timestamps in Amazon 
Keyspaces

In Amazon Keyspaces, client-side timestamps are Cassandra-compatible timestamps that are 
persisted for each cell in your table. You can use client-side timestamps for conflict resolution 
by letting your client applications determine the order of writes. For example, when clients of a 
globally distributed application make updates to the same data, client-side timestamps persist the 
order in which the updates were made on the clients. Amazon Keyspaces uses these timestamps to 
process the writes. For more information, see the section called “How it works”.

After client-side timestamps have been turned on for a table, you can specify a timestamp with 
the USING TIMESTAMP clause in your Data Manipulation Language (DML) CQL query. If you do 
not specify a timestamp in your CQL query, Amazon Keyspaces uses the timestamp passed by your 
client driver. If the client driver doesn’t supply timestamps, Amazon Keyspaces assigns a cell-level 
timestamp automatically. To query for timestamps, you can use the WRITETIME function in your 
DML statement. For more information, see the section called “How to use client-side timestamps”.

Amazon Keyspaces doesn't charge extra to turn on client-side timestamps. However, with client-
side timestamps you store and write additional data for each value in your row. This can lead to 
additional storage usage and in some cases additional throughput usage. To learn more about 
estimating the impact on row size, see the section called “How it works”. For more information 
about Amazon Keyspaces pricing, see Amazon Keyspaces (for Apache Cassandra) pricing.

Topics

• How client-side timestamps work in Amazon Keyspaces

• Using client-side timestamps in Amazon Keyspaces

How client-side timestamps work in Amazon Keyspaces

Amazon Keyspaces client-side timestamps are fully managed. You don’t have to manage low-level 
system settings such as clean-up and compaction strategies.

When you delete data, the rows are marked for deletion with a tombstone. Amazon Keyspaces 
removes tombstoned data automatically (typically within 10 days) without impacting your 
application performance or availability. Tombstoned data isn't available for data manipulation 

How it works 506

https://aws.amazon.com/keyspaces/pricing


Amazon Keyspaces (for Apache Cassandra) Developer Guide

language (DML) statements. As you continue to perform reads and writes on rows that contain 
tombstoned data, the tombstoned data continues to count towards storage, read capacity units 
(RCUs), and write capacity units (WCUs) until it's deleted from storage.

Topics

• How client-side timestamps work in Amazon Keyspaces

• Amazon Keyspaces client-side timestamps and integration with AWS services

How client-side timestamps work in Amazon Keyspaces

When client-side timestamps are turned on in Amazon Keyspaces, every column of every row 
stores a timestamp. These timestamps take up approximately 20–40 bytes (depending on your 
data), and contribute to the storage and throughput cost for the row. These metadata bytes also 
count towards your 1-MB row size quota. To determine the overall increase in storage space (to 
ensure that the row size stays under 1 MB), consider the number of columns in your table and 
the number of collection elements in each row. For example, if a table has 20 columns, with each 
column storing 40 bytes of data, the size of the row increases from 800 bytes to 1200 bytes. For 
more information on how to estimate the size of a row, see the section called “Calculating row 
size”. In addition to the extra 400 bytes for storage, in this example, the number of write capacity 
units (WCUs) consumed per write increases from 1 WCU to 2 WCUs. For more information on how 
to calculate read and write capacity, see the section called “Read/write capacity modes”.

After client-side timestamps have been turned on for a table, you can't turn it off. In addition, 
timestamps can't be NULL, so if no client-side timestamps are supplied by the CQL statement or 
the client driver, a timestamp generated by Amazon Keyspaces is automatically added.

Amazon Keyspaces client-side timestamps and integration with AWS 
services

The following client-side timestamps metric is available in Amazon CloudWatch to enable 
continuous monitoring.

• SystemReconciliationDeletes – The number of delete operations required to remove 
tombstoned data.

For more information about how to monitor CloudWatch metrics, see the section called 
“Monitoring with CloudWatch”.

Client-side timestamps in Amazon Keyspaces 507



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using client-side timestamps in Amazon Keyspaces

You can use the Amazon Keyspaces (for Apache Cassandra) console, Cassandra Query Language 
(CQL), the AWS SDK, and the AWS Command Line Interface (AWS CLI) to turn on client-side 
timestamps. This section provides examples of how to turn on client-side timestamps on new and 
existing tables and how to use client-side timestamps in queries. For more information about the 
API, see Amazon Keyspaces API Reference.

Important

Client-side timestamps can't be turned off. Turning on client-side timestamps is a one-time 
change. Amazon Keyspaces doesn't provide an option to turn it off without deleting the 
table.

Topics

• Creating a new table with client-side timestamps turned on (console)

• Turning on client-side timestamps on existing tables (console)

• Creating a new table with client-side timestamps turned on (CQL)

• Turning on client-side timestamps for existing tables using ALTER TABLE (CQL)

• Creating a new table with client-side timestamps turned on (CLI)

• Turning on client-side timestamps on an existing table (CLI)

• Using client-side timestamps in Data Manipulation Language (DML) statements

Creating a new table with client-side timestamps turned on (console)

Follow these steps to create a new table with client-side timestamps turned on with the Amazon 
Keyspaces console.

To create a new table with client-side timestamps (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables, and then choose Create table.

3. On the Create table page in the Table details section, select a keyspace and provide a name 
for the new table.

How to use client-side timestamps 508

https://docs.aws.amazon.com/keyspaces/latest/APIReference/Welcome.html
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

4. In the Schema section, create the schema for your table.

5. In the Table settings section, choose Customize settings.

6. Continue to Client-side timestamps.

Choose Turn on client-side timestamps to turn on client-side timestamps for the table.

7. Choose Create table. Your table is created with client-side timestamps turned on.

Turning on client-side timestamps on existing tables (console)

Follow these steps to turn on client-side timestamps for existing tables using the Amazon 
Keyspaces AWS Management Console.

To turn on client-side timestamps for an existing table (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose the table that you want to update, and then choose Additional settings tab.

3. On the Additional settings tab, go to Modify client-side timestamps and select Turn on 
client-side timestamps

4. Choose Save changes to change the settings of the table.

Creating a new table with client-side timestamps turned on (CQL)

To turn on client-side timestamps when you're creating a new table, you can use the following CQL 
statement.

CREATE TABLE my_table ( 
   userid uuid, 
   time timeuuid, 
   subject text, 
   body text, 
   user inet, 
   PRIMARY KEY (userid, time)
) WITH CUSTOM_PROPERTIES = {'client_side_timestamps': {'status': 'enabled'}};

To confirm the client-side timestamps settings for the new table, use a SELECT statement to 
review the custom_properties as shown in the following example.

Turning on client-side timestamps on existing tables (console) 509

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

SELECT custom_properties from system_schema_mcs.tables where keyspace_name = 
 'my_keyspace' and table_name = 'my_table';

The output of this statement shows the status for client-side timestamps.

'client_side_timestamps': {'status': 'enabled'}

Turning on client-side timestamps for existing tables using ALTER 
TABLE (CQL)

To turn on client-side timestamps for an existing table, you can use the following CQL statement.

ALTER TABLE my_table WITH custom_properties = {'client_side_timestamps': {'status': 
 'enabled'}};;

To confirm the client-side timestamps settings for the new table, use a SELECT statement to 
review the custom_properties as shown in the following example.

SELECT custom_properties from system_schema_mcs.tables where keyspace_name = 
 'my_keyspace' and table_name = 'my_table';

The output of this statement shows the status for client-side timestamps.

'client_side_timestamps': {'status': 'enabled'}

Creating a new table with client-side timestamps turned on (CLI)

To turn on client-side timestamps when creating a new table, you can use the following CLI 
statement.

./aws keyspaces create-table \
--keyspace-name my_keyspace \
--table-name my_table \
--client-side-timestamps 'status=ENABLED' \
--schema-definition 'allColumns=[{name=id,type=int},{name=date,type=timestamp},
{name=name,type=text}],partitionKeys=[{name=id}]'

To confirm that client-side timestamps are turned on for the new table, run the following code.

Turning on client-side timestamps for existing tables using ALTER TABLE (CQL) 510



Amazon Keyspaces (for Apache Cassandra) Developer Guide

./aws keyspaces get-table \
--keyspace-name my_keyspace \
--table-name my_table 

The output should look similar to this example.

{ 
    "keyspaceName": "my_keyspace", 
    "tableName": "my_table", 
    "resourceArn": "arn:aws:cassandra:us-east-2:555555555555:/keyspace/my_keyspace/
table/my_table", 
    "creationTimestamp": 1662681206.032, 
    "status": "ACTIVE", 
    "schemaDefinition": { 
        "allColumns": [ 
            { 
                "name": "id", 
                "type": "int" 
            }, 
            { 
                "name": "date", 
                "type": "timestamp" 
            }, 
            { 
                "name": "name", 
                "type": "text" 
            } 
        ], 
        "partitionKeys": [ 
            { 
                "name": "id" 
            } 
        ], 
        "clusteringKeys": [], 
        "staticColumns": [] 
    }, 
    "capacitySpecification": { 
        "throughputMode": "PAY_PER_REQUEST", 
        "lastUpdateToPayPerRequestTimestamp": 1662681206.032 
    }, 
    "encryptionSpecification": { 
        "type": "AWS_OWNED_KMS_KEY" 
    }, 

Creating a new table with client-side timestamps turned on (CLI) 511



Amazon Keyspaces (for Apache Cassandra) Developer Guide

    "pointInTimeRecovery": { 
        "status": "DISABLED" 
    }, 
    "clientSideTimestamps": { 
        "status": "ENABLED" 
    }, 
    "ttl": { 
        "status": "ENABLED" 
    }, 
    "defaultTimeToLive": 0, 
    "comment": { 
        "message": "" 
    }
}

Turning on client-side timestamps on an existing table (CLI)

To turn on client-side timestamps for an existing table using the CLI, you can use the following 
code.

./aws keyspaces update-table \
--keyspace-name my_keyspace \
--table-name my_table \
--client-side-timestamps 'status=ENABLED'

To confirm that client-side timestamps are turned on for the table, run the following code.

./aws keyspaces get-table \
--keyspace-name my_keyspace \
--table-name my_table

The output should look similar to this example.

{ 
    "keyspaceName": "my_keyspace", 
    "tableName": "my_table", 
    "resourceArn": "arn:aws:cassandra:us-east-2:555555555555:/keyspace/my_keyspace/
table/my_table", 
    "creationTimestamp": 1662681312.906, 
    "status": "ACTIVE", 
    "schemaDefinition": { 
        "allColumns": [ 

Turning on client-side timestamps on an existing table (CLI) 512



Amazon Keyspaces (for Apache Cassandra) Developer Guide

            { 
                "name": "id", 
                "type": "int" 
            }, 
            { 
                "name": "date", 
                "type": "timestamp" 
            }, 
            { 
                "name": "name", 
                "type": "text" 
            } 
        ], 
        "partitionKeys": [ 
            { 
                "name": "id" 
            } 
        ], 
        "clusteringKeys": [], 
        "staticColumns": [] 
    }, 
    "capacitySpecification": { 
        "throughputMode": "PAY_PER_REQUEST", 
        "lastUpdateToPayPerRequestTimestamp": 1662681312.906 
    }, 
    "encryptionSpecification": { 
        "type": "AWS_OWNED_KMS_KEY" 
    }, 
    "pointInTimeRecovery": { 
        "status": "DISABLED" 
    }, 
    "clientSideTimestamps": { 
        "status": "ENABLED" 
    }, 
    "ttl": { 
        "status": "ENABLED" 
    }, 
    "defaultTimeToLive": 0, 
    "comment": { 
        "message": "" 
    }
}

Turning on client-side timestamps on an existing table (CLI) 513



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using client-side timestamps in Data Manipulation Language (DML) 
statements

After you have turned on client-side timestamps, you can pass the timestamp in your INSERT,
UPDATE, and DELETE statements with the USING TIMESTAMP clause. The timestamp value is a
bigint representing a number of microseconds since the standard base time known as the epoch: 
January 1 1970 at 00:00:00 GMT. A timestamp that is supplied by the client has to fall between the 
range of 2 days in the past and 5 minutes in the future from the current wall clock time. Amazon 
Keyspaces keeps timestamp metadata for the life of the data. You can use the WRITETIME function 
to look up timestamps that occurred years in the past. For more information about CQL syntax, see
the section called “DML statements”.

The following CQL statement is an example of how to use a timestamp as an update_parameter.

INSERT INTO catalog.book_awards (year, award, rank, category, book_title, author, 
 publisher) 
   VALUES (2022, 'Wolf', 4, 'Non-Fiction', 'Science Update', 'Ana Carolina Silva', 
 'SomePublisher')  
   USING TIMESTAMP 1669069624;

If you do not specify a timestamp in your CQL query, Amazon Keyspaces uses the timestamp 
passed by your client driver. If no timestamp is supplied by the client driver, Amazon Keyspaces 
assigns a server-side timestamp for your write operation.

To see the timestamp value that is stored for a specific column, you can use the WRITETIME
function in a SELECT statement as shown in the following example.

SELECT year, award, rank, category, book_title, author, publisher, WRITETIME(year), 
 WRITETIME(award), WRITETIME(rank), 
  WRITETIME(category), WRITETIME(book_title), WRITETIME(author), WRITETIME(publisher) 
 from catalog.book_awards;

Using client-side timestamps in Data Manipulation Language (DML) statements 514



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Creating Amazon Keyspaces resources with AWS 
CloudFormation

Amazon Keyspaces (for Apache Cassandra) is integrated with AWS CloudFormation, a service 
that helps you model and set up your AWS resources so that you can spend less time creating 
and managing your resources and infrastructure. You create a template that describes all the 
AWS resources that you want (like keyspaces and tables), and AWS CloudFormation takes care of 
provisioning and configuring those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your Amazon 
Keyspaces resources consistently and repeatedly. Just describe your resources once, and then 
provision the same resources over and over in multiple AWS accounts and Regions.

Amazon Keyspaces and AWS CloudFormation templates

To provision and configure resources for Amazon Keyspaces, you must understand AWS 
CloudFormation templates. Templates are formatted text files in JSON or YAML. These templates 
describe the resources that you want to provision in your AWS CloudFormation stacks. If you're 
unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help you get started 
with AWS CloudFormation templates. For more information, see What is AWS CloudFormation 
designer? in the AWS CloudFormation User Guide.

Amazon Keyspaces supports creating keyspaces and tables in AWS CloudFormation. For the tables 
you create using AWS CloudFormation templates, you can specify the schema, read/write mode, 
and provisioned throughput settings. For more information, including examples of JSON and 
YAML templates for keyspaces and tables, see Cassandra resource type reference in the AWS 
CloudFormation User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation command line interface User Guide

Amazon Keyspaces and AWS CloudFormation templates 515

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Cassandra.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Monitoring Amazon Keyspaces (for Apache Cassandra)

Monitoring is an important part of maintaining the reliability, availability, and performance of 
Amazon Keyspaces and your other AWS solutions. AWS provides the following monitoring tools 
to watch Amazon Keyspaces, report when something is wrong, and take automatic actions when 
appropriate:

• Amazon Keyspaces offers a preconfigured dashboard in the AWS Management Console showing 
the latency and errors aggregated across all tables in the account.

• Amazon CloudWatch monitors your AWS resources and the applications you run on AWS in 
real time. You can collect and track metrics with customized dashboards. For example, you can 
create a baseline for normal Amazon Keyspaces performance in your environment by measuring 
performance at various times and under different load conditions. As you monitor Amazon 
Keyspaces, store historical monitoring data so that you can compare it with current performance 
data, identify normal performance patterns and performance anomalies, and devise methods to 
address issues. To establish a baseline, you should, at a minimum, monitor for system errors. For 
more information, see the Amazon CloudWatch User Guide.

• Amazon CloudWatch alarms monitor a single metric over a time period that you specify, and 
perform one or more actions based on the value of the metric relative to a given threshold over 
a number of time periods. For example if you use Amazon Keyspaces in provisioned mode with 
application auto scaling, the action is a notification sent by the Amazon Simple Notification 
Service (Amazon SNS) to evaluate an Application Auto Scaling policy.

CloudWatch alarms do not invoke actions simply because they are in a particular state. The 
state must have changed and been maintained for a specified number of periods. For more 
information, see Monitoring Amazon Keyspaces with Amazon CloudWatch.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon 
Keyspaces tables, CloudTrail, and other sources. CloudWatch Logs can monitor information in the 
log files and notify you when certain thresholds are met. You can also archive your log data in 
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account 
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users 
and accounts called AWS, the source IP address from which the calls were made, and when the 
calls occurred. For more information, see the AWS CloudTrail User Guide.

516

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon EventBridge is a serverless event bus service that makes it easy to connect your 
applications with data from a variety of sources. EventBridge delivers a stream of real-time data 
from your own applications, Software-as-a-Service (SaaS) applications, and AWS services and 
routes that data to targets such as Lambda. This enables you to monitor events that happen in 
services, and build event-driven architectures. For more information, see the Amazon EventBridge 
User Guide.

Topics

• Monitoring Amazon Keyspaces with Amazon CloudWatch

• Logging Amazon Keyspaces API calls with AWS CloudTrail

Monitoring Amazon Keyspaces with Amazon CloudWatch

You can monitor Amazon Keyspaces using Amazon CloudWatch, which collects raw data and 
processes it into readable, near real-time metrics. These statistics are kept for 15 months, so that 
you can access historical information and gain a better perspective on how your web application or 
service is performing.

You can also set alarms that watch for certain thresholds, and send notifications or take actions 
when those thresholds are met. For more information, see the Amazon CloudWatch User Guide.

Note

To get started quickly with a preconfigured CloudWatch dashboard showing common 
metrics for Amazon Keyspaces, you can use an AWS CloudFormation template available 
from https://github.com/aws-samples/amazon-keyspaces-cloudwatch-cloudformation-
templates.

Topics

• How do I use Amazon Keyspaces metrics?

• Amazon Keyspaces metrics and dimensions

• Creating CloudWatch alarms to monitor Amazon Keyspaces

Monitoring with CloudWatch 517

https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://github.com/aws-samples/amazon-keyspaces-cloudwatch-cloudformation-templates
https://github.com/aws-samples/amazon-keyspaces-cloudwatch-cloudformation-templates


Amazon Keyspaces (for Apache Cassandra) Developer Guide

How do I use Amazon Keyspaces metrics?

The metrics reported by Amazon Keyspaces provide information that you can analyze in different 
ways. The following list shows some common uses for the metrics. These are suggestions to get 
you started, not a comprehensive list. For more information about metrics and retention, see
Metrics.

How can I? Relevant metrics

How can I determine if any 
system errors occurred?

You can monitor SystemErrors  to determine whether any 
requests resulted in a server error code. Typically, this metric 
should be equal to zero. If it isn't, you might want to investiga 
te.

How can I compare average 
provisioned read to consumed 
read capacity?

To monitor average provisioned read capacity and consumed 
read capacity

1. Set the Period for ConsumedReadCapacityUnits  and
ProvisionedReadCapacityUnits  to the interval 
you want to monitor.

2. Change the Statistic for ConsumedReadCapaci 
tyUnits  from Average to Sum.

3. Create a new empty Math expression.

4. In the Details section of the new math expression, enter 
the Id of ConsumedReadCapacityUnits  and divide 
the metric by the CloudWatch PERIOD function of the 
metric (metric_id/(PERIOD(metric_id)).

5. Unselect ConsumedReadCapacityUnits .

You can now compare your average consumed read capacity 
to your provisioned capacity. For more information on basic 
arithmetic functions and how to create a time series see Using 
metric math.

Using metrics 518

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

How can I? Relevant metrics

How can I compare average 
provisioned write to 
consumed write capacity?

To monitor average provisioned write capacity and consumed 
write capacity

1. Set the Period for ConsumedWriteCapacityUnits
and ProvisionedWriteCapacityUnits  to the 
interval you want to monitor.

2. Change the Statistic for ConsumedWriteCapac 
ityUnits  from Average to Sum.

3. Create a new empty Math expression.

4. In the Details section of the new math expression, enter 
the Id of ConsumedWriteCapacityUnits  and divide 
the metric by the CloudWatch PERIOD function of the 
metric (metric_id/(PERIOD(metric_id)).

5. Unselect ConsumedWriteCapacityUnits .

You can now compare your average consumed write capacity 
to your provisioned capacity. For more information on basic 
arithmetic functions and how to create a time series see Using 
metric math.

Amazon Keyspaces metrics and dimensions

When you interact with Amazon Keyspaces, it sends the following metrics and dimensions to 
Amazon CloudWatch. All metrics are aggregated and reported every minute. You can use the 
following procedures to view the metrics for Amazon Keyspaces.

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension 
combinations within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the Region. On the navigation bar, choose the Region where your AWS 
resources reside. For more information, see AWS service endpoints.

Metrics and dimensions 519

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/general/latest/gr/rande.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

3. In the navigation pane, choose Metrics.

4. Under the All metrics tab, choose AWS/Cassandra.

To view metrics using the AWS CLI

• At a command prompt, use the following command.

aws cloudwatch list-metrics --namespace "AWS/Cassandra"                        

Amazon Keyspaces metrics and dimensions

The metrics and dimensions that Amazon Keyspaces sends to Amazon CloudWatch are listed here.

Amazon Keyspaces metrics

Amazon CloudWatch aggregates Amazon Keyspaces metrics at one-minute intervals.

Not all statistics, such as Average or Sum, are applicable for every metric. However, all of these 
values are available through the Amazon Keyspaces console, or by using the CloudWatch console, 
AWS CLI, or AWS SDKs for all metrics. In the following table, each metric has a list of valid statistics 
that are applicable to that metric.

Metric Description

AccountMaxTableLevelReads The maximum number of read capacity units that can be 
used by a table of an account. For on-demand tables this 
limit caps the maximum read request units a table can 
use.

Units: Count

Valid Statistics:

• Maximum – The maximum number of read capacity 
units that can be used by a table of the account.

AccountMaxTableLev 
elWrites

The maximum number of write capacity units that can 
be used by a table of an account. For on-demand tables 

Metrics and dimensions 520



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

this limit caps the maximum write request units a table 
can use.

Units: Count

Valid Statistics:

• Maximum – The maximum number of write capacity 
units that can be used by a table of the account.

AccountProvisioned 
ReadCapacityUtilization

The percentage of provisioned read capacity units 
utilized by an account.

Units: Percent

Valid Statistics:

• Maximum – The maximum percentage of provisioned 
read capacity units utilized by the account.

• Minimum – The minimum percentage of provisioned 
read capacity units utilized by the account.

• Average – The average percentage of provisioned 
read capacity units utilized by the account. The metric 
is published for five-minute intervals. Therefore, if you 
rapidly adjust the provisioned read capacity units, this 
statistic might not reflect the true average.

Metrics and dimensions 521



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

AccountProvisioned 
WriteCapacityUtilization

The percentage of provisioned write capacity units 
utilized by an account.

Units: Percent

Valid Statistics:

• Maximum – The maximum percentage of provisioned 
write capacity units utilized by the account.

• Minimum – The minimum percentage of provisioned 
write capacity units utilized by the account.

• Average – The average percentage of provisioned 
write capacity units utilized by the account. The metric 
is published for five-minute intervals. Therefore, if you 
rapidly adjust the provisioned write capacity units, this 
statistic might not reflect the true average.

BillableTableSizeInBytes The billable size of the table in bytes. It is the sum of the 
encoded size of all rows in the table. This metric helps 
you track your table storage costs over time.

Units: Bytes

Dimensions: Keyspace, TableName

Valid Statistics:

• Maximum – The maximum storage size of the table.

• Minimum – The minimum storage size of the table.

• Average – The average storage size of the table. This 
metric is calculated over 4 - 6 hour intervals.

Metrics and dimensions 522



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

ConditionalCheckFa 
iledRequests

The number of failed lightweight transaction (LWT) 
write requests. The INSERT, UPDATE, and DELETE
operations let you provide a logical condition that must 
evaluate to true before the operation can proceed. If this 
condition evaluates to false, ConditionalCheckFa 
iledRequests  is incremented by one.

Units: Count

Dimensions: Keyspace, TableName

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Metrics and dimensions 523



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

ConsumedReadCapacityUnits The number of read capacity units consumed over the 
specified time period. For more information, see Read/
Write capacity mode.

Note

To understand your average throughput utilizati 
on per second, use the Sum statistic to calculate 
the consumed throughput for the one minute 
period. Then divide the sum by the number of 
seconds in a minute (60) to calculate the average
ConsumedReadCapacityUnits  per second 
(recognizing that this average does not highlight 
any large but brief spikes in read activity that 
occurred during that minute). For more informati 
on on comparing average consumed read 
capacity to provisioned read capacity, see the 
section called “Using metrics”

Units: Count

Dimensions: Keyspace, TableName

Valid Statistics:

• Minimum – The minimum number of read capacity 
units consumed by any individual request to the table.

• Maximum – The maximum number of read capacity 
units consumed by any individual request to the table.

• Average – The average per-request read capacity 
consumed.

Metrics and dimensions 524

https://docs.aws.amazon.com/keyspaces/latest/devguide/ReadWriteCapacityMode.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/ReadWriteCapacityMode.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

Note

The Average value is influenced by periods of 
inactivity where the sample value will be zero.

• Sum – The total read capacity units consumed. 
This is the most useful statistic for the ConsumedR 
eadCapacityUnits  metric.

• SampleCount  – The number of requests to Amazon 
Keyspaces, even if no read capacity was consumed.

Note

The SampleCount  value is influenced by 
periods of inactivity where the sample value 
will be zero.

Metrics and dimensions 525



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

ConsumedWriteCapac 
ityUnits

The number of write capacity units consumed over 
the specified time period. You can retrieve the total 
consumed write capacity for a table. For more informati 
on, see Read/Write capacity mode.

Note

To understand your average throughput utilizati 
on per second, use the Sum statistic to calculate 
the consumed throughput for the one minute 
period. Then divide the sum by the number of 
seconds in a minute (60) to calculate the average
ConsumedWriteCapacityUnits  per second 
(recognizing that this average does not highlight 
any large but brief spikes in write activity that 
occurred during that minute). For more informati 
on on comparing average consumed write 
capacity to provisioned write capacity, see the 
section called “Using metrics”

Units: Count

Dimensions: Keyspace, TableName

Valid Statistics:

• Minimum – The minimum number of write capacity 
units consumed by any individual request to the table.

• Maximum – The maximum number of write capacity 
units consumed by any individual request to the table.

• Average – The average per-request write capacity 
consumed.

Metrics and dimensions 526

https://docs.aws.amazon.com/keyspaces/latest/devguide/ReadWriteCapacityMode.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

Note

The Average value is influenced by periods of 
inactivity where the sample value will be zero.

• Sum – The total write capacity units consumed. 
This is the most useful statistic for the ConsumedW 
riteCapacityUnits  metric.

• SampleCount  – The number of requests to Amazon 
Keyspaces, even if no write capacity was consumed.

Note

The SampleCount  value is influenced by 
periods of inactivity where the sample value 
will be zero.

Metrics and dimensions 527



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

MaxProvisionedTabl 
eReadCapacityUtilization

The percentage of provisioned read capacity units 
utilized by the highest provisioned read table of an 
account.

Units: Percent

Valid Statistics:

• Maximum – : The maximum percentage of provisioned 
read capacity units utilized by the highest provisioned 
read table of the account.

• Minimum – The minimum percentage of provisioned 
read capacity units utilized by the highest provisioned 
read table of the account.

• Average – The average percentage of provisioned 
read capacity units utilized by the highest provisioned 
read table of the account. The metric is published for 
five-minute intervals. Therefore, if you rapidly adjust 
the provisioned read capacity units, this statistic might 
not reflect the true average.

Metrics and dimensions 528



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

MaxProvisionedTabl 
eWriteCapacityUtil 
ization

The percentage of provisioned write capacity utilized by 
the highest provisioned write table of an account.

Units: Percent

Valid Statistics:

• Maximum – The maximum percentage of provisioned 
write capacity units utilized by the highest provisioned 
write table of the account.

• Minimum – The minimum percentage of provisioned 
write capacity units utilized by the highest provisioned 
write table of the account.

• Average – The average percentage of provisioned 
write capacity units utilized by the highest provisioned 
write table of the account. The metric is published for 
five-minute intervals. Therefore, if you rapidly adjust 
the provisioned write capacity units, this statistic 
 might not reflect the true average.

Metrics and dimensions 529



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

PerConnectionReque 
stRateExceeded

Requests to Amazon Keyspaces that exceed the per-
connection request rate quota. Each client connection to 
Amazon Keyspaces can support up to 3000 CQL requests 
per second. Clients can create multiple connections to 
increase throughput.

When you're using Multi-Region Replication, each 
replicated write also contributes to this quota. As a 
best practice, we recommend to increase the number 
of connections to your tables to avoid PerConnec 
tionRequestRateExceeded  errors. There is no 
limit to the number of connections you can have in 
Amazon Keyspaces.

Units: Count

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• SampleCount

• Sum

Metrics and dimensions 530



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

ProvisionedReadCap 
acityUnits

The number of provisioned read capacity units for a 
table.

The TableName  dimension returns the Provision 
edReadCapacityUnits  for the table.

Units: Count

Dimensions: Keyspace, TableName

Valid Statistics:

• Minimum – The lowest setting for provisioned read 
capacity. If you use ALTER TABLE to increase read 
capacity, this metric shows the lowest value of 
provisioned ReadCapacityUnits  during this time 
period.

• Maximum – The highest setting for provisioned read 
capacity. If you use ALTER TABLE to decrease read 
capacity, this metric shows the highest value of 
provisioned ReadCapacityUnits  during this time 
period.

• Average – The average provisioned read capacity. 
 The ProvisionedReadCapacityUnits  metric 
is published at five-minute intervals. Therefore, if you 
rapidly adjust the provisioned read capacity units, this 
statistic might not reflect the true average.

Metrics and dimensions 531



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

ProvisionedWriteCa 
pacityUnits

The number of provisioned write capacity units for a 
table.

The TableName  dimension returns the Provision 
edWriteCapacityUnits  for the table.

Units: Count

Dimensions: Keyspace, TableName

Valid Statistics:

• Minimum – The lowest setting for provisioned write 
capacity. If you use ALTER TABLE to increase write 
capacity, this metric shows the lowest value of 
provisioned WriteCapacityUnits  during this 
time period.

• Maximum – The highest setting for provisioned write 
capacity. If you use ALTER TABLE to decrease write 
capacity, this metric shows the highest value of 
provisioned WriteCapacityUnits  during this 
time period.

• Average – The average provisioned write capacity. 
 The ProvisionedWriteCapacityUnits  metric 
is published at five-minute intervals. Therefore, if you 
rapidly adjust the provisioned write capacity units, this 
statistic might not reflect the true average.

Metrics and dimensions 532



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

ReadThrottleEvents Requests to Amazon Keyspaces that exceed the 
provisioned read capacity for a table, or account level 
quotas, request per connection quotas, or partition level 
quotas.

Units: Count

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• SampleCount

• Sum

ReplicationLatency This metric only applies to multi-Region keyspaces 
and measures the time it took to replicate updates,
inserts, or deletes from one replica table to another 
replica table in a multi-Region keyspace.

