aws

Developer Guide

AWS Lambda

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS Lambda Developer Guide

AWS Lambda: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.




AWS Lambda Developer Guide

Table of Contents

What is AWS Lambda? ...ccciiiiiiiiiieennniiiiiiiieiiinnsesssssessssissscesssssssssssssssssssssssssssssssssssssssssssssssssssssssans 1
WHhEN 10 USE LamMBDAa ...ttt ettt te e e a et et b e st e st e s e e saesa e e e anenes 1
KEY TRATUIES ...ttt ettt e st et e et e st e e e e e s e e e e st e st e b e s bessaesaeseeseensentesassassassassaensansans 2

Getting StArted ....cccciiiiiiieeeeeeiiiiiieiiiiiiteneeneenisisisseeesteessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 4
PrEIEGQUISITES ..ottt ettt et e s sae s s e e s e e e st e s sae s st e s ae s st e s besssaesssassssasssessssesssessstesssesssaessseessaens 4
Create a Lambda function with the CONSOLE ... 6
Invoke the Lambda function using the CoONSOLE ... 12
CLEAN UP ettt ettt ettt e et e s te st e e te e e st e s et e st e be b e st e eseeseeseesse st ensassansassaesaeseessensestessasansassasssensensanean 14
Additional resources and NEXE SEEPS ...ccccviceceeerereceeetecteste ettt saesaestesbe s e e e e e e e e s e saessanaans 15

Lambda fOUNAtioNS ......iiiiiiiiiiiiieeeeeciiiiiieiiiiiieneessssessssssseeessssssssssssssssssssssssssssssssssssssssssssssssssssssne 17
CONCEPLS ottt et ettt s st e s st e st e st e s s e e s se e st e s be s s sae s aa e st e s sae e saes s e e st assbe e st e e se e st aessaeasaeesaesseeesseenes 18

FUNCEION ettt ettt et e s e e s s ae e s e e s s aa e s e e s ae e s e e s saa e s st e s st esssesssaesssesssessssesssensaens 18
TGN ettt ettt e e rte st e st e e sae e st e s s sa e s ae e st e e be s s e e s se e st essbe s seesssae st asssesssaessseestessseesseessteeseens 18
EVENT .ttt et et e s s ae s st e s a e e b e s b e e b e e st e st e e s R e et e e at e e b e e s s e e et e e st esteeeraenaeas 19
EXECULION ENVIFONMIENT ...ttt ettt et e s sae s sa e s s ae e s e e s saesssaessaeessnasssasssaessnens 19
INSErUCLiON SEt ArCHITECTUIE ..ttt s s e s et e saesaesbans 20
DEPLOYMENT PACKAGE ..ttt ettt ste st e s s e e e e e s e et e saesaessessessaenaennansans 20
RUNTIMIE ettt ettt et e sa e st e st e s st e s b e s s st e s b e e s aaessbesssa e sbassaaesssasssaesssassseesssensnes 20
LAY BT ettt ettt et et e sttt e st e st et e et e et e e st e e b e e s e e e e e et e et e e a e e et e e s ae et e et e e st eesteseseesnaeenraans 20
EXTONISION .ttt sttt et s ae st e s s b e s s e s s e e b e s s e e sae e sa e st e s saasssessaessseeseesssessaennees 21
CONCUITENCY ceviiiieieeerteesitietessreestee st essaessseestesssessssesseessaesssessssesssessssessssssssessseesssesssessssessseesssesssesssaesses 21
(@ U F= | L 3 1] (TSR UR ST 22
DESTINATION .ttt ettt e s st s e e s s ae e s e e s sae s s st e s sae e s st assae s saesssaesssesssessssesssaessaens 22
Programming MOAEL ...ttt te et sa et e st e s esbe s e e e e e e s e b e bessassessessasnnennanes 23
EXECULION @NVIFONMIENT ...ttt s e e ssae e st e s sae s sa e s e e e s st e s sbe s saesssesssaasssassaesssans 25
Runtime enviroNmMent LFECYCLE ...ttt sttt a et et 26
DEPLOYMENT PACKAGES ...ttt e e e et e sae st et et e s b e s seesa e e e st e s estestessassessassnessensanean 32
CONTAINET IMIAGES ...veiiieeiieeieicteeteertee et e e ss e e s tessreesstessssesstessssesssessssasssesssassssessssesssessseesssessseesseenns 32
ZIP FILE @ICRIVES ..ttt ettt e st s ettt et e st e s seese s e e sa e e et entenaanes 32
LQYEES eeeeeeeectterctte et e et e e et e e et e s e st e e s sae e s s ae e e sab e e e s a e e e a e s e s e e s e at e s s e e s e s e e s e e e e e a e e e s s e e e saeesnaasennaasennas 34
USING OtNEI AWS SEIVICES ..uveuriverecieeieeeetetecte e testes e e eesaessestestestesses e s e e e eaessesensassessessaesssnsessensanes 34
INFrastruCture @S COA@ (IAC) ottt et eeeteeeeteeessbeessstessssseessseeesseessssessssseessssesssnsessns 36
[aC 10OLS FOr LAmMbBa ...ttt a ettt s b e st e e n e a et nes 36




AWS Lambda Developer Guide

NEXE SEEPS eeeeiieicteetrctee ettt e st e st s e e e st e e st e s s ae s e sa e s aa e s e e e besssaessaesstesssasssaesssaesseasssesssaessseesseenns 50
Supported regions for Lambda integration with Application Composer ........cccoceeveveeverenneen. 50
Private NETWOIKING ...cveeeieeceeeeeteetecee ettt te e te e st e e s et et e st e b e s s e s seese e e e s esaeaessasaassessnesaeseanes 52
VPC NETWOIK ELEMENTS ..ottt sttt ettt st et s s b st s s et et e e be e s ne 52
Connecting Lambda functions t0 YOUr VPC ...ttt e et sa e saeaas 53
SNAFEA SUDNELS ...ttt sttt st st st ettt a b et e e saessesnsnaes 54
Lambda HYPEerplane ENIS ...ttt ste e stestesae e e s s saesaesaessessa s e s e s s e s esaensassanes 54
CONMNECLIONS ...ttt ettt sttt e st s e s st st st e st e b e st e s st s be st e st e sbeesbesnessasaseseensanns 56
[PVEB SUPPOIT .ottt ste st e st s st e s sae e saaessse s s e e s s e essa e s s e s saesssaessaesssassssessssesssessseesssessseesnees 57
SECUNILY ettt ettt ese st e e st e st e s s bt e st e s s s e e st e s saaessae s aa e st esseessaesssaesssessseesssesssaesssesssessssenseessaens 58
ODSEIVADILILY eveeeeeeiecieteeee et e e et e st et e st e s b e e e e e e e e e e b et et e aesseeseeneensentensenaanes 59
LamMBA@ CONSOLE ...ttt ettt sttt ettt et et st st e s b et e e saesbe st ssassastesessansanssas 60
PN o] o] L Tar= 4 o] - OO OO R R TRRSRSRRR 60
FUNCEIONS ettt ettt et st et s e s b et a s b e et e s st s b e st e st s be et e s neesnesanasnten 60
COAE SIGNING .ottt e et st e st e st e st e et e e e e e e e et et e sasbasseesaesaessensassantansansessesssensanes 60
LQYEES eeeieeeteeeteete et et e s te e et e st e s ae s st e s ae e st e e sae e s st e e s e e st e s b e e b e e s et e s ae e s e et e e st et e e aa e s bae st eesteeeraesnaaeseens 60
Edit code using the coNSOLE @AITOr ...t 61
INSEFUCTION SEES (ARMY/XEB) oottt teetteeeteeeesteeesseeeessseessssesssssessssssssssssssssessssssessssesssssesssnsesns 69
Advantages of using arm64 archit@CtUIE ........ocu ettt 69
Requirements for migration to arm64 architeCture ........ooeeceececececececeeee e 70
Function code compatibility with arm64 architecture ..........coooeeeeeeirceeceeeeeceeeee s 70
How to migrate to arm64 arChit@CtUre ...t 70
Configuring the instruction set archit@CtUre ... 71
AdAItIONAL FEATUIES ...ttt ettt e s st s e st et e e s se b e e ssesaessenaes 73
SCALING ettt et ettt et e st e st e e e e et et et e be b et e e s e e ae e Rt et et e b etantasaeeseeseeraenean 73
CONCUITENCY CONTIOLS ettt ettt et et e st e st e e se e e e e e e e s et e sbessassessaeseenaensansansansans 73
FUNCEION URLS ..ttt ettt et sat sttt s sb e st ae st s e s ae s b e s esnesabesntesnaenne 74
ASYNCAIrONOUS INVOCALION ..cuviieiececeeeeteteteeee ettt te s e e e e s e sae st e saessesse s e eseeseenaensansans 74
EVENT SOUICE MAPPINGS cneiiiiiciieeterceeeteesteete st essaeesseestessaessssessseesssessssssssessssesssesssessssesssessseesssesnes 75
DESTINATIONS ...ttt ettt sttt b e st s e s a e st e et e b e s b et e sesabes st esseesesssenness 76
FUNCLION DLUEPIINES ettt et te e e e s s b e s b e s b e s se e e e e e e e aesaenaensans 77
Testing and deploymMENt TOOLS ..ottt saesa e e ns 77
APPLICAtION TEMIPLALES ..ottt e et et e st e s b e s s e e e e e e e e e e aentaaaneas 77
Learn how to build Serverless SOLULIONS ........ccocverieririneninenerctreset ettt sa et sae e sae s 78
Lambda runtimes ....ccciiiiiiiiiiiiiniiiinnninininnnnnnssssssssssssnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 79
SUPPOIEEA FUNLIMIES ...ttt ettt et e st e s te e e e e e et e ae st e st e st e s saesessa e s e s et ansassassessneseensensensanes 79




AWS Lambda Developer Guide

NEW FUNTIME FELEASES ...ttt sttt sttt et et e st s st et s e s se st e s ssassestesesansesassn 82
Runtime deprecation POLICY ...ttt e et a et st sae s e e e et et ena s 82
Shared responsibility MOAEL ...t aeste st s e e s e e e nannens 83
Runtime use after depreCation ...ttt st a et aesaeenas 85
Receiving runtime deprecation NOtIfICAtioNS .......cceoeeieiiicceeeee e 86
Listing functions that use a deprecated runNtime ... 87
DEPreCated MUNTIMIES ...ttt e et e st et e s b e st e s sa s e e e e e e s etessassassessassesseensansaneans 87
RUNTIME UPAALES ..ttt ettt et e et sa et e s ae st e st et e e e e e e e e et e aasaantessassassassnennaneans 91
Runtime management CONTIOLS .....c.couioieieeeieeceeteeetetee et e st teste s e e e e e e e s e saesaesaanas 92
Two-phase runtime Version rOLlOUL ...ttt ae e re e nnens 93
ROLL back @ FUNTIME VEISION ..cuiiiiiiietreetctcentet ettt ettt b et e s ae st et s sesae e ssasaa s e e ene 93
Identifying runtime version ChanNgEs ...ttt e et saesbessens 95
Configure runtime management SETLINGS ..ot nns 97
Shared responSibility MOAEL ...ttt a e aanes 98
High-compliance appliCatioNs ...ttt st s ae e ne 99
RUNEIME MOAITICAIONS ...ttt sttt ettt e st e e s e b e e s 101
Language-specific environment variables ... 101
WEAPPEE SCHIPES ceeeeeiieieetieteest ettt esre et e st e s sre e s saessaeesbessseessesssaesssasssaesssessssesssesssaesssessstesssessssesnses 101
RUNTIME AP .ttt sttt st s e st s b st et s b e et e s s sbe st e st s b e et essesmsesanennes 105
NEXE INVOCATION .ttt ettt a e s b st sae s b e st e s s ne st enas 105
INVOCALION FESPONSE ....eeiiiiiieieeeeeteeterete st estesste s s e e s see e st e s sse s s e e s sesssaasssessseessseessaasssesssaessesssaessennns 107
INIEIALIZAION BITOK .ottt ettt st s b et s b e st et s e s et e e s sa s esaenas 107
INVOCATION BITOF ettt sttt a e et et e st s b e st e s st e b e st e sesbe st e seenanns 109
OS-0NLY FUNLIMIES .ttt ettt et e testeste e e e et e s et e st e s sesbessasssesaessessansansensansessasnsesaansans 111
BUilding @ CUSTOM FUNTIMIE ...ttt te e e et te st e s ae st e s se e e e e e e s e s e banaanes 113
REQUIFEIMENTS ...ttt ettt s e sae e st e s st e et e s s s e e s e e s saeessaeesaeesssesssaesssessseesssessssennees 113
Implementing response streaming in @ cUStOM rUNtIME ......coeeeeieieeecieceeeecee s 115
CUSTOM FUNEIME TULOMIAL .ottt ettt ettt s st et s et et s sbe e e e saanes 117
PrErEQUISITES .ottt ettt sre st e s sae s st e s s e e s st e s s ae s sa e s aeessaesssessssesssaesssasssessssessssennees 117
Create @ TUNCLION ..ottt sttt et sb e st s sa et s st et s e s b et e e saasaesseneen 118
CrEATE @ LAYEI ettt ettt et e e e ettt e st e st et e e e e e e e te b e b e teeaeereenee e entanes 121
UpPdate the FUNCLION ...ttt ettt e saesa e st e b e s be s b e s se s e e e e nnennaneans 121
UPate the FUNTIMIE ..ttt ettt et e s s s e e e e e e et et e ae b e saennennans 123
SNAIE ThE LAYEK .ttt et et st be st e st e s b e e e e e e e et e b e tansenaanes 124
CLEAN UP ittt ee ettt et e st e st e st e st e e e et e e et et e b e sae b e sasseesasasessastassansansansasseesaensensansantansanes 124
AVX2 VECEOTIZATION .ottt ettt st ettt ae s sae st e s st e st e sessae st esneeabanns 126




AWS Lambda Developer Guide

COMPILING FrOM SOUICE ...ttt ettt st et e s e e e e e s e et e st et e s sessessessae e esaensanean 126
ENabling AVX2 fOr INtEL MKL ......ovieeeeeeeeeeeteee ettt e s sa e st et e saa s se e e ns 127
AVX2 support in Other LaNQUAGES ...ttt st te e nnan 127
Configuring FUNCLIONS .uueeiiiiiiiiiiiiiiiieetiiiiiieieititeeeeessesssssssseeeesssssssssssssssssssssssssssssssssssssssssssssssans 129
Configuring fUNCEION OPLIONS ...oouveieeeeeeeee ettt a et saesae s enennan 131
FUNCEION VEISIONS ...ttt ettt et et s e st st s s st e st ssse s b e s st e nessbesneenesn 131
UsSiNg the fUNCLION OVEIVIEW ...ttt ettt te e s a st sttt aas 132
Configuring fuNCtioNS (CONSOLE) ...uviiieieeeceeeee ettt aesaesae s eenaens 132
Configuring function Memory (CONSOLE) .....oouieeeieieeeeeeeee et 134
Accepting function memory recommendations (CONSOLE) .....ccoeereeeeereecieceeciecececee e 134
Configuring function timeout (CONSOLE) ..ot 134
Configuring ephemeral storage (CONSOLE) .....oouiiiiieiecieeeceeee ettt eae s 134
Configuring triggers (CONSOLE) ...ttt sa e st e st e aeese e e e e e e e e e aenaaneans 135
Configuring Lambda advanced logging Options .......c.cccoeeeeerieieereeeeeee e nens 135
Connecting RDS databases (CONSOLE) ....ccuucueerererieeeeteteteces ettt aeaeaan 135
ENVIrONMENt VAFIADLES ...o.veiiieee ettt ettt sttt et st sb et 136
Configuring enviroNmMeNt Variables ...ttt aens 136
Configuring environment variables With the APl ... 138
Example scenario for environment variables ... 139
Retrieve environmMent Variables ...ttt saes 139
Defined runtime environmMeNt vVariables ...t ss e aes 141
Securing enViroNmMENt Variables ...ttt neaenens 143
Sample code and tEMPLALES ...ttt a e et aen 146
OUtbOUN NETWOIKING ..ottt ettt te st e s te s e e e e e e e et e st e besta st et assessaesaenaensanean 147
Managing VPC CONNECTIONS .....uiiiiiiiieiteecteeteccteete st essteeseesssessseesssessaeessaesssaesssassssesssessssesssasssaanns 148
Execution role and USer PErMUSSIONS .....c.cceceeeeiieiieiierieceseseseeeeeesee e esaessesaessessesseeseesssssessessansans 148
Configuring VPC acCeSS (CONSOLE) ..cuviuiruieieieieteteeteeeee ettt stesteste s e e e e e s et e saesaesaasaessnesnennens 149
Configuring VPC QCCESS (API) .ottt ettt stestesae s e e e e e e e et e saesaesbessessassassnennansansans 151
Using IAM condition keys for VPC SEtHINGS ...c.coe ettt sne e 151
Internet and service access for VPC-connected fuNCtions ......c..coccvveveveviveneninenenincneneeenes 156
VP C LULOTIALS ottt ettt sttt st st s e st et s e be st e s et e e s e st et e e saasaesaesassensenasansansons 156
Sample VPC cONfIGUIAtIONS ......ceiieieieeeeceeectetete et ste st e et saesaestesvesse s e e e e s e e e saenaasaneas 157
INBOUNA NEEWOIKING «.eeeeeee ettt s e e e et e st e st e se b e seeseennans 158
Considerations for Lambda interface endpoints ..o 158
Creating an interface endpoint for Lambda ... 159
Creating an interface endpoint policy for Lambda ..o 160

Vi



AWS Lambda Developer Guide

FILE SYSTOIM ettt et e s et e e e e e st et et e b e s aeesesseesaess e st ensantansassansesseessansansansan 162
Execution role and USer PErMUSSIONS .....c.cceceeeeieieeiierieceseseseeeseesee s esaestessessessessesseesesssessessansens 162
Configuring a file system and access POINt ......cccveciieierericecececteree e sae e 163
Connecting to a file System (CONSOLE) ....cveueeueereeeeeeeeeeteeee ettt a e 164
Configuring file system access with the Lambda APl ... 165
Mounting an Amazon EFS file system in another AWS account .........cccoceeecenecenecceeceeceenne 166
AWS CloudFormation and AWS SAM ....irineetnenientsesestetsessestesessessessssessessssessessessssenses 167
SAMPLE QAPPLICALIONS ...ttt st te e e e e e e et e st e st e s basbessa e e e nnenaenaanes 169

ALIGSES ...ttt ettt s te sttt et e s b et e s st et e st et e e A et et e e e et e R e h et et e R et et e Re b et e e e se e et esaebe st eneeaenee 170
Creating a function alias (CONSOLE) ..ottt nes 170
Managing aliases with the Lambda APl ...ttt 171
Managing aliases with AWS SAM and AWS CloudFormation ..........ccececeeeeenenenceecenceeceecnenens 171
USING QLIASES .ottt ettt e teste st e s e e e e e e et et et e ae s b et e e se e e e saesaeste st e sansassassaesaensensanes 171
RESOUICE POLICIES .uveeeeieieieetecteeteeeeee et cte e te s e e e e e e e e s et et et e st asseesesseessessestesensassassassessaensensansans 172
Alias routing CONFIGUIAtION ......oeeeiecee ettt a et t e aeeaas 172

VBISIONS ..ttt ettt ettt ettt st st et e b e et e et s b e st e e st e b e e b e e st s se s et e e st e see b e e st aesesabesstesesnsesseesens 176
Creating fUNCLION VEISIONS ...ttt ettt steste et e e s st e stesaesaessessessnennennens 177
USING VEISIONS .eneeiiieieieieteeieiseesieeestesssessseessseesstesssessssesssessssesssessssesssessseesssessssesssessssesssessssesssessssasss 178
Granting PEIMISSIONS ....cicuiiiieiiiirttrieertee st esrt e et ssteesseestesssesssaessseesstesssesssaesssessseesssesssaesssessseesssasn 178

RESPONSE SEIEAMING ...ueiiiiieeiecteeeeeteet ettt ee s see e st e s sae s st e s s ae e st e s saesssaessaaessaessasssaesssaesseasssesssaessses 180
Writing response streaming-enabled fuNCtions ... 180
Invoking a response streaming enabled function using Lambda function URLs ................... 182
Bandwidth limits for response Streaming ........ccccceeeeeeieciiciccecececec e 183
Tutorial: Creating a response streaming function with a function URL .........cccceeernennnene. 184

Deploying FUNCHIONS ..cciiiieeeeieeiiiiiiieiiiiiiineeeennesiiiiseceiststesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 188

ZIP FILE @ICRIVES .ttt ettt et e st s b e be e e e e e e et et et e b e seeseeneeneennanaanes 188
Deployment package file permiSSioNs ........ccoccieeeieeeieeeeese ettt sre e aeaeeens 188

CONTAINET IMAGES ...eveiieieieecteeieeeteereeste et esteesseesstessseessteesseestessseesssessstesssessssesssessstesssessseesssessseesssenses 189
MG SECUIILY eineiiiiiieieccteeeecteerte sttt et e st e st e s sae e s e e s s st esstesse e s s essatessaesssaesssassseasssesssaesssessseesssannn 190

ZIP FILE @ICRIVES .ttt ettt e s e st st e e s e e e e e et e ae st et e seeseeseeraeneanaanes 191
Creating the FUNCLION ...ttt et e e e e nesaenaens 191
Using the console COde ItOr ...ttt s a e sa e st et aas 193
Updating fUNCLION COAE ..ttt ettt et et e st e et et s aas 193
Changing the FUNTIME ...ttt ste e e e e et et sbe st e s be e e saennenean 194
Changing the arChit@CLUIE ...ttt st st e e se e e e aatans 194
USING the Lambda AP ...ttt ettt te st ste s e e s a et et esbe st e b e s sa e e s nnennan 195

vii



AWS Lambda Developer Guide

AWS CLOUAFOIMALION ittt ettt sttt e s e st et s e sse st e e s e sae st e e ssassesaesessessenees 195
CONTAINET IMAGES ...eveiieieieecteeeeeteere st e st esteesaeesstessaeesstessseessesssaesssessstesssessssesssessstesssessseesssessseesssenses 196
REQUIFEIMENTS ...ttt sttt ettt s s e e sae e st e s s ae e st e s sae e st e s saessaessaeesssasssaesssassseesssesssennnes 197
USING aN AWS DASE IMAGE ...cuuieieeeeeeeee ettt ettt ste e te e e e e e e e s et e st e ssassessa e e esaenaeaeneans 198
Using an AWS OS-0nly Dase iMage ...ttt aesaesaesaesae e e e e saesae s 199
USiNg @ NON-AWS DASE IMAGE ...ecriieieiecieeeeeeeetete et stestesse e s e s s e et e stesaessessesse s e e s e saessansessansanes 199
RUNEIME INTEIrfACe CLIENTS ..ottt sa et sa e 200
AMAzon ECR PEIMUSSIONS ...ccciiiiiiiiieieirteriteestesrtesstesssesseesssessseesssessssesssesssessssessssesssesssessssasssesssaens 200
Container IMAge SETLINGS ..ottt et e s sae s se e s sae e saessaesssaessaeesanasssesnnns 203
TESEING IMAGES ...ttt sttt et e st e e st e s e e s sae e st e s s se e st e s ssaessaasssaesssessseesssessseesssessseesssessstesssessseesnses 205
GUIAELINES .ttt sttt ettt ettt e s s st e e s s et et s aa s b et esaesabe st esasbestesassansensssanes 205
ENVIrONMENT VAiADLES ...ttt ettt s sae st s st b e e saas 205
Testing AWS DaS@ IMQAGES ....coueeuieieieieietecee et et ste e stestestesse s e e e s s e ssesse st essassassesssessessensensansans 206
TeStiNg NON-AWS IMQAGES ....oioieiriirieiteeteert et st essteesreessressseesssessssesssessssesssessseesssessssesssassssesssesses 208
INVOKING FUNCEIONS cocuiiiiiiiiiiiiiieeeeiiiiieiiiiiinieeessseesissssesessessssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 215
Invoking Lambda functions from another AWS SEIrvice .......cueoeeeeeeeeieeceeceectececeee e 215
Invoking Lambda functions from a Stream Or QUEUE .........ccueveeieeeeeeeeeeeeeete e eesnesaeaens 216
EFTOIS @NA FELIIES ..ottt ettt sttt ettt s e st et s s ae st e e s sasbe st e e ssassenasnansansesassans 216
TESEING IN CONSOLE .ttt ettt et e st e st e e e e e e e s et e st e tessassassessaesesnsensansansans 217
Invoking functions With tESt @VENTS ...t sae s 217
Creating Private teST @VENTS ...t s e e sa e e re s e s aa e ne s 218
Creating shareable teSt @VENTS ...ttt sa e 218
Deleting shareable test event SChEMAS ... 220
SYNCAIONOUS INVOCALION ...ttt ettt te e e e e e et e st e st e s sesbesbeesaene e e ennansansansan 221
ASYNCRIrONOUS INVOCALION ...oouiiieieieeeeecectete ettt ettt estesre e e e e e e et et e saesaessessessasseennenaansans 225
How Lambda handles asynchronous invocations ..........ccceeeeieieccceececeeeeeee e 225
Configuring error handling for asynchronous invocation .........cceoeevecececenececeeeeeeeeens 228
Configuring destinations for asynchronous invocation ...........ccceeeeviecieceeceseceseeceeeeeeceeee e 228
Asynchronous invocation configuration APl ...ttt e e saesaeaens 233
DEAA-LEILET QUEUES ...ttt ettt e st e se s e e e e e e et et et e stassassessaennenaansans 234
EVENT SOUICE MAPPING ceiiiiiiiiieeiierteese ettt et e st e st e s sae e st e s ssesssaessseesssesssessssesssessssasssessseesssessseesssessns 238
Creating an event SOUICE MAPPING ..cccvirviirriirrieireenrieeseesteestessreesseesssessseesssessseesssessssesssessseesssessns 239
Updating an event SOUIrCe MAPPING ....cceceeeeerereeieietestestessesesesseeeessessessessessessessessessasssessensenes 240
Deleting an event SOUrCe MAPPING ...cceceeeeeeieeeieeectete e ste e e e e e saesaestestesse s e se s e e s e s enaeaenes 241
BAtChing DENAVION ...ttt ettt n e e n et e e s 241
Configuring destinations for event source mapping iNvocations .........cccccceeeeeeeieeveeceeceecnenn, 246

viii



AWS Lambda Developer Guide

EVENT FILLEIING ettt ettt b e st e e e se e e e e e et e te b e saassessaeseeneensansan 249
EVENt fIlLErING DASICS couvieeeeeeeeeeeee ettt e et sttt e e e e n e e nes 250
Handling records that don't meet filter criteria ... 252
FILLEN FULE SYNLAX ettt ettt et e s ae s e ae e e e e e e st e s ae b e bessesse e e esaesaasaesansansansas 253
Attaching filter criteria to an event source mapping (CoNSoLle) .......cccceeeeeeeeceeceeceeceecrecreceennen 254
Attaching filter criteria to an event source mapping (AWS CLI) c..ccvoeerecvecieceneceeeeeeeeeenne 255
Attaching filter criteria to an event source mapping (AWS SAM) ......ccocivecerenenveceeeeceeeene. 256
Using filters with different AWS SEIrVICES ...ttt 257
Filtering With DYNAMODB ...ttt s e et et saesaesse s e e e e e ea e nenaans 258
FIltering With KINESIS ....ecueeeteeeeeeeeeeee ettt ettt e e e e e sa et e st sae s e s sa e e e s aeaa s 265
Filtering with AMAzon MQ ...ttt e et sa e st e st e st e s e s se e e e e e s e nesaanaans 268
Filtering with Amazon MSK and self-managed Apache Kafka .........ccooeveevecveoeneneneceeeeee 274
Filtering wWith AmMaAzon SQS ...ttt ettt e tesae e s e e e e e e e e aesaasanas 279

FUNCEION STAT@S ...ttt et ettt et sae st s e s b e et ssse s sae st s snesbanne 284
Function states While UpPdating ...ttt 285

ErrOr NANALING oottt e st e st e st e st e s e s e et e s s e s et et et astessassesseennenaennans 287

RECUISIVE LOOP ELECHION ...ttt a st s a et e st e s e se e e ennenes 290
Understanding recursive Lloop detection ...ttt 290
Supported AWS Services and SDKS ......c.ooiiieiiiieiecieeeeceeeee et seeretesaestesse s e se s s e s e saesaessessessaneas 292
Recursive Loop NOLITICAtIONS ...ccucveeeceeeeeeeeeee ettt ettt st ae e an s 294
Responding to recursive loop detection Notifications ..., 295

FUNCEION URLS ..ttt ettt st s e at et et sb e st e st s b e st esse s be st e snessnasntenesns 297
Creating and managing fUNCLION URLS ........ccuioiieeececeeeetetete ettt ste e 299
Security and QULh MOAEL ...ttt a e et nes 307
INVOKING TUNCHION URLS ...ttt te s te e e sa bt s ae st e s sessa e a et et e aanns 315
MONItOriNG FUNCLION URLS ...ttt te e e e e e sa e s et e ssessasaa s e e e esnenenensans 326
Tutorial: Creating a function with @ function URL ..o 328

ManNaging fUNCLIONS ...uiiiiiiiiiiiiiiettciiiieeeiitiiineesssssssssssssesesssssssssssssssssssssssssssssssssssssssssssssssssssssssnee 333

Tutorial - Lambda With CLI ...ttt ae st e s et e e s essesaesasnans 334
PrErEQUISITES .ottt ettt sre s st e s sae s s st e st e e st e s sae s ssaeesae e s st assseesssesasaesstasssessssessseennees 334
Create the @XECULION FOLE ..ottt ettt sttt et s et e se s 335
Create the TUNCLION ...ttt ettt et e s e s b et e saa s 336
UpPdate the FUNCLION ...ttt ettt e saesa e st e b e s be s b e s se s e e e e nnennaneans 340
List the Lambda functions in your aCCOUNt ..ottt 340
Retrieve @ Lambda fFUNCLION ...ttt ae st sa e 341
CLEAN UP ettt ettt ettt e te st e st e st e st e e e e e e e et et et e st e s b e s aesaesasasessastassassansansaeseeseensansantantansanes 342




AWS Lambda Developer Guide

FUNCLION SCALING 1ottt sttt e ettt este s b e s e et e e se e e e s et estessansassassaesasnsenean 343
Understanding and visualizing CONCUITENCY ....coueeieiecieiiecieriereeeeeeee e tecae e sre e s e e e s e saesaenseeas 343
HOW t0 CalCUlate CONCUITENCY ..ottt e e e e e e e et e tesaesae e e e e e esaesae e entanean 348
Concurrency Vs. reqUEeSstS Per SECONM ......ccceeeeerieiierieiecteseceee s e e ee e e e e aesaesaessessessessaesasssessensanes 349
Reserved concurrency and provision@d CONCUITENCY ......cccceeeeeeeereereereeseeseessesesesseesssssessessensens 350
CONCUITENCY QUOTAS «.eeiiieiiieeieiceeetesstee e st e e stessseesseessseesssesssaesssesssassssessseesssesssessssessseesssesssesssessnses 360
Configuring reServed CONCUITEMNCY ....ccceeeeereeeeeeterestestessessesseeseessessessessessassassessesssessessessensansenses 362
Configuring proviSioN@d CONCUITENCY .....cceeeeeeereeeeieerertestestessessessesseesessessessessessessessassessesssensenes 366
SCALING DERAVION .ttt sa e sttt e e e e e e e e e bestesaanean 376
MORNILOFING CONCUITENCY .eeeviiererireeeierrreeestersseesteesseesssessseesssessseesssesssessssessssesssssssessssessseesssasssesssassnses 377

COE SIGNING oottt e e e e e et et et et e s b e st e s seeseeseess et et assansassassaeseesaessessansensansansanses 383
SIgNAtUre ValidAtion ..ottt e e sa et ae st e b e aa e e e e e nn e aenes 384
ConfigUuration Prer@QUISITES .....ciceceeeeeeeeecretectese ettt e ste e teste e e e s e e et e stesaestassasanesnsnnens 385
Creating code signing cONfIQUIAtioNs .......c.coeoieieiiieicceeecesee ettt sae e aeeens 385
Updating a code signing configuration ...t eens 385
Deleting a code signing coNfiIgUIation ........c.coeoeeieieieiecceececeree et ve e nnens 386
Enabling code signing for @ fUNCLION ......cuoeieeeeeee et 386
CoNFIGUIING TAM POLICIES ..ttt ettt steste s e s e e e s e e s e s e sae st e st esaassassessnennanaans 387
Configuring code signing with the Lambda APl ... 388

TGS ettt ettt et e st et s s e e et e st e e st a e s b e e b e et e s b e et e e e At e e b e e e r e et e e a e e aeeea e et e e st e e teesraeeteeseasnraanne 389
PEIIMISSIONS ...ttt sttt e a et s st st st et s s be st e e st s be st e st e sbe et e st ssesasannis 389
UsiNg tags With the CONSOLE ..ttt st sa e e aan 389
USING tags With the AWS CLI ..ttt te e re e se s aesaesaasae s e s e s saennan 392
REQUIFEMENTS FOI TAGS woviiieiieeeeceeeeeeerereeee ettt te st e s e e e re e e e e et e aesaesbessessaesa e e esnansaneans 393

TesSting FUNCHIONS ...iiiiieerieiiiiiiiiiiiiiieceneneiiiiiieeetttssassssssssssssssesssssssssssssssssssssssssssssssssssssssssssssssases 394

Targeted DUSINESS OULCOMIES ......c.eciiiiieieeeceeectete ettt stesaesae s e e e e e s et e st e bessassesseenaanes 395

WHRAL 10 TS .ttt sttt et et b e st be st e s e b e e s s e st et esesbe e et esassentenassansensens 395

HOW t0 tESt SEIVEILESS ..ottt st ettt st et s st st e e s besae st s e sae st esassassenaesansan 396

TESEING LECANIGUES ..ttt sttt et e st e st e st e s b e e e e sa e e et e bastessessassaennennanes 397
TeStiNG iN The CLOUA .ottt et e e s b e st e aa e e s e s snesnens 397
TESEING WIth MOCKS ..ottt st te e s e s e s st e st e st e saassasseesnennannans 400
Testing With @mMULGLION c...c.voeeeee ettt a e s re s e e n e a s 401

BEST PrACLICES ettt st e s sr e s ae s b s ra e s b e s sa e s s b e e s aa e e ae s ra e e e e e st e e b e e sae e saenntans 402
Prioritize testing in the CloUd ...ttt es 402
Structure your code for testability ... e 402
Accelerate development feedback LOOPS .....ccoeeeeeeieiiteeeeeec et 403




AWS Lambda Developer Guide

FOCUS 0N INTEGratioN TESTS ...ooiiiiiieeeectecer ettt sre st e ae s sae e s e e s saeessaessaaessnasnaanns 403
Create isolated test ENVIFONMENTS ..ottt et sre st e sa e 404
Use mocks for isolated buSiNeSS LOGIC ..cueueeuieiiiiieieteeeeeee ettt e aas 405
Use emMuUlators SPAriNgLY ...ttt ettt e s e s e e e e e e s e st e aessesaessassassnennenaaneans 405
Challenges teStiNg LOCALLY ...c.ccueeueeeeeeeeeeeee ettt e e e et et et esbe s s e s e e e e s eaesaanaans 406
Example: Lambda function creates an S3 bucket ... 406
Example: Lambda function processes messages from an Amazon SQS queue............ucu....... 407
FAQ ottt ettt sttt s e st e e st s st e st s sa e e s e e e b e e st e e b e e a e e e b e e e e et e e e Rt e e e e et e e ae e e s e e e te e st e e seesraeesraentans 407
NEXt SLEPS ANA FESOUICTES .....ueeueeierereeteceeeetetetestestestesseees e esesessessessassesssessessessessassessassassassesssessensans 408
BUilding With NOAE.|S ..ceueeeeeiiiiiiiiiiiiiiinennnniiiiieiiniinneeessssessssssssssnssssssssssssssssssssssssssssssssssssssssssssss 410
NOAE.JS INIEIALIZALION ..ottt a e st et a e s b e s e e e e e e a e e e aanes 413
Designating a function handler as an ES MOdULe ... 413
Runtime-included SDK VEFSIONS .....cc.ociveriiiiinieirenentetsestestee et sessestesessessesessessessssassessessssassessesens 414
USING KEEP-QLIVE ...ttt ettt ste et e et e st e st et e st e e e e e e e e e et e aessessaesaeseasaensansanes 415
CA Certificate LoAING ...cuoeeeeeeeeeeeee ettt ste st e e e e et e st e stesaesbesseesae e e s enenaantans 415
HANALEE ettt sttt st sttt e s e st et s b et e sa s b et e st ssasaestesassassensesansessasans 417
INQIMHNG oottt et see s sre e st e e sae e s e e s saesstessseesssessaasssassstasssessssesssessseesssessssesssessseessaennn 418
USING QSYNC/AWAIL ettt te et e et e e st e st e st e s e s e sseesa e s e s eaassassassassasnnenean 418
USING CALDACKS ..ttt sttt e e et et sb e b e s ae s e seesa e e e aena e aanes 421
DEPLOY .ZIP filE QIrCRIVES ...ttt ettt e et et b e s a e snesnens 424
Runtime dependencies iN NOGE.JS ....coeoeeeeieieieretectetecesee ettt sae e s e e e e e s e e e sae e e saeaas 424
Creating a .zip deployment package with no dependencies ..........ccoeeeeeeeceecrececenececeeneane, 425
Creating a .zip deployment package with dependencies .........cccovrieoececeneciececcecceececeen, 425
Creating a Node.js layer for your dependencies .........cceeveeceeeieeecenereeeeeeeeee e 426
Dependency search path and runtime-included libraries ..., 427
Creating and updating Node.js Lambda functions using .zip files .......cccceeoererenvenveececnnne 428
DePLloy CONLAINET IMAGES .....ocveeeeeieeeeeeeeetete ettt te e e e s tesaestestestessesse s e esesssesaessessesansassassesssssnenaensans 435
AWS base images fOr NOAELJS ...ttt sae s te st s ae s s re e nens 436
USING aN AWS DASE IMAGE ...cueeieeeeeeeeeec ettt e teste e e e e e e e e s et e stesaesse s e e e e s eneneneans 437
USiNg @ NON-AWS DASE IMAGE ...ecriieieiececeeeetete e te e ste e sse e e e e s se s e stesaestessesse s e e e e saessassansansanes 442
CONEEXTE ettt sttt st a e st e s et e b st s s s b e s st s bt et e e n e e be st e st e b e et e nesbesntens 452
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 454
Creating a function that returNs LOgS ...t 454
Using Lambda advanced logging controls with NOde.js .......ccccereeircieciecenececeeeeeeeeeeeee 456
Using the Lambda CONSOLE ...ttt a et tesa e s re e an e nnens 462
Using the CloudWatch CONSOLE ...ttt ettt st s nens 462

Xi



AWS Lambda Developer Guide

Using the AWS Command Line Interface (AWS CLI) ..ottt 463
DELELING LOGS ettt e ettt e st e st e s b e e e e e e e et et et et e sesseeseennennanes 466
EFTOTS ettt ettt st st e e e s b st et s b e et e e st s b e st e st e b e et e e st e be st e eat e b eeateneeas 467
SYNEAX ettt ettt ettt st e st e st e st e e e e s et e s e e et e e s e e e b e e e s e e e bt e s b e e et e e e e b e e ae e aeeessaeraennrans 467
HOW Tt WOTKS ettt sttt ettt sttt s b e st s e st e s s s e e s e s b aaesassannan 468
Using the Lambda CONSOLE ...ttt a e sttt esr e s e se s s s annens 469
Using the AWS Command Line Interface (AWS CLI) ..ottt 469
Error handling in Other AWS SEIVICES ...ttt stessesse e e s e saesaeeens 470
WNAL'S NEXEY .ottt sttt ettt et st et e s b et et s s et et ssesaa st e e ssesentesassansensons 471
TEACING ettt ettt st e s st e e st e s sae s s e e s b e s se e s aesssaessae e seesssasssaesssassseasssesssaessseesstesssessseessseesseesssenses 472
Using ADOT to instrument your Node.js fUNCLIONS .......cceeeeieeeieiieeeeecec e 473
Using the X-Ray SDK to instrument your Node.js functions .........ccccceeveeereeciececeneceseeecenen, 473
Activating tracing with the Lambda conSOoLe ... 474
Activating tracing with the Lambda APl ...ttt 475
Activating tracing with AWS CloudFormation ... 475
INterpreting an X-RAY TraCe ...ttt see st e s ae s saeesa e s saesssaesssaessaassnaanne 476
Storing runtime dependencies in a layer (X-Ray SDK) ......cccocererereneeieeeeeeceectecesesreeeeeenens 478
BUilding With TYPeSCript c..eeiiiiiiiiiiiiiientiiiiiieieiitiitneesssesssssseetesssssssssssssssssssssssssssssssssssssssssssssss 480
Development ENVIFONMENT ...ttt ste e s e e e e e s e e s e te st e stessesaessassessnensensensensanes 481
HANALEE ettt sttt st sttt e s e st et s b et e sa s b et e st ssasaestesassassensesansessasans 483
USING QSYNC/AWAIL ettt ettt teete e e et sa e st e st e s te s e s e s e esa e e e s esbessassassassaennenean 484
USING CALDACKS ..ttt sttt e e et et sb e b e s ae s e seesa e e e aena e aanes 485
Using types for the event ObJECT ...t 486
DEPLOY .ZIP filE QIrCRIVES ...ttt ettt sa et et b e s ae e snesnens 488
USING AWS SAM L.ttt ettt e ste st e s saessse e st e s st e s s e s sa e s s e e s st essaesssaessaeessaasssesssaessseesstesssenns 488
USING the AWS CDK ...ttt testestesve e e e e et e saessesae s s e se s e s s e s et essestassassassaesasnsensansanes 490
Using the AWS CLI and @ShUIld ...ttt 493
DePLloy CONLAINET IMAGES .....ocveeeeeieeeeeeeeetete et cte e e e e e e e te st et e stestessesse s e esasssesaessessensansessassessessnesaensans 496
Using a Node.js base image to build and package TypeScript function code ....................... 496
CONEEXTE ettt sttt st a e st e s et e b st s s s b e s st s bt et e e n e e be st e st e b e et e nesbesntens 503
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 505
TOOLS ANA LIDFAFIES ettt b et s sa et s s b et e s et et ssasaesaennen 505
Using Powertools for AWS Lambda (TypeScript) and AWS SAM for structured logging ...... 506
Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured
LOGGING ettt ettt s et e et et et et e st e et e e ae e e e e e s et e tenteebeeseesaenaeatentansantans 508
Using the Lambda CONSOLE ...ttt sttt st et esa e s e e s s e s annans 512

xii



AWS Lambda Developer Guide

Using the CloudWatch CONSOLE ...ttt ra et sae e s aenens 512
TOSTING ettt ettt st et e s st e s e e s et e st e e st e e s b e s b e e b e e et e st e e b e e e e e e e e e Rt e e b e et e e aee s teeaaesraeenras 514
Testing your serverless apPLliCAtioNS ..ottt e e sa e e aan 515

1 o] RS TR SRORPRP R 517
TEACING ettt ettt st e s st e e st e s sae s s e e s b e s se e s aesssaessae e seesssasssaesssassseasssesssaessseesstesssessseessseesseesssenses 520
Using Powertools for AWS Lambda (TypeScript) and AWS SAM for tracing ......cccceeuveunnenee. 521
Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing .................... 523
INterpreting an X-RAY TraCe ...ttt s e st s s ae s sae e saessaeessaesssaessnassnnanns 527
BUilding With PYthoNn .......eeeeeiiiiiiiiiiiiiiiiennniiiiiieiiiiiiessssssssssssssssesssssssssssssssssssssssssssssssssssssssssssss 528
Runtime-included SDK VEISIONS .....cc.ociviriiirinieinerenietsestestee et et ssessestesessessesessessesassassessessssassessesens 530
RESPONSE FOIMIAL ...ttt et e st e st e s e e e e e s e e et e b e stesaassessessaessensensansansans 530
Graceful shutdown fOr @XEENSIONS ..ottt sttt st ae e ene 531
HANALEE ettt sttt et sttt e s e st et st et e sa s b et e e ssasaestenassansensssarsensasans 532
INQIMHNG ottt st e ste s ste e st e e s st e s b e s s e e s b e s saeesssessaesssassstasssessssesssessstesssessseesssessseesssennn 532
HOW Tt WOTKS ettt ettt ettt st et b e st s b st et s s et e ssaaesassannan 533
RETUIMING @ VALUE .ttt ettt et e st e st e st e b s e e s e e et et e st e s assaesaeseenaanaansanean 533
EXQIMIPLES ..ottt e e e et et e st et e st e s b e e seeseese e e et e tentesbesbesaeeseeneentensantentensanes 534
DEPLOY .ZIP filE QIrCRIVES ...ttt ettt e et et b e s a e snesnens 537
Runtime dependencies in PYTRON ...ttt 537
Creating a .zip deployment package with no dependencies .........ccccoeveeeeeceecrececeneneceenenne 538
Creating a .zip deployment package with dependencies .........cccovrieoececeneciececcecceececeen, 539
Creating a Python layer for your dependencies ..........cccceeeeeereneeceeceeceectecesece e 541
Dependency search path and runtime-included libraries ..., 542
USING _ PYCACHE__ FOLAEIS ettt sttt ra e et a e e aas 543
Creating .zip deployment packages with native libraries ..., 544
Creating and updating Python Lambda functions using .zip files ......ccooiveeeeenenieneeeeeee 545
DePLloy CONLAINET IMAGES .....ocveeeeeieeeeeeeeetete ettt te e e e s tesaestestestessesse s e esesssesaessessesansassassesssssnenaensans 552
AWS base images for PYthON ...ttt ae e e e aenens 553
USING aN AWS DASE IMAGE ...cueeieeeeeeeeeec ettt e teste e e e e e e e e s et e stesaesse s e e e e s eneneneans 554
USiNg @ NON-AWS DASE IMAGE ...ecriieieiececeeeetete e te e ste e sse e e e e s se s e stesaestessesse s e e e e saessassansansanes 560
CONEEXTE ettt sttt st a e st e s et e b st s s s b e s st s bt et e e n e e be st e st e b e et e nesbesntens 569
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 571
PriNtiNg £0 the LOG ettt sa e st e st et e s s e e e e e e a e aesaaneans 571
USING @ 10GQING LIDIArY ..ottt et e st stesae e e e et et e b e s te s e s e e e s snennan 572
Using Lambda advanced logging controls with Python ... 574
Viewing logs in Lambda CONSOLE ...ttt sa et sa e ae s 578

xiii



AWS Lambda Developer Guide

Viewing logs in CloudWatch CONSOLE ...ttt esnens 579
VieWing l0gs WIth AWS CLI ...ttt ste e s e e e sse e e s e sae st e saesaessassessnennannens 579
DELEEING LOGS ettt e e ettt e st e st e s e e e e e e e e e et et et e seeseeseennennanes 582
TOOLS ANA LIDFAFIES ettt sttt ettt et e s e st e s saasaa s eneen 582
Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging ............ 583
Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging ............. 587
TOSTING ettt e et et e s st e s e e s ae e s b e e s st e st e s b e e b e e et e s b e e b e e e e e e a e e Rt e e b e et e e s e e st eesaeeraeenras 594
Testing your serverless apPLliCAtioNS ..ottt a e saeaan 595
EFTOTS ettt ettt st st e b et et s b st et e b e et e e st e b e st e st e b e et e e a e e be st e eat e b e e ateneeas 597
HOW Tt WOTKS ettt sttt sttt et et a e st e s b st et s a e e s s sassenassannan 597
Using the Lambda CONSOLE ...ttt a e sttt esr e s e se s s s annens 598
Using the AWS Command Line Interface (AWS CLI) ..ottt 599
Error handling in Other AWS SEIVICES ...ttt sae e re e e e s aesaeseens 600
EFTOF @XAIMPLES ..ottt st e et et et e st e besse e e esaesa et esaessestassansassesssenaessensansansans 600
SAMPLE QAPPLICALIONS ...ttt te st e s e e e e e sa et e saesbasbeesa e e e naenaeaanes 602
WIS NEXEY oottt ettt sttt et et e s b et et s s et et e sesaa st e e ssessentesassensenesns 471
TEACING ceeieieieecteete ettt st e e see e st e s ae s s e e s b e s s st e s aesssaessbaesseesssesssaesssassseasssesssaesssaesstesssessseessseesseesssenses 603
Using Powertools for AWS Lambda (Python) and AWS SAM for tracing .......cccceeeeveeeecvecnennene 604
Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing ......ccccceeeeeeeenene 606
Using ADOT to instrument your Python functions ... 611
Using the X-Ray SDK to instrument your Python functions ..........cccceveieeececececececeeeeee 612
Activating tracing with the Lambda conSOLe ...t 613
Activating tracing with the Lambda APl ...ttt sae s 613
Activating tracing with AWS CloudFormation ... 614
INterpreting an X-RAY TraCe ...ttt ettt ssee st s s ae s saeesa e s saeessaessnaessnassnnanns 614
Storing runtime dependencies in a layer (X-Ray SDK) ......ccccooeierereneeieeeeeecrecteceese e eeeeenens 616
BUilding With RUDY ....aueeeeiiiiiiiiiiiiiiiiennciiiiieiiiiiiteeessesesiisiecetesttssssssssssssssssssssssssssssssssssssssssssssases 618
Runtime-included SDK VEFSIONS .....cc.ociveriiiririirerentetsestestee et et sessestesessestesessessessssassessessssassessesens 620
Enabling Yet Another RUDY JIT (YJIT) ettt sttt saesae s nnan 621
HANALEE ettt sttt et sttt e s e st et st et e sa s b et et esesaestesassansensssarsansasans 622
DEPLOY .ZIP filE QIrCRIVES ...ttt se e bt st sae s se e ns 624
Dependenci@s iN RUDY ...ttt ettt ste e s e e e s e s et et e st e saessesse e e e saennennan 624
Creating a .zip deployment package with no dependencies .........ccccoeeeeeceecrecrececenececeenenne 625
Creating a .zip deployment packaged with dependencies ........ccccooveeeeererenenceececeeceeee 625
Creating a Ruby layer for your dependencies ..........ccuveceeeeeeeeeeeceeseeceestecee e e 627
Creating .zip deployment packages with native libraries ..., 628