Units: Millisecond

Dimensions: TableName, ReceivingRegion

Valid Statistics:

• Average

• Maximum

• Minimum

Metrics and dimensions 533



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

ReturnedItemCountBySelect The number of rows returned by multi-row SELECT
queries during the specified time period. Multi-row
SELECT queries are queries which do not contain the 
fully qualified primary key, such as full table scans and 
range queries.

The number of rows returned is not necessarily the 
same as the number of rows that were evaluated. For 
example, suppose that you requested a SELECT * with
ALLOW FILTERING  on a table that had 100 rows, 
but specified a WHERE clause that narrowed the results 
so that only 15 rows were returned. In this case, the 
response from SELECT would contain a ScanCount  of 
100 and a Count of 15 returned rows.

Units: Count

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Metrics and dimensions 534



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

StoragePartitionTh 
roughputCapacityExceeded

Requests to an Amazon Keyspaces storage partition 
that exceed the throughput capacity of the partition. 
Amazon Keyspaces storage partitions can support up 
to 1000 WCU/WRU per second and 3000 RCU/RRU per 
second. We recommend reviewing your data model to 
distribute read/write traffic across more partitions to 
mitigate these exceptions.

Note

Logical Amazon Keyspaces partitions can span 
multiple storage partitions and are virtually 
unbounded in size.

Units: Count

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• SampleCount

• Sum

SuccessfulRequestCount The number of successful requests processed over the 
specified time period.

Units: Count

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• SampleCount

Metrics and dimensions 535



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

SuccessfulRequestLatency The successful requests to Amazon Keyspaces during the 
specified time period. SuccessfulRequestLatency
can provide two different kinds of information:

• The elapsed time for successful requests (Minimum,
Maximum, Sum, or Average).

• The number of successful requests (SampleCount ).

SuccessfulRequestLatency  reflects activity 
only within Amazon Keyspaces and does not take into 
account network latency or client-side activity.

Units: Milliseconds

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

SystemErrors The requests to Amazon Keyspaces that generate a
ServerError  during the specified time period. A
ServerError  usually indicates an internal service 
error.

Units: Count

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• Sum

• SampleCount

Metrics and dimensions 536



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

SystemReconciliati 
onDeletes

The units consumed to delete tombstoned data when 
client-side timestamps are enabled. Each SystemRec 
onciliationDelete  provides enough capacity 
to delete or update up to 1KB of data per row. For 
example, to update a row that stores 2.5 KB of data 
and to delete one or more columns within the row at 
the same time requires 3 SystemReconciliati 
onDeletes . Or, to delete an entire row that contains 
3.5 KB of data requires 4 SystemReconciliati 
onDeletes .

Units: Count

Dimensions: Keyspace, TableName

Valid Statistics:

• Sum – The total number of SystemReconciliati 
onDeletes  consumed in a time period.

TTLDeletes The units consumed to delete or update data in a row 
by using Time to Live (TTL). Each TTLDelete  provides 
enough capacity to delete or update up to 1KB of data 
per row. For example, to update a row that stores 2.5 
KB of data and to delete one or more columns within 
the row at the same time requires 3 TTL deletes. Or, 
to delete an entire row that contains 3.5 KB of data 
requires 4 TTL deletes.

Units: Count

Dimensions: Keyspace, TableName

Valid Statistics:

• Sum – The total number of TTLDeletes  consumed 
in a time period.

Metrics and dimensions 537



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Metric Description

UserErrors Requests to Amazon Keyspaces that generate an
InvalidRequest  error during the specified time 
period. An InvalidRequest  usually indicates a client-
side error, such as an invalid combination of parameter 
s, an attempt to update a nonexistent table, or an 
incorrect request signature.

UserErrors  represents the aggregate of invalid 
requests for the current AWS Region and the current 
AWS account.

Units: Count

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• Sum

• SampleCount

WriteThrottleEvents Requests to Amazon Keyspaces that exceed the 
provisioned write capacity for a table, or account level 
quotas, request per connection quotas, or partition level 
quotas.

Units: Count

Dimensions: Keyspace, TableName, Operation

Valid Statistics:

• SampleCount

• Sum

Metrics and dimensions 538



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Dimensions for Amazon Keyspaces metrics

The metrics for Amazon Keyspaces are qualified by the values for the account, table name, or 
operation. You can use the CloudWatch console to retrieve Amazon Keyspaces data along any of 
the dimensions in the following table.

Dimension Description

Keyspace This dimension limits the data to a specific keyspace. This value 
can be any keyspace in the current Region and the current AWS 
account.

Operation This dimension limits the data to one of the Amazon Keyspaces 
CQL operations, such as INSERT or SELECT operations.

TableName This dimension limits the data to a specific table. This value 
can be any table name in the current Region and the current 
AWS account. If the table name is not unique within the 
account, you must also specify Keyspace.

Creating CloudWatch alarms to monitor Amazon Keyspaces

You can create an Amazon CloudWatch alarm for Amazon Keyspaces that sends an Amazon Simple 
Notification Service (Amazon SNS) message when the alarm changes state. An alarm watches a 
single metric over a time period that you specify. It performs one or more actions based on the 
value of the metric relative to a given threshold over a number of time periods. The action is a 
notification sent to an Amazon SNS topic or an Application Auto Scaling policy.

When you use Amazon Keyspaces in provisioned mode with Application Auto Scaling, the service 
creates two pairs of CloudWatch alarms on your behalf. Each pair represents your upper and lower 
boundaries for provisioned and consumed throughput settings. These CloudWatch alarms are 
triggered when the table's actual utilization deviates from your target utilization for a sustained 
period of time. To learn more about CloudWatch alarms created by Application Auto Scaling, see
the section called “How Amazon Keyspaces automatic scaling works”.

Alarms invoke actions for sustained state changes only. CloudWatch alarms do not invoke actions 
simply because they are in a particular state. The state must have changed and been maintained 
for a specified number of periods.

Creating alarms 539



Amazon Keyspaces (for Apache Cassandra) Developer Guide

For more information about creating CloudWatch alarms, see Using Amazon CloudWatch alarms in 
the Amazon CloudWatch User Guide.

Logging Amazon Keyspaces API calls with AWS CloudTrail

Amazon Keyspaces is integrated with AWS CloudTrail, a service that provides a record of actions 
taken by a user, role, or an AWS service in Amazon Keyspaces. CloudTrail captures Data Definition 
Language (DDL) API calls and Data Manipulation Language (DML) API calls for Amazon Keyspaces 
as events. The calls that are captured include calls from the Amazon Keyspaces console and 
programmatic calls to the Amazon Keyspaces API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon Simple 
Storage Service (Amazon S3) bucket, including events for Amazon Keyspaces.

If you don't configure a trail, you can still view the most recent supported events on the CloudTrail 
console in Event history. Using the information collected by CloudTrail, you can determine the 
request that was made to Amazon Keyspaces, the IP address from which the request was made, 
who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Topics

• Configuring Amazon Keyspaces log file entries in CloudTrail

• Amazon Keyspaces Data Definition Language (DDL) information in CloudTrail

• Amazon Keyspaces Data Manipulation Language (DML) information in CloudTrail

• Understanding Amazon Keyspaces log file entries

Configuring Amazon Keyspaces log file entries in CloudTrail

Each Amazon Keyspaces API action logged in CloudTrail includes request parameters that are 
expressed in CQL query language. For more information, see the CQL language reference.

You can view, search, and download recent events in your AWS account. For more information, see
Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for Amazon Keyspaces, 
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, 

Logging with CloudTrail 540

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events 
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you 
specify. Additionally, you can configure other AWS services to further analyze and act upon the 
event data collected in CloudTrail logs.

For more information, see the following topics in the AWS CloudTrail User Guide:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions

• Receiving CloudTrail log files from multiple accounts

Every event or log entry contains information about who generated the request. The identity 
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user 
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Amazon Keyspaces Data Definition Language (DDL) information in 
CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When a DDL activity 
occurs in Amazon Keyspaces, that activity is automatically recorded as a CloudTrail event along 
with other AWS service events in Event history. The following table shows the DDL statements 
that are logged for Amazon Keyspaces.

CloudTrail
eventName

Statement CQL action AWS SDK action

CreateKeyspace DDL CREATE KEYSPACE CreateKeyspace

DDL information in CloudTrail 541

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

CloudTrail
eventName

Statement CQL action AWS SDK action

DropKeyspace DDL DROP KEYSPACE DeleteKeyspace

CreateTable DDL CREATE TABLE CreateTable

DropTable DDL DROP TABLE DeleteTable

AlterTable DDL ALTER TABLE UpdateTable ,
TagResource ,
UntagResource

Amazon Keyspaces Data Manipulation Language (DML) information in 
CloudTrail

To enable logging of Amazon Keyspaces DML statements with CloudTrail, you have to first 
enable logging of data plane API activity in CloudTrail. You can start logging Amazon Keyspaces 
DML events in new or existing trails by choosing to log activity for the data event type
Cassandra table using the CloudTrail console, or by setting the resources.type value to
AWS::Cassandra::Table using the AWS CLI, or CloudTrail API operations. For more information, 
see Logging data events.

The following table shows the data events that are logged by CloudTrail for Cassandra table.

CloudTrail
eventName

Statement CQL action AWS SDK action

Select DML SELECT GetKeyspa 
ce , GetTable,
ListKeysp 
aces , ListTable 
s  ListTagsF 
orResource

Insert DML INSERT no AWS SDK actions 
available

DML information in CloudTrail 542

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

CloudTrail
eventName

Statement CQL action AWS SDK action

Update DML UPDATE no AWS SDK actions 
available

Delete DML DELETE no AWS SDK actions 
available

Understanding Amazon Keyspaces log file entries

CloudTrail log files contain one or more log entries. An event represents a single request from 
any source and includes information about the requested action, the date and time of the action, 
request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API 
calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateKeyspace,
DropKeyspace, CreateTable, and DropTable actions:

{ 
  "Records": [ 
    { 
      "eventVersion": "1.05", 
      "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AKIAIOSFODNN7EXAMPLE:alice", 
        "arn": "arn:aws:sts::111122223333:assumed-role/users/alice", 
        "accountId": "111122223333", 
        "sessionContext": { 
          "sessionIssuer": { 
            "type": "Role", 
            "principalId": "AKIAIOSFODNN7EXAMPLE", 
            "arn": "arn:aws:iam::111122223333:role/Admin", 
            "accountId": "111122223333", 
            "userName": "Admin" 
          }, 
          "webIdFederationData": {}, 
          "attributes": { 
            "mfaAuthenticated": "false", 
            "creationDate": "2020-01-15T18:47:56Z" 

Understanding log file entries 543



Amazon Keyspaces (for Apache Cassandra) Developer Guide

          } 
        } 
      }, 
      "eventTime": "2020-01-15T18:53:04Z", 
      "eventSource": "cassandra.amazonaws.com", 
      "eventName": "CreateKeyspace", 
      "awsRegion": "us-east-1", 
      "sourceIPAddress": "10.24.34.01", 
      "userAgent": "Cassandra Client/ProtocolV4", 
      "requestParameters": { 
        "rawQuery": "\n\tCREATE KEYSPACE \"mykeyspace\"\n\tWITH\n\t\tREPLICATION = 
 {'class': 'SingleRegionStrategy'}\n\t\t", 
        "keyspaceName": "mykeyspace" 
      }, 
      "responseElements": null, 
      "requestID": "bfa3e75d-bf4d-4fc0-be5e-89d15850eb41", 
      "eventID": "d25beae8-f611-4229-877a-921557a07bb9", 
      "readOnly": false, 
      "resources": [ 
        { 
          "accountId": "111122223333", 
          "type": "AWS::Cassandra::Keyspace", 
          "ARN": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/" 
        } 
      ], 
      "eventType": "AwsApiCall", 
      "apiVersion": "3.4.4", 
      "recipientAccountId": "111122223333", 
      "managementEvent": true, 
      "eventCategory": "Management", 
      "tlsDetails": { 
          "tlsVersion": "TLSv1.2", 
          "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", 
          "clientProvidedHostHeader": "cassandra.us-east-1.amazonaws.com" 
    }, 
    { 
      "eventVersion": "1.05", 
      "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AKIAIOSFODNN7EXAMPLE:alice", 
        "arn": "arn:aws:sts::111122223333:assumed-role/users/alice", 
        "accountId": "111122223333", 
        "sessionContext": { 
          "sessionIssuer": { 

Understanding log file entries 544



Amazon Keyspaces (for Apache Cassandra) Developer Guide

            "type": "Role", 
            "principalId": "AKIAIOSFODNN7EXAMPLE", 
            "arn": "arn:aws:iam::111122223333:role/Admin", 
            "accountId": "111122223333", 
            "userName": "Admin" 
          }, 
          "webIdFederationData": {}, 
          "attributes": { 
            "mfaAuthenticated": "false", 
            "creationDate": "2020-01-15T18:47:56Z" 
          } 
        } 
      }, 
      "eventTime": "2020-01-15T19:28:39Z", 
      "eventSource": "cassandra.amazonaws.com", 
      "eventName": "DropKeyspace", 
      "awsRegion": "us-east-1", 
      "sourceIPAddress": "10.24.34.01", 
      "userAgent": "Cassandra Client/ProtocolV4", 
      "requestParameters": { 
        "rawQuery": "DROP KEYSPACE \"mykeyspace\"", 
        "keyspaceName": "mykeyspace" 
      }, 
      "responseElements": null, 
      "requestID": "66f3d86a-56ae-4c29-b46f-abcd489ed86b", 
      "eventID": "e5aebeac-e1dd-41e3-a515-84fe6aaabd7b", 
      "readOnly": false, 
      "resources": [ 
        { 
          "accountId": "111122223333", 
          "type": "AWS::Cassandra::Keyspace", 
          "ARN": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/" 
        } 
      ], 
      "eventType": "AwsApiCall", 
      "apiVersion": "3.4.4", 
      "recipientAccountId": "111122223333", 
      "managementEvent": true, 
      "eventCategory": "Management", 
      "tlsDetails": { 
          "tlsVersion": "TLSv1.2", 
          "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", 
          "clientProvidedHostHeader": "cassandra.us-east-1.amazonaws.com" 
    }, 

Understanding log file entries 545



Amazon Keyspaces (for Apache Cassandra) Developer Guide

    { 
      "eventVersion": "1.05", 
      "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AKIAIOSFODNN7EXAMPLE:alice", 
        "arn": "arn:aws:sts::111122223333:assumed-role/users/alice", 
        "accountId": "111122223333", 
        "sessionContext": { 
          "sessionIssuer": { 
            "type": "Role", 
            "principalId": "AKIAIOSFODNN7EXAMPLE", 
            "arn": "arn:aws:iam::111122223333:role/Admin", 
            "accountId": "111122223333", 
            "userName": "Admin" 
          }, 
          "webIdFederationData": {}, 
          "attributes": { 
            "mfaAuthenticated": "false", 
            "creationDate": "2020-01-15T18:47:56Z" 
          } 
        } 
      }, 
      "eventTime": "2020-01-15T18:55:24Z", 
      "eventSource": "cassandra.amazonaws.com", 
      "eventName": "CreateTable", 
      "awsRegion": "us-east-1", 
      "sourceIPAddress": "10.24.34.01", 
      "userAgent": "Cassandra Client/ProtocolV4", 
      "requestParameters": { 
        "rawQuery": "\n\tCREATE TABLE \"mykeyspace\".\"mytable\"(\n\t\t\"ID\" int,
\n\t\t\"username\" text,\n\t\t\"email\" text,\n\t\t\"post_type\" text,\n\t\tPRIMARY 
 KEY((\"ID\", \"username\", \"email\")))", 
        "keyspaceName": "mykeyspace", 
        "tableName": "mytable" 
      }, 
      "responseElements": null, 
      "requestID": "5f845963-70ea-4988-8a7a-2e66d061aacb", 
      "eventID": "fe0dbd2b-7b34-4675-a30c-740f9d8d73f9", 
      "readOnly": false, 
      "resources": [ 
        { 
          "accountId": "111122223333", 
          "type": "AWS::Cassandra::Table", 

Understanding log file entries 546



Amazon Keyspaces (for Apache Cassandra) Developer Guide

          "ARN": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/table/
mytable" 
        } 
      ], 
      "eventType": "AwsApiCall", 
      "apiVersion": "3.4.4", 
      "recipientAccountId": "111122223333", 
      "managementEvent": true, 
      "eventCategory": "Management", 
      "tlsDetails": { 
          "tlsVersion": "TLSv1.2", 
          "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", 
          "clientProvidedHostHeader": "cassandra.us-east-1.amazonaws.com" 
    }, 
    { 
      "eventVersion": "1.05", 
      "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AKIAIOSFODNN7EXAMPLE:alice", 
        "arn": "arn:aws:sts::111122223333:assumed-role/users/alice", 
        "accountId": "111122223333", 
        "sessionContext": { 
          "sessionIssuer": { 
            "type": "Role", 
            "principalId": "AKIAIOSFODNN7EXAMPLE", 
            "arn": "arn:aws:iam::111122223333:role/Admin", 
            "accountId": "111122223333", 
            "userName": "Admin" 
          }, 
          "webIdFederationData": {}, 
          "attributes": { 
            "mfaAuthenticated": "false", 
            "creationDate": "2020-01-15T18:47:56Z" 
          } 
        } 
      }, 
      "eventTime": "2020-01-15T19:27:59Z", 
      "eventSource": "cassandra.amazonaws.com", 
      "eventName": "DropTable", 
      "awsRegion": "us-east-1", 
      "sourceIPAddress": "10.24.34.01", 
      "userAgent": "Cassandra Client/ProtocolV4", 
      "requestParameters": { 
        "rawQuery": "DROP TABLE \"mykeyspace\".\"mytable\"", 

Understanding log file entries 547



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        "keyspaceName": "mykeyspace", 
        "tableName": "mytable" 
      }, 
      "responseElements": null, 
      "requestID": "025501b0-3582-437e-9d18-8939e9ef262f", 
      "eventID": "1a5cbedc-4e38-4889-8475-3eab98de0ffd", 
      "readOnly": false, 
      "resources": [ 
        { 
          "accountId": "111122223333", 
          "type": "AWS::Cassandra::Table", 
          "ARN": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/table/
mytable" 
        } 
      ], 
      "eventType": "AwsApiCall", 
      "apiVersion": "3.4.4", 
      "recipientAccountId": "111122223333", 
      "managementEvent": true, 
      "eventCategory": "Management", 
      "tlsDetails": { 
          "tlsVersion": "TLSv1.2", 
          "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", 
          "clientProvidedHostHeader": "cassandra.us-east-1.amazonaws.com" 
    } 
  ]
}

The following log file shows an example of a SELECT statement.

{ 
    "eventVersion": "1.09", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AKIAIOSFODNN7EXAMPLE", 
        "arn": "arn:aws:iam::111122223333:user/alice", 
        "accountId": "111122223333", 
        "userName": "alice" 
    }, 
    "eventTime": "2023-11-17T10:38:04Z", 
    "eventSource": "cassandra.amazonaws.com", 
    "eventName": "Select", 
    "awsRegion": "us-east-1", 

Understanding log file entries 548



Amazon Keyspaces (for Apache Cassandra) Developer Guide

    "sourceIPAddress": "10.24.34.01", 
    "userAgent": "Cassandra Client/ProtocolV4", 
    "requestParameters": { 
          "keyspaceName": "my_keyspace", 
          "tableName": "my_table", 
          "conditions": [ 
              "pk = **(Redacted)", 
              "ck < 3**(Redacted)0", 
              "region = 't**(Redacted)t'" 
          ], 
          "select": [ 
              "pk", 
              "ck", 
              "region" 
          ], 
          "allowFiltering": true 
    }, 
    "responseElements": null, 
    "requestID": "6d83bbf0-a3d0-4d49-b1d9-e31779a28628", 
    "eventID": "e00552d3-34e9-4092-931a-912c4e08ba17", 
    "readOnly": true, 
    "resources": [ 
        { 
            "accountId": "111122223333", 
            "type": "AWS::Cassandra::Table", 
            "ARN": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/my_keyspace/
table/my_table" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "apiVersion": "3.4.4", 
    "managementEvent": false, 
    "recipientAccountId": "111122223333", 
    "eventCategory": "Data", 
    "tlsDetails": { 
        "tlsVersion": "TLSv1.3", 
        "cipherSuite": "TLS_AES_128_GCM_SHA256", 
        "clientProvidedHostHeader": "cassandra.us-east-1.amazonaws.com" 
    }
}

The following log file shows an example of an INSERT statement.

Understanding log file entries 549



Amazon Keyspaces (for Apache Cassandra) Developer Guide

{ 
    "eventVersion": "1.09", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AKIAIOSFODNN7EXAMPLE", 
        "arn": "arn:aws:iam::111122223333:user/alice", 
        "accountId": "111122223333", 
        "userName": "alice" 
    }, 
    "eventTime": "2023-12-01T22:11:43Z", 
    "eventSource": "cassandra.amazonaws.com", 
    "eventName": "Insert", 
    "awsRegion": "us-east-1", 
    "sourceIPAddress": "10.24.34.01", 
    "userAgent": "Cassandra Client/ProtocolV4", 
    "requestParameters": { 
          "keyspaceName": "my_keyspace", 
          "tableName": "my_table", 
          "primaryKeys": { 
              "pk": "**(Redacted)", 
              "ck": "1**(Redacted)8" 
          }, 
          "columnNames": [ 
              "pk", 
              "ck", 
              "region" 
          ], 
          "updateParameters": { 
              "TTL": "2**(Redacted)0" 
          } 
      } 
    }, 
    "responseElements": null, 
    "requestID": "edf8af47-2f87-4432-864d-a960ac35e471", 
    "eventID": "81b56a1c-9bdd-4c92-bb8e-92776b5a3bf1", 
    "readOnly": false, 
    "resources": [ 
        { 
          "accountId": "111122223333", 
          "type": "AWS::Cassandra::Table", 
          "ARN": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/my_keyspace/table/
my_table" 
        } 

Understanding log file entries 550



Amazon Keyspaces (for Apache Cassandra) Developer Guide

    ], 
    "eventType": "AwsApiCall", 
    "apiVersion": "3.4.4", 
    "managementEvent": false, 
    "recipientAccountId": "111122223333", 
    "eventCategory": "Data", 
    "tlsDetails": { 
        "tlsVersion": "TLSv1.3", 
        "cipherSuite": "TLS_AES_128_GCM_SHA256", 
        "clientProvidedHostHeader": "cassandra.us-east-1.amazonaws.com" 
    }
}

The following log file shows an example of an UPDATE statement.

{ 
    "eventVersion": "1.09", 
    "userIdentity": { 
          "type": "IAMUser", 
          "principalId": "AKIAIOSFODNN7EXAMPLE", 
          "arn": "arn:aws:iam::111122223333:user/alice", 
          "accountId": "111122223333", 
          "userName": "alice" 
    }, 
    "eventTime": "2023-12-01T22:11:43Z", 
    "eventSource": "cassandra.amazonaws.com", 
    "eventName": "Update", 
    "awsRegion": "us-east-1", 
    "sourceIPAddress": "10.24.34.01", 
    "userAgent": "Cassandra Client/ProtocolV4", 
    "requestParameters": { 
          "keyspaceName": "my_keyspace", 
          "tableName": "my_table", 
          "primaryKeys": { 
              "pk": "'t**(Redacted)t'", 
              "ck": "'s**(Redacted)g'" 
          }, 
          "assignmentColumnNames": [ 
             "nonkey" 
          ], 
          "conditions": [ 
              "nonkey < 1**(Redacted)7" 
          ] 

Understanding log file entries 551



Amazon Keyspaces (for Apache Cassandra) Developer Guide

    }, 
    "responseElements": null, 
    "requestID": "edf8af47-2f87-4432-864d-a960ac35e471", 
    "eventID": "81b56a1c-9bdd-4c92-bb8e-92776b5a3bf1", 
    "readOnly": false, 
    "resources": [ 
        { 
          "accountId": "111122223333", 
          "type": "AWS::Cassandra::Table", 
          "ARN": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/my_keyspace/table/
my_table" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "apiVersion": "3.4.4", 
    "managementEvent": false, 
    "recipientAccountId": "111122223333", 
    "eventCategory": "Data", 
    "tlsDetails": { 
          "tlsVersion": "TLSv1.3", 
          "cipherSuite": "TLS_AES_128_GCM_SHA256", 
          "clientProvidedHostHeader": "cassandra.us-east-1.amazonaws.com" 
    }
}

The following log file shows an example of a DELETE statement.

{ 
    "eventVersion": "1.09", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AKIAIOSFODNN7EXAMPLE", 
        "arn": "arn:aws:iam::111122223333:user/alice", 
        "accountId": "111122223333", 
        "userName": "alice", 
    }, 
    "eventTime": "2023-10-23T13:59:05Z", 
    "eventSource": "cassandra.amazonaws.com", 
    "eventName": "Delete", 
    "awsRegion": "us-east-1", 
    "sourceIPAddress": "10.24.34.01", 
    "userAgent": "Cassandra Client/ProtocolV4", 
    "requestParameters": { 

Understanding log file entries 552



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        "keyspaceName": "my_keyspace", 
        "tableName": "my_table", 
        "primaryKeys": { 
            "pk": "**(Redacted)", 
            "ck": "**(Redacted)" 
        }, 
        "conditions": [], 
        "deleteColumnNames": [ 
            "m", 
            "s" 
        ], 
        "updateParameters": {} 
    }, 
    "responseElements": null, 
    "requestID": "3d45e63b-c0c8-48e2-bc64-31afc5b4f49d", 
    "eventID": "499da055-c642-4762-8775-d91757f06512", 
    "readOnly": false, 
    "resources": [ 
      { 
        "accountId": "111122223333", 
        "type": "AWS::Cassandra::Table", 
        "ARN": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/my_keyspace/table/
my_table" 
      } 
    ], 
    "eventType": "AwsApiCall", 
    "apiVersion": "3.4.4", 
    "managementEvent": false, 
    "recipientAccountId": "111122223333", 
    "eventCategory": "Data", 
    "tlsDetails": { 
        "tlsVersion": "TLSv1.3", 
        "cipherSuite": "TLS_AES_128_GCM_SHA256", 
        "clientProvidedHostHeader": "cassandra.us-east-1.amazonaws.com" 
    }
}

Understanding log file entries 553



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Security in Amazon Keyspaces (for Apache Cassandra)

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center 
and network architecture that is built to meet the requirements of the most security-sensitive 
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes 
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. AWS also provides you with services that you can use securely. The 
effectiveness of our security is regularly tested and verified by third-party auditors as part of 
the AWS compliance programs. To learn about the compliance programs that apply to Amazon 
Keyspaces, see AWS Services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You 
are also responsible for other factors including the sensitivity of your data, your organization’s 
requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when 
using Amazon Keyspaces. The following topics show you how to configure Amazon Keyspaces to 
meet your security and compliance objectives. You'll also learn how to use other AWS services that 
can help you to monitor and secure your Amazon Keyspaces resources.

Topics

• Data protection in Amazon Keyspaces

• AWS Identity and Access Management for Amazon Keyspaces

• Compliance validation for Amazon Keyspaces (for Apache Cassandra)

• Resilience and disaster recovery in Amazon Keyspaces

• Infrastructure security in Amazon Keyspaces

• Configuration and vulnerability analysis for Amazon Keyspaces

• Security best practices for Amazon Keyspaces

554

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Data protection in Amazon Keyspaces

The AWS shared responsibility model applies to data protection in Amazon Keyspaces (for Apache 
Cassandra). As described in this model, AWS is responsible for protecting the global infrastructure 
that runs all of the AWS Cloud. You are responsible for maintaining control over your content 
that is hosted on this infrastructure. You are also responsible for the security configuration and 
management tasks for the AWS services that you use. For more information about data privacy, 
see the Data Privacy FAQ. For information about data protection in Europe, see the AWS Shared 
Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set 
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM). 
That way, each user is given only the permissions necessary to fulfill their job duties. We also 
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a 
command line interface or an API, use a FIPS endpoint. For more information about the available 
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your 
customers' email addresses, into tags or free-form text fields such as a Name field. This includes 
when you work with Amazon Keyspaces or other AWS services using the console, API, AWS CLI, or 
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used 
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend 
that you do not include credentials information in the URL to validate your request to that server.

Topics

• Encryption at rest in Amazon Keyspaces

• Encryption in transit in Amazon Keyspaces

• Internetwork traffic privacy in Amazon Keyspaces

Data protection 555

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Encryption at rest in Amazon Keyspaces

Amazon Keyspaces (for Apache Cassandra) encryption at rest provides enhanced security by 
encrypting all your data at rest using encryption keys stored in AWS Key Management Service (AWS 
KMS). This functionality helps reduce the operational burden and complexity involved in protecting 
sensitive data. With encryption at rest, you can build security-sensitive applications that meet strict 
compliance and regulatory requirements for data protection.

Amazon Keyspaces encryption at rest encrypts your data using 256-bit Advanced Encryption 
Standard (AES-256). This helps secure your data from unauthorized access to the underlying 
storage.

Amazon Keyspaces encrypts and decrypts the table data transparently. Amazon Keyspaces uses 
envelope encryption and a key hierarchy to protect data encryption keys. It integrates with AWS 
KMS for storing and managing the root encryption key. For more information about the encryption 
key hierarchy, see the section called “How it works”. For more information about AWS KMS 
concepts like envelope encryption, see AWS KMS management service concepts in the AWS Key 
Management Service Developer Guide.

When creating a new table, you can choose one of the following AWS KMS keys (KMS keys):

• AWS owned key – This is the default encryption type. The key is owned by Amazon Keyspaces (no 
additional charge).

• Customer managed key – This key is stored in your account and is created, owned, and managed 
by you. You have full control over the customer managed key (AWS KMS charges apply).

You can switch between the AWS owned key and the customer managed key at any given time. You 
can specify a customer managed key when you create a new table or change the KMS key of an 
existing table by using the console or programmatically using CQL statements. To learn how, see
Encryption at rest: How to use customer managed keys to encrypt tables in Amazon Keyspaces.

Encryption at rest using the default option of AWS owned keys is offered at no additional charge. 
However, AWS KMS charges apply for customer managed keys. For more information about pricing, 
see AWS KMS pricing.

Amazon Keyspaces encryption at rest is available in all AWS Regions, including the AWS China 
(Beijing) and AWS China (Ningxia) Regions. For more information, see Encryption at rest: How it 
works in Amazon Keyspaces.

Encryption at rest 556

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://aws.amazon.com/kms/pricing


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Topics

• Encryption at rest: How it works in Amazon Keyspaces

• Encryption at rest: How to use customer managed keys to encrypt tables in Amazon Keyspaces

Encryption at rest: How it works in Amazon Keyspaces

Amazon Keyspaces (for Apache Cassandra) encryption at rest encrypts your data using the 256-bit 
Advanced Encryption Standard (AES-256). This helps secure your data from unauthorized access 
to the underlying storage. All customer data in Amazon Keyspaces tables is encrypted at rest by 
default, and server-side encryption is transparent, which means that changes to applications aren't 
required.

Encryption at rest integrates with AWS Key Management Service (AWS KMS) for managing the 
encryption key that is used to encrypt your tables. When creating a new table or updating an 
existing table, you can choose one of the following AWS KMS key options:

• AWS owned key – This is the default encryption type. The key is owned by Amazon Keyspaces (no 
additional charge).