Xiv



AWS Lambda Developer Guide

Creating and updating Ruby Lambda functions using .zip files .......cccceeeeenerenvevrceeceenee. 630
DePLloy CONLAINET IMAGES .....ccveeeeeieeeceeeetetecteete e e st e e e e e te s e stestestessesse s e esasssessessessessansassassessesssesaensans 636
AWS base images fOr RUDY ...ttt e et et stestesaesse e e nenanaens 637
USING aN AWS DASE IMAGE ...cuuieieeeeeeeee ettt ettt ste e te e e e e e e e s et e st e ssassessa e e esaenaeaeneans 637
USiNg @ NON-AWS DASE IMAGE ...ocviieieieeteeeeeeeetete e stesteste s e s e s s se st e stessessessesss s e e s e saessansensansanes 643
CONEEXTE ettt ettt st e bt st e sttt e s be s b e s st s bt et e e a e e be st e st e sbe et e ne s beentens 653
LOGGING ettt ettt et e s ste st e et e et e st e s s aa e st e s s s e e e b e e b e e s b e e b e e e b e e b e e et e e s e e s e e e e e e e e e sa et eereesstannraas 654
Creating a function that returNs LOGS ...t 654
Using the Lambda CONSOLE ...ttt a e sttt esr e s e se s s s annens 655
Using the CloudWatch CONSOLE ...ttt ettt aenens 656
Using the AWS Command Line Interface (AWS CLI) ...ttt 656
DELELING LOGS ettt te e e s ettt e st e st e s s e e e e e e et e ae st et e senseeseennennanes 659
LOGGEE LIDIAIY ettt et e st e st e st e st e s te s b e s e e s et et et e aesaassassessaesaensensansantans 660
EFTOTS ettt ettt st st e b et et s b st et e b e et e e st e b e st e st e b e et e e a e e be st e eat e b e e ateneeas 661
SYNEAX ettt ettt ettt s e et e st s s e e et e s et e a e e b e e st e e b e e e s e e et e e s e e e a e et e et e e sbe e st eessaeraesnrans 661
HOW Tt WOTKS ettt ettt ettt st et b e st s b st et s s et e ssaaesassannan 662
Using the Lambda CONSOLE ...ttt sae st st esae s e se e nannens 663
Using the AWS Command Line Interface (AWS CLI) ...ttt 663
Error handling in Other AWS SEIVICES ...ttt se et sae e s e e e e e aesaesaeeens 664
SAMPLE QAPPLICALIONS ..ttt st e st e e e e e e e st e st e saesbasbessa e e e naenaenaanes 665
WNAL'S NEXEY oottt ettt sttt ettt et e s b et et s s et et ssesaa st e e ssessentesassansenanne 665
TEACING ceeieieieecteete ettt st e e see e st e s ae s s e e s b e s s st e s aesssaessbaesseesssesssaesssassseasssesssaesssaesstesssessseessseesseesssenses 666
Enabling active tracing with the Lambda APl ... 670
Enabling active tracing with AWS CloudFormation .........cceceeeeieeeeeececeeececec s 671
Storing runtime dependencies iN @ LAYEN ...ttt aenas 671
BUilding With JAVa ....iieeeerriiiiiiiiiiiiineeennneiiiiiieeiiinssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 673
HANALEE ettt sttt st sttt e s e st et s b et e sa s b et e st ssasaestesassassensesansessasans 676
Example handler: JAva T7 FUNTIMES ...ttt sttt ste e saeaeaenan 676
Example handler: Java 11 runtimes and DeLoW ...t 678
INIEIALIZAION COAR ittt ettt st et sa et e e st e s b esa s e nanes 679
Choosing iNput and OULPUL TYPES ...ttt ste e e e s e s et aessasaens 680
HANALEE INTEITACES ..ottt sttt s bbb e sse st e s s e saa st esassans 681
SAMPLE NANALET COAER .ttt sae st e st e s s e e e e a e s e s eaenaanes 683
DEPLOY .ZIP filE QIrCRIVES ...ttt e sa et et b e s re s e sn e ns 684
PrErEQUISITES .ottt ettt s st e e s ae s s st e s sa e s s e e s s be e saessa e s st esssesssaesssaesssassseesssessssennnes 684
TOOLS ANA LIDFAFIES ettt sttt et sa et s s b et e s e st e e ssasaesaeneen 684

XV



AWS Lambda Developer Guide

Building a deployment package With Gradle ... 686
Creating a Java layer for your dependencies ..........eeiieiicieceneceseceeeeeerete e 687
Building a deployment package With Maven ... 688
Uploading a deployment package with the Lambda console .........cooveeeveceececenececeeeeeee 690
Uploading a deployment package with the AWS CLI ...t 692
Uploading a deployment package wWith AWS SAM ...t ere s 693
DePLloy CONLAINET IMAGES .....ocveeeeeieeeeeeetetetecteete e te e e e e e e tesae st e st e stessesse s e esasssesaessessasansassassessessnesaensans 696
AWS Dbase iMAGES TOI JAVA .c.ucoueeieeeeeieteeees ettt ettt te e e e e sttt et e s basaessa s e e e e nnenaanes 697
USING aN AWS DASE IMAGE ...cueeieeeeeeeete ettt ettt teste s e e e e e e e e s et e stessassesse e e esaenneneneans 698
USiNg @ NON-AWS DASE IMAGE ...eoiiieieieeteeeeeetete e e ste e stesre s s e s s ae s e stesaessessesssssasssesaessansensansanes 706
JAVA CUSTOMUZATION ..ottt ettt s a e st ae b sst s b st e st ssnesaaasne s 717
JAVA_TOOL_OPTIONS environment VAriable ........oeeviiioeiieieieceeeeeeeeteeeenreesveeesseessaeessnnes 717
CONEEXTE ..ttt et et ae st st s b e et s b s b et s bt et e e st e be st e e at e sae et e nessnesntens 720
Context in SAMPLe aPPLICATIONS ..ottt st re e a e e a s 722
LOGGING ettt e te e s sre e e te e st e s ste s sse e st e e s se e s b e e s e e b e e s e et e e s e et e e s e et e e st et e e s e et eesaesrtanaraas 724
Creating a function that returNs LOgS ... eanens 724
Using Lambda advanced logging controls with Java ..., 726
Advanced logging with LOg4j2 and SLFAJ ...ttt ste e ve s ns 729
TOOLS ANA LIDFATIES ettt sttt ettt s b et s et e e saasaesaeneen 732
Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging ................. 733
Using the Lambda CONSOLE ...ttt saesaesteste s sve e s nennesnans 737
Using the CloudWatch CONSOLE ...ttt a et sae e s s e e nens 737
Using the AWS Command Line Interface (AWS CLI) ..ouooieieoeeeeeeeeeeeeeeeeteeevesveste e 738
DELETING LOGS .ttt ettt e st e st e st s e e s e e et e st e st e s s e e se e e et e s et e tetenaessaeseenaanaens 741
SAMPLE LOGGING COUR ..ttt ettt e e st e s e s e e e e s e e e e e s aeste b assassaesasnsanean 741
1 o] RS T O TTTTSOORPRPR 743
SYNEAX ettt ettt e et e st e st e e st e s s e e et e s s a e e a e e e e e st e e s e e st e e s e e et e e st e e e e s e et e e seeeraasreennrans 743
HOW It WOTKS ettt sttt sttt ettt e st e s sa b et e asnenns 744
Creating a function that returns eXCePLioNS ... ciiiecececeecee e 745
Using the Lambda CONSOLE ...ttt sttt st e be st e sae s e e s nenennens 746
Using the AWS Command Line Interface (AWS CLI) ..ottt 747
Error handling in Other AWS SEIVICES ...ttt st sae e s e s e se s s e saesaeseens 748
SAMPLE QAPPLICALIONS ..ttt st te e e s e e e s b e st e s aesbesbe s e e e e naenaeaanes 749
WNAL'S NEXEY .ottt ettt sttt et ettt et e s b et et s s et et s sasse st e e ssesbentesassensesesns 750
TEACING ittt ettt e s st e e ste e st e s ae s st e s be s st essaessseesssaesseesssassssasssassseasssessssessseesstesssessssessseesseesssennes 751
Using Powertools for AWS Lambda (Java) and AWS SAM for tracing .......cceceeveeevenecennnnen. 752

XVi



AWS Lambda Developer Guide

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing ........cceceeeveevevveenenene 754
Using ADOT to instrument your Java fUNCLIONS ..ottt 766
Using the X-Ray SDK to instrument your Java functions ..........cceeereeeeviecececececececeeeee 766
Activating tracing with the Lambda conSOLe ...t 767
Activating tracing with the Lambda APl ...ttt 767
Activating tracing with AWS CloudFormation ... 768
INterpreting an X-RAY TraCe ...ttt e see st e s ae s st e s e e s saeessaesssaessnassnaanns 768
Storing runtime dependencies in a layer (X-Ray SDK) ......cccooeiemeeenieeeeeeeecrectecvese e eeeeenens 771
X-Ray tracing in sample applications (X-Ray SDK) ......c.ccoeeeririeierieiiereceseseeeee e e saesaeneens 772
SAMIPLE QPPS weveereerieieieteetere e e et et e e tesaestestestessessessee e et assassa s assassessessaessastestentassasaesesseesseseansensansantans 773
BUIldiNG With GO ...cciiiiiiiirriiiiiiiiiiiiiiinieennneiiiiiiieetiissssssssssssssssssesssssssssssssssssssssssssssssssssssssssssssssssss 775
GO FUNTIME SUPPOIT ettt ettt e s ste e st e s sre e st e s saeesseessaessssesssessseesssasssaesssasssaesssessssesssasssaanns 775
TOOLS ANA LIDFATIES ..ottt sttt st ettt ettt e s e st et s s e et e e s sasbesaenas 776
HANALEE ettt sttt et sttt e s e st et st et e sa s b et e e ssasaestenassansensssarsensasans 778
INQIMHNG oottt et see s sre e st e e sae e s e e s saesstessseesssessaasssassstasssessssesssessseesssessssesssessseessaennn 780
Lambda function handler using structured tyPes .......cooeeiececenecececeeeeeeeeete e 780
USING GLODAL SEALE ..ottt sttt e st e b e s ae s e e e e e e e e e b e aansanan 782
CONEEXTE ettt ettt st e a e st e s et e b e st s s s b e s st e bt et e e st e be st e e a e e sbe et e ne s beentens 785
Accessing invoke context iNfOrmMation ... 785
DEPLOY .ZIP filE QIrCRIVES ...ttt ettt e et et b e s a e snesnens 788
Creating a .zip file 0N MAcOS aNd LiNUX ..ottt sre e sve e ae e snnens 788
Creating a .zip file 0N WINAOWS ..ottt saestesre s e s e e e nennens 790
Creating and updating Go Lambda functions using .zip files ..., 793
Creating a Go layer for your dependencCi@s ...........ccueuecieeecieneeienereeeeee et e e saeaens 799
DePLloy CONLAINET IMAGES ....occveeeeeiieeeeeeeetectectecte e e s e e e e et e saestestestessesse s e esasssesaessessessansassassessesssessensans 800
AWS base images for deploying GO fUNCLIONS .......ccooveieeenireceeeeeeeee e 800
GO ruUNtiME INEEITACE CLENT .ottt sttt sb et s aa s 801
Using an AWS OS-0nly Dase iMage .....cceceeeeieieeeececetectestestese et stestessesse e s e e s sae s 801
USiNg @ NON-AWS DASE IMAGE ...ecriieieiececeeeetete e te e ste e sse e e e e s se s e stesaestessesse s e e e e saessassansansanes 808
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 816
Creating a function that returns LOGS ...ttt 816
Using the Lambda CONSOLE ...ttt a et tesa e s re e an e nnens 818
Using the CloudWatch CONSOLE ...ttt ettt sae s ae e aenens 818
Using the AWS Command Line Interface (AWS CLI) ..ottt 818
DELELING LOGS ettt ae e e e sttt e st e st e s b e e e e e e e et et et e tasseeseeseennennanes 822
EFTOTS ettt ettt st s e b et st s bt s b e et s b e et e e st s b st e e Rt e b e et e e st e be st e eat e b eeateneeas 823

XVii



AWS Lambda Developer Guide

Creating a function that returns eXCePLioNS ........ceoveiececeeeecee e 823
HOW Tt WOTKS ettt ettt ettt sttt a e st e s b st e s s e s e e e s sasesassannan 824
Using the Lambda CONSOLE ...ttt sttt a ettt esaesse e s e s annens 825
Using the AWS Command Line Interface (AWS CLI) ...ttt 825
Error handling in Other AWS SEIVICES ...ttt ste e s e e e e s s e saeseens 826
WNAL'S NEXEY .ottt sttt ettt et st et e s b et et s s et et ssesaa st e e ssesentesassansensons 827
TEACING ettt ettt st e s st e e st e s sae s s e e s b e s se e s aesssaessae e seesssasssaesssassseasssesssaessseesstesssessseessseesseesssenses 828
Using ADOT to instrument your GO fUNCLIONS .....c.ccveviieeeeeeeeeeeeeeecee et 829
Using the X-Ray SDK to instrument your GO fUNCLIONS ......ccoeieiiieieeeecececeeee e 829
Activating tracing with the Lambda conSOoLe ... 829
Activating tracing with the Lambda APl ...ttt 830
Activating tracing with AWS CloudFormation ... 830
INterpreting an X-RAY TraCe ...ttt sttt sste st e saessae e st e s saeessaesssaessnassnnanne 831
ENVIrONMENt VAFIADLES ..ottt ettt sttt ettt et s sb et e ses 834
BUilding With CH ......ccciiiiiiiiiiiiiiiiinniinninnnnsssnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 835
Development ENVIFONMENT ...ttt ste e s e e e e e s e e s e te st e stessesaessassessnensensensensanes 837
Installing the .NET project t€mMPLAtES ..ottt e 837
Installing and updating the CLI tOOLS ...t 837
HANALEE ettt sttt st sttt e s e st et s b et e sa s b et e st ssasaestesassassensesansessasans 839
.NET execution models fOor Lambda ..ottt sse e es 839
CLass LIBrary NANALENS ...ttt et ae st st e aesbasae s e e e s e e s ennaneans 840
Executable assembly RANALErS ...ttt a e saeaens 841
Serialization in Lambda fUNCLIONS .....cc.ooveriiirieirecctcctecsetee ettt sae st 842
Simplify function code with the Lambda Annotations framework ..........cccoovevvevirceecrecrennennene. 844
Lambda function handler reStrictions ..ottt saenes 847
DEPLOYMENT PACKAGE ...ttt e sttt e st et e st e s be s s e e e e s e e e aestestessassassesssennanaans 848
Using the .NET Lambda GLoDal CLI ...ttt stesve e re s e s s e sae s neans 849
Using the AWS Serverless Application Model (AWS SAM) ......creeieiecieeeececeee e 855
Using the AWS Cloud Development Kit (AWS CDK) .....ccoeieiieieciereneeeeeeeeeecee st ctecaesesseesseaens 858
Deploy ASP.NET @pPPLICAtiONS ....ccueeeeieeeteeececeeeete ettt e e e s e ettt esse s e e s e naennenan 862
DePLloy CONLAINET IMAGES .....ccveeeeeieeeeeeeeeietectecte e tee e e e e e et e saeste st e stessesse s e esasssesaessessessansassassessesssensensans 867
AWS base iMages fOr INET ...ttt stes e ste e e e e e sae st e saestessa s e e e e e e s eae s assensanaanes 868
USING aN AWS DASE IMAGE ...cuvieeeeeeeeetee ettt e testesve e e s e e s et e st e saessessa e e esaeaennensans 868
USiNg @ NON-AWS DASE IMAGE ...ooiiieieceetececeetetete e ste e sresre e s e e s s et et e saessessesss s e s s e aensansansansanes 871
Native AOT COMPILAtION ..ocueieeeeeeeeee et e et e st esae s aeese e e e e e e e e e aaaanaans 875
LambBbda FUNTIMIE ..ottt st et sae st ettt s s b et e ssa s et e e saaseesasnan 875

xviii



AWS Lambda Developer Guide

PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 876
GELEING STAMTEA ..ottt te e et et e st st e st e s b e s s e s se e e e se et et esaesaabassassasnaannans 876
SEMHALIZATION ettt ettt ettt s bt et s st et e s s e b et e se s s et e e sbentenaens 879
TEIMIMING ettt st s e et e st e s ae e st e e saeessae s saes st assseesssesssaesssessstasssessseesssessseesssensssesnees 880
TrOUBLESNOOTING ...ttt te e e ettt e st e st e s be s e e sa e e e e e a e s entanean 881
CONEEXTE ettt ettt st e bt st e sttt e s be s b e s st s bt et e e a e e be st e st e sbe et e ne s beentens 882
LOGGING ettt ettt et e s ste st e et e et e st e s s aa e st e s s s e e e b e e b e e s b e e b e e e b e e b e e et e e s e e s e e e e e e e e e sa et eereesstannraas 884
Creating a function that returNs LOGS ...t 884
TOOLS ANA LIDFAFIES .ottt sttt et sa et s b et s et e s ssasaesaeneen 885
Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging ................ 885
Using the Lambda CONSOLE ...ttt a e sttt esr e s e se s s s annens 888
Using the CloudWatch CONSOLE ...ttt sae s ae e n e aenens 888
Using the AWS Command Line Interface (AWS CLI) ...ttt 889
DELELING LOGS ettt e ettt e st e st e s b et e e e e e et et et et e seeseeseeneennanes 892
EFTOTS ettt ettt st s et e st et s s st e et s b e et e e st e b e st e st e b e et e st e be st e eate b e eateneeas 893
SYNEAX ettt ettt ettt s e et e st s s e e et e s et e a e e b e e st e e b e e e s e e et e e s e e e a e et e et e e sbe e st eessaeraesnrans 893
HOW Tt WOTKS ettt ettt ettt st et b e st s b st et s s et e ssaaesassannan 896
Using the Lambda CONSOLE ...ttt sae st st esae s e se e nannens 897
Using the AWS Command Line Interface (AWS CLI) ...ttt 898
Error handling in Other AWS SEIVICES ...ttt se et sae e s e e e e e aesaesaeeens 899
WNAL'S NEXEY oottt ettt sttt ettt et e s b et et s s et et ssesaa st e e ssessentesassansenanne 900
TEACING ceeieieieecteete ettt st e e see e st e s ae s s e e s b e s s st e s aesssaessbaesseesssesssaesssassseasssesssaesssaesstesssessseessseesseesssenses 901
Using Powertools for AWS Lambda (.NET) and AWS SAM for tracing ......cccceeveevecvevecvenennee. 902
Using the X-Ray SDK to instrument your .NET functions ........cccooveevieieceneneneceeeeeeeeeee 905
Activating tracing with the Lambda conSOoLe ... 906
Activating tracing with the Lambda APl ...ttt 907
Activating tracing with AWS CloudFormation ... 907
INterpreting an X-RAY TraCe ...ttt s st s e st s sae s sae e s e e s saesssaessaaessnassananne 908
TOSTING ettt e et et e s st e s e e s ae e s b e e s st e st e s b e e b e e et e s b e e b e e e e e e a e e Rt e e b e et e e s e e st eesaeeraeenras 911
Testing your serverless apPLliCAtioNS ..ottt st sa e e aan 912
Building wWith POWEIShell .......cciiiiiiiiiiereeiiiiiiciiiiininnnennesiiiiieeiennnsssssssssssssssssssssssssssssssssssssssssasans 915
Development ENVIFONMENT ..ottt et ste s e s e s se e e e s e s et e st e saestessassessaennenaansans 917
DEPLOYMENT PACKAGE ...ttt s sttt et e s tesae st e s seesa e e e aesbestessasassesssenaaneans 918
Creating @ Lambda fUNCHION ..ottt sttt aesae e 918
HANALEE ettt sttt et sttt e s e st et st et e sa s b et et esesaestesassansensssarsansasans 920
RETUIMMING AAT@ oottt et s be e e e e e e st e st e b e s e s sa e e e e e s enaansansans 921

Xix



AWS Lambda Developer Guide

CONEEXTE ettt ettt st e bt st e sttt e s be s b e s st s bt et e e a e e be st e st e sbe et e ne s beentens 922
LOGGING ettt ettt et e s ste st e et e et e st e s s aa e st e s s s e e e b e e b e e s b e e b e e e b e e b e e et e e s e e s e e e e e e e e e sa et eereesstannraas 923
Creating a function that returns LOGS ...t 923
Using the Lambda CONSOLE ...ttt ettt e st s aesa e s e se s s e s annens 925
Using the CloudWatch CONSOLE ...ttt ra et sae e s aenens 925
Using the AWS Command Line Interface (AWS CLI) ..ottt 925
DELELTING LOGS ettt te e e e et et e st e st e st e s b e et e e e e e et et et e besseeseeseennennanes 929
EFTOTS ettt ettt st st e b et et s b st et e b e et e e st e b e st e st e b e et e e a e e be st e eat e b e e ateneeas 930
SYNEAX ettt ettt st e st e s e s st e e e e s et e s e e et e e st e e b e e e s e e et e e s e e e st e et e e b e e sbe e ateesseeraennrans 930
HOW Tt WOTKS ettt sttt sttt et et a e st e s b st et s a e e s s sassenassannan 931
Using the Lambda CONSOLE ...ttt a e sttt esr e s e se s s s annens 932
Using the AWS Command Line Interface (AWS CLI) ..ottt 933
Error handling in Other AWS SEIVICES ...ttt sae e re e e e s aesaeseens 934
WNAL'S NEXEY .ottt sttt et sttt st et e s b et et s s et et ssesaa st et ssesbentesassansensons 934
BUilding With RUSE .....ceeeeeeiiiiiiiiiiiiiiiieennneiiiieieiiiiieseesssssesssssssesssssssssssssssssssssssssssssssssssssssssssssssss 935
HANALEE ettt sttt st sttt e s e st et s b et e sa s b et e st ssasaestesassassensesansessasans 937
USING SNAr@A SEALE ..ottt te e sa et et e e st e s ra e e e e e e e aesaesaanean 938
CONEEXTE ettt ettt st e a e st e s et e b e st s s s b e s st e bt et e e st e be st e e a e e sbe et e ne s beentens 940
Accessing invoke context iNfOrmMation ... 940
HTTP @VENTS ..ttt ettt sttt b e st st b e st e st s b e s a e st s sae st e nesnasnnennas 942
DEPLOY .ZIP filE QIrCRIVES ...ttt ettt e et et b e s a e snesnens 945
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 945
BUILAING the FUNCLION ...ttt ae e st a e a e 945
Deploying the FUNCLION ...ttt a et aesae s s e nnens 946
INVOKING the TUNCHION w.ooeeee ettt te st a e et st saas 948
LOGGING ettt ettt et s st e et e e st e s sae s s aa e st e s s aa e et e e b e e e b e e b e e e b e e b e e et e e s e et e et e e e e e e aa et eeseesstanaraas 949
Creating a function that WIiteS LOgS ...ttt aenens 949
Advanced logging with the Tracing Crate ... 949
EFTOTS ettt et et a e st st b et et s b st et b et e e st s b e st e e Rt e b e et e st e be st e eate b eeateneeas 952
Creating a function that retUINS EITOrS ...t eens 952
INtegrating Other SErVICES .....ciiiiiiiiiiiiieeciciiieieiiitieeeeesseesiisieeetetttssssssssssssssssssssssssssssssssssssssssssass 953
Listing of services and links to more information ... 953
EVENT-driven INVOCATION ..ottt sttt sttt e st s s et e st s e b et e e ssasae st esanans 956
LamMbBAa POLLING ettt ettt e s te e e e e e et et et e st e s ae e ae e e e e e e e e e tebaaantans 956
USE CASES ..ttt ettt et e e bt et s s s st e et e b st e e s a e st e et e s e et e e st s be et e e at e b e et e s st s eae et esatenens 958
Example 1: Amazon S3 pushes events and invokes a Lambda function ........ccccevevenennens 959

XX



AWS Lambda Developer Guide

Example 2: AWS Lambda pulls events from a Kinesis stream and invokes a Lambda

FUNCHION <ttt sttt et st et s b et e e s ae st et e e s sa b e e e sassentenassan 959
ALEXQ .ottt ettt st st e sttt s st et ettt e st et e b et et e R e s be s e e R et e e e R e be e e s e e R et et e s e e ae e entesenteneesatn 961
AP GALEWAY ...eeiiiiiiiiiiieeieseteete et ee et ssseeeste s st essesssaessseesstasssessstesssessstasssessssesssessstesssessssesssessssesssessseessees 962

Adding an endpoint to your Lambda function ... 962

PrOXY INT@GIATION ...eeiiiieece ettt sttt s a e s ste e st e s ae s s e e s saa e b e s saesssaessaaessnesssaassaesases 963

EVENT FOMMIAt ottt ettt et s s b e st s s b e b e e s e sae st e e ssas 963

RESPONSE FOIMIAL ...ttt ettt et e s ae st e st e b e st e st e s seesaeseesa e s enaensansanes 964

PEIIMISSIONS ...ttt sttt e a et a e st st et s b e st e e st s be st e st e sbeenbe st ssesanannis 965

Handling errors with an APl GAatewWay APl ...ttt n e st saesaenas 967

ChOOSING @GN API YD ettt et sa e te s testestesse e e e e e s e s et e tesaasbesseesaenaensensansansans 969

SAMPLE QAPPLICALIONS ..ottt st e te e e e e e e a et e saesbasseesa e e e nnenaanaanes 971

TULOTTAL oottt st ettt et ettt s b et e e s b et et sae b e st eseesesenaesessansenasenes 971
APPLICAtION COMPOSET ...eeeeieieietecteeeeeeee ettt te e s e s e e e e e s et e stesse st assassesse e s ensastassassansassasssesasnsensanes 991

Exporting a Lambda function to Application COMPOSEr .......cceeieeeiecieciecececeeeeeeee e 991

OtNEE FESOUICES ...ttt sttt e st et e st e st e e s et et sse s s et esassasbe st esassessesassassensesesansensesensan 993
CLOUATIAIL 1ttt ettt ettt sttt et e e s e st et e s s et e st e sasbestesassessensssansansenssansenens 994

CLOUATIAIL LOGS wuviteiiieeecectetete ettt ettt te st e e e e e e e et e s e aesbe st e s s assa e e e s et ensansassassassasssensansaneans 997

SAMPLE COAR ettt ettt et e s te st e s e s e e e e e e e e st e st et e s sesseesaeseeseensansansansansan 1005
EventBridge (CLoUudWAatCh EVENES) ...ttt ve e e et st ste s e n e ennns 1008

TULOTTAL ettt ettt sttt sttt s e bbb e st e s b e b et s sesae st esassenbentesarsansenenns 1010

SCHEAULE EXPIESSIONS ...c.eeeeeeieeetetetetesee ettt et e et e s testesseesa e e e e e s et e tesaessessasseesasssensansansansanes 1015
CLOUAWAALEN LOGS ..ttt te e steere s e e e e e e s et e st e st e sa s b e e s e e e e e et etansasaassassassnenaanes 1017
CLOUAFOIMALION ..ttt st et st a s s ae st s e st e st e e sbe st e e sbasbe st esassansenessassenasens 1019
CloudFront (Lambda@EAGE) .....eoeeieeeeeeeeececeete ettt e e e s e et e st stessesse e e s s e a e e e aannan 1022
COARUOMIMIL .ttt ettt ettt ste st et s et et e be st e e s s e st et e e b et eseesessestesesansenessensensensssansenaes 1024
COAEPIPELINE ..ttt ettt e e st e st e s e e e e e et e st e s te b e tesbesseesaesae st esaensansassasassessaessansans 1025

PEIIMISSIONS ...ttt ettt st sttt st st s b e st e et esae et e e st s sessbesatessesnanesnsesn 1027
COABWRISPEIEN ...ttt ete e e e s e e e e e e e ste st e st e st et e s s e ssassaesa e s e s et ansassassassassessaessassansansansansanses 1028
COGNITO ettt ettt sttt e et e s s e e s st e s s st e s b e s sa e s b e e s st e s sessaesssessstasssessseesssessstesssessseensesssnenssesnns 1029
COMNECT ..ttt sttt s e e st st st e bt s b e st s b st e s st e se st e s st ssesabesatesseensensessasnnes 1030
DOCUMENTDB ...ttt ettt st et sa e et ae s b st e st s b e st e s st st e s st e nesnnesneennens 1032

Example Amazon DocumentDB @VENT ...ttt ettt saeaeaan 1033

Prerequisites and PEIrMISSIONS ........ccccieiiirieierereeeeee e eee st e stestessesses e e e e e e saessessessessassassessaesasssensn 1034

NEtWOrk CONFIQUIALION ...oueeieeeeee ettt et tesse s s e e e e s s e a e e e sbenaenaans 1035

Creating an Amazon DocumentDB event source mapping (Console) .....ccccoeeveevereeveeeeennene. 1036

XXi



AWS Lambda Developer Guide

Creating an Amazon DocumentDB event source mapping (SDK or CLI) ....ccoeeveeeeereeeennnnen. 1038
Polling and stream starting POSIIONS .......c.coeeieieieiceecceecec ettt sre e aennens 1040
Monitoring your Amazon DocumentDB event SOUICE .....c..ovcieevieerienreerceeneeeceeeeeeseesseeeeneens 1041
TULOTTAL oottt ettt st ettt sttt et e e s b et et s sesae st esassenbeneesansensenesns 1041
DYNAMIODB ...ttt ettt ssae e s e e s se e st e s saa s s s e e s s s e e st e s ae e saessaa e s st assseesstassaessaassseessaennns 1068
EXQMIPLE @VENT ..ttt ettt e st e st e et e st e be e e e e e e et e st e basbasseesaesaenaenaansanes 1069
Polling and batching SErEAMS ...ttt ne 1070
Polling and stream starting POSILIONS .......c.coeeieieieieeeeceeec ettt s e e e nnens 1072
SIMULLANEOUS FEAAETS ...ttt ettt e st st e st st et s e st e st s e be st e e sseste st esassassesessensensans 1072
EXECULiON role PEIrMISSIONS .....cccviieieiececeeeeeeee ettt te st e et ae st e st e s aesse s s e e se e e s saeaenesasanes 1072
Create the event SOUICE MAPPING ..cceceeieiecieececeeee ettt se s e sa et estesaesaesse s e e e ennens 1072
Event source mMappPing APIS ...ttt st see s e s sae et e s st s ra e s sa e e st e s ae s s saessaeesneens 1075
ErrOr RANALING oottt st e sa e st sae st e st e e se e se e e e e e s et e aebanes 1077
AmMazon ClLoUudWAtCh MELIICS ..ottt sse st e s sae e s 1079
TIME WINAOWS ..ttt sttt st et s s et e s s e st e st e e s b et saa s e b et s e sbastesassensenssnenes 1079
Reporting batch item fQIlUres ...t sae s 1084
Amazon DynamoDB Streams configuration parameters .........cccoceveceveneerecieceeceeceeceeceeeee. 1087
TULOTTAL ettt sttt st ettt st st e st et e et et e s b et et s sesae st esassenbeneesansensenenns 1089
SAMPLE COAR ettt ettt et e s te st e s e s e e e e e e e e st e st et e s sesseesaeseeseensansansansansan 1097
SAMPLE LEMIPLALE ettt te s e s et e e e s e et e s te st e sae b e saeseesaennenaannans 1101
B ettt ettt et et e e A ettt e e et R et et e Rt e s et e e e senbeaese b e ae e eaenes 1103
PEITNISSIONS ..ttt ettt st s e s s b e st s a e s be st e st e b et e sesanesatessesnnasneennens 1104
ELASTICACRNE .ttt ettt ettt s sb ettt ae st s b et e e eaeee 1105
AppLlication LOQd BalanCET ...ttt te e e e et saesaessesse s e s n e a e e et e naenne 1106
B RS ettt b ettt a et e be b e R et et e R e et et et e A et et e seese st eseese st e st erenee 1108
CONNECLIONS ...ttt ettt ettt et s e b e st e st ae st e st e s se et e et e eaesabe st e st esasstessesasasnnas 1109
TREOUGRNPUL .ttt ettt sa e st e s b et e s e e e e e e e et et e bestassessaeseeneensanes 1109
TOPS ettt ettt et a e ettt a et et e b et et A et et e e s et et e s et et e seeae e enaesanten 1110
EVENTBriAQE SCREAULEN ...ttt s te e s e e s e e et st e b e tasbesseennennans 1111
Set UP the @XECULION FOLE ettt ettt a ettt ne 1111
Create @ SCREAULE ...ttt ettt e st ettt e e s besae e ssessassenans 1111
RELALEA FESOUICES ....ouerveieirieietreretc ettt et ettt st st s b et s s et et s e sae st e e ssesseseesassensensens 1116
L0 T ettt ettt ettt et ettt a e b et e e b et et et et et e R et et e s e be b et e s et e st e seese st et eaententesaes 1117
JOT EVENTS ...ttt ettt et e s st et s st st et s s s b et sese st et e sesse st ssesnsasstansenns 1119
APACNE KAFKQ ettt ettt e st e st e et e e e s e e e et et e st et e s sesseeseese e e ententenean 1121
EXQMIPLE @VENT ..ttt e e st et e st e et e s se e se e e e e et e st e basbasseesaeseenaenaansanes 1122

xxii



AWS Lambda Developer Guide

Kafka cluster authentiCation ...t 1123
Managing APl access and PErMSSIONS .....c.cceceeeeieeieriertereesteseseseeeessessessessessessessesssessessessensenes 1126
Authentication and authorization €rrors ... e 1129
NEtWOrk CONFIGQUIALION ...oeeeieeeeeee ettt ettt st essesae e e e e s e a e e e sbenaenaans 1131
Adding a Kafka cluster as an @VENt SOUICE .......cceoeeeeeeieeeciciectececee et ste e re e nnan 1132
Using a Kafka cluster as an @VENT SOUICE .......ccecueeueeireeecteeetesteste et ste e sae e e anns 1140
Polling and stream starting POSItioNS ..o 1141
Auto scaling of the Kafka eVent SOUICE ...ttt 1141
Event SOUrCe API OPEFAtiONS ....ccoiieiiiiieeieccteettecteestecstessre st e s sae s s e e ssessseessaessseesssessseasssesssaessnans 1142
EVENT SOUICE EITOIS ...ttt ettt ettt et s sa e st a e et s b e st e st s s e et essesnenn 1142
AmMazon ClLoUudWAtCh MELIICS ..ottt sse st e s sae e s 1143
Self-managed Apache Kafka configuration parameters ........ccoeeeceveeciececececeeeeeenne 1143
KINESIS FIFEROSE ...ttt sttt st ettt et s b et e e s b et e s s e ssaaesaenans 1146
KIN@SIS STFEAIMIS ...ttt ettt et s e st st et b e et st sbe st et s b e et e nesnesanennas 1147
EXQIMIPLE EVENT ...ttt ettt st e st e s te s e e e e e et et e s besae s s e ssaeseesaenaensansansansanes 1148
Polling and batching StrEaMS ...ttt saesbe s s seennens 1149
Polling and stream starting POSITION .......cccoeoeeiiieeceeeeeere ettt aenens 1150
Configuring your data stream and fUNCLION ..o 1151
EXECULiON rOle PEIMISSIONS ....ccuiiiiiieeetetete ettt rteste e a et st e st e saessesse e e e e e s e e esebanes 1152
Create the event SOUICE MAPPING ..cccoieieieieececeeeeeete ettt ste e s e e e sa et e stesaesaesse s e esnennens 1152
FIltering KiNESIS EVENTS ....ccviiiieieeceeeeetete e este ettt e st este st e sse e e e s e e e sae st e stessassesseesnenaennans 1155
Event source mMapping APl ...ttt tessse s re s sae s st e s sae e sae s sae s e e s e e e a e s aa e aas 1155
ErrOr NANALING oottt sttt s e s e s e sa e st e st e s s e s ae s e e seena et e aentanes 1158
AmMazon ClLoUudWAtCh MELIICS ..ottt ettt et e s sa e snens 1159
TIME WINAOWS ..ttt sttt sttt et e sb et e s e st e st e e s b et s e st a b e e s e sbantesassessenssnanes 1160
Reporting batch itemM FQIlUIES ... 1163
Amazon Kinesis configuration parameters ... ieececiecececeeee e 1177
TULOTTAL 1ttt ettt sttt ettt et e e s b et e e s sesae st esassenteneesansansenesns 1179
SAMPLE COAR ettt ettt et e st e s e s e s e e e e e e e st et e bessassessaeseesaesaensensansansan 1195
SAMPLE LEMIPLALE ettt te e s e s e e e e s et et e sae b e seeseesaennensaneans 1200
KUDBIMELES ..ottt ettt ettt s b e st et s e s et e e saa b e st e e saestesassessensons 1203
AWS Controllers for KUDErNetes (ACK) ......eooceeeeeeeieieeiieeeeeeeeeseeeeesseesessesessseessssesssseessssessssssesns 1203
CrOSSPLANE ...ttt te e e e e e et et e st e st e s b e s seese e e e e e st et et asaasseesaeseeseessententesasanseeseeneanes 1203
LEX utteteteeententeteteste et s te st et e e st et ettt e s a et et e s ae st e st a et e Rt et et e R e b et e Rt e R e s et et e s et e Rt se et et eseesa s et eaessantenaes 1205
ROLES @Nd PEIMUISSIONS ...ceeeeieieieieceeeeectete et se e e e ettt este st e sae s e e e e e e e e aesaestessassasseeseennanes 1205
IMQ ettt ettt ettt sttt sttt st e e et e R b et e Rt b et et R b et e ket e Rt e R e s et et e s et e st esesaenteneesen 1208

xxiii



AWS Lambda Developer Guide

LAambda CONSUMET GFOUP ..cveveeieeiieiieeeeetectectestesteese e e e e esesaesaessessessassesssessessassessessessessassssssensensanes 1210
EXECULiON rOle PEIMISSIONS ....ccuieiiietetetete ettt st te e a et st e st e s aessesse s e e s e s e aesseaanes 1214
NEtWOrk CONFIGQUIALION ...oeeeieeeeeee ettt ettt st essesae e e e e s e a e e e sbenaenaans 1214
Create the event SOUICE MAPPING ..cceceeieiecieececeeeeeete ettt se e e e e sa et e stesaesae s e e e e e ennens 1215
Event source mMapping APl ...ttt sttt ree st s re s sae s st e s sae e sae s sae s e e s saa e a e s aaenns 1218
Event SOUICE MAPPING EITOIS .couiieieieieeiieertenteeseessteesreesstessseesssessseessesssessssessssesssesssesssasssssssssesns 1220
Amazon MQ and RabbitMQ configuration parameters .........coovevecreciecececereree e 1221
IMISK ettt ettt ettt et s b st et s et et s e s b e st e e et et e b b et e e e R et et e R e e R et et e s et et e s e s et e e e s et et eaeesantentesans 1223
EXQIMIPLE EVENT ...ttt ettt st et e s te s e e e e e et et e s besae s b e sseeseesaensensansansensanes 1224
MSK cluster aUthentiCation ...ttt se e saas 1225
Managing APl access and PErMSSIONS .....c.cceceeeeieeierieireriesteeeseseeeeseesaessessessessessesssessessessensenes 1230
Authentication and authorization €rrors ... 1233
NEtWOrk CONTIGUIALION ....oeieieeeee ettt ettt tesre s e e e e e a e e e saenaanaans 1235
Adding AmMazon MSK as @n @VENT SOUICE .....c.cceeeeeeirerieriecteseseseeeeee e saesaessessessessesseessessessennas 1236
Cross-account event SOUICE MAPPINGS ...cceveeeerierrrerereeereesrteesrerseessseesseesssessssessseesssesssessssessssssseens 1244
Auto scaling of the Amazon MSK event SOUICE ........ccieeeeeeeeieeceteectesee et 1245
Polling and stream starting POSItiONS .......coeoeeieicirccceeeereree e 1246
AmMazon ClLoUudWAtCh MELIICS ..ottt ss e st sa s sae e snens 1246
Amazon MSK configuration ParameEters ...ttt 1247
RS ettt ettt ettt e a ettt sttt h et e R et et e s e b et e e b et e Rt e R et e st e aeetet e st se s eneesetn 1249
Configuring YOUE FUNCLION ....ceieeeeeeee ettt sa et e tesae s s e e s e baeans 1249
Process event notifications from Amazon RDS ...t seeesaens 1250
Lambda and AmMAzon RDS tULOMIAL ......ceeieirienieirenieireresteesesretee et e st se st e ssessesaesesaes 1251
S ettt ettt e bt e s R st et et A et et e R et et e e R et et e A e A et e st et et et e seese b ese e s e te s eaeesetentesans 1252
TULOriAl: USE @N S3 trIGQEN ..ottt ettt e stesteste s e e e e e e e et esae st e s tesaesse s e ssa e ne e enaansanes 1253
Tutorial: Use an Amazon S3 trigger to create thumbnails ..., 1276
S3 BAtCN sttt ettt e a et e senae e ens 1305
Invoking Lambda functions from Amazon S3 batch operations ........c.cceeveeeeeeieeieceeceecienene 1306
S3 ObJECt LAMBDAQ ..ttt ettt e st e et st ae s ae b e s e s e e e ennannens 1308
SECIEES MANQGE ...ttt et s et s e e st e s stessre e s sbe e st e s saesssaessaes st assseassaesssaesssesssessseesssaesseens 1309
SES ettt sttt et etk b e e e A et et e A e A et e Rt R et e Rt e R et et e st e b et et eaeete st e e esatestens 1310
SINS ettt ettt et et a et et e Rt b et et e R et et e Rt et e e e R et et e aeeae b et esententens 1313
TULOTTAL ettt sttt sttt ettt sttt e et et e s b et et s sesae st esassenbentesassansenesns 1315
SAMPLE COAR ettt ettt et e st e s e s e e e e e e e e e s et e bessassessaeseesaessansensansansan 1335
SIS ettt et ettt e st et e R et et e b et et e R e s e et e R e R et et e R et et e te e eseesatentens 1338
Example standard queue mMeSSage EVENL .........cceceeerereeeeeceeee ettt sre e s sae et s s 1339

XXiv



AWS Lambda Developer Guide

Example FIFO qUEUE MESSAGE EVENT ......ccueeieeeiieeeeetetesteete e ee e e e e s e ssestestessessessesseessenaensansans 1340
Configuring a queue to use With Lambda ... 1341
EXECULiON role PEIMISSIONS ....ccueciiietetetetec ettt ste e e ettt esaessesse s e e sa e aea et etanes 1341
Create the event SOUICE MAPPING ..cceceeieiecieececeeeeeete ettt se e e e e sa et e stesaesae s e e e e e ennens 1342
SCAliNG AN PrOCESSING ..ueeuriieieieeeeeeeeeetecte et sre e s e e e et e stestestessesse s e s s e s assessassassassassassesnsanean 1344
MaXIMUM CONCUITENCY .eevveeereeereenreesieeesreesssessseesssessseesssessssssssessssesssesssessssessssesssessssssssesssesssesssasssses 1345
Event source mMapping APIS ...ttt ettt s e st e s sae s s s e s sae e st e s saesssa e s saeesanessrannns 1346
Backoff strategy for failed iNVOCAtIONS .......c.cceeieieeee e 1347
Implementing partial batch reSPONSES ...t 1348
Amazon SQS configuration PAramMELErs ...ttt 1360
TULOTTAL oottt ettt st ettt sttt et e e s b et et s sesae st esassenbeneesansensenesns 1361
SQS Cross-aCCoUNT TULOMIAL ..c.ueiieiieieceeeceeceecece et eae e e ese e sseeaseesssessseeseenns 1380
SAMPLE COAE ettt ettt et e st e s e e e e s e e e e s e e e s et e besaessessaeseesaenaansansansansan 1386
SAMPLE LEMPLALE ettt ettt st e e e e e s e e s e st esbesae s b e seeseesasnnensannans 1390
VP C LAtEICE ettt s e st a e st s e s sa e st s s st et e sse e b e st e nesbanis 1392
VPC LattiCe CONCEPLES oottt es st essre e st e s saessse e s saeesaeessaesssaesssasssaesssessssesssassseann 1392
Prerequisites and PErMISSIONS ........ccccieiiiceierereeeeee e te e stestestesses e e e e e e saessessessessessassasssesssssensn 1394
LIMIEQTIONS ettt s e sttt sb e st e st s be et e st s sne s b e snessnans 1395
Registering your Lambda function with a VPC Lattice network .........ccceeeeveeeeieninceeciecnenen, 1395
Updating the target of a service in @ VPC Lattice NetWOrk ........ccccueeueeeeeeeeeeeeceeeeciecieerenn, 1398
Deregistering a Lambda function target ...t 1400
Cross-acCoUNt NETWOIKING ....ccuicuieiieieieectctctetestece e see e saestestesse e e e e e s esesaessessassassassnesnenaans 1400
Receiving events from VPC LattiCe ..ottt sa e 1401
Sending responses back t0 VPC LattiCe ..cocoeeeeieieeeeeeeeececteee ettt 1402
Monitoring a service in @ VPC Lattice NETWOIK .......c.coueeueeieieieeeeeeeeeee et 1403
BESt PracCtiCes ..uccieeeiiiiiieennnneiiiiiiiiiiiiieeeessssessssssceeessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 1404
FUNCEION COAE ..ttt sttt ettt et b et et s et et s s be st e e s b e b e e e sasaenes 1404
FUNCLION CONTIQUIALION ettt rr et et e st e st e e s e s e s et e aannas 1406
MELriCS ANA QLAIIMNS ..eeiiiiieecereeree ettt et sttt st e st e st et s s e b e e s s b e e e e ssasaessennene 1407
WOTrKiNG With STFEAIMS ...ttt ettt e te e s e s e s e e s et e ae st e b e ssaesaeseennannan 1408
SECUNITY DEST PraCiCOS .ottt ettt ettt e st e st e e se s e e sa e e e e e aanes 1409
ACCESS PEIMISSIONS ..ceeeeeeeeeniiiseeeeensesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 1410
EXECULION TOLE ettt ettt ettt et b et et sae st et s e st et e e b et et ssasbessesassansensasans 1412
Creating an execution role in the 1AM CONSOLE ... 1413
Grant least privilege access to your Lambda execution role ..........ceveeeeciececieneneceseeeenne 1413
Managing roles With the TAM AP ...ttt steste e se e s s e nenens 1414

XXV



AWS Lambda Developer Guide

Session duration for temporary security credentials ........cccceeeeeeeeeeeeceeccceeeee e 1415
AWS managed policies for Lambda features ... 1416
Working with Lambda execution environment credentials .........cccoeoveoeeieceneneeiencecceeceeceene 1419
USEE POLICIES ..ottt ettt et s et e st e s e e et e e et et et et e ssasseeseessessessansassasessessaesaessensansansans 1423
FUNCLION dEVELOPIMENT ...ttt re e e e e e et e st e st e s aasae e s e e snennens 1423
Layer developmeNnt @nNd USE ... ettt e et et e st e saesaesae e sa e a e e et et s 1428
CrOSS-ACCOUNT FOLES ..ottt sttt sttt et et e s se st e st s e st et s sasba st e e s sasbesaenessessenananes 1429
Condition keys fOr VPC SEtHINGS ..ottt ettt te e a e s s aens 1429
CONLrol ACCESS USING TAGS wooueiuiiieieciecieceeeeeete e te e ste e stesse e e st et et estessessessasseessessessesansassassassessaanean 1430
PrEr@QUISITES .eeeeiteeieetert ettt sttt a e s ste e st e s sae e s e e s sae e s st e s aesssaesssaesssasssaesssessssesssesssesssaannns 1431
STEP T: REQUITE TAGS ittt sttt s st e ste s sre s st e s sae e st e s saessaesssaessaesssessssessseesssasssessssesssens 1431
Step 2: Control actions USING TGS ..ottt ettt sa e sa e 1432
Step 3: Grant list PEIrMISSIONS .....c.ccieieieeeeeceee ettt st e e e e et st e st e saessesse e e e nnanns 1432
Step 4: Grant IAM PEIMIUSSIONS ......cicvieeriirrierrieinterseeesteesreestessseestesssessseessseessaesssessssesssessssesssesnes 1433
Step 5: Create the IAM IOLE ...ttt s e s sr et ae st e ssesre e ennens 1434
Step 6: Create the IAM USEN ...ttt ettt tesaesae e e e e s e e et e saesaessesseesesnnans 1434
Step 7: TeSt the PErmMISSIONS ...ttt sa et ste s e s e e e e e e e e e e saesaenaans 1434
Step 8: ClEAN UP YOUI FESOUICTES ....eceveeveereereereeeeeesessessessessessessassessaessessessessessessessassessssssessessessanes 1435
RESOUICE-DASEA POLICIES ...ocuveereieieeteeteeeeee ettt ae st e st e s te s e e e e e e e e s e sae st e tesaessessasseennannans 1437
SUPPOIEEA API QCLIONS ettt ettt e ste s teste st e s e e e e e s e se st e ssesbassassassneseensensansans 1439
Granting function access t0 AWS SEIVICES ......cceeieieieiecieceeeee ettt saestesre s e e s e saesae e s 1440
Granting function access to an 0rganization ............ccceceeeeerereciecceee e 1441
Granting function access to other aCCOUNTS ... 1442
Granting layer access to Other aCCOUNTS ...t 1443
Cleaning up resource-based POLICIES ...t aeaens 1444
RESOUICES anNd CONAITIONS .....oiruirieiiirieicerence ettt ettt sse st e s e st e e s e s et enessessenassens 1446
POLICY CONITIONS ...ttt ettt et e s ae s e e e e e e e st e s aesae s e s seesn e e esaenaanaasansan 1447
FUNCLION FESOUICE NAIMIES ...ttt ettt sttt s sae st e st b st s s s sae s e e atssesstesnesnnens 1448
FUNCEION QCHIONS .ttt ettt st sb e st sb e st s b st e nes 1450
Event source mMapping QCLIONS ....cciiiirieiieerieritrceesrreestes st sseessreestesssesssaesssessssesssessssesssssssnens 1454
LAYEE QCLIONS ..ttt st e ssre e st e s sae st e s sae e st e s aesssaessae e s st esssasssaessseesseasssesssaessseesssesssesssaessens 1454
Permissions DOUNAAIIES .....co.cuiiririiiictceretr ettt sttt ettt et sa e e s sb e e e s e ae s s ns 1456
Security, governance, and COMPLIANCE ...ccciiiueeeeeeeiiiiiiiceiiiiineneessnsisisescesessssssssssssssssssssssssssssssss 1459
DAta PrOTECLION ..ttt ettt e s sae e s e e s ae e st e s s e e s e e s sae s saessaaessaesssaassaesssaennsans 1460
ENCryplion N traNSIt ..ottt s e e s e e s sae s s e e s aesssn e s aaessaesssaessnessneanns 1461
ENCIYPLION @t FOST .ttt ettt e st e re e s sa e s se e s b e s saaesaessaaessnassnaanns 1461

XXVi



AWS Lambda Developer Guide

Identity and Access ManAgEMENT .......cc.coueeieieiieeeectetecte e se e e e e s e e e e saestessesse s e ssee e esaesaesaesansan 1461
AUAIENCE ..ttt ettt sttt et e s bt st s et et e se s b et e e s s e be st e sassestesassensestesansensesensen 1462
Authenticating With identities ..ot 1462
Managing access USING POLICIES ....ccueeeiieieieciecieceeeeee ettt sre e e ste e e e e e s e aesaestesaessessessnesnennens 1466
How AWS Lambda works With TAM ...ttt aees 1468
Identity-based pPoliCy @XAMPLES ..ottt st 1475
AWS MANAGEA POLICIES w.uveeeeeeieeeietecteeetee ettt et te e st e e e s e e e e et et e stesbessassasseesnessenaensansansans 1478
TrOUBLESNOOTING ...ttt et e et st e s b e sbe st e s e seesaea e e ensasantans 1484

GOVEIMANCE ...ueeniieieiieeitetteteet et st e et et et e et e st s be st e st et e et e ese s b e s st e st et e e st e st sasessteseeasesstessesasasatenseensanns 1486
Proactive controls With GUAId ...ttt ae e nes 1488
Proactive controls With AWS CONfig ..ottt 1492
Detective controls With AWS CONFIG ...ttt 1499
(@oTa [IEY[e] 1 o [OOSR USRS 1503
COAE SCANMING ..euvieeeieeiietecteteteete ettt e et e st e s testeste e e e e e s et e saestasassassassaesaessessassansansansassaessensensansanes 1506
ODBSEIVADILILY ..veveeeeeieeeeeeeee ettt e e e e et e st e b e b e s b e s se e e e e s e e s et e se st assasseesaeseenaenean 1511

ComPLiaNCe ValidAtioN ...ttt e st e st e s a et et nes 1518

RESILIEICE ..ottt ettt ettt s b e st s b et st et e e e b e sae st e sa b e st esaesestensesesensesans 1518

INFrasStrUCTUIE SECUNILY .uviieieieeee ettt ettt e st e st e s e e e e e e et et e bestesaassessassnennannans 1519

MONItoring FUNCHIONS ...ciiiiiiiieeeiciiiiiiiiiitiiieennneiniiieeeitettseeesssssssssssssesssssssssssssssssssssssssssssssssssssssss 1520

MORNILOIING CONSOLE .ttt e e e s et e st e st e st e e b e s e e e e e s ebesasessessassaennassanes 1521
PrICING ittt ettt e e st e s e e s s e e st e s s se e e b e s s st e s b e e b e e s be e s st e e be e s e e et e e saeessa e saeensaereans 1521
Using the Lambda CONSOLE ...ttt ettt a e et et 1521
Types of MONItOriNG Graphs ...ttt e e a e e e aan 1521
Viewing graphs on the Lambda coONSOLE ... 1522
Viewing queries on the CloudWatch Logs CONSOLE ......ccuooueeeeeeeeieieeeeeeeecee e 1523
WNAL'S NEXEY .ottt ettt ettt sttt s e st st s s b et e s e st et s et et ssessesbesassessastesassensesennen 1524

FUNCEION MEEFICS ettt ettt s et sa e st s b e st et ssae s e e sne s 1525
Viewing metrics on the CloudWatch conSoLle ...t 1525
TYPES OF MIBLIICS ettt e st e s te s e e e e e e et e st e sbessessaesnesaennannan 1526

FUNCLION LOGS ottt ettt sttt te st e st e s te s e e s e e et et e s b e b e saesseesaesaesaansestansantassansassasssensansans 1530
PrErEQUISITES .ottt ettt te st se e s ste e st e s sae e s e e s sae e s st e s saesssaesssaessaesssaesssessssesssessseessaennns 1531
PrICING ettt ettt e s st e s e e e s st e s e e s s e e s b e s s s e e s b e s s e e s b e e saa e e be e s e e et e e saaesse e sae e raenaans 1531
Configuring advanced logging controls for your Lambda function .........cccccceeeeenennennnnns 1531
Using the Lambda CONSOLE ...ttt ettt re s a et et sa e 1545
USING the AWS CLI ettt e ettt et e e stesteste s e st e e e s s e s e aetesae b e sassessasnsensanaans 1545
Runtime fuNCtion LOGQING ...ttt re e sa et sae st e s sesse e enennens 1548

XXVii



AWS Lambda Developer Guide

WRNAL'S NEXEY .ottt ettt ettt ettt s e st st et e st e e b e st et s e b et ssessesaesassessassesasansesesnn 1549
AWS XoRAY ittt estes st s seessaeestessaess e e ssaeesaaesssasssaessseesstasssassssesssessssesssessssessssesssessseesssesssesssees 1550
EXECULiON role PEIMISSIONS ....ccueciiietetetetec ettt ste e e ettt esaessesse s e e sa e aea et etanes 1553
The AWS X-RAY ABIMON ....cueiiiieetetetectetectee e et te e e stesteste s e eseese s s e e e stestessassessassessasnnensansans 1553
Enabling active tracing with the Lambda APl ...t 1554
Enabling active tracing with AWS CloudFormation ..........cceceeeeeneeeececceeecececeee e 1554
FUNCLION INSIGALS ...ttt ettt e s ae st et e e e e e s e e et e b e s e ssessaesesnnennanes 1556
HOW Tt WOTKS <.ttt ettt st sa ettt b e st e s et e st s e s s e s e e saasaesassassans 1556
PrICING ittt ettt rte s st e s rae e s ae e s b e s s sa s b e e s b e e s b e s b e e s b e e sae e e be e s e e et e esaae e s e e saesraeneans 1557
SUPPOIEEA FUNLIMIES ...ttt ettt te st et e s e e e e e s et et e st e st e s s e s sessaesa e e esaessensansansanes 1557
Enabling Lambda Insights in the CONSOLE ..o 1557
Enabling Lambda Insights programmatically ..........ccceoeoeeeneneeieeeceeeeeeceeceee s 1557
Using the Lambda Insights dashboard ... 1558
Detecting funNction aNOMALIES ......c.ocueeieieieeeeee ettt st 1559
Troubleshooting @ fUNCLION ...ttt ae s 1561
WNAL'S NEXEY oottt ettt ettt ettt et et e s b e st et s et et e e s sasaesassassastesassensesessen 1524
O PIOTILEL ettt et e st e s et e e e e et e st e st e st e s sessaeseessenaessensessansassassnensanaans 1564
SUPPOIEEA FUNLIMIES ...ttt ettt st e te s e e e e s et et e st e st e s s e s sesseesa e e esaessantensansanes 1564
Activating CodeGuru Profiler from the Lambda console ..., 1564
What happens when you activate CodeGuru Profiler from the Lambda console? .............. 1565
WNAL'S NEXEY oottt ettt ettt ettt et et e s b e st et s et et e e s sasaesassassastesassensesessen 1566
EXQMPLE WOTKTLOWS ...ttt ettt st et esae st e s sse s s e e s et e ae st e sessassnssesnaenean 1567
PrEr@QUISITES .eeeveiteeeeteet ettt te sttt s e e st e s sae e s e e s sae e s st e s aesssaesssaesssasssaesssessssesssasssesssaannns 1567
PrICING ettt et ste e st e s e e s st e s e e s se e et e s s b e e s s b e s b e e s aeesaa e e b e e s e e et e e saae e s e e saeenraeraans 1568
VIEWING @ TraC MAP cioeieiieieeeertecseesteese st st e stessae s s e e s ssees st e s saess e esssaessaesssesssaasssassstesssesssaesssens 1568
VIeWING trace ELAILS ...coueeeeeeiceeeeeeeeee ettt te s e e e e s e st e tesae s b e sessessaennenaaneans 1569
Using Trusted Advisor to view recommendations ..........cccooeeveieieenieceneneseeeeeesee e 1570
WNAL'S NEXEY .ottt ettt et ettt s st et e e st et s et et e sessesaesassessastesasansesessn 1570
Lambda LaY@rs ...uueeeeiiiiiiiiiiiininnenneiiiiieeciitinssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 1571
HOW 0 USE LQYEIS ...ttt e e se et e st e st este s s e e s s sa e e e e et et e st anbesaassessaenaenaensanaanes 1573
Layers and LQYEr VEISIONS ....c.ccueeeeieeeeeteieectectestestesese e e esesaestestessessessessessessaesessessesansassassessesssensenes 1573
PACKAGING LQYEIS ..ottt et et e e st e s e e et et et et e stessessasseesaesaensansansasasnssessaanean 1574
Layer paths for each Lambda runtime ...t 1574
Creating and deleting LQYEIS ... ettt st st re e e e e e et aetans 1577
CrEATING @ LAYEK ettt e st et e st e st et e s e e e st e e et et e sae st esseesaeneeneensansansans 1577
Deleting @ LAYEI VEISION ...ttt ettt te e st e s e e e se e e et et e b e s s e b e s se e e eneeaennanes 1579

XXViii



AWS Lambda Developer Guide

AAING LAYEIS ..ottt ettt et e st e st e e e e e e st et et e st e s s e s bessaesaesaestessasassessassassaensansansans 1580
Accessing layer content from your fUNCLION ..o 1582
Finding layer information ...ttt teste s s s e saeaans 1582

Layers with AWS CLOUAFOIrMAtion ...ttt a et saesaestesae e s e s ennens 1585

LAYErs WIth AWS SAM ...ttt et et e st et e s se s e e e e e e e et e st e s b e st e saeesaeseensentensansansanes 1586

Lambda eXtENSIONS ...cceeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieesissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 1587

EXECULION @NVIFONMENT ..ottt ettt sttt et e s s ae st s nessae st esneens 1588

Impact on performance anNd FESOUICES ......c.coeceeieieieeeceee ettt sre e e e e e et e s aesaasaanns 1589

POITNISSIONS ...ttt ettt sttt e b st e st s b e et e e st s se s b e st s se et e e st e ssessesstesasnsanns 1589

CONFIGUIING EXEENSIONS ....oeviieeieeectetetete et et e s et e stestestesse e e e e s e e s e sesaesaestassassaesesssensensensensanes 1590
Configuring extensions (.zip file Archive) ... 1590
Using extensions in CONtAINEr IMAGES ......cociiriieriirrieineenreeseesre st esreesreesssesssaesssessseesssessssessees 1590
NEXE SEEPS evtiieiitieteectee ettt et e et e s e s s et e st e s s se s st e s saeesste s saessaassseesssessaesssessssesssessssesssessseans 1591

EXTENSIONS PAITNELS ...ttt sttt s e e e s sae s sa e s sae s st e s sae s s e e ssaeessaasssessssasssaesssesssennns 1592
AWS MaANAgEd EXEENSIONS ....ccueeieieieieiecteceeeee et et estestessessessee e e e e s esessesessassassassessasssessansans 1593

EXEENSIONS AP .ttt ettt sttt e e st s st s e st st e et e st s sbe s st s st s b e et essasasasntans 1594
Lambda execution environmMent LfECYCLE ...t 1595
EXEENSIONS AP FEFEIENCE ..ttt a et s sa et st a e s 1604

TELEMIELIY APH ..ttt te e te e s e s e e e et e b et et e s b e s s e e s e e se e s e s astasassasseeseesaessantensansansans 1610
Creating extensions using the Telemetry APl ... e 1611
RegiStering YOUIr @XEENSION ..c...ciiiiiiiirieiceeeteectee st ree et e saessreesstessaeesssesssaesssessseasssessssesssassseens 1613
Creating @ telemMEry LISTENEI ... ettt 1613
Specifying a destination Protocol ... 1615
Configuring memory usage and buffering ... 1616
Sending a subscription request to the Telemetry APl ... 1617
Inbound Telemetry APl MESSAGES ....ccceeeeeeeiererertestestesteseseeeeseessesaestessessessessessseesssessessensansen 1618
APL FEFEIENCE .ttt sttt ettt et ettt e s et e e e e be b esassestensesassensenens 1622
EVENT SChEMA FEFEIENCE ...ttt ae sttt b e e nes 1626
Converting events t0 OTEL SPANS ...ttt ra et ae st e s s e e e nenan 1647
LOGS AP ettt st s e e st e st s ae s s e s e s b s a e e s b e s et e e e e a e e e e e s e e st e e aaessaessaesnnesranan 1653

TroubLleShOOTING ..cciiiiiiieiriiiiiiiiiiiiiiiieeenneniiiiiiieeitetssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssass 1665

DEPLOYIMENT ...ttt ettt e te e s e et e e e s e e e et e st et et e st essessesssessensassessansassasassessaesnassensensansans 1665
General: Permission is denied / Cannot load SUCH file ......cueeveeiiveeiiiiieiciieeeeeeeeeceeeeeneene 1666
General: Error occurs when calling the UpdateFunctionCode .........ccooveeeeeveneeeneeeeceeeenee. 1667
Amazon S3: Error Code PermanentRedireCt. ......cocoviverenieinenieereneteesenectsesee e 1667

XXiX



AWS Lambda Developer Guide

General: Cannot find, cannot load, unable to import, class not found, no such file or

(o [T =Tl o] oY OO USROS 1667
General: Undefined method handler ...t 1668
Lambda: Layer conversion failed ...ttt 1668
Lambda: InvalidParameterValueException or RequestEntityTooLargeException ................ 1669
Lambda: InvalidParameterValuEEXCEPLION .......cccveeieeeeeeeteteeeee ettt cae e neneens 1670
Lambda: Concurrency and mMemory QUOTAS ....ccccceeueererereeieeeeeeeeseeseesrestessesseeseessessesaessessessass 1670
INVOCATION .ttt et et a e st e st s s s st e et e ae e b e e st s sesabasstessasnsesntans 1670
IAM: lambda:InvokeFunction Not authorized ... 1671
Lambda: Couldn't find valid bootstrap (Runtime.lnvalidEntrypoint) .......ccccceoeeeeeeceecvecnennene 1671
Lambda: Operation cannot be performed ResourceConflictException ........cccceoeeveeeecvenennene 1671
Lambda: Function is stuck in PENAING .....ccueeueeieiieeeeeeeeee ettt resae e 1672
Lambda: One function is using all CONCUITENCY ......ooveveiecieeeeee e 1672
General: Cannot invoke function with other accounts or Services ........cooevevveeevevveneniecennens 1672
General: Function invocation iS LOOPING ......ccuciiieciecieceecee ettt sresreeens 1672
Lambda: Alias routing with provisioned CONCUITENCY .....ceoeeeeeeeieeeeieeeeteceseee e 1673
Lambda: Cold starts with provisioned CONCUITENCY .....cc.ccveeuerieeereeeeeceeee e 1673
Lambda: Cold starts With NEW VEISIONS .......ccoevviiiiniriiireerene ettt sae e 1674
EFS: Function could not mount the EFS file system ..., 1674
EFS: Function could not connect to the EFS file system ... 1674
EFS: Function could not mount the EFS file system due to timeout ........ccooeevrverrrennnee. 1675
Lambda: Lambda detected an 10 process that was taking too long .......cccceeeeeeiecvecvenenen, 1675
EXECULION <ttt ettt s b st s b et a e s b e st e s e e b e et e besabe s st esseebesseenness 1675
Lambda: Execution takes t00 LONG ...ttt s re s ne 1676
Lambda: Logs or traces dON't QPPEAN ...cuccueeeeeeieeetetetectesee ettt stesaessesse s e e e e e e e e ssennens 1676
Lambda: Not all of my function's l0gs @PPeAr ......c.cceeeeieceeteeececeeee e 1676
Lambda: The function returns before execution finishes .......c.oocverevnvnenevnienenrerenin, 1677
AWS SDK: Versions and UPAAES .....c.cceceeeeeeieiceeietestectestesteseeeesseeeesaesaessessessessassesseessessessensas 1677
Python: Libraries load iNCOMTECLLY ..ottt nnens 1678
NEEWOTKING «eeveteeieeeceeetete ettt et e s e st e s e s e e e s e et et et et assessesseeseessessansansansassassassaesaassensansansans 1678
VPC: Function loses internet access Or timMes OUL .......coccvevirireniininenenteenenteeeesse st eesesaeeenens 1679
VPC: Function needs access to AWS services without using the internet .............ccocveuenee. 1679
VPC: Elastic network interface limit reached ... 1679
EC2: Elastic network interface with type of "lambda" ... 1680
CONTAINET IMIAGES ...eveiriiteeieeierceesrteestesrte s st e s ste e st esssessseessessseesssesssaesssessstesssesssessssessseesssesssaesssessseasns 1680
Container: CodeArtifactUserException errors related to the code artifact. .......................... 1680

XXX



AWS Lambda Developer Guide

Container: ManifestKeyCustomerException errors related to the code manifest key. ........ 1680
Container: Error occurs on runtime InvalidEntrypoint ... 1681
Lambda: System provisioning additional capacity .....cccoceeeeereeveeceeceececececeeee e 1681
CloudFormation: ENTRYPOINT is being overridden with a null or empty value ................. 1681
Lambda appliCations ......eeeeeeciiiiiiiiiiiiiimeeemnniiiiiiiiiiiitisssssssssssssssscssssssssssssssssssssssssssssssssssssssssssss 1683
MaNAge APPLICALIONS ..ottt et e st e et e s e s e e e e e s et et e sessassessaenneneennanaanes 1685
MONItOriNG APPLICALIONS ..ottt tesaesae e e e e e s e e e saesaasanas 1685
Custom monitoring dashbOards ...t 1686
Tutorial — Create an APPLICALION ... ettt a e e saaaans 1688
PrEr@QUISITES .eeeeiteeieetert ettt sttt a e s ste e st e s sae e s e e s sae e s st e s aesssaesssaesssasssaesssessssesssesssesssaannns 1689
Create an APPLICATION ..ottt e e s a s a e aenaenaen 1690
INVOKE The TUNCLION ..ottt ettt st b e e 1691
Add QN AWS FESOUICE ...uveureuireerretrierientesteessestesessestestssessessesessessessesessessesessessessssessessesessessessesessesseses 1692
Update the permissions BOUNAArY ...t 1694
Update the fUNCLION COAE ...ttt ettt ae s ne 1695
NEXE SEEPS eveeieitietetceeere ettt ettt e et s et e s s et e st e s ae e st e s saaessae s saessaessseesssessaesssessssesssessssesssessseens 1697
TrOUBLESNOOTING ...ttt te e a et et este st e st e e seesa e e e nensesaneans 1698
CLEAN UP ettt ettt et e st st e st e st e e e e s e e e et et et e s s e sasseesa e st essassansassansassaeseesaensenaantansansan 1699
ROLLING dEPLOYMENTS ...ttt ettt e e e a et sae st e s b e s se e e e e e saea et esasaanes 1701
Example AWS SAM Lambda teEmMPLate ...t 1701
Mobile SDK fOr ANAroid ........coeeiiiririiirenietrenietecsestetse et ste st et ste st e e sse st e e s asse s s e ssessenassassesees 1703
TULOTTAL ettt ettt sttt sttt s e bbb e st e s b e b et s sesae st esassenbentesarsansenenns 1703
SAMPLE COAR ettt ettt et e st e s e e e e s e s e e s e e e s et e bessassessaeseeseenaansansansansan 1712
Orchestrating fUNCLIONS ......iiiiiiiiiiiiiiienneciiiiiiceinitieeeessessiseseeeeesssssssssssssssssssssssssssssssssssssssssssss 1715
APPLICAtION PATLEINS ..ttt e e st et et e st e s b e s se s e e e e e esaeae st ensansas 1715
State Maching COMPONENTS ...ttt re e s se e e e e s e s e saesaenaenaans 1715
State machine application PALLEINS ......cccviieieeceeeeree ettt aesae e ae e nnens 1716
Applying patterns to state MAChINES ... 1716
Example branching application pattern ... 1717
Manage State MACKINES ...ttt a e bt et s e e se e e e e e e e aa s 1720
Viewing state Maching details ... 1720
Editing @ State MAaChiNe ...ttt st 1721
RUNNING @ StAte MACKINE ..ottt ettt e st esae s e e e e e e e aetenes 1722
Orchestration EXAMPLES .......oov et ettt et e st e s e s se e e s e e s et e sae st e bessassasseennanean 1722
Configuring a Lambda function as @ task .......ccceveeeeeeciececeeeee e 1722
Configuring a state machine as an EVENt SOUICE ......ccccueceeeieeiererereeee ettt sre e e e e nnens 1723

XXXi



AWS Lambda Developer Guide

Handling function and SErviCe EITOIS ...ttt re e e sae e aan 1724
AWS CloudFormation and AWS SAM .......rinineirenieteesessesteessesseessessessesessessessssessessesens 1725
Lambda SNapSTart .....iiiiiiiiiiiiiiieeteneiiiiiceiiiettsssssssssssssssssessssssssssssssssssssssssssssssssssssssssssssssssans 1728
Supported features and LMItAtioNs ..o 1729
SUPPOITEA REGIONS ...ttt rte et este e e e e s e e s et e st e saessa s s e s sae s et e aesestassassaesesssensensensansanes 1729
Compatibility CONSIAEratioNS .........oviieieeecece ettt e s e s e e e e s e ae st esaesaasans 1730
PrICING ettt ettt e s e e e st e s st e e s s e e st e s be s sa e e s et e s sae s ba e sae e ae e sae e se e st e e seeesteesaesanaensaans 1731
SnapStart and provisioNed CONCUITENCY .....cceeeeeeeeeeieeetetece e eresaesaestesse s e s e s e s e saesaesaenns 1731
AdAITIONAL FESOUICES ..ottt ettt ettt be st e e saesbe st s e s sasae e s e ssestesassessensesessansenasans 1732
ACTIVatiNg SNAPSTArT ...t sr e s re e st e e s e s sae s e e s ae e s e e e sae e s saesaaesanans 1733
Activating SNapStart (CONSOLE) ...ttt s te e s e e e e a et e saaaan 1733
Activating SNapStart (AWS CLI) ..ottt re e e sa et e saeste s sse s e s s e saene s 1734
Activating SNAPSTArt (API) ..ottt e st st e st e s te s s e e e e e e s e e et e aesteaanas 1736
FUNCEION STAT@S .ttt ettt e a st ae s s st s b e e e sneens 1737
Updating @ SNAPSROT ...ttt ettt a e s r e e r e ns 1737
Using SnapStart with the AWS SDK fOr JAVa ...ttt 1737
Using SnapStart with AWS CloudFormation, AWS SAM, and AWS CDK .......cceveeeeeeveevennee 1738
Deleting SNAPSNOLS ...ttt st st te st e e e a e et et e renas 1738
HaNALiNG UNIGQUENESS ..ottt st st e st e testesse s e e s e e s e et e ste s e ssasseeseennensanaansansanes 1739
Avoid saving state that depends on uniqueness during initialization .........ccccceevevennnnnneee. 1739
USE CSPRINGS ...ttt ettt et ae st sae st e s st s b e st e et esbe st e s st s sasntessesssasssannens 1740
SCANNING TOOL .ttt ettt et e s e s e e e e e e et e b e st e saesbassesseeseesaensensansensansanes 1740
RUNEIME NOOKS ...ttt ettt ettt s sb e st et b et s st et e s se st et s sasbassenans 1741
Step 1: Update the build configuration ... 1741
Step 2: Update the Lambda RandLer ...ttt 1742
MONIEOTING .eveivieeieieeeeteecteete st rte e st e e te s st e s ste e st e s ae s sa e st e s st esssesssaesssassseesssessseesssessseesssessssesssessstesssennne 1744
CLOUAWAALCN LOGS ..ttt ettt s aestesae e e e e e e e et e ae st e st e sessassaesaenaennannan 1744
AWS XoRAY ittt sttt s e st e s ste s st e s sae s s st e s ssesssaessaa e ssassseessaessseesssessseasssessseesnsessseesssennns 1745
TELEMIELIY AP ...ttt ettt et e st e s e st e e e e e e e et et e st e st e bassaeseesaessenseseensansansansas 1745
API Gateway and function URL MELIICS ...ccuivuieieeeececietectetesteseeee ettt n e e ne s 1746
SECUNTY MOAEL ettt ettt e s e s e e s e e s et e ae st e s b e seesaesaensensentansansanes 1747
BOST PrACLICES ...ttt ettt e e st e st e st e s st e s e e e s e e s ae e s e e s aa e aa e s ae e sa e e baessaessaeennes 1748
NETWOIK CONMNECLIONS ...ttt ettt st et ettt s b e e s e sae st e e ne 1748
PerformanCe tUNING ..ottt ste e st e s e s e e e e e e e st e st et estessassassaessenaansansansans 1749
Sample apPPLiCAtIONS ....ccciiiiiiiieeeeeiiiiiiieeiiiiiieieeneeiiiiiieeeetteseesssssssssssssssssssssssssssssssssssssssssssssssssssns 1751
BLANK TUNCEION ettt sttt ettt s b st e a s sae st e ssa st e e nas 1755

XXXii



AWS Lambda Developer Guide

Architecture and handLler COAE ...ttt st a e aes 1755
Deployment automation with AWS CloudFormation and the AWS CLI ......cceeeeeevevennnenee 1757
Instrumentation With the AWS X-Ray ...ttt se e e sneeens 1759
Dependency management With LQYers ...ttt 1760
EFTOT PrOCESSON «.ceeieieeitieteectee et estessrt e s te st e s stessseesssessaeesstessseessaesssaessaesssessssessseesssessseesssessseessaesssennns 1762
Architecture and eVeNt STFUCTUIE ...ttt a et sa e 1762
Instrumentation With AWS X-RaY ...ttt e e st st ste e ae e nean 1764
AWS CloudFormation template and additional reSources .........cccoeveeeeeceececiecececeeeeeeeenen. 1764
LIST MANAGEN ittt ettt ettt s e st e e st e s st e st e s ae e s b e s ae e st e s saesstas st e saassaesssessseesssesssaensees 1766
Architecture and eVeNt STFUCTUIE ...ttt st se e 1766
Instrumentation With AWS X-RaY ...ttt e sttt e e re e nan 1769
AWS CloudFormation templates and additional resources ........cccocevevecececeneceeecceeceenne 1769
WOrking With AWS SDKS ....ccciiiiiiiiieennnnnnsiiiiecceiininsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssass 1770
COode EXAMPLES ...ceeeeeeeeeiiiiiieiiiiiieeaeseneessssssseeeessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 1771
ACTIONS ettt sttt sttt b e et s e s bt ae et e et eebe st e et e s e et et e be st e e at e se et e neeneen 1780
Create @ TUNCLION ..ottt ettt ettt ettt s s b e st et s s ae st e e snasnen 1780
Delete @ FUNCLION ...ttt ettt ettt st et be st e e st e e s e saa s esassans 1799
GEL @ TUNCLION .ttt ettt ettt s s et st et s e sbesae e ssasaansesans 1810
INVOKE @ TUNCLION .ottt ettt ettt s st st s s a st e e s e nas 1818
LISE FUNCHIONS ettt sttt et e sa et s st s b et e e sba st e e ssessa s enasans 1831
Update fUNCLION COAE ..ttt et sa e st s tesae s e e e e e e e e e e e e naanaan 1842
Update function configUration ...ttt s te e sa e nas 1853
SCONANIOS ..ttt ettt e e b e et e bt s st e st s st et e et e s s e st e s st s sbe et e e st e se st e st esbesatesstesessteseensasssasens 1863
Get started With FUNCLIONS ..ot sa s a e 1863
SEIVEILESS EXAMPLES ....eoeeeeieeeieteeeee ettt te e s e s e e e e e et et et e s tesaessessaese e e esaessentesansassesseessaneensansan 1976
Connecting to an Amazon RDS database in a Lambda function ..., 1977
Invoke a Lambda function from a Kinesis trigger ... 1978
Invoke a Lambda function from an Amazon S3 trigger ... eececececeeeeee e 1989
Invoke a Lambda function from an Amazon SNS trigger ... evcveceececeeceseeeeee e 1998
Invoke a Lambda function from an Amazon SQS trigger ... eeeveeceeceececeeeseeeeeeeenens 2007
Reporting batch item failures for Lambda functions with a Kinesis trigger ......................... 2015
Reporting batch item failures for Lambda functions with an Amazon SQS trigger ............ 2028
CrOSS-SEIVICE EXAMPLES ..ouviiiiieiieeetetectece e e e e e et e it et e ste st e s tessassesse e s e s esesestassassasseesaessansantensansansans 2038
Create a REST API t0 track COVID-T9 data .....ccccveeieirenienirirenieieenienteesresseessessesseessessessesens 2038
Create a lending LIbrary REST AP ...ttt e e e saestesaessesseese s e e s e saesne s 2039
Create @ messenger aPPLICAtION ...ttt aenan 2040

XXXiii



AWS Lambda Developer Guide

Create a serverless application to manage photos .........cceececiccecececeeee e 2041
Create a websocket chat application ... 2045
Create an application to analyze customer feedback ........ccoeveeeieieciecencceeeceeeeee e 2046
Invoke a Lambda function from @ BrOWSEN .......coceveivenieieinenecesentetecseee et see e 2052

Use API Gateway to invoke a Lambda function ...t 2053

Use Step Functions to invoke Lambda functions ... 2055

Use scheduled events to invoke a Lambda function .........c.coecvvveninnincnncenencncneneeeennenns 2056
Lambda qUOTAS ...ccciiiiiiiiieeninciiiieieiiiiitseesssssssssssecessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 2059
COMPULE ANA SEOFAGE ..ttt te e e e e e et et e st e st e sta s e s s e e e e s et et e ta s assasseesaensennanes 2059
Function configuration, deployment, and eXecution ..........cccceoeeeeeeveieercciecececeseee e 2060
LAmMDBAa API FEQUESLS ...ouveeieieeeeeeteteteteste e etee e etesaestestestestesse s e e e e s essessesessassassessassasssessansansansansens 2062
OLNEE SEIVICES ..ttt ettt sttt st ettt st e st et s st et e e s b et e e eaesae st esassessensesesansensssenes 2063
AWS GLOSSANY .cceeeennnnnissnnceenneseesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnes 2064
DOCUMENT NISTOTY uueuiiiiiiiiiiiiiiieennnniiiiiiieienietesassssssssssssscesssssssssssssssssssssssssssssssssssssssssssssssssssssssns 2065
EQrlIEr UPAALES ..ottt st e e s e e st et e st e s essesseesa e e e s et estabansassassnssessaanean 2087

XXXV



AWS Lambda Developer Guide

What is AWS Lambda?

AWS Lambda is a compute service that lets you run code without provisioning or managing servers.

Lambda runs your code on a high-availability compute infrastructure and performs all of the
administration of the compute resources, including server and operating system maintenance,
capacity provisioning and automatic scaling, and logging. With Lambda, all you need to do is
supply your code in one of the language runtimes that Lambda supports.

You organize your code into Lambda functions. The Lambda service runs your function only when
needed and scales automatically. You only pay for the compute time that you consume—there is
no charge when your code is not running. For more information, see AWS Lambda Pricing.

® Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

When to use Lambda

Lambda is an ideal compute service for application scenarios that need to scale up rapidly, and
scale down to zero when not in demand. For example, you can use Lambda for:

« File processing: Use Amazon Simple Storage Service (Amazon S3) to trigger Lambda data
processing in real time after an upload.

» Stream processing: Use Lambda and Amazon Kinesis to process real-time streaming data for
application activity tracking, transaction order processing, clickstream analysis, data cleansing,
log filtering, indexing, social media analysis, Internet of Things (loT) device data telemetry, and
metering.

» Web applications: Combine Lambda with other AWS services to build powerful web applications
that automatically scale up and down and run in a highly available configuration across multiple
data centers.

» loT backends: Build serverless backends using Lambda to handle web, mobile, IoT, and third-
party API requests.

» Mobile backends: Build backends using Lambda and Amazon API Gateway to authenticate and
process APl requests. Use AWS Amplify to easily integrate with your iOS, Android, Web, and
React Native frontends.

When to use Lambda 1


https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/serverless/latest/devguide/

AWS Lambda Developer Guide

When using Lambda, you are responsible only for your code. Lambda manages the compute fleet
that offers a balance of memory, CPU, network, and other resources to run your code. Because
Lambda manages these resources, you cannot log in to compute instances or customize the
operating system on provided runtimes.

Lambda performs operational and administrative activities on your behalf, including managing
capacity, monitoring, and logging your Lambda functions.

If you do need to manage your compute resources, AWS has other compute services to consider,
such as:

o AWS App Runner builds and deploys containerized web applications automatically, load balances
traffic with encryption, scales to meet your traffic needs, and allows for the configuration of how
services are accessed and communicate with other AWS applications in a private Amazon VPC.

« AWS Fargate with Amazon ECS runs containers without having to provision, configure, or scale
clusters of virtual machines.

« Amazon EC2 lets you customize operating system, network and security settings, and the entire
software stack. You are responsible for provisioning capacity, monitoring fleet health and
performance, and using Availability Zones for fault tolerance.

Key features

The following key features help you develop Lambda applications that are scalable, secure, and
easily extensible:

Configuring function options

Configure your Lambda function using the console or AWS CLI.

Environment variables

Use environment variables to adjust your function's behavior without updating code.

Versions

Manage the deployment of your functions with versions, so that, for example, a new function
can be used for beta testing without affecting users of the stable production version.

Key features 2



AWS Lambda Developer Guide

Container images

Create a container image for a Lambda function by using an AWS provided base image or an
alternative base image so that you can reuse your existing container tooling or deploy larger
workloads that rely on sizable dependencies, such as machine learning.

Layers

Package libraries and other dependencies to reduce the size of deployment archives and makes
it faster to deploy your code.

Lambda extensions

Augment your Lambda functions with tools for monitoring, observability, security, and
governance.

Function URLs

Add a dedicated HTTP(S) endpoint to your Lambda function.

Response streaming

Configure your Lambda function URLs to stream response payloads back to clients from Node.js
functions, to improve time to first byte (TTFB) performance or to return larger payloads.

Concurrency and scaling controls

Apply fine-grained control over the scaling and responsiveness of your production applications.

Code signing

Verify that only approved developers publish unaltered, trusted code in your Lambda functions

Private networking

Create a private network for resources such as databases, cache instances, or internal services.

File system access

Configure a function to mount an Amazon Elastic File System (Amazon EFS) to a local
directory, so that your function code can access and modify shared resources safely and at high
concurrency.

Lambda SnapStart for Java

Improve startup performance for Java runtimes by up to 10x at no extra cost, typically with no
changes to your function code.

Key features 3



AWS Lambda Developer Guide

Getting started with Lambda

To get started with Lambda, use the Lambda console to create a function. In a few minutes, you
can create and deploy a function and test it in the console.

As you carry out the tutorial, you'll learn some fundamental Lambda concepts, like how to pass
arguments to your function using the Lambda event object. You'll also learn how to return log
outputs from your function, and how to view your function's invocation logs in CloudWatch Logs.

To keep things simple, you create your function using either the Python or Node.js runtime. With
these interpreted languages, you can edit function code directly in the console's built-in code
editor. With compiled languages like Java and C#, you need to create a deployment package on
your local build machine and upload it to Lambda. To learn about deploying functions to Lambda
using other runtimes, see the links in the the section called “Additional resources and next steps”

section.

® Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Prerequisites

Sign up for an AWS account
If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

Prerequisites 4


https://docs.aws.amazon.com/serverless/latest/devguide/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

AWS Lambda Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

o Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Prerequisites 5


https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS Lambda Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create a Lambda function with the console

In this example, your function takes a JSON object containing two integer values labeled
"length" and "width". The function multiplies these values to calculate an area and returns this
as a JSON string.

Your function also prints the calculated area, along with the name of its CloudWatch log group.
Later in the tutorial, you'll learn to use CloudWatch Logs to view records of your functions'

invocation.

To create your function, you first use the console to create a basic Hello world function. In the
following step, you then add your own function code.

To create a Hello world Lambda function with the console

1. Open the Functions page of the Lambda console.

Choose Create function.
Select Author from scratch.
In the Basic information pane, for Function name enter myLambdaFunction.

For Runtime, choose either Node.js 20.x or Python 3.12

o v M W N

Leave architecture set to x86_64 and choose Create function.

Lambda creates a function that returns the message Hello from Lambda! Lambda also creates
an execution role for your function. An execution role is an AWS Identity and Access Management

(IAM) role that grants a Lambda function permission to access AWS services and resources. For your
function, the role that Lambda creates grants basic permissions to write to CloudWatch Logs.

You now use the console's built-in code editor to replace the Hello world code that Lambda created
with your own function code.

Create a Lambda function with the console 6


https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Node.js
To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the index.mjs tab in the code editor, select index.mjs in the file explorer as
shown on the following diagram.

Code source info

-~ File Edit Find View Go Tools Window Test | =

jo
d

index.mjs X

export const handler = async (event) => {
// implement
const response = {

A mylambdaFunction &k~

index.mjs

Environment

ks

return response;

HE

1
2
3
4 statusCode: 200,
, 5 body: JsoN.stringify('Hello from Lambdal!'),
6
7
8
9

2. Paste the following code into the index.mjs tab, replacing the code that Lambda created.

export const handler = async (event, context) => {

const length = event.length;

const width = event.width;

let area = calculateArea(length, width);
console.log( ' The area is ${areal’);

console.log('CloudWatch log group: ', context.logGroupName);

let data = {
"area": area,
13
return JSON.stringify(data);

function calculateArea(length, width) {
return length * width;

Create a Lambda function with the console 7



AWS Lambda Developer Guide

i

3. Select Deploy to update your function's code. When Lambda has deployed the changes, the
console displays a banner letting you know that it's successfully updated your function.

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

« The Lambda handler:

Your Lambda function contains a Node.js function named handler. A Lambda function in
Node.js can contain more than one Node.js function, but the handler function is always the
entry point to your code. When your function is invoked, Lambda runs this method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to handlexr. Be sure not to edit the name of
this Node.js function. If you do, Lambda won't be able to run your code when you invoke your
function.

To learn more about the Lambda handler in Node.js, see the section called “"Handler".

« The Lambda event object:

The function handler takes two arguments, event and context. An event in Lambda is a
JSON formatted document that contains data for your function to process.

If your function is invoked by another AWS service, the event object contains information
about the event that caused the invocation. For example, if an Amazon Simple Storage
Service (Amazon S3) bucket invokes your function when an object is uploaded, the event will
contain the name of the Amazon S3 bucket and the object key.

In this example, you'll create an event in the console by entering a JSON formatted document
with two key-value pairs.

« The Lambda context object:
The second argument your function takes is context. Lambda passes the context object to

your function automatically. The context object contains information about the function
invocation and execution environment.

Create a Lambda function with the console 8



AWS Lambda Developer Guide

You can use the context object to output information about your function's invocation for

monitoring purposes. In this example, your function uses the 1ogGroupName parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Node.js, see the section called “Context”.

» Logging in Lambda:

With Node.js, you can use console methods like console.log and console.error to send
information to your function's log. The example code uses console.log statements to
output the calculated area and the name of the function's CloudWatch Logs group. You can
also use any logging library that writes to stdout or stderr.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see
the 'Building with' pages for the runtimes you're interested in.

Python
To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the lambda_function.py tab in the code editor, select lambda_function.py
in the file explorer as shown on the following diagram.

Code source info

File Edit Find View Go Tools Window Test | =

jo
i

lambda_function *
v myLambdaFunction '3:!" Lt gl

lambda_function.py

/

def lambda handler(event, context):
# TODO implement
return {
‘statusCode’: 200,
'body': json.dumps('Hello from Lambda!")

Environment

W~ wuks wNe=

Create a Lambda function with the console 9



AWS Lambda Developer Guide

2. Paste the following code into the lambda_function.py tab, replacing the code that Lambda
created.

import json
import logging

logger = logging.getlLogger()
logger.setlLevel(logging.INFO)

def lambda_handler(event, context):

# Get the length and width parameters from the event object. The
# runtime converts the event object to a Python dictionary
length=event['length']

width=event['width']

area = calculate_area(length, width)
print(f"The area is {areal}")

logger.info(f"CloudWatch logs group: {context.log_group_name}")

# return the calculated area as a JSON string
data = {"area": area}
return json.dumps(data)

def calculate_area(length, width):
return length*width

3. Select Deploy to update your function's code. When Lambda has deployed the changes, the
console displays a banner letting you know that it's successfully updated your function.

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

+ The Lambda handler:

Your Lambda function contains a Python function named lambda_handler. A Lambda

function in Python can contain more than one Python function, but the handler function
is always the entry point to your code. When your function is invoked, Lambda runs this

method.

Create a Lambda function with the console 10



AWS Lambda Developer Guide

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to 1ambda_handlex. Be sure not to edit the
name of this Python function. If you do, Lambda won't be able to run your code when you
invoke your function.

To learn more about the Lambda handler in Python, see the section called “Handler”.

« The Lambda event object:

The function 1lambda_handler takes two arguments, event and context. An event in
Lambda is a JSON formatted document that contains data for your function to process.

If your function is invoked by another AWS service, the event object contains information
about the event that caused the invocation. For example, if an Amazon Simple Storage
Service (Amazon S3) bucket invokes your function when an object is uploaded, the event will
contain the name of the Amazon S3 bucket and the object key.

In this example, you'll create an event in the console by entering a JSON formatted document
with two key-value pairs.

« The Lambda context object:
The second argument your function takes is context. Lambda passes the context object to

your function automatically. The context object contains information about the function
invocation and execution environment.

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the 1og_group_name parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Python, see the section called “Context".

« Logging in Lambda:

With Python, you can use either a print statement or a Python logging library to send
information to your function's log. To illustrate the difference in what's captured, the example
code uses both methods. In a production application, we recommend that you use a logging
library.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see

the 'Building with' pages for the runtimes you're interested in.

Create a Lambda function with the console 11



AWS Lambda Developer Guide

Invoke the Lambda function using the console

To invoke your function using the Lambda console, you first create a test event to send to your
function. The event is a JSON formatted document containing two key-value pairs with the keys
"length" and "width".

To create the test event

1. Inthe Code source pane, choose Test.

2. Select Create new event.
3. For Event name enter myTestEvent.
4. In the Event JSON panel, replace the default values by pasting in the following:
{
"length": 6,
"width": 7
}

5. Choose Save.

You now test your function and use the Lambda console and CloudWatch Logs to view records of
your function’s invocation.

To test your function and view invocation records in the console

« Inthe Code source pane, choose Test. When your function finishes running, you'll see the
response and function logs displayed in the Execution results tab. You should see results
similar to the following.