• Customer managed key – This key is stored in your account and is created, owned, and managed 
by you. You have full control over the customer managed key (AWS KMS charges apply).

AWS KMS key (KMS key)

Encryption at rest protects all your Amazon Keyspaces data with a AWS KMS key. By default, 
Amazon Keyspaces uses an AWS owned key, a multi-tenant encryption key that is created and 
managed in an Amazon Keyspaces service account.

However, you can encrypt your Amazon Keyspaces tables using a customer managed key in your 
AWS account. You can select a different KMS key for each table in a keyspace. The KMS key you 
select for a table is also used to encrypt all its metadata and restorable backups.

You select the KMS key for a table when you create or update the table. You can change the 
KMS key for a table at any time, either in the Amazon Keyspaces console or by using the ALTER 
TABLE statement. The process of switching KMS keys is seamless, and doesn't require downtime 
or cause service degradation.

Encryption at rest 557

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Key hierarchy

Amazon Keyspaces uses a key hierarchy to encrypt data. In this key hierarchy, the KMS key is the 
root key. It's used to encrypt and decrypt the Amazon Keyspaces table encryption key. The table 
encryption key is used to encrypt the encryption keys used internally by Amazon Keyspaces to 
encrypt and decrypt data when performing read and write operations.

With the encryption key hierarchy, you can make changes to the KMS key without having to 
reencrypt data or impacting applications and ongoing data operations.

Encryption at rest 558



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Table key

The Amazon Keyspaces table key is used as a key encryption key. Amazon Keyspaces uses 
the table key to protect the internal data encryption keys that are used to encrypt the data 
stored in tables, log files, and restorable backups. Amazon Keyspaces generates a unique data 
encryption key for each underlying structure in a table. However, multiple table rows might be 
protected by the same data encryption key.

When you first set the KMS key to a customer managed key, AWS KMS generates a data key. The 
AWS KMS data key refers to the table key in Amazon Keyspaces.

When you access an encrypted table, Amazon Keyspaces sends a request to AWS KMS to use the 
KMS key to decrypt the table key. Then, it uses the plaintext table key to decrypt the Amazon 
Keyspaces data encryption keys, and it uses the plaintext data encryption keys to decrypt table 
data.

Amazon Keyspaces uses and stores the table key and data encryption keys outside of AWS KMS. 
It protects all keys with Advanced Encryption Standard (AES) encryption and 256-bit encryption 
keys. Then, it stores the encrypted keys with the encrypted data so that they're available to 
decrypt the table data on demand.

Table key caching

To avoid calling AWS KMS for every Amazon Keyspaces operation, Amazon Keyspaces caches 
the plaintext table keys for each connection in memory. If Amazon Keyspaces gets a request 
for the cached table key after five minutes of inactivity, it sends a new request to AWS KMS to 
decrypt the table key. This call captures any changes made to the access policies of the KMS key 
in AWS KMS or AWS Identity and Access Management (IAM) since the last request to decrypt the 
table key.

Envelope encryption

If you change the customer managed key for your table, Amazon Keyspaces generates a new 
table key. Then, it uses the new table key to reencrypt the data encryption keys. It also uses the 
new table key to encrypt previous table keys that are used to protect restorable backups. This 
process is called envelope encryption. This ensures that you can access restorable backups even 
if you rotate the customer managed key. For more information about envelope encryption, see
Envelope Encryption in the AWS Key Management Service Developer Guide.

Topics

Encryption at rest 559

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• AWS owned keys

• Customer managed keys

• Encryption at rest usage notes

AWS owned keys

AWS owned keys aren't stored in your AWS account. They are part of a collection of KMS keys that 
AWS owns and manages for use in multiple AWS accounts. AWS services can use AWS owned keys 
to protect your data.

You can't view, manage, or use AWS owned keys, or audit their use. However, you don't need to do 
any work or change any programs to protect the keys that encrypt your data.

You aren't charged a monthly fee or a usage fee for use of AWS owned keys, and they don't count 
against AWS KMS quotas for your account.

Customer managed keys

Customer managed keys are keys in your AWS account that you create, own, and manage. You have 
full control over these KMS keys.

Use a customer managed key to get the following features:

• You create and manage the customer managed key, including setting and maintaining the key 
policies, IAM policies, and grants to control access to the customer managed key. You can enable 
and disable the customer managed key, enable and disable automatic key rotation, and schedule 
the customer managed key for deletion when it is no longer in use. You can create tags and 
aliases for the customer managed keys you manage.

• You can use a customer managed key with imported key material or a customer managed key in 
a custom key store that you own and manage.

• You can use AWS CloudTrail and Amazon CloudWatch Logs to track the requests that Amazon 
Keyspaces sends to AWS KMS on your behalf. For more information, see the section called “Step 
6: Configure monitoring with AWS CloudTrail”.

Customer managed keys incur a charge for each API call, and AWS KMS quotas apply to these KMS 
keys. For more information, see AWS KMS resource or request quotas.

When you specify a customer managed key as the root encryption key for a table, restorable 
backups are encrypted with the same encryption key that is specified for the table at the time the 

Encryption at rest 560

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

backup is created. If the KMS key for the table is rotated, key enveloping ensures that the latest 
KMS key has access to all restorable backups.

Amazon Keyspaces must have access to your customer managed key to provide you access to 
your table data. If the state of the encryption key is set to disabled or it's scheduled for deletion, 
Amazon Keyspaces is unable to encrypt or decrypt data. As a result, you are not able to perform 
read and write operations on the table. As soon as the service detects that your encryption key is 
inaccessible, Amazon Keyspaces sends an email notification to alert you.

You must restore access to your encryption key within seven days or Amazon Keyspaces deletes 
your table automatically. As a precaution, Amazon Keyspaces creates a restorable backup of your 
table data before deleting the table. Amazon Keyspaces maintains the restorable backup for 35 
days. After 35 days, you can no longer restore your table data. You aren't billed for the restorable 
backup, but standard restore charges apply.

You can use this restorable backup to restore your data to a new table. To initiate the restore, the 
last customer managed key used for the table must be enabled, and Amazon Keyspaces must have 
access to it.

Note

When you're creating a table that's encrypted using a customer managed key that's 
inaccessible or scheduled for deletion before the creation process completes, an error 
occurs. The create table operation fails, and you're sent an email notification.

Encryption at rest usage notes

Consider the following when you're using encryption at rest in Amazon Keyspaces.

• Server-side encryption at rest is enabled on all Amazon Keyspaces tables and can't be disabled. 
The entire table is encrypted at rest, you can't select specific columns or rows for encryption.

• By default, Amazon Keyspaces uses a single-service default key (AWS owned key) for encrypting 
all of your tables. If this key doesn’t exist, it's created for you. Service default keys can't be 
disabled.

• Encryption at rest only encrypts data while it's static (at rest) on a persistent storage media. If 
data security is a concern for data in transit or data in use, you must take additional measures:

Encryption at rest 561

https://aws.amazon.com/keyspaces/pricing


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Data in transit: All your data in Amazon Keyspaces is encrypted in transit. By default, 
communications to and from Amazon Keyspaces are protected by using Secure Sockets Layer 
(SSL)/Transport Layer Security (TLS) encryption.

• Data in use: Protect your data before sending it to Amazon Keyspaces by using client-side 
encryption.

• Customer managed keys: Data at rest in your tables is always encrypted using your customer 
managed keys. However operations that perform atomic updates of multiple rows encrypt 
data temporarily using AWS owned keys during processing. This includes range delete 
operations and operations that simultaneously access static and non-static data.

• A single customer managed key can have up to 50,000 grants. Every Amazon Keyspaces table 
associated with a customer managed key consumes 2 grants. One grant is released when the 
table is deleted. The second grant is used to create an automatic snapshot of the table to 
protect from data loss in case Amazon Keyspaces lost access to the customer managed key 
unintentionally. This grant is released 42 days after deletion of the table.

Encryption at rest: How to use customer managed keys to encrypt tables in 
Amazon Keyspaces

You can use the console or CQL statements to specify the AWS KMS key for new tables and update 
the encryption keys of existing tables in Amazon Keyspaces. The following topic outlines how to 
implement customer managed keys for new and existing tables.

Topics

• Prerequisites: Create a customer managed key using AWS KMS and grant permissions to Amazon 
Keyspaces

• Step 3: Specify a customer managed key for a new table

• Step 4: Update the encryption key of an existing table

• Step 5: Use the Amazon Keyspaces encryption context in logs

• Step 6: Configure monitoring with AWS CloudTrail

Encryption at rest 562

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Prerequisites: Create a customer managed key using AWS KMS and grant permissions to 
Amazon Keyspaces

Before you can protect an Amazon Keyspaces table with a customer managed key, you must first 
create the key in AWS Key Management Service (AWS KMS) and then authorize Amazon Keyspaces 
to use that key.

Step 1: Create a customer managed key using AWS KMS

To create a customer managed key to be used to protect an Amazon Keyspaces table, you can 
follow the steps in Creating symmetric encryption KMS keys using the console or the AWS API.

Step 2: Authorize the use of your customer managed key

Before you can choose a customer managed key to protect an Amazon Keyspaces table, the policies 
on that customer managed key must give Amazon Keyspaces permission to use it on your behalf. 
You have full control over the policies and grants on the customer managed key. You can provide 
these permissions in a key policy, an IAM policy, or a grant.

Amazon Keyspaces doesn't need additional authorization to use the default AWS owned key to 
protect the Amazon Keyspaces tables in your AWS account.

The following topics show how to configure the required permissions using IAM policies and grants 
that allow Amazon Keyspaces tables to use a customer managed key.

Topics

• Key policy for customer managed keys

• Example key policy

• Using grants to authorize Amazon Keyspaces

Key policy for customer managed keys

When you select a customer managed key to protect an Amazon Keyspaces table, Amazon 
Keyspaces gets permission to use the customer managed key on behalf of the principal who makes 
the selection. That principal, a user or role, must have the permissions on the customer managed 
key that Amazon Keyspaces requires.

At a minimum, Amazon Keyspaces requires the following permissions on a customer managed key:

• kms:Encrypt

Encryption at rest 563

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• kms:Decrypt

• kms:ReEncrypt* (for kms:ReEncryptFrom and kms:ReEncryptTo)

• kms:GenerateDataKey* (for kms:GenerateDataKey and kms:GenerateDataKeyWithoutPlaintext)

• kms:DescribeKey

• kms:CreateGrant

Example key policy

For example, the following example key policy provides only the required permissions. The policy 
has the following effects:

• Allows Amazon Keyspaces to use the customer managed key in cryptographic operations 
and create grants—but only when it's acting on behalf of principals in the account who have 
permission to use Amazon Keyspaces. If the principals specified in the policy statement don't 
have permission to use Amazon Keyspaces, the call fails, even when it comes from the Amazon 
Keyspaces service.

• The kms:ViaService condition key allows the permissions only when the request comes 
from Amazon Keyspaces on behalf of the principals listed in the policy statement. These 
principals can't call these operations directly. Note that the kms:ViaService value,
cassandra.*.amazonaws.com, has an asterisk (*) in the Region position. Amazon Keyspaces 
requires the permission to be independent of any particular AWS Region.

• Gives the customer managed key administrators (users who can assume the db-team role) read-
only access to the customer managed key and permission to revoke grants, including the grants 
that Amazon Keyspaces requires to protect the table.

• Gives Amazon Keyspaces read-only access to the customer managed key. In this case, Amazon 
Keyspaces can call these operations directly. It doesn't have to act on behalf of an account 
principal.

Before using an example key policy, replace the example principals with actual principals from your 
AWS account.

{ 
  "Id": "key-policy-cassandra", 
  "Version":"2012-10-17", 
  "Statement": [ 
    { 

Encryption at rest 564

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service


Amazon Keyspaces (for Apache Cassandra) Developer Guide

      "Sid" : "Allow access through Amazon Keyspaces for all principals in the account 
 that are authorized to use Amazon Keyspaces", 
      "Effect": "Allow", 
      "Principal": {"AWS": "arn:aws:iam::111122223333:user/db-lead"}, 
      "Action": [ 
        "kms:Encrypt", 
        "kms:Decrypt", 
        "kms:ReEncrypt*", 
        "kms:GenerateDataKey*", 
        "kms:DescribeKey", 
        "kms:CreateGrant" 
      ], 
      "Resource": "*",       
      "Condition": {  
         "StringLike": { 
           "kms:ViaService" : "cassandra.*.amazonaws.com" 
         } 
      } 
    }, 
    { 
      "Sid":  "Allow administrators to view the customer managed key and revoke 
 grants", 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": "arn:aws:iam::111122223333:role/db-team" 
       }, 
      "Action": [ 
        "kms:Describe*", 
        "kms:Get*", 
        "kms:List*", 
        "kms:RevokeGrant" 
      ], 
      "Resource": "*" 
    } 
  ]
}

Using grants to authorize Amazon Keyspaces

In addition to key policies, Amazon Keyspaces uses grants to set permissions on a customer 
managed key. To view the grants on a customer managed key in your account, use the ListGrants
operation. Amazon Keyspaces doesn't need grants, or any additional permissions, to use the AWS 
owned key to protect your table.

Encryption at rest 565

https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces uses the grant permissions when it performs background system maintenance 
and continuous data protection tasks. It also uses grants to generate table keys.

Each grant is specific to a table. If the account includes multiple tables encrypted under the same 
customer managed key, there is a grant of each type for each table. The grant is constrained by the
Amazon Keyspaces encryption context, which includes the table name and the AWS account ID. The 
grant includes permission to retire the grant if it's no longer needed.

To create the grants, Amazon Keyspaces must have permission to call CreateGrant on behalf of 
the user who created the encrypted table.

The key policy can also allow the account to revoke the grant on the customer managed key. 
However, if you revoke the grant on an active encrypted table, Amazon Keyspaces will not be able 
to protect and maintain the table.

Step 3: Specify a customer managed key for a new table

Follow these steps to specify the customer managed key on a new table using the Amazon 
Keyspaces console or CQL.

Create an encrypted table using a customer managed key (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables, and then choose Create table.

3. On the Create table page in the Table details section, select a keyspace and provide a name 
for the new table.

4. In the Schema section, create the schema for your table.

5. In the Table settings section, choose Customize settings.

6. Continue to Encryption settings.

In this step, you select the encryption settings for the table.

In the Encryption at rest section under Choose an AWS KMS key, choose the option Choose 
a different KMS key (advanced), and in the search field, choose an AWS KMS key or enter an 
Amazon Resource Name (ARN).

Encryption at rest 566

https://docs.aws.amazon.com/kms/latest/developerguide/encryption-context.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

If the key you selected is not accessible or is missing the required permissions, see
Troubleshooting key access in the AWS Key Management Service Developer Guide.

7. Choose Create to create the encrypted table.

Create a new table using a customer managed key for encryption at rest (CQL)

To create a new table that uses a customer managed key for encryption at rest, you can use the
CREATE TABLE statement as shown in the following example. Make sure to replace the key ARN 
with an ARN for a valid key with permissions granted to Amazon Keyspaces.

CREATE TABLE my_keyspace.my_table(id bigint, name text, place text STATIC, PRIMARY 
 KEY(id, name)) WITH CUSTOM_PROPERTIES = { 
        'encryption_specification':{ 
                'encryption_type': 'CUSTOMER_MANAGED_KMS_KEY',  
                'kms_key_identifier':'arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111' 
            } 
    };

If you receive an Invalid Request Exception, you need to confirm that the customer 
managed key is valid and Amazon Keyspaces has the required permissions. To confirm that the key 
has been configured correctly, see Troubleshooting key access in the AWS Key Management Service 
Developer Guide.

Step 4: Update the encryption key of an existing table

You can also use the Amazon Keyspaces console or CQL to change the encryption keys of an 
existing table between an AWS owned key and a customer managed KMS key at any time.

Update an existing table with the new customer managed key (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. In the navigation pane, choose Tables.

3. Choose the table that you want to update, and then choose the Additional settings tab.

Encryption at rest 567

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html
https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home


Amazon Keyspaces (for Apache Cassandra) Developer Guide

4. In the Encryption at rest section, choose Manage Encryption to edit the encryption settings 
for the table.

Under Choose an AWS KMS key, choose the option Choose a different KMS key (advanced), 
and in the search field, choose an AWS KMS key or enter an Amazon Resource Name (ARN).

Note

If the key you selected is not valid, see Troubleshooting key access in the AWS Key 
Management Service Developer Guide.

Alternatively, you can choose an AWS owned key for a table that is encrypted with a customer 
managed key.

5. Choose Save changes to save your changes to the table.

Update the encryption key used for an existing table

To change the encryption key of an existing table, you use the ALTER TABLE statement to specify 
a customer managed key for encryption at rest. Make sure to replace the key ARN with an ARN for 
a valid key with permissions granted to Amazon Keyspaces.

ALTER TABLE my_keyspace.my_table WITH CUSTOM_PROPERTIES = {      
              'encryption_specification':{  
                      'encryption_type': 'CUSTOMER_MANAGED_KMS_KEY',  
                      'kms_key_identifier':'arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111'      
                  }  
         };

If you receive an Invalid Request Exception, you need to confirm that the customer 
managed key is valid and Amazon Keyspaces has the required permissions. To confirm that the key 
has been configured correctly, see Troubleshooting key access in the AWS Key Management Service 
Developer Guide.

To change the encryption key back to the default encryption at rest option with AWS owned keys, 
you can use the ALTER TABLE statement as shown in the following example.

ALTER TABLE my_keyspace.my_table WITH CUSTOM_PROPERTIES = { 

Encryption at rest 568

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

                'encryption_specification':{ 
                      'encryption_type' : 'AWS_OWNED_KMS_KEY'  
                    }  
         };

Step 5: Use the Amazon Keyspaces encryption context in logs

An encryption context is a set of key–value pairs that contain arbitrary nonsecret data. When you 
include an encryption context in a request to encrypt data, AWS KMS cryptographically binds 
the encryption context to the encrypted data. To decrypt the data, you must pass in the same 
encryption context.

Amazon Keyspaces uses the same encryption context in all AWS KMS cryptographic operations. 
If you use a customer managed key to protect your Amazon Keyspaces table, you can use the 
encryption context to identify the use of the customer managed key in audit records and logs. It 
also appears in plaintext in logs, such as in logs for AWS CloudTrail and Amazon CloudWatch Logs.

In its requests to AWS KMS, Amazon Keyspaces uses an encryption context with three key–value 
pairs.

"encryptionContextSubset": { 
    "aws:cassandra:keyspaceName": "my_keyspace", 
    "aws:cassandra:tableName": "mytable" 
    "aws:cassandra:subscriberId": "111122223333"
}

• Keyspace – The first key–value pair identifies the keyspace that includes the table that Amazon 
Keyspaces is encrypting. The key is aws:cassandra:keyspaceName. The value is the name of 
the keyspace.

"aws:cassandra:keyspaceName": "<keyspace-name>"

For example:

"aws:cassandra:keyspaceName": "my_keyspace"

• Table – The second key–value pair identifies the table that Amazon Keyspaces is encrypting. The 
key is aws:cassandra:tableName. The value is the name of the table.

"aws:cassandra:tableName": "<table-name>"

Encryption at rest 569

https://docs.aws.amazon.com/kms/latest/developerguide/encrypt_context.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

For example:

"aws:cassandra:tableName": "my_table"

• Account – The third key–value pair identifies the AWS account. The key is
aws:cassandra:subscriberId. The value is the account ID.

"aws:cassandra:subscriberId": "<account-id>"

For example:

"aws:cassandra:subscriberId": "111122223333"

Step 6: Configure monitoring with AWS CloudTrail

If you use a customer managed key to protect your Amazon Keyspaces tables, you can use AWS 
CloudTrail logs to track the requests that Amazon Keyspaces sends to AWS KMS on your behalf.

The GenerateDataKey, DescribeKey, Decrypt, and CreateGrant requests are discussed in 
this section. In addition, Amazon Keyspaces uses a RetireGrant operation to remove a grant when 
you delete a table.

GenerateDataKey

Amazon Keyspaces creates a unique table key to encrypt data at rest. It sends a
GenerateDataKey request to AWS KMS that specifies the KMS key for the table.

The event that records the GenerateDataKey operation is similar to the following example 
event. The user is the Amazon Keyspaces service account. The parameters include the Amazon 
Resource Name (ARN) of the customer managed key, a key specifier that requires a 256-bit key, 
and the encryption context that identifies the keyspace, the table, and the AWS account.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "AWSService", 
        "invokedBy": "AWS Internal" 
    }, 
    "eventTime": "2021-04-16T04:56:05Z", 

Encryption at rest 570

https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

    "eventSource": "kms.amazonaws.com", 
    "eventName": "GenerateDataKey", 
    "awsRegion": "us-east-1", 
    "sourceIPAddress": "AWS Internal", 
    "userAgent": "AWS Internal", 
    "requestParameters": { 
        "keySpec": "AES_256", 
        "encryptionContext": { 
            "aws:cassandra:keyspaceName": "my_keyspace", 
            "aws:cassandra:tableName": "my_table", 
            "aws:cassandra:subscriberId": "123SAMPLE012" 
        }, 
        "keyId": "arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111" 
    }, 
    "responseElements": null, 
    "requestID": "5e8e9cb5-9194-4334-aacc-9dd7d50fe246", 
    "eventID": "49fccab9-2448-4b97-a89d-7d5c39318d6f", 
    "readOnly": true, 
    "resources": [ 
        { 
            "accountId": "123SAMPLE012", 
            "type": "AWS::KMS::Key", 
            "ARN": "arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "eventCategory": "Management", 
    "recipientAccountId": "123SAMPLE012", 
    "sharedEventID": "84fbaaf0-9641-4e32-9147-57d2cb08792e"
}

DescribeKey

Amazon Keyspaces uses a DescribeKey operation to determine whether the KMS key you 
selected exists in the account and Region.

The event that records the DescribeKey operation is similar to the following example event. 
The user is the Amazon Keyspaces service account. The parameters include the ARN of the 
customer managed key and a key specifier that requires a 256-bit key.

Encryption at rest 571

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AIDAZ3FNIIVIZZ6H7CFQG", 
        "arn": "arn:aws:iam::123SAMPLE012:user/admin", 
        "accountId": "123SAMPLE012", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "userName": "admin", 
        "sessionContext": { 
            "sessionIssuer": {}, 
            "webIdFederationData": {}, 
            "attributes": { 
                "mfaAuthenticated": "false", 
                "creationDate": "2021-04-16T04:55:42Z" 
            } 
        }, 
        "invokedBy": "AWS Internal" 
    }, 
    "eventTime": "2021-04-16T04:55:58Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "DescribeKey", 
    "awsRegion": "us-east-1", 
    "sourceIPAddress": "AWS Internal", 
    "userAgent": "AWS Internal", 
    "requestParameters": { 
        "keyId": "arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111" 
    }, 
    "responseElements": null, 
    "requestID": "c25a8105-050b-4f52-8358-6e872fb03a6c", 
    "eventID": "0d96420e-707e-41b9-9118-56585a669658", 
    "readOnly": true, 
    "resources": [ 
        { 
            "accountId": "123SAMPLE012", 
            "type": "AWS::KMS::Key", 
            "ARN": "arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 

Encryption at rest 572



Amazon Keyspaces (for Apache Cassandra) Developer Guide

    "eventCategory": "Management", 
    "recipientAccountId": "123SAMPLE012"
}

Decrypt

When you access an Amazon Keyspaces table, Amazon Keyspaces needs to decrypt the table key 
so that it can decrypt the keys below it in the hierarchy. It then decrypts the data in the table. 
To decrypt the table key, Amazon Keyspaces sends a Decrypt request to AWS KMS that specifies 
the KMS key for the table.

The event that records the Decrypt operation is similar to the following example event. The 
user is the principal in your AWS account who is accessing the table. The parameters include 
the encrypted table key (as a ciphertext blob) and the encryption context that identifies the 
table and the AWS account. AWS KMS derives the ID of the customer managed key from the 
ciphertext.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "AWSService", 
        "invokedBy": "AWS Internal" 
    }, 
    "eventTime": "2021-04-16T05:29:44Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "Decrypt", 
    "awsRegion": "us-east-1", 
    "sourceIPAddress": "AWS Internal", 
    "userAgent": "AWS Internal", 
    "requestParameters": { 
        "encryptionContext": { 
            "aws:cassandra:keyspaceName": "my_keyspace", 
            "aws:cassandra:tableName": "my_table", 
            "aws:cassandra:subscriberId": "123SAMPLE012" 
        }, 
        "encryptionAlgorithm": "SYMMETRIC_DEFAULT" 
    }, 
    "responseElements": null, 
    "requestID": "50e80373-83c9-4034-8226-5439e1c9b259", 
    "eventID": "8db9788f-04a5-4ae2-90c9-15c79c411b6b", 
    "readOnly": true, 
    "resources": [ 

Encryption at rest 573

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

        { 
            "accountId": "123SAMPLE012", 
            "type": "AWS::KMS::Key", 
            "ARN": "arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "eventCategory": "Management", 
    "recipientAccountId": "123SAMPLE012", 
    "sharedEventID": "7ed99e2d-910a-4708-a4e3-0180d8dbb68e"
}

CreateGrant

When you use a customer managed key to protect your Amazon Keyspaces table, Amazon 
Keyspaces uses grants to allow the service to perform continuous data protection and 
maintenance and durability tasks. These grants aren't required on AWS owned keys.

The grants that Amazon Keyspaces creates are specific to a table. The principal in the
CreateGrant request is the user who created the table.

The event that records the CreateGrant operation is similar to the following example event. 
The parameters include the ARN of the customer managed key for the table, the grantee 
principal and retiring principal (the Amazon Keyspaces service), and the operations that the 
grant covers. It also includes a constraint that requires all encryption operations use the 
specified encryption context.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AIDAZ3FNIIVIZZ6H7CFQG", 
        "arn": "arn:aws:iam::arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111:user/admin", 
        "accountId": "arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111", 
        "accessKeyId": "AKIAI44QH8DHBEXAMPLE", 
        "userName": "admin", 
        "sessionContext": { 
            "sessionIssuer": {}, 
            "webIdFederationData": {}, 

Encryption at rest 574

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

            "attributes": { 
                "mfaAuthenticated": "false", 
                "creationDate": "2021-04-16T04:55:42Z" 
            } 
        }, 
        "invokedBy": "AWS Internal" 
    }, 
    "eventTime": "2021-04-16T05:11:10Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "CreateGrant", 
    "awsRegion": "us-east-1", 
    "sourceIPAddress": "AWS Internal", 
    "userAgent": "AWS Internal", 
    "requestParameters": { 
        "keyId": "a7d328af-215e-4661-9a69-88c858909f20", 
        "operations": [ 
            "DescribeKey", 
            "GenerateDataKey", 
            "Decrypt", 
            "Encrypt", 
            "ReEncryptFrom", 
            "ReEncryptTo", 
            "RetireGrant" 
        ], 
        "constraints": { 
            "encryptionContextSubset": { 
                "aws:cassandra:keyspaceName": "my_keyspace", 
                "aws:cassandra:tableName": "my_table", 
                "aws:cassandra:subscriberId": "123SAMPLE012" 
            } 
        }, 
        "retiringPrincipal": "cassandratest.us-east-1.amazonaws.com", 
        "granteePrincipal": "cassandratest.us-east-1.amazonaws.com" 
    }, 
    "responseElements": { 
        "grantId": 
 "18e4235f1b07f289762a31a1886cb5efd225f069280d4f76cd83b9b9b5501013" 
    }, 
    "requestID": "b379a767-1f9b-48c3-b731-fb23e865e7f7", 
    "eventID": "29ee1fd4-28f2-416f-a419-551910d20291", 
    "readOnly": false, 
    "resources": [ 
        { 
            "accountId": "123SAMPLE012", 

Encryption at rest 575



Amazon Keyspaces (for Apache Cassandra) Developer Guide

            "type": "AWS::KMS::Key", 
            "ARN": "arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "eventCategory": "Management", 
    "recipientAccountId": "123SAMPLE012"
}

Encryption in transit in Amazon Keyspaces

Amazon Keyspaces only accepts secure connections using Transport Layer Security (TLS). 
Encryption in transit provides an additional layer of data protection by encrypting your data 
as it travels to and from Amazon Keyspaces. Organizational policies, industry or government 
regulations, and compliance requirements often require the use of encryption in transit to increase 
the data security of your applications when they transmit data over the network.

To learn how to encrypt cqlsh connections to Amazon Keyspaces using TLS, see the section called 
“How to manually configure cqlsh connections for TLS”. To learn how to use TLS encryption with 
client drivers, see the section called “Using a Cassandra client driver”.

Internetwork traffic privacy in Amazon Keyspaces

This topic describes how Amazon Keyspaces (for Apache Cassandra) secures connections from 
on-premises applications to Amazon Keyspaces and between Amazon Keyspaces and other AWS 
resources within the same AWS Region.

Traffic between service and on-premises clients and applications

You have two connectivity options between your private network and AWS:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?
in the AWS Site-to-Site VPN User Guide.

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect? in 
the AWS Direct Connect User Guide.

Encryption in transit 576

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

As a managed service, Amazon Keyspaces (for Apache Cassandra) is protected by AWS 
global network security. For information about AWS security services and how AWS protects 
infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices 
for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐Architected 
Framework.

You use AWS published API calls to access Amazon Keyspaces through the network. Clients must 
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or 
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later 
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is 
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to 
generate temporary security credentials to sign requests.

Amazon Keyspaces supports two methods of authenticating client requests. The first method uses 
service-specific credentials, which are password based credentials generated for a specific IAM user. 
You can create and manage the password using the IAM console, the AWS CLI, or the AWS API. For 
more information, see Using IAM with Amazon Keyspaces.

The second method uses an authentication plugin for the open-source DataStax Java Driver for 
Cassandra. This plugin enables IAM users, roles, and federated identities to add authentication 
information to Amazon Keyspaces (for Apache Cassandra) API requests using the AWS Signature 
Version 4 process (SigV4). For more information, see the section called “IAM credentials for AWS 
authentication”.

Traffic between AWS resources in the same Region

Interface VPC endpoints enable private communication between your virtual private cloud (VPC) 
running in Amazon VPC and Amazon Keyspaces. Interface VPC endpoints are powered by AWS 
PrivateLink, which is an AWS service that enables private communication between VPCs and AWS 
services. AWS PrivateLink enables this by using an elastic network interface with private IPs in 
your VPC so that network traffic does not leave the Amazon network. Interface VPC endpoints 
don't require an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. 
For more information, see Amazon Virtual Private Cloud and Interface VPC endpoints (AWS 

Internetwork traffic privacy 577

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mcs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

PrivateLink). For example policies, see the section called “Using interface VPC endpoints for 
Amazon Keyspaces”.

AWS Identity and Access Management for Amazon Keyspaces

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) 
and authorized (have permissions) to use Amazon Keyspaces resources. IAM is an AWS service that 
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Keyspaces works with IAM

• Amazon Keyspaces identity-based policy examples

• AWS managed policies for Amazon Keyspaces

• Troubleshooting Amazon Keyspaces identity and access

• Using service-linked roles for Amazon Keyspaces

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you 
do in Amazon Keyspaces.

Service user – If you use the Amazon Keyspaces service to do your job, then your administrator 
provides you with the credentials and permissions that you need. As you use more Amazon 
Keyspaces features to do your work, you might need additional permissions. Understanding how 
access is managed can help you request the right permissions from your administrator. If you 
cannot access a feature in Amazon Keyspaces, see Troubleshooting Amazon Keyspaces identity and 
access.

Service administrator – If you're in charge of Amazon Keyspaces resources at your company, you 
probably have full access to Amazon Keyspaces. It's your job to determine which Amazon Keyspaces 
features and resources your service users should access. You must then submit requests to your IAM 
administrator to change the permissions of your service users. Review the information on this page 

AWS Identity and Access Management 578

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

to understand the basic concepts of IAM. To learn more about how your company can use IAM with 
Amazon Keyspaces, see How Amazon Keyspaces works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you 
can write policies to manage access to Amazon Keyspaces. To view example Amazon Keyspaces 
identity-based policies that you can use in IAM, see Amazon Keyspaces identity-based policy 
examples.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an 
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity 
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on 
authentication, and your Google or Facebook credentials are examples of federated identities. 
When you sign in as a federated identity, your administrator previously set up identity federation 
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the 
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS 
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a 
command line interface (CLI) to cryptographically sign your requests by using your credentials. If 
you don't use AWS tools, you must sign requests yourself. For more information about using the 
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User 
Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication 
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM 
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and 

Authenticating with identities 579

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

is accessed by signing in with the email address and password that you used to create the account. 
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your 
root user credentials and use them to perform the tasks that only the root user can perform. For 
the complete list of tasks that require you to sign in as the root user, see Tasks that require root 
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person 
or application. Where possible, we recommend relying on temporary credentials instead of creating 
IAM users who have long-term credentials such as passwords and access keys. However, if you have 
specific use cases that require long-term credentials with IAM users, we recommend that you rotate 
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier 
to manage for large sets of users. For example, you could have a group named IAMAdmins and give 
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but 
a role is intended to be assumable by anyone who needs it. Users have permanent long-term 
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user 
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an 
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in 
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or 
AWS API operation or by using a custom URL. For more information about methods for using roles, 
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role 
and define permissions for the role. When a federated identity authenticates, the identity 
is associated with the role and is granted the permissions that are defined by the role. For 
information about roles for federation, see  Creating a role for a third-party Identity Provider

Authenticating with identities 580

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control 
what your identities can access after they authenticate, IAM Identity Center correlates the 
permission set to a role in IAM. For information about permissions sets, see  Permission sets in 
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily 
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a 
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource 
(instead of using a role as a proxy). To learn the difference between roles and resource-based 
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when 
you make a call in a service, it's common for that service to run applications in Amazon EC2 or 
store objects in Amazon S3. A service might do this using the calling principal's permissions, 
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in 
AWS, you are considered a principal. When you use some services, you might perform an 
action that then initiates another action in a different service. FAS uses the permissions of the 
principal calling an AWS service, combined with the requesting AWS service to make requests 
to downstream services. FAS requests are only made when a service receives a request that 
requires interactions with other AWS services or resources to complete. In this case, you must 
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your 
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For 
more information, see Creating a role to delegate permissions to an AWS service in the IAM 
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS 
service. The service can assume the role to perform an action on your behalf. Service-linked 
roles appear in your AWS account and are owned by the service. An IAM administrator can 
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary 
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API 
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role 

Authenticating with identities 581

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

to an EC2 instance and make it available to all of its applications, you create an instance profile 
that is attached to the instance. An instance profile contains the role and enables programs that 
are running on the EC2 instance to get temporary credentials. For more information, see Using 
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM 
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. 
A policy is an object in AWS that, when associated with an identity or resource, defines their 
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes 
a request. Permissions in the policies determine whether the request is allowed or denied. Most 
policies are stored in AWS as JSON documents. For more information about the structure and 
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on 
the resources that they need, an IAM administrator can create IAM policies. The administrator can 
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A 
user with that policy can get role information from the AWS Management Console, the AWS CLI, or 
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline 
policies are embedded directly into a single user, group, or role. Managed policies are standalone 

Managing access using policies 582

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

policies that you can attach to multiple users, groups, and roles in your AWS account. Managed 
policies include AWS managed policies and customer managed policies. To learn how to choose 
between a managed policy or an inline policy, see Choosing between managed policies and inline 
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS 
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more 
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer 
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set 
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user 
or role). You can set a permissions boundary for an entity. The resulting permissions are the 
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based 
policies that specify the user or role in the Principal field are not limited by the permissions 
boundary. An explicit deny in any of these policies overrides the allow. For more information 
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

Managing access using policies 583

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions 
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a 
service for grouping and centrally managing multiple AWS accounts that your business owns. If 
you enable all features in an organization, then you can apply service control policies (SCPs) to 
any or all of your accounts. The SCP limits permissions for entities in member accounts, including 
each AWS account root user. For more information about Organizations and SCPs, see How SCPs 
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session 
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these 
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how AWS determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Keyspaces works with IAM

Before you use IAM to manage access to Amazon Keyspaces, you should understand what IAM 
features are available to use with Amazon Keyspaces. To get a high-level view of how Amazon 
Keyspaces and other AWS services work with IAM, see AWS services that work with IAM in the IAM 
User Guide.

Topics

• Amazon Keyspaces identity-based policies

• Amazon Keyspaces resource-based policies

• Authorization based on Amazon Keyspaces tags

• Amazon Keyspaces IAM roles

Amazon Keyspaces identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well 
as the conditions under which actions are allowed or denied. Amazon Keyspaces supports specific 

How Amazon Keyspaces works with IAM 584

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

actions and resources, and condition keys. To learn about all of the elements that you use in a 
JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

To see the Amazon Keyspaces service-specific resources and actions, and condition context keys 
that can be used for IAM permissions policies, see the Actions, resources, and condition keys for 
Amazon Keyspaces (for Apache Cassandra) in the Service Authorization Reference.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny 
access in a policy. Policy actions usually have the same name as the associated AWS API operation. 
There are some exceptions, such as permission-only actions that don't have a matching API 
operation. There are also some operations that require multiple actions in a policy. These 
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon Keyspaces use the following prefix before the action: cassandra:. For 
example, to grant someone permission to create an Amazon Keyspaces keyspace with the Amazon 
Keyspaces CREATE CQL statement, you include the cassandra:Create action in their policy. 
Policy statements must include either an Action or NotAction element. Amazon Keyspaces 
defines its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [ 
      "cassandra:CREATE", 
      "cassandra:MODIFY" 
          ]

To see a list of Amazon Keyspaces actions, see Actions Defined by Amazon Keyspaces (for Apache 
Cassandra) in the Service Authorization Reference.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Amazon Keyspaces works with IAM 585

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-actions-as-permissions


Amazon Keyspaces (for Apache Cassandra) Developer Guide

The Resource JSON policy element specifies the object or objects to which the action applies. 
Statements must include either a Resource or a NotResource element. As a best practice, 
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support 
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard 
(*) to indicate that the statement applies to all resources.

"Resource": "*"

In Amazon Keyspaces keyspaces and tables can be used in the Resource element of IAM 
permissions.

The Amazon Keyspaces keyspace resource has the following ARN:

arn:${Partition}:cassandra:${Region}:${Account}:/keyspace/${KeyspaceName}/

The Amazon Keyspaces table resource has the following ARN:

arn:${Partition}:cassandra:${Region}:${Account}:/keyspace/${KeyspaceName}/table/
${tableName}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS 
service namespaces.

For example, to specify the mykeyspace keyspace in your statement, use the following ARN:

"Resource": "arn:aws:cassandra:us-east-1:123456789012:/keyspace/mykeyspace/"

To specify all keyspaces that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:cassandra:us-east-1:123456789012:/keyspace/*"

Some Amazon Keyspaces actions, such as those for creating resources, cannot be performed on a 
specific resource. In those cases, you must use the wildcard (*).

"Resource": "*"

To connect to Amazon Keyspaces programmatically with a standard driver, a principal must 
have SELECT access to the system tables, because most drivers read the system keyspaces/

How Amazon Keyspaces works with IAM 586

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

tables on connection. For example, to grant SELECT permissions to an IAM user for mytable
in mykeyspace, the principal must have permissions to read both, mytable and the system 
keyspace. To specify multiple resources in a single statement, separate the ARNs with commas.

"Resource": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/table/
mytable", 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
             

To see a list of Amazon Keyspaces resource types and their ARNs, see Resources Defined by Amazon 
Keyspaces (for Apache Cassandra) in the Service Authorization Reference. To learn with which 
actions you can specify the ARN of each resource, see Actions Defined by Amazon Keyspaces (for 
Apache Cassandra).

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement 
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in 
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple 
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of 
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant 
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more 
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global 
condition keys, see AWS global condition context keys in the IAM User Guide.

Amazon Keyspaces defines its own set of condition keys and also supports using some global 
condition keys. To see all AWS global condition keys, see AWS global condition context keys in the
IAM User Guide.

How Amazon Keyspaces works with IAM 587

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

All Amazon Keyspaces actions support the aws:RequestTag/${TagKey}, the
aws:ResourceTag/${TagKey}, and the aws:TagKeys condition keys. For more information, see
the section called “ Amazon Keyspaces resource access based on tags”.

To see a list of Amazon Keyspaces condition keys, see Condition Keys for Amazon Keyspaces (for 
Apache Cassandra) in the Service Authorization Reference. To learn with which actions and resources 
you can use a condition key, see Actions Defined by Amazon Keyspaces (for Apache Cassandra).

Examples

To view examples of Amazon Keyspaces identity-based policies, see Amazon Keyspaces identity-
based policy examples.

Amazon Keyspaces resource-based policies

Amazon Keyspaces does not support resource-based policies. To view an example of a detailed 
resource-based policy page, see https://docs.aws.amazon.com/lambda/latest/dg/access-control-
resource-based.html.

Authorization based on Amazon Keyspaces tags

You can manage access to your Amazon Keyspaces resources by using tags. To manage resource 
access based on tags, you provide tag information in the condition element of a policy using 
the cassandra:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. For more information about tagging Amazon Keyspaces resources, see the section 
called “Working with tags”.

To view example identity-based policies for limiting access to a resource based on the tags on that 
resource, see  Amazon Keyspaces resource access based on tags.

Amazon Keyspaces IAM roles

An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials with Amazon Keyspaces

You can use temporary credentials to sign in with federation, to assume an IAM role, or to assume 
a cross-account role. You obtain temporary security credentials by calling AWS STS API operations 
such as AssumeRole or GetFederationToken.

How Amazon Keyspaces works with IAM 588

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkeyspacesforapachecassandra.html#amazonkeyspacesforapachecassandra-actions-as-permissions
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces supports using temporary credentials with the AWS Signature Version 4 (SigV4) 
authentication plugin available from the Github repo for the following languages:

• Java: https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin.

• Node.js: https://github.com/aws/aws-sigv4-auth-cassandra-nodejs-driver-plugin.

• Python: https://github.com/aws/aws-sigv4-auth-cassandra-python-driver-plugin.

• Go: https://github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin.

For examples and tutorials that implement the authentication plugin to access Amazon Keyspaces 
programmatically, see the section called “Using a Cassandra client driver”.

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action 
on your behalf. Service-linked roles appear in your IAM account and are owned by the service. An 
IAM administrator can view but not edit the permissions for service-linked roles.

For details about creating or managing Amazon Keyspaces service-linked roles, see the section 
called “Using service-linked roles”.

Service roles

Amazon Keyspaces does not support service roles.

Amazon Keyspaces identity-based policy examples

By default, IAM users and roles don't have permission to create or modify Amazon Keyspaces 
resources. They also can't perform tasks using the console, CQLSH, AWS CLI, or AWS API. An IAM 
administrator must create IAM policies that grant users and roles permission to perform specific 
API operations on the specified resources they need. The administrator must then attach those 
policies to the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, 
see Creating policies on the JSON tab in the IAM User Guide.

Topics

• Policy best practices

• Using the Amazon Keyspaces console

Identity-based policy examples 589

https://github.com/aws/aws-sigv4-auth-cassandra-java-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-nodejs-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-python-driver-plugin
https://github.com/aws/aws-sigv4-auth-cassandra-gocql-driver-plugin
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Allow users to view their own permissions

• Accessing Amazon Keyspaces tables

• Amazon Keyspaces resource access based on tags

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon 
Keyspaces resources in your account. These actions can incur costs for your AWS account. When you 
create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To 
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We 
recommend that you reduce permissions further by defining AWS customer managed policies 
that are specific to your use cases. For more information, see AWS managed policies or AWS 
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 
specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your 
policies to limit access to actions and resources. For example, you can write a policy condition to 
specify that all requests must be sent using SSL. You can also use conditions to grant access to 
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For 
more information, see  IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional 
permissions – IAM Access Analyzer validates new and existing policies so that the policies 
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides 
more than 100 policy checks and actionable recommendations to help you author secure and 
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM 
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users 
or a root user in your AWS account, turn on MFA for additional security. To require MFA when 
API operations are called, add MFA conditions to your policies. For more information, see 
Configuring MFA-protected API access in the IAM User Guide.

Identity-based policy examples 590

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Using the Amazon Keyspaces console

Amazon Keyspaces doesn't require specific permissions to access the Amazon Keyspaces console. 
You need at least read-only permissions to list and view details about the Amazon Keyspaces 
resources in your AWS account. If you create an identity-based policy that is more restrictive than 
the minimum required permissions, the console won't function as intended for entities (IAM users 
or roles) with that policy.

Two AWS managed policies are available to the entities for Amazon Keyspaces console access.

• AmazonKeyspacesReadOnlyAccess_v2 – This policy grants read-only access to Amazon 
Keyspaces.

• AmazonKeyspacesFullAccess – This policy grants permissions to use Amazon Keyspaces with full 
access to all features.

For more information about Amazon Keyspaces managed policies, see the section called “AWS 
managed policies”.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and 
managed policies that are attached to their user identity. This policy includes permissions to 
complete this action on the console or programmatically using the AWS CLI or AWS API.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "ViewOwnUserInfo", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetUserPolicy", 
                "iam:ListGroupsForUser", 
                "iam:ListAttachedUserPolicies", 
                "iam:ListUserPolicies", 
                "iam:GetUser" 
            ], 
            "Resource": ["arn:aws:iam::*:user/${aws:username}"] 

Identity-based policy examples 591

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonKeyspacesReadOnlyAccess_v2.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonKeyspacesFullAccess.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

        }, 
        { 
            "Sid": "NavigateInConsole", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetGroupPolicy", 
                "iam:GetPolicyVersion", 
                "iam:GetPolicy", 
                "iam:ListAttachedGroupPolicies", 
                "iam:ListGroupPolicies", 
                "iam:ListPolicyVersions", 
                "iam:ListPolicies", 
                "iam:ListUsers" 
            ], 
            "Resource": "*" 
        } 
    ]
}

Accessing Amazon Keyspaces tables

The following is a sample policy that grants read-only (SELECT) access to the Amazon Keyspaces 
system tables. For all samples, replace the Region and account ID in the Amazon Resource Name 
(ARN) with your own.

Note

To connect with a standard driver, a user must have at least SELECT access to the system 
tables, because most drivers read the system keyspaces/tables on connection.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Effect":"Allow", 
         "Action":[ 
            "cassandra:Select" 
         ], 
         "Resource":[ 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
         ] 

Identity-based policy examples 592



Amazon Keyspaces (for Apache Cassandra) Developer Guide

      } 
   ]
}

The following sample policy adds read-only access to the user table mytable in the keyspace
mykeyspace.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Effect":"Allow", 
         "Action":[ 
            "cassandra:Select" 
         ], 
         "Resource":[ 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/table/
mytable", 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
         ] 
      } 
   ]
}               

The following sample policy assigns read/write access to a user table and read access to the system 
tables.

Note

System tables are always read-only.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Effect":"Allow", 
         "Action":[ 
            "cassandra:Select", 
            "cassandra:Modify" 
         ], 

Identity-based policy examples 593



Amazon Keyspaces (for Apache Cassandra) Developer Guide

         "Resource":[ 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/table/
mytable", 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
         ] 
      } 
   ]
}

The following sample policy allows a user to create tables in keyspace mykeyspace.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Effect":"Allow", 
         "Action":[ 
            "cassandra:Create", 
            "cassandra:Select" 
         ], 
         "Resource":[ 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/*", 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
         ] 
      } 
   ]
}

Amazon Keyspaces resource access based on tags

You can use conditions in your identity-based policy to control access to Amazon Keyspaces 
resources based on tags. These policies control visibility of the keyspaces and tables in the account. 
Note that tag-based permissions for system tables behave differently when requests are made 
using the AWS SDK compared to Cassandra Query Language (CQL) API calls via Cassandra drivers 
and developer tools.

• To make List and Get resource requests with the AWS SDK when using tag-based access, the 
caller needs to have read access to system tables. For example, Select action permissions are 
required to read data from system tables via the GetTable operation. If the caller has only tag-
based access to a specific table, an operation that requires additional access to a system table 
will fail.

Identity-based policy examples 594



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• For compatibility with established Cassandra driver behavior, tag-based authorization policies 
are not enforced when performing operations on system tables using Cassandra Query Language 
(CQL) API calls via Cassandra drivers and developer tools.

The following example shows how you can create a policy that grants permissions to a user to view 
a table if the table's Owner contains the value of that user's user name. In this example you also 
give read access to the system tables.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Sid":"ReadOnlyAccessTaggedTables", 
         "Effect":"Allow", 
         "Action":"cassandra:Select", 
         "Resource":[ 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/table/*", 
            "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
         ], 
         "Condition":{ 
            "StringEquals":{ 
               "aws:ResourceTag/Owner":"${aws:username}" 
            } 
         } 
      } 
   ]
}

You can attach this policy to the IAM users in your account. If a user named richard-roe
attempts to view an Amazon Keyspaces table, the table must be tagged Owner=richard-roe or
owner=richard-roe. Otherwise, he is denied access. The condition tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON policy elements: Condition in the IAM User Guide.

The following policy grants permissions to a user to create tables with tags if the table's Owner
contains the value of that user's user name.

{  
    "Version": "2012-10-17",  
    "Statement": [  

Identity-based policy examples 595

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

       {  
          "Sid": "CreateTagTableUser",  
          "Effect": "Allow",  
          "Action": [ 
              "cassandra:Create",  
              "cassandra:TagResource" 
          ],  
          "Resource": "arn:aws:cassandra:us-east-1:111122223333:/keyspace/mykeyspace/
table/*",  
          "Condition":{ 
             "StringEquals":{ 
                "aws:RequestTag/Owner":"${aws:username}" 
            } 
         } 
      } 
   ]
}

AWS managed policies for Amazon Keyspaces

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS 
managed policies are designed to provide permissions for many common use cases so that you can 
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your 
specific use cases because they're available for all AWS customers to use. We recommend that you 
reduce permissions further by defining  customer managed policies that are specific to your use 
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the 
permissions defined in an AWS managed policy, the update affects all principal identities (users, 
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed 
policy when a new AWS service is launched or new API operations become available for existing 
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policies 596

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies


Amazon Keyspaces (for Apache Cassandra) Developer Guide

AWS managed policy: AmazonKeyspacesReadOnlyAccess_v2

You can attach the AmazonKeyspacesReadOnlyAccess_v2 policy to your IAM identities.

This policy grants read-only access to Amazon Keyspaces and includes the required permissions 
when connecting through private VPC endpoints.

Permissions details

This policy includes the following permissions.

• Amazon Keyspaces – Provides read-only access to Amazon Keyspaces.

• Application Auto Scaling – Allows principals to view configurations from Application Auto 
Scaling. This is required so that users can view automatic scaling policies that are attached to a 
table.

• CloudWatch – Allows principals to view metric data and alarms configured in CloudWatch. 
This is required so users can view the billable table size and CloudWatch alarms that have been 
configured for a table.

• AWS KMS – Allows principals to view keys configured in AWS KMS. This is required so users 
can view AWS KMS keys that they create and manage in their account to confirm that the key 
assigned to Amazon Keyspaces is a symmetric encryption key that is enabled.

• Amazon EC2 – Allows principals connecting to Amazon Keyspaces through VPC endpoints to 
query the VPC on your Amazon EC2 instance for endpoint and network interface information. 
This read-only access to the Amazon EC2 instance is required so Amazon Keyspaces can look up 
and store available interface VPC endpoints in the system.peers table used for connection 
load balancing.

To review the policy in JSON format, see AmazonKeyspacesReadOnlyAccess_v2.

AWS managed policy: AmazonKeyspacesReadOnlyAccess

You can attach the AmazonKeyspacesReadOnlyAccess policy to your IAM identities.

AWS managed policies 597

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonKeyspacesReadOnlyAccess_v2.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

This policy grants read-only access to Amazon Keyspaces.

Permissions details

This policy includes the following permissions.

• Amazon Keyspaces – Provides read-only access to Amazon Keyspaces.

• Application Auto Scaling – Allows principals to view configurations from Application Auto 
Scaling. This is required so that users can view automatic scaling policies that are attached to a 
table.

• CloudWatch – Allows principals to view metric data and alarms configured in CloudWatch. 
This is required so users can view the billable table size and CloudWatch alarms that have been 
configured for a table.

• AWS KMS – Allows principals to view keys configured in AWS KMS. This is required so users 
can view AWS KMS keys that they create and manage in their account to confirm that the key 
assigned to Amazon Keyspaces is a symmetric encryption key that is enabled.

To review the policy in JSON format, see AmazonKeyspacesReadOnlyAccess.

AWS managed policy: AmazonKeyspacesFullAccess

You can attach the AmazonKeyspacesFullAccess policy to your IAM identities.

This policy grants administrative permissions that allow your administrators unrestricted access to 
Amazon Keyspaces.

Permissions details

This policy includes the following permissions.

• Amazon Keyspaces – Allows principals to access any Amazon Keyspaces resource and perform 
all actions.

AWS managed policies 598

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonKeyspacesReadOnlyAccess.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Application Auto Scaling – Allows principals to create, view, and delete automatic scaling 
policies for Amazon Keyspaces tables. This is required so that administrators can manage 
automatic scaling policies for Amazon Keyspaces tables.

• CloudWatch – Allows principals to see the billable table size as well as create, view, and delete 
CloudWatch alarms for Amazon Keyspaces automatic scaling policies. This is required so that 
administrators can view the billable table size and create a CloudWatch dashboard.

• IAM – Allows Amazon Keyspaces to create service-linked roles with IAM automatically when the 
following features are turned on:

• Application Auto Scaling – When an administrator enables Application Auto Scaling for 
a table, Amazon Keyspaces creates a service-linked role to perform automatic scaling actions 
on your behalf.

• Amazon Keyspaces Multi-Region Replication – When an administrator creates 
a multi-Region keyspace, a service-linked role is automatically created to perform data 
replication to the selected AWS Regions on your behalf.

For more information about service-linked roles, see the section called “Using service-linked 
roles”.

• AWS KMS – Allows principals to view keys configured in AWS KMS. This is required so that users 
can view AWS KMS keys that they create and manage in their account to confirm that the key 
assigned to Amazon Keyspaces is a symmetric encryption key that is enabled.

• Amazon EC2 – Allows principals connecting to Amazon Keyspaces through VPC endpoints to 
query the VPC on your Amazon EC2 instance for endpoint and network interface information. 
This read-only access to the Amazon EC2 instance is required so Amazon Keyspaces can look up 
and store available interface VPC endpoints in the system.peers table used for connection 
load balancing.

To review the policy in JSON format, see AmazonKeyspacesFullAccess.

Amazon Keyspaces updates to AWS managed policies

View details about updates to AWS managed policies for Amazon Keyspaces since this service 
began tracking these changes. For automatic alerts about changes to this page, subscribe to the 
RSS feed on the Document history page.

AWS managed policies 599

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonKeyspacesFullAccess.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Change Description Date

AmazonKeyspacesFullAccess – 
Update to an existing policy

Amazon Keyspaces added 
new read-only permissio 
ns for clients connecting to 
Amazon Keyspaces through 
interface VPC endpoints 
to access the Amazon EC2 
instance to lookup network 
information.

Amazon Keyspaces stores 
available interface VPC 
endpoints in the system.pe 
ers  table for connectio 
n load balancing. For more 
information, see the section 
called “Using interface VPC 
endpoints”.

October 3, 2023

AmazonKeyspacesRea 
dOnlyAccess_v2 – New policy

Amazon Keyspaces created 
a new policy to add read-
only permissions for clients 
connecting to Amazon 
Keyspaces through interface 
VPC endpoints to access 
the Amazon EC2 instance to 
lookup network information.

Amazon Keyspaces stores 
available interface VPC 
endpoints in the system.pe 
ers  table for connectio 
n load balancing. For more 
information, see the section 
called “Using interface VPC 
endpoints”.

September 12, 2023

AWS managed policies 600



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Change Description Date

AmazonKeyspacesFullAccess – 
Update to an existing policy

Amazon Keyspaces added 
new permissions to allow 
Amazon Keyspaces to create 
a service-linked role when an 
administrator creates a multi-
Region keyspace.

Amazon Keyspaces uses the 
service-linked role to perform 
data replication tasks on your 
behalf. For more information, 
see the section called “Multi-
Region Replication”.

June 5, 2023

AmazonKeyspacesRea 
dOnlyAccess – Update to an 
existing policy

Amazon Keyspaces added 
new permissions to allow 
users to view the billable size 
of a table using CloudWatch.

Amazon Keyspaces integrate 
s with Amazon CloudWatch 
to allow you to monitor the 
billable table size. For more 
information, see the section 
called “Amazon Keyspaces 
metrics and dimensions”.

July 7, 2022

AWS managed policies 601



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Change Description Date

AmazonKeyspacesFullAccess – 
Update to an existing policy

Amazon Keyspaces added 
new permissions to allow 
users to view the billable size 
of a table using CloudWatch.

Amazon Keyspaces integrate 
s with Amazon CloudWatch 
to allow you to monitor the 
billable table size. For more 
information, see the section 
called “Amazon Keyspaces 
metrics and dimensions”.

July 7, 2022

AmazonKeyspacesRea 
dOnlyAccess – Update to an 
existing policy

Amazon Keyspaces added 
new permissions to allow 
users to view AWS KMS keys 
that have been configured for 
Amazon Keyspaces encryption 
at rest.

Amazon Keyspaces encryptio 
n at rest integrates with 
AWS KMS for protecting and 
managing the encryption 
keys used to encrypt data 
at rest. To view the AWS 
KMS key configured for 
Amazon Keyspaces, read-only 
permissions have been added.

June 1, 2021

AWS managed policies 602



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Change Description Date

AmazonKeyspacesFullAccess – 
Update to an existing policy

Amazon Keyspaces added 
new permissions to allow 
users to view AWS KMS keys 
that have been configured for 
Amazon Keyspaces encryption 
at rest.

Amazon Keyspaces encryptio 
n at rest integrates with 
AWS KMS for protecting and 
managing the encryption 
keys used to encrypt data 
at rest. To view the AWS 
KMS key configured for 
Amazon Keyspaces, read-only 
permissions have been added.

June 1, 2021

Amazon Keyspaces started 
tracking changes

Amazon Keyspaces started 
tracking changes for its AWS 
managed policies.

June 1, 2021

Troubleshooting Amazon Keyspaces identity and access

Use the following information to help you diagnose and fix common issues that you might 
encounter when working with Amazon Keyspaces and IAM.

Topics

• I'm not authorized to perform an action in Amazon Keyspaces

• I modified an IAM user or role and the changes did not take effect immediately

• I can't restore a table using Amazon Keyspaces point-in-time recovery (PITR)

• I'm not authorized to perform iam:PassRole

• I'm an administrator and want to allow others to access Amazon Keyspaces

• I want to allow people outside of my AWS account to access my Amazon Keyspaces resources

Troubleshooting 603



Amazon Keyspaces (for Apache Cassandra) Developer Guide

I'm not authorized to perform an action in Amazon Keyspaces

If the AWS Management Console tells you that you're not authorized to perform an action, then 
you must contact your administrator for assistance. Your administrator is the person that provided 
you with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to 
view details about a table but does not have cassandra:Select permissions for the table.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: 
 cassandra:Select on resource: mytable

In this case, Mateo asks his administrator to update his policies to allow him to access the mytable
resource using the cassandra:Select action.

I modified an IAM user or role and the changes did not take effect immediately

IAM policy changes may take up to 10 minutes to take effect for applications with existing, 
established connections to Amazon Keyspaces. IAM policy changes take effect immediately when 
applications establish a new connection. If you have made modifications to an existing IAM user or 
role, and it has not taken immediate effect, either wait for 10 minutes or disconnect and reconnect 
to Amazon Keyspaces.

I can't restore a table using Amazon Keyspaces point-in-time recovery (PITR)

If you are trying to restore an Amazon Keyspaces table with point-in-time recovery (PITR), and 
you see the restore process begin, but not complete successfully, you might not have configured 
all of the required permissions that are needed by the restore process. You must contact your 
administrator for assistance and ask that person to update your policies to allow you to restore a 
table in Amazon Keyspaces.

In addition to user permissions, Amazon Keyspaces may require permissions to perform actions 
during the restore process on your principal's behalf. This is the case if the table is encrypted with a 
customer-managed key, or if you are using IAM policies that restrict incoming traffic. For example, 
if you are using condition keys in your IAM policy to restrict source traffic to specific endpoints or 
IP ranges, the restore operation fails. To allow Amazon Keyspaces to perform the table restore 
operation on your principal's behalf, you must add an aws:ViaAWSService global condition key 
in the IAM policy.

Troubleshooting 604



Amazon Keyspaces (for Apache Cassandra) Developer Guide

For more information about permissions to restore tables, see the section called “Restore 
Permissions”.

I'm not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to Amazon Keyspaces.

Some AWS services allow you to pass an existing role to that service instead of creating a new 
service role or service-linked role. To do this, you must have permissions to pass the role to the 
service.

The following example error occurs when an IAM user named marymajor tries to use the console 
to perform an action in Amazon Keyspaces. However, the action requires the service to have 
permissions that are granted by a service role. Mary does not have permissions to pass the role to 
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I'm an administrator and want to allow others to access Amazon Keyspaces

To allow others to access Amazon Keyspaces, you must create an IAM entity (user or role) for the 
person or application that needs access. They will use the credentials for that entity to access AWS. 
You must then attach a policy to the entity that grants them the correct permissions in Amazon 
Keyspaces.

To get started right away, see Creating your first IAM delegated user and group in the IAM User 
Guide.

I want to allow people outside of my AWS account to access my Amazon 
Keyspaces resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 

Troubleshooting 605

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

To learn more, consult the following:

• To learn whether Amazon Keyspaces supports these features, see How Amazon Keyspaces works 
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing 
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see How IAM roles differ from resource-based policies in the IAM User Guide.

Using service-linked roles for Amazon Keyspaces

Amazon Keyspaces (for Apache Cassandra) uses AWS Identity and Access Management (IAM) 
service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to 
Amazon Keyspaces. Service-linked roles are predefined by Amazon Keyspaces and include all the 
permissions that the service requires to call other AWS services on your behalf.