Node.js

Test Event Name
myTestEvent

Response
n{\narea\n:42}n

Function Logs
START RequestId: 5c012b@a-18f7-4805-b2f6-40912935034a Version: $LATEST

Invoke the Lambda function using the console 12



AWS Lambda Developer Guide

2023-08-31T23:39:45.313Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area is
42

2023-08-31T23:39:45.331Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO CloudWatch
log group: /aws/lambda/myLambdaFunction

END RequestId: 5c012b0a-18f7-4805-b2f6-40912935034a

REPORT RequestId: 5c@12bQa-18f7-4805-b2f6-40912935034a Duration: 20.67 ms Billed
Duration: 21 ms Memory Size: 128 MB Max Memory Used: 66 MB Init Duration:
163.87 ms

Request ID
5c012b0a-18f7-4805-b2f6-40912935034a

Python

Test Event Name
myTestEvent

Response
n{\narea\n: 42}n

Function Logs

START RequestId: 2d@b1579-46fb-4bf7-abel-8e08840eae5b Version: $LATEST

The area is 42

[INFO] 2023-08-31T23:43:26.428Z 2d0b1579-46fb-4bf7-a6el1-8e08840eae5b CloudwWatch
logs group: /aws/lambda/myLambdaFunction

END RequestId: 2d@bl579-46fb-4bf7-a6el-8e08840eae5b

REPORT RequestId: 2d@bl579-46fb-4bf7-a6el-8e08840eae5b Duration: 1.42 ms Billed
Duration: 2 ms Memory Size: 128 MB Max Memory Used: 39 MB Init Duration: 123.74
ms

Request ID
2d0b1579-46fb-4bf7-a6el-8e08840eae5hb

In this example, you invoked your code using the console's test feature. This means that you can
view your function's execution results directly in the console. When your function is invoked outside
the console, you need to use CloudWatch Logs.

To view your function's invocation records in CloudWatch Logs

1. Open the Log groups page of the CloudWatch console.

Invoke the Lambda function using the console 13


https://console.aws.amazon.com/cloudwatch/home#logs:

AWS Lambda Developer Guide

2. Choose the log group for your function (/aws/lambda/myLambdaFunction). This is the log
group name that your function printed to the console.

3. Inthe Log streams tab, choose the log stream for your function's invocation.

You should see output similar to the following:

Node.js

INIT_START Runtime Version: nodejs:20.v13 Runtime Version ARN:
arn:aws:lambda:us-

west-2::runtime:e3aaabf6b92ef8755eaae2f4bfdcb7eb8c4536a5e044900570a42bdba7b869d9
START RequestId: ababc@fc-cf99-49d7-a77d-26d805dacd2@ Version: $LATEST

2023-08-23T22:04:15.809Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area
is 42

2023-08-23T22:04:15.810Z aba6bc@fc-cf99-49d7-a77d-26d805dacd2@ INFO
CloudWatch log group: /aws/lambda/myLambdaFunction

END RequestId: aba6c@fc-cf99-49d7-a77d-26d805dacd20

REPORT RequestId: ababc@fc-cf99-49d7-a77d-26d805dacd20 Duration: 17.77 ms

Billed Duration: 18 ms Memory Size: 128 MB Max Memory Used: 67 MB Init
Duration: 178.85 ms

Python

INIT_START Runtime Version: python:3.12.v16 Runtime Version ARN:
arn:aws:lambda:us-

west-2::runtime:ca202755c87b9%ec2b58856efb7374b4f7b655a0ea3debld5acc9aee9e297b072

START RequestId: 9d4096ee-acb3-4c25-bel0-8a210f0a9d8e Version: $LATEST

The area is 42

[INFO] 2023-09-01T00:05:22.464Z 9315ab6b-354a-486e-884a-2fb2972b7d84 CloudWatch
logs group: /aws/lambda/myLambdaFunction

END RequestId: 9d4@96ee-acb3-4c25-bel@-8a210f0@a9d8e

REPORT RequestId: 9d4096ee-ach3-4c25-bel@-8a210f0a9d8e Duration: 1.15 ms
Billed Duration: 2 ms Memory Size: 128 MB Max Memory Used: 40 MB

Clean up

When you're finished working with the example function, delete it. You can also delete the log
group that stores the function's logs, and the execution role that the console created.

Clean up 14



AWS Lambda Developer Guide

To delete a Lambda function

1. Open the Functions page of the Lambda console.

2. Choose a function.
3. Choose Actions, Delete.
4

In the Delete function dialog box, enter delete, and then choose Delete.

To delete the log group

1. Open the Log groups page of the CloudWatch console.

2. Select the function's log group (/aws/lambda/my-function).
3. Choose Actions, Delete log group(s).
4

In the Delete log group(s) dialog box, choose Delete.

To delete the execution role

1. Open the Roles page of the AWS Identity and Access Management (IAM) console.

2. Select the function's execution role (for example, myLambdaFunction-role-3Ilexxmpl).
3. Choose Delete.
4

In the Delete role dialog box, enter the role name and then choose Delete.

You can automate the creation and cleanup of functions, log groups, and roles with AWS
CloudFormation and the AWS Command Line Interface (AWS CLI).

Additional resources and next steps

Now you've created and tested a simple Lambda function using the console, take these next steps:

» Learn to add dependencies to your code and deploy it using a .zip deployment package. Choose
from the following links for the languages you're interested in.

Node.js

See the section called “"Deploy .zip file archives”

Additional resources and next steps 15


https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles

AWS Lambda Developer Guide

Typescript

See the section called “Deploy .zip file archives”

Python

See the section called “Deploy .zip file archives”

Ruby

See the section called “Deploy .zip file archives”

Java

See the section called “Deploy .zip file archives”

Go

See the section called “Deploy .zip file archives”

CH#

See the section called “Deployment package”

« Carry out the tutorial Using an Amazon S3 trigger to invoke a Lambda function to learn how to
configure a Lambda function to be invoked by another AWS service.

» Choose one of the following tutorials for a more complex example of using Lambda with other
AWS services.

» Using Lambda with APl Gateway: Create an Amazon API Gateway REST API that invokes a
Lambda function.

» Using a Lambda function to access an Amazon RDS database: Use a Lambda function to write
data to an Amazon Relational Database Service (Amazon RDS) database through RDS Proxy.

« Using an Amazon S3 trigger to create thumbnail images: Use a Lambda function to create a
thumbnail every time an image file is uploaded to an Amazon S3 bucket.

Additional resources and next steps 16


https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

AWS Lambda Developer Guide

AWS Lambda foundations

The Lambda function is the principal resource of the Lambda service.

You can configure your functions using the Lambda console, Lambda API, AWS CloudFormation
or AWS SAM. You create code for the function and upload the code using a deployment package.
Lambda invokes the function when an event occurs. Lambda runs multiple instances of your
function in parallel, governed by concurrency and scaling limits.

Topics

« Lambda concepts

« Lambda programming model

+ Lambda execution environment

« Lambda deployment packages

« Using Lambda with infrastructure as code (laC)

 Private networking with VPC

« Lambda console

e Lambda instruction set architectures (ARM/x86)

+ Additional Lambda features

« Learn how to build serverless solutions

17



AWS Lambda Developer Guide

Lambda concepts

Lambda runs instances of your function to process events. You can invoke your function directly
using the Lambda API, or you can configure an AWS service or resource to invoke your function.
Concepts

« Function

- Trigger

» Event

« Execution environment

« Instruction set architecture

» Deployment package

« Runtime

» Layer

« Extension

« Concurrency
e Qualifier
« Destination

Function

A function is a resource that you can invoke to run your code in Lambda. A function has code to
process the events that you pass into the function or that other AWS services send to the function.

Trigger

A trigger is a resource or configuration that invokes a Lambda function. Triggers include AWS
services that you can configure to invoke a function and event source mappings. An event source

mapping is a resource in Lambda that reads items from a stream or queue and invokes a function.
For more information, see Invoking Lambda functions and Using AWS Lambda with other services.

Concepts 18



AWS Lambda Developer Guide

Event

An event is a JSON-formatted document that contains data for a Lambda function to process. The
runtime converts the event to an object and passes it to your function code. When you invoke a
function, you determine the structure and contents of the event.

Example custom event — weather data

{
"TemperatureK": 281,
"WindKmh": -3,
"HumidityPct": 0.55,
"PressureHPa": 1020
}

When an AWS service invokes your function, the service defines the shape of the event.

Example service event - Amazon SNS notification

"Records": [
{
"Sns": {
"Timestamp": "2019-01-02T12:45:07.000Z",
"Signature": "tcc6falL2yUC6dgZdmrwhlY4cGa/ebXEkAi6RibDsvpi+tE/1+827j...65r==",
"MessageId": "95df01lb4-ee98-5cb9-9903-4c221d4leb5e",
"Message": "Hello from SNS!",

For more information about events from AWS services, see Using AWS Lambda with other services.

Execution environment

An execution environment provides a secure and isolated runtime environment for your Lambda
function. An execution environment manages the processes and resources that are required to run
the function. The execution environment provides lifecycle support for the function and for any
extensions associated with your function.

For more information, see Lambda execution environment.

Event 19



AWS Lambda Developer Guide

Instruction set architecture

The instruction set architecture determines the type of computer processor that Lambda uses to
run the function. Lambda provides a choice of instruction set architectures:

« armé64 - 64-bit ARM architecture, for the AWS Graviton2 processor.

» x86_64 — 64-bit x86 architecture, for x86-based processors.

For more information, see Lambda instruction set architectures (ARM/x86).

Deployment package

You deploy your Lambda function code using a deployment package. Lambda supports two types of
deployment packages:

» A .zip file archive that contains your function code and its dependencies. Lambda provides the
operating system and runtime for your function.

« A container image that is compatible with the Open Container Initiative (OCl) specification. You

add your function code and dependencies to the image. You must also include the operating
system and a Lambda runtime.

For more information, see Lambda deployment packages.

Runtime

The runtime provides a language-specific environment that runs in an execution environment.

The runtime relays invocation events, context information, and responses between Lambda and
the function. You can use runtimes that Lambda provides, or build your own. If you package your
code as a .zip file archive, you must configure your function to use a runtime that matches your
programming language. For a container image, you include the runtime when you build the image.

For more information, see Lambda runtimes.

Layer

A Lambda layer is a .zip file archive that can contain additional code or other content. A layer can
contain libraries, a custom runtime, data, or configuration files.

Instruction set architecture 20


https://opencontainers.org/

AWS Lambda Developer Guide

Layers provide a convenient way to package libraries and other dependencies that you can use with
your Lambda functions. Using layers reduces the size of uploaded deployment archives and makes
it faster to deploy your code. Layers also promote code sharing and separation of responsibilities so
that you can iterate faster on writing business logic.

You can include up to five layers per function. Layers count towards the standard Lambda
deployment size quotas. When you include a layer in a function, the contents are extracted to the /

opt directory in the execution environment.

By default, the layers that you create are private to your AWS account. You can choose to share

a layer with other accounts or to make the layer public. If your functions consume a layer that a
different account published, your functions can continue to use the layer version after it has been
deleted, or after your permission to access the layer is revoked. However, you cannot create a new
function or update functions using a deleted layer version.

Functions deployed as a container image do not use layers. Instead, you package your preferred
runtime, libraries, and other dependencies into the container image when you build the image.

For more information, see Lambda layers.

Extension

Lambda extensions enable you to augment your functions. For example, you can use extensions to
integrate your functions with your preferred monitoring, observability, security, and governance
tools. You can choose from a broad set of tools that AWS Lambda Partners provides, or you can

create your own Lambda extensions.

An internal extension runs in the runtime process and shares the same lifecycle as the runtime.
An external extension runs as a separate process in the execution environment. The external
extension is initialized before the function is invoked, runs in parallel with the function's runtime,
and continues to run after the function invocation is complete.

For more information, see Lambda extensions.

Concurrency

Concurrency is the number of requests that your function is serving at any given time. When
your function is invoked, Lambda provisions an instance of it to process the event. When the
function code finishes running, it can handle another request. If the function is invoked again

Extension 21


https://aws.amazon.com/lambda/partners/

AWS Lambda Developer Guide

while a request is still being processed, another instance is provisioned, increasing the function's
concurrency.

Concurrency is subject to quotas at the AWS Region level. You can configure individual functions
to limit their concurrency, or to enable them to reach a specific level of concurrency. For more
information, see Configuring reserved concurrency.

Qualifier

When you invoke or view a function, you can include a qualifier to specify a version or alias. A
version is an immutable snapshot of a function's code and configuration that has a numerical
qualifier. For example, my-function:1. An alias is a pointer to a version that you can update to
map to a different version, or split traffic between two versions. For example, my-function:BLUE.
You can use versions and aliases together to provide a stable interface for clients to invoke your
function.

For more information, see Lambda function versions.

Destination

A destination is an AWS resource where Lambda can send events from an asynchronous invocation.
You can configure a destination for events that fail processing. Some services also support a
destination for events that are successfully processed.

For more information, see Configuring destinations for asynchronous invocation.

Qualifier 22



AWS Lambda Developer Guide

Lambda programming model

Lambda provides a programming model that is common to all of the runtimes. The programming
model defines the interface between your code and the Lambda system. You tell Lambda the entry
point to your function by defining a handler in the function configuration. The runtime passes in
objects to the handler that contain the invocation event and the context, such as the function name
and request ID.

When the handler finishes processing the first event, the runtime sends it another. The function's
class stays in memory, so clients and variables that are declared outside of the handler method in
initialization code can be reused. To save processing time on subsequent events, create reusable
resources like AWS SDK clients during initialization. Once initialized, each instance of your function
can process thousands of requests.

Your function also has access to local storage in the /tmp directory. The directory content remains
when the execution environment is frozen, providing a transient cache that can be used for
multiple invocations. For more information, see Lambda execution environment.

When AWS X-Ray tracing is enabled, the runtime records separate subsegments for initialization

and execution.

The runtime captures logging output from your function and sends it to Amazon CloudWatch
Logs. In addition to logging your function's output, the runtime also logs entries when function
invocation starts and ends. This includes a report log with the request ID, billed duration,
initialization duration, and other details. If your function throws an error, the runtime returns that
error to the invoker.

® Note
Logging is subject to CloudWatch Logs quotas. Log data can be lost due to throttling or, in

some cases, when an instance of your function is stopped.

Lambda scales your function by running additional instances of it as demand increases, and by
stopping instances as demand decreases. This model leads to variations in application architecture,
such as:

» Unless noted otherwise, incoming requests might be processed out of order or concurrently.

Programming model 23


https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

AWS Lambda Developer Guide

« Do not rely on instances of your function being long lived, instead store your application's state
elsewhere.

» Use local storage and class-level objects to increase performance, but keep to a minimum the
size of your deployment package and the amount of data that you transfer onto the execution
environment.

For a hands-on introduction to the programming model in your preferred programming language,
see the following chapters.

» Building Lambda functions with Node.js

» Building Lambda functions with Python

» Building Lambda functions with Ruby

» Building Lambda functions with Java

» Building Lambda functions with Go

» Building Lambda functions with C#

» Building Lambda functions with PowerShell

Programming model 24



AWS Lambda Developer Guide

Lambda execution environment

Lambda invokes your function in an execution environment, which provides a secure and isolated
runtime environment. The execution environment manages the resources required to run your
function. The execution environment also provides lifecycle support for the function's runtime and
any external extensions associated with your function.

The function's runtime communicates with Lambda using the Runtime API. Extensions
communicate with Lambda using the Extensions API. Extensions can also receive log messages and

other telemetry from the function by using the Telemetry API.

O| Runtime API O I O Runtime + Function H"

@ Extensions AP

(0}
©
©

Lambda Service Execution Environment

fO] Telemetry API :

‘ API Endpoints Processes ‘

When you create your Lambda function, you specify configuration information, such as the amount
of memory available and the maximum execution time allowed for your function. Lambda uses this
information to set up the execution environment.

The function's runtime and each external extension are processes that run within the execution
environment. Permissions, resources, credentials, and environment variables are shared between
the function and the extensions.

Topics

« Lambda execution environment lifecycle

Execution environment 25



AWS Lambda Developer Guide

Lambda execution environment lifecycle

EXTENSION | RUNTIME = FUNCTION RUNTIME | EXTENSION
INIT INIT INIT INVOKE INVOKE SHUTDOWN | SHUTDOWN

(. J v . J
Y Y R Y

INIT INVOKE INVOKE SHUTDOWN

Each phase starts with an event that Lambda sends to the runtime and to all registered extensions.
The runtime and each extension indicate completion by sending a Next API request. Lambda
freezes the execution environment when the runtime and each extension have completed and
there are no pending events.

Topics

« Init phase

o Failures during the Init phase

» Restore phase (Lambda SnapStart only)

« Invoke phase
 Failures during the invoke phase

o Shutdown phase

Init phase

In the Init phase, Lambda performs three tasks:

Start all extensions (Extension init)

Bootstrap the runtime (Runtime init)

Run the function's static code (Function init)

Run any beforeCheckpoint runtime hooks (Lambda SnapStart only)

The Init phase ends when the runtime and all extensions signal that they are ready by sending

a Next API request. The Init phase is limited to 10 seconds. If all three tasks do not complete
within 10 seconds, Lambda retries the Init phase at the time of the first function invocation with
the configured function timeout.

Runtime environment lifecycle 26



AWS Lambda Developer Guide

When Lambda SnapStart is activated, the Init phase happens when you publish a function
version. Lambda saves a snapshot of the memory and disk state of the initialized execution
environment, persists the encrypted snapshot, and caches it for low-latency access. If you have a
beforeCheckpoint runtime hook, then the code runs at the end of Init phase.

(® Note

The 10-second timeout doesn't apply to functions that are using provisioned concurrency
or SnapStart. For provisioned concurrency and SnapStart functions, your initialization code
can run for up to 15 minutes. The time limit is 130 seconds or the configured function
timeout (maximum 900 seconds), whichever is higher.

When you use provisioned concurrency, Lambda initializes the execution environment when
you configure the PC settings for a function. Lambda also ensures that initialized execution
environments are always available in advance of invocations. You may see gaps between your

function's invocation and initialization phases. Depending on your function's runtime and memory
configuration, you may also see variable latency on the first invocation on an initialized execution
environment.

For functions using on-demand concurrency, Lambda may occasionally initialize execution
environments ahead of invocation requests. When this happens, you may also observe a time gap
between your function's initialization and invocation phases. We recommend you to not take a
dependency on this behavior.

Failures during the Init phase

If a function crashes or times out during the Init phase, Lambda emits error information in the
INIT_REPORT log.

Example — INIT_REPORT log for timeout
INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: timeout
Example — INIT_REPORT log for extension failure

INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: error Error Type:
Extension.Crash

Runtime environment lifecycle 27


https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html

AWS Lambda Developer Guide

If the Init phase is successful, Lambda doesn't emit the INIT_REPORT log—unless SnapStart is
activated. SnapStart functions always emit INIT_REPORT. For more information, see Monitoring
for Lambda SnapStart.

Restore phase (Lambda SnapStart only)

When you first invoke a SnapStart function and as the function scales up, Lambda resumes

new execution environments from the persisted snapshot instead of initializing the function

from scratch. If you have an afterRestore() runtime hook, the code runs at the end of the
Restore phase. You are charged for the duration of afterRestore( ) runtime hooks. The
runtime (JVM) must load and afterRestore( ) runtime hooks must complete within the timeout

limit (10 seconds). Otherwise, you'll get a SnapStartTimeoutException. When the Restore phase
completes, Lambda invokes the function handler (the Invoke phase).

Failures during the Restore phase
If the Restore phase fails, Lambda emits error information in the RESTORE_REPORT log.

Example — RESTORE_REPORT log for timeout

RESTORE_REPORT Restore Duration: 1236.04 ms Status: timeout

Example — RESTORE_REPORT log for runtime hook failure

RESTORE_REPORT Restore Duration: 1236.04 ms Status: error Error Type: Runtime.ExitError

For more information about the RESTORE_REPORT log, see Monitoring for Lambda SnapStart.

Invoke phase

When a Lambda function is invoked in response to a Next API request, Lambda sends an Invoke
event to the runtime and to each extension.

The function's timeout setting limits the duration of the entire Invoke phase. For example, if you
set the function timeout as 360 seconds, the function and all extensions need to complete within
360 seconds. Note that there is no independent post-invoke phase. The duration is the sum of all
invocation time (runtime + extensions) and is not calculated until the function and all extensions

have finished executing.

Runtime environment lifecycle 28



AWS Lambda Developer Guide

The invoke phase ends after the runtime and all extensions signal that they are done by sending a
Next API request.

Failures during the invoke phase

If the Lambda function crashes or times out during the Invoke phase, Lambda resets the
execution environment. The following diagram illustrates Lambda execution environment behavior
when there's an invoke failure:

EXTENSION | RUNTIME = FUNCTION RUNTIME | EXTENSION EXTENSION | RUNTIME = FUNCTION RUNTIME | EXTENSION
INIT INIT INIT EECKE (EVOKE RESET | SHUTDOWN INIT INIT INIT BNOKE SHUTDOWN | SHUTDOWN

INIT INVOKE INVOKE WITH ERROR INVOKE SHUTDOWN

In the previous diagram:

« The first phase is the INIT phase, which runs without errors.
» The second phase is the INVOKE phase, which runs without errors.

» At some point, suppose your function runs into an invoke failure (such as a function timeout or
runtime error). The third phase, labeled INVOKE WITH ERROR, illustrates this scenario. When
this happens, the Lambda service performs a reset. The reset behaves like a Shutdown event.
First, Lambda shuts down the runtime, then sends a Shutdown event to each registered external
extension. The event includes the reason for the shutdown. If this environment is used for a new
invocation, Lambda re-initializes the extension and runtime together with the next invocation.

(® Note

The Lambda reset does not clear the /tmp directory content prior to the next init phase.
This behavior is consistent with the regular shutdown phase.

» The fourth phase represents the INVOKE phase immediately following an invoke failure.
Here, Lambda initializes the environment again by re-running the INIT phase. This is called a
suppressed init. When suppressed inits occur, Lambda doesn't explicitly report an additional INIT
phase in CloudWatch Logs. Instead, you may notice that the duration in the REPORT line includes
an additional INIT duration + the INVOKE duration. For example, suppose you see the following
logs in CloudWatch:

2022-12-20T01:00:00.000-08:00 START RequestId: XXX Version: $LATEST
2022-12-20T01:00:02.500-08:00 END RequestId: XXX

Runtime environment lifecycle 29



AWS Lambda Developer Guide

2022-12-20T01:00:02.500-08:00 REPORT RequestId: XXX Duration: 3022.91 ms
Billed Duration: 3000 ms Memory Size: 512 MB Max Memory Used: 157 MB

In this example, the difference between the REPORT and START timestamps is 2.5 seconds.
This doesn't match the reported duration of 3022.91 millseconds, because it doesn't take into
account the extra INIT (suppressed init) that Lambda performed. In this example, you can infer
that the actual INVOKE phase took 2.5 seconds.

For more insight into this behavior, you can use the Lambda Telemetry API. The Telemetry API
emits INIT_START, INIT_RUNTIME_DONE, and INIT_REPORT events with phase=invoke
whenever suppressed inits occur in between invoke phases.

» The fifth phase represents the SHUTDOWN phase, which runs without errors.

Shutdown phase

When Lambda is about to shut down the runtime, it sends a Shutdown event to each registered
external extension. Extensions can use this time for final cleanup tasks. The Shutdown event is a
response to a Next API request.

Duration: The entire Shutdown phase is capped at 2 seconds. If the runtime or any extension does
not respond, Lambda terminates it via a signal (SIGKILL).

After the function and all extensions have completed, Lambda maintains the execution
environment for some time in anticipation of another function invocation. In effect, Lambda
freezes the execution environment. When the function is invoked again, Lambda thaws the
environment for reuse. Reusing the execution environment has the following implications:

» Objects declared outside of the function's handler method remain initialized, providing
additional optimization when the function is invoked again. For example, if your Lambda
function establishes a database connection, instead of reestablishing the connection, the original
connection is used in subsequent invocations. We recommend adding logic in your code to check
if a connection exists before creating a new one.

« Each execution environment provides between 512 MB and 10,240 MB, in 1-MB increments, of
disk space in the /tmp directory. The directory content remains when the execution environment
is frozen, providing a transient cache that can be used for multiple invocations. You can add extra
code to check if the cache has the data that you stored. For more information on deployment
size limits, see Lambda quotas.

Runtime environment lifecycle 30



AWS Lambda Developer Guide

» Background processes or callbacks that were initiated by your Lambda function and did not
complete when the function ended resume if Lambda reuses the execution environment. Make
sure that any background processes or callbacks in your code are complete before the code exits.

When you write your function code, do not assume that Lambda automatically reuses the
execution environment for subsequent function invocations. Other factors may dictate a need for
Lambda to create a new execution environment, which can lead to unexpected results, such as
database connection failures.

Runtime environment lifecycle 31



AWS Lambda Developer Guide

Lambda deployment packages

Your AWS Lambda function's code consists of scripts or compiled programs and their dependencies.
You use a deployment package to deploy your function code to Lambda. Lambda supports two
types of deployment packages: container images and .zip file archives.

Topics

Container images

.zip file archives

Layers
Using other AWS services to build a deployment package

Container images

A container image includes the base operating system, the runtime, Lambda extensions, your
application code and its dependencies. You can also add static data, such as machine learning
models, into the image.

Lambda provides a set of open-source base images that you can use to build your container image.
To create and test container images, you can use the AWS Serverless Application Model (AWS SAM)
command line interface (CLI) or native container tools such as the Docker CLI.

You upload your container images to Amazon Elastic Container Registry (Amazon ECR), a managed
AWS container image registry service. To deploy the image to your function, you specify the
Amazon ECR image URL using the Lambda console, the Lambda API, command line tools, or the
AWS SDKs.

For more information about Lambda container images, see Working with Lambda container

Images.
.zip file archives

A .zip file archive includes your application code and its dependencies. When you author functions
using the Lambda console or a toolkit, Lambda automatically creates a .zip file archive of your
code.

When you create functions with the Lambda API, command line tools, or the AWS SDKs, you must
create a deployment package. You also must create a deployment package if your function uses a

Deployment packages 32



AWS Lambda Developer Guide

compiled language, or to add dependencies to your function. To deploy your function's code, you
upload the deployment package from Amazon Simple Storage Service (Amazon S3) or your local
machine.

You can upload a .zip file as your deployment package using the Lambda console, AWS Command
Line Interface (AWS CLI), or to an Amazon Simple Storage Service (Amazon S3) bucket.

Using the Lambda console

The following steps demonstrate how to upload a .zip file as your deployment package using the
Lambda console.

To upload a .zip file on the Lambda console

1. Open the Functions page on the Lambda console.

Select a function.
In the Code Source pane, choose Upload from and then .zip file.

Choose Upload to select your local .zip file.

i A WD

Choose Save.

Using the AWS CLI

You can upload a .zip file as your deployment package using the AWS Command Line Interface
(AWS CLI). For language-specific instructions, see the following topics.

Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Working with .zip file archives for Ruby Lambda functions

Java

Deploy Java Lambda functions with .zip or JAR file archives

.zip file archives 33


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Go

Deploy Go Lambda functions with .zip file archives
C#

Build and deploy C# Lambda functions with .zip file archives
PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Using Amazon S3

You can upload a .zip file as your deployment package using Amazon Simple Storage Service
(Amazon S3). For more information, see .

Layers

If you deploy your function code using a .zip file archive, you can use Lambda layers as a
distribution mechanism for libraries, custom runtimes, and other function dependencies. Layers
enable you to manage your in-development function code independently from the unchanging
code and resources that it uses. You can configure your function to use layers that you create,
layers that AWS provides, or layers from other AWS customers.

You do not use layers with container images. Instead, you package your preferred runtime, libraries,
and other dependencies into the container image when you build the image.

For more information about layers, see Lambda layers.

Using other AWS services to build a deployment package

The following section describes other AWS services you can use to package dependencies for your
Lambda function.

Deployment packages with C or C++ libraries

If your deployment package contains native libraries, you can build the deployment package
with AWS Serverless Application Model (AWS SAM). You can use the AWS SAM CLI sam build
command with the --use-container to create your deployment package. This option builds
a deployment package inside a Docker image that is compatible with the Lambda execution
environment.

Layers 34



AWS Lambda Developer Guide

For more information, see sam build in the AWS Serverless Application Model Developer Guide.

Deployment packages over 50 MB

If your deployment package is larger than 50 MB, upload your function code and dependencies to
an Amazon S3 bucket.

You can create a deployment package and upload the .zip file to your Amazon S3 bucket in the
AWS Region where you want to create a Lambda function. When you create your Lambda function,
specify the S3 bucket name and object key name on the Lambda console, or using the AWS CLI.

To create a bucket using the Amazon S3 console, see How do | create an S3 Bucket? in the Amazon
Simple Storage Service Console User Guide.

Using other AWS services 35


https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-build.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

AWS Lambda Developer Guide

Using Lambda with infrastructure as code (1aC)

Lambda offers several ways to deploy your code and create functions. For instance, you can use
the Lambda console or the AWS Command Line Interface (AWS CLI) to manually create or update
Lambda functions. In addition to these manual options, AWS offers a number of solutions for
deploying Lambda functions and serverless applications using infrastructure as code (laC). With
laC, you can provision and maintain Lambda functions and other AWS resources using code instead
of using manual processes and settings.

Most of the time, Lambda functions don't run in isolation. Instead, they form part of a serverless
application with other resources such as databases, queues, and storage. With IaC, you can
automate your deployment processes to quickly and repeatably deploy and update whole
serverless applications involving many separate AWS resources. This approach speeds up your
development cycle, makes configuration management easier, and ensures that your resources are
deployed the same way every time.

Topics

laC tools for Lambda

Getting started with laC for Lambda

Next steps

Supported regions for Lambda integration with Application Composer

laC tools for Lambda

To deploy Lambda functions and serverless applications using laC, AWS offers a number of
different tools and services.

AWS CloudFormation was the first service offered by AWS to create and configure cloud resources.
With AWS CloudFormation, you create text templates to define infrastructure and code. As AWS
introduced more new services and the complexity of creating AWS CloudFormation templates
increased, two further tools were released. AWS SAM is another template-based framework

for defining serverless applications. The AWS Cloud Development Kit (AWS CDK) is a code-first
approach for defining and provisioning infrastructure using code constructs in many popular
programming languages.

Infrastructure as code (laC) 36



AWS Lambda Developer Guide

With both AWS SAM and the AWS CDK, AWS CloudFormation operates behind the scenes to build
and deploy your infrastructure. The following diagram illustrates the relationship between these
tools, and the paragraphs after the diagram explain their key features.

0O— v |
0o— [
AWS SAM ...

template (YAML) AWS CloudFormation  AWS CloudFormation stack
(infrastructure + code)

Code AWS Cloud Development Kit
(CDK)

« AWS CloudFormation - With CloudFormation you model and set up your AWS resources
using a YAML or JSON template that describes your resources and their properties.
CloudFormation provisions your resources in a safe, repeatable manner, enabling you to
frequently build your infrastructure and applications without manual steps. When you change
the configuration, CloudFormation determines the right operations to perform to update your
stack. CloudFormation can even roll back changes.

« AWS Serverless Application Model (AWS SAM) - AWS SAM is an open-source framework
for defining serverless applications. AWS SAM templates use a shorthand syntax to define
functions, APIs, databases, and event source mappings with just a few lines of text (YAML) per
resource. During deployment, AWS SAM transforms and expands the AWS SAM syntax into
AWS CloudFormation syntax. Because of this, any CloudFormation syntax can be added to AWS
SAM templates. This gives AWS SAM all the power of CloudFormation, but with fewer lines of
configuration.

o AWS Cloud Development Kit (AWS CDK) - With the AWS CDK, you define your infrastructure
using code constructs and provision it through AWS CloudFormation. AWS CDK enables you
to model application infrastructure with TypeScript, Python, Java, .NET, and Go (in Developer

Preview) using your existing IDE, testing tools, and workflow patterns. You get all the benefits of

AWS CloudFormation, including repeatable deployment, easy rollback, and drift detection.

laC tools for Lambda

37



AWS Lambda Developer Guide

AWS also provides a service called AWS Application Composer to develop laC templates using a
simple graphical interface. With Application Composer, you design an application architecture by
dragging, grouping, and connecting AWS services in a visual canvas. Application Composer then
creates an AWS SAM template or an AWS CloudFormation template from your design that you can
use to deploy your application.

In the the section called "Getting started with 1aC for Lambda” section below, you use Application

Composer to develop a template for a serverless application based on an existing Lambda function.

Getting started with IaC for Lambda

In this tutorial, you can get started using IaC with Lambda by creating an AWS SAM template
from an existing Lambda function and then building out a serverless application in Application
Composer by adding other AWS resources.

If you'd rather start by carrying out an AWS SAM or AWS CloudFormation tutorial to learn how to
work with templates without using Application Composer, you'll find links to other resources in the
the section called “Next steps” section at the end of this page.

As you carry out this tutorial, you'll learn some fundamental concepts, like how AWS resources
are specified in AWS SAM. You'll also learn how to use Application Composer to build a serverless
application you can deploy using AWS SAM or AWS CloudFormation.

To complete this tutorial, you'll carry out the following steps:

» Create an example Lambda function
» Use the Lambda console to view the AWS SAM template for the function

» Export your function’s configuration to AWS Application Composer and design a simple
serverless application based on your function’s configuration

« Save an updated AWS SAM template you can use as a basis to deploy your serverless application

In the the section called “"Next steps” section, you'll find resources you can use to learn more about
AWS SAM and Application Composer. These resources include links to more advanced tutorials that
teach you how to deploy a serverless application using AWS SAM.

Prerequisites

In this tutorial, you use Application Composer’s local sync feature to save your template and code
files to your local build machine. To use this feature, you need a browser that supports the File

Getting started with laC for Lambda 38


https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html

AWS Lambda Developer Guide

System Access API, which allows web applications to read, write, and save files in your local file
system . We recommend using either Google Chrome or Microsoft Edge. For more information
about the File System Access API, see What is the File System Access API?

Create a Lambda function

In this first step, you create a Lambda function you can use to complete the rest of the tutorial. To
keep things simple, you use the Lambda console to create a basic 'Hello world' function using the
Python 3.11 runtime.

To create a 'Hello world' Lambda function using the console

1. Open the Lambda console.

2. Choose Create function.

3. Leave Author from scratch selected, and under Basic information, enter LambdaIaCDemo for
Function name.

4. For Runtime, select Python 3.11.

Choose Create function.

View the AWS SAM template for your function

Before you export your function configuration to Application Composer, use the Lambda console to
view your function's current configuration as an AWS SAM template. By following the steps in this
section, you'll learn about the anatomy of an AWS SAM template and how to define resources like
Lambda functions to start specifying a serverless application.

To view the AWS SAM template for your function

1. Open the Functions page of the Lambda console.

2. Choose the function you just created (LambdaIaCDemo).

3. In the Function overview pane, choose Template.

In place of the diagram representing your function’s configuration, you'll see an AWS SAM
template for your function. The template should look like the following.

# This AWS SAM template has been generated from your function's
# configuration. If your function has one or more triggers, note
# that the AWS resources associated with these triggers aren't fully

Getting started with laC for Lambda 39


https://docs.aws.amazon.com/application-composer/latest/dg/reference-fsa.html#reference-fsa-api
https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

# specified in this template and include placeholder values.Open this template
# in AWS Application Composer or your favorite IDE and modify
# it to specify a serverless application with other AWS resources.
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
LambdaIaCDemo:
Type: AWS::Serverless::Function
Properties:
CodeUri:
Description: "'
MemorySize: 128
Timeout: 3
Handler: lambda_function.lambda_handler
Runtime: python3.11
Architectures:
- x86_64
EventInvokeConfig:
MaximumEventAgeInSeconds: 21600
MaximumRetryAttempts: 2
EphemeralStorage:
Size: 512
RuntimeManagementConfig:
UpdateRuntimeOn: Auto
SnapStart:
ApplyOn: None
PackageType: Zip
Policies:
Statement:
- Effect: Allow
Action:
- logs:CreatelLogGroup
Resource: arn:aws:logs:us-east-1:123456789012:*
- Effect: Allow
Action:
- logs:CreatelLogStream
- logs:PutLogEvents
Resource:
- >
arn:aws:logs:us-east-1:123456789012:1og-group:/aws/lambda/
LambdaIaCDemo: *

Getting started with laC for Lambda 40



AWS Lambda Developer Guide

Let's take a moment to look at the YAML template for your function and understand some key
concepts.

The template starts with the declaration Transform: AWS::Serverless-2016-10-31. This
declaration is required because behind the scenes, AWS SAM templates are deployed through AWS
CloudFormation. Using the Transform statement identifies the template as an AWS SAM template
file.

Following the Transform declaration comes the Resources section. This is where the AWS
resources you want to deploy with your AWS SAM template are defined. AWS SAM templates can
contain a combination of AWS SAM resources and AWS CloudFormation resources. This is because
during deployment, AWS SAM templates expand to AWS CloudFormation templates, so any valid
AWS CloudFormation syntax can be added to an AWS SAM template.

At the moment, there is just one resource defined in the Resources section of the template,

your Lambda function LambdaIaCDemo. To add a Lambda function to an AWS SAM template, you
use the AWS: :Serverless: :Function resource type. The Properties of a Lambda function
resource define the function’s runtime, function handler, and other configuration options. The path
to your function’s source code that AWS SAM should use to deploy the function is also defined
here. To learn more about Lambda function resources in AWS SAM, see AWS::Serverless::Function
in the AWS SAM Developer Guide.

As well as the function properties and configurations, the template also specifies an AWS Identity
and Access Management (IAM) policy for your function. This policy gives your function permission
to write logs to Amazon CloudWatch Logs. When you create a function in the Lambda console,
Lambda automatically attaches this policy to your function. To learn more about specifying

an |IAM policy for a function in an AWS SAM template, see the policies property on the
AWS::Serverless::Function page of the AWS SAM Developer Guide.

To learn more about the structure of AWS SAM templates, see AWS SAM template anatomy.

Use AWS Application Composer to design a serverless application

To start building out a simple serverless application using your function's AWS SAM template as

a starting point, you export your function configuration to Application Composer and activate
Application Composer’s local sync mode. Local sync automatically saves your function’s code and
your AWS SAM template to your local build machine and keeps your saved template synced as you
add other AWS resources in Application Composer.

Getting started with laC for Lambda 41


https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html

AWS Lambda Developer Guide

To export your function to Application Composer

1.

In the Function Overview pane, choose Export to Application Composer.

To export your function's configuration and code to Application Composer, Lambda creates an
Amazon S3 bucket in your account to temporarily store this data.

In the dialog box, choose Confirm and create project to accept the default name for this
bucket and export your function's configuration and code to Application Composer.

(Optional) To choose another name for the Amazon S3 bucket that Lambda creates, enter a
new name and choose Confirm and create project. Amazon S3 bucket names must be globally
unique and follow the bucket naming rules.

Selecting Confirm and create project opens the Application Composer console. On the canvas,
you'll see your Lambda function.

From the Menu dropdown, choose Activate local sync.

In the dialog box that opens, choose Select folder and select a folder on your local build
machine.

Choose Activate to activate local sync.

To export your function to Application Composer, you need permission to use certain API actions. If

you're unable to export your function, see the section called “Required permissions” and make sure

you have the permissions you need.

® Note

Standard Amazon S3 pricing applies for the bucket Lambda creates when you export

a function to Application Composer. The objects that Lambda puts into the bucket are
automatically deleted after 10 days, but Lambda doesn't delete the bucket itself.

To avoid additional charges being added to your AWS account, follow the instructions in
Deleting a bucket after you have exported your function to Application Composer. For

more information about the Amazon S3 bucket Lambda creates, see the section called

“Application Composer”.

Getting started with laC for Lambda 42


https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://aws.amazon.com/s3/pricing
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html

AWS Lambda

Developer Guide

To design your serverless application in Application Composer

After act

ivating local sync, changes you make in Application Composer will be reflected in the

AWS SAM template saved on your local build machine. You can now drag and drop additional AWS
resources onto the Application Composer canvas to build out your application. In this example, you

add an Amazon SQS simple queue as a trigger for your Lambda function and a DynamoDB table for
the function to write data to.

1. Add an Amazon SQS trigger to your Lambda function by doing the following:
a. Inthe search field in the Resources palette, enter SQS.
b. Drag the SQS Queue resource onto your canvas and position it to the left of your Lambda
function.
¢. Choose Details, and for Logical ID enter LambdaIaCQueue.
d. Choose Save.
e. Connect your Amazon SQS and Lambda resources by clicking on the Subscription port on
the SQS queue card and dragging it to the left hand port on the Lambda function card.
The appearance of a line between the two resources indicates a successful connection.
Application Composer also displays a message at the bottom of the canvas indicating that
the two resources are successfully connected.
2. Add an Amazon DynamoDB table for your Lambda function to write data to by doing the
following:
a. Inthe search field in the Resources palette, enter DynamoDB.
b. Drag the DynamoDB Table resource onto your canvas and position it to the right of your
Lambda function.
c. Choose Details, and for Logical ID enter LambdaIaCTable.
d. Choose Save.
e. Connect the DynamoDB table to your Lambda function by clicking on the right hand port

of the Lambda function card and dragging it to the left hand port on the DynamoDB card.

Now that you've added these extra resources, let's take a look at the updated AWS SAM template

Applicati

on Composer has created.

Getting started with laC for Lambda 43



AWS Lambda Developer Guide

To view your updated AWS SAM template

e On the Application Composer canvas, choose Template to switch from the canvas view to the
template view.

Your AWS SAM template should now contain the following additional resources and properties:

« An Amazon SQS queue with the identifier LambdaIaCQueue

LambdaIaCQueue:
Type: AWS::SQS: :Queue
Properties:
MessageRetentionPeriod: 345600

When you add an Amazon SQS queue using Application Composer, Application Composer
sets the MessageRetentionPeriod property. You can also set the FifoQueue property by
selecting Details on the SQS Queue card and checking or unchecking Fifo queue.

To set other properties for your queue, you can manually edit the template to add them. To learn
more about the AWS: : SQS: : Queue resource and its available properties, see AWS::SQS::Queue
in the AWS CloudFormation User Guide.

« An Events property in your Lambda function definition that specifies the Amazon SQS queue as
a trigger for the function

Events:
LambdaIaCQueue:
Type: SQS
Properties:
Queue: !GetAtt LambdaIaCQueue.Arn
BatchSize: 1

The Events property consists of an event type and a set of properties that depend on the type.
To learn about the different AWS services you can configure to trigger a Lambda function and
the properties you can set, see EventSource in the AWS SAM Developer Guide.

« A DynamoDB table with the identifier LambdaIaCTable

LambdaIaCTable:
Type: AWS::DynamoDB::Table
Properties:

Getting started with laC for Lambda 44


https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-eventsource.html

AWS Lambda Developer Guide

AttributeDefinitions:
- AttributeName: id
AttributeType: S
BillingMode: PAY_PER_REQUEST
KeySchema:
- AttributeName: id
KeyType: HASH
StreamSpecification:
StreamViewType: NEW_AND_OLD_IMAGES

When you add a DynamoDB table using Application Composer, you can set your table's keys

by choosing Details on the DynamoDB table card and editing the key values. Application
Composer also sets default values for a number of other properties including BillingMode and
StreamViewType.

To learn more about these properties and other properties you can add to your AWS SAM
template, see AWS::DynamoDB::Table in the AWS CloudFormation User Guide.

« A new IAM policy that gives your function permission to perform CRUD operations on the
DynamoDB table you added.

Policies:

- DynamoDBCrudPolicy:
TableName: !Ref LambdaIaCTable

The complete final AWS SAM template should look like the following.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
LambdaIaCDemo:
Type: AWS::Serverless::Function
Properties:
CodeUri:
Description: "'
MemorySize: 128
Timeout: 3
Handler: lambda_function.lambda_handler
Runtime: python3.11

Getting started with laC for Lambda 45


https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Lambda

Developer Guide

Architectures:
- x86_64
EventInvokeConfig:

MaximumEventAgeInSeconds: 21600

MaximumRetryAttempts: 2
EphemeralStorage:

Size: 512
RuntimeManagementConfig:

UpdateRuntimeOn: Auto

SnapStart:
ApplyOn: None
PackageType: Zip

Policies:
- Statement:

- Effect: Allow

Action:

- logs:CreatelLogGroup
Resource: arn:aws:logs:us-east-1:594035263019:*
- Effect: Allow

Action:

- logs:CreatelLogStream
- logs:PutLogEvents

Resource:

- arn:aws:logs:us-east-1:594035263019:1og-group:/aws/lambda/

LambdaIaCDemo: *

- DynamoDBCrudPolicy:
TableName: !Ref LambdaIaCTable

Events:
LambdaIaCQueue:
Type: SQS
Properties:

Queue: !GetAtt LambdaIaCQueue.Arn

BatchSize: 1
Environment:
Variables:

LAMBDATACTABLE_TABLE_NAME:
LAMBDAIACTABLE_TABLE_ARN:

LambdaIaCQueue:
Type: AWS::SQS: :Queue
Properties:

MessageRetentionPeriod: 345600

LambdaIaCTable:

Type: AWS::DynamoDB::Table

Properties:

IRef LambdaIaCTable
1GetAtt LambdaIaCTable.Arn

Getting started with laC for Lambda

46



AWS Lambda Developer Guide

AttributeDefinitions:
- AttributeName: id
AttributeType: S
BillingMode: PAY_PER_REQUEST
KeySchema:
- AttributeName: id
KeyType: HASH
StreamSpecification:
StreamViewType: NEW_AND_OLD_IMAGES

Deploy your serverless application using AWS SAM (optional)

If you want to use AWS SAM to deploy a serverless application using the template you just
created in Application Composer, you first need to install the AWS SAM CLI. To do this, follow the
instructions in Installing the AWS SAM CLI.

Before you deploy your application, you also need to update the function code that Application
Composer saved along with your template. At the moment, the 1ambda_function. py file that
Application Composer saved contains only the basic 'Hello world' code that Lambda provided when
you created the function.

To update your function code, copy the following code and paste it into the
lambda_function. py file Application Composer saved to your local build machine. You specified
the directory for Application Composer to save this file to when you activated Local Sync mode.

This code accepts a key value pair in a message from the Amazon SQS queue you created in
Application Composer. If both the key and value are strings, the code then uses them to write an
item to the DynamoDB table defined in your template.

Updated Python function code

import boto3
import os
import json

# define the DynamoDB table that Lambda will connect to
tablename = os.environ['LAMBDAIACTABLE_TABLE_NAME']

# create the DynamoDB resource
dynamo = boto3.client('dynamodb')

Getting started with laC for Lambda 47


https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html

AWS Lambda Developer Guide

def lambda_handler(event, context):
# get the message out of the SQS event
message = event['Records']J[0@]['body"']
data = json.loads(message)
# write event data to DDB table
if check_message_format(data):
key = next(iter(data))
value = datalkey]
dynamo.put_item(
TableName=tablename,
Item={
'id': {'S': key},
'Value': {'S': value}

)
else:
raise ValueError("Input data not in the correct format")

# check that the event object contains a single key value
# pair that can be written to the database
def check_message_format(message):
if len(message) != 1:
return False

key, value = next(iter(message.items()))

if not (isinstance(key, str) and isinstance(value, str)):
return False

else:
return True

To deploy your serverless application

To deploy your application using the AWS SAM CLI, carry out the following steps. For your function
to build and deploy correctly, Python version 3.11 must be installed on your build machine and on
your PATH.

1. Run the following command from the directory in which Application Composer saved your
template.yaml and lambda_function. py files.

sam build

Getting started with laC for Lambda 48



AWS Lambda Developer Guide

This command gathers the build artifacts for your application and places them in the proper
format and location to deploy them.

2. To deploy your application and create the Lambda, Amazon SQS, and DynamoDB resources
specified in your AWS SAM template, run the following command.

sam deploy --guided

Using the - -guided flag means that AWS SAM will show you prompts to guide you through
the deployment process. For this deployment, accept the default options by pressing Enter.

During the deployment process, AWS SAM creates the following resources in your AWS account:

An AWS CloudFormation stack named sam-app

A Lambda function with the name format sam-app-LambdaIaCDemo-99VXPpYQVvIM

An Amazon SQS queue with the name format sam-app-LambdaIaCQueue-xL87VeKsGilo

A DynamoDB table with the name format sam-app-LambdaIaCTable-CNOS66COVLNV

AWS SAM also creates the necessary IAM roles and policies so that your Lambda function can read
messages from the Amazon SQS queue and perform CRUD operations on the DynamoDB table.

To learn more about using AWS SAM to deploy serverless applications, see the resources in the the
section called “Next steps” section.