Topics

• Using roles for Amazon Keyspaces application auto scaling

• Using roles for Amazon Keyspaces Multi-Region Replication

Using roles for Amazon Keyspaces application auto scaling

Amazon Keyspaces (for Apache Cassandra) uses AWS Identity and Access Management (IAM)
service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to 
Amazon Keyspaces. Service-linked roles are predefined by Amazon Keyspaces and include all the 
permissions that the service requires to call other AWS services on your behalf.

A service-linked role makes setting up Amazon Keyspaces easier because you don’t have to 
manually add the necessary permissions. Amazon Keyspaces defines the permissions of its service-

Using service-linked roles 606

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role


Amazon Keyspaces (for Apache Cassandra) Developer Guide

linked roles, and unless defined otherwise, only Amazon Keyspaces can assume its roles. The 
defined permissions include the trust policy and the permissions policy, and that permissions policy 
cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting its related resources. This protects your 
Amazon Keyspaces resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon Keyspaces

Amazon Keyspaces uses the service-linked role named
AWSServiceRoleForApplicationAutoScaling_CassandraTable to allow Application Auto Scaling to 
call Amazon Keyspaces and Amazon CloudWatch on your behalf.

The AWSServiceRoleForApplicationAutoScaling_CassandraTable service-linked role trusts the 
following services to assume the role:

• cassandra.application-autoscaling.amazonaws.com

The role permissions policy allows Application Auto Scaling to complete the following actions on 
the specified Amazon Keyspaces resources:

• Action: cassandra:Select on arn:*:cassandra:*:*:/keyspace/system/table/*

• Action: cassandra:Select on the resource arn:*:cassandra:*:*:/keyspace/
system_schema/table/*

• Action: cassandra:Select on the resource arn:*:cassandra:*:*:/keyspace/
system_schema_mcs/table/*

• Action: cassandra:Alter on the resource arn:*:cassandra:*:*:"*"

Creating a service-linked role for Amazon Keyspaces

You don't need to manually create a service-linked role for Amazon Keyspaces automatic scaling. 
When you enable Amazon Keyspaces auto scaling on a table with the AWS Management Console, 
CQL, the AWS CLI, or the AWS API, Application Auto Scaling creates the service-linked role for you.

Using service-linked roles 607

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you enable Amazon Keyspaces auto scaling for a table, 
Application Auto Scaling creates the service-linked role for you again.

Important

This service-linked role can appear in your account if you completed an action in another 
service that uses the features supported by this role. To learn more, see A new role 
appeared in my AWS account.

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you enable Amazon Keyspaces automatic application 
scaling for a table, Application Auto Scaling creates the service-linked role for you again.

Editing a service-linked role for Amazon Keyspaces

Amazon Keyspaces does not allow you to edit the 
AWSServiceRoleForApplicationAutoScaling_CassandraTable service-linked role. After you 
create a service-linked role, you cannot change the name of the role because various entities 
might reference the role. However, you can edit the description of the role using IAM. For more 
information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon Keyspaces

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don’t have an unused entity that isn't actively monitored or 
maintained. However, you must first disable automatic scaling on all tables in the account across all 
AWS Regions before you can delete the service-linked role manually. To disable automatic scaling 
on Amazon Keyspaces tables, see  Modifying or disabling Amazon Keyspaces automatic scaling 
settings.

Note

If Amazon Keyspaces automatic scaling is using the role when you try to modify the 
resources, then the deregistration might fail. If that happens, wait for a few minutes and 
try the operation again.

To manually delete the service-linked role using IAM

Using service-linked roles 608

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/keyspaces/latest/devguide/AutoScaling.Console.html#AutoScaling.Console.Modifying
https://docs.aws.amazon.com/keyspaces/latest/devguide/AutoScaling.Console.html#AutoScaling.Console.Modifying


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Use the IAM console, the AWS CLI, or the AWS API to delete the 
AWSServiceRoleForApplicationAutoScaling_CassandraTable service-linked role. For more 
information, see Deleting a Service-Linked Role in the IAM User Guide.

Note

To delete the service-linked role used by Amazon Keyspaces automatic scaling, you must 
first disable automatic scaling on all tables in the account.

Supported Regions for Amazon Keyspaces service-linked roles

Amazon Keyspaces supports using service-linked roles in all of the Regions where the service is 
available. For more information, see Service endpoints for Amazon Keyspaces.

Using roles for Amazon Keyspaces Multi-Region Replication

Amazon Keyspaces (for Apache Cassandra) uses AWS Identity and Access Management (IAM)
service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to 
Amazon Keyspaces. Service-linked roles are predefined by Amazon Keyspaces and include all the 
permissions that the service requires to call other AWS services on your behalf.

A service-linked role makes setting up Amazon Keyspaces easier because you don’t have to 
manually add the necessary permissions. Amazon Keyspaces defines the permissions of its service-
linked roles, and unless defined otherwise, only Amazon Keyspaces can assume its roles. The 
defined permissions include the trust policy and the permissions policy, and that permissions policy 
cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting its related resources. This protects your 
Amazon Keyspaces resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon Keyspaces

Amazon Keyspaces uses the service-linked role named
AWSServiceRoleForAmazonKeyspacesReplication to allow Amazon Keyspaces to replicate writes 
to all replicas of a multi-Region table on your behalf.

Using service-linked roles 609

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/keyspaces/latest/devguide/programmatic.endpoints.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

The AWSServiceRoleForAmazonKeyspacesReplication service-linked role trusts the following 
services to assume the role:

• replication.cassandra.amazonaws.com

The role permissions policy named KeyspacesReplicationServiceRolePolicy allows Amazon 
Keyspaces to complete the following actions:

• Action: cassandra:Select

• Action: cassandra:SelectMultiRegionResource

• Action: cassandra:Modify

• Action: cassandra:ModifyMultiRegionResource

Although the Amazon Keyspaces service-linked role 
AWSServiceRoleForAmazonKeyspacesReplication provides the permissions: "Action:" for the 
specified Amazon Resource Name (ARN) "arn:*" in the policy, Amazon Keyspaces supplies the ARN 
of your account.

You must configure permissions to allow your users, groups, or roles to create, edit, or delete a 
service-linked role. For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for Amazon Keyspaces

You can't manually create a service-linked role. When you create a multi-Region keyspace in the 
AWS Management Console, the AWS CLI, or the AWS API, Amazon Keyspaces creates the service-
linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you create a multi-Region keyspace, Amazon Keyspaces 
creates the service-linked role for you again.

Editing a service-linked role for Amazon Keyspaces

Amazon Keyspaces does not allow you to edit the AWSServiceRoleForAmazonKeyspacesReplication 
service-linked role. After you create a service-linked role, you cannot change the name of the role 
because various entities might reference the role. However, you can edit the description of the role 
using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Using service-linked roles 610

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Deleting a service-linked role for Amazon Keyspaces

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don’t have an unused entity that is not actively monitored 
or maintained. However, you must first delete all multi-Region keyspaces in the account across all 
AWS Regions before you can delete the service-linked role manually.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any multi-Region 
keyspaces and tables used by the role.

Note

If the Amazon Keyspaces service is using the role when you try to delete the resources, then 
the deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete Amazon Keyspaces resources used by the 
AWSServiceRoleForAmazonKeyspacesReplication (console)

1. Sign in to the AWS Management Console, and open the Amazon Keyspaces console at https:// 
console.aws.amazon.com/keyspaces/home.

2. Choose Keyspaces from the left-side panel.

3. Select all multi-Region keyspaces from the list.

4. Choose Delete confirm the deletion and choose Delete keyspaces.

You can also delete multi-Region keyspaces programmatically using any of the following methods.

• The Cassandra Query Language (CQL) ??? statement.

• The delete-keyspace operation of the AWS CLI.

• The DeleteKeyspace operation of the Amazon Keyspaces API.

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the 
AWSServiceRoleForAmazonKeyspacesReplication service-linked role. For more information, see
Deleting a service-linked role in the IAM User Guide.

Using service-linked roles 611

https://console.aws.amazon.com/keyspaces/home
https://console.aws.amazon.com/keyspaces/home
https://docs.aws.amazon.com/cli/latest/reference/keyspaces/delete-keyspace.html
https://docs.aws.amazon.com/keyspaces/latest/APIReference/API_DeleteKeyspace.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Supported Regions for Amazon Keyspaces service-linked roles

Amazon Keyspaces does not support using service-linked roles in every Region where the service 
is available. You can use the AWSServiceRoleForAmazonKeyspacesReplication role in the following 
Regions.

Region name Region identity Support in 
Amazon Keyspaces

US East (N. Virginia) us-east-1 Yes

US East (Ohio) us-east-2 Yes

US West (N. California) us-west-1 Yes

US West (Oregon) us-west-2 Yes

Asia Pacific (Mumbai) ap-south-1 Yes

Asia Pacific (Osaka) ap-northeast-3 Yes

Asia Pacific (Seoul) ap-northeast-2 Yes

Asia Pacific (Singapore) ap-southeast-1 Yes

Asia Pacific (Sydney) ap-southeast-2 Yes

Asia Pacific (Tokyo) ap-northeast-1 Yes

Canada (Central) ca-central-1 Yes

Europe (Frankfurt) eu-central-1 Yes

Europe (Ireland) eu-west-1 Yes

Europe (London) eu-west-2 Yes

Europe (Paris) eu-west-3 Yes

South America (São Paulo) sa-east-1 Yes

AWS GovCloud (US-East) us-gov-east-1 No

Using service-linked roles 612



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Region name Region identity Support in 
Amazon Keyspaces

AWS GovCloud (US-West) us-gov-west-1 No

Compliance validation for Amazon Keyspaces (for Apache 
Cassandra)

Third-party auditors assess the security and compliance of Amazon Keyspaces (for Apache 
Cassandra) as part of multiple AWS compliance programs. These include:

• ISO/IEC 27001:2013, 27017:2015, 27018:2019, and ISO/IEC 9001:2015. For more information, 
see AWS ISO and CSA STAR certifications and services.

• System and Organization Controls (SOC)

• Payment Card Industry (PCI)

• Federal Risk and Authorization Management Program (FedRAMP) High

• Health Insurance Portability and Accountability Act (HIPAA)

To learn whether an AWS service is within the scope of specific compliance programs, see AWS 
services in Scope by Compliance Program and choose the compliance program that you are 
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your 
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the 
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural 
considerations and provide steps for deploying baseline environments on AWS that are security 
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper 
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance validation 613

https://aws.amazon.com/compliance/iso-certified/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible 
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your 
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the 
lens of compliance. The guides summarize the best practices for securing AWS services and map 
the guidance to security controls across multiple frameworks (including National Institute of 
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and 
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service 
assesses how well your resource configurations comply with internal practices, industry 
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within 
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your 
compliance against security industry standards and best practices. For a list of supported services 
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify 
how you manage risk and compliance with regulations and industry standards.

Resilience and disaster recovery in Amazon Keyspaces

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions 
provide multiple physically separated and isolated Availability Zones, which are connected with 
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can 
design and operate applications and databases that automatically fail over between Availability 
Zones without interruption. Availability Zones are more highly available, fault tolerant, and 
scalable than traditional single or multiple data center infrastructures.

Amazon Keyspaces replicates data automatically three times in multiple AWS Availability Zones 
within the same AWS Region for durability and high availability.

For more information about AWS Regions and Availability Zones, see AWS global infrastructure.

Resilience 614

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

In addition to the AWS global infrastructure, Amazon Keyspaces offers several features to help 
support your data resiliency and backup needs.

Multi-Region Replication

Amazon Keyspaces provides Multi-Region Replication if you need to replicate your data or 
applications over greater geographic distances. You can replicate your Amazon Keyspaces tables 
across up to six different AWS Regions of your choice. For more information, see Multi-Region 
Replication.

Point-in-time recovery (PITR)

PITR helps protect your Amazon Keyspaces tables from accidental write or delete operations by 
providing you continuous backups of your table data. For more information, see Point-in-time 
recovery for Amazon Keyspaces.

Infrastructure security in Amazon Keyspaces

As a managed service, Amazon Keyspaces (for Apache Cassandra) is protected by AWS 
global network security. For information about AWS security services and how AWS protects 
infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices 
for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐Architected 
Framework.

You use AWS published API calls to access Amazon Keyspaces through the network. Clients must 
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or 
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later 
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is 
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to 
generate temporary security credentials to sign requests.

Amazon Keyspaces supports two methods of authenticating client requests. The first method uses 
service-specific credentials, which are password based credentials generated for a specific IAM user. 

Infrastructure security 615

https://docs.aws.amazon.com/keyspaces/latest/devguide/PointInTimeRecovery.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/PointInTimeRecovery.html
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

You can create and manage the password using the IAM console, the AWS CLI, or the AWS API. For 
more information, see Using IAM with Amazon Keyspaces.

The second method uses an authentication plugin for the open-source DataStax Java Driver for 
Cassandra. This plugin enables IAM users, roles, and federated identities to add authentication 
information to Amazon Keyspaces (for Apache Cassandra) API requests using the AWS Signature 
Version 4 process (SigV4). For more information, see the section called “IAM credentials for AWS 
authentication”.

You can use an interface VPC endpoint to keep traffic between your Amazon VPC and Amazon 
Keyspaces from leaving the Amazon network. Interface VPC endpoints are powered by AWS 
PrivateLink, an AWS technology that enables private communication between AWS services using 
an elastic network interface with private IPs in your Amazon VPC. For more information, see the 
section called “Using interface VPC endpoints”.

Using Amazon Keyspaces with interface VPC endpoints

Interface VPC endpoints enable private communication between your virtual private cloud (VPC) 
running in Amazon VPC and Amazon Keyspaces. Interface VPC endpoints are powered by AWS 
PrivateLink, which is an AWS service that enables private communication between VPCs and AWS 
services.

AWS PrivateLink enables this by using an elastic network interface with private IP addresses in 
your VPC so that network traffic does not leave the Amazon network. Interface VPC endpoints 
don't require an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. 
For more information, see Amazon Virtual Private Cloud and Interface VPC endpoints (AWS 
PrivateLink).

Topics

• Using interface VPC endpoints for Amazon Keyspaces

• Populating system.peers table entries with interface VPC endpoint information

• Controlling access to interface VPC endpoints for Amazon Keyspaces

• Availability

• VPC endpoint policies and Amazon Keyspaces point-in-time recovery (PITR)

• Common errors and warnings

Using interface VPC endpoints 616

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mcs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Using interface VPC endpoints for Amazon Keyspaces

You can create an interface VPC endpoint so that traffic between Amazon Keyspaces and your 
Amazon VPC resources starts flowing through the interface VPC endpoint. To get started, follow 
the steps to create an interface endpoint. Next, edit the security group associated with the 
endpoint that you created in the previous step, and configure an inbound rule for port 9142. For 
more information, see Adding, removing, and updating rules.

For a step-by-step tutorial to configure a connection to Amazon Keyspaces through a VPC 
endpoint, see the section called “Connecting with VPC endpoints”. To learn how to configure cross-
account access for Amazon Keyspaces resources separated from applications in different AWS 
accounts in a VPC, see the section called “Cross-account access”.

Populating system.peers table entries with interface VPC endpoint information

Apache Cassandra drivers use the system.peers table to query for node information about 
the cluster. Cassandra drivers use the node information to load balance connections and retry 
operations. Amazon Keyspaces populates nine entries in the system.peers table automatically 
for clients connecting through the public endpoint.

To provide clients connecting through interface VPC endpoints with similar functionality, Amazon 
Keyspaces populates the system.peers table in your account with an entry for each Availability 
Zone where a VPC endpoint is available. To look up and store available interface VPC endpoints 
in the system.peers table, Amazon Keyspaces requires that you grant the IAM entity used to 
connect to Amazon Keyspaces access permissions to query your VPC for the endpoint and network 
interface information.

Important

Populating the system.peers table with your available interface VPC endpoints improves 
load balancing and increases read/write throughput. It is recommended for all clients 
accessing Amazon Keyspaces using interface VPC endpoints and is required for Apache 
Spark.

To grant the IAM entity used to connect to Amazon Keyspaces permissions to look up the necessary 
interface VPC endpoint information, you can update your existing IAM role or user policy, or create 
a new IAM policy as shown in the following example.

Using interface VPC endpoints 617

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#AddRemoveRules


Amazon Keyspaces (for Apache Cassandra) Developer Guide

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Sid":"ListVPCEndpoints", 
         "Effect":"Allow", 
         "Action":[ 
            "ec2:DescribeNetworkInterfaces", 
            "ec2:DescribeVpcEndpoints" 
         ], 
         "Resource":"*" 
      } 
   ]
}

Note

The managed policies AmazonKeyspacesReadOnlyAccess_v2 and
AmazonKeyspacesFullAccess include the required permissions to let Amazon Keyspaces 
access the Amazon EC2 instance to read information about available interface VPC 
endpoints.

To confirm that the policy has been set up correctly, query the system.peers table to 
see networking information. If the system.peers table is empty, it could indicate that 
the policy hasn't been configured successfully or that you have exceeded the request rate 
quota for DescribeNetworkInterfaces and DescribeVPCEndpoints API actions.
DescribeVPCEndpoints falls into the Describe* category and is considered a non-mutating 
action. DescribeNetworkInterfaces falls into the subset of unfiltered and unpaginated non-
mutating actions, and different quotas apply. For more information, see Request token bucket sizes 
and refill rates in the Amazon EC2 API Reference.

If you do see an empty table, try again a few minutes later to rule out request rate quota issues. To 
verify that you have configured the VPC endpoints correctly, see the section called “VPC endpoint 
connection errors”. If your query returns results from the table, your policy has been configured 
correctly.

Using interface VPC endpoints 618

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html#throttling-limits-rate-based
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html#throttling-limits-rate-based


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Controlling access to interface VPC endpoints for Amazon Keyspaces

With VPC endpoint policies, you can control access to resources in two ways:

• IAM policy – You can control the requests, users, or groups that are allowed to access Amazon 
Keyspaces through a specific VPC endpoint. You can do this by using a condition key in the policy 
that is attached to an IAM user, group, or role.

• VPC policy – You can control which VPC endpoints have access to your Amazon Keyspaces 
resources by attaching policies to them. To restrict access to a specific keyspace or table to only 
allow traffic coming through a specific VPC endpoint, edit the existing IAM policy that restricts 
resource access and add that VPC endpoint.

The following are example endpoint policies for accessing Amazon Keyspaces resources.

• IAM policy example: Restrict all access to a specific Amazon Keyspaces table unless traffic 
comes from the specified VPC endpoint – This sample policy can be attached to an IAM user, 
role, or group. It restricts access to a specified Amazon Keyspaces table unless incoming traffic 
originates from a specified VPC endpoint.

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
      { 
         "Sid": "UserOrRolePolicyToDenyAccess", 
         "Action": "cassandra:*", 
         "Effect": "Deny", 
         "Resource": [ 
                        "arn:aws:cassandra:us-east-1:111122223333:/keyspace/
mykeyspace/table/mytable", 
                        "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
           ], 
         "Condition": { "StringNotEquals" : { "aws:sourceVpce": "vpce-abc123" } } 
      } 
   ]
}

Using interface VPC endpoints 619

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Note

To restrict access to a specific table, you must also include access to the system tables. 
System tables are read-only.

• VPC policy example: Read-only access – This sample policy can be attached to a VPC endpoint. 
(For more information, see Controlling access to Amazon VPC resources). It restricts actions to 
read-only access to Amazon Keyspaces resources through the VPC endpoint that it's attached to.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "ReadOnly", 
      "Principal": "*", 
      "Action": [ 
        "cassandra:Select" 
      ], 
      "Effect": "Allow", 
      "Resource": "*" 
    } 
  ]
}

• VPC policy example: Restrict access to a specific Amazon Keyspaces table – This sample 
policy can be attached to a VPC endpoint. It restricts access to a specific table through the VPC 
endpoint that it's attached to.

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
        { 
            "Sid": "RestrictAccessToTable", 
            "Principal": "*", 
            "Action": "cassandra:*", 
            "Effect": "Allow", 
            "Resource": [ 
                        "arn:aws:cassandra:us-east-1:111122223333:/keyspace/
mykeyspace/table/mytable", 
                        "arn:aws:cassandra:us-east-1:111122223333:/keyspace/system*" 
           ] 

Using interface VPC endpoints 620

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html#vpc-endpoint-policies


Amazon Keyspaces (for Apache Cassandra) Developer Guide

        } 
   ]
}

Note

To restrict access to a specific table, you must also include access to the system tables. 
System tables are read-only.

Availability

Amazon Keyspaces supports using interface VPC endpoints in all of the AWS Regions where the 
service is available. For more information, see ???.

VPC endpoint policies and Amazon Keyspaces point-in-time recovery (PITR)

If you are using IAM policies with condition keys to restrict incoming traffic, the table restore 
operation may fail. For example, if you restrict source traffic to specific VPC endpoints using
aws:SourceVpce condition keys, the table restore operation fails. To allow Amazon Keyspaces 
to perform a restore operation on your principal's behalf, you must add an aws:ViaAWSService
condition key to your IAM policy. The aws:ViaAWSService condition key allows access when any 
AWS service makes a request using the principal's credentials. For more information, see IAM JSON 
policy elements: Condition key in the IAM User Guide. The following policy is an example of this.

{ 
   "Version":"2012-10-17", 
   "Statement":[ 
      { 
         "Sid":"CassandraAccessForVPCE", 
         "Effect":"Allow", 
         "Action":"cassandra:*", 
         "Resource":"*", 
         "Condition":{ 
            "Bool":{ 
               "aws:ViaAWSService":"false" 
            }, 
            "StringEquals":{ 
               "aws:SourceVpce":[ 
                  "vpce-12345678901234567" 
               ] 

Using interface VPC endpoints 621

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

            } 
         } 
      }, 
      { 
         "Sid":"CassandraAccessForAwsService", 
         "Effect":"Allow", 
         "Action":"cassandra:*", 
         "Resource":"*", 
         "Condition":{ 
            "Bool":{ 
               "aws:ViaAWSService":"true" 
            } 
         } 
      } 
   ]
}

Common errors and warnings

If you're using Amazon Virtual Private Cloud and you connect to Amazon Keyspaces, you might 
see the following warning.

Control node cassandra.us-east-1.amazonaws.com/1.111.111.111:9142 has an entry 
 for itself in system.peers: this entry will be ignored. This is likely due to a 
 misconfiguration;  
please verify your rpc_address configuration in cassandra.yaml on all nodes in your 
 cluster. 

This warning occurs because the system.peers table contains entries for all of the Amazon VPC 
endpoints that Amazon Keyspaces has permissions to view, including the Amazon VPC endpoint 
that you're connected through. You can safely ignore this warning.

For other errors, see the section called “VPC endpoint connection errors”.

Configuration and vulnerability analysis for Amazon Keyspaces

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall 
configuration, and disaster recovery. These procedures have been reviewed and certified by the 
appropriate third parties. For more details, see the following resources:

• Shared responsibility model

Configuration and vulnerability analysis for Amazon Keyspaces 622

https://aws.amazon.com/compliance/shared-responsibility-model/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• Amazon Web Services: Overview of security processes(whitepaper)

Security best practices for Amazon Keyspaces

Amazon Keyspaces (for Apache Cassandra) provides a number of security features to consider as 
you develop and implement your own security policies. The following best practices are general 
guidelines and don’t represent a complete security solution. Because these best practices might not 
be appropriate or sufficient for your environment, treat them as helpful considerations rather than 
prescriptions.

Topics

• Preventative security best practices for Amazon Keyspaces

• Detective security best practices for Amazon Keyspaces

Preventative security best practices for Amazon Keyspaces

The following security best practices are considered preventative because they can help you 
anticipate and prevent security incidents in Amazon Keyspaces.

Use encryption at rest

Amazon Keyspaces encrypts at rest all user data that's stored in tables by using encryption keys 
stored in AWS Key Management Service (AWS KMS). This provides an additional layer of data 
protection by securing your data from unauthorized access to the underlying storage.

By default, Amazon Keyspaces uses an AWS owned key for encrypting all of your tables. If this 
key doesn’t exist, it's created for you. Service default keys can't be disabled.

Alternatively, you can use a customer managed key for encryption at rest. For more 
information, see Amazon Keyspaces Encryption at Rest.

Use IAM roles to authenticate access to Amazon Keyspaces

For users, applications, and other AWS services to access Amazon Keyspaces, they must include 
valid AWS credentials in their AWS API requests. You should not store AWS credentials directly 
in the application or EC2 instance. These are long-term credentials that are not automatically 
rotated, and therefore could have significant business impact if they are compromised. An IAM 
role enables you to obtain temporary access keys that can be used to access AWS services and 
resources.

Security best practices 623

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/keyspaces/latest/devguide/EncryptionAtRest.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

For more information, see IAM Roles.

Use IAM policies for Amazon Keyspaces base authorization

When granting permissions, you decide who is getting them, which Amazon Keyspaces APIs 
they are getting permissions for, and the specific actions you want to allow on those resources. 
Implementing least privilege is key in reducing security risks and the impact that can result 
from errors or malicious intent.

Attach permissions policies to IAM identities (that is, users, groups, and roles) and thereby grant 
permissions to perform operations on Amazon Keyspaces resources.

You can do this by using the following:

• AWS managed (predefined) policies

• Customer managed policies

Use IAM policy conditions for fine-grained access control

When you grant permissions in Amazon Keyspaces, you can specify conditions that determine 
how a permissions policy takes effect. Implementing least privilege is key in reducing security 
risks and the impact that can result from errors or malicious intent.

You can specify conditions when granting permissions using an IAM policy. For example, you 
can do the following:

• Grant permissions to allow users read-only access to specific keyspaces or tables.

• Grant permissions to allow a user write access to a certain table, based upon the identity of 
that user.

For more information, see Identity-Based Policy Examples.

Consider client-side encryption

If you store sensitive or confidential data in Amazon Keyspaces, you might want to encrypt that 
data as close as possible to its origin so that your data is protected throughout its lifecycle. 
Encrypting your sensitive data in transit and at rest helps ensure that your plaintext data isn’t 
available to any third party.

Detective security best practices for Amazon Keyspaces

The following security best practices are considered detective because they can help you detect 
potential security weaknesses and incidents.

Detective security best practices 624

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/keyspaces/latest/devguide/security_iam_id-based-policy-examples.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Use AWS CloudTrail to monitor AWS Key Management Service (AWS KMS) AWS KMS key usage

If you're using a customer managed AWS KMS key for encryption at rest, usage of this key is 
logged into AWS CloudTrail. CloudTrail provides visibility into user activity by recording actions 
taken on your account. CloudTrail records important information about each action, including 
who made the request, the services used, the actions performed, parameters for the actions, 
and the response elements returned by the AWS service. This information helps you track 
changes made to your AWS resources and troubleshoot operational issues. CloudTrail makes it 
easier to ensure compliance with internal policies and regulatory standards.

You can use CloudTrail to audit key usage. CloudTrail creates log files that contain a history 
of AWS API calls and related events for your account. These log files include all AWS KMS API 
requests that were made using the console, AWS SDKs, and command line tools, in addition to 
those made through integrated AWS services. You can use these log files to get information 
about when the AWS KMS key was used, the operation that was requested, the identity of the 
requester, the IP address that the request came from, and so on. For more information, see
Logging AWS Key Management Service API Calls with AWS CloudTrail and the AWS CloudTrail 
User Guide.

Use CloudTrail to monitor Amazon Keyspaces data definition language (DDL) operations

CloudTrail provides visibility into user activity by recording actions taken on your account. 
CloudTrail records important information about each action, including who made the request, 
the services used, the actions performed, parameters for the actions, and the response 
elements returned by the AWS service. This information helps you to track changes made to 
your AWS resources and to troubleshoot operational issues. CloudTrail makes it easier to ensure 
compliance with internal policies and regulatory standards.

All Amazon Keyspaces DDL operations are logged in CloudTrail automatically. DDL operations 
let you create and manage Amazon Keyspaces keyspaces and tables.

When activity occurs in Amazon Keyspaces, that activity is recorded in a CloudTrail event along 
with other AWS service events in the event history. For more information, see Logging Amazon 
Keyspaces operations by using AWS CloudTrail. You can view, search, and download recent 
events in your AWS account. For more information, see Viewing events with CloudTrail event 
history in the AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for Amazon Keyspaces, 
create a trail. A trail enables CloudTrail to deliver log files to an Amazon Simple Storage Service 
(Amazon S3) bucket. By default, when you create a trail on the console, the trail applies to all 

Detective security best practices 625

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/keyspaces/latest/devguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

AWS Regions. The trail logs events from all Regions in the AWS partition and delivers the log 
files to the S3 bucket that you specify. Additionally, you can configure other AWS services to 
further analyze and act upon the event data collected in CloudTrail logs.

Tag your Amazon Keyspaces resources for identification and automation

You can assign metadata to your AWS resources in the form of tags. Each tag is a simple 
label that consists of a customer-defined key and an optional value that can make it easier to 
manage, search for, and filter resources.

Tagging allows for grouped controls to be implemented. Although there are no inherent types 
of tags, they enable you to categorize resources by purpose, owner, environment, or other 
criteria. The following are some examples:

• Access – Used to control access to Amazon Keyspaces resources based on tags. For more 
information, see the section called “Authorization based on Amazon Keyspaces tags”.

• Security – Used to determine requirements such as data protection settings.

• Confidentiality – An identifier for the specific data-confidentiality level that a resource 
supports.

• Environment – Used to distinguish between development, test, and production infrastructure.

For more information, see AWS tagging strategies and Adding tags and labels to resources.

Detective security best practices 626

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://docs.aws.amazon.com/keyspaces/latest/devguide/tagging-keyspaces.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

CQL language reference for Amazon Keyspaces (for 
Apache Cassandra)

After you connect to an Amazon Keyspaces (for Apache Cassandra) endpoint, you use Cassandra 
Query Language (CQL) to work with your database. CQL is similar in many ways to Structured 
Query Language (SQL).

Topics

• Cassandra Query Language (CQL) elements in Amazon Keyspaces

• DDL statements (data definition language) in Amazon Keyspaces

• DML statements (data manipulation language) in Amazon Keyspaces

• Built-in functions in Amazon Keyspaces

Cassandra Query Language (CQL) elements in Amazon 
Keyspaces

Learn about the Cassandra Query Language (CQL) elements that are supported by Amazon 
Keyspaces, including identifiers, constants, terms, and data types.

Topics

• Identifiers

• Constants

• Terms

• Data types

• JSON encoding of Amazon Keyspaces data types

Identifiers

Identifiers (or names) are used to identify tables, columns, and other objects. An identifier can be 
quoted or not quoted. The following applies.

identifier          ::=  unquoted_identifier | quoted_identifier

Language elements 627



Amazon Keyspaces (for Apache Cassandra) Developer Guide

unquoted_identifier ::=  re('[a-zA-Z][a-zA-Z0-9_]*')
quoted_identifier   ::=  '"' (any character where " can appear if doubled)+ '"' 
             

Constants

The following constants are defined.

constant ::=  string | integer | float | boolean | uuid | blob | NULL
string   ::=  '\'' (any character where ' can appear if doubled)+ '\'' 
              '$$' (any character other than '$$') '$$'
integer  ::=  re('-?[0-9]+')
float    ::=  re('-?[0-9]+(\.[0-9]*)?([eE][+-]?[0-9+])?') | NAN | INFINITY
boolean  ::=  TRUE | FALSE
uuid     ::=  hex{8}-hex{4}-hex{4}-hex{4}-hex{12}
hex      ::=  re("[0-9a-fA-F]")
blob     ::=  '0' ('x' | 'X') hex+ 
             

Terms

A term denotes the kind of values that are supported. Terms are defined by the following.

term                 ::=  constant | literal | function_call | arithmetic_operation | 
 type_hint | bind_marker
literal              ::=  collection_literal | tuple_literal
function_call        ::=   identifier '(' [ term (',' term)* ] ')'
arithmetic_operation ::=  '-' term | term ('+' | '-' | '*' | '/' | '%') term 
         

Data types

Amazon Keyspaces supports the following data types:

String types

Data type Description

ascii Represents an ASCII character string.