Testing your deployed application (optional)

To confirm that your serverless application deployed correctly, send a message to your Amazon
SQS queue containing a key value pair and check that Lambda writes an item into your DynamoDB
table using these values.

To test your serverless application

1. Open the Queues page of the Amazon SQS console and select the queue that
AWS SAM created from your template. The name has the format sam-app-
LambdaIaCQueue-xL87VeKsGiIo.

2. Choose Send and receive messages and paste the following JSON into the Message body in
the Send message section.

Getting started with laC for Lambda 49


https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#cfn-concepts-stacks
https://console.aws.amazon.com/sqs/v2/home#/queues

AWS Lambda Developer Guide

{
"myKey": "myValue"
}

3. Choose Send message.

Sending your message to the queue causes Lambda to invoke your function through the event
source mapping defined in your AWS SAM template. To confirm that Lambda has invoked your
function as expected, confirm that an item has been added to your DynamoDB table.

4. Open the Tables page of the DynamoDB console and select your table. The name has the
format sam-app-LambdaIaCTable-CN@S66COVLNV.

5. Choose Explore table items. In the Items returned pane, you should see an item with the id
myKey and the Value myValue.

Next steps

To learn more about using Application Composer with AWS SAM and AWS CloudFormation, start
with Using Application Composer with AWS CloudFormation and AWS SAM.

For a guided tutorial that uses AWS SAM to deploy a serverless application designed in Application
Composer, we also recommend you carry out the AWS Application Composer tutorial in the AWS
Serverless Patterns Workshop.

AWS SAM provides a command line interface (CLI) that you can use with AWS SAM templates
and supported third-party integrations to build and run your serverless applications. With the
AWS SAM CLI, you can build and deploy your application, perform local testing and debugging,
configure CI/CD pipelines, and more. To learn more about using the AWS SAM CLI, see Getting
started with AWS SAM in the AWS Serverless Application Model Developer Guide.

To learn how to deploy a serverless application with an AWS SAM template using the AWS
CloudFormation console, start with Using the AWS CloudFormation console in the AWS
CloudFormation User Guide.

Supported regions for Lambda integration with Application Composer

Lambda integration with Application Composer is supported in the following AWS Regions:

« US East (N. Virginia)

Next steps 50


https://console.aws.amazon.com/dynamodbv2#tables
https://docs.aws.amazon.com/application-composer/latest/dg/other-services-cfn.html
https://catalog.workshops.aws/serverless-patterns/en-US/dive-deeper/module1a
https://catalog.workshops.aws/serverless-patterns/en-US
https://catalog.workshops.aws/serverless-patterns/en-US
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-console.html

AWS Lambda Developer Guide

« US East (Ohio)

o US West (N. California)
« US West (Oregon)

« Africa (Cape Town)

« Asia Pacific (Hong Kong)
« Asia Pacific (Hyderabad)
« Asia Pacific (Jakarta)
« Asia Pacific (Melbourne)
 Asia Pacific (Mumbai)
 Asia Pacific (Osaka)
« Asia Pacific (Seoul)
« Asia Pacific (Singapore)
« Asia Pacific (Sydney)
« Asia Pacific (Tokyo)
« Canada (Central)

o Europe (Frankfurt)
« Europe (Zurich)

o Europe (Ireland)

o Europe (London)

o Europe (Stockholm)
« Middle East (UAE)

Supported regions for Lambda integration with Application Composer 51



AWS Lambda Developer Guide

Private networking with VPC

Amazon Virtual Private Cloud (Amazon VPC) is a virtual network in the AWS cloud, dedicated to
your AWS account. You can use Amazon VPC to create a private network for resources such as
databases, cache instances, or internal services. For more information about Amazon VPC, see
What is Amazon VPC?

A Lambda function always runs inside a VPC owned by the Lambda service. Lambda applies
network access and security rules to this VPC and Lambda maintains and monitors the VPC
automatically. If your Lambda function needs to access the resources in your account VPC,
configure the function to access the VPC. Lambda provides managed resources named Hyperplane

ENIs, which your Lambda function uses to connect from the Lambda VPC to an ENI (Elastic network
interface) in your account VPC.

There's no additional charge for using a VPC or a Hyperplane ENI. There are charges for some VPC
components, such as NAT gateways. For more information, see Amazon VPC Pricing.

Topics

¢ VPC network elements

» Connecting Lambda functions to your VPC

e Shared subnets

o Lambda Hyperplane ENIs

« Connections

 |IPv6 support

« Security
» Observability

VPC network elements

Amazon VPC networks includes the following network elements:

« Elastic network interface — elastic network interface is a logical networking component in a VPC

that represents a virtual network card.

« Subnet - A range of IP addresses in your VPC. You can add AWS resources to a specified subnet.
Use a public subnet for resources that must connect to the internet, and a private subnet for
resources that don't connect to the internet.

Private networking 52


https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://aws.amazon.com/vpc/pricing
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

AWS Lambda Developer Guide

» Security group — use security groups to control access to the AWS resources in each subnet.

o Access control list (ACL) — use a network ACL to provide additional security in a subnet. The
default subnet ACL allows all inbound and outbound traffic.

» Route table - contains a set of routes that AWS uses to direct the network traffic for your VPC.
You can explicitly associate a subnet with a particular route table. By default, the subnet is
associated with the main route table.

« Route - each route in a route table specifies a range of IP addresses and the destination where
Lambda sends the traffic for that range. The route also specifies a target, which is the gateway,
network interface, or connection through which to send the traffic.

« NAT gateway — An AWS Network Address Translation (NAT) service that controls access from a
private VPC private subnet to the Internet.

« VPC endpoints — You can use an Amazon VPC endpoint to create private connectivity to services
hosted in AWS, without requiring access over the internet or through a NAT device, VPN
connection, or AWS Direct Connect connection. For more information, see AWS PrivateLink and
VPC endpoints.

® Tip
To configure your Lambda function to access a VPC and subnet, you can use the Lambda
Console or the API.
Refer to the VpcConfig section in CreateFunction to configure your function. See

Configuring VPC access (console) and Configuring VPC access (API) for detailed steps.

For more information about Amazon VPC networking definitions, see How Amazon VPC works in
the Amazon VPC Developer Guide and the Amazon VPC FAQs.

Connecting Lambda functions to your VPC

A Lambda function always runs inside a VPC owned by the Lambda service. By default, a Lambda
function isn't connected to VPCs in your account. When you connect a function to a VPC in your
account, the function can't access the internet unless your VPC provides access.

Lambda accesses resources in your VPC using a Hyperplane ENI. Hyperplane ENIs provide NAT
capabilities from the Lambda VPC to your account VPC using VPC-to-VPC NAT (V2N). V2N provides
connectivity from the Lambda VPC to your account VPC, but not in the other direction.

Connecting Lambda functions to your VPC 53


https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/vpc/latest/userguide/how-it-works.html
https://aws.amazon.com/vpc/faqs

AWS Lambda Developer Guide

When you create a Lambda function (or update its VPC settings), Lambda allocates a Hyperplane
ENI for each subnet in your function's VPC configuration. Multiple Lambda functions can share a
network interface, if the functions share the same subnet and security group.

To connect to another AWS service, you can use VPC endpoints for private communications

between your VPC and supported AWS services. An alternative approach is to use a NAT gateway to
route outbound traffic to another AWS service.

To give your function access to the internet, route outbound traffic to a NAT gateway in a public
subnet. The NAT gateway has a public IP address and can connect to the internet through the VPC's
internet gateway.

For information about how to configure Lambda VPC networking, see ??? and ??7?.

Shared subnets

VPC sharing allows multiple AWS accounts to create their application resources, such as Amazon
EC2 instances and Lambda functions, in shared, centrally-managed virtual private clouds (VPCs). In
this model, the account that owns the VPC (owner) shares one or more subnets with other accounts
(participants) that belong to the same AWS Organization.

To access private resources, connect your function to a private shared subnet in your VPC. The
subnet owner must share a subnet with you before you can connect a function to it. The subnet
owner can also unshare the subnet a later time, thereby removing connectivity. For details on how
to share, unshare, and manage VPC resources in shared subnets, see How to share your VPC with
other accounts in the Amazon VPC guide.

Lambda Hyperplane ENIs

The Hyperplane ENI is a managed network resource that the Lambda service creates and manages.
Multiple execution environments in the Lambda VPC can use a Hyperplane ENI to securely access
resources inside of VPCs in your account. Hyperplane ENIs provide NAT capabilities from the
Lambda VPC to your account VPC.

For each subnet, Lambda creates a network interface for each unique set of security groups.
Functions in the account that share the same subnet and security group combination will use
the same network interfaces. Connections made through the Hyperplane layer are automatically
tracked, even if the security group configuration does not otherwise require tracking. Inbound
packets from the VPC that don't correspond to established connections are dropped at the

Shared subnets 54


https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html

AWS Lambda Developer Guide

Hyperplane layer. For more information, see Security group connection tracking in the Amazon EC2

User Guide for Linux Instances.

Because the functions in your account share the ENI resources, the ENI lifecycle is more complex
than other Lambda resources. The following sections describe the ENI lifecycle.

ENI lifecycle
» Creating ENIs

» Managing ENIs

» Deleting ENIs

Creating ENIs

Lambda may create Hyperplane ENI resources for a newly created VPC-enabled function or for

a VPC configuration change to an existing function. The function remains in pending state while
Lambda creates the required resources. When the Hyperplane ENI is ready, the function transitions
to active state and the ENI becomes available for use. Lambda can require several minutes to create
a Hyperplane ENI.

For a newly created VPC-enabled function, any invocations or other API actions that operate on the
function fail until the function state transitions to active.

For a VPC configuration change to an existing function, any function invocations continue to use
the Hyperplane ENI associated with the old subnet and security group configuration until the
function state transitions to active.

If a Lambda function remains idle for 30 days, Lambda reclaims the unused Hyperplane ENIs and
sets the function state to idle. The next invocation causes Lambda to reactivate the idle function.
The invocation fails, and the function enters pending state until Lambda completes the creation or
allocation of a Hyperplane ENI.

For more information about function states, see Lambda function states.

Managing ENIs

Lambda uses permissions in your function's execution role to create and manage network
interfaces. Lambda creates a Hyperplane ENI when you define a unique subnet plus security
group combination for a VPC-enabled function in an account. Lambda reuses the Hyperplane ENI

Lambda Hyperplane ENIs 55


https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-connection-tracking.html

AWS Lambda Developer Guide

for other VPC-enabled functions in your account that use the same subnet and security group
combination.

There is no quota on the number of Lambda functions that can use the same Hyperplane
ENI. However, each Hyperplane ENI supports up to 65,000 connections/ports. If the number
of connections exceeds 65,000, Lambda creates a new Hyperplane ENI to provide additional
connections.

When you update your function configuration to access a different VPC, Lambda terminates
connectivity to the Hyperplane ENI in the previous VPC. The process to update the connectivity to a
new VPC can take several minutes. During this time, invocations to the function continue to use the
previous VPC. After the update is complete, new invocations start using the Hyperplane ENI in the
new VPC. At this point, the Lambda function is no longer connected to the previous VPC.

Deleting ENIs

When you update a function to remove its VPC configuration, Lambda requires up to 20 minutes
to delete the attached Hyperplane ENI. Lambda only deletes the ENI if no other function (or
published function version) is using that Hyperplane ENI.

Lambda relies on permissions in the function execution role to delete the Hyperplane ENI. If you
delete the execution role before Lambda deletes the Hyperplane ENI, Lambda won't be able to
delete the Hyperplane ENI. You can manually perform the deletion.

Lambda doesn't delete network interfaces that are in use by functions or function versions in your
account. You can use the Lambda ENI Finder to identify the functions or function versions that are

using a Hyperplane ENI. For any functions or function versions that you no longer need, you can
remove the VPC configuration so that Lambda deletes the Hyperplane ENI.

Connections

Lambda supports two types of connections: TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol).

When you create a VPC, Lambda automatically creates a set of DHCP options and associates them
with the VPC. You can configure your own DHCP options set for your VPC. For more details, refer to
Amazon VPC DHCP options.

Amazon provides a DNS server (the Amazon Route 53 resolver) for your VPC. For more information,
see DNS support for your VPC.

Connections 56


https://github.com/awslabs/aws-support-tools/tree/master/Lambda/FindEniMappings
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html

AWS Lambda Developer Guide

IPv6 support

Lambda supports inbound connections to Lambda's public dual-stack endpoints, and outbound
connections to dual-stack VPC subnets over IPv6.

Inbound

To invoke your function over IPv6, use Lambda's public dual-stack endpoints. Dual-stack
endpoints support both IPv4 and IPv6. Lambda dual-stack endpoints use the following syntax:

protocol://lambda.us-east-1.api.aws

You can also use Lambda function URLs to invoke functions over IPv6. Function URL endpoints
have the following format:

https://url-id.lambda-url.us-east-1.on.aws

Outbound

Your function can connect to resources in dual-stack VPC subnets over IPv6. This option is
turned off by default. To allow outbound IPv6 traffic, use the console or the --vpc-config
Ipv6AllowedForDualStack=true option with the create-function or update-function-
configuration command.

(® Note

To allow outbound IPv6 traffic in a VPC, all of the subnets that are connected to

the function must be dual-stack subnets. Lambda doesn't support outbound IPv6
connections for IPv6-only subnets in a VPC, outbound IPv6 connections for functions
that are not connected to a VPC, or inbound IPv6 connections using VPC endpoints
(AWS PrivateLink).

You can update your function code to explicitly connect to subnet resources over IPv6. The
following Python example opens a socket and connects to an IPv6 server.

Example — Connect to IPv6 server

def connect_to_server(event, context):

IPv6 support 57


https://docs.aws.amazon.com/general/latest/gr/rande.html#dual-stack-endpoints
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

server_address = event['host']

server_port = event['port']

message = event['message']
run_connect_to_server(server_address, server_port, message)

def run_connect_to_server(server_address, server_port, message):
sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM, @)
try:
# Send data
sock.connect((server_address, int(server_port), 0, 0))
sock.sendall(message.encode())
BUFF_SIZE = 4096
data = b"'
while True:
segment = sock.recv(BUFF_SIZE)
data += segment
# Either 0 or end of data
if len(segment) < BUFF_SIZE:
break
return data
finally:
sock.close()

Security

AWS provides security groups and network ACLs to increase security in your VPC. Security groups

control inbound and outbound traffic for your resources, and network ACLs control inbound

and outbound traffic for your subnets. Security groups provide enough access control for most
subnets. You can use network ACLs if you want an additional layer of security for your VPC. For
more information, see Internetwork traffic privacy in Amazon VPC. Every subnet that you create is

automatically associated with the VPC's default network ACL. You can change the association, and
you can change the contents of the default network ACL.

For general security best practices, see VPC security best practices. For details on how you can use

IAM to manage access to the Lambda API and resources, see AWS Lambda permissions.

You can use Lambda-specific condition keys for VPC settings to provide additional permission
controls for your Lambda functions. For more information about VPC condition keys, see Using IAM
condition keys for VPC settings.

Security 58


https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html

AWS Lambda Developer Guide

® Note

Lambda functions can be invoked from the public internet or AWS PrivateLink endpoints.
You can access your Function URLs through the public Internet only. While Lambda
functions do support AWS PrivateLink, Function URLs do not.

Observability

You can use VPC Flow Logs to capture information about the IP traffic going to and from network
interfaces in your VPC. You can publish Flow log data to Amazon CloudWatch Logs or Amazon S3.
After you've created a flow log, you can retrieve and view its data in the chosen destination.

Note: when you attach a function to a VPC, the CloudWatch log messages do not use the VPC
routes. Lambda sends them using the regular routing for logs.

Observability

59


https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

AWS Lambda Developer Guide

Lambda console

You can use the Lambda console to configure applications, functions, code signing configurations,
and layers. This page provides an explanation for how to edit code using the console editor.

Topics

» Applications
Functions
Code signing

Layers
Edit code using the console editor

Applications

The Applications page displays a list of applications that were deployed using AWS CloudFormation
or other tools, including the AWS Serverless Application Model (AWS SAM). Filter to find
applications based on keywords.

Functions

The functions page shows you a list of functions defined for your account in this region. The initial
console flow to create a function depends on whether the function uses a container image or .zip

file archive for the deployment package. Many of the optional configuration tasks are common to
both types of function.

The console provides a code editor for your convenience.
Code signing

You can attach a code signing configuration to a function. With code signing, you can ensure that
the code has been signed by an approved source and has not been altered since signing, and that
the code signature has not expired or been revoked.

Layers

Create layers to separate your .zip archive function code from its dependencies. A layer is a .zip file
archive that contains libraries, a custom runtime, or other dependencies. With layers, you can use
libraries in your function without needing to include them in your deployment package.

Lambda console 60



AWS Lambda Developer Guide

Edit code using the console editor

You can use the code editor in the Lambda console to write, test, and view the execution results
of your Lambda function code. The code editor supports languages that do not require compiling,
such as Node.js and Python. The code editor supports only .zip file archive deployment packages,
and the size of the deployment package must be less than 3 MB.

The code editor includes the menu bar, windows, and the editor pane.

- File Edit Find View Goto Tools Window e 'l:}l
= . . . c o3 -

g v myLambdaFunction ¥ ' index.js * Editor pane

5 | index.js exports.handler = (event, context, callback) => {

z

L

For a list of what the commands do, see the menu bar commands reference in the AWS Cloud9 User

Guide. Note that some of the commands listed in that reference are not available in the code editor.

Topics

Working with files and folders

Working with code

Working in fullscreen mode

Working with preferences

Working with files and folders

You can use the Environment window in the code editor to create, open, and manage files for your
function.

File Edit Find View I

v myLambdaFunction ﬂ* T

€ | index.js

Enviranment

Edit code using the console editor 61


https://docs.aws.amazon.com/cloud9/latest/user-guide/menu-commands.html

AWS Lambda Developer Guide

To show or hide the Environment window, choose the Environment button. If the Environment
button is not visible, choose Window, Environment on the menu bar.

File Edit Find Wiew

E ¥ myLambdaFunction ¥~

E

E index.js

z

LLI

File Edit Find View Goto Tools Window

= v 07 mylambdaFunction {¥+ © v Environment  Ctrl-

% index. je Commands  Cirl-.

uﬁ Mavigation 2
Tabs 3
FPresets 2

To open a single file and show its contents in the editor pane, double-click the file in the
Environment window.

To open multiple files and show their contents in the editor pane, choose the files in the
Environment window. Right-click the selection, and then choose Open.

To create a new file, do one of the following:

« In the Environment window, right-click the folder where you want the new file to go, and then
choose New File. Enter the file's name and extension, and then press Enter.

» Choose File, New File on the menu bar. When you're ready to save the file, choose File, Save or
File, Save As on the menu bar. Then use the Save As dialog box that displays to name the file
and choose where to save it.

« In the tab buttons bar in the editor pane, choose the + button, and then choose New File. When
you're ready to save the file, choose File, Save or File, Save As on the menu bar. Then use the
Save As dialog box that displays to name the file and choose where to save it.

Edit code using the console editor 62



AWS Lambda Developer Guide

to  Tools Window

h= . index.js

exports.h n éEEWF”E Alt-N | !
T0DO pen Preferences  Cirl-,

To create a new folder, right-click the folder in the Environment window where you want the new
folder to go, and then choose New Folder. Enter the folder's name, and then press Enter.

To save a file, with the file open and its contents visible in the editor pane, choose File, Save on
the menu bar.

To rename a file or folder, right-click the file or folder in the Environment window. Enter the
replacement name, and then press Enter.

To delete files or folders, choose the files or folders in the Environment window. Right-click
the selection, and then choose Delete. Then confirm the deletion by choosing Yes (for a single
selection) or Yes to All.

To cut, copy, paste, or duplicate files or folders, choose the files or folders in the Environment
window. Right-click the selection, and then choose Cut, Copy, Paste, or Duplicate, respectively.

To collapse folders, choose the gear icon in the Environment window, and then choose Collapse
All Folders.

File Edit Find WView Goto Tools Window

v myLambdaFunction |'ﬂ' T
| index.js Refresh File Tree
qcmlapse All Folders

Show Hidden Files |

To show or hide hidden files, choose the gear icon in the Environment window, and then choose
Show Hidden Files.

Enviranment

Edit code using the console editor 63



AWS Lambda Developer Guide

To see environment variables that are configured for the function, do the following:

1. Choose the Code tab.
2. Choose the Environment Variables tab.

3. Choose Tools, Show Environment Variables.

Environment variables remain encrypted when listed in the console code editor. If you enabled
encryption helpers for encryption in transit, then those settings remain unchanged. For more
information, see Securing environment variables.

The environment variables list is read-only and is available only on the Lambda console. This file
is not included when you download the function's .zip file archive, and you can't add environment
variables by uploading this file.

Working with code

Use the editor pane in the code editor to view and write code.

| & |

File Edit Find View Goto Tools Window ex 9

L myLambdaFunction index.js
> | index.js exports.handler - (event, context, callback) => {

Environment

'Hello from-Lambda’);

Working with tab buttons

Use the tab buttons bar to select, view, and create files.

o Tools  Window sl 1

" index.js

exports.handler (event, context, callback)

callback(null, 'Hello from Lambda');

Edit code using the console editor 64



AWS Lambda Developer Guide

To display an open file's contents, do one of the following:

o Choose the file's tab.

» Choose the drop-down menu button in the tab buttons bar, and then choose the file's name.

%

to  Tools  Window

L]
[ & ]

ntext, callback) => {

Close Pane Cirl-WW
Close All Tabs In All Panes  Al-Shift-W
Close All But Current Tab Cirl-AR-W

qn dex]s Ctrl-1

Split Pane in Two Rows

m- Lambda ") ;

Split Pane in Two Columns

To close an open file, do one of the following:

o Choose the X icon in the file's tab.

» Choose the file's tab. Then choose the drop-down menu button in the tab buttons bar, and
choose Close Pane.

To close multiple open files, choose the drop-down menu in the tab buttons bar, and then choose
Close All Tabs in All Panes or Close All But Current Tab as needed.

To create a new file, choose the + button in the tab buttons bar, and then choose New File. When
you're ready to save the file, choose File, Save or File, Save As on the menu bar. Then use the Save
As dialog box that displays to name the file and choose where to save it.

Working with the status bar

Use the status bar to move quickly to a line in the active file and to change how code is displayed.

Edit code using the console editor 65



AWS Lambda

Developer Guide

" index.js

exports.handler

callback(null,

(event, context, callback)

'Hello from Lambda');

To move quickly to a line in the active file, choose the line selector, enter the line number to go

to, and then press Enter.

To change the code color scheme in the active file, choose the code color scheme selector, and
then choose the new code color scheme.

« Javascript
JEOM
LESS
Lua
Perl
PHP
Fython
Ruby
Scala
SCES
SH

Edit code using the console editor

66



AWS Lambda Developer Guide

To change in the active file whether soft tabs or spaces are used, the tab size, or whether to
convert to spaces or tabs, choose the spaces and tabs selector, and then choose the new settings.

v Soft Tabs (spaces)

Other

Guess Tab Size

Convert to Spaces
Convertto Tabs

4

To change for all files whether to show or hide invisible characters or the gutter, auto-pair
brackets or quotes, wrap lines, or the font size, choose the gear icon, and then choose the new

settings.

v Show Invisibles
v Show Gutter
v Auto-pair Brackets, Quotes, etc.
Wrap Lines
L to Print Margin

Font Size

Working in fullscreen mode

You can expand the code editor to get more room to work with your code.

To expand the code editor to the edges of the web browser window, choose the Toggle fullscreen
button in the menu bar.

Edit code using the console editor 67



AWS Lambda Developer Guide

File Edit Find View Goto Tools Window ¢y -ﬁ-‘

To shrink the code editor to its original size, choose the Toggle fullscreen button again.

In fullscreen mode, additional options are displayed on the menu bar: Save and Test. Choosing
Save saves the function code. Choosing Test or Configure Events enables you to create or edit the
function's test events.

Working with preferences

You can change various code editor settings such as which coding hints and warnings are displayed,
code folding behaviors, code autocompletion behaviors, and much more.

To change code editor settings, choose the Preferences gear icon in the menu bar.

File Edit Find View Goto Tools Window 22 |

For a list of what the settings do, see the following references in the AWS Cloud9 User Guide.

» Project settings that you can change

« User setting changes you can make

Note that some of the settings listed in those references are not available in the code editor.

Edit code using the console editor 68


https://docs.aws.amazon.com/cloud9/latest/user-guide/settings-project.html#settings-project-change
https://docs.aws.amazon.com/cloud9/latest/user-guide/settings-user.html#settings-user-change

AWS Lambda Developer Guide

Lambda instruction set architectures (ARM/x86)

The instruction set architecture of a Lambda function determines the type of computer processor
that Lambda uses to run the function. Lambda provides a choice of instruction set architectures:

« arm64 — 64-bit ARM architecture, for the AWS Graviton2 processor.
» x86_64 — 64-bit x86 architecture, for x86-based processors.

(® Note

The arm64 architecture is available in most AWS Regions. For more information, see AWS
Lambda Pricing. In the memory prices table, choose the Arm Price tab, and then open the
Region dropdown list to see which AWS Regions support arm64 with Lambda.

For an example of how to create a function with arm64 architecture, see AWS Lambda
Functions Powered by AWS Graviton2 Processor.

Topics

» Advantages of using arm64 architecture

Requirements for migration to arm64 architecture

Function code compatibility with arm64 architecture

How to migrate to arm64 architecture

Configuring the instruction set architecture

Advantages of using arm64 architecture

Lambda functions that use arm64 architecture (AWS Graviton2 processor) can achieve significantly
better price and performance than the equivalent function running on x86_64 architecture.
Consider using arm64 for compute-intensive applications such as high-performance computing,
video encoding, and simulation workloads.

The Graviton2 CPU uses the Neoverse N1 core and supports Armv8.2 (including CRC and crypto
extensions) plus several other architectural extensions.

Graviton2 reduces memory read time by providing a larger L2 cache per vCPU, which improves the
latency performance of web and mobile backends, microservices, and data processing systems.

Instruction sets (ARM/x86) 69


https://aws.amazon.com/lambda/pricing/#aws-element-9ccd9262-b656-4d9c-8a72-34ee6b662135
https://aws.amazon.com/lambda/pricing/#aws-element-9ccd9262-b656-4d9c-8a72-34ee6b662135
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/

AWS Lambda Developer Guide

Graviton2 also provides improved encryption performance and supports instruction sets that
improve the latency of CPU-based machine learning inference.

For more information about AWS Graviton2, see AWS Graviton Processor.

Requirements for migration to arm64 architecture

When you select a Lambda function to migrate to arm64 architecture, to ensure a smooth
migration, make sure that your function meets the following requirements:

« The function currently uses a Lambda Amazon Linux 2 runtime.

» The deployment package contains only open-source components and source code that you
control, so that you can make any necessary updates for the migration.

o If the function code includes third-party dependencies, each library or package provides an
arm64 version.

Function code compatibility with arm64 architecture

Your Lambda function code must be compatible with the instruction set architecture of the
function. Before you migrate a function to arm64 architecture, note the following points about the
current function code:

« If you added your function code using the embedded code editor, your code probably runs on
either architecture without modification.

« If you uploaded your function code, you must upload new code that is compatible with your
target architecture.

« If your function uses layers, you must check each layer to ensure that it is compatible with the

new architecture. If a layer is not compatible, edit the function to replace the current layer
version with a compatible layer version.

« If your function uses Lambda extensions, you must check each extension to ensure that it is
compatible with the new architecture.

« If your function uses a container image deployment package type, you must create a new
container image that is compatible with the architecture of the function.

How to migrate to arm64 architecture

Requirements for migration to arm64 architecture 70


https://aws.amazon.com/ec2/graviton

AWS Lambda Developer Guide

To migrate a Lambda function to the arm64 architecture, we recommend following these steps:

1. Build the list of dependencies for your application or workload. Common dependencies include:
« All the libraries and packages that the function uses.

« The tools that you use to build, deploy, and test the function, such as compilers, test suites,
continuous integration and continuous delivery (Cl/CD) pipelines, provisioning tools, and
scripts.

« The Lambda extensions and third-party tools that you use to monitor the function in
production.

2. For each of the dependencies, check the version, and then check whether arm64 versions are
available.

. Build an environment to migrate your application.
. Bootstrap the application.
. Test and debug the application.

o U b~ W

. Test the performance of the arm64 function. Compare the performance with the x86_64
version.

7. Update your infrastructure pipeline to support arm64 Lambda functions.

8. Stage your deployment to production.

For example, use alias routing configuration to split traffic between the x86 and arm64 versions

of the function, and compare the performance and latency.

For more information about how to create a code environment for arm64 architecture, including
language-specific information for Java, Go, .NET, and Python, see the Getting started with AWS

Graviton GitHub repository.

Configuring the instruction set architecture

You can configure the instruction set architecture for new and existing Lambda functions using
the Lambda console, AWS SDKs, AWS Command Line Interface (AWS CLI), or AWS CloudFormation.
Follow these steps to change the instruction set architecture for an existing Lambda function from
the console.

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to configure the instruction set architecture
for.

Configuring the instruction set architecture 71


https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3.  On the main Code tab, for the Runtime settings section, choose Edit.
4. Under Architecture, choose the instruction set architecture you want your function to use.

5. Choose Save.

® Note

All Amazon Linux 2 runtimes support both x86_64 and ARM CPU architectures.
Runtimes that do not use Amazon Linux 2, such as Go 1.x, do not support the armé64
architecture. To use arm64 architecture with Go 1.x, you can run your function in a
provided.al2 runtime. For more information, see the deployment instructions for .zip
packages and container images.

Configuring the instruction set architecture 72



AWS Lambda Developer Guide

Additional Lambda features

Lambda provides a management console and APl for managing and invoking functions. It provides
runtimes that support a standard set of features so that you can easily switch between languages
and frameworks, depending on your needs. In addition to functions, you can also create versions,
aliases, layers, and custom runtimes.

Advanced features

« Scaling

o Concurrency controls

e Function URLs

« Asynchronous invocation

« Event source mappings

« Destinations

» Function blueprints

» Testing and deployment tools

« Application templates

Scaling

Lambda manages the infrastructure that runs your code, and scales automatically in response

to incoming requests. When your function is invoked more quickly than a single instance of your
function can process events, Lambda scales up by running additional instances. When traffic
subsides, inactive instances are frozen or stopped. You pay only for the time that your function is
initializing or processing events.

For more information, see Lambda function scaling.

Concurrency controls

Use concurrency settings to ensure that your production applications are highly available and
highly responsive.

To prevent a function from using too much concurrency, and to reserve a portion of your account's
available concurrency for a function, use reserved concurrency. Reserved concurrency splits the pool

Additional features 73



AWS Lambda Developer Guide

of available concurrency into subsets. A function with reserved concurrency only uses concurrency
from its dedicated subset.

To enable functions to scale without fluctuations in latency, use provisioned concurrency.

For functions that take a long time to initialize, or that require extremely low latency for all
invocations, provisioned concurrency enables you to pre-initialize instances of your function and
keep them running at all times. Lambda integrates with Application Auto Scaling to support
autoscaling for provisioned concurrency based on utilization.

For more information, see Configuring reserved concurrency.

Function URLs

Lambda offers built-in HTTP(S) endpoint support through function URLs. With function URLs,
you can assign a dedicated HTTP endpoint to your Lambda function. When your function URL is
configured, you can use it to invoke your function through a web browser, curl, Postman, or any
HTTP client.

You can add a function URL to an existing function, or create a new function with a function URL.
For more information, see Invoking Lambda function URLs.

Asynchronous invocation

When you invoke a function, you can choose to invoke it synchronously or asynchronously. With
synchronous invocation, you wait for the function to process the event and return a response.

With asynchronous invocation, Lambda queues the event for processing and returns a response
immediately.

Asynchronous Invocation

Lambda function

Events Event queue —]
[—l " -
i

Function URLs 74

VvV




AWS Lambda Developer Guide

For asynchronous invocations, Lambda handles retries if the function returns an error or is
throttled. To customize this behavior, you can configure error handling settings on a function,
version, or alias. You can also configure Lambda to send events that failed processing to a dead-
letter queue, or to send a record of any invocation to a destination.

For more information, see Asynchronous invocation.

Event source mappings

To process items from a stream or queue, you can create an event source mapping. An event source
mapping is a resource in Lambda that reads items from an Amazon Simple Queue Service (Amazon
SQS) queue, an Amazon Kinesis stream, or an Amazon DynamoDB stream, and sends the items

to your function in batches. Each event that your function processes can contain hundreds or
thousands of items.

Event Source Mapping with Kinesis Stream

W W

Records

SR = S amaten ke
S EE 76

—— | Source batch
Event batch
1 |
&
Failed-event Event source
destination mapping Lambda function

Event source mappings maintain a local queue of unprocessed items and handle retries if the
function returns an error or is throttled. You can configure an event source mapping to customize

Event source mappings 75



AWS Lambda Developer Guide

batching behavior and error handling, or to send a record of items that fail processing to a
destination.

For more information, see Lambda event source mappings.

Destinations

A destination is an AWS resource that receives invocation records for a function. For asynchronous

invocation, you can configure Lambda to send invocation records to a queue, topic, function, or
event bus. You can configure separate destinations for successful invocations and events that failed
processing. The invocation record contains details about the event, the function's response, and the
reason that the record was sent.

Destinations for Asynchronous Invocation
Lambda function

Events

Events Event queue —
=] . PR

—_

= 3 qu =,

= Invocation

records
Successful-event Failed-event
destination destination

For event source mappings that read from streams, you can configure Lambda to send a record of
batches that failed processing to a queue or topic. A failure record for an event source mapping
contains metadata about the batch, and it points to the items in the stream.

Destinations 76



AWS Lambda Developer Guide

For more information, see Configuring destinations for asynchronous invocation and the error
handling sections of Using AWS Lambda with Amazon DynamoDB and Using AWS Lambda with

Amazon Kinesis.

Function blueprints

When you create a function in the Lambda console, you can choose to start from scratch, use
a blueprint, or use a container image. A blueprint provides sample code that shows how to use

Lambda with an AWS service or a popular third-party application. Blueprints include sample code
and function configuration presets for Node.js and Python runtimes.

Blueprints are provided for use under the Amazon Software License. They are available only in the

Lambda console.

Testing and deployment tools

Lambda supports deploying code as is or as container images. You can use AWS services and

popular community tools like the Docker command line interface (CLI) to author, build, and deploy
your Lambda functions. To set up the Docker CLI, see Get Docker on the Docker Docs website. For
an introduction to using Docker with AWS, see Getting started with Amazon ECR using the AWS CLI
in the Amazon Elastic Container Registry User Guide.

The AWS CLI and AWS SAM CLI are command line tools for managing Lambda application stacks.
In addition to commands for managing application stacks with the AWS CloudFormation API,

the AWS CLI supports higher-level commands that simplify tasks such as uploading deployment
packages and updating templates. The AWS SAM CLI provides additional functionality, including
validating templates, testing locally, and integrating with CI/CD systems.

« Installing the AWS SAM CLI

» Testing and debugging serverless applications with AWS SAM

» Deploying serverless applications using Cl/CD systems with AWS SAM

Application templates

You can use the Lambda console to create an application with a continuous delivery pipeline.
Application templates in the Lambda console include code for one or more functions, an
application template that defines functions and supporting AWS resources, and an infrastructure

Function blueprints 77


https://aws.amazon.com/asl/
https://docs.docker.com/get-docker
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-deploying.html

AWS Lambda Developer Guide

template that defines an AWS CodePipeline pipeline. The pipeline has build and deploy stages that
run every time you push changes to the included Git repository.

Application templates are provided for use under the MIT No Attribution license. They are available
only in the Lambda console.

For more information, see Creating an application with continuous delivery in the Lambda console.

Learn how to build serverless solutions

® Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Learn how to build serverless solutions 78


https://spdx.org/licenses/MIT-0.html
https://docs.aws.amazon.com/serverless/latest/devguide/

AWS Lambda Developer Guide

Lambda runtimes

Lambda supports multiple languages through the use of runtimes. A runtime provides a language-
specific environment that relays invocation events, context information, and responses between
Lambda and the function. You can use runtimes that Lambda provides, or build your own.

Each major programming language release has a separate runtime, with a unique runtime identifier,
such as nodejs20.x or python3.12. To configure a function to use a new major language
version, you need to change the runtime identifier. Since AWS Lambda cannot guarantee backward
compatibility between major versions, this is a customer-driven operation.

For a function defined as a container image, you choose a runtime and the Linux distribution when

you create the container image. To change the runtime, you create a new container image.

When you use a .zip file archive for the deployment package, you choose a runtime when you
create the function. To change the runtime, you can update your function's configuration.

The runtime is paired with one of the Amazon Linux distributions. The underlying execution
environment provides additional libraries and environment variables that you can access from your

function code.

Lambda invokes your function in an execution environment. The execution environment provides

a secure and isolated runtime environment that manages the resources required to run your
function. Lambda re-uses the execution environment from a previous invocation if one is available,
or it can create a new execution environment.

To use other languages in Lambda, such as Go or Rust, use an OS-only runtime. The Lambda

execution environment provides a runtime interface for getting invocation events and sending

responses. You can deploy other languages by implementing a custom runtime alongside your

function code, orin a layer.

Supported runtimes

The following table lists the supported Lambda runtimes and projected deprecation dates. After
a runtime is deprecated, you're still able to create and update functions for a limited period. For
more information, see the section called “Runtime use after deprecation”. The table provides the

currently forecasted dates for runtime deprecation. These dates are provided for planning purposes
and are subject to change.

Supported runtimes 79



AWS Lambda

Developer Guide

Supported Runtimes

Name

Node.js 20

Node.js 18

Node.js 16

Python 3.12

Python 3.11

Python 3.10

Python 3.9

Python 3.8

Java 21

Java 17

Java 11

Identifier

nodejs20.
X

nodejsl18.
X

nodejsl6.
X

python3.1
2

python3.1
1

python3.1

0

python3.9

python3.8

java2l

javal7

javall

Operating
system

Amazon
Linux 2023

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2023

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2023

Amazon
Linux 2

Amazon
Linux 2

Deprecation
date

Jun 12, 2024

Oct 14, 2024

Block
function
create

Jul 15, 2024

Nov 13, 2024

Block
function
update

Aug 15, 2024

Jan 7, 2025

Supported runtimes

80



AWS Lambda

Developer Guide

Name

Java 8

.NET 8

NET 7
(container
only)

.NET 6

Ruby 3.2

OS-only

Runtime

OS-only
Runtime

(® Note

Identifier

java8.al2

dotnet8

dotnet?7

dotnet6

ruby3.2

provided.
al2023

provided.
al2

Operating
system

Amazon
Linux 2

Amazon
Linux 2023

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2023

Amazon
Linux 2

Deprecation  Block
date function
create

May 14, 2024

Nov 12,2024 Jan 11, 2025

Block
function
update

Feb 11, 2025

For new regions, Lambda will not support runtimes that are set to be deprecated within the
next 6 months.

Lambda keeps managed runtimes and their corresponding container base images up to date

with patches and support for minor version releases. For more information see Lambda runtime

updates.

Supported runtimes

81


https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html

AWS Lambda Developer Guide

Lambda continues to support the Go programming language after deprecation of the Go 1.x
runtime. For more information, see Migrating AWS Lambda functions from the Go1.x runtime to

the custom runtime on Amazon Linux 2 on the AWS Compute Blog.

All supported Lambda runtimes support both x86_64 and arm64 architectures.

New runtime releases

Lambda provides managed runtimes for new language versions only when the release reaches the
long-term support (LTS) phase of the language's release cycle. For example, for the Node.js release
cycle, when the release reaches the Active LTS phase.

Before the release reaches the long-term support phase, it remains in development and can still
be subject to breaking changes. Lambda applies runtime updates automatically by default, so
breaking changes to a runtime version could stop your functions from working as expected.

Lambda doesn't provide managed runtimes for language versions which aren't scheduled for LTS
release.

The following list shows the target launch month for upcoming Lambda runtimes. These dates are
indicative only and subject to change.

« Ruby 3.3 - April 2024
« Python 3.13 - November 2024
« Node.js 22 - November 2024

Runtime deprecation policy

Lambda runtimes for .zip file archives are built around a combination of operating system,
programming language, and software libraries that are subject to maintenance and security
updates. Lambda’'s standard deprecation policy is to deprecate a runtime when any major
component of the runtime reaches the end of community long-term support (LTS) and security
updates are no longer available. Most usually, this is the language runtime, though in some cases, a
runtime can be deprecated because the operating system (OS) reaches end of LTS.

After a runtime is deprecated, AWS may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. Such

New runtime releases 82


https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://nodejs.org/en/about/previous-releases
https://nodejs.org/en/about/previous-releases

AWS Lambda Developer Guide

deprecated runtimes are provided ‘as-is’, without any warranties, and may contain bugs, errors,
defects, or other vulnerabilities.

To learn more about managing runtime upgrades and deprecation, see the following sections and
Managing AWS Lambda runtime upgrades on the AWS Compute Blog.

/A Important

Lambda occasionally delays deprecation of a Lambda runtime for a limited period beyond
the end of support date of the language version that the runtime supports. During this
period, Lambda only applies security patches to the runtime OS. Lambda doesn’t apply
security patches to programming language runtimes after they reach their end of support
date.

Runtime deprecation for Node.js 16

In response to customer feedback, AWS is delaying the deprecation of the Node.js 16 runtime until
9 months after the end of community LTS. The Node.js 16 runtime will be deprecated on the date
provided in the Supported Runtimes table. As stated in the preceding note, between the end of
LTS on September 11, 2023 and the deprecation date, Lambda will only apply OS patches to the
runtime. No security patches for the language runtime will be applied during this period.

Delaying the deprecation of Node.js 16 gives customers using this runtime the opportunity to
migrate their functions directly to Node.js 20, skipping Node.js 18.

Shared responsibility model

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container base images. By default, Lambda will apply these updates automatically
to functions using managed runtimes. Where the default automatic runtime update setting has
been changed, see the runtime management controls shared responsibility model. For functions

deployed using container images, you're responsible for rebuilding your function's container image
from the latest base image and redeploying the container image.

When a runtime is deprecated, Lambda’s responsibility for updating the managed runtime and
container base images ceases. You are responsible for upgrading your functions to use a supported
runtime or base image.

Shared responsibility model 83


https://aws.amazon.com/blogs/compute/managing-aws-lambda-runtime-upgrades/

AWS Lambda

Developer Guide

In all cases, you are responsible for applying updates to your function code, including its

dependencies. Your responsibilities under the shared responsibility model are summarized in the

following table.

Runtime lifecycle phase

Supported managed runtime

Supported container image

Managed runtime approachi
ng deprecation

Container image approaching
deprecation

Lambda's responsibilities

Provide regular runtime
updates with security patches
and other updates.

Apply runtime updates
automatically by default (see
the section called “Runtime

management controls” for

non-default behaviors).

Provide regular updates to
container base image with
security patches and other
updates.

Notify customers prior to
runtime deprecation via
documentation, AWS Health
Dashboard, email, and
Trusted Advisor.

Responsibility for runtime
updates ends at deprecation.

Deprecation notifications are
not available for functions
using container images.

Your responsibilities

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Regularly re-build and re-
deploy your container image
using the latest base image.

Monitor Lambda documenta
tion, AWS Health Dashboard
, email, or Trusted Advisor
for runtime deprecation
information.

Upgrade functions to a
supported runtime before the
previous runtime is deprecate
d.

Be aware of deprecation
schedules and upgrade
functions to a supported base

Shared responsibility model

84



AWS Lambda Developer Guide

Runtime lifecycle phase Lambda's responsibilities Your responsibilities
Responsibility for container image before the previous
base image updates ends at image is deprecated.

deprecation.

Runtime use after deprecation

After a runtime is deprecated, AWS may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. Such
deprecated runtimes are provided ‘as-is’, without any warranties, and may contain bugs, errors,
defects, or other vulnerabilities. Functions that use a deprecated runtime may also experience
degraded performance or other issues, such as a certificate expiry, that can cause them to stop
working properly.

For at least 30 days after a runtime is deprecated, you're still able to create new Lambda functions
using that runtime. Starting from 30 days after deprecation, Lambda begins blocking the creation
of new functions.

For at least 60 days after a runtime is deprecated, you're still able to update function code and
configuration for existing functions. Starting from 60 days after deprecation, Lambda begins
blocking the update of function code and configuration for existing functions.

You can update a function to use a newer supported runtime indefinitely after a runtime is
deprecated. You should test that your function works with the new runtime before applying the
runtime change in production environments, since you will not be able to revert to the deprecated
runtime once the 60-day period has passed. We recommend using function versions and aliases to

enable safe deployment with rollback.

Note that the exact length of time for which you can continue to create and update functions isn't
fixed. This period can vary for each deprecation and for different AWS Regions. Nominal dates for
the blocking of function creates and updates are provided in the Supported Runtimes table in the
first section of this page. Lambda will not start blocking function creates or updates before the
dates given in this table.

You can continue to invoke your functions indefinitely after the runtime is deprecated. However,
AWS strongly recommends that you migrate functions to a supported runtime so that your
functions continue to receive security patches and remain eligible for technical support.

Runtime use after deprecation 85



AWS Lambda Developer Guide

Receiving runtime deprecation notifications

When a runtime approaches its deprecation date, Lambda sends you an email alert if any functions
in your AWS account use that runtime. Notifications are also displayed in the AWS Health
Dashboard and in AWS Trusted Advisor.

« Receiving email notifications:

Lambda sends you an email alert at least 180 days before a runtime is deprecated. This email
lists the $LATEST versions of all functions using the runtime. To see a full list of affected function
versions, use Trusted Advisor or see the section called “Listing functions that use a deprecated

runtime”.

Lambda sends email notification to your AWS account's primary account contact. For information
about viewing or updating the email addresses in your account, see Updating contact

information in the AWS General Reference.

 Receiving notifications through the AWS Health Dashboard:

The AWS Health Dashboard displays a notification at least 180 days before a runtime is
deprecated. Notifications appear on the Your account health page under Other notifications.
The Affected resources tab of the notification lists the $LATEST versions of all functions using
the runtime.

(® Note

To see a full and up-to-date list of affected function versions, use Trusted Advisor or see
the section called “Listing functions that use a deprecated runtime”.

AWS Health Dashboard notifications expire 90 days after the affected runtime is deprecated.
» Using AWS Trusted Advisor

Trusted Advisor displays a notification 180 days before a runtime is deprecated. Notifications
appear on the Security page. A list of your affected functions is displayed under AWS Lambda
Functions Using Deprecated Runtimes. This list of functions shows both $LATEST and published
versions and updates automatically to reflect your functions' current status.

Receiving runtime deprecation notifications 86


https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://health.aws.amazon.com/health/home#/account/dashboard/other-notifications
https://console.aws.amazon.com/trustedadvisor/home#/category/security

AWS Lambda Developer Guide

You can turn on weekly email notifications from Trusted Advisor in the Preferences page of the
Trusted Advisor console.

Listing functions that use a deprecated runtime

In addition to using Trusted Advisor to see a live list of functions affected by scheduled runtime
deprecations, you can also use the AWS Command Line Interface (AWS CLI) to list all of your
function versions that use a particular runtime. To generate this list, run the following command.
Replace RUNTIME_IDENTIFIER with the name of the runtime that's being deprecated and choose
your own AWS Region. To list only $LATEST function versions, omit --function-version ALL
from the command.

aws lambda list-functions --function-version ALL --region us-east-1 --output text --
quexry "Functions[?Runtime=='RUNTIME_IDENTIFIER'].FunctionArn"

® Tip
The example command lists functions in the us-east-1 region for a particular AWS
account You'll need to repeat this command for each region in which your account has
functions and for each of your AWS accounts.

You can also use the AWS Config Advanced queries feature to list all your functions that use an
affected runtime. This query only returns function $LATEST versions, but you can aggregate
queries to list function across all regions and multiple AWS accounts with a single command. To
learn more, see Querying the Current Configuration State of AWS Auto Scaling Resources in the
AWS Config Developer Guide.

Deprecated runtimes

The following runtimes have reached end of support:

Listing functions that use a deprecated runtime 87


https://console.aws.amazon.com/trustedadvisor/home?#/preferences
https://docs.aws.amazon.com/config/latest/developerguide/querying-AWS-resources.html

AWS Lambda Developer Guide

Deprecated runtimes

Name Identifier Operating Deprecation  Block Block
system date function function
create update
Java 8 java8 Amazon Jan 8, 2024 Feb 8, 2024 Mar 12, 2024
Linux
Go 1.x gol.x Amazon Jan 8, 2024 Feb 8, 2024 Mar 12, 2024
Linux
OS-only provided Amazon Jan 8, 2024 Feb 8, 2024 Mar 12, 2024
Runtime Linux
Ruby 2.7 ruby2.7 Amazon Dec 7, 2023 Jan 9, 2024 Feb 8, 2024
Linux 2
Node.js 14 nodejsl4. Amazon Dec 4, 2023 Jan 9, 2024 Feb 8, 2024
X Linux 2
Python 3.7 python3.7 Amazon Dec 4, 2023 Jan 9, 2024 Feb 8, 2024
Linux
.NET Core 3.1 dotnetcor Amazon Apr 3, 2023 Apr 3, 2023 May 3, 2023
e3.1 Linux 2
Node.js 12 nodejsl2. Amazon Mar 31,2023 Mar 31, 2023  Apr 30, 2023
X Linux 2
Python 3.6 python3.6 Amazon Jul 18, 2022 Jul 18, 2022 Aug 29, 2022
Linux
.NET 5 dotnet5.0 Amazon May 10, 2022
(container Linux 2
only)
.NET Core 2.1 dotnetcor Amazon Jan 5, 2022 Jan 5, 2022 Apr 13, 2022
e2.1 Linux

Deprecated runtimes 88



AWS Lambda

Developer Guide

Name

Node.js 10

Ruby 2.5

Python 2.7

Node.js 8.10

Node.js 4.3

Node.js 4.3

edge

Node.js 6.10

.NET Core 1.0

.NET Core 2.0

Node.js 0.10

Identifier

nodejsl0.
X

ruby2.5

python2.7

nodejs8.1
0

nodejs4.3

nodejs4.3
-edge

nodejs6.1
0

dotnetcor
el.0

dotnetcor
e2.0

nodejs

Operating
system

Amazon
Linux 2

Amazon
Linux

Amazon
Linux

Amazon
Linux

Amazon
Linux

Amazon
Linux

Amazon
Linux

Amazon
Linux

Amazon
Linux

Amazon
Linux

Deprecation
date

Jul 30, 2021

Jul 30, 2021

Jul 15, 2021

Mar 6, 2020

Mar 5, 2020

Mar 5, 2020

Aug 12, 2019

Jun 27, 2019

May 30, 2019

Block
function
create

Jul 30, 2021

Jul 30, 2021

Jul 15, 2021

Aug 12, 2019

Block

function

update

Feb 14, 2022

Mar 31, 2022

May 30, 2022

Mar 6, 2020

Mar 5, 2020

Apr 30, 2019

Jul 30, 2019

May 30, 2019

Oct 31, 2016

In almost all cases, the end-of-life date of a language version or operating system is known well in

advance. The following links give end-of-life schedules for each language that Lambda supports as

a managed runtime.

Deprecated runtimes

89



AWS Lambda

Developer Guide

Language and framework support policies

Node.js — github.com
Python - devguide.python.org

Ruby - www.ruby-lang.org

Java — www.oracle.com and Corretto FAQs

Go - golang.org
NET - dotnet.microsoft.com

Deprecated runtimes

90


https://github.com/nodejs/Release#release-schedule
https://devguide.python.org/versions/#versions
https://www.ruby-lang.org/en/downloads/branches/
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://aws.amazon.com/corretto/faqs/
https://golang.org/doc/devel/release.html
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

AWS Lambda Developer Guide

Lambda runtime updates

Lambda keeps each managed runtime up to date with security updates, bug fixes, new features,
performance enhancements, and support for minor version releases. These runtime updates are
published as runtime versions. Lambda applies runtime updates to functions by migrating the
function from an earlier runtime version to a new runtime version.

By default, for functions using managed runtimes, Lambda applies runtime updates automatically.
With automatic runtime updates, Lambda takes on the operational burden of patching the runtime
versions. For most customers, automatic updates are the right choice. For more information, see
Runtime management controls.

Lambda also publishes each new runtime version as a container image. To update runtime versions
for container-based functions, you must create a new container image from the updated base

image and redeploy your function.

Each runtime version is associated with a version number and an ARN (Amazon Resource Name).
Runtime version numbers use a numbering scheme that Lambda defines, independent of the
version numbers that the programming language uses. The runtime version ARN is a unique
identifier for each runtime version.

You can view the ARN of your function's current runtime version in the INIT_START line of your
function logs and in the Lambda console.

Runtime versions should not be confused with runtime identifiers. Each runtime has a unique
runtime identifier, such as python3.9 or nodejs18. x. These correspond to each major
programming language release. Runtime versions describe the patch version of an individual
runtime.

® Note

The ARN for the same runtime version number can vary between AWS Regions and CPU
architectures.

Topics

« Runtime management controls

» Two-phase runtime version rollout

Runtime updates 91



AWS Lambda Developer Guide

Roll back a runtime version

Identifying runtime version changes

Configure runtime management settings

Shared responsibility model

High-compliance applications

Runtime management controls

Lambda strives to provide runtime updates that are backward compatible with existing functions.
However, as with software patching, there are rare cases in which a runtime update can negatively
impact an existing function. For example, security patches can expose an underlying issue with an
existing function that depends on the previous, insecure behavior. Lambda runtime management
controls help reduce the risk of impact to your workloads in the rare event of a runtime version
incompatibility. For each function version ($LATEST or published version), you can choose one of
the following runtime update modes:

« Auto (default) - Automatically update to the most recent and secure runtime version using Two-

phase runtime version rollout. We recommend this mode for most customers so that you always
benefit from runtime updates.

Function update — Update to the most recent and secure runtime version when you update
your function. When you update your function, Lambda updates the runtime of your function to
the most recent and secure runtime version. This approach synchronizes runtime updates with
function deployments, giving you control over when Lambda applies runtime updates. With this
mode, you can detect and mitigate rare runtime update incompatibilities early. When using this
mode, you must regularly update your functions to keep their runtime up to date.

Manual - Manually update your runtime version. You specify a runtime version in your function
configuration. The function uses this runtime version indefinitely. In the rare case in which a new
runtime version is incompatible with an existing function, you can use this mode to roll back
your function to an earlier runtime version. We recommend against using Manual mode to try to
achieve runtime consistency across deployments. For more information, see Roll back a runtime

version.

Responsibility for applying runtime updates to your functions varies according to which runtime

update mode you choose. For more information, see Shared responsibility model.

Runtime management controls 92



AWS Lambda Developer Guide

Two-phase runtime version rollout

Lambda introduces new runtime versions in the following order:

1. In the first phase, Lambda applies the new runtime version whenever you create or
update a function. A function gets updated when you call the UpdateFunctionCode or
UpdateFunctionConfiguration APl operations.

2. In the second phase, Lambda updates any function that uses the Auto runtime update mode and
that hasn't already been updated to the new runtime version.

The overall duration of the rollout process varies according to multiple factors, including the
severity of any security patches included in the runtime update.

If you're actively developing and deploying your functions, you will most likely pick up new runtime
versions during the first phase. This synchronizes runtime updates with function updates. In the
rare event that the latest runtime version negatively impacts your application, this approach lets
you take prompt corrective action. Functions that aren't in active development still receive the
operational benefit of automatic runtime updates during the second phase.

This approach doesn't affect functions set to Function update or Manual mode. Functions using
Function update mode receive the latest runtime updates only when you create or update them.
Functions using Manual mode don't receive runtime updates.

Lambda publishes new runtime versions in a gradual, rolling fashion across AWS Regions. If your
functions are set to Auto or Function update modes, it's possible that functions deployed at the
same time to different Regions, or at different times in the same Region, will pick up different
runtime versions. Customers who require guaranteed runtime version consistency across their
environments should use container images to deploy their Lambda functions. The Manual mode

is designed as a temporary mitigation to enable runtime version rollback in the rare event that a
runtime version is incompatible with your function.

Roll back a runtime version

In the rare event that a new runtime version is incompatible with your existing function, you can
roll back its runtime version to an earlier one. This keeps your application working and minimizes
disruption, providing time to remedy the incompatibility before returning to the latest runtime
version.

Two-phase runtime version rollout 93


https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

Lambda doesn't impose a time limit on how long you can use any particular runtime version.
However, we strongly recommend updating to the latest runtime version as soon as possible

to benefit from the latest security patches, performance improvements, and features. Lambda
provides the option to roll back to an earlier runtime version only as a temporary mitigation in
the rare event of a runtime update compatibility issue. Functions using an earlier runtime version
for an extended period may eventually experience degraded performance or issues, such as a
certificate expiry, which can cause them to stop working properly.

You can roll back a runtime version in the following ways:

o Using the Manual runtime update mode

» Using published function versions

For more information, see Introducing AWS Lambda runtime management controls on the AWS

Compute Blog.
Roll back a runtime version using Manual runtime update mode

If you're using the Auto runtime version update mode, or you're using the $LATEST runtime
version, you can roll back your runtime version using the Manual mode. For the function version
you want to roll back, change the runtime version update mode to Manual and specify the ARN of
the previous runtime version. For more information about finding the ARN of the previous runtime

version, see ldentifying runtime version changes.

(@ Note

If the $LATEST version of your function is configured to use Manual mode, then you can't
change the CPU architecture or runtime version that your function uses. To make these
changes, you must change to Auto or Function update mode.

Roll back a runtime version using published function versions

Published function versions are an immutable snapshot of the $LATEST function code and
configuration at the time that you created them. In Auto mode, Lambda automatically updates the
runtime version of published function versions during phase two of the runtime version rollout.

In Function update mode, Lambda doesn't update the runtime version of published function

versions.

Roll back a runtime version 94


https://aws.amazon.com/blogs/compute/introducing-aws-lambda-runtime-management-controls/

AWS Lambda Developer Guide

Published function versions using Function update mode therefore create a static snapshot of the
function code, configuration, and runtime version. By using Function update mode with function
versions, you can synchronize runtime updates with your deployments. You can also coordinate
rollback of code, configuration, and runtime versions by redirecting traffic to an earlier published
function version. You can integrate this approach into your continuous integration and continuous
delivery (Cl/CD) for fully automatic rollback in the rare event of runtime update incompatibility.
When using this approach, you must update your function regularly and publish new function
versions to pick up the latest runtime updates. For more information, see Shared responsibility
model.

Identifying runtime version changes

The runtime version number and ARN are logged in the INIT_START log line, which Lambda
emits to CloudWatch Logs each time that it creates a new execution environment. Because the

execution environment uses the same runtime version for all function invocations, Lambda emits
the INIT_START log line only when Lambda executes the init phase. Lambda doesn't emit this
log line for each function invocation. Lambda emits the log line to CloudWatch Logs, but it is not
visible in the console.

Example Example INIT_START log line

INIT_START Runtime Version: python:3.9.v14 Runtime Version ARN: arn:aws:lambda:eu-
south-1::runtime:7b620fc2e66107a1046b140b9d320295811af3ad5d4c6a@llfadlfab5127e9e61

Rather than working directly with the logs, you can use Amazon CloudWatch Contributor Insights
to identify transitions between runtime versions. The following rule counts the distinct runtime

versions from each INIT_START log line. To use the rule, replace the example log group name /
aws/lambda/* with the appropriate prefix for your function or group of functions.

{
"Schema": {
"Name": "CloudWatchLogRule",
"Version": 1
}I

"AggregateOn'": "Count",
"Contribution": {
"Filters": [
{
"Match": "eventType",

Identifying runtime version changes 95


https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights.html

AWS Lambda

Developer Guide

llInll: [
"INIT_START"

}

1,

"Keys": [
"runtimeVersion",
"runtimeVersionArn"

]

}I
"LogFormat": "CLF",
"LogGroupNames": [
"/aws/Llambda/*"
]I
"Fields": {
"1": "eventType",
"4": "runtimeVersion",

"8": "runtimeVersionArn"

The following CloudWatch Contributor Insights report shows an example of a runtime version
transition as captured by the preceding rule. The orange line shows execution environment
initialization for the earlier runtime version (python:3.9.v12), and the blue line shows execution
environment initialization for the new runtime version (python:3.9.v14).

Top 2 of 2 unique contributors

2 unigue contributors * No unit

4.0

30

20

17:33 1734 17:35 17:36

14:50
® 1 python:3.9.v14 am-awslambda.

17:37  17:38 17:38 17:40 17:41 17:42 17:43 17:44 1745 1746 1747

15:50 16:50 17:51

2. python:3.9.v12 arn:aws:lambda. ..

Identifying runtime version changes

96



AWS Lambda Developer Guide

Configure runtime management settings

You can configure runtime management settings using the Lambda console or the AWS Command
Line Interface (AWS CLI).

(® Note

You can configure runtime management settings separately for each function version.

To configure how Lambda updates your runtime version (console)

Open the Functions page of the Lambda console.

1
2. Choose the name of a function.

3. On the Code tab, under Runtime settings, choose Edit runtime management configuration.
4

Under Runtime management configuration, choose one of the following:

« To have your function update to the latest runtime version automatically, choose Auto.

» To have your function update to the latest runtime version when you change the function,
choose Function update.

« To have your function update to the latest runtime version only when you change the
runtime version ARN, choose Manual.

(® Note

You can find the runtime version ARN under Runtime management configuration.
You can also find the ARN in the INIT_START line of your function logs.

5. Choose Save.

To configure how Lambda updates your runtime version (AWS CLI)

To configure runtime management for a function, you can use the put-runtime-management-
config AWS CLI command, together with the runtime update mode. When using Manual mode,
you must also provide the runtime version ARN.

aws lambda put-runtime-management-config --function-name arn:aws:lambda:eu-
west-1:069549076217: function:myfunction --update-runtime-on Manual --runtime-version-

Configure runtime management settings 97


https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-runtime-management-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-runtime-management-config.html

AWS Lambda Developer Guide

arn arn:aws:lambda:eu-
west-1::runtime:8eeff65f6809a3ce81507fe733fe09b835899b99481ba22fd75b5a7338290ec1

You should see output similar to the following:

"UpdateRuntimeOn": "Manual",

"FunctionArn": "arn:aws:lambda:eu-west-1:069549076217:function:myfunction",

"RuntimeVersionArn": "arn:aws:lambda:eu-
west-1::runtime:8eeff65f6809a3ce81507fe733fe@9b835899b99481ba22fd75b5a7338290ecl"
}

Shared responsibility model

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container images. Responsibility for updating existing functions to use the latest
runtime version varies depending on which runtime update mode you use.

Lambda is responsible for applying runtime updates to all functions configured to use the Auto
runtime update mode.

For functions configured with the Function update runtime update mode, you're responsible for
regularly updating your function. Lambda is responsible for applying runtime updates when you
make those updates. If you don't update your function, then Lambda doesn't update the runtime. If
you don't regularly update your function, then we strongly recommend configuring it for automatic
runtime updates so that it continues to receive security updates.

For functions configured to use the Manual runtime update mode, you're responsible for updating
your function to use the latest runtime version. We strongly recommend that you use this mode
only to roll back the runtime version as a temporary mitigation in the rare event of runtime update
incompatibility. We also recommend that you change to Auto mode as quickly as possible to
minimize the time in which your functions aren't patched.

If you're using container images to deploy your functions, then Lambda is responsible for

publishing updated base images. In this case, you're responsible for rebuilding your function's
container image from the latest base image and redeploying the container image.

This is summarized in the following table:

Shared responsibility model 98



AWS Lambda Developer Guide

Deployment Lambda's responsibility Customer's responsibility
mode
Managed Publish new runtime versions  Roll back to a previous runtime version in the
runtime, containing the latest patches.  rare event of a runtime update compatibility
Auto mode issue.

Apply runtime patches to

existing functions.
Managed Publish new runtime versions  Update functions regularly to pick up the
runtime, containing the latest patches.  latest runtime version.
Function

update mode

Managed
runtime,
Manual
mode

Container
image

Publish new runtime versions
containing the latest patches.

Publish new container images
containing the latest patches.

Switch a function to Auto mode when you're
not regularly updating the function.

Roll back to a previous runtime version in the
rare event of a runtime update compatibility
issue.

Use this mode only for temporary runtime
rollback in the rare event of a runtime update
compatibility issue.

Switch functions to Auto or Function update
mode and the latest runtime version as soon
as possible.

Redeploy functions regularly using the latest
container base image to pick up the latest
patches.

For more information about shared responsibility with AWS, see Shared Responsibility Model on
the AWS Cloud Security site.

High-compliance applications

To meet patching requirements, Lambda customers typically rely on automatic runtime updates.

If your application is subject to strict patching freshness requirements, you may want to limit use

High-compliance applications


https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Lambda Developer Guide

of earlier runtime versions. You can restrict Lambda's runtime management controls by using

AWS Identity and Access Management (IAM) to deny users in your AWS account access to the
PutRuntimeManagementConfig API operation. This operation is used to choose the runtime update
mode for a function. Denying access to this operation causes all functions to default to the Auto
mode. You can apply this restriction across your organization by using a service control policies
(SCP). In the event that you must roll back a function to an earlier runtime version, you can grant a
policy exception on a case-by-case basis.

High-compliance applications 100


https://docs.aws.amazon.com/lambda/latest/api/API_PutRuntimeManagementConfig.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Lambda Developer Guide

Modifying the runtime environment

You can use internal extensions to modify the runtime process. Internal extensions are not separate

processes—they run as part of the runtime process.

Lambda provides language-specific environment variables that you can set to add options and
tools to the runtime. Lambda also provides wrapper scripts, which allow Lambda to delegate the

runtime startup to your script. You can create a wrapper script to customize the runtime startup
behavior.

Language-specific environment variables

Lambda supports configuration-only ways to enable code to be pre-loaded during function
initialization through the following language-specific environment variables:

e JAVA_TOOL_OPTIONS - On Java, Lambda supports this environment variable to set additional
command-line variables in Lambda. This environment variable allows you to specify the
initialization of tools, specifically the launching of native or Java programming language agents
using the agentlib or javaagent options. For more information, see JAVA_TOOL_OPTIONS

environment variable.

« NODE_OPTIONS - Available in Node.js runtimes.

o DOTNET_STARTUP_HOOKS — On .NET Core 3.1 and above, this environment variable specifies a
path to an assembly (dll) that Lambda can use.

Using language-specific environment variables is the preferred way to set startup properties.

Wrapper scripts

You can create a wrapper script to customize the runtime startup behavior of your Lambda
function. A wrapper script enables you to set configuration parameters that cannot be set through
language-specific environment variables.

® Note

Invocations may fail if the wrapper script does not successfully start the runtime process.

Runtime modifications 101


https://docs.aws.amazon.com/lambda/latest/dg/java-customization.html#java-tool-options
https://docs.aws.amazon.com/lambda/latest/dg/java-customization.html#java-tool-options

AWS Lambda Developer Guide

Wrapper scripts are supported on all native Lambda runtimes. Wrapper scripts are not supported
on OS-only runtimes (the provided runtime family).

When you use a wrapper script for your function, Lambda starts the runtime using your script.
Lambda sends to your script the path to the interpreter and all of the original arguments for the
standard runtime startup. Your script can extend or transform the startup behavior of the program.
For example, the script can inject and alter arguments, set environment variables, or capture
metrics, errors, and other diagnostic information.

You specify the script by setting the value of the AWS_LAMBDA_EXEC_WRAPPER environment
variable as the file system path of an executable binary or script.

Example: Create and use a wrapper script with Python 3.8

In the following example, you create a wrapper script to start the Python interpreter with the -
X importtime option. When you run the function, Lambda generates a log entry to show the
duration of the import time for each import.

To create and use a wrapper script with Python 3.8

1. To create the wrapper script, paste the following code into a file named
importtime_wrapper:

#!/bin/bash

# the path to the interpreter and all of the originally intended arguments
aIgS:( ||$@||)

# the extra options to pass to the interpreter
extra_args=("-X" "importtime")

# insert the extra options
args=("${args[@]:0:$#-13}" "${extra_args[@]}" "${args[e]l: -1}")

# start the runtime with the extra options

exec "${args[e]l}"

2. To give the script executable permissions, enter chmod +x importtime_wrapper from the
command line.

Wrapper scripts 102



AWS Lambda Developer Guide

3. Deploy the script as a Lambda layer.

4. Create a function using the Lambda console.

a. Open the Lambda console.

b. Choose Create function.

¢. Under Basic information, for Function name, enter wrapper-test-function.
d. For Runtime, choose Python 3.8.

e. Choose Create function.

5. Add the layer to your function.

a. Choose your function, and then choose Code if it is not already selected.
b. Choose Add a layer.

c. Under Choose a layer, choose the Name and Version of the compatible layer that you
created earlier.

d. Choose Add.

6. Add the code and the environment variable to your function.

a. Inthe function code editor, paste the following function code:

import json

def lambda_handler(event, context):
# TODO implement
return {
'statusCode': 200,
'body': json.dumps('Hello from Lambda!')

b. Choose Save.

c¢. Under Environment variables, choose Edit.

d. Choose Add environment variable.

e. For Key, enter AWS_LAMBDA_EXEC_WRAPPER.
f.  For Value, enter /opt/importtime_wrapper.

g. Choose Save.

WrappdrQchitk the function, choose Test. 103


https://console.aws.amazon.com/lambda/home

AWS Lambda Developer Guide

Because your wrapper script started the Python interpreter with the -X importtime option,
the logs show the time required for each import. For example:

2020-06-30T18:48:46.780+01:00 import time: 213 | 213 | simplejson
2020-06-30T18:48:46.780+01:00 import time: 50 | 263 | simplejson.raw_json

Wrapper scripts 104



AWS Lambda Developer Guide

Lambda runtime API

AWS Lambda provides an HTTP API for custom runtimes to receive invocation events from Lambda

and send response data back within the Lambda execution environment.

|O} . O| Runtime API '_"_‘._‘ {’_, Runtime + Function i:_}

(0 O] Extensions API |
@ @ @ Telemetry API -

API Endpoints Processes

_____________________________________________________________________________

Lambda Service Execution Environment

The OpenAPI specification for the runtime API version 2018-06-01 is available in runtime-api.zip

To create an API request URL, runtimes get the APl endpoint from the
AWS_LAMBDA_RUNTIME_API environment variable, add the API version, and add the desired
resource path.

Example Request

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next"

APl methods

« Next invocation

« Invocation response

« Initialization error

e Invocation error

Next invocation

Path - /runtime/invocation/next

Method - GET

Runtime API 105


samples/runtime-api.zip

AWS Lambda Developer Guide

The runtime sends this message to Lambda to request an invocation event. The response body
contains the payload from the invocation, which is a JSON document that contains event data from
the function trigger. The response headers contain additional data about the invocation.

Response headers

Lambda-Runtime-Aws-Request-Id - The request ID, which identifies the request that
triggered the function invocation.

For example, 8476a536-e9f4-11e8-9739-2dfe598c3fcd.

« Lambda-Runtime-Deadline-Ms - The date that the function times out in Unix time
milliseconds.

For example, 1542409706888.

e Lambda-Runtime-Invoked-Function-Arn - The ARN of the Lambda function, version, or
alias that's specified in the invocation.

For example, arn:aws:lambda:us-east-2:123456789012:function:custom-runtime.

e Lambda-Runtime-Trace-Id - The AWS X-Ray tracing header.

For example, Root=1-5bef4de7-
ad49b0e87f6ef6c87fc2e700; Parent=9a9197af755a6419; Sampled=1.

e« Lambda-Runtime-Client-Context — For invocations from the AWS Mobile SDK, data about
the client application and device.

e Lambda-Runtime-Cognito-Identity - For invocations from the AWS Mobile SDK, data
about the Amazon Cognito identity provider.

Do not set a timeout on the GET request as the response may be delayed. Between when Lambda
bootstraps the runtime and when the runtime has an event to return, the runtime process may be
frozen for several seconds.

The request ID tracks the invocation within Lambda. Use it to specify the invocation when you send
the response.

The tracing header contains the trace ID, parent ID, and sampling decision. If the request is
sampled, the request was sampled by Lambda or an upstream service. The runtime should set the
_X_AMZN_TRACE_ID with the value of the header. The X-Ray SDK reads this to get the IDs and
determine whether to trace the request.

Next invocation 106


https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader

AWS Lambda Developer Guide

Invocation response

Path - /runtime/invocation/AwsRequestId/response
Method - POST

After the function has run to completion, the runtime sends an invocation response to Lambda. For
synchronous invocations, Lambda sends the response to the client.

Example success request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "SUCCESS"

Initialization error

If the function returns an error or the runtime encounters an error during initialization, the runtime
uses this method to report the error to Lambda.

Path - /runtime/init/error
Method - POST
Headers

Lambda-Runtime-Function-Error-Type - Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

Runtime.NoSuchHandler

Runtime.APIKeyNotFound

Runtime.Configlnvalid

Runtime.UnknownReason

Body parameters

Invocation response 107



AWS Lambda Developer Guide

ErrorRequest - Information about the error. Required: no.

This field is a JSON object with the following structure:

{
errorMessage: string (text description of the error),
errorType: string,
stackTrace: array of strings

}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Example Function error

{
"errorMessage" : "Error parsing event data.",
"errorType" : "InvalidEventDataException",
"stackTrace": [ ]

}

Response body parameters

« StatusResponse - String. Status information, sent with 202 response codes.

« ErrorResponse — Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

o 202 - Accepted
e 403 - Forbidden

« 500 - Container error. Non-recoverable state. Runtime should exit promptly.

Example initialization error request

ERROR="{\"errorMessage\" : \"Failed to load function.\", \"errorType\" :
\"InvalidFunctionException\"}"

Initialization error 108



AWS Lambda Developer Guide

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/init/error" -d "$ERROR" --
header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error

If the function returns an error or the runtime encounters an error, the runtime uses this method to
report the error to Lambda.

Path - /runtime/invocation/AwsRequestId/errox
Method - POST
Headers

Lambda-Runtime-Function-Error-Type - Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

Runtime.NoSuchHandler

Runtime.APIKeyNotFound

Runtime.Configlnvalid

Runtime.UnknownReason

Body parameters
ErrorRequest - Information about the error. Required: no.

This field is a JSON object with the following structure:

{
errorMessage: string (text description of the error),
errorType: string,
stackTrace: array of strings

}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Invocation error 109



AWS Lambda Developer Guide

Example Function error

{
"errorMessage" : "Error parsing event data.",
"errorType" : "InvalidEventDataException",
"stackTrace": [ ]

}

Response body parameters

« StatusResponse - String. Status information, sent with 202 response codes.

« ErrorResponse — Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

202 - Accepted
400 - Bad Request
403 - Forbidden

500 - Container error. Non-recoverable state. Runtime should exit promptly.

Example error request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9

ERROR="{\"errorMessage\" : \"Error parsing event data.\", \"errorType\"
\"InvalidEventDataException\"}"

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/error"
-d "$ERROR" --header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error 110



AWS Lambda Developer Guide

OS-only runtimes for AWS Lambda

Lambda provides managed runtimes for Java, Python, Node.js, .NET, and Ruby. To create Lambda
functions in a programming language that is not available as a managed runtime, use an OS-only
runtime (the provided runtime family). There are three primary use cases for OS-only runtimes:

« Native ahead-of-time (AOT) compilation: Languages such as Go, Rust, and C++ compile natively
to an executable binary, which doesn't require a dedicated language runtime. These languages
only need an OS environment in which the compiled binary can run. You can also use Lambda
OS-only runtimes to deploy binaries compiled with .NET Native AOT and Java GraalVM Native.

You must include a runtime interface client in your binary. The runtime interface client
calls the Lambda runtime API to retrieve function invocations and then calls your function
handler. Lambda provides runtime interface clients for Go, .NET Native AOT, C++, and Rust
(experimental).

You must compile your binary for a Linux environment and for the same instruction set
architecture that you plan to use for the function (x86_64 or armé64).

 Third-party runtimes: You can run Lambda functions using off-the-shelf runtimes such as Bref
for PHP or the Swift AWS Lambda Runtime for Swift.

« Custom runtimes: You can build your own runtime for a language or language version that
Lambda doesn't provide a managed runtime for, such as Node.js 19. For more information, see
Building a custom runtime for AWS Lambda. This is the least common use case for OS-only
runtimes.

Lambda supports the following OS-only runtimes:

OS-only
Name Identifier Operating Deprecation  Block Block
system date function function
create update
OS-only provided. Amazon
Runtime al2023 Linux 2023
OS-only provided. Amazon
Runtime al2 Linux 2

OS-only runtimes 111


https://github.com/awslabs/aws-lambda-cpp
https://bref.sh/docs/news/01-bref-1.0.html#amazon-linux-2
https://github.com/swift-server/swift-aws-lambda-runtime#swift-aws-lambda-runtime

AWS Lambda Developer Guide

The Amazon Linux 2023 (provided.al2@23) runtime provides several advantages over Amazon
Linux 2, including a smaller deployment footprint and updated versions of libraries such as glibc.

The provided.al2023 runtime uses dnf as the package manager instead of yum, which is the
default package manager in Amazon Linux 2. For more information about the differences between

provided.al2023 and provided.al2, see Introducing the Amazon Linux 2023 runtime for AWS
Lambda on the AWS Compute Blog.

OS-only runtimes 112


https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

AWS Lambda Developer Guide

Building a custom runtime for AWS Lambda

You can implement an AWS Lambda runtime in any programming language. A runtime is a
program that runs a Lambda function's handler method when the function is invoked. You can
include the runtime in your function's deployment package or distribute it in a layer. When you
create the Lambda function, choose an OS-only runtime (the provided runtime family).

(® Note

Creating a custom runtime is an advanced use case. If you're looking for information about
compiling to a native binary or using a third-party off-the-shelf runtime, see OS-only
runtimes for AWS Lambda.

For a walkthrough of the custom runtime deployment process, see Tutorial: Building a custom
runtime. You can also explore a custom runtime implemented in C++ at awslabs/aws-lambda-cpp
on GitHub.

Topics

« Requirements

« Implementing response streaming in a custom runtime

Requirements

Custom runtimes must complete certain initialization and processing tasks. A runtime runs the
function's setup code, reads the handler name from an environment variable, and reads invocation
events from the Lambda runtime API. The runtime passes the event data to the function handler,
and posts the response from the handler back to Lambda.

Intitialization tasks

The initialization tasks run once per instance of the function to prepare the environment to handle

invocations.

» Retrieve settings — Read environment variables to get details about the function and
environment.

Building a custom runtime 113


https://github.com/awslabs/aws-lambda-cpp

AWS Lambda Developer Guide

e _HANDLER - The location to the handler, from the function's configuration. The standard
formatis file.method, where file is the name of the file without an extension, and method
is the name of a method or function that's defined in the file.

« LAMBDA_TASK_ROOT - The directory that contains the function code.
o AWS_LAMBDA_RUNTIME_API - The host and port of the runtime API.

For a full list of available variables, see Defined runtime environment variables.

« Initialize the function — Load the handler file and run any global or static code that it contains.
Functions should create static resources like SDK clients and database connections once, and
reuse them for multiple invocations.

« Handle errors - If an error occurs, call the initialization error APl and exit immediately.

Initialization counts towards billed execution time and timeout. When an execution triggers the
initialization of a new instance of your function, you can see the initialization time in the logs and
AWS X-Ray trace.

Example log

REPORT RequestId: f8acl12@8... Init Duration: 48.26 ms Duration: 237.17 ms Billed
Duration: 300 ms Memory Size: 128 MB  Max Memory Used: 26 MB

Processing tasks

While it runs, a runtime uses the Lambda runtime interface to manage incoming events and report

errors. After completing initialization tasks, the runtime processes incoming events in a loop. In
your runtime code, perform the following steps in order.

» Get an event - Call the next invocation API to get the next event. The response body contains
the event data. Response headers contain the request ID and other information.

« Propagate the tracing header - Get the X-Ray tracing header from the Lambda-Runtime-
Trace-1Id header in the API response. Set the _X_AMZN_TRACE_ID environment variable locally
with the same value. The X-Ray SDK uses this value to connect trace data between services.

» Create a context object — Create an object with context information from environment variables
and headers in the API response.

« Invoke the function handler - Pass the event and context object to the handler.

« Handle the response - Call the invocation response API to post the response from the handler.

Requirements 114



AWS Lambda Developer Guide

« Handle errors - If an error occurs, call the invocation error API.

» Cleanup - Release unused resources, send data to other services, or perform additional tasks
before getting the next event.

Entrypoint

A custom runtime's entry point is an executable file named bootstrap. The bootstrap file

can be the runtime, or it can invoke another file that creates the runtime. If the root of your
deployment package doesn't contain a file named bootstrap, Lambda looks for the file in the
function’'s layers. If the bootstrap file doesn't exist or isn't executable, your function returns a
Runtime.InvalidEntrypoint error upon invocation.

Here's an example bootstrap file that uses a bundled version of Node.js to run a JavaScript
runtime in a separate file named runtime. js.

Example bootstrap

#!/bin/sh
cd $LAMBDA_TASK_ROOT
./node-v11.1.0-1inux-x64/bin/node runtime.js

Implementing response streaming in a custom runtime

For response streaming functions, the response and error endpoints have slightly modified
behavior that lets the runtime stream partial responses to the client and return payloads in chunks.
For more information about the specific behavior, see the following:

e /runtime/invocation/AwsRequestId/response — Propagates the Content-Type header
from the runtime to send to the client. Lambda returns the response payload in chunks via
HTTP/1.1 chunked transfer encoding. The response stream can be a maximum size of 20 MiB. To
stream the response to Lambda, the runtime must:

Set the Lambda-Runtime-Function-Response-Mode HTTP header to streaming.

Set the Transfer-Encoding header to chunked.

Write the response conforming to the HTTP/1.1 chunked transfer encoding specification.

Close the underlying connection after it has successfully written the response.

Implementing response streaming in a custom runtime 115



AWS Lambda Developer Guide

e /runtime/invocation/AwsRequestId/error - The runtime can use this endpoint to report
function or runtime errors to Lambda, which also accepts the Transfer-Encoding header. This
endpoint can only be called before the runtime begins sending an invocation response.

» Report midstream errors using error trailers in /runtime/invocation/AwsRequestId/
response — To report errors that occur after the runtime starts writing the invocation response,
the runtime can optionally attach HTTP trailing headers named Lambda-Runtime-Function-
Error-Type and Lambda-Runtime-Function-Error-Body. Lambda treats this as a
successful response and forwards the error metadata that the runtime provides to the client.

(® Note

To attach trailing headers, the runtime must set the Trailer header value at the
beginning of the HTTP request. This is a requirement of the HTTP/1.1 chunked transfer
encoding specification.

e Lambda-Runtime-Function-Error-Type - The error type that the runtime encountered.
This header consists of a string value. Lambda accepts any string, but we recommend a format
of <category.reason>. For example, Runtime.APIKeyNotFound.

e Lambda-Runtime-Function-Error-Body - Base64-encoded information about the error.

Implementing response streaming in a custom runtime 116



AWS Lambda Developer Guide

Tutorial: Building a custom runtime

In this tutorial, you create a Lambda function with a custom runtime. You start by including the
runtime in the function's deployment package. Then you migrate it to a layer that you manage
independently from the function. Finally, you share the runtime layer with the world by updating
its resource-based permissions policy.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the AWS Command Line Interface (AWS CLI) version 2.

Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.54@.amzn2.x86_64 exe/x86_64.amzn.?2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

(® Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example

CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

You need an IAM role to create a Lambda function. The role needs permission to send logs to
CloudWatch Logs and access the AWS services that your function uses. If you don't have a role for
function development, create one now.

Custom runtime tutorial 117


https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

To create an execution role

1. Open the roles page in the IAM console.
2. Choose Create role.

3. Create a role with the following properties.

» Trusted entity - Lambda.
« Permissions - AWSLambdaBasicExecutionRole.

 Role name - lambda-role.

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to
write logs to CloudWatch Logs.

Create a function

Create a Lambda function with a custom runtime. This example includes two files: a runtime
bootstrap file and a function handler. Both are implemented in Bash.

1. Create a directory for the project, and then switch to that directory.

mkdir runtime-tutorial
cd runtime-tutorial

2. Create a new file called bootstrap. This is the custom runtime.

Example bootstrap

#!/bin/sh
set -euo pipefail

# Initialization - load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

# Processing
while true
do
HEADERS="$(mktemp)"
# Get an event. The HTTP request will block until one is received

Create a function 118


https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

# Extract request ID by scraping response headers received above
REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
'"[:space:]"' | cut -d: -f2)

# Run the handler function from the script
RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

# Send the response

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "$RESPONSE"
done

The runtime loads a function script from the deployment package. It uses two variables
to locate the script. LAMBDA_TASK_ROOT tells it where the package was extracted, and
_HANDLER includes the name of the script.

After the runtime loads the function script, it uses the runtime API to retrieve an invocation
event from Lambda, passes the event to the handler, and posts the response back to Lambda.
To get the request ID, the runtime saves the headers from the API response to a temporary file,
and reads the Lambda-Runtime-Aws-Request-Id header from the file.

® Note

Runtimes have additional responsibilities, including error handling, and providing
context information to the handler. For details, see Requirements.

3. Create a script for the function. The following example script defines a handler function that
takes event data, logs it to stderr, and returns it.

Example function.sh

function handler () {
EVENT_DATA=$1
echo "$EVENT_DATA" 1>&2;
RESPONSE="Echoing request: '$EVENT_DATA'"

echo $RESPONSE

Create a function 119



AWS Lambda Developer Guide

}

The runtime-tutorial directory should now look like this:

runtime-tutorial
# bootstrap
# function.sh

4. Make the files executable and add them to a .zip file archive. This is the deployment package.

chmod 755 function.sh bootstrap
zip function.zip function.sh bootstrap

5. Create a function named bash-runtime. For --role, enter the ARN of your Lambda
execution role.

aws lambda create-function --function-name bash-runtime \

--zip-file fileb://function.zip --handler function.handler --runtime
provided.al2023 \

--role arn:aws:iam::123456789012:role/lambda-role

6. Invoke the function.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

You should see a response like this:

"StatusCode": 200,
"ExecutedVersion": "$LATEST"

7. Verify the response.

Create a function 120


https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Create a layer

To separate the runtime code from the function code, create a layer that only contains the runtime.
Layers let you develop your function's dependencies independently, and can reduce storage usage
when you use the same layer with multiple functions. For more information, see Working with
Lambda layers.

1. Create a .zip file that contains the bootstrap file.

zip runtime.zip bootstrap

2. Create a layer with the publish-layer-version command.

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

This creates the first version of the layer.

Update the function

To use the runtime layer in the function, configure the function to use the layer, and remove the
runtime code from the function.

1. Update the function configuration to pull in the layer.

aws lambda update-function-configuration --function-name bash-runtime \
--layers arn:aws:lambda:us-east-1:123456789012:1ayex:bash-runtime:1

Create a layer 121


https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html?highlight=nodejs16%20x

AWS Lambda Developer Guide

This adds the runtime to the function in the /opt directory. To ensure that Lambda uses the
runtime in the layer, you must remove the boostrap from the function's deployment package,
as shown in the next two steps.

2. Create a .zip file that contains the function code.
zip function-only.zip function.sh

3. Update the function code to only include the handler script.

aws lambda update-function-code --function-name bash-runtime --zip-file fileb://
function-only.zip

4. Invoke the function to confirm that it works with the runtime layer.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

You should see a response like this:

"StatusCode": 200,
"ExecutedVersion": "$LATEST"

5. Verify the response.

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Update the function 122


https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

Update the runtime

1. To log information about the execution environment, update the runtime script to output
environment variables.

Example bootstrap

#!/bin/sh
set -euo pipefail

# Configure runtime to output environment variables
echo "## Environment variables:"
env

# Load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -fl1).sh"

# Processing
while true
do
HEADERS="$(mktemp)"
# Get an event. The HTTP request will block until one is received
EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

# Extract request ID by scraping response headers received above
REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
'"[:space:]' | cut -d: -f2)

# Run the handler function from the script
RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

# Send the response
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "$RESPONSE"

done

2. Create a .zip file that contains the new version of the bootstrap file.

zip runtime.zip bootstrap

3. Create a new version of the bash-runtime layer.

Update the runtime 123



AWS Lambda Developer Guide

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

4. Configure the function to use the new version of the layer.

aws lambda update-function-configuration --function-name bash-runtime \
--layers arn:aws:lambda:us-east-1:123456789012:1ayex:bash-runtime:2

Share the layer

To grant layer-usage permission to another account, add a statement to the layer version's
permissions policy using the add-layer-version-permission command. In each statement, you can
grant permission to a single account, all accounts, or an organization.

The following example grants account 111122223333 access to version 2 of the bash-runtime
layer.

aws lambda add-layer-version-permission --layer-name bash-runtime --statement-id
xaccount \

--action lambda:GetLayerVersion --principal 111122223333 --version-number 2 --output
text

You should see output similar to the following:

e210ffdc-e901-43b0-824b-5fcdddd26d16 {"Sid":"xaccount", "Effect":"Allow", "Principal":
{"AWS" :"arn:aws:iam::111122223333:ro0t"}, "Action":"lambda:GetLayerVersion", "Resource":"arn:aws:
east-1:123456789012:1ayer:bash-runtime:2"}

Permissions apply only to a single layer version. Repeat the process each time that you create a
new layer version.

Clean up

Delete each version of the layer.

aws lambda delete-layer-version --layer-name bash-runtime --version-number 1
aws lambda delete-layer-version --layer-name bash-runtime --version-number 2

Share the layer 124


https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-layer-version-permission.html

AWS Lambda Developer Guide

Because the function holds a reference to version 2 of the layer, it still exists in Lambda. The
function continues to work, but functions can no longer be configured to use the deleted version.

If you modify the list of layers on the function, you must specify a new version or omit the deleted
layer.

Delete the function with the delete-function command.

aws lambda delete-function --function-name bash-runtime

Clean up 125


https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function.html

AWS Lambda Developer Guide

Using AVX2 vectorization in Lambda

Advanced Vector Extensions 2 (AVX2) is a vectorization extension to the Intel x86 instruction set
that can perform single instruction multiple data (SIMD) instructions over vectors of 256 bits.
For vectorizable algorithms with highly parallelizable operation, using AVX2 can enhance CPU
performance, resulting in lower latencies and higher throughput. Use the AVX2 instruction set
for compute-intensive workloads such as machine learning inferencing, multimedia processing,

scientific simulations, and financial modeling applications.

(@ Note

Lambda arm64 uses NEON SIMD architecture and does not support the x86 AVX2
extensions.

To use AVX2 with your Lambda function, make sure that your function code is accessing AVX2-
optimized code. For some languages, you can install the AVX2-supported version of libraries

and packages. For other languages, you can recompile your code and dependencies with the
appropriate compiler flags set (if the compiler supports auto-vectorization). You can also compile
your code with third-party libraries that use AVX2 to optimize math operations. For example, Intel
Math Kernel Library (Intel MKL), OpenBLAS (Basic Linear Algebra Subprograms), and AMD BLAS-
like Library Instantiation Software (BLIS). Auto-vectorized languages, such as Java, automatically
use AVX2 for computations.

You can create new Lambda workloads or move existing AVX2-enabled workloads to Lambda at no
additional cost.

For more information about AVX2, see Advanced Vector Extensions 2 in Wikipedia.

Compiling from source

If your Lambda function uses a C or C++ library to perform compute-intensive vectorizable
operations, you can set the appropriate compiler flags and recompile the function code. Then, the
compiler automatically vectorizes your code.

For the gcc or clang compiler, add -march=haswell to the command or set -mavx2 as a
command option.

AVX2 vectorization 126


https://en.wikipedia.org/wiki/Massively_parallel
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#Advanced_Vector_Extensions_2

AWS Lambda Developer Guide

~ gcc -march=haswell main.c
or
~ gcc -mavx2 main.c

~ clang -march=haswell main.c
or
~ clang -mavx2 main.c

To use a specific library, follow instructions in the library's documentation to compile and build the
library. For example, to build TensorFlow from source, you can follow the installation instructions

on the TensorFlow website. Make sure to use the -march=haswell compile option.

Enabling AVX2 for Intel MKL

Intel MKL is a library of optimized math operations that implicitly use AVX2 instructions when the
compute platform supports them. Frameworks such as PyTorch build with Intel MKL by default, so
you don't need to enable AVX2.

Some libraries, such as TensorFlow, provide options in their build process to specify Intel MKL
optimization. For example, with TensorFlow, use the --config=mkl option.

You can also build popular scientific Python libraries, such as SciPy and NumPy, with Intel MKL. For
instructions on building these libraries with Intel MKL, see Numpy/Scipy with Intel MKL and Intel
Compilers on the Intel website.

For more information about Intel MKL and similar libraries, see Math Kernel Library in Wikipedia,
the OpenBLAS website, and the AMD BLIS repository on GitHub.

AVX2 support in other languages

If you don't use C or C++ libraries and don't build with Intel MKL, you can still get some AVX2
performance improvement for your applications. Note that the actual improvement depends on
the compiler or interpreter's ability to utilize the AVX2 capabilities on your code.

Python

Python users generally use SciPy and NumPy libraries for compute-intensive workloads. You can
compile these libraries to enable AVX2, or you can use the Intel MKL-enabled versions of the
libraries.

Enabling AVX2 for Intel MKL 127


https://www.tensorflow.org/install/source
https://software.intel.com/content/www/us/en/develop/articles/getting-started-with-intel-optimization-of-pytorch.html
https://software.intel.com/content/www/us/en/develop/articles/numpyscipy-with-intel-mkl.html
https://software.intel.com/content/www/us/en/develop/articles/numpyscipy-with-intel-mkl.html
https://en.wikipedia.org/wiki/Math_Kernel_Library
https://www.openblas.net/
https://github.com/amd/blis

AWS Lambda Developer Guide

Node

For compute-intensive workloads, use AVX2-enabled or Intel MKL-enabled versions of the
libraries that you need.

Java

Java's JIT compiler can auto-vectorize your code to run with AVX2 instructions. For information
about detecting vectorized code, see the Code vectorization in the JVM presentation on the
OpenlJDK website.

Go

The standard Go compiler doesn't currently support auto-vectorization, but you can use gccgo,
the GCC compiler for Go. Set the -mavx2 option:

gcc -0 avx2 -mavx2 -Wall main.c

Intrinsics

It's possible to use intrinsic functions in many languages to manually vectorize your code to use

AVX2. However, we don't recommend this approach. Manually writing vectorized code takes
significant effort. Also, debugging and maintaining such code is more difficult than using code
that depends on auto-vectorization.

AVX2 support in other languages 128


https://cr.openjdk.java.net/~vlivanov/talks/2019_CodeOne_MTE_Vectors.pdf
https://golang.org/doc/install/gccgo
https://en.wikipedia.org/wiki/Intrinsic_function

AWS Lambda Developer Guide

Configuring AWS Lambda functions

Learn how to configure the core capabilities and options for your Lambda function using the
Lambda API or console. These configurations apply to a function deployed as a container image
and for a function deployed as a .zip file archive.

Configuring function options

You can find an overview of how to configure your Lambda function using the console. Includes
function memory, timeout, ephemeral storage, advanced logging, triggers, and relational
database connections.

Environment variables

You can make your function code portable and keep secrets out of your code by storing them in
your function's configuration by using environment variables.

Creating layers

You create a layer to manage your function's dependencies independently and keep your
development package small.

Outbound networking

You can use your Lambda function with AWS resources in an Amazon VPC. Connecting your
function to a VPC lets you access resources in a private subnet such as relational databases and
caches.

Inbound networking

You can use an interface VPC endpoint to invoke your Lambda functions without crossing the
public internet.

File system

You can use your Lambda function to mount a Amazon EFS to a local directory. A file system
allows your function code to access and modify shared resources safely and at high concurrency.

Aliases

You can configure your clients to invoke a specific Lambda function version by using an alias,
instead of updating the client.