Constants 628



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Data type Description

text Represents a UTF-8 encoded string.

varchar Represents a UTF-8 encoded string (varchar
is an alias for text).

Numeric types

Data type Description

bigint Represents a 64-bit signed long.

counter Represents a 64-bit signed integer counter. 
For more information, see the section called 
“Counters”.

decimal Represents a variable-precision decimal.

double Represents a 64-bit IEEE 754 floating point.

float Represents a 32-bit IEEE 754 floating point.

int Represents a 32-bit signed int.

varint Represents an integer of arbitrary precision.

Counters

A counter column contains a 64-bit signed integer. The counter value is incremented or 
decremented using the the section called “UPDATE” statement, and it cannot be set directly. This 
makes counter columns useful for tracking counts. For example, you can use counters to track the 
number of entries in a log file or the number of times a post has been viewed on a social network. 
The following restrictions apply to counter columns:

• A column of type counter cannot be part of the primary key of a table.

• In a table that contains one or more columns of type counter, all columns in that table must be 
of type counter.

Data types 629



Amazon Keyspaces (for Apache Cassandra) Developer Guide

In cases where a counter update fails (for example, because of timeouts or loss of connection with 
Amazon Keyspaces), the client doesn't know whether the counter value was updated. If the update 
is retried, the update to the counter value might get applied a second time.

Blob type

Data type Description

blob Represents arbitrary bytes.

Boolean type

Data type Description

boolean Represents true or false.

Time-related types

Data type Description

timestamp 64-bit signed integer representing the date 
and time since epoch (January 1 1970 at 
00:00:00 GMT) in milliseconds.

timeuuid Represents a version 1 UUID.

Collection types

Data type Description

list Represents an ordered collection of literal 
elements.

map Represents an unordered collection of key-
value pairs.

Data types 630

https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_1_(date-time_and_MAC_address)


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Data type Description

set Represents an unordered collection of one or 
more literal elements.

You declare a collection column by using the collection type followed by another data type (for 
example, TEXT or INT) in angled brackets. You can create a column with a SET of TEXT, or you can 
create a MAP of TEXT and INT key-value pairs, as shown in the following example.

SET <TEXT>
MAP <TEXT, INT>

A non-frozen collection allows you to make updates to each individual collection element. Client-
side timestamps and Time to Live (TTL) settings are stored for individual elements.

When you use the FROZEN keyword on a collection type, the values of the collection are serialized 
into a single immutable value, and Amazon Keyspaces treats them like a BLOB. This is a frozen
collection. An INSERT or UPDATE statement overwrites the entire frozen collection. You can't make 
updates to individual elements inside a frozen collection.

Client-side timestamps and Time to Live (TTL) settings apply to the entire frozen collection, not to 
individual elements. Frozen collection columns can be part of the PRIMARY KEY of a table.

You can nest frozen collections. For example, you can define a MAP within a SET if the MAP is using 
the FROZEN keyword, as shown in the following example.

SET <FROZEN> <MAP <TEXT, INT>>>

Amazon Keyspaces supports nesting of up to five levels of frozen collections by default. For more 
information, see the section called “Amazon Keyspaces service quotas”. For more information 
about functional differences with Apache Cassandra, see the section called “FROZEN collections”. 
For more information about CQL syntax, see the section called “CREATE TABLE” and the section 
called “ALTER TABLE”.

Data types 631



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Tuple type

The tuple data type represents a bounded group of literal elements. You can use a tuple as an 
alternative to a user defined type. You don't need to use the FROZEN keyword for tuples. This 
is because a tuple is always frozen and you can't update elements individually.

Other types

Data type Description

inet A string representing an IP address, in either 
IPv4 or IPv6 format.

Static

In an Amazon Keyspaces table with clustering columns, you can use the STATIC keyword to create 
a static column of any type.

The following statement is an example of this.

my_column INT STATIC

For more information about working with static columns, see the section called “Static columns”.

JSON encoding of Amazon Keyspaces data types

Amazon Keyspaces offers the same JSON data type mappings as Apache Cassandra. The following 
table describes the data types Amazon Keyspaces accepts in INSERT JSON statements and the 
data types Amazon Keyspaces uses when returning data with the SELECT JSON statement.

For single-field data types such as float, int, UUID, and date, you also can insert data as a
string. For compound data types and collections, such as tuple, map, and list, you can also 
insert data as JSON or as an encoded JSON string.

JSON encoding of Amazon Keyspaces data types 632



Amazon Keyspaces (for Apache Cassandra) Developer Guide

JSON data type Data types accepted 
in INSERT JSON
statements

Data types returned 
in SELECT JSON
statements

Notes

ascii string string Uses JSON character 
escape \u.

bigint integer, string integer String must be a valid 
64-bit integer.

blob string string String should begin 
with 0x followed by 
an even number of 
hex digits.

boolean boolean, string boolean String must be either
true or false.

date string string Date in format YYYY-
MM-DD , timezone 
UTC.

decimal integer, float, 
string

float Can exceed 32-bit 
or 64-bit IEEE-754 
floating point 
precision in client-si 
de decoder.

double integer, float, 
string

float String must be a valid 
integer or float.

float integer, float, 
string

float String must be a valid 
integer or float.

inet string string IPv4 or IPv6 address.

int integer, string integer String must be a valid 
32-bit integer.

JSON encoding of Amazon Keyspaces data types 633



Amazon Keyspaces (for Apache Cassandra) Developer Guide

JSON data type Data types accepted 
in INSERT JSON
statements

Data types returned 
in SELECT JSON
statements

Notes

list list, string list Uses the native JSON 
list representation.

map map, string map Uses the native JSON 
map representation.

smallint integer, string integer String must be a valid 
16-bit integer.

set list, string list Uses the native JSON 
list representation.

text string string Uses JSON character 
escape \u.

time string string Time of day in 
format HH-MM-SS[ 
.fffffffff] .

timestamp integer, string string A timestamp. String 
constants allow you 
to store timestamps 
as dates. Date stamps 
with format YYYY-
MM-DD HH:MM:SS. 
SSS  are returned.

timeuuid string string Type 1 UUID. See
constants for the 
UUID format.

tinyint integer, string integer String must be a valid 
8-bit integer.

JSON encoding of Amazon Keyspaces data types 634



Amazon Keyspaces (for Apache Cassandra) Developer Guide

JSON data type Data types accepted 
in INSERT JSON
statements

Data types returned 
in SELECT JSON
statements

Notes

tuple list, string list Uses the native JSON 
list representation.

uuid string string See constants for the 
UUID format.

varchar string string Uses JSON character 
escape \u.

varint integer, string integer Variable length; 
might overflow 32-
bit or 64-bit integers 
in client-side decoder.

DDL statements (data definition language) in Amazon 
Keyspaces

Data definition language (DDL) is the set of Cassandra Query Language (CQL) statements that you 
use to manage data structures in Amazon Keyspaces (for Apache Cassandra), such as keyspaces 
and tables. You use DDL to create these data structures, modify them after they are created, 
and remove them when they're no longer in use. Amazon Keyspaces performs DDL operations 
asynchronously. For more information about how to confirm that an asynchronous operation has 
completed, see the section called “Asynchronous creation and deletion of keyspaces and tables”.

The following DDL statements are supported:

• CREATE KEYSPACE

• ALTER KEYSPACE

• DROP KEYSPACE

• CREATE TABLE

• ALTER TABLE

• RESTORE TABLE

DDL statements 635



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• DROP TABLE

Topics

• Keyspaces

• Tables

Keyspaces

A keyspace groups related tables that are relevant for one or more applications. In terms of a 
relational database management system (RDBMS), keyspaces are roughly similar to databases, 
tablespaces, or similar constructs.

Note

In Apache Cassandra, keyspaces determine how data is replicated among multiple storage 
nodes. However, Amazon Keyspaces is a fully managed service: The details of its storage 
layer are managed on your behalf. For this reason, keyspaces in Amazon Keyspaces are 
logical constructs only, and aren't related to the underlying physical storage.

For information about quota limits and constraints for Amazon Keyspaces keyspaces, see Quotas.

Statements for keyspaces

• CREATE KEYSPACE

• ALTER KEYSPACE

• DROP KEYSPACE

CREATE KEYSPACE

Use the CREATE KEYSPACE statement to create a new keyspace.

Syntax

create_keyspace_statement ::=  
    CREATE KEYSPACE [ IF NOT EXISTS ] keyspace_name
    WITH options

Keyspaces 636



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Where:

• keyspace_name is the name of the keyspace to be created.

• options are one or more of the following:

• REPLICATION – A map that indicates the replication strategy for the keyspace:

• SingleRegionStrategy – For a single-Region keyspace. (Required)

• NetworkTopologyStrategy – Specify at least two and up to six AWS Regions. The 
replication factor for each Region is three. (Optional)

• DURABLE_WRITES – Writes to Amazon Keyspaces are always durable, so this option isn't 
required. However, if specified, the value must be true.

• TAGS – A list of key-value pair tags to be attached to the resource when you create it. 
(Optional)

Example

Create a keyspace as follows.

CREATE KEYSPACE my_keyspace
    WITH REPLICATION = {'class': 'SingleRegionStrategy'} and TAGS ={'key1':'val1', 
 'key2':'val2'} ;

To create a multi-Region keyspace, specify NetworkTopologyStrategy and include at least two 
and up to six AWS Regions. The replication factor for each Region is three.

CREATE KEYSPACE my_keyspace
    WITH REPLICATION = {'class':'NetworkTopologyStrategy', 'us-east-1':'3', 'ap-
southeast-1':'3','eu-west-1':'3'};

ALTER KEYSPACE

Use the ALTER KEYSPACE to add or remove tags from a keyspace.

Syntax

alter_keyspace_statement ::=  
    ALTER KEYSPACE keyspace_name
    [[ADD | DROP] TAGS

Keyspaces 637



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Where:

• keyspace_name is the name of the keyspace to be altered.

• TAGS – A list of key-value pair tags to be added or removed from the keyspace.

Example

Alter a keyspace as follows.

ALTER KEYSPACE "myGSGKeyspace" ADD TAGS {'key1':'val1', 'key2':'val2'};

DROP KEYSPACE

Use the DROP KEYSPACE statement to remove a keyspace—including all of its contents, such as 
tables.

Syntax

drop_keyspace_statement ::=  
    DROP KEYSPACE [ IF EXISTS ] keyspace_name

Where:

• keyspace_name is the name of the keyspace to be dropped.

Example

DROP KEYSPACE "myGSGKeyspace";

Tables

Tables are the primary data structures in Amazon Keyspaces. Data in a table is organized into rows 
and columns. A subset of those columns is used to determine partitioning (and ultimately data 
placement) through the specification of a partition key.

Another set of columns can be defined into clustering columns, which means that they can 
participate as predicates in query execution.

Tables 638



Amazon Keyspaces (for Apache Cassandra) Developer Guide

By default, new tables are created with on-demand throughput capacity. You can change the 
capacity mode for new and existing tables. For more information about read/write capacity 
throughput modes, see the section called “Read/write capacity modes”.

For tables in provisioned mode, you can configure optional AUTOSCALING_SETTINGS. For more 
information about Amazon Keyspaces auto scaling and the available options, see the section called 
“Using CQL”.

For information about quota limits and constraints for Amazon Keyspaces tables, see Quotas.

Statements for tables

• CREATE TABLE

• ALTER TABLE

• RESTORE TABLE

• DROP TABLE

CREATE TABLE

Use the CREATE TABLE statement to create a new table.

Syntax

create_table_statement ::=  CREATE TABLE [ IF NOT EXISTS ] table_name
    '(' 
         column_definition 
        ( ',' column_definition )* 
        [ ',' PRIMARY KEY '(' primary_key ')' ] 
    ')' [ WITH table_options ]

column_definition      ::=   column_name cql_type [ FROZEN ][ STATIC ][ PRIMARY KEY]

primary_key            ::=   partition_key [ ',' clustering_columns ]

partition_key          ::=   column_name
                              | '(' column_name ( ',' column_name )* ')'

clustering_columns     ::=   column_name ( ',' column_name )*

table_options          ::=  [table_options] 
                              | CLUSTERING ORDER BY '(' clustering_order
 ')' [ AND table_options ] 

Tables 639



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                              | options
                              | CUSTOM_PROPERTIES 
                              | AUTOSCALING_SETTINGS 
                              | default_time_to_live 
                              | TAGS

clustering_order       ::=   column_name (ASC | DESC) ( ',' column_name (ASC | DESC) )*

Where:

• table_name is the name of the table to be created.

• column_definition consists of the following:

• column_name – The name of the column.

• cql_type – An Amazon Keyspaces data type (see Data types).

• FROZEN – Designates this column of type collection (for example, LIST, SET, or MAP) as 
frozen. A frozen collection is serialized into a single immutable value and treated like a BLOB. 
For more information, see the section called “Collection types”.

• STATIC – Designates this column as static. Static columns store values that are shared by all 
rows in the same partition.

• PRIMARY KEY – Designates this column as the table's primary key.

• primary_key consists of the following:

• partition_key

• clustering_columns

• partition_key:

• The partition key can be a single column, or it can be a compound value composed of two or 
more columns. The partition key portion of the primary key is required and determines how 
Amazon Keyspaces stores your data.

• clustering_columns:

• The optional clustering column portion of your primary key determines how the data is 
clustered and sorted within each partition.

• table_options consist of the following:

• CLUSTERING ORDER BY – The default CLUSTERING ORDER on a table is composed of your 
clustering keys in the ASC (ascending) sort direction. Specify it to override the default sort 
behavior.

• CUSTOM_PROPERTIES – A map of settings that are specific to Amazon Keyspaces.

Tables 640



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• capacity_mode: Specifies the read/write throughput capacity mode for 
the table. The options are throughput_mode:PAY_PER_REQUEST and
throughput_mode:PROVISIONED. The provisioned capacity mode requires
read_capacity_units and write_capacity_units as inputs. The default is
throughput_mode:PAY_PER_REQUEST.

• client_side_timestamps: Specifies if client-side timestamps are enabled or disabled for 
the table. The options are {'status': 'enabled'} and {'status': 'disabled'}. 
If it's not specified, the default is status:disabled. After client-side timestamps are 
enabled for a table, this setting cannot be disabled.

• encryption_specification: Specifies the encryption options for encryption at rest. If 
it's not specified, the default is encryption_type:AWS_OWNED_KMS_KEY. The encryption 
option customer managed key requires the AWS KMS key in Amazon Resource Name (ARN) 
format as input: kms_key_identifier:ARN: kms_key_identifier:ARN.

• point_in_time_recovery: Specifies if point-in-time restore is enabled or disabled for the 
table. The options are status:enabled and status:disabled. If it's not specified, the 
default is status:disabled.

• replica_updates: Specifies the settings of a multi-Region table that are specific to 
an AWS Region. For a multi-Region table, you can configure the table's read capacity 
differently per AWS Region. You can do this by configuring the following parameters. For 
more information and examples, see the section called “Creating a multi-Region table with 
provisioned capacity mode and auto scaling (CQL)”.

• region – The AWS Region of the table replica with the following settings:

• read_capacity_units

• TTL: Enables Time to Live custom settings for the table. To enable, use status:enabled. 
The default is status:disabled. After TTL is enabled, you can't disable it for the table.

• AUTOSCALING_SETTINGS includes the following optional settings for tables in provisioned 
mode. For more information and examples, see the section called “Create a new table with 
automatic scaling using CQL”.

• provisioned_write_capacity_autoscaling_update:

• autoscaling_disabled – To enable auto scaling for write capacity, set the value to
false. The default is true. (Optional)

• minimum_units – The minimum level of write throughput that the table should always 
be ready to support. The value must be between 1 and the max throughput per second 
quota for your account (40,000 by default).

Tables 641



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• maximum_units – The maximum level of write throughput that the table should always 
be ready to support. The value must be between 1 and the max throughput per second 
quota for your account (40,000 by default).

• scaling_policy – Amazon Keyspaces supports the target tracking policy. The auto 
scaling target is the provisioned write capacity of the table.

• target_tracking_scaling_policy_configuration – To define the target 
tracking policy, you must define the target value. For more information about target 
tracking and cooldown periods, see  Target Tracking Scaling Policies in the Application 
Auto Scaling User Guide.

• target_value – The target utilization rate of the table. Amazon Keyspaces auto 
scaling ensures that the ratio of consumed capacity to provisioned capacity stays at or 
near this value. You define target_value as a percentage. A double between 20 and 
90. (Required)

• scale_in_cooldown – A cooldown period in seconds between scaling activities that 
lets the table stabilize before another scale in activity starts. If no value is provided, 
the default is 0. (Optional)

• scale_out_cooldown – A cooldown period in seconds between scaling activities 
that lets the table stabilize before another scale out activity starts. If no value is 
provided, the default is 0. (Optional)

• disable_scale_in: A boolean that specifies if scale-in is disabled or enabled 
for the table. This parameter is disabled by default. To turn on scale-in, set the
boolean value to FALSE. This means that capacity is automatically scaled down for a 
table on your behalf. (Optional)

• provisioned_read_capacity_autoscaling_update:

• autoscaling_disabled – To enable auto scaling for read capacity, set the value to
false. The default is true. (Optional)

• minimum_units – The minimum level of throughput that the table should always be 
ready to support. The value must be between 1 and the max throughput per second quota 
for your account (40,000 by default).

• maximum_units – The maximum level of throughput that the table should always be 
ready to support. The value must be between 1 and the max throughput per second quota 
for your account (40,000 by default).

• scaling_policy – Amazon Keyspaces supports the target tracking policy. The auto 
scaling target is the provisioned read capacity of the table.

Tables 642

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• target_tracking_scaling_policy_configuration – To define the target 
tracking policy, you must define the target value. For more information about target 
tracking and cooldown periods, see  Target Tracking Scaling Policies in the Application 
Auto Scaling User Guide.

• target_value – The target utilization rate of the table. Amazon Keyspaces auto 
scaling ensures that the ratio of consumed capacity to provisioned capacity stays at or 
near this value. You define target_value as a percentage. A double between 20 and 
90. (Required)

• scale_in_cooldown – A cooldown period in seconds between scaling activities that 
lets the table stabilize before another scale in activity starts. If no value is provided, 
the default is 0. (Optional)

• scale_out_cooldown – A cooldown period in seconds between scaling activities 
that lets the table stabilize before another scale out activity starts. If no value is 
provided, the default is 0. (Optional)

• disable_scale_in: A boolean that specifies if scale-in is disabled or enabled 
for the table. This parameter is disabled by default. To turn on scale-in, set the
boolean value to FALSE. This means that capacity is automatically scaled down for a 
table on your behalf. (Optional)

• replica_updates: Specifies the AWS Region specific auto scaling settings of a multi-
Region table. For a multi-Region table, you can configure the table's read capacity differently 
per AWS Region. You can do this by configuring the following parameters. For more 
information and examples, see the section called “Creating a multi-Region table with 
provisioned capacity mode and auto scaling (CQL)”.

• region – The AWS Region of the table replica with the following settings:

• provisioned_read_capacity_autoscaling_update

• autoscaling_disabled – To enable auto scaling for the table's read capacity, set 
the value to false. The default is true. (Optional)

Note

Auto scaling for a multi-Region table has to be either enabled or disabled for 
all replicas of the table.

Tables 643

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

• minimum_units – The minimum level of read throughput that the table should 
always be ready to support. The value must be between 1 and the max throughput 
per second quota for your account (40,000 by default).

• maximum_units – The maximum level of read throughput that the table should 
always be ready to support. The value must be between 1 and the max throughput 
per second quota for your account (40,000 by default).

• scaling_policy – Amazon Keyspaces supports the target tracking policy. The auto 
scaling target is the provisioned read capacity of the table.

• target_tracking_scaling_policy_configuration – To define the target 
tracking policy, you must define the target value. For more information about 
target tracking and cooldown periods, see  Target Tracking Scaling Policies in the
Application Auto Scaling User Guide.

• target_value – The target utilization rate of the table. Amazon Keyspaces auto 
scaling ensures that the ratio of consumed read capacity to provisioned read 
capacity stays at or near this value. You define target_value as a percentage. A 
double between 20 and 90. (Required)

• scale_in_cooldown – A cooldown period in seconds between scaling activities 
that lets the table stabilize before another scale in activity starts. If no value is 
provided, the default is 0. (Optional)

• scale_out_cooldown – A cooldown period in seconds between scaling 
activities that lets the table stabilize before another scale out activity starts. If no 
value is provided, the default is 0. (Optional)

• disable_scale_in: A boolean that specifies if scale-in is disabled 
or enabled for the table. This parameter is disabled by default. To turn on
scale-in, set the boolean value to FALSE. This means that read capacity is 
automatically scaled down for a table on your behalf. (Optional)

• default_time_to_live – The default Time to Live setting in seconds for the table.

• TAGS – A list of key-value pair tags to be attached to the resource when it's created.

• clustering_order consists of the following:

• column_name – The name of the column.

• ASC | DESC – Sets the ascendant (ASC) or descendant (DESC) order modifier. If it's not 
specified, the default order is ASC.

Tables 644

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Example

CREATE TABLE IF NOT EXISTS "my_keyspace".my_table ( 
                                            id text, 
                                            name text, 
                                            region text, 
                                            division text, 
                                            project text, 
                                            role text, 
                                            pay_scale int, 
                                            vacation_hrs float, 
                                            manager_id text, 
                                            PRIMARY KEY (id,division)) 
                                            WITH CUSTOM_PROPERTIES={ 
                                                'capacity_mode':{ 
                                                        'throughput_mode': 
 'PROVISIONED', 'read_capacity_units': 10, 'write_capacity_units': 20 
                                                    }, 
                                                'point_in_time_recovery':{'status': 
 'enabled'}, 
                                                'encryption_specification':{ 
                                                        'encryption_type': 
 'CUSTOMER_MANAGED_KMS_KEY',  
                                                        
 'kms_key_identifier':'arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111' 
                                                    } 
                                            } 
                                            AND CLUSTERING ORDER BY (division ASC)  
                                            AND TAGS={'key1':'val1', 'key2':'val2'} 
                                            AND default_time_to_live = 3024000;

In a table that uses clustering columns, non-clustering columns can be declared as static in 
the table definition. For more information about static columns, see the section called “Static 
columns”.

Example

CREATE TABLE "my_keyspace".my_table ( 
                                            id int, 
                                            name text, 
                                            region text, 
                                            division text, 

Tables 645



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                                            project text STATIC, 
                                            PRIMARY KEY (id,division));

ALTER TABLE

Use the ALTER TABLE statement to add new columns, add tags, or change the table's custom 
properties.

Syntax

alter_table_statement ::=  ALTER TABLE table_name    
 
        [ ADD ( column_definition | column_definition_list)  ]  
        [[ADD | DROP] TAGS {'key1':'val1', 'key2':'val2'}]             
        [ WITH table_options [ , ... ] ] ; 
         
column_definition      ::=   column_name cql_type
                    
                

Where:

• table_name is the name of the table to be altered.

• column_definition is the name of the column and data type to be added.

• column_definition_list is a comma-separated list of columns placed inside parentheses.

• table_options consist of the following:

• CUSTOM_PROPERTIES – A map of settings specific to Amazon Keyspaces.

• capacity_mode: Specifies the read/write throughput capacity mode for 
the table. The options are throughput_mode:PAY_PER_REQUEST and
throughput_mode:PROVISIONED. The provisioned capacity mode requires
read_capacity_units and write_capacity_units as inputs. The default is
throughput_mode:PAY_PER_REQUEST.

• client_side_timestamps: Specifies if client-side timestamps are enabled or disabled for 
the table. The options are {'status': 'enabled'} and {'status': 'disabled'}. 
If it's not specified, the default is status:disabled. After client-side timestamps are 
enabled for a table, this setting cannot be disabled.

• encryption_specification: Specifies the encryption option for encryption 
at rest. The options are encryption_type:AWS_OWNED_KMS_KEY and

Tables 646



Amazon Keyspaces (for Apache Cassandra) Developer Guide

encryption_type:CUSTOMER_MANAGED_KMS_KEY. The encryption option customer 
managed key requires the AWS KMS key in Amazon Resource Name (ARN) format as input:
kms_key_identifier:ARN.

• point_in_time_recovery: Specifies if point-in-time restore is enabled or disabled 
for the table. The options are status:enabled and status:disabled. The default is
status:disabled.

• replica_updates: Specifies the AWS Region specific settings of a multi-Region table. 
For a multi-Region table, you can configure the table's read capacity differently per AWS 
Region. You can do this by configuring the following parameters. For more information 
and examples, see the section called “Updating the provisioned capacity and auto scaling 
settings of a multi-Region table (CQL)”.

• region – The AWS Region of the table replica with the following settings:

• read_capacity_units

• ttl: Enables Time to Live custom settings for the table. To enable, use status:enabled. 
The default is status:disabled. After ttlis enabled, you can't disable it for the table.

• AUTOSCALING_SETTINGS includes the optional auto scaling settings for provisioned tables. 
For syntax and detailed descriptions, see the section called “CREATE TABLE”. For examples, see
the section called “Enable automatic scaling on an existing table using CQL”.

• default_time_to_live: The default Time to Live setting in seconds for the table.

• TAGS is a list of key-value pair tags to be attached to the resource.

Note

With ALTER TABLE, you can only change a single custom property. You can't combine more 
than one ALTER TABLE command in the same statement.

Examples

The following statement shows how to add a column to an existing table.

ALTER TABLE mykeyspace.mytable ADD (ID int);

This statement shows how to add two collection columns to an existing table:

• A frozen collection column col_frozen_list that contains a nested frozen collection

Tables 647



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• A non-frozen collection column col_map that contains a nested frozen collection

ALTER TABLE my_Table ADD(col_frozen_list FROZEN<LIST<FROZEN<SET<TEXT>>>>, col_map
 MAP<INT, FROZEN<SET<INT>>>);

To change a table's capacity mode and specify read and write capacity units, you can use the 
following statement.

ALTER TABLE mykeyspace.mytable WITH CUSTOM_PROPERTIES={'capacity_mode':
{'throughput_mode': 'PROVISIONED', 'read_capacity_units': 10, 'write_capacity_units': 
 20}};

The following statement specifies a customer managed KMS key for the table.

ALTER TABLE mykeyspace.mytable WITH CUSTOM_PROPERTIES={      
              'encryption_specification':{  
                      'encryption_type': 'CUSTOMER_MANAGED_KMS_KEY',  
                      'kms_key_identifier':'arn:aws:kms:eu-
west-1:5555555555555:key/11111111-1111-111-1111-111111111111'      
                  }  
         };

To enable point-in-time restore for a table, you can use the following statement.

ALTER TABLE mykeyspace.mytable WITH CUSTOM_PROPERTIES={'point_in_time_recovery': 
 {'status': 'enabled'}};

To set a default Time to Live value in seconds for a table, you can use the following statement.

ALTER TABLE my_table WITH default_time_to_live = 2592000;

This statement enables custom Time to Live settings for a table.

ALTER TABLE mytable WITH CUSTOM_PROPERTIES={'ttl':{'status': 'enabled'}};

RESTORE TABLE

Use the RESTORE TABLE statement to restore a table to a point in time. This statement requires 
point-in-time recovery to be enabled on a table. For more information, see Point-in-time recovery.

Tables 648



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Syntax

restore_table_statement ::=   
    RESTORE TABLE restored_table_name FROM TABLE source_table_name 
                    [ WITH table_options [ , ... ] ];

Where:

• restored_table_name is the name of the restored table.

• source_table_name is the name of the source table.

• table_options consists of the following:

• restore_timestamp is the restore point time in ISO 8601 format. If it's not specified, the 
current timestamp is used.

• CUSTOM_PROPERTIES – A map of settings specific to Amazon Keyspaces.

• capacity_mode: Specifies the read/write throughput capacity mode for 
the table. The options are throughput_mode:PAY_PER_REQUEST and
throughput_mode:PROVISIONED. The provisioned capacity mode requires
read_capacity_units and write_capacity_units as inputs. The default is the current 
setting from the source table.

• encryption_specification: Specifies the encryption option for encryption 
at rest. The options are encryption_type:AWS_OWNED_KMS_KEY and
encryption_type:CUSTOMER_MANAGED_KMS_KEY. The encryption option customer 
managed key requires the AWS KMS key in Amazon Resource Name (ARN) format as input:
kms_key_identifier:ARN. To restore a table encrypted with a customer managed key to 
a table encrypted with an AWS owned key, Amazon Keyspaces requires access to the AWS 
KMS key of the source table.

• point_in_time_recovery: Specifies if point-in-time restore is enabled or disabled for 
the table. The options are status:enabled and status:disabled. Unlike when you 
create new tables, the default status for restored tables is status:enabled because the 
setting is inherited from the source table. To disable PITR for restored tables, you must set
status:disabled explicitly.

• replica_updates: Specifies the AWS Region specific settings of a multi-Region table. For 
a multi-Region table, you can configure the table's read capacity differently per AWS Region. 
You can do this by configuring the following parameters.

• region – The AWS Region of the table replica with the following settings:
Tables 649



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• read_capacity_units

• AUTOSCALING_SETTINGS includes the optional auto scaling settings for provisioned tables. 
For detailed syntax and descriptions, see the section called “CREATE TABLE”.

• TAGS is a list of key-value pair tags to be attached to the resource.

Note

Deleted tables can only be restored to the time of deletion.

Example

RESTORE TABLE mykeyspace.mytable_restored from table mykeyspace.my_table  
WITH restore_timestamp = '2020-06-30T04:05:00+0000'
AND custom_properties = {'point_in_time_recovery':{'status':'disabled'}, 
 'capacity_mode':{'throughput_mode': 'PROVISIONED', 'read_capacity_units': 10, 
 'write_capacity_units': 20}}
AND TAGS={'key1':'val1', 'key2':'val2'};

DROP TABLE

Use the DROP TABLE statement to remove a table from the keyspace.

Syntax

drop_table_statement ::=   
    DROP TABLE [ IF EXISTS ] table_name

Where:

• IF EXISTS prevents DROP TABLE from failing if the table doesn't exist. (Optional)

• table_name is the name of the table to be dropped.

Example

DROP TABLE "myGSGKeyspace".employees_tbl;

Tables 650



Amazon Keyspaces (for Apache Cassandra) Developer Guide

DML statements (data manipulation language) in Amazon 
Keyspaces

Data manipulation language (DML) is the set of Cassandra Query Language (CQL) statements 
that you use to manage data in Amazon Keyspaces (for Apache Cassandra) tables. You use DML 
statements to add, modify, or delete data in a table.