129



AWS Lambda Developer Guide

Versions

By publishing a version of your function, you can store your code and configuration as a
separate resource that cannot be changed.

Response streaming

You can configure your Lambda function URLs to stream response payloads back to clients.
Response streaming can benefit latency sensitive applications by improving time to first byte
(TTFB) performance. This is because you can send partial responses back to the client as they

become available. Additionally, you can use response streaming to build functions that return
larger payloads.

130



AWS Lambda Developer Guide

Configuring Lambda function options

After you create a function, you can configure additional capabilities for the function, such as
triggers, network access, and file system access. You can also adjust resources associated with the
function, such as memory and concurrency. These configurations apply to functions defined as .zip
file archives and to functions defined as container images.

You can also create and edit test events to test your function using the console.

For function configuration best practices, see Function configuration.

Sections

« Function versions

« Using the function overview

« Configuring functions (console)

« Configuring function memory (console)

» Accepting function memory recommendations (console)

« Configuring function timeout (console)

« Configuring ephemeral storage (console)

« Configuring triggers (console)

» Configuring Lambda advanced logging options

« Connecting RDS databases (console)

Function versions

A function has an unpublished version, and can have published versions and aliases. By default, the
console displays configuration information for the unpublished version of the function. You change
the unpublished version when you update your function's code and configuration.

A published version is a snapshot of your function code and configuration that can't be changed
(except for a few configuration items relevant to a function version, such as provisioned
concurrency).

Configuring function options 131



AWS Lambda Developer Guide

Using the function overview

The Function overview shows a visualization of your function and its upstream and downstream
resources. You can use it to jump to trigger and destination configuration. You can use it to jump to
layer configuration for functions defined as .zip file archives.

¥ Function overview Info

h}\.n my-function

@ Layers (0)

-+ Add trigger -+ Add destination

Configuring functions (console)

For the following function configurations, you can change the settings only for the unpublished
version of a function. In the console, the function Configuration tab provides the following
sections:

« General configuration — Configure memory or opt in to the AWS Compute Optimizer. You can

also configure function timeout and the execution role.
« Permissions — Configure the execution role and other permissions.

« Environment variables — Key-value pairs that Lambda sets in the execution environment. To
extend your function's configuration outside of code, use environment variables.

« Tags — Key-value pairs that Lambda attaches to your function resource. Use tags to organize
Lambda functions into groups for cost reporting and filtering in the Lambda console.

Tags apply to the entire function, including all versions and aliases.

« Virtual private cloud (VPC) - If your function needs network access to resources that are not
available over the internet, configure it to connect to a virtual private cloud (VPC).

« Monitoring and operations tools — configure CloudWatch log groups and other monitoring
tools.

Using the function overview 132



AWS Lambda Developer Guide

Concurrency — Reserve concurrency for a function to set the maximum number of simultaneous

executions for a function. Provision concurrency to ensure that a function can scale without
fluctuations in latency. Reserved concurrency applies to the entire function, including all versions
and aliases.

Function URL - Configure a function URL to add a unique HTTP(S) endpoint to your Lambda
function. You can configure a function URL on the $LATEST unpublished function version, or on
any function alias.

You can configure the following options on a function, a function version, or an alias.

Triggers — Configure triggers.
Destinations — Configure destinations for asynchronous invocations.

Asynchronous invocation — Configure error handling behavior to reduce the number of retries

that Lambda attempts, or the amount of time that unprocessed events stay queued before
Lambda discards them. Configure a dead-letter queue to retain discarded events.

Code signing — To use Code signing with your function, configure the function to include a code-
signing configuration.

File systems — Connect your function to a file system.

State machines - Use a state machine to orchestrate and apply error handling to your function.

The console provides separate tabs to configure aliases and versions:

Aliases — An alias is a named resource that maps to a function version. You can change an alias to
map to a different function version.

Versions — Lambda assigns a new version number each time you publish your function. For more
information about managing versions, see Lambda function versions.

You can configure the following items for a published function version:

Triggers

Destinations

Provisioned concurrency
Asynchronous invocation

Database connections and proxies

Configuring functions (console) 133



AWS Lambda Developer Guide

Configuring function memory (console)

Lambda allocates CPU power in proportion to the amount of memory configured. Memory is the
amount of memory available to your Lambda function at runtime. You can increase or decrease the
memory and CPU power allocated to your function using the Memory (MB) setting. To configure
the memory for your function, set a value between 128 MB and 10,240 MB in 1-MB increments. At
1,769 MB, a function has the equivalent of one vCPU (one vCPU-second of credits per second).

You can configure the memory of your function in the Lambda console.

Accepting function memory recommendations (console)

If you have administrator permissions in AWS Identity and Access Management (IAM), you can opt
in to receive Lambda function memory setting recommendations from AWS Compute Optimizer.
For instructions on opting in to memory recommendations for your account or organization, see
Opting in your account in the AWS Compute Optimizer User Guide.

® Note

Compute Optimizer supports only functions that use x86_64 architecture.

When you've opted in and your Lambda function meets Compute Optimizer requirements, you
can view and accept function memory recommendations from Compute Optimizer in the Lambda
console in General configuration.

Configuring function timeout (console)

Lambda runs your code for a set amount of time before timing out. Timeout is the maximum
amount of time in seconds that a Lambda function can run. The default value for this setting is 3
seconds, but you can adjust this in increments of 1 second up to a maximum value of 15 minutes.

Configuring ephemeral storage (console)

By default, Lambda allocates 512 MB for a function’s /tmp directory. You can increase or decrease
this amount using the Ephemeral storage (MB) setting. To configure the size of a function's /tmp
directory, set a whole number value between 512 MB and 10,240 MB, in 1-MB increments.

Configuring function memory (console) 134


https://docs.aws.amazon.com/compute-optimizer/latest/ug/getting-started.html#account-opt-in
https://docs.aws.amazon.com/compute-optimizer/latest/ug/requirements.html#requirements-lambda-functions

AWS Lambda Developer Guide

® Note

Configuring ephemeral storage past the default 512 MB allocated incurs a cost. For more
information, see Lambda pricing.

Configuring triggers (console)

You can configure other AWS services to trigger your function each time a specified event occurs.
For details about how services trigger Lambda functions, see Using AWS Lambda with other

services.

Configuring Lambda advanced logging options

To give you more control over how your functions’ logs are captured, processed, and consumed,
Lambda offers the following logging configuration options:

» Log format - select between plain text and structured JSON format for your function'’s logs

» Log level - for JSON structured logs, choose the detail level of the logs Lambda sends to
CloudWatch, such as ERROR, DEBUG, or INFO

» Log group - choose the CloudWatch log group your function sends logs to

For more information about configuring these options in the Lambda console, see the section
called "Configuring advanced logging controls for your Lambda function”.

Connecting RDS databases (console)

You can connect a Lambda function to an Amazon Relational Database Service (Amazon RDS)
database directly and through an Amazon RDS Proxy. Direct connections are useful in simple
scenarios, and proxies are recommended for production. A database proxy manages a pool of
shared database connections which enables your function to reach high concurrency levels without
exhausting database connections.

To connect Lambda functions and Amazon RDS, see Using AWS Lambda with Amazon RDS

Configuring triggers (console) 135


https://aws.amazon.com/lambda/pricing

AWS Lambda Developer Guide

Using Lambda environment variables

You can use environment variables to adjust your function's behavior without updating code. An
environment variable is a pair of strings that is stored in a function's version-specific configuration.
The Lambda runtime makes environment variables available to your code and sets additional
environment variables that contain information about the function and invocation request.

(® Note

To increase database security, we recommend that you use AWS Secrets Manager instead of
environment variables to store database credentials. For more information, see Using AWS
Lambda with Amazon RDS.

Environment variables are not evaluated before the function invocation. Any value you define is
considered a literal string and not expanded. Perform the variable evaluation in your function code.

Sections

» Configuring environment variables

« Configuring environment variables with the API

« Example scenario for environment variables

+ Retrieve environment variables

« Defined runtime environment variables

« Securing environment variables

« Sample code and templates

Configuring environment variables

You define environment variables on the unpublished version of your function. When you publish
a version, the environment variables are locked for that version along with other version-specific
configuration.

You create an environment variable for your function by defining a key and a value. Your function
uses the name of the key to retrieve the value of the environment variable.

Environment variables 136



AWS Lambda Developer Guide

To set environment variables in the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration, then choose Environment variables.
4. Under Environment variables, choose Edit.

5. Choose Add environment variable.

6. Enter a key and value.

Requirements

» Keys start with a letter and are at least two characters.
« Keys only contain letters, numbers, and the underscore character (_).

» Keys aren't reserved by Lambda.

« The total size of all environment variables doesn't exceed 4 KB.

7. Choose Save.

To generate a list of environment variables in the console code editor

You can generate a list of environment variables in the Lambda code editor. This is a quick way to
reference your environment variables while you code.

1. Choose the Code tab.

2. Choose the Environment Variables tab.

3. Choose Tools, Show Environment Variables.

Environment variables remain encrypted when listed in the console code editor. If you enabled
encryption helpers for encryption in transit, then those settings remain unchanged. For more
information, see Securing environment variables.

The environment variables list is read-only and is available only on the Lambda console. This file
is not included when you download the function's .zip file archive, and you can't add environment
variables by uploading this file.

Configuring environment variables 137


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Configuring environment variables with the API

To manage environment variables with the AWS CLI or AWS SDK, use the following API operations.

» UpdateFunctionConfiguration

» GetFunctionConfiguration

e CreateFunction

The following example sets two environment variables on a function named my-function.

aws lambda update-function-configuration --function-name my-function \
--environment "Variables={BUCKET=my-bucket,KEY=file.txt}"

When you apply environment variables with the update-function-configuration command,
the entire contents of the Variables structure is replaced. To retain existing environment
variables when you add a new one, include all existing values in your request.

To get the current configuration, use the get-function-configuration command.

aws lambda get-function-configuration --function-name my-function

You should see the following output:

"FunctionName": "my-function",
"FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-function",
"Runtime": "nodejs20.x",
"Role": "arn:aws:iam::123456789012:role/lambda-role",
"Environment": {
"Variables": {
"BUCKET": "my-bucket",
"KEY": "file.txt"

+
"RevisionId": "0894d3cl-2a3d-4d48-bf7f-abade99f3cl5",

Configuring environment variables with the API 138


https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

You can pass the revision ID from the output of get-function-configuration as a parameter
to update-function-configuration. This ensures that the values don't change between when
you read the configuration and when you update it.

To configure a function's encryption key, set the KMSKeyARN option.

aws lambda update-function-configuration --function-name my-function \
--kms-key-arn arn:aws:kms:us-east-2:123456789012:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599

Example scenario for environment variables

You can use environment variables to customize function behavior in your test environment and
production environment. For example, you can create two functions with the same code but
different configurations. One function connects to a test database, and the other connects to a
production database. In this situation, you use environment variables to pass the hostname and
other connection details for the database to the function.

The following example shows how to define the database host and database name as environment
variables.

ENVIRONMENT DEVELOPMENT Remove
databaseHost lambdadb Remove
databaseName rdTowwlydynnm5.cuovuayfg083 Remove

If you want your test environment to generate more debug information than the production
environment, you could set an environment variable to configure your test environment to use
more verbose logging or more detailed tracing.

Retrieve environment variables

To retrieve environment variables in your function code, use the standard method for your
programming language.

Example scenario for environment variables 139



AWS Lambda Developer Guide

Node.js

let region = process.env.AWS_REGION

Python

import os
region = os.environ['AWS_REGION']

® Note

In some cases, you may need to use the following format:

region = os.environ.get('AWS_REGION')

Ruby

region = ENV["AWS_REGION"]

Java

String region = System.getenv("AWS_REGION");

Go

var region = os.Getenv("AWS_REGION")
C#

string region = Environment.GetEnvironmentVariable("AWS_REGION");
PowerShell

$region = $env:AWS_REGION

Retrieve environment variables 140



AWS Lambda Developer Guide

Lambda stores environment variables securely by encrypting them at rest. You can configure
Lambda to use a different encryption key, encrypt environment variable values on the client side,

or set environment variables in an AWS CloudFormation template with AWS Secrets Manager.

Defined runtime environment variables

Lambda runtimes set several environment variables during initialization. Most of the environment
variables provide information about the function or runtime. The keys for these environment
variables are reserved and cannot be set in your function configuration.

Reserved environment variables

« _HANDLER - The handler location configured on the function.
o _X_AMZN_TRACE_ID - The X-Ray tracing header. This environment variable changes with each

invocation.

« This environment variable is not defined for OS-only runtimes (the provided runtime family).
You can set _X_AMZN_TRACE_ID for custom runtimes using the Lambda-Runtime-Trace-Id
response header from the Next invocation.

« For Java runtime versions 17 and later, this environment variable is not used. Instead, Lambda
stores tracing information in the com.amazonaws . xray.traceHeader system property.

o AWS_DEFAULT_REGION - The default AWS Region where the Lambda function is executed.

o AWS_REGION - The AWS Region where the Lambda function is executed. If defined, this value
overrides the AWS_DEFAULT_REGION.

« For more information about using the AWS Region environment variables with AWS SDKs, see
AWS Region in the AWS SDKs and Tools Reference Guide.

o AWS_EXECUTION_ENV - The runtime identifier, prefixed by AWS_Lambda_ (for example,
AWS_Lambda_java8). This environment variable is not defined for OS-only runtimes (the

provided runtime family).
e« AWS_LAMBDA_FUNCTION_NAME — The name of the function.

o AWS_LAMBDA_FUNCTION_MEMORY_SIZE - The amount of memory available to the function in
MB.

o AWS_LAMBDA_FUNCTION_VERSION - The version of the function being executed.

o AWS_LAMBDA_INITIALIZATION_TYPE - The initialization type of the function, which is on-
demand, provisioned-concurrency, or snap-start. For information, see Configuring
provisioned concurrency or Improving startup performance with Lambda SnapStart.

Defined runtime environment variables 141


https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html#feature-region-sdk-compat

AWS Lambda Developer Guide

AWS__LAMBDA_LOG_GROUP_NAME, AWS_LAMBDA_LOG_STREAM_NAME - The name of the Amazon
CloudWatch Logs group and stream for the function. The AWS_LAMBDA_LOG_GROUP_NAME and
AWS_LAMBDA_LOG_STREAM_NAME environment variables are not available in Lambda SnapStart
functions.

AWS_ACCESS_KEY, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_SESSION_TOKEN -
The access keys obtained from the function's execution role.

AWS_LAMBDA_RUNTIME_API - (Custom runtime) The host and port of the runtime API.

LAMBDA_TASK_ROOT - The path to your Lambda function code.
LAMBDA_RUNTIME_DIR - The path to runtime libraries.

The following additional environment variables aren't reserved and can be extended in your

function configuration.

Unreserved environment variables

LANG — The locale of the runtime (en_US.UTF-8).
PATH - The execution path (/usr/local/bin:/usxr/bin/:/bin:/opt/bin).

LD_LIBRARY_PATH - The system library path (/var/lang/lib:/1ib64:/usr/1ib64:
$LAMBDA_RUNTIME_DIR:$LAMBDA_RUNTIME_DIR/1ib:$LAMBDA_TASK_ROOT:
$LAMBDA_TASK_ROOT/1ib:/opt/1ib).

NODE_PATH - (Node.js) The Node.js library path (/opt/nodejs/nodel2/node_modules/:/
opt/nodejs/node_modules:$LAMBDA_RUNTIME_DIR/node_modules).

PYTHONPATH - (Python 2.7, 3.6, 3.8) The Python library path ($LAMBDA_RUNTIME_DIR).

GEM_PATH - (Ruby) The Ruby library path ($LAMBDA_TASK_ROOT/vendor/bundle/
ruby/2.5.0:/opt/ruby/gems/2.5.0).

AWS_XRAY_CONTEXT_MISSING - For X-Ray tracing, Lambda sets this to LOG_ERROR to avoid
throwing runtime errors from the X-Ray SDK.

AWS_XRAY_DAEMON_ADDRESS - For X-Ray tracing, the IP address and port of the X-Ray daemon.

AWS_LAMBDA_DOTNET_PREJIT - For the .NET 6 and .NET 7 runtimes, set this variable to
enable or disable .NET specific runtime optimizations. Values include always, never, and
provisioned-concurrency. For more information, see Configuring provisioned concurrency.

TZ - The environment's time zone (UTC). The execution environment uses NTP to synchronize the
system clock.

Defined runtime environment variables 142



AWS Lambda Developer Guide

The sample values shown reflect the latest runtimes. The presence of specific variables or their
values can vary on earlier runtimes.

Securing environment variables

For securing your environment variables, you can use server-side encryption to protect your data at
rest and client-side encryption to protect your data in transit.

® Note

To increase database security, we recommend that you use AWS Secrets Manager instead of
environment variables to store database credentials. For more information, see Using AWS
Lambda with Amazon RDS.

Security at rest

Lambda always provides server-side encryption at rest with an AWS KMS key. By default, Lambda
uses an AWS managed key. If this default behavior suits your workflow, you don't need to set up
anything else. Lambda creates the AWS managed key in your account and manages permissions to
it for you. AWS doesn't charge you to use this key.

If you prefer, you can provide an AWS KMS customer managed key instead. You might do this

to have control over rotation of the KMS key or to meet the requirements of your organization
for managing KMS keys. When you use a customer managed key, only users in your account with
access to the KMS key can view or manage environment variables on the function.

Customer managed keys incur standard AWS KMS charges. For more information, see AWS Key
Management Service pricing.

Security in transit

For additional security, you can enable helpers for encryption in transit, which ensures that your
environment variables are encrypted client-side for protection in transit.

To configure encryption for your environment variables

1. Use the AWS Key Management Service (AWS KMS) to create any customer managed keys for
Lambda to use for server-side and client-side encryption. For more information, see Creating
keys in the AWS Key Management Service Developer Guide.

Securing environment variables 143


https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Lambda Developer Guide

2. Using the Lambda console, navigate to the Edit environment variables page.

a. Open the Functions page of the Lambda console.

b. Choose a function.
c. Choose Configuration, then choose Environment variables from the left navigation bar.
d. Inthe Environment variables section, choose Edit.
e. Expand Encryption configuration.

3. (Optional) Enable console encryption helpers to use client-side encryption to protect your data
in transit.
a. Under Encryption in transit, choose Enable helpers for encryption in transit.

b. For each environment variable that you want to enable console encryption helpers for,
choose Encrypt next to the environment variable.

¢. Under AWS KMS key to encrypt in transit, choose a customer managed key that you
created at the beginning of this procedure.

d. Choose Execution role policy and copy the policy. This policy grants permission to your
function's execution role to decrypt the environment variables.

Save this policy to use in the last step of this procedure.

e. Add code to your function that decrypts the environment variables. To see an example,
choose Decrypt secrets snippet.

4. (Optional) Specify your customer managed key for encryption at rest.

a. Choose Use a customer master key.
b. Choose a customer managed key that you created at the beginning of this procedure.
5. Choose Save.

6. Set up permissions.

If you're using a customer managed key with server-side encryption, grant permissions to
any users or roles that you want to be able to view or manage environment variables on the
function. For more information, see Managing permissions to your server-side encryption KMS

key.

If you're enabling client-side encryption for security in transit, your function needs permission
to call the kms :Decrypt API operation. Add the policy that you saved previously in this
procedure to the function's execution role.

Securing environment variables 144



https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Managing permissions to your server-side encryption KMS key

No AWS KMS permissions are required for your user or the function's execution role to use the
default encryption key. To use a customer managed key, you need permission to use the key.
Lambda uses your permissions to create a grant on the key. This allows Lambda to use it for
encryption.

« kms:ListAliases - To view keys in the Lambda console.

e kms:CreateGrant, kms:Encrypt - To configure a customer managed key on a function.

« kms:Decrypt - To view and manage environment variables that are encrypted with a customer
managed key.

You can get these permissions from your AWS account or from a key's resource-based permissions
policy. ListAliases is provided by the managed policies for Lambda. Key policies grant the

remaining permissions to users in the Key users group.

Users without Decrypt permissions can still manage functions, but they can't view environment
variables or manage them in the Lambda console. To prevent a user from viewing environment
variables, add a statement to the user's permissions that denies access to the default key, a
customer managed key, or all keys.

Example IAM policy - Deny access by key ARN

"Version": "2012-10-17",
"Statement": [
{
"Sid": "VisualEditor@",
"Effect": "Deny",
"Action": [
"kms:Decrypt"
1,
"Resource": "arn:aws:kms:us-east-2:123456789012:key/3bel@e2d-xmpl-4bes-
bc9d-0405a71945cc"

}

Securing environment variables 145



AWS Lambda Developer Guide

Environment variables

@ Lambda was unable to decrypt your environment variables because the KMS access was denied. Please check your KMS
permissions. KMS Exception: AccessDeniedException KMS Message: The ciphertext refers to a customer master key that does
not exist, does not exist in this region, or you are not allowed to access.

For details on managing key permissions, see Key policies in AWS KMS in the AWS Key Management
Service Developer Guide.

Sample code and templates

Sample applications in this guide's GitHub repository demonstrate the use of environment
variables in function code and AWS CloudFormation templates.

Sample applications

« Blank function — Create a basic function that shows the use of logging, environment variables,
AWS X-Ray tracing, layers, unit tests, and the AWS SDK.

« RDS MySQL - Create a VPC and an Amazon Relational Database Service (Amazon RDS) DB
instance in one template, with a password stored in Secrets Manager. In the application
template, import database details from the VPC stack, read the password from Secrets Manager,
and pass all connection configuration to the function in environment variables.

Sample code and templates 146


https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/rds-mysql

AWS Lambda Developer Guide

Connecting outbound networking to resources in a VPC

You can configure a Lambda function to connect to private subnets in a virtual private cloud (VPC)
in your AWS account. Use Amazon Virtual Private Cloud (Amazon VPC) to create a private network
for resources such as databases, cache instances, or internal services. Connect your function to the
VPC to access private resources while the function is running. This section provides a summary

of Lambda VPC connections. For details about VPC networking in Lambda, see the section called

“Private networking"”.

® Tip
To configure your Lambda function to access a VPC and subnet, you can use the Lambda
Console or the API.
Refer to the VpcConfig section in CreateFunction to configure your function. See
Configuring VPC access (console) and Configuring VPC access (API) for detailed steps.

When you connect a function to a VPC, Lambda assigns your function to a Hyperplane ENI

(elastic network interface) for each subnet in your function's VPC configuration. Lambda creates a
Hyperplane ENI the first time a unique subnet and security group combination is defined for a VPC-
enabled function in an account.

While Lambda creates a Hyperplane ENI, you can't perform additional operations that target the
function, such as creating versions or updating the function's code. For new functions, you can't

invoke the function until its state changes from Pending to Active. For existing functions, you
can still invoke an earlier version while the update is in progress. For details about the Hyperplane
ENI lifecycle, see the section called “Lambda Hyperplane ENIs".

Lambda functions can't connect directly to a VPC with dedicated instance tenancy. To connect to

resources in a dedicated VPC, peer it to a second VPC with default tenancy.

Sections

« Managing VPC connections

Execution role and user permissions

Configuring VPC access (console)

Configuring VPC access (API)

Using IAM condition keys for VPC settings

Outbound networking 147


https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-dedicated-vpc/

AWS Lambda Developer Guide

e Internet and service access for VPC-connected functions

« VPC tutorials

« Sample VPC configurations

Managing VPC connections

Multiple functions can share a network interface, if the functions share the same subnet and
security group. Connecting additional functions to the same VPC configuration (subnet and
security group) that has an existing Lambda-managed network interface is much quicker than
creating a new network interface.

If your functions aren't active for a long period of time, Lambda reclaims its network interfaces,
and the functions become Idle. To reactivate an idle function, invoke it. This invocation fails, and
the function enters a Pending state again until a network interface is available.

If you update your function to access a different VPC, it terminates connectivity from the
Hyperplane ENI to the previous VPC. The process to update the connectivity to a new VPC can take
several minutes. During this time, Lambda connects function invocations to the previous VPC. After
the update is complete, new invocations start using the new VPC and the Lambda function is no
longer connected to the older VPC.

For short-lived operations, such as DynamoDB queries, the latency overhead of setting up a TCP
connection might be greater than the operation itself. To ensure connection reuse for short-
lived/infrequently invoked functions, we recommend that you use TCP keep-alive for connections
that were created during your function initialization, to avoid creating new connections for
subsequent invokes. For more information on reusing connections using keep-alive, refer to
Lambda documentation on reusing connections.

Execution role and user permissions

Lambda uses your function's permissions to create and manage network interfaces. To connect to a
VPC, your function's execution role must have the following permissions:

Execution role permissions

» ec2:CreateNetworkinterface

» ec2:DescribeNetworkinterfaces — This action only works if it's allowed on all resources
("Resource": "*").

Managing VPC connections 148


https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/node-reusing-connections.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/node-reusing-connections.html

AWS Lambda Developer Guide

« ec2:DescribeSubnets

» ec2:DeleteNetworkinterface - If you don't specify a resource ID for DeleteNetworkInterface
in the execution role, your function may not be able to access the VPC. Either specify a unique
resource ID, or include all resource IDs, for example, "Resource": "arn:aws:ec2:us-
west-2:123456789012:*/*",

» ec2:AssignPrivatelpAddresses

» ec2:UnassignPrivatelpAddresses

These permissions are included in the AWS managed policy AWSLambdaVPCAccessExecutionRole.
Note that these permissions are required only to create ENIs, not to invoke your VPC function.

In other words, you are still able to invoke your VPC function successfully even if you remove

these permissions from your execution role. To completely disassociate your Lambda function
from the VPC, update the function's VPC configuration settings using the console or the
UpdateFunctionConfiguration API.

When you configure VPC connectivity, Lambda uses your permissions to verify network resources.
To configure a function to connect to a VPC, your user needs the following permissions:

User permissions

« ec2:DescribeSecurityGroups
« ec2:DescribeSubnets

» ec2:DescribeVpcs

Configuring VPC access (console)

If your IAM permissions allow you only to create Lambda functions that connect to your VPC, you

must configure the VPC when you create the function. If your IAM permissions allow you to create
functions that aren't connected to your VPC, you can add the VPC configuration after you create
the function.

To configure a VPC when you create a function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Under Basic information, for Function name, enter a name for your function.

Configuring VPC access (console) 149


https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Expand Advanced settings.
Select Enable VPC, and then choose the VPC that you want the function to access.

(Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

N oo U

Choose subnets and security groups. If you selected Allow IPv6 traffic for dual-stack subnets,
all selected subnets must have an IPv4 CIDR block and an IPv6 CIDR block.

® Note

To access private resources, connect your function to private subnets. If your function
needs internet access, use network address translation (NAT). Connecting a function to
a public subnet doesn't give it internet access or a public IP address.

8. Choose Create function.

To configure a VPC for an existing function

1. Open the Functions page of the Lambda console.

Choose a function.

Choose Configuration and then choose VPC.

Under VPC, choose Edit.

Choose the VPC that you want the function to access.

(Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

N o u B~ W N

Choose subnets and security groups. If you selected Allow IPv6 traffic for dual-stack subnets,
all selected subnets must have an IPv4 CIDR block and an IPv6 CIDR block.

® Note

To access private resources, connect your function to private subnets. If your function
needs internet access, use network address translation (NAT). Connecting a function to
a public subnet doesn't give it internet access or a public IP address.

8. Choose Save.

Configuring VPC access (console) 150


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Configuring VPC access (API)

To connect a Lambda function to a VPC, you can use the following APl operations:

e CreateFunction

» UpdateFunctionConfiguration

To create a function and connect it to a VPC using the AWS Command Line Interface (AWS CLI),
you can use the create-function command with the VpcConfig option. The following example
creates a function with a VPC connection. The function has access to two subnets and one security
group and allows outbound IPv6 traffic.

aws lambda create-function --function-name my-function \
--runtime nodejs20.x --handler index.js --zip-file fileb://function.zip \
--role arn:aws:iam::123456789012:xo0le/lambda-role \
--vpc-config
Ipv6AllowedForDualStack=true,SubnetIds=subnet-071f712345678e7c8, subnet-07fd123456788a036,Secuzx

To connect an existing function to a VPC, use the update-function-configuration command
with the vpc-config option.

aws lambda update-function-configuration --function-name my-function \
--vpc-config
SubnetIds=subnet-071f712345678e7c8, subnet-07fd123456788a036,SecurityGrouplds=sg-0859123456784¢

To disconnect your function from a VPC, update the function configuration with an empty list of
subnets and security groups.

aws lambda update-function-configuration --function-name my-function \
--vpc-config SubnetIds=[],SecurityGroupIds=[]

Using IAM condition keys for VPC settings

You can use Lambda-specific condition keys for VPC settings to provide additional permission
controls for your Lambda functions. For example, you can require that all functions in your
organization are connected to a VPC. You can also specify the subnets and security groups that the
function's users can and can't use.

Lambda supports the following condition keys in IAM policies:

Configuring VPC access (API) 151


https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_VpcConfig.html

AWS Lambda Developer Guide

« lambda:Vpclds - Allow or deny one or more VPCs.
« lambda:Subnetids — Allow or deny one or more subnets.

« lambda:SecurityGrouplds — Allow or deny one or more security groups.

The Lambda API operations CreateFunction and UpdateFunctionConfiguration support these
condition keys. For more information about using condition keys in IAM policies, see IAM JSON
Policy Elements: Condition in the IAM User Guide.

® Tip
If your function already includes a VPC configuration from a previous API request, you can
send an UpdateFunctionConfiguration request without the VPC configuration.

Example policies with condition keys for VPC settings

The following examples demonstrate how to use condition keys for VPC settings. After you create
a policy statement with the desired restrictions, append the policy statement for the target user or
role.

Ensure that users deploy only VPC-connected functions

To ensure that all users deploy only VPC-connected functions, you can deny function create and
update operations that don't include a valid VPC ID.

Note that VPCID is not an input parameter to the CreateFunction or
UpdateFunctionConfiguration request. Lambda retrieves the VPC ID value based on the
subnet and security group parameters.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "EnforceVPCFunction",
"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

1,
"Effect": "Deny",
"Resource": "*",

Using IAM condition keys for VPC settings 152


https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Lambda Developer Guide

"Condition": {
"Null": {
"lambda:VpcIds": "true"

Deny users access to specific VPCs, subnets, or security groups

To deny users access to specific VPCs, use StringEquals to check the value of the
lambda:VpcIds condition. The following example denies users access to vpc-1 and vpc-2.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "EnforceOutOfVPC",
"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"
1,
"Effect": "Deny",
"Resource": "*",
"Condition": {
"StringEquals": {
"lambda:VpcIds": ["vpc-1", "vpc-2"]

To deny users access to specific subnets, use StringEquals to check the value of the
lambda:SubnetIds condition. The following example denies users access to subnet-1 and
subnet-2.

"Sid": "EnforceOutOfSubnet",
"Action": [
"lambda:CreateFunction",

Using IAM condition keys for VPC settings 153



AWS Lambda Developer Guide

"lambda:UpdateFunctionConfiguration"

1,
"Effect": "Deny",
"Resource": "*",

"Condition": {
"ForAnyValue:StringEquals": {
"lambda:SubnetIds": ["subnet-1", "subnet-2"]

To deny users access to specific security groups, use StringEquals to check the value of the
lambda:SecurityGroupIds condition. The following example denies users access to sg-1 and
sg-2.

"Sid": "EnforceOutOfSecurityGroups",

"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

1,

"Effect": "Deny",

"Resource": "*",

"Condition": {

"ForAnyValue:StringEquals": {
"lambda:SecurityGroupIds": ["sg-1", "sg-2"]

Allow users to create and update functions with specific VPC settings

To allow users to access specific VPCs, use StringEquals to check the value of the
lambda:VpcIds condition. The following example allows users to access vpc-1 and vpc-2.

"Version": "2012-10-17",
"Statement": [

Using IAM condition keys for VPC settings 154



AWS Lambda Developer Guide

{
"Sid": "EnforceStayInSpecificVpc",
"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"
1,
"Effect": "Allow",
"Resource": "*",
"Condition": {
"StringEquals": {
"lambda:VpcIds": ["vpc-1", "vpc-2"]
}
}
}

To allow users to access specific subnets, use StringEquals to check the value of the
lambda:SubnetIds condition. The following example allows users to access subnet-1 and
subnet-2.

"Sid": "EnforceStayInSpecificSubnets",
"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

1,
"Effect": "Allow",
"Resource": "*",

"Condition": {
"ForAllValues:StringEquals": {
"lambda:SubnetIds": ["subnet-1", "subnet-2"]

To allow users to access specific security groups, use StringEquals to check the value of the
lambda:SecurityGroupIds condition. The following example allows users to access sg-1 and
sg-2.

"Sid": "EnforceStayInSpecificSecurityGroup",

Using IAM condition keys for VPC settings 155



AWS Lambda Developer Guide

"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

1,
"Effect": "Allow",
"Resource": "*",

"Condition": {
"ForAllValues:StringEquals": {
"lambda:SecurityGroupIds": ["sg-1", "sg-2"]

Internet and service access for VPC-connected functions

By default, Lambda runs your functions in a secure VPC with access to AWS services and the
internet. Lambda owns this VPC, which isn't connected to your account's default VPC. When you
connect a function to a VPC in your account, the function can't access the internet unless your VPC
provides access.

(® Note

Several AWS services offer VPC endpoints. You can use VPC endpoints to connect to AWS
services from within a VPC without internet access.

Internet access from a private subnet requires network address translation (NAT). To give your
function access to the internet, route outbound traffic to a NAT gateway in a public subnet. The
NAT gateway has a public IP address and can connect to the internet through the VPC's internet
gateway. An idle NAT gateway connection will time out after 350 seconds. For more information,
see How do | give internet access to my Lambda function in a VPC?

VPC tutorials

In the following tutorials, you connect a Lambda function to resources in your VPC.

 Tutorial: Using a Lambda function to access Amazon RDS in an Amazon VPC

Internet and service access for VPC-connected functions 156


https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/nat-gateway-troubleshooting.html#nat-gateway-troubleshooting-timeout
https://aws.amazon.com/premiumsupport/knowledge-center/internet-access-lambda-function/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

AWS Lambda Developer Guide

» Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC

Sample VPC configurations

You can use the following sample AWS CloudFormation templates to create VPC configurations to
use with Lambda functions. There are two templates available in this guide's GitHub repository:

o vpc-private.yaml - A VPC with two private subnets and VPC endpoints for Amazon Simple
Storage Service (Amazon S3) and Amazon DynamoDB. Use this template to create a VPC for
functions that don't need internet access. This configuration supports use of Amazon S3 and
DynamoDB with the AWS SDKs, and access to database resources in the same VPC over a local
network connection.

» vpc-privatepublicyaml — A VPC with two private subnets, VPC endpoints, a public subnet with
a NAT gateway, and an internet gateway. Internet-bound traffic from functions in the private
subnets is routed to the NAT gateway using a route table.

To create a VPC using a template, on the AWS CloudFormation console Stacks page, choose Create
stack, and then follow the instructions in the Create stack wizard.

Sample VPC configurations 157


https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Lambda.html
https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/templates/vpc-private.yaml
https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/templates/vpc-privatepublic.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks

AWS Lambda Developer Guide

Connecting inbound interface VPC endpoints for Lambda

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a connection between your VPC and Lambda. You can use this connection to invoke your
Lambda function without crossing the public internet.

To establish a private connection between your VPC and Lambda, create an interface VPC

endpoint. Interface endpoints are powered by AWS PrivateLink, which enables you to privately
access Lambda APIs without an internet gateway, NAT device, VPN connection, or AWS Direct

Connect connection. Instances in your VPC don't need public IP addresses to communicate with
Lambda APIs. Traffic between your VPC and Lambda does not leave the AWS network.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets. A

network interface provides a private IP address that serves as an entry point for traffic to Lambda.

Sections

» Considerations for Lambda interface endpoints

» Creating an interface endpoint for Lambda

« Creating an interface endpoint policy for Lambda

Considerations for Lambda interface endpoints

Before you set up an interface endpoint for Lambda, be sure to review Interface endpoint

properties and limitations in the Amazon VPC User Guide.

You can call any of the Lambda API operations from your VPC. For example, you can invoke the
Lambda function by calling the Invoke API from within your VPC. For the full list of Lambda APIs,
see Actions in the Lambda API reference.

usel-az3is a limited capacity Region for Lambda VPC functions. You shouldn't use subnets in this
availability zone with your Lambda functions because this can result in reduced zonal redundancy
in the event of an outage.

Keep-alive for persistent connections

Lambda purges idle connections over time, so you must use a keep-alive directive to maintain
persistent connections. Attempting to reuse an idle connection when invoking a function results in
a connection error. To maintain your persistent connection, use the keep-alive directive associated

Inbound networking 158


https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/lambda/latest/dg/API_Operations.html

AWS Lambda Developer Guide

with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js in the AWS
SDK for JavaScript Developer Guide.

Billing Considerations

There is no additional cost to access a Lambda function through an interface endpoint. For more
Lambda pricing information, see AWS Lambda Pricing.

Standard pricing for AWS PrivateLink applies to interface endpoints for Lambda. Your AWS account
is billed for every hour an interface endpoint is provisioned in each Availability Zone and for data
processed through the interface endpoint. For more interface endpoint pricing information, see
AWS PrivateLink pricing.

VPC Peering Considerations

You can connect other VPCs to the VPC with interface endpoints using VPC peering. VPC peering is
a networking connection between two VPCs. You can establish a VPC peering connection between
your own two VPCs, or with a VPC in another AWS account. The VPCs can also be in two different
AWS Regions.

Traffic between peered VPCs stays on the AWS network and does not traverse the public internet.
Once VPCs are peered, resources like Amazon Elastic Compute Cloud (Amazon EC2) instances,
Amazon Relational Database Service (Amazon RDS) instances, or VPC-enabled Lambda functions in
both VPCs can access the Lambda API through interface endpoints created in the one of the VPCs.

Creating an interface endpoint for Lambda

You can create an interface endpoint for Lambda using either the Amazon VPC console or the AWS
Command Line Interface (AWS CLI). For more information, see Creating an interface endpoint in
the Amazon VPC User Guide.

To create an interface endpoint for Lambda (console)

1. Open the Endpoints page of the Amazon VPC console.

Choose Create Endpoint.
For Service category, verify that AWS services is selected.

For Service Name, choose com.amazonaws.region.lambda. Verify that the Type is Interface.

ok W

Choose a VPC and subnets.

Creating an interface endpoint for Lambda 159


https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/privatelink/pricing/
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://console.aws.amazon.com/vpc/home?#Endpoints

AWS Lambda Developer Guide

6. To enable private DNS for the interface endpoint, select the Enable DNS Name check box.
7. For Security group, choose one or more security groups.

8. Choose Create endpoint.

To use the private DNS option, you must set the enableDnsHostnames and
enableDnsSupportattributes of your VPC. For more information, see Viewing and updating
DNS support for your VPC in the Amazon VPC User Guide. If you enable private DNS for the
interface endpoint, you can make API requests to Lambda using its default DNS name for the

Region, for example, lambda.us-east-1.amazonaws.com. For more service endpoints, see
Service endpoints and quotas in the AWS General Reference.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

For information about creating and configuring an endpoint using AWS CloudFormation, see the
AWS::EC2::VPCEndpoint resource in the AWS CloudFormation User Guide.

To create an interface endpoint for Lambda (AWS CLI)

Use the create-vpc-endpoint command and specify the VPC ID, VPC endpoint type (interface),
service name, subnets that will use the endpoint, and security groups to associate with the
endpoint's network interfaces. For example:

aws ec2 create-vpc-endpoint --vpc-id vpc-ec43eb89 --vpc-endpoint-type Interface --
service-name \

com.amazonaws.us-east-1.lambda --subnet-id subnet-abababab --security-group-id
sg-la2b3cad

Creating an interface endpoint policy for Lambda

To control who can use your interface endpoint and which Lambda functions the user can access,
you can attach an endpoint policy to your endpoint. The policy specifies the following information:

» The principal that can perform actions.
« The actions that the principal can perform.

« The resources on which the principal can perform actions.

Creating an interface endpoint policy for Lambda 160


https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html

AWS Lambda Developer Guide

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: Interface endpoint policy for Lambda actions
The following is an example of an endpoint policy for Lambda. When attached to an endpoint, this

policy allows user MyUser to invoke the function my-function.

(@ Note

You need to include both the qualified and the unqualified function ARN in the resource.

{
"Statement": [
{

"Principal":

{

"AWS": "arn:aws:iam::111122223333:user/MyUser"

.

"Effect":"Allow",

"Action":[

"lambda:InvokeFunction"

1,

"Resource": [
"arn:aws:lambda:us-east-2:123456789012:function:my-function",
"arn:aws:lambda:us-east-2:123456789012:function:my-function:*"

]
}
]
}

Creating an interface endpoint policy for Lambda 161


https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS Lambda Developer Guide

Configuring file system access for Lambda functions

You can configure a function to mount an Amazon Elastic File System (Amazon EFS) file system
to a local directory. With Amazon EFS, your function code can access and modify shared resources
safely and at high concurrency.

Sections

» Execution role and user permissions

» Configuring a file system and access point

» Connecting to a file system (console)

» Configuring file system access with the Lambda API

» Mounting an Amazon EFS file system in another AWS account
o AWS CloudFormation and AWS SAM

« Sample applications

Execution role and user permissions

If the file system doesn't have a user-configured AWS Identity and Access Management (IAM)
policy, EFS uses a default policy that grants full access to any client that can connect to the file
system using a file system mount target. If the file system has a user-configured 1AM policy, your
function's execution role must have the correct elasticfilesystem permissions.

Execution role permissions

« elasticfilesystem:ClientMount

« elasticfilesystem:ClientWrite (not required for read-only connections)

These permissions are included in the AmazonElasticFileSystemClientReadWriteAccess managed
policy. Additionally, your execution role must have the permissions required to connect to the file

system's VPC.

When you configure a file system, Lambda uses your permissions to verify mount targets. To
configure a function to connect to a file system, your user needs the following permissions:

User permissions

« elasticfilesystem:DescribeMountTargets

File system 162



AWS Lambda Developer Guide

Configuring a file system and access point

Create a file system in Amazon EFS with a mount target in every Availability Zone that your
function connects to. For performance and resilience, use at least two Availability Zones. For
example, in a simple configuration you could have a VPC with two private subnets in separate
Availability Zones. The function connects to both subnets and a mount target is available in each.
Ensure that NFS traffic (port 2049) is allowed by the security groups used by the function and
mount targets.

® Note

When you create a file system, you choose a performance mode that can't be changed later.
General purpose mode has lower latency, and Max I/0 mode supports a higher maximum
throughput and IOPS. For help choosing, see Amazon EFS performance in the Amazon
Elastic File System User Guide.

An access point connects each instance of the function to the right mount target for the
Availability Zone it connects to. For best performance, create an access point with a non-root path,
and limit the number of files that you create in each directory. The following example creates a
directory named my-function on the file system and sets the owner ID to 1001 with standard
directory permissions (755).

Example access point configuration

« Name-files

e UserID-1001

e Group ID -1001

e Path - /my-function
« Permissions — 755

e Owner user ID - 1001
e Group userID -1001

When a function uses the access point, it is given user ID 1001 and has full access to the directory.

For more information, see the following topics in the Amazon Elastic File System User Guide:

Configuring a file system and access point 163


https://docs.aws.amazon.com/efs/latest/ug/performance.html

AWS Lambda Developer Guide

» Creating resources for Amazon EFS

« Working with users, groups, and permissions

Connecting to a file system (console)

A function connects to a file system over the local network in a VPC. The subnets that your
function connects to can be the same subnets that contain mount points for your file system, or
subnets in the same Availability Zone that can route NFS traffic (port 2049) to the file system.

® Note

If your function is not already connected to a VPC, see Connecting outbound networking to
resources in a VPC.

To configure file system access

1. Open the Functions page of the Lambda console.

Choose a function.
Choose Configuration and then choose File systems.

Under File system, choose Add file system.

Lok W

Configure the following properties:

 EFS file system — The access point for a file system in the same VPC.

» Local mount path - The location where the file system is mounted on the Lambda function,
starting with /mnt/.

@ Pricing
Amazon EFS charges for storage and throughput, with rates that vary by storage class. For
details, see Amazon EFS pricing.
Lambda charges for data transfer between VPCs. This only applies if your function's VPC is
peered to another VPC with a file system. The rates are the same as for Amazon EC2 data
transfer between VPCs in the same Region. For details, see Lambda pricing.

Connecting to a file system (console) 164


https://docs.aws.amazon.com/efs/latest/ug/creating-using.html
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs-nfs-permissions.html
https://console.aws.amazon.com/lambda/home#/functions
https://aws.amazon.com/efs/pricing
https://aws.amazon.com/lambda/pricing

AWS Lambda Developer Guide

For more information about Lambda's integration with Amazon EFS, see Using Amazon EFS with
Lambda.

Configuring file system access with the Lambda API

Use the following API operations to connect your Lambda function to a file system:

e CreateFunction

» UpdateFunctionConfiguration

To connect a function to a file system, use the update-function-configuration command.
The following example connects a function named my-function to a file system with ARN of an
access point.

ARN=arn:aws:elasticfilesystem:us-east-2:123456789012:access-point/

fsap-015cxmplb72b405fd

aws lambda update-function-configuration --function-name my-function \
--file-system-configs Arn=$ARN,LocalMountPath=/mnt/efs0

You can get the ARN of a file system's access point with the describe-access-points
command.

aws efs describe-access-points

You should see the following output:

{
"AccessPoints": [
{
"ClientToken": "console-aa5@0clfd-xmpl-48b5-91ce-57b27a3b1017",
"Name": "lambda-ap",
"Tags": [
{
"Key": "Name",
"Value": "lambda-ap"
}
1,
"AccessPointId": "fsap-0@15cxmplb72b4@5fd",
"AccessPointArn": "arn:aws:elasticfilesystem:us-east-2:123456789012:access-

point/fsap-015cxmplb72b4@5fd",

Configuring file system access with the Lambda API 165


https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

"FileSystemId": "fs-aea3xmpl",
"RootDirectory": {
IlPathll: II/II

1,
"OwnerId": "123456789012",
"LifeCycleState": "available"

Mounting an Amazon EFS file system in another AWS account

You can configure a function to mount an Amazon EFS file system in another AWS account. Before
you mount the file system, you must ensure the following:

« VPC peering must be configured, and appropriate routes must be added to the route tables in
each VPC.

» The security group for the Amazon EFS file system you want to mount must be configured to
allow inbound access from the security group associated with your Lambda function.

« Subnets must be created in each VPC with matching Availability Zone (AZ) IDs.
« DNS Hostnames must be enabled in both VPCs.

For your Lambda function to access an Amazon EFS file system in another AWS account, that file
system must also have a file system policy that grants permission to your funtion. To learn how to
create a file system policy, see Creating file system policies in the Amazon Elastic File System User
Guide.

The following shows an example policy that gives Lambda functions in a specified account
permission to perform all APl actions on a file system.

"Version": "2012-10-17",
"Id": "efs-lambda-policy",
"Statement": [
{
"Sid": "efs-lambda-statement",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::{LAMBDA-ACCOUNT-ID}:root"

Mounting an Amazon EFS file system in another AWS account 166


https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://docs.aws.amazon.com/efs/latest/ug/create-file-system-policy.html

AWS Lambda Developer Guide

},
"Action": "*",
"Resource": "arn:aws:elasticfilesystem:{REGION}:{ACCOUNT-ID}:file-
system/{FILE SYSTEM ID}"
}

(@ Note

The example policy shown uses the wildcard charcter ("*") to grant permissions for Lambda
functions in the specified AWS account to perform any API operation on the filesystem.
This includes deleting the filesystem. To limit the operations that other AWS accounts can
perform on your filesystem, specify the actions you want to allow explicitly. For a list of
possible APl operations, see Actions, resources, and condition keys for Amazon Elastic File

System.

To configure cross-account file system mounting, you use the AWS Command Line Interface (AWS
CLI) update-function-configuration operation.