You also use DML statements to query data in a table. (Note that CQL doesn't support joins or 
subqueries.)

Topics

• SELECT

• INSERT

• UPDATE

• DELETE

SELECT

Use a SELECT statement to query data.

Syntax

select_statement ::=  SELECT  [ JSON ] ( select_clause | '*' ) 
                      FROM table_name 
                      [ WHERE 'where_clause' ] 
                      [ ORDER BY 'ordering_clause' ] 
                      [ LIMIT (integer | bind_marker) ] 
                      [ ALLOW FILTERING ]
select_clause    ::=  selector [ AS identifier ] ( ',' selector [ AS identifier ] )
selector         ::=  column_name 
                      | term
                      | CAST '(' selector AS cql_type ')' 
                      | function_name '(' [ selector ( ',' selector )* ] ')'
where_clause     ::=  relation ( AND relation )*
relation         ::=  column_name operator term 
                      TOKEN
operator         ::=  '=' | '<' | '>' | '<=' | '>=' | IN | CONTAINS | CONTAINS KEY
ordering_clause  ::=  column_name [ ASC | DESC ] ( ',' column_name [ ASC | DESC ] )*

DML statements 651



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Examples

SELECT name, id, manager_id FROM "myGSGKeyspace".employees_tbl ;

SELECT JSON name, id, manager_id FROM "myGSGKeyspace".employees_tbl ;

For a table that maps JSON-encoded data types to Amazon Keyspaces data types, see the section 
called “JSON encoding of Amazon Keyspaces data types”.

Using the IN keyword

The IN keyword specifies equality for one or more values. It can be applied to the partition key 
and the clustering column. Results are returned in the order the keys are presented in the SELECT
statement.

Examples

SELECT * from mykeyspace.mytable WHERE primary.key1 IN (1,2) and clustering.key1 = 2;
SELECT * from mykeyspace.mytable WHERE primary.key1 IN (1,2) and clustering.key1 <= 2;
SELECT * from mykeyspace.mytable WHERE primary.key1 = 1 and clustering.key1 IN (1, 2);
SELECT * from mykeyspace.mytable WHERE primary.key1 <= 2 and clustering.key1 IN (1, 2) 
 ALLOW FILTERING;

For more information about the IN keyword and how Amazon Keyspaces processes the statement, 
see the section called “IN SELECT Statement”.

Ordering results

The ORDER BY clause specifies the sort order of the returned results. It takes as arguments a list of 
column names along with the sort order for each column. You can only specify clustering columns 
in ordering clauses. Non-clustering columns are not allowed. The sort order options are ASC for 
ascending and DESC for descending sort order. If the sort order is omitted, the default ordering of 
the clustering column is used. For possible sort orders, see the section called “Ordering results”.

Example

SELECT name, id, division, manager_id FROM "myGSGKeyspace".employees_tbl WHERE id = 
 '012-34-5678' ORDER BY division;

When using ORDER BY with the IN keyword, results are ordered within a page. Full re-ordering 
with disabled pagination is not supported.

SELECT 652



Amazon Keyspaces (for Apache Cassandra) Developer Guide

TOKEN

You can apply the TOKEN function to the PARTITION KEY column in SELECT and WHERE clauses. 
With the TOKEN function, Amazon Keyspaces returns rows based on the mapped token value of the
PARTITION_KEY rather than on the value of the PARTITION KEY.

TOKEN relations are not supported with the IN keyword.

Examples

SELECT TOKEN(id) from my_table;  

SELECT TOKEN(id) from my_table WHERE TOKEN(id) > 100 and TOKEN(id) < 10000;

TTL function

You can use the TTL function with the SELECT statement to retrieve the expiration time in seconds 
that is stored for a column. If no TTL value is set, the function returns null.

Example

SELECT TTL(my_column) from my_table;

The TTL function can’t be used on multi-cell columns such as collections.

WRITETIME function

You can use the WRITETIME function with the SELECT statement to retrieve the timestamp that 
is stored as metadata for the value of a column only if the table uses client-side timestamps. For 
more information, see Client-side timestamps.

SELECT WRITETIME(my_column) from my_table;

The WRITETIME function can’t be used on multi-cell columns such as collections.

Note

For compatibility with established Cassandra driver behavior, tag-based authorization 
policies are not enforced when you perform operations on system tables by using 

SELECT 653



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Cassandra Query Language (CQL) API calls through Cassandra drivers and developer tools. 
For more information, see the section called “ Amazon Keyspaces resource access based on 
tags”.

INSERT

Use the INSERT statement to add a row to a table.

Syntax

insert_statement ::=  INSERT INTO table_name ( names_values | json_clause ) 
                      [ IF NOT EXISTS ] 
                      [ USING update_parameter ( AND update_parameter )* ]
names_values     ::=  names VALUES tuple_literal
json_clause      ::=  JSON string [ DEFAULT ( NULL | UNSET ) ]                 
names            ::=  '(' column_name ( ',' column_name )* ')'

Example

INSERT INTO "myGSGKeyspace".employees_tbl (id, name, project, region, division, role, 
 pay_scale, vacation_hrs, manager_id)
VALUES ('012-34-5678','Russ','NightFlight','US','Engineering','IC',3,12.5, 
 '234-56-7890') ;

Update parameters

INSERT supports the following values as update_parameter:

• TTL – A time value in seconds. The maximum configurable value is 630,720,000 seconds, which 
is the equivalent of 20 years.

• TIMESTAMP – A bigint value representing the number of microseconds since the standard base 
time known as the epoch: January 1 1970 at 00:00:00 GMT. A timestamp in Amazon Keyspaces 
has to fall between the range of 2 days in the past and 5 minutes in the future.

Example

INSERT INTO my_table (userid, time, subject, body, user) 

INSERT 654



Amazon Keyspaces (for Apache Cassandra) Developer Guide

        VALUES (B79CB3BA-745E-5D9A-8903-4A02327A7E09, 96a29100-5e25-11ec-90d7-
b5d91eceda0a, 'Message', 'Hello','205.212.123.123') 
        USING TTL 259200;

JSON support

For a table that maps JSON-encoded data types to Amazon Keyspaces data types, see the section 
called “JSON encoding of Amazon Keyspaces data types”.

You can use the JSON keyword to insert a JSON-encoded map as a single row. For columns that 
exist in the table but are omitted in the JSON insert statement, use DEFAULT UNSET to preserve 
the existing values. Use DEFAULT NULL to write a NULL value into each row of omitted columns 
and overwrite the existing values (standard write charges apply). DEFAULT NULL is the default 
option.

Example

INSERT INTO "myGSGKeyspace".employees_tbl JSON '{"id":"012-34-5678", 
                                                 "name": "Russ", 
                                                 "project": "NightFlight", 
                                                 "region": "US", 
                                                 "division": "Engineering", 
                                                 "role": "IC", 
                                                 "pay_scale": 3, 
                                                 "vacation_hrs": 12.5, 
                                                 "manager_id": "234-56-7890"}';

If the JSON data contains duplicate keys, Amazon Keyspaces stores the last value for the key 
(similar to Apache Cassandra). In the following example, where the duplicate key is id, the value
234-56-7890 is used.

Example

INSERT INTO "myGSGKeyspace".employees_tbl JSON '{"id":"012-34-5678", 
                                                 "name": "Russ", 
                                                 "project": "NightFlight", 
                                                 "region": "US", 
                                                 "division": "Engineering", 
                                                 "role": "IC", 
                                                 "pay_scale": 3, 
                                                 "vacation_hrs": 12.5, 

INSERT 655



Amazon Keyspaces (for Apache Cassandra) Developer Guide

                                                 "id": "234-56-7890"}';

UPDATE

Use the UPDATE statement to modify a row in a table.

Syntax

update_statement ::=  UPDATE table_name 
                      [ USING update_parameter ( AND update_parameter )* ] 
                      SET assignment ( ',' assignment )* 
                      WHERE where_clause 
                      [ IF ( EXISTS | condition ( AND condition )*) ]
update_parameter ::=  ( integer | bind_marker )
assignment       ::=  simple_selection '=' term 
                     | column_name '=' column_name ( '+' | '-' ) term 
                     | column_name '=' list_literal '+' column_name
simple_selection ::=  column_name 
                     | column_name '[' term ']' 
                     | column_name '.' `field_name
condition        ::=  simple_selection operator term

Example

UPDATE "myGSGKeyspace".employees_tbl SET pay_scale = 5 WHERE id = '567-89-0123' AND 
 division = 'Marketing' ;

To increment a counter, use the following syntax. For more information, see the section called 
“Counters”.

UPDATE ActiveUsers SET counter = counter + 1  WHERE user = A70FE1C0-5408-4AE3-
BE34-8733E5K09F14 AND action = 'click';

Update parameters

UPDATE supports the following values as update_parameter:

• TTL – A time value in seconds. The maximum configurable value is 630,720,000 seconds, which 
is the equivalent of 20 years.

UPDATE 656



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• TIMESTAMP – A bigint value representing the number of microseconds since the standard base 
time known as the epoch: January 1 1970 at 00:00:00 GMT. A timestamp in Amazon Keyspaces 
has to fall between the range of 2 days in the past and 5 minutes in the future.

Example

UPDATE my_table (userid, time, subject, body, user) 
        VALUES (B79CB3BA-745E-5D9A-8903-4A02327A7E09, 96a29100-5e25-11ec-90d7-
b5d91eceda0a, 'Message', 'Hello again','205.212.123.123') 
        USING TIMESTAMP '2022-11-03 13:30:54+0400';

DELETE

Use the DELETE statement to remove a row from a table.

Syntax

delete_statement ::=  DELETE [ simple_selection ( ',' simple_selection ) ] 
                      FROM table_name 
                      [ USING update_parameter ( AND update_parameter )* ] 
                      WHERE where_clause 
                      [ IF ( EXISTS | condition ( AND condition )*) ]

simple_selection ::=  column_name 
                     | column_name '[' term ']' 
                     | column_name '.' `field_name

condition        ::=  simple_selection operator term

Where:

• table_name is the table that contains the row you want to delete.

Example

DELETE manager_id FROM "myGSGKeyspace".employees_tbl WHERE id='789-01-2345' AND 
 division='Executive' ;

DELETE supports the following value as update_parameter:

DELETE 657



Amazon Keyspaces (for Apache Cassandra) Developer Guide

• TIMESTAMP – A bigint value representing the number of microseconds since the standard base 
time known as the epoch: January 1 1970 at 00:00:00 GMT.

Built-in functions in Amazon Keyspaces

Amazon Keyspaces (for Apache Cassandra) supports a variety of built-in functions that you can use 
in Cassandra Query Language (CQL) statements.

Topics

• Scalar functions

Scalar functions

A scalar function performs a calculation on a single value and returns the result as a single value. 
Amazon Keyspaces supports the following scalar functions.

Function Description

blobAsType Returns a value of the specified data type.

cast Converts one native data type into another 
native data type.

currentDate Returns the current date/time as a date.

currentTime Returns the current date/time as a time.

currentTimestamp Returns the current date/time as a timestamp.

currentTimeUUID Returns the current date/time as a timeuuid.

fromJson Converts the JSON string into the selected 
column's data type.

maxTimeuuid Returns the largest possible timeuuid for 
timestamp or date string.

Built-in functions 658



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Function Description

minTimeuuid Returns the smallest possible timeuuid for 
timestamp or date string.

now Returns a new unique timeuuid. Supported 
for INSERT, UPDATE, and DELETE statement 
s, and as part of the WHERE clause in SELECT
statements.

toDate Converts either a timeuuid or a timestamp to 
a date type.

toJson Returns the column value of the selected 
column in JSON format.

token Returns the hash value of the partition key.

toTimestamp Converts either a timeuuid or a date to a 
timestamp.

TTL Returns the expiration time in seconds for a 
column.

typeAsBlob Converts the specified data type into a blob.

toUnixTimestamp Converts either a timeuuid or a timestamp 
into a bigInt.

uuid Returns a random version 4 UUID. Supported 
for INSERT, UPDATE, and DELETE statement 
s, and as part of the WHERE clause in SELECT
statements.

writetime Returns the timestamp of the value of the 
specified column.

dateOf (Deprecated) Extracts the timestamp of a
timeuuid, and returns the value as a date.

Scalar functions 659



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Function Description

unixTimestampOf (Deprecated) Extracts the timestamp of a
timeuuid, and returns the value as a raw, 64-
bit integer timestamp.

Scalar functions 660



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Quotas for Amazon Keyspaces (for Apache Cassandra)

This section describes current quotas and default values for Amazon Keyspaces (for Apache 
Cassandra).

Topics

• Amazon Keyspaces service quotas

• Increasing or decreasing throughput (for provisioned tables)

• Amazon Keyspaces encryption at rest

Amazon Keyspaces service quotas

The following table contains Amazon Keyspaces (for Apache Cassandra) quotas and the default 
values. Information about which quotas can be adjusted is available in the Service Quotas console, 
where you can also request quota increases. For more information on quotas, contact AWS 
Support.

Quota Description Amazon Keyspaces default

Max keyspaces per AWS 
Region

The maximum number of 
keyspaces for this subscribe 
r per Region. You can adjust 
this default value in the
Service Quotas console.

256

Max tables per AWS Region The maximum number of 
tables across all keyspaces for 
this subscriber per Region. 
You can adjust this default 
value in the Service Quotas
console.

256

Max table schema size The maximum size of a table 
schema.

350 KB

Amazon Keyspaces service quotas 661

https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Quota Description Amazon Keyspaces default

Max concurrent DDL 
operations

The maximum number of 
concurrent DDL operations 
allowed for this subscriber per 
Region.

50

Max queries per connection The maximum number of 
CQL queries that can be 
processed by a single client 
TCP connection per second.

3000

Max row size The maximum size of a row, 
excluding static column data. 
For details, see the section 
called “Calculating row size”.

1 MB

Max number of columns 
in INSERT and UPDATE
statements

The maximum number of 
columns allowed in CQL
INSERT or UPDATE statement 
s. An INSERT or UPDATE
statement supports up to 
225 regular columns when 
Time to Live (TTL) is turned 
off. If TTL is turned on, up to 
166 regular columns can be 
modified in a single operation 
.

225/166

Max static data per logical 
partition

The maximum aggregate 
size of static data in a logical 
partition. For details, see the 
section called “Calculating 
static column size per logical 
partition”.

1 MB

Amazon Keyspaces service quotas 662



Amazon Keyspaces (for Apache Cassandra) Developer Guide

Quota Description Amazon Keyspaces default

Max subqueries per IN
SELECT statement

The maximum number of 
subqueries you can use for 
the IN keyword in a SELECT
statement. You can adjust this 
default value in the Service 
Quotas console.

100

Max number of nested frozen 
collections per AWS Region

The maximum number of 
nested collections supported 
when you're using the
FROZEN keyword for a 
column with a collection data 
type. For more information 
about frozen collections, see
the section called “Collecti 
on types”. To increase the 
nesting level, contact AWS 
Support.

5

Max read throughput per 
second

The maximum read 
throughput per second—re 
ad request units (RRUs) or 
read capacity units (RCUs)
—that can be allocated to 
a table per Region. You can 
adjust this default value in 
the Service Quotas console.

40,000

Amazon Keyspaces service quotas 663

https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Quota Description Amazon Keyspaces default

Max write throughput per 
second

The maximum write 
throughput per second—wr 
ite request units (WRUs) or 
write capacity units (WCUs)
—that can be allocated to 
a table per Region. You can 
adjust this default value in 
the Service Quotas console.

40,000

Account-level read throughpu 
t (provisioned)

The maximum number of 
aggregate read capacity 
units (RCUs) allocated for 
the account per Region. This 
is applicable only for tables 
in provisioned read/writ 
e capacity mode. You can 
adjust this default value in 
the Service Quotas console.

80,000

Account-level write 
throughput (provisioned)

The maximum number of 
aggregate write capacity 
units (WCU) allocated for the 
account per Region. This is 
applicable only for tables 
in provisioned read/writ 
e capacity mode. You can 
adjust this default value in 
the Service Quotas console.

80,000

Amazon Keyspaces service quotas 664

https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Quota Description Amazon Keyspaces default

Max number of scalable 
targets per Region per 
account

The maximum number of 
scalable targets for the 
account per Region. An 
Amazon Keyspaces table 
counts as one scalable target 
if auto scaling is enabled for 
read capacity, and as another 
scalable target if auto scaling 
is enabled for write capacity. 
You can adjust this default 
value in the Service Quotas
console for Application 
Auto Scaling by choosing
Scalable targets for Amazon 
Keyspaces.

1,500

Max partition key size The maximum size of the 
compound partition key. 
Up to 3 bytes of additiona 
l storage are added to the 
raw size of each column 
included in the partition key 
for metadata.

2048 bytes

Max clustering key size The maximum combined size 
of all clustering columns. 
Up to 4 bytes of additional 
storage are added to the raw 
size of each clustering column 
for metadata.

850 bytes

Amazon Keyspaces service quotas 665

https://console.aws.amazon.com/servicequotas/home#!/services/application-autoscaling/quotas


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Quota Description Amazon Keyspaces default

Max concurrent table restores 
using Point-in-time Recovery 
(PITR)

The maximum number of 
concurrent table restores 
using PITR per subscriber is 
4. You can adjust this default 
value in the Service Quotas
console.

4

Max amount of data restored 
using point-in-time recovery 
(PITR)

The maximum size of data 
that can be restored using 
PITR within 24 hours. You can 
adjust this default value in 
the Service Quotas console.

5 TB

Increasing or decreasing throughput (for provisioned tables)

Increasing provisioned throughput

You can increase ReadCapacityUnits or WriteCapacityUnits as often as necessary by using 
the console or the ALTER TABLE statement. The new settings don't take effect until the ALTER 
TABLE operation is complete.

You can't exceed your per-account quotas when you add provisioned capacity. And you can increase 
the provisioned capacity for your tables as much as you need. For more information about per-
account quotas, see the preceding section, the section called “Amazon Keyspaces service quotas”.

Decreasing provisioned throughput

For every table in an ALTER TABLE statement, you can decrease ReadCapacityUnits or
WriteCapacityUnits (or both). The new settings don't take effect until the ALTER TABLE
operation is complete.

A decrease is allowed up to four times, anytime per day. A day is defined according to Universal 
Coordinated Time (UTC). Additionally, if there was no decrease in the past hour, an additional 
decrease is allowed. This effectively brings the maximum number of decreases in a day to 27 (4 
decreases in the first hour, and 1 decrease for each of the subsequent 1-hour windows in a day).

Increasing or decreasing throughput (for provisioned tables) 666

https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas
https://console.aws.amazon.com/servicequotas/home#!/services/cassandra/quotas


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces encryption at rest

You can change encryption options between an AWS owned AWS KMS key and a customer 
managed AWS KMS key up to four times within a 24-hour window, on a per table basis, starting 
from when the table was created. If there was no change in the past six hours, an additional change 
is allowed. This effectively brings the maximum number of changes in a day to eight (four changes 
in the first six hours, and one change for each of the subsequent six-hour windows in a day).

You can change the encryption option to use an AWS owned AWS KMS key as often as necessary, 
even if the earlier quota has been exhausted.

These are the quotas unless you request a higher amount. To request a service quota increase, see
AWS Support.

Amazon Keyspaces encryption at rest 667

https://console.aws.amazon.com/support/home#/


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Document history for Amazon Keyspaces (for Apache 
Cassandra)
The following table describes the important changes to the documentation since the last release of 
Amazon Keyspaces (for Apache Cassandra). For notification about updates to this documentation, 
you can subscribe to an RSS feed.

• Latest documentation update: February 7, 2024

Change Description Date

Connect to Amazon 
Keyspaces from Amazon 
Elastic Kubernetes Service

You can now follow a step-
by-step tutorial to connect 
to Amazon Keyspaces from 
Amazon EKS.

February 7, 2024

Amazon Keyspaces auto 
scaling APIs for provisioned 
tables

Amazon Keyspaces now offers
CQL and AWS API support for 
setting up auto scaling with 
provisioned capacity mode.

January 23, 2024

Amazon Keyspaces Multi-Reg 
ion Replication support for 
provisioned tables

Amazon Keyspaces now 
supports provisioned capacity 
mode for multi-Region tables.

January 23, 2024

Amazon Keyspaces DML 
activity included in CloudTrail 
logs

You can now audit Amazon 
Keyspaces Data Manipulation 
Language (DML) API calls in 
AWS CloudTrail.

December 20, 2023

Amazon Keyspaces support 
for the FROZEN keyword

Amazon Keyspaces now 
supports the FROZEN keyword 
for collection data types.

November 15, 2023

Amazon Keyspaces managed 
policy update

Amazon Keyspaces added 
new permissions to the
AmazonKeyspacesFul 

October 3, 2023

668

https://docs.aws.amazon.com/keyspaces/latest/devguide/EKS-tutorial.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/EKS-tutorial.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/EKS-tutorial.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/autoscaling.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/autoscaling.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/autoscaling.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/multiRegion-replication_how-to.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/multiRegion-replication_how-to.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/multiRegion-replication_how-to.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/logging-using-cloudtrail.html#keyspaces-in-cloudtrail-dml
https://docs.aws.amazon.com/keyspaces/latest/devguide/logging-using-cloudtrail.html#keyspaces-in-cloudtrail-dml
https://docs.aws.amazon.com/keyspaces/latest/devguide/logging-using-cloudtrail.html#keyspaces-in-cloudtrail-dml
https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.elements.html#cql.data-types.collection
https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.elements.html#cql.data-types.collection
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

lAccess  managed policy 
to allow clients connecting to 
Amazon Keyspaces through 
interface VPC endpoints 
access to the Amazon 
EC2 instance to update 
the Amazon Keyspaces
system.peers  table with 
network information from the 
VPC.

Amazon Keyspaces managed 
policy update

Amazon Keyspaces created a 
new AmazonKeyspacesRea 
dOnlyAccess_v2
managed policy to allow 
clients connecting to Amazon 
Keyspaces through interface 
VPC endpoints access to 
the Amazon EC2 instance 
to update the Amazon 
Keyspaces system.peers
table with network informati 
on from the VPC.

September 12, 2023

Best practices for creating 
connections in Amazon 
Keyspaces

Learn how to improve 
and optimize client driver 
configurations in Amazon 
Keyspaces.

June 30, 2023

System keyspaces are now 
documented for Amazon 
Keyspaces

Learn what is stored in system 
keyspaces and how to query 
them for useful information 
in Amazon Keyspaces.

June 21, 2023

669

https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/connections.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/connections.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/connections.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-keyspaces.html#keyspaces-system
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-keyspaces.html#keyspaces-system
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-keyspaces.html#keyspaces-system


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces now 
supports Multi-Region 
Replication

Amazon Keyspaces Multi-Reg 
ion Replication helps you to 
maintain globally distributed 
applications by providing you 
with improved fault tolerance, 
stability, and resilience.

June 5, 2023

Amazon Keyspaces managed 
policy update

Amazon Keyspaces added 
new permissions to the
AmazonKeyspacesFul 
lAccess  managed policy 
to allow Amazon Keyspaces 
to create a service-linked 
role when an administr 
ator creates a multi-Region 
keyspace.

June 5, 2023

Amazon Keyspaces support 
for the IN keyword

Amazon Keyspaces now 
supports the IN keyword in
SELECT statements.

April 25, 2023

Cross-account access for 
Amazon Keyspaces and 
interface VPC endpoints

Learn how to implement 
cross-account access for 
Amazon Keyspaces with VPC 
endpoints.

April 20, 2023

Amazon Keyspaces support 
for client-side timestamps

Amazon Keyspaces client-si 
de timestamps are Cassandra 
-compatible cell-level 
timestamps that help 
distributed applications to 
determine the order of write 
operations when different 
clients make changes to the 
same data.

March 14, 2023

670

https://docs.aws.amazon.com/keyspaces/latest/devguide/multiRegion-replication.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/multiRegion-replication.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/multiRegion-replication.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonKeyspacesFullAccess
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonKeyspacesFullAccess
https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.dml.html#cql.dml.select
https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.dml.html#cql.dml.select
https://docs.aws.amazon.com/keyspaces/latest/devguide/access.cross-account.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/access.cross-account.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/access.cross-account.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/client-side-timestamps.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/client-side-timestamps.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Getting started with Amazon 
Keyspaces and interface VPC 
endpoints

In this step-by-step tutorial, 
learn how to connect to 
Amazon Keyspaces from a 
VPC.

March 1, 2023

Optimizing costs of Amazon 
Keyspaces tables

Best practices and guidance 
are available to help you 
identify strategies for 
optimizing costs of your 
existing Amazon Keyspaces 
tables.

February 17, 2023

The Murmur3Partitioner
 is now the default

The Murmur3Partitioner
 is now the default partition 

er in Amazon Keyspaces.

November 17, 2022

Amazon Keyspaces now 
supports Murmur3Pa 
rtitioner

The Murmur3Partitioner
 is now available in Amazon 

Keyspaces.

November 9, 2022

Support update for empty 
strings and blob values

Amazon Keyspaces now also 
supports empty strings and 
blob values as clustering 
column values.

October 19, 2022

Amazon Keyspaces is now 
available in AWS GovCloud 
(US)

Amazon Keyspaces is 
now available in the AWS 
GovCloud (US) Region and is 
in scope for FedRAMP-High 
compliance. For information 
about available endpoints, see
AWS GovCloud (US) Region 
FIPS endpoints.

August 4, 2022

671

https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints-tutorial.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints-tutorial.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints-tutorial.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/bp-cost-optimization.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/bp-cost-optimization.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-partitioners.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-partitioners.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-partitioners.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-partitioners.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-partitioners.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/cassandra-apis.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/cassandra-apis.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-keyspaces.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-keyspaces.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-keyspaces.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/programmatic.endpoints.html#fips_endpoints
https://docs.aws.amazon.com/keyspaces/latest/devguide/programmatic.endpoints.html#fips_endpoints


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Monitor Amazon Keyspaces 
table storage costs with 
Amazon CloudWatch

Amazon Keyspaces now helps 
you monitor and track table 
storage costs over time with 
the BillableTableSizeI 
nBytes  CloudWatch metric.

June 14, 2022

Amazon Keyspaces now 
supports Terraform

You can now use Terraform 
to perform data definition 
language (DDL) operations in 
Amazon Keyspaces.

June 9, 2022

Amazon Keyspaces token
function support

Amazon Keyspaces now helps 
you optimize application 
queries by using the token
function.

April 19, 2022

Amazon Keyspaces integrati 
on with Apache Spark

Amazon Keyspaces now helps 
you read and write data in 
Apache Spark more easily by 
using the open-source Spark 
Cassandra Connector.

April 19, 2022

Amazon Keyspaces API 
Reference

Amazon Keyspaces supports 
control plane operations 
to manage keyspaces and 
tables using the AWS SDK and 
AWS CLI. The API reference 
guide describes the supported 
control plane operations in 
detail.

March 2, 2022

How to troubleshoot common 
configuration issues when 
using Amazon Keyspaces.

Learn more about how to 
resolve common configura 
tion issues you may encounter 
when using Amazon 
Keyspaces.

November 22, 2021

672

https://docs.aws.amazon.com/keyspaces/latest/devguide/metrics-dimensions.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/metrics-dimensions.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/metrics-dimensions.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/access.api.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/access.api.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.functions.html#cql.functions.scalar
https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.functions.html#cql.functions.scalar
https://docs.aws.amazon.com/keyspaces/latest/devguide/spark-integrating.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/spark-integrating.html
https://github.com/datastax/spark-cassandra-connector
https://github.com/datastax/spark-cassandra-connector
https://docs.aws.amazon.com/keyspaces/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/keyspaces/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/troubleshooting.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/troubleshooting.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/troubleshooting.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces support 
for Time to Live (TTL).

Amazon Keyspaces Time to 
Live (TTL) helps you simplify 
your application logic and 
optimize the price of storage 
by expiring data from tables 
automatically.

October 18, 2021

Migrating data to Amazon 
Keyspaces using DSBulk.

Step-by-step tutorial for 
migrating data from Apache 
Cassandra to Amazon 
Keyspaces using the DataStax 
Bulk Loader (DSBulk).

August 9, 2021

Amazon Keyspaces support 
for VPC Endpoint entries in 
the system.peers  table.

Amazon Keyspaces allows you 
to populate the system.pe 
ers  table with available 
interface VPC endpoint 
information to improve load 
balancing and increase read/
write throughput.

July 29, 2021

Update to IAM managed 
policies to support customer 
managed AWS KMS keys.

IAM managed policies for 
Amazon Keyspaces now 
include permissions to list 
and view available customer 
managed AWS KMS keys 
stored in AWS KMS.

June 1, 2021

Amazon Keyspaces support 
for customer managed AWS 
KMS keys.

Amazon Keyspaces allows you 
to take control of customer 
managed AWS KMS keys 
stored in AWS KMS for 
encryption at rest.

June 1, 2021

673

https://docs.aws.amazon.com/keyspaces/latest/devguide/TTL.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/TTL.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/dsbulk-upload.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/dsbulk-upload.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/EncryptionAtRest.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/EncryptionAtRest.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/EncryptionAtRest.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Amazon Keyspaces support 
for JSON syntax

Amazon Keyspaces helps 
you read and write JSON 
documents more easily by 
supporting JSON syntax for 
INSERT and SELECT operation 
s.

January 21, 2021

Amazon Keyspaces support 
for static columns

Amazon Keyspaces now 
helps you update and store 
common data between 
multiple rows efficiently by 
using static columns.

November 9, 2020

GA release of NoSQL 
Workbench support for 
Amazon Keyspaces

NoSQL Workbench is a client-
side application that helps 
you design and visualize 
nonrelational data models 
for Amazon Keyspaces more 
easily. NoSQL Workbench 
clients are available for 
Windows, macOS, and Linux.

October 28, 2020

Preview release of NoSQL 
Workbench support for 
Amazon Keyspaces

NoSQL Workbench is a client-
side application that helps 
you design and visualize 
nonrelational data models 
for Amazon Keyspaces more 
easily. NoSQL Workbench 
clients are available for 
Windows, macOS, and Linux.

October 5, 2020

674

https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.elements.html#cql.data-types.JSON
https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.elements.html#cql.data-types.JSON
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-tables.html#static-columns
https://docs.aws.amazon.com/keyspaces/latest/devguide/working-with-tables.html#static-columns
https://docs.aws.amazon.com/keyspaces/latest/devguide/workbench.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/workbench.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/workbench.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/workbench.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/workbench.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/workbench.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

New code examples for 
programmatic access to 
Amazon Keyspaces

We continue to add code 
examples for programmatic 
access to Amazon Keyspaces 
. Samples are now available 
for Java, Python, Go, C#, and 
Perl Cassandra drivers that 
support Apache Cassandra 
version 3.11.2.

July 17, 2020

Amazon Keyspaces point-in- 
time recovery (PITR)

Amazon Keyspaces now 
offers point-in-time recovery 
(PITR) to help protect your 
tables from accidental write 
or delete operations by 
providing you continuous 
backups of your table data.

July 9, 2020

Amazon Keyspaces general 
availability

With Amazon Keyspaces 
, formerly known during 
preview as Amazon Managed 
Apache Cassandra Service 
(MCS), you can use the 
Cassandra Query Language 
(CQL) code, Apache 2.0–licen 
sed Cassandra drivers, and 
developer tools that you 
already use today.

April 23, 2020

Amazon Keyspaces automatic 
scaling

Amazon Keyspaces (for 
Apache Cassandra) integrate 
s with Application Auto 
Scaling to help you provision 
throughput capacity efficient 
ly for variable workloads in 
response to actual application 
traffic by adjusting throughpu 
t capacity automatically.

April 23, 2020

675

https://docs.aws.amazon.com/keyspaces/latest/devguide/programmatic.drivers.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/programmatic.drivers.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/programmatic.drivers.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/PointInTimeRecovery.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/PointInTimeRecovery.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/what-is-keyspaces.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/what-is-keyspaces.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/autoscaling.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/autoscaling.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Interface virtual private cloud 
(VPC) endpoints for Amazon 
Keyspaces

Amazon Keyspaces offers 
private communication 
between the service and your 
VPC so that network traffic 
doesn't leave the Amazon 
network.

April 16, 2020

Tag-based access policies You can now use resource 
tags in IAM policies to 
manage access to Amazon 
Keyspaces.

April 8, 2020

Counter data type Amazon Keyspaces now helps 
you coordinate increments 
and decrements to column 
values by using counters.

April 7, 2020

Tagging resources Amazon Keyspaces now 
enables you to label and 
categorize resources by using 
tags.

March 31, 2020

AWS CloudFormation support Amazon Keyspaces now helps 
you automate the creation 
and management of resources 
by using AWS CloudForm 
ation.

March 25, 2020

676

https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/vpc-endpoints.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security_iam_service-with-iam.html#security_iam_service-with-iam-tags
https://docs.aws.amazon.com/keyspaces/latest/devguide/cql.elements.html#cql.data-types
https://docs.aws.amazon.com/keyspaces/latest/devguide/tagging-keyspaces.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/cloudformation-keyspaces.html


Amazon Keyspaces (for Apache Cassandra) Developer Guide

Support for IAM roles and 
policies and SigV4 authentic 
ation

Added information on how 
you can use AWS Identity 
and Access Managemen 
t (IAM) to manage access 
permissions and implement 
security policies for Amazon 
Keyspaces and how to use 
the authentication plugin 
for the DataStax Java Driver 
for Cassandra to programma 
tically access Amazon 
Keyspaces using IAM roles and 
federated identities.

March 17, 2020

Read/write capacity mode Amazon Keyspaces now 
supports two read/write 
throughput capacity modes. 
The read/write capacity mode 
controls how you're charged 
for read and write throughpu 
t and how table throughput 
capacity is managed.

February 20, 2020

Initial release This documentation covers 
the initial release of Amazon 
Keyspaces (for Apache 
Cassandra).

December 3, 2019

677

https://docs.aws.amazon.com/keyspaces/latest/devguide/identity-and-access-mgmt.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/identity-and-access-mgmt.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/identity-and-access-mgmt.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/ReadWriteCapacityMode.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/what-is-keyspaces.html

	Amazon Keyspaces (for Apache Cassandra)
	Table of Contents
	What is Amazon Keyspaces (for Apache Cassandra)?
	Amazon Keyspaces: How it works
	High-level architecture: Apache Cassandra vs. Amazon Keyspaces
	Cassandra data model
	Accessing Amazon Keyspaces from an application

	Amazon Keyspaces use cases
	What is Cassandra Query Language (CQL)?

	How does Amazon Keyspaces (for Apache Cassandra) compare to Apache Cassandra?
	Functional differences: Amazon Keyspaces vs. Apache Cassandra
	Apache Cassandra APIs, operations, and data types
	Asynchronous creation and deletion of keyspaces and tables
	Authentication and authorization
	Batch
	Cluster configuration
	Connections
	IN keyword
	CQL query throughput tuning
	FROZEN collections
	Lightweight transactions
	Load balancing
	Pagination
	Partitioners
	Prepared statements
	Range delete
	System tables
	Timestamps

	Supported Cassandra APIs, operations, functions, and data types in Amazon Keyspaces
	Cassandra API support
	Cassandra control plane API support
	Cassandra data plane API support
	Cassandra function support
	Cassandra data type support

	Supported Apache Cassandra consistency levels in Amazon Keyspaces
	Write consistency levels
	Read consistency levels
	Unsupported consistency levels


	Accessing Amazon Keyspaces (for Apache Cassandra)
	Setting up AWS Identity and Access Management
	Sign up for an AWS account
	Create an administrative user

	Setting up Amazon Keyspaces
	Accessing Amazon Keyspaces using the console
	Using AWS CloudShell to access Amazon Keyspaces
	Obtaining IAM permissions for AWS CloudShell
	Interacting with Amazon Keyspaces using AWS CloudShell

	Connecting programmatically to Amazon Keyspaces
	Creating credentials to access Amazon Keyspaces programmatically
	Generate service-specific credentials
	Generate service-specific credentials using the console
	Generate service-specific credentials using the AWS CLI

	How to create and configure AWS credentials for Amazon Keyspaces
	Credentials required by the AWS CLI, the AWS SDK, or the Amazon Keyspaces SigV4 plugin for Cassandra client drivers
	Creating an IAM user for programmatic access to Amazon Keyspaces in your AWS account
	Creating IAM users (console)
	Creating IAM users (AWS CLI)

	Creating new access keys for an IAM user
	How to manage access keys for IAM users
	Using temporary credentials to connect to Amazon Keyspaces using an IAM role and the SigV4 plugin


	Service endpoints for Amazon Keyspaces
	Ports and Protocols
	Global endpoints
	AWS GovCloud (US) Region FIPS endpoints
	China Regions endpoints

	Using cqlsh to connect to Amazon Keyspaces
	Using the cqlsh-expansion to connect to Amazon Keyspaces
	How to manually configure cqlsh connections for TLS

	Using the AWS CLI
	Downloading and Configuring the AWS CLI
	Using the AWS CLI with Amazon Keyspaces

	Using the API
	Using Amazon Keyspaces with an AWS SDK
	Using a Cassandra client driver to access Amazon Keyspaces programmatically
	Using a Cassandra Java client driver to access Amazon Keyspaces programmatically
	Before you begin
	Step-by-step tutorial to connect to Amazon Keyspaces using the DataStax Java driver for Apache Cassandra using service-specific credentials
	Step 1: Prerequisites
	Step 2: Configure the driver
	Step 3: Run the sample application

	Step-by-step tutorial to connect to Amazon Keyspaces using the 4.x DataStax Java driver for Apache Cassandra and the SigV4 authentication plugin
	Step 1: Prerequisites
	Step 2: Configure the driver
	Step 3: Run the application

	Connect to Amazon Keyspaces using the 3.x DataStax Java driver for Apache Cassandra and the SigV4 authentication plugin
	Step 1: Prerequisites
	Step 2: Run the application


	Using a Cassandra Python client driver to access Amazon Keyspaces programmatically
	Before you begin
	Connect to Amazon Keyspaces using the Python driver for Apache Cassandra and service-specific credentials
	Connect to Amazon Keyspaces using the DataStax Python driver for Apache Cassandra and the SigV4 authentication plugin

	Using a Cassandra Node.js client driver to access Amazon Keyspaces programmatically
	Before you begin
	Connect to Amazon Keyspaces using the Node.js DataStax driver for Apache Cassandra and service-specific credentials
	Connect to Amazon Keyspaces using the DataStax Node.js driver for Apache Cassandra and the SigV4 authentication plugin

	Using a Cassandra .NET Core client driver to access Amazon Keyspaces programmatically
	Using a Cassandra Go client driver to access Amazon Keyspaces programmatically
	Before you begin
	Connect to Amazon Keyspaces using the Gocql driver for Apache Cassandra and service-specific credentials
	Connect to Amazon Keyspaces using the Go driver for Apache Cassandra and the SigV4 authentication plugin

	Using a Cassandra Perl client driver to access Amazon Keyspaces programmatically

	Tutorial: Connecting to Amazon Keyspaces from Amazon Elastic Kubernetes Service
	Tutorial prerequisites
	Step 1: Configure the Amazon EKS cluster and setup IAM permissions
	Step 2: Configure the application
	Step 3: Create the application image and upload the Docker file to your Amazon ECR repository
	Step 4: Deploy the application to Amazon EKS and write data to your Amazon Keyspaces table
	Step 5: (Optional) Cleanup


	Tutorial: Connecting to Amazon Keyspaces using an interface VPC endpoint
	Tutorial prerequisites and considerations
	Step 1: Launch an Amazon EC2 instance
	Step 2: Configure your Amazon EC2 instance
	Step 3: Create a VPC endpoint for Amazon Keyspaces
	Step 4: Configure permissions for the VPC endpoint connection
	Step 5: Configure monitoring with CloudWatch
	Step 6: (Optional) Best practices to configure the connection pool size for your application
	Step 7: (Optional) Clean up

	Configuring cross-account access for Amazon Keyspaces
	Configuring cross-account access for Amazon Keyspaces in a shared VPC
	Configuring cross-account access for Amazon Keyspaces without a shared VPC


	Getting started with Amazon Keyspaces (for Apache Cassandra)
	Tutorial prerequisites and considerations
	Tutorial Step 1: Create a keyspace and a table in Amazon Keyspaces
	Creating a keyspace
	Using the console
	Using CQL

	Creating a table
	Using the console
	Using CQL


	Tutorial Step 2: Create, read, update, and delete data (CRUD)
	Tutorial: Inserting and loading data into an Amazon Keyspaces table
	Tutorial: Read from an Amazon Keyspaces table
	Selecting all the data in your table
	Selecting a subset of columns
	Selecting a subset of rows
	Understanding the WHERE clause
	Try it


	Tutorial: Update data in an Amazon Keyspaces table
	Try it

	Tutorial: Delete data in an Amazon Keyspaces table
	Deleting cells
	Deleting rows


	Tutorial Step 3: Delete a table and keyspace in Amazon Keyspaces
	Deleting a table
	Using the console
	Using CQL

	Deleting a keyspace
	Using the AWS Management Console
	Using CQL



	Migrating to Amazon Keyspaces
	Tutorial: Loading data into Amazon Keyspaces using cqlsh
	Prerequisites
	Step 1: Create the source CSV file and target table
	Step 2: Prepare the data
	Step 3: Set throughput capacity for the table
	Step 4: Configure cqlsh COPY FROM settings
	Step 5: Run the cqlsh COPY FROM command
	Troubleshooting

	Tutorial: Loading data into Amazon Keyspaces using DSBulk
	Prerequisites
	Step 1: Create the source CSV file and target table
	Step 2: Prepare the data
	Step 3: Set throughput capacity for the table
	Step 4: Configure DSBulk settings
	Step 5: Run the DSBulk load command


	Code examples for Amazon Keyspaces using AWS SDKs
	Hello Amazon Keyspaces
	Actions for Amazon Keyspaces using AWS SDKs
	Create an Amazon Keyspaces keyspace using an AWS SDK
	Create an Amazon Keyspaces table using an AWS SDK
	Delete an Amazon Keyspaces keyspace using an AWS SDK
	Delete an Amazon Keyspaces table using an AWS SDK
	Get data about an Amazon Keyspaces keyspace using an AWS SDK
	Get data about an Amazon Keyspaces table using an AWS SDK
	List Amazon Keyspaces keyspaces using an AWS SDK
	List Amazon Keyspaces tables in a keyspace using an AWS SDK
	Restore an Amazon Keyspaces table to a point in time using an AWS SDK
	Update an Amazon Keyspaces table using an AWS SDK

	Scenarios for Amazon Keyspaces using AWS SDKs
	Get started with Amazon Keyspaces keyspaces and tables using an AWS SDK


	Amazon Keyspaces (for Apache Cassandra) libraries and tools
	Libraries and examples
	Amazon Keyspaces (for Apache Cassandra) developer toolkit
	Amazon Keyspaces (for Apache Cassandra) examples
	AWS Signature Version 4 (SigV4) authentication plugins

	Highlighted sample and developer tool repos
	Amazon Keyspaces Protocol Buffers
	AWS CloudFormation template to create Amazon CloudWatch dashboard for Amazon Keyspaces (for Apache Cassandra) metrics
	Using Amazon Keyspaces (for Apache Cassandra) with AWS Lambda
	Using Amazon Keyspaces (for Apache Cassandra) with Spring
	Using Amazon Keyspaces (for Apache Cassandra) with Scala
	Using Amazon Keyspaces (for Apache Cassandra) with AWS Glue
	Amazon Keyspaces (for Apache Cassandra) Cassandra query language (CQL) to AWS CloudFormation converter
	Amazon Keyspaces (for Apache Cassandra) helpers for Apache Cassandra driver for Java
	Amazon Keyspaces (for Apache Cassandra) snappy compression demo
	Amazon Keyspaces (for Apache Cassandra) and Amazon S3 codec demo


	Integrating Amazon Keyspaces with Apache Spark
	Prerequisites for establishing connections to Amazon Keyspaces with the Spark Cassandra Connector
	Step 1: Configure Amazon Keyspaces for integration with the Apache Cassandra Spark Connector
	Step 2: Configure the Apache Cassandra Spark Connector
	Step 3: Create the application configuration file
	Connect with SigV4 authentication
	Connect with service-specific credentials
	Connect with a fixed rate

	Step 4: Prepare the source data and the target table in Amazon Keyspaces
	Step 5: Write and read Amazon Keyspaces data using the Apache Cassandra Spark Connector
	Troubleshooting common errors when using the Spark Cassandra Connector with Amazon Keyspaces
	Common errors and warnings


	Troubleshooting Amazon Keyspaces (for Apache Cassandra)
	Troubleshooting connections in Amazon Keyspaces
	Errors connecting to an Amazon Keyspaces endpoint
	I can't connect to Amazon Keyspaces with cqlsh
	I can't connect to Amazon Keyspaces using a Cassandra client driver
	
	
	

	My VPC endpoint connection doesn't work properly
	I can't connect using cassandra-stress
	I can't connect using IAM identities
	I'm trying to import data with cqlsh and the connection to my Amazon Keyspaces table is lost


	Troubleshooting capacity management in Amazon Keyspaces
	Serverless capacity errors
	I'm receiving NoHostAvailable insufficient capacity errors from my client driver
	I'm receiving write timeout errors during data import
	I can't see the actual storage size of a keyspace or table


	Troubleshooting data definition language in Amazon Keyspaces
	Data definition language errors
	I created a new keyspace, but I can't view or access it
	I created a new table, but I can't view or access it
	I'm trying to restore a table using Amazon Keyspaces point-in-time recovery (PITR), but the restore fails
	I'm trying to use INSERT/UPDATE to edit custom Time to Live (TTL) settings, but the operation fails
	I'm trying to upload data to my Amazon Keyspaces table and I get an error about exceeding the number of columns
	I'm trying to delete data in my Amazon Keyspaces table and the deletion fails for the range



	Serverless resource management in Amazon Keyspaces (for Apache Cassandra)
	Storage in Amazon Keyspaces
	Read/write capacity modes in Amazon Keyspaces
	On-demand capacity mode
	Read request units and write request units
	Peak traffic and scaling properties
	Initial throughput for on-demand capacity mode

	Provisioned throughput capacity mode
	Read capacity units and write capacity units

	Managing and viewing capacity modes
	Considerations when changing capacity modes

	Managing throughput capacity automatically with Amazon Keyspaces auto scaling
	How Amazon Keyspaces automatic scaling works
	How auto scaling works for multi-Region tables
	Usage notes
	Managing Amazon Keyspaces automatic scaling policies with the console
	Before you begin: Granting user permissions for Amazon Keyspaces automatic scaling
	Creating a new table with Amazon Keyspaces automatic scaling enabled
	Enabling Amazon Keyspaces automatic scaling on existing tables
	Modifying or disabling Amazon Keyspaces automatic scaling settings
	Viewing Amazon Keyspaces automatic scaling activities on the console

	Managing Amazon Keyspaces auto scaling with Cassandra Query Language (CQL)
	Before you begin
	Configure permissions
	Configure cqlsh

	Create a new table with automatic scaling using CQL
	Enable automatic scaling on an existing table using CQL
	View your table's Amazon Keyspaces auto scaling configuration using CQL
	Turn off Amazon Keyspaces auto scaling for a table using CQL

	Managing Amazon Keyspaces scaling policies with the CLI
	Before you begin
	Configure permissions
	Install the AWS CLI

	Create a new table with automatic scaling using the AWS CLI
	Enable automatic scaling on an existing table using the AWS CLI
	View your table's Amazon Keyspaces auto scaling configuration using the AWS CLI
	Turn off Amazon Keyspaces auto scaling for a table using the AWS CLI


	Using Burst Capacity Effectively in Amazon Keyspaces

	Working with keyspaces, tables, and rows in Amazon Keyspaces (for Apache Cassandra)
	Working with keyspaces in Amazon Keyspaces
	Working with system keyspaces in Amazon Keyspaces
	system
	system_schema
	system_schema_mcs
	system_multiregion_info

	Creating keyspaces in Amazon Keyspaces

	Working with tables in Amazon Keyspaces
	Creating tables in Amazon Keyspaces
	Working with multi-Region tables in Amazon Keyspaces
	Static columns in Amazon Keyspaces
	Calculating static column size per logical partition in Amazon Keyspaces
	Metering read/write operations of static data in Amazon Keyspaces


	Working with rows in Amazon Keyspaces
	Calculating row size in Amazon Keyspaces

	Working with queries in Amazon Keyspaces
	Using the IN operator with the SELECT Statement in Amazon Keyspaces
	Ordering results in Amazon Keyspaces
	Paginating results in Amazon Keyspaces

	Working with partitioners in Amazon Keyspaces
	Working with tags and labels for Amazon Keyspaces resources
	Tagging restrictions for Amazon Keyspaces
	Tagging operations for Amazon Keyspaces
	Adding tags to new or existing keyspaces and tables using the console
	Adding tags to new or existing keyspaces and tables using the AWS CLI
	Adding tags to new or existing keyspaces and tables using CQL

	Cost allocation reports for Amazon Keyspaces


	Best practices for designing and architecting with Amazon Keyspaces
	NoSQL design for Amazon Keyspaces
	Differences between relational data design and NoSQL
	Two key concepts for NoSQL design
	Approaching NoSQL design

	Client driver connections to Amazon Keyspaces (for Apache Cassandra)
	How connections work in Amazon Keyspaces
	How to configure connections in Amazon Keyspaces
	How to configure connections over VPC endpoints in Amazon Keyspaces
	How to monitor connections in Amazon Keyspaces
	How to handle connection errors in Amazon Keyspaces

	Data modeling in Amazon Keyspaces (for Apache Cassandra)
	How to use partition keys effectively in Amazon Keyspaces
	Using write sharding to distribute workloads evenly in Amazon Keyspaces
	Sharding using compound partition keys and random values
	Sharding using compound partition keys and calculated values



	Optimizing costs of Amazon Keyspaces tables
	Evaluate your costs at the table level
	How to view the costs of a single Amazon Keyspaces table
	Cost Explorer's default view
	How to use and apply table tags in Cost Explorer

	Evaluate your table's capacity mode
	What table capacity modes are available
	When to select on-demand capacity mode
	When to select provisioned capacity mode
	Additional factors to consider when choosing a table capacity mode

	Evaluate your table's Application Auto Scaling settings
	Understanding your Application Auto Scaling settings
	How to identify tables with low target utilization (<=50%)
	How to address workloads with seasonal variance
	How to address spiky workloads with unknown patterns
	How to address workloads with linked applications

	Identify your unused resources
	How to identify unused resources
	Identifying unused table resources
	Cleaning up unused table resources
	Cleaning up unused point-in-time recovery (PITR) backups

	Evaluate your table usage patterns
	Perform fewer strongly-consistent read operations
	Enable Time to Live (TTL)

	Evaluate your provisioned capacity for right-sized provisioning
	How to retrieve consumption metrics from your Amazon Keyspaces tables
	How to identify under-provisioned Amazon Keyspaces tables
	How to identify over-provisioned Amazon Keyspaces tables



	Using NoSQL Workbench with Amazon Keyspaces (for Apache Cassandra)
	Download NoSQL Workbench
	Getting started with NoSQL Workbench
	How to build data models
	Building new data models with NoSQL Workbench
	Editing existing data models with NoSQL Workbench

	How to visualize data models
	Visualizing data models with NoSQL Workbench
	Aggregate view

	How to commit data models to Amazon Keyspaces and Apache Cassandra
	Before you begin
	Connecting to Amazon Keyspaces with service-specific credentials
	Connecting to Amazon Keyspaces with AWS Identity and Access Management (IAM) credentials
	Using a saved connection
	Committing to Apache Cassandra

	Sample data models in NoSQL Workbench
	Employee data model
	Credit card transactions data model
	Airline operations data model

	Release history for NoSQL Workbench

	Multi-Region Replication for Amazon Keyspaces (for Apache Cassandra)
	Benefits of using Multi-Region Replication
	Capacity modes and pricing
	How Multi-Region Replication works in Amazon Keyspaces
	How Multi-Region Replication works in Amazon Keyspaces
	Multi-Region Replication conflict resolution
	Multi-Region Replication disaster recovery
	IAM permissions required to create multi-Region keyspaces and tables
	Multi-Region Replication and integration with point-in-time recovery (PITR)
	Multi-Region Replication and integration with AWS services

	Amazon Keyspaces Multi-Region Replication usage notes
	How to use Multi-Region Replication
	Using the console to create and manage multi-Region tables
	Creating a multi-Region keyspace (console)
	Creating a multi-Region table with default settings (console)
	Creating a multi-Region table in provisioned mode with auto scaling enabled (console)
	Enabling auto scaling for an existing multi-Region table (console)
	Turning off auto scaling for a multi-Region table (console)
	Viewing Amazon Keyspaces auto scaling activities on the console

	Using CQL to create and manage multi-Region tables
	Creating a multi-Region keyspace (CQL)
	Creating a multi-Region table with default settings (CQL)
	Creating a multi-Region table with provisioned capacity mode and auto scaling (CQL)
	Updating the provisioned capacity and auto scaling settings of a multi-Region table (CQL)
	Viewing the provisioned capacity and auto scaling settings of a multi-Region table (CQL)
	Turning off auto scaling for a multi-Region table (CQL)
	Setting the provisioned capacity of a multi-Region table manually (CQL)

	Using the AWS CLI to create and manage multi-Region tables
	Creating a new multi-Region keyspace (CLI)
	Creating a new multi-Region table with default settings (CLI)
	Creating a new multi-Region table in provisioned mode with auto scaling (CLI)
	Updating the provisioned capacity and auto scaling settings of a multi-Region table (CLI)
	Viewing the provisioned capacity and auto scaling settings of a multi-Region table (CLI)
	Turning off auto scaling for a multi-Region table (CLI)
	Setting the provisioned capacity of a multi-Region table manually (CLI)



	Point-in-time recovery for Amazon Keyspaces (for Apache Cassandra)
	How point-in-time recovery works in Amazon Keyspaces
	Enabling point-in-time recovery (PITR)
	Enabling PITR with the console
	Enabling PITR using the AWS CLI
	Enabling PITR using CQL

	Permissions required to restore a table
	Time window for PITR continuous backups
	PITR restore settings
	PITR restore of encrypted tables
	PITR restore of multi-Region tables
	Table restore time with PITR
	Amazon Keyspaces PITR and integration with AWS services

	Restoring an Amazon Keyspaces table to a point in time
	Before you begin
	Restoring a table to a point in time (console)
	Restoring a table to a point in time with the AWS CLI
	Restoring a table to a point in time with CQL
	Restoring a deleted table with the AWS CLI
	Restoring a deleted table with CQL


	Expiring data by using Amazon Keyspaces Time to Live (TTL)
	How it works: Amazon Keyspaces Time to Live (TTL)
	Setting the default TTL value for a table
	Setting custom TTL values for rows and columns
	Enabling TTL on tables
	Amazon Keyspaces Time to Live and integration with AWS services

	How to use Time to Live (TTL)
	To create a new table with default Time to Live (TTL) settings enabled (console)
	To update default Time to Live (TTL) settings on existing tables (console)
	To disable default Time to Live (TTL) settings on existing tables (console)
	To create a new table with default Time to Live (TTL) settings enabled using CQL
	To use ALTER TABLE to edit default Time to Live (TTL) settings using CQL
	How to enable Time to Live (TTL) on new tables using custom properties
	How to enable Time to Live (TTL) on existing tables using custom properties
	To use INSERT to edit custom Time to Live (TTL) settings using CQL
	To use UPDATE to edit custom Time to Live (TTL) settings using CQL


	Working with client-side timestamps in Amazon Keyspaces
	How client-side timestamps work in Amazon Keyspaces
	How client-side timestamps work in Amazon Keyspaces
	Amazon Keyspaces client-side timestamps and integration with AWS services

	Using client-side timestamps in Amazon Keyspaces
	Creating a new table with client-side timestamps turned on (console)
	Turning on client-side timestamps on existing tables (console)
	Creating a new table with client-side timestamps turned on (CQL)
	Turning on client-side timestamps for existing tables using ALTER TABLE (CQL)
	Creating a new table with client-side timestamps turned on (CLI)
	Turning on client-side timestamps on an existing table (CLI)
	Using client-side timestamps in Data Manipulation Language (DML) statements


	Creating Amazon Keyspaces resources with AWS CloudFormation
	Amazon Keyspaces and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Monitoring Amazon Keyspaces (for Apache Cassandra)
	Monitoring Amazon Keyspaces with Amazon CloudWatch
	How do I use Amazon Keyspaces metrics?
	Amazon Keyspaces metrics and dimensions
	Amazon Keyspaces metrics and dimensions
	Amazon Keyspaces metrics
	Dimensions for Amazon Keyspaces metrics


	Creating CloudWatch alarms to monitor Amazon Keyspaces

	Logging Amazon Keyspaces API calls with AWS CloudTrail
	Configuring Amazon Keyspaces log file entries in CloudTrail
	Amazon Keyspaces Data Definition Language (DDL) information in CloudTrail
	Amazon Keyspaces Data Manipulation Language (DML) information in CloudTrail
	Understanding Amazon Keyspaces log file entries


	Security in Amazon Keyspaces (for Apache Cassandra)
	Data protection in Amazon Keyspaces
	Encryption at rest in Amazon Keyspaces
	Encryption at rest: How it works in Amazon Keyspaces
	AWS owned keys
	Customer managed keys
	Encryption at rest usage notes

	Encryption at rest: How to use customer managed keys to encrypt tables in Amazon Keyspaces
	Prerequisites: Create a customer managed key using AWS KMS and grant permissions to Amazon Keyspaces
	Step 1: Create a customer managed key using AWS KMS
	Step 2: Authorize the use of your customer managed key
	Key policy for customer managed keys
	Example key policy
	Using grants to authorize Amazon Keyspaces


	Step 3: Specify a customer managed key for a new table
	Create an encrypted table using a customer managed key (console)
	Create a new table using a customer managed key for encryption at rest (CQL)

	Step 4: Update the encryption key of an existing table
	Update an existing table with the new customer managed key (console)
	Update the encryption key used for an existing table

	Step 5: Use the Amazon Keyspaces encryption context in logs
	Step 6: Configure monitoring with AWS CloudTrail


	Encryption in transit in Amazon Keyspaces
	Internetwork traffic privacy in Amazon Keyspaces
	Traffic between service and on-premises clients and applications
	Traffic between AWS resources in the same Region


	AWS Identity and Access Management for Amazon Keyspaces
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Keyspaces works with IAM
	Amazon Keyspaces identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	Amazon Keyspaces resource-based policies
	Authorization based on Amazon Keyspaces tags
	Amazon Keyspaces IAM roles
	Using temporary credentials with Amazon Keyspaces
	Service-linked roles
	Service roles


	Amazon Keyspaces identity-based policy examples
	Policy best practices
	Using the Amazon Keyspaces console
	Allow users to view their own permissions
	Accessing Amazon Keyspaces tables
	Amazon Keyspaces resource access based on tags

	AWS managed policies for Amazon Keyspaces
	AWS managed policy: AmazonKeyspacesReadOnlyAccess_v2
	AWS managed policy: AmazonKeyspacesReadOnlyAccess
	AWS managed policy: AmazonKeyspacesFullAccess
	Amazon Keyspaces updates to AWS managed policies

	Troubleshooting Amazon Keyspaces identity and access
	I'm not authorized to perform an action in Amazon Keyspaces
	I modified an IAM user or role and the changes did not take effect immediately
	I can't restore a table using Amazon Keyspaces point-in-time recovery (PITR)
	I'm not authorized to perform iam:PassRole
	I'm an administrator and want to allow others to access Amazon Keyspaces
	I want to allow people outside of my AWS account to access my Amazon Keyspaces resources

	Using service-linked roles for Amazon Keyspaces
	Using roles for Amazon Keyspaces application auto scaling
	Service-linked role permissions for Amazon Keyspaces
	Creating a service-linked role for Amazon Keyspaces
	Editing a service-linked role for Amazon Keyspaces
	Deleting a service-linked role for Amazon Keyspaces
	Supported Regions for Amazon Keyspaces service-linked roles

	Using roles for Amazon Keyspaces Multi-Region Replication
	Service-linked role permissions for Amazon Keyspaces
	Creating a service-linked role for Amazon Keyspaces
	Editing a service-linked role for Amazon Keyspaces
	Deleting a service-linked role for Amazon Keyspaces
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported Regions for Amazon Keyspaces service-linked roles



	Compliance validation for Amazon Keyspaces (for Apache Cassandra)
	Resilience and disaster recovery in Amazon Keyspaces
	Infrastructure security in Amazon Keyspaces
	Using Amazon Keyspaces with interface VPC endpoints
	Using interface VPC endpoints for Amazon Keyspaces
	Populating system.peers table entries with interface VPC endpoint information
	Controlling access to interface VPC endpoints for Amazon Keyspaces
	Availability
	VPC endpoint policies and Amazon Keyspaces point-in-time recovery (PITR)
	Common errors and warnings


	Configuration and vulnerability analysis for Amazon Keyspaces
	Security best practices for Amazon Keyspaces
	Preventative security best practices for Amazon Keyspaces
	Detective security best practices for Amazon Keyspaces


	CQL language reference for Amazon Keyspaces (for Apache Cassandra)
	Cassandra Query Language (CQL) elements in Amazon Keyspaces
	Identifiers
	Constants
	Terms
	Data types
	String types
	Numeric types
	Counters

	Blob type
	Boolean type
	Time-related types
	Collection types
	Tuple type
	Other types
	Static

	JSON encoding of Amazon Keyspaces data types

	DDL statements (data definition language) in Amazon Keyspaces
	Keyspaces
	CREATE KEYSPACE
	ALTER KEYSPACE
	DROP KEYSPACE

	Tables
	CREATE TABLE
	ALTER TABLE
	RESTORE TABLE
	DROP TABLE


	DML statements (data manipulation language) in Amazon Keyspaces
	SELECT
	INSERT
	UPDATE
	DELETE

	Built-in functions in Amazon Keyspaces
	Scalar functions


	Quotas for Amazon Keyspaces (for Apache Cassandra)
	Amazon Keyspaces service quotas
	Increasing or decreasing throughput (for provisioned tables)
	Increasing provisioned throughput
	Decreasing provisioned throughput

	Amazon Keyspaces encryption at rest

	Document history for Amazon Keyspaces (for Apache Cassandra)