To mount a file system in another AWS account, run the following command. Use your own
function name and replace the Amazon Resource Name (ARN) with the ARN of the Amazon EFS
access point for the file system you want to mount. LocalMountPath is the path where the
function can access the file system, starting with /mnt/. Ensure that the Lambda mount path
matches the access point path for the filesystem. For example, if the access point is /efs, the
Lambda mount path must be /mnt/efs.

aws lambda update-function-configuration --function-name MyFunction \
--file-system-configs Arn=arn:aws:elasticfilesystem:us-east-1:222233334444:access-
point/fsap-01234567,LocalMountPath=/mnt/test

AWS CloudFormation and AWS SAM

You can use AWS CloudFormation and the AWS Serverless Application Model (AWS SAM) to
automate the creation of Lambda applications. To enable a file system connection on an AWS SAM
AWS: :Serverless: :Function resource, use the FileSystemConfigs property.

AWS CloudFormation and AWS SAM 167


https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticfilesystem.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticfilesystem.html

AWS Lambda

Developer Guide

Example template.yml - File system configuration

Transform: AWS::Serverless-2016-10-31
Resources:
VPC:
Type: AWS::EC2::VPC
Properties:
CidrBlock: 10.0.0.0/16
Subnetl:
Type: AWS::EC2::Subnet
Properties:
VpcId:

Ref: VPC
CidrBlock: 10.0.1.0/24
AvailabilityZone: "us-west-2a"

EfsSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
Vpcld:

Ref: VPC
GroupDescription: "mnt target sg"
SecurityGroupIngress:

- IpProtocol: -1
CidrIp: "0.0.0.0/0"
FileSystem:
Type: AWS::EFS::FileSystem
Properties:
PerformanceMode: generalPurpose
AccessPoint:
Type: AWS::EFS::AccessPoint
Properties:
FileSystemld:

Ref: FileSystem
PosixUser:

uid: "1e01"

Gid: "1001"
RootDirectory:

CreationInfo:

OwnerGid: "1001"
OwnerUid: "1001"
Permissions: "755"
MountTargetl:
Type: AWS::EFS::MountTarget
Properties:

AWS CloudFormation and AWS SAM

168



AWS Lambda Developer Guide

FileSystemld:
Ref: FileSystem
SubnetId:
Ref: Subnetl
SecurityGroups:
- Ref: EfsSecurityGroup
MyFunctionWithEfs:
Type: AWS::Serverless::Function
Properties:
Handler: index.handler
Runtime: python3.10
VpcConfig:
SecurityGroupIds:
- Ref: EfsSecurityGroup
SubnetIds:
- Ref: Subnetl
FileSystemConfigs:
- Arn: !GetAtt AccessPoint.Arn
LocalMountPath: "/mnt/efs"
Description: Use a file system.
DependsOn: "MountTargetl"

You must add the DependsOn to ensure that the mount targets are fully created before the
Lambda runs for the first time.

For the AWS CloudFormation AWS: : Lambda: : Function type, the property name and fields are
the same. For more information, see Using AWS Lambda with AWS CloudFormation.

Sample applications

The GitHub repository for this guide includes a sample application that demonstrates the use of
Amazon EFS with a Lambda function.

« efs-nodejs — A function that uses an Amazon EFS file system in a Amazon VPC. This sample
includes a VPC, file system, mount targets, and access point configured for use with Lambda.

Sample applications 169


https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/efs-nodejs

AWS Lambda Developer Guide

Lambda function aliases

You can create aliases for your Lambda function. A Lambda alias is a pointer to a function version
that you can update. The function's users can access the function version using the alias Amazon
Resource Name (ARN). When you deploy a new version, you can update the alias to use the new
version, or split traffic between two versions.

Sections

« Creating a function alias (Console)

« Managing aliases with the Lambda API

« Managing aliases with AWS SAM and AWS CloudFormation

 Using aliases

» Resource policies

« Alias routing configuration

Creating a function alias (Console)

You can create a function alias using the Lambda console.
To create an alias

1. Open the Functions page of the Lambda console.

Choose a function.

Choose Aliases and then choose Create alias.

P WD

On the Create alias page, do the following:

a. Enter a Name for the alias.
b. (Optional) Enter a Description for the alias.
c. For Version, choose a function version that you want the alias to point to.

d. (Optional) To configure routing on the alias, expand Weighted alias. For more
information, see Alias routing configuration.

e. Choose Save.

Aliases 170


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Managing aliases with the Lambda API

To create an alias using the AWS Command Line Interface (AWS CLI), use the create-alias
command.

aws lambda create-alias --function-name my-function --name alias-name --function-
version version-number --description " "

To change an alias to point a new version of the function, use the update-alias command.

aws lambda update-alias --function-name my-function --name alias-name --function-
version version-number

To delete an alias, use the delete-alias command.

aws lambda delete-alias --function-name my-function --name alias-name

The AWS CLI commands in the preceding steps correspond to the following Lambda API
operations:

+ CreateAlias

« UpdateAlias
+ DeleteAlias

Managing aliases with AWS SAM and AWS CloudFormation

You can create and manage function aliases using the AWS Serverless Application Model (AWS
SAM) and AWS CloudFormation.

To see how to declare a function alias in an AWS SAM template, refer to the
AWS::Serverless::Function page in the AWS SAM Developer Guide. For information on creating
and configuring aliases using AWS CloudFormation, see AWS::Lambda::Alias in the AWS
CloudFormation User Guide.

Using aliases

Each alias has a unique ARN. An alias can point only to a function version, not to another alias. You
can update an alias to point to a new version of the function.

Managing aliases with the Lambda API 171


https://docs.aws.amazon.com/cli/latest/reference/lambda/create-alias.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-alias.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/delete-alias.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteAlias.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-alias.html

AWS Lambda Developer Guide

Event sources such as Amazon Simple Storage Service (Amazon S3) invoke your Lambda function.
These event sources maintain a mapping that identifies the function to invoke when events occur.
If you specify a Lambda function alias in the mapping configuration, you don't need to update

the mapping when the function version changes. For more information, see Lambda event source

mappings.

In a resource policy, you can grant permissions for event sources to use your Lambda function.
If you specify an alias ARN in the policy, you don't need to update the policy when the function
version changes.

Resource policies

You can use a resource-based policy to give a service, resource, or account access to your function.

The scope of that permission depends on whether you apply it to an alias, a version, or the entire
function. For example, if you use an alias name (such as helloworld:PROD), the permission allows
you to invoke the helloworld function using the alias ARN (helloworld:PROD).

If you attempt to invoke the function without an alias or a specific version, then you get a
permission error. This permission error still occurs even if you attempt to directly invoke the
function version associated with the alias.

For example, the following AWS CLI command grants Amazon S3 permissions to invoke the PROD
alias of the helloworld function when Amazon S3 is acting on behalf of examplebucket.

aws lambda add-permission --function-name helloworld \

--qualifier PROD --statement-id 1 --principal s3.amazonaws.com --action
lambda:InvokeFunction \

--source-arn arn:aws:s3:::examplebucket --source-account 123456789012

For more information about using resource names in policies, see Resources and conditions for

Lambda actions.

Alias routing configuration

Use routing configuration on an alias to send a portion of traffic to a second function version. For
example, you can reduce the risk of deploying a new version by configuring the alias to send most
of the traffic to the existing version, and only a small percentage of traffic to the new version.

Note that Lambda uses a simple probabilistic model to distribute the traffic between the two
function versions. At low traffic levels, you might see a high variance between the configured and

Resource policies 172



AWS Lambda Developer Guide

actual percentage of traffic on each version. If your function uses provisioned concurrency, you can
avoid spillover invocations by configuring a higher number of provisioned concurrency instances

during the time that alias routing is active.

You can point an alias to a maximum of two Lambda function versions. The versions must meet the
following criteria:

« Both versions must have the same execution role.

» Both versions must have the same dead-letter queue configuration, or no dead-letter queue

configuration.

« Both versions must be published. The alias cannot point to $LATEST.
To configure routing on an alias
(@ Note

Verify that the function has at least two published versions. To create additional versions,
follow the instructions in Lambda function versions.

Open the Functions page of the Lambda console.

Choose a function.

Choose Aliases and then choose Create alias.

P WD =

On the Create alias page, do the following:

a. Enter a Name for the alias.
b. (Optional) Enter a Description for the alias.

For Version, choose the first function version that you want the alias to point to.

(]

d. Expand Weighted alias.

e. For Additional version, choose the second function version that you want the alias to
point to.

f. For Weight (%), enter a weight value for the function. Weight is the percentage of traffic
that is assigned to that version when the alias is invoked. The first version receives the
residual weight. For example, if you specify 10 percent to Additional version, the first
version is assigned 90 percent automatically.

g. Choose Save.

Alias routing configuration 173


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Configuring alias routing using CLI

Use the create-alias and update-alias AWS CLI commands to configure the traffic weights
between two function versions. When you create or update the alias, you specify the traffic weight
in the routing-config parameter.

The following example creates a Lambda function alias named routing-alias that points to version
1 of the function. Version 2 of the function receives 3 percent of the traffic. The remaining 97
percent of traffic is routed to version 1.

aws lambda create-alias --name routing-alias --function-name my-function --function-
version 1 \
--routing-config AdditionalVersionWeights={"2"=0.03}

Use the update-alias command to increase the percentage of incoming traffic to version 2. In
the following example, you increase the traffic to 5 percent.

aws lambda update-alias --name routing-alias --function-name my-function \
--routing-config AdditionalVersionWeights={"2"=0.05}

To route all traffic to version 2, use the update-alias command to change the function-
version property to point the alias to version 2. The command also resets the routing
configuration.

aws lambda update-alias --name routing-alias --function-name my-function \
--function-version 2 --routing-config AdditionalVersionWeights={}

The AWS CLI commands in the preceding steps correspond to the following Lambda API
operations:

» CreateAlias
« UpdateAlias
Determining which version has been invoked

When you configure traffic weights between two function versions, there are two ways to
determine the Lambda function version that has been invoked:

Alias routing configuration 174


https://docs.aws.amazon.com/lambda/latest/api/API_CreateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateAlias.html

AWS Lambda Developer Guide

» CloudWatch Logs — Lambda automatically emits a START log entry that contains the invoked
version ID to Amazon CloudWatch Logs for every function invocation. The following is an
example:

19:44:37 START RequestId: request id Version: $version

For alias invocations, Lambda uses the Executed Version dimension to filter the metric data
by the invoked version. For more information, see Working with Lambda function metrics.

» Response payload (synchronous invocations) — Responses to synchronous function invocations
include an x-amz-executed-version header to indicate which function version has been
invoked.

Alias routing configuration 175



AWS Lambda Developer Guide

Lambda function versions

You can use versions to manage the deployment of your functions. For example, you can publish a
new version of a function for beta testing without affecting users of the stable production version.
Lambda creates a new version of your function each time that you publish the function. The new
version is a copy of the unpublished version of the function. The unpublished version is named
$LATEST.

(® Note

You can't publish your function and create a new version if the unpublished version
($LATEST) is the same as the previous published version. You need to deploy code changes
or make updates to your function's environment variables in $LATEST before you can
create a new version.

Function versions are immutable, which means that once a version is published, you can't change
or modify it. A function version includes the following information:

The function code and all associated dependencies.

The Lambda runtime identifier and runtime version used by the function.

All the function settings, including the environment variables.

A unique Amazon Resource Name (ARN) to identify the specific version of the function.

When using runtime management controls with Auto mode, the runtime version used by the
function version is updated automatically. When using Function update or Manual mode, the
runtime version is not updated. For more information, see the section called “"Runtime updates”.

Sections

» Creating function versions

» Using versions

» Granting permissions

Versions 176



AWS Lambda Developer Guide

Creating function versions

You can change the function code and settings only on the unpublished version of a function.
When you publish a version, Lambda locks the code and most of the settings to maintain a
consistent experience for users of that version. For more information about configuring function
settings, see Configuring Lambda function options.

You can create a function version using the Lambda console.

To create a new function version

1. Open the Functions page of the Lambda console.

2. Choose a function and then choose Versions.

3. On the versions configuration page, choose Publish new version.
4. (Optional) Enter a version description.

5. Choose Publish.

Alternatively, you can publish a version of a function using the PublishVersion API operation.

The following AWS CLI command publishes a new version of a function. The response returns
configuration information about the new version, including the version number and the function
ARN with the version suffix.

aws lambda publish-version --function-name my-function

You should see the following output:

"FunctionName": "my-function",

"FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-function:1",
"Version": "1",

"Role": "arn:aws:iam::123456789012:role/lambda-role",

"Handler": "function.handler",

"Runtime": "nodejs20.x",

Creating function versions 177


https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html

AWS Lambda Developer Guide

® Note

Lambda assigns monotonically increasing sequence numbers for versioning. Lambda never
reuses version numbers, even after you delete and recreate a function.

Using versions
You can reference your Lambda function using either a qualified ARN or an unqualified ARN.

« Qualified ARN - The function ARN with a version suffix. The following example refers to version
42 of the helloworld function.

arn:aws:lambda:aws-region:acct-id:function:helloworld:42

« Unqualified ARN - The function ARN without a version suffix.

arn:aws:lambda:aws-region:acct-id:function:helloworld

You can use a qualified or an unqualified ARN in all relevant API operations. However, you can't use
an unqualified ARN to create an alias.

If you decide not to publish function versions, you can invoke the function using either the
qualified or unqualified ARN in your event source mapping. When you invoke a function using an
unqualified ARN, Lambda implicitly invokes $LATEST.

Lambda publishes a new function version only if the code has never been published or if the code
has changed from the last published version. If there is no change, the function version remains at
the last published version.

The qualified ARN for each Lambda function version is unique. After you publish a version, you
can't change the ARN or the function code.

Granting permissions

You can use a resource-based policy or an identity-based policy to grant access to your function.

The scope of the permission depends on whether you apply the policy to a function or to one
version of a function. For more information about function resource names in policies, see
Resources and conditions for Lambda actions.

Using versions 178



AWS Lambda Developer Guide

You can simplify the management of event sources and AWS Identity and Access Management
(IAM) policies by using function aliases. For more information, see Lambda function aliases.

Granting permissions 179



AWS Lambda Developer Guide

Configuring a Lambda function to stream responses

You can configure your Lambda function URLs to stream response payloads back to clients.
Response streaming can benefit latency sensitive applications by improving time to first byte
(TTFB) performance. This is because you can send partial responses back to the client as they
become available. Additionally, you can use response streaming to build functions that return
larger payloads. Response stream payloads have a soft limit of 20 MB as compared to the 6 MB
limit for buffered responses. Streaming a response also means that your function doesn’t need to
fit the entire response in memory. For very large responses, this can reduce the amount of memory
you need to configure for your function.

The speed at which Lambda streams your responses depends on the response size. The streaming
rate for the first 6MB of your function’s response is uncapped. For responses larger than 6MB,
the remainder of the response is subject to a bandwidth cap. For more information on streaming
bandwidth, see Bandwidth limits for response streaming.

Streaming responses incurs a cost. For more information, see AWS Lambda Pricing.

Lambda supports response streaming on Node.js managed runtimes. For other languages, you

can use a custom runtime with a custom Runtime APl integration to stream responses or use the
Lambda Web Adapter. You can stream responses through Lambda Function URLs, the AWS SDK, or
using the Lambda InvokeWithResponseStream API.

(® Note

When testing your function through the Lambda console, you'll always see responses as
buffered.

Writing response streaming-enabled functions

Writing the handler for response streaming functions is different than typical handler patterns.
When writing streaming functions, be sure to do the following:

« Wrap your function with the awslambda.streamifyResponse( ) decorator that the native
Node.js runtimes provide.

« End the stream gracefully to ensure that all data processing is complete.

Response streaming 180


https://aws.amazon.com/lambda/pricing/
https://github.com/awslabs/aws-lambda-web-adapter
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://docs.aws.amazon.com/lambda/latest/dg/API_InvokeWithResponseStream.html

AWS Lambda Developer Guide

Configuring a handler function to stream responses

To indicate to the runtime that Lambda should stream your function's responses, you must wrap
your function with the streamifyResponse( ) decorator. This tells the runtime to use the proper
logic path for streaming responses and enables the function to stream responses.

The streamifyResponse() decorator accepts a function that accepts the following parameters:

« event - Provides information about the function URL's invocation event, such as the HTTP
method, query parameters, and the request body.

e responseStream - Provides a writable stream.

« context - Provides methods and properties with information about the invocation, function,
and execution environment.

The responseStream object is a Node.js writableStream. As with any such stream, you should
use the pipeline() method.

Example response streaming-enabled handler

const pipeline = require("util").promisify(require("stream").pipeline);
const { Readable } = require('stream');

exports.echo = awslambda.streamifyResponse(async (event, responseStream, _context) => {
// As an example, convert event to a readable stream.
const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));

await pipeline(requestStream, responseStream);

1)

While responseStream offers the write() method to write to the stream, we recommend that
you use pipeline() wherever possible. Using pipeline( ) ensures that the writable stream is
not overwhelmed by a faster readable stream.

Ending the stream

Make sure that you properly end the stream before the handler returns. The pipeline() method
handles this automatically.

Writing response streaming-enabled functions 181


https://nodesource.com/blog/understanding-streams-in-nodejs/
https://nodejs.org/api/stream.html#streampipelinesource-transforms-destination-callback

AWS Lambda Developer Guide

For other use cases, call the responseStream.end() method to properly end a stream. This
method signals that no more data should be written to the stream. This method isn't required if
you write to the stream with pipeline() or pipe().

Example Example ending a stream with pipeline()

const pipeline = require("util").promisify(require("stream").pipeline);

exports.handler = awslambda.streamifyResponse(async (event, responseStream, _context)
:>{
await pipeline(requestStream, responseStream);

1)

Example Example ending a stream without pipeline()

exports.handler = awslambda.streamifyResponse(async (event, responseStream, _context)
:>{

responseStream.write("Hello ");

responseStream.write("world ");

responseStream.write("from ");

responseStream.write("Lambda!");

responseStream.end();

1)

Invoking a response streaming enabled function using Lambda
function URLs

® Note

You must invoke your function using a function URL to stream the responses.

You can invoke response streaming enabled functions by changing the invoke mode of your
function's URL. The invoke mode determines which APl operation Lambda uses to invoke your
function. The available invoke modes are:

« BUFFERED - This is the default option. Lambda invokes your function using the Invoke API
operation. Invocation results are available when the payload is complete. The maximum payload
size is 6 MB.

Invoking a response streaming enabled function using Lambda function URLs 182



AWS Lambda Developer Guide

o RESPONSE_STREAM - Enables your function to stream payload results as they become available.
Lambda invokes your function using the InvokeWithResponseStream APl operation. The
maximum response payload size is 20 MB. However, you can request a quota increase.

You can still invoke your function without response streaming by directly calling the Invoke API
operation. However, Lambda streams all response payloads for invocations that come through the
function's URL until you change the invoke mode to BUFFERED.

To set the invoke mode of a function URL (console)

! Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to set the invoke mode for.
3. Choose the Configuration tab, and then choose Function URL.

4. Choose Edit, then choose Additional settings.

5. Under Invoke mode, choose your desired invoke mode.

6. Choose Save.

To set the invoke mode of a function's URL (AWS CLI)

aws lambda update-function-url-config --function-name my-function --invoke-mode
RESPONSE_STREAM

To set the invoke mode of a function's URL (AWS CloudFormation)

MyFunctionUrl:
Type: AWS::Lambda::Url
Properties:
AuthType: AWS_IAM
InvokeMode: RESPONSE_STREAM

For more information about configuring function URLs, see Lambda function URLs.

Bandwidth limits for response streaming

The first 6MB of your function's response payload has uncapped bandwidth. After this initial burst,
Lambda streams your response at a maximum rate of 2MBps. If your function responses never
exceed 6MB, then this bandwidth limit never applies.

Bandwidth limits for response streaming 183


https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

® Note

Bandwidth limits only apply to your function’s response payload, and not to network access
by your function.

The rate of uncapped bandwidth varies depending on a number of factors, including your
function’s processing speed. You can normally expect a rate higher than 2MBps for the first 6MB of
your function’s response. If your function is streaming a response to a destination outside of AWS,
the streaming rate also depends on the speed of the external internet connection.

Tutorial: Creating a response streaming Lambda function with a
function URL

In this tutorial, you create a Lambda function defined as a .zip file archive with a function URL
endpoint that returns a response stream. For more information about configuring function URLs,
see Creating and managing function URLs.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the AWS Command Line Interface (AWS CLI) version 2.
Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.54@.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macQOS, use your preferred shell and package manager.

Tutorial: Creating a response streaming function with a function URL 184


https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Lambda Developer Guide

® Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Create an execution role

Create the execution role that gives your Lambda function permission to access AWS resources.

To create an execution role

1. Open the Roles page of the AWS Identity and Access Management (IAM) console.
2. Choose Create role.

3. Create a role with the following properties:

» Trusted entity type — AWS service
e Use case - Lambda
e Permissions - AWSLambdaBasicExecutionRole

* Role name - response-streaming-role

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to write
logs to Amazon CloudWatch Logs. After you create the role, note down the its Amazon Resource
Name (ARN). You'll need it in the next step.

Create a response streaming function (AWS CLI)

Create a response streaming Lambda function with a function URL endpoint using the AWS
Command Line Interface (AWS CLI).

To create a function that can stream responses

1. Copy the following code example into a file named index.mjs.

import util from 'util';

Tutorial: Creating a response streaming function with a function URL 185


https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

import stream from 'stream';
const { Readable } = stream;
const pipeline = util.promisify(stream.pipeline);

/* global awslambda */
export const handler = awslambda.streamifyResponse(async (event, responseStream,
_context) => {

const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));

await pipeline(requestStream, responseStream);

1)

2. Create a deployment package.

zip function.zip index.mjs

3. Create a Lambda function with the create-function command. Replace the value of --
role with the role ARN from the previous step.

aws lambda create-function \
--function-name my-streaming-function \
--runtime nodejsl6.x \
--zip-file fileb://function.zip \
--handler index.handler \

--role arn:aws:iam::123456789012:role/response-streaming-role

To create a function URL

1. Add a resource-based policy to your function to allow access to your function URL. Replace the
value of --principal with your AWS account ID.

aws lambda add-permission \
--function-name my-streaming-function \
--action lambda:InvokeFunctionUrl \
--statement-id 12345 \
--principal 123456789012 \
--function-url-auth-type AWS_IAM \
--statement-id url

2. Create a URL endpoint for the function with the create-function-url-config command.

aws lambda create-function-url-config \

Tutorial: Creating a response streaming function with a function URL 186



AWS Lambda Developer Guide

--function-name my-streaming-function \
--auth-type AWS_IAM \
--invoke-mode RESPONSE_STREAM

Test the function URL endpoint

Test your integration by invoking your function. You can open your function's URL in a browser, or
you can use curl.

curl --request GET "<function_url>" --user "<key:token>" --aws-sigv4 "aws:amz:us-
east-1:lambda" --no-buffer

Our function URL uses the TAM_AUTH authentication type. This means that you need to sign
requests with both your AWS access key and secret key. In the previous command, replace
<key:token> with the AWS access key ID. Enter your AWS secret key when prompted. If you don't
have your AWS secret key, you can use temporary AWS credentials instead.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.
3. Choose Delete.
4

Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

Open the Functions page of the Lambda console.

1
2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

Tutorial: Creating a response streaming function with a function URL 187


https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Deploying Lambda functions

You can deploy code to your Lambda function by uploading a zip file archive, or by creating and
uploading a container image.

Topics

« .zip file archives

Container images

Deploying Lambda functions as .zip file archives

Working with Lambda container images

Testing Lambda container images locally

.zip file archives

A .zip file archive includes your application code and its dependencies. When you author functions
using the Lambda console or a toolkit, Lambda automatically creates a .zip file archive of your
code.

When you create functions with the Lambda API, command line tools, or the AWS SDKs, you must
create a deployment package. You also must create a deployment package if your function uses a
compiled language, or to add dependencies to your function. To deploy your function's code, you
upload the deployment package from Amazon Simple Storage Service (Amazon S3) or your local
machine.

You can upload a .zip file as your deployment package using the Lambda console, AWS Command
Line Interface (AWS CLI), or to an Amazon Simple Storage Service (Amazon S3) bucket.

Deployment package file permissions

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give an executable file the correct permissions, run the
following command.

.zip file archives 188



AWS Lambda Developer Guide

chmod 755 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object

in the Microsoft Windows documentation.

Container images

You can package your code and dependencies as a container image using tools such as the Docker
command line interface (CLI). You can then upload the image to your container registry hosted on
Amazon Elastic Container Registry (Amazon ECR).

When you invoke the function, Lambda deploys the container image to an execution environment.
Lambda initializes any extensions and then runs the function’s initialization code (the code outside
the main handler). Note that function initialization duration is included in billed execution time.

Lambda then runs the function by calling the code entry point specified in the function
configuration (the ENTRYPOINT and CMD container image settings).

AWS provides a set of open-source base images that you can use to build the container image for
your function code. You can also use alternative base images from other container registries. AWS
also provides an open-source runtime client that you add to your alternative base image to make it
compatible with the Lambda service.

Additionally, AWS provides a runtime interface emulator for you to test your functions locally using
tools such as the Docker CLI.

® Note

You create each container image to be compatible with one of the instruction set
architectures that Lambda supports. Lambda provides base images for each of the
instruction set architectures and Lambda also provides base images that support both
architectures.

The image that you build for your function must target only one of the architectures.

There is no additional charge for packaging and deploying functions as container images. When a
function deployed as a container image is invoked, you pay for invocation requests and execution
duration. You do incur charges related to storing your container images in Amazon ECR. For more
information, see Amazon ECR pricing.

Container images 189


https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)
https://aws.amazon.com/ecr/pricing/

AWS Lambda Developer Guide

Image security

When Lambda first downloads the container image from its original source (Amazon ECR), the
container image is optimized, encrypted, and stored using authenticated convergent encryption
methods. All keys that are required to decrypt customer data are protected using AWS KMS
customer managed keys. To track and audit Lambda's usage of customer managed keys, you can
view the AWS CloudTrail logs.

Image security 190



AWS Lambda Developer Guide

Deploying Lambda functions as .zip file archives

When you create a Lambda function, you package your function code into a deployment package.
Lambda supports two types of deployment packages: container images and .zip file archives. The

workflow to create a function depends on the deployment package type. To configure a function
defined as a container image, see the section called "Container images”.

You can use the Lambda console and the Lambda API to create a function defined with a .zip file
archive. You can also upload an updated .zip file to change the function code.

(@ Note

You cannot change the deployment package type (.zip or container image) for an existing

function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

» Creating the function

» Using the console code editor

« Updating function code

« Changing the runtime

« Changing the architecture
» Using the Lambda API
o AWS CloudFormation

Creating the function

When you create a function defined with a .zip file archive, you choose a code template, the
language version, and the execution role for the function. You add your function code after
Lambda creates the function.

To create the function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

.zip file archives 191


https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda

Developer Guide

3. Choose Author from scratch or Use a blueprint to create your function.

4. Under Basic information, do the following:

a. For Function name, enter the function name. Function names are limited to 64 characters

in length.

b. For Runtime, choose the language version to use for your function.

c. (Optional) For Architecture, choose the instruction set architecture to use for your
function. The default architecture is x86_64. When you build the deployment package for
your function, make sure that it is compatible with this instruction set architecture.

5. (Optional) Under Permissions, expand Change default execution role. You can create a new

Execution role or use an existing role.

6. (Optional) Expand Advanced settings. You can choose a Code signing configuration for the

function. You can also configure an (Amazon VPC) for the function to access.

7. Choose Create function.

Lambda creates the new function. You can now use the console to add the function code and

configure other function parameters and features. For code deployment instructions, see the

handler page for the runtime your function uses.
Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Working with .zip file archives for Ruby Lambda functions

Java

Deploy Java Lambda functions with .zip or JAR file archives
Go

Deploy Go Lambda functions with .zip file archives
C#

Build and deploy C# Lambda functions with .zip file archives

Creating the function

192



AWS Lambda Developer Guide

PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Using the console code editor

The console creates a Lambda function with a single source file. For scripting languages, you can
edit this file and add more files using the built-in code editor. To save your changes, choose Save.
Then, to run your code, choose Test.

(® Note

The Lambda console uses AWS Cloud9 to provide an integrated development environment
in the browser. You can also use AWS Cloud9 to develop Lambda functions in your own
environment. For more information, see Working with AWS Lambda functions using the
AWS Toolkit in the AWS Cloud9 user guide.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

Updating function code

For scripting languages (Node.js, Python, and Ruby), you can edit your function code in the
embedded code editor. If the code is larger than 3MB, or if you need to add libraries, or for
languages that the editor doesn't support (Java, Go, C#), you must upload your function code as

a .zip archive. If the .zip file archive is smaller than 50 MB, you can upload the .zip file archive from
your local machine. If the file is larger than 50 MB, upload the file to the function from an Amazon
S3 bucket.

To upload function code as a .zip archive

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.
3. Under Code source, choose Upload from.
4

Choose .zip file, and then choose Upload.

Using the console code editor 193


https://docs.aws.amazon.com/cloud9/latest/user-guide/lambda-toolkit.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/lambda-toolkit.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

o Inthe file chooser, select the new image version, choose Open, and then choose Save.

5. (Alternative to step 4) Choose Amazon S3 location.

« Inthe text box, enter the S3 link URL of the .zip file archive, then choose Save.

Changing the runtime

If you update the function configuration to use a new runtime, you may need to update the
function code to be compatible with the new runtime. If you update the function configuration to
use a different runtime, you must provide new function code that is compatible with the runtime
and architecture. For instructions on how to create a deployment package for the function code,
see the handler page for the runtime that the function uses.

To change the runtime

1. Open the Functions page of the Lambda console.

Choose the function to update and choose the Code tab.
Scroll down to the Runtime settings section, which is under the code editor.

Choose Edit.

Eal A

a. For Runtime, select the runtime identifier.
b. For Handler, specify file name and handler for your function.
c. For Architecture, choose the instruction set architecture to use for your function.

5. Choose Save.

Changing the architecture

Before you can change the instruction set architecture, you need to ensure that your function's
code is compatible with the target architecture.

If you use Node.js, Python, or Ruby and you edit your function code in the embedded editor, the
existing code may run without modification.

However, if you provide your function code using a .zip file archive deployment package, you
must prepare a new .zip file archive that is compiled and built correctly for the target runtime and
instruction-set architecture. For instructions, see the handler page for your function runtime.

Changing the runtime 194


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To change the instruction set architecture

i d W=

Open the Functions page of the Lambda console.

Choose the function to update and choose the Code tab.
Under Runtime settings, choose Edit.
For Architecture, choose the instruction set architecture to use for your function.

Choose Save.

Using the Lambda API

To create and configure a function that uses a .zip file archive, use the following API operations:

e CreateFunction

« UpdateFunctionCode

» UpdateFunctionConfiguration

AWS CloudFormation

You can use AWS CloudFormation to create a Lambda function that uses a .zip file archive. In your
AWS CloudFormation template, the AWS: : Lambda: : Function resource specifies the Lambda
function. For descriptions of the properties in the AWS: : Lambda: : Function resource, see
AWS::Lambda::Function in the AWS CloudFormation User Guide.

In the AWS: : Lambda: : Function resource, set the following properties to create a function
defined as a .zip file archive:

o AWS::Lambda::Function

PackageType - Set to Zip.

Code - Enter the Amazon S3 bucket name and .zip file name in the S3Bucket and
S3Keyfields. For Node.js or Python, you can provide inline source code of your Lambda
function.

Runtime - Set the runtime value.

Architecture — Set the architecture value to arm64 to use the AWS Graviton2 processor. By
default, the architecture value is x86_64.

Using the Lambda API 195


https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide

Working with Lambda container images

Your AWS Lambda function's code consists of scripts or compiled programs and their dependencies.
You use a deployment package to deploy your function code to Lambda. Lambda supports two
types of deployment packages: container images and .zip file archives.

There are three ways to build a container image for a Lambda function:

» Using an AWS base image for Lambda

The AWS base images are preloaded with a language runtime, a runtime interface client to

manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

« Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface

client for your language in the image.

» Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include a runtime interface client for your language in the

image.

® Tip
To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

To create a Lambda function from a container image, build your image locally and upload it to
an Amazon Elastic Container Registry (Amazon ECR) repository. Then, specify the repository URI
when you create the function. The Amazon ECR repository must be in the same AWS Region as the

Container images 196


https://gallery.ecr.aws/lambda/provided
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS Lambda Developer Guide

Lambda function. You can create a function using an image in a different AWS account, as long as
the image is in the same Region as the Lambda function. For more information, see Amazon ECR
cross-account permissions.

This page explains the base image types and requirements for creating Lambda-compatible
container images.

(® Note

You cannot change the deployment package type (.zip or container image) for an existing

function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

« Requirements

» Using an AWS base image for Lambda

« Using an AWS OS-only base image

« Using a non-AWS base image

« Runtime interface clients

« Amazon ECR permissions

« Container image settings

Requirements

Install the AWS Command Line Interface (AWS CLI) version 2 and the Docker CLI. Additionally, note
the following requirements:

« The container image must implement the Lambda runtime API. The AWS open-source runtime

interface clients implement the API. You can add a runtime interface client to your preferred

base image to make it compatible with Lambda.

« The container image must be able to run on a read-only file system. Your function code can
access a writable /tmp directory with between 512 MB and 10,240 MB, in 1-MB increments, of
storage.

» The default Lambda user must be able to read all the files required to run your function code.
Lambda follows security best practices by defining a default Linux user with least-privileged

Requirements 197


https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

AWS Lambda Developer Guide

permissions. Verify that your application code does not rely on files that other Linux users are
restricted from running.

o Lambda supports only Linux-based container images.

« Lambda provides multi-architecture base images. However, the image you build for your function
must target only one of the architectures. Lambda does not support functions that use multi-
architecture container images.

Using an AWS base image for Lambda

You can use one of the AWS base images for Lambda to build the container image for your
function code. The base images are preloaded with a language runtime and other components
required to run a container image on Lambda. You add your function code and dependencies to the
base image and then package it as a container image.

AWS periodically provides updates to the AWS base images for Lambda. If your Dockerfile includes
the image name in the FROM property, your Docker client pulls the latest version of the image
from the Amazon ECR repository. To use the updated base image, you must rebuild your container
image and update the function code.

The Node.js 20, Python 3.12, Java 21, AL2023, and later base images are based on the Amazon
Linux 2023 minimal container image. Earlier base images use Amazon Linux 2. AL2023 provides
several advantages over Amazon Linux 2, including a smaller deployment footprint and updated

versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead

of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container
Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

(® Note

To run AL2023-based images locally, including with AWS Serverless Application Model
(AWS SAM), you must use Docker version 20.10.10 or later.

Using an AWS base image 198


https://gallery.ecr.aws/lambda/
https://gallery.ecr.aws/lambda/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

AWS Lambda Developer Guide

To build a container image using an AWS base image, choose the instructions for your preferred
language:

« Node.js
» TypeScript (uses a Node.js base image)

« Python

e Java

+ Go
« NET

e Ruby

Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface client
for your language in the image.

Tags Runtime Operating Dockerfile Deprecation
system
al2023 0OS-only Amazon Dockerfile for OS-only
Runtime Linux 2023 Runtime on GitHub
al2 OS-only Amazon Dockerfile for OS-only
Runtime Linux 2 Runtime on GitHub

Amazon Elastic Container Registry Public Gallery: gallery.ecr.aws/lambda/provided

Using a non-AWS base image

Lambda supports any image that conforms to one of the following image manifest formats:

» Docker image manifest V2, schema 2 (used with Docker version 1.10 and newer)

Using an AWS OS-only base image 199


https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://gallery.ecr.aws/lambda/provided

AWS Lambda Developer Guide

« Open Container Initiative (OCI) Specifications (v1.0.0 and up)

Lambda supports a maximum uncompressed image size of 10 GB, including all layers.

(@ Note

To make the image compatible with Lambda, you must include a runtime interface client

for your language in the image.

Runtime interface clients

If you use an OS-only base image or an alternative base image, you must include a runtime

interface client in your image. The runtime interface client must extend the Lambda runtime AP,

which manages the interaction between Lambda and your function code. AWS provides open-
source runtime interface clients for the following languages:

« Node.js

+ Python

- Java

- .NET

- Go

+ Ruby

« Rust — The Rust runtime client is an experimental package. It is subject to change and intended

only for evaluation purposes.

If you're using a language that doesn't have an AWS-provided runtime interface client, you must
create your own.

Amazon ECR permissions

Before you create a Lambda function from a container image, you must build the image locally and
upload it to an Amazon ECR repository. When you create the function, specify the Amazon ECR
repository URI.

Make sure that the permissions for the user or role that creates the function contain the AWS
managed policies GetRepositoryPolicy and SetRepositoryPolicy.

Runtime interface clients 200


https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

For example, use the IAM console to create a role with the following policy:

{
"Version": "2012-10-17",
"Statement": [
{

"Sid": "VisualEditor@",

"Effect": "Allow",

"Action": [
"ecr:SetRepositoryPolicy",
"ecr:GetRepositoryPolicy"

1,

"Resource": "arn:aws:ecr:us-east-1:111122223333:repository/hello-world"

}
]
}

Amazon ECR repository policies

For a function in the same account as the container image in Amazon ECR, you can add
ecr:BatchGetImage and ecr:GetDownloadUrlForLayer permissions to your Amazon ECR
repository policy. The following example shows the minimum policy:

"Sid": "LambdaECRImageRetrievalPolicy",
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
.
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

]

For more information about Amazon ECR repository permissions, see Private repository policies in

the Amazon Elastic Container Registry User Guide.

If the Amazon ECR repository does not include these permissions, Lambda adds
ecr:BatchGetImage and ecr:GetDownloadUrlForLayer to the container image repository
permissions. Lambda can add these permissions only if the principal calling Lambda has
ecr:getRepositoryPolicy and ecr:setRepositoryPolicy permissions.

Amazon ECR permissions 201


https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policies.html

AWS Lambda Developer Guide

To view or edit your Amazon ECR repository permissions, follow the directions in Setting a private

repository policy statement in the Amazon Elastic Container Registry User Guide.

Amazon ECR cross-account permissions

A different account in the same region can create a function that uses a container image owned by
your account. In the following example, your Amazon ECR repository permissions policy needs the

following statements to grant access to account number 123456789012.

» CrossAccountPermission — Allows account 123456789012 to create and update Lambda
functions that use images from this ECR repository.

« LambdaECRImageCrossAccountRetrievalPolicy — Lambda will eventually set a function's state
to inactive if it is not invoked for an extended period. This statement is required so that Lambda
can retrieve the container image for optimization and caching on behalf of the function owned
by 123456789012.

Example — Add cross-account permission to your repository

"Version": "2012-10-17",
"Statement": [
{
"Sid": "CrossAccountPermission",
"Effect": "Allow",
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"
1,
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"

"Sid": "LambdaECRImageCrossAccountRetrievalPolicy",
"Effect": "Allow",
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"
1,
"Principal": {
"Service": "lambda.amazonaws.com"

Amazon ECR permissions 202


https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html

AWS Lambda Developer Guide

I
"Condition": {
"StringlLike": {
"aws:sourceARN": "arn:aws:lambda:us-east-1:123456789012:function:*"

To give access to multiple accounts, you add the account IDs to the Principal list in
the CrossAccountPermission policy and to the Condition evaluation list in the
LambdaECRImageCrossAccountRetrievalPolicy.

If you are working with multiple accounts in an AWS Organization, we recommend that you
enumerate each account ID in the ECR permissions policy. This approach aligns with the AWS
security best practice of setting narrow permissions in IAM policies.

Container image settings

The following are common container image settings. If you use these settings in your Dockerfile,
note how Lambda interprets and processes these settings:

ENTRYPOINT - Specifies the absolute path to the entry point of the application.

CMD - Specifies parameters that you want to pass in with ENTRYPOINT.

WORKDIR - Specifies the absolute path to the working directory.

ENV - Specifies an environment variable for the Lambda function.

For more information about how Docker uses the container image settings, see ENTRYPOINT in the
Dockerfile reference on the Docker Docs website. For more information about using ENTRYPOINT
and CMD, see Demystifying ENTRYPOINT and CMD in Docker on the AWS Open Source Blog.

You can specify the container image settings in the Dockerfile when you build your image. You
can also override these configurations using the Lambda console or Lambda API. This allows you
to deploy multiple functions that deploy the same container image but with different runtime
configurations.

Container image settings 203


https://docs.docker.com/engine/reference/builder/#entrypoint
https://aws.amazon.com/blogs/opensource/demystifying-entrypoint-cmd-docker/

AWS Lambda Developer Guide

/A Warning

When you specify ENTRYPOINT or CMD in the Dockerfile or as an override, make sure that
you enter the absolute path. Also, do not use symlinks as the entry point to the container.

To override the configuration values in the container image

Open the Functions page of the Lambda console.

Choose the function to update.
Under Image configuration, choose Edit.

Enter new values for any of the override settings, and then choose Save.

i W=

(Optional) To add or override environment variables, under Environment variables, choose
Edit.

For more information, see the section called “Environment variables”.

Container image settings 204


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Testing Lambda container images locally

You can use the Lambda runtime interface emulator to locally test a container image function
before uploading it to Amazon Elastic Container Registry (Amazon ECR) and deploying it to
Lambda. The emulator is a proxy for the Lambda runtime API. It's a lightweight web server that

converts HTTP requests into JSON events to pass to the Lambda function in the container image.

The AWS base images and OS-only base images include the runtime interface emulator. If you use

an alternative base image, such as an Alpine Linux or Debian image, you can build the emulator

into your image or install it on your local machine.

The runtime interface emulator is available on the AWS GitHub repository. There are separate
packages for the x86-64 and arm64 architectures.

Topics

Guidelines for using the runtime interface emulator

Environment variables

Testing images built from AWS base images

Testing images built from alternative base images

Guidelines for using the runtime interface emulator

Note the following guidelines when using the runtime interface emulator:

» The RIE does not emulate Lambda security and authentication configurations, or Lambda
orchestration.

« Lambda provides an emulator for each of the instruction set architectures.

« The emulator does not support AWS X-Ray tracing or other Lambda integrations.

Environment variables

The runtime interface emulator supports a subset of environment variables for the Lambda
function in the local running image.

If your function uses security credentials, you can configure the credentials by setting the following
environment variables:

Testing images 205


https://github.com/aws/aws-lambda-runtime-interface-emulator/

AWS Lambda Developer Guide

o AWS_ACCESS_KEY_ID

o AWS_SECRET_ACCESS_KEY
o AWS_SESSION_TOKEN

o AWS_DEFAULT_REGION

To set the function timeout, configure AWS_LAMBDA_FUNCTION_TIMEOUT. Enter the maximum
number of seconds that you want to allow the function to run.

The emulator does not populate the following Lambda environment variables. However, you can
set them to match the values that you expect when the function runs in the Lambda service:

o AWS_LAMBDA_FUNCTION_VERSION
o AWS_LAMBDA_FUNCTION_NAME
e AWS_LAMBDA_FUNCTION_MEMORY_SIZE

Testing images built from AWS base images

The AWS base images for Lambda include the runtime interface emulator. After building your

Docker image, follow these steps to test it locally.

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

® Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Testing AWS base images 206



AWS Lambda Developer Guide

Linux/macOS

In Linux and macOS§, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
'{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload'":"hello world!"}' -ContentType
"application/json"

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Testing AWS base images 207


https://docs.docker.com/engine/reference/commandline/kill/

AWS Lambda Developer Guide

Testing images built from alternative base images

If you use an alternative base image, such as an Alpine Linux or Debian image, you can build the
emulator into your image or install it on your local machine.

Building the runtime interface emulator into an image
To build the emulator into your image

1. Create a script and save it in your project directory. Set execution permissions for the script
file.

The script checks for the presence of the AWS_LAMBDA_RUNTIME_API environment variable,
which indicates the presence of the runtime API. If the runtime API is present, the script runs
the runtime interface client. Otherwise, the script runs the runtime interface emulator.

Choose your language to see an example script:

Node.js

In the following example, /usr/local/bin/npx aws-lambda-ric is the npx command
to start the Node.js runtime interface client.

Example entry_script.sh

#!/bin/sh
if [ -z "${AWS_LAMBDA_RUNTIME_API}" 1; then

exec /usr/local/bin/aws-lambda-rie /usr/local/bin/npx aws-lambda-ric $e@
else

exec /usr/local/bin/npx aws-lambda-ric $@
fi

® Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

Testing non-AWS images 208



AWS Lambda Developer Guide

Python

In the following example, /usr/local/bin/python -m awslambdaric is the Python
interpreter command to run the Python runtime interface client as a script.

Example entry_script.sh

#!/bin/sh
if [ -z "${AWS_LAMBDA_RUNTIME_API}" ]; then
exec /usr/local/bin/aws-lambda-rie /usr/local/bin/python -m awslambdaric $@
else
exec /usr/local/bin/python -m awslambdaric $e
fi

(® Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

Java

In the following example, /usr/bin/java -cp './*'
com.amazonaws.services.lambda.runtime.api.client.AWSLambda sets the
classpath to the Java runtime interface client.

Example entry_script.sh

#!/bin/sh
if [ -z "${AWS_LAMBDA_RUNTIME_API}" 1; then
exec /usr/local/bin/aws-lambda-rie /usr/bin/java -cp './*'
com.amazonaws.services.lambda.runtime.api.client.AWSLambda $e@
else
exec Jusr/bin/java -cp './*'
com.amazonaws.services.lambda.runtime.api.client.AWSLambda $@
fi

Testing non-AWS images 209



AWS Lambda Developer Guide

® Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

Go
In the following example, /main is the binary that is compiled during the Docker build.

Example entry_script.sh

#!/bin/sh
if [ -z "${AWS_LAMBDA_RUNTIME_API}" ]; then
exec /usr/local/bin/aws-lambda-rie /main $@
else
exec /main $@
fi

(® Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

Ruby
In the following example, aws_lambda_xric is the Ruby runtime interface client.

Example entry_script.sh

#!/bin/sh
if [ -z "${AWS_LAMBDA_RUNTIME_API}" ]; then
exec /usr/local/bin/aws-lambda-rie aws_lambda_ric $@

Testing non-AWS images 210



AWS Lambda Developer Guide

else
exec aws_lambda_ric $e@
fi

(@ Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory
2. Download the runtime interface emulator for your target architecture from GitHub into your
project directory. Lambda provides an emulator for each of the instruction set architectures.

Linux/macOS

curl -Lo aws-lambda-rie https://github.com/aws/aws-lambda-runtime-interface-
emulator/releases/latest/download/aws-lambda-rie \
&& chmod +x aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-armé64

PowerShell

Invoke-WebRequest -Uri https://github.com/aws/aws-lambda-runtime-interface-
emulator/releases/latest/download/aws-lambda-rie -OutFile aws-lambda-rie

To install the arm64 emulator, replace the Uri with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

3. Add the following lines to your Dockerfile. The ENTRYPOINT includes the script that you
created in step 1 and your function handler.

Testing non-AWS images 211



AWS Lambda Developer Guide

Example lines to add to Dockerfile

In the following example, replace 1ambda_function.handler with your function handler.

COPY ./entry_script.sh /entry_script.sh

RUN chmod +x /entry_script.sh

ADD aws-lambda-rie /usr/local/bin/aws-lambda-rie

ENTRYPOINT [ "/entry_script.sh","lambda_function.handler" ]

4. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

(@ Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the - -
platform linux/arm64 option instead.

5. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

(® Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/armé64 option instead of --platform linux/amdé64.

6. From a new terminal window, post an event to the local endpoint.

Testing non-AWS images 212


https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

Linux/macOS

In Linux and macOS§, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
'{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload'":"hello world!"}' -ContentType
"application/json"

7. Get the container ID.

docker ps

8. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Testing non-AWS images 213


https://docs.docker.com/engine/reference/commandline/kill/

AWS Lambda Developer Guide

Install the runtime interface emulator locally

To install the runtime interface emulator on your local machine, download the package for your
preferred architecture from GitHub. Then, use the docker run command to start the container
image and set the --entrypoint to the emulator. For more information, choose the instructions
for your preferred language:

Node.js

Python
e Java

+ Go

Ruby

Testing non-AWS images 214



AWS Lambda Developer Guide

Invoking Lambda functions

You can invoke Lambda functions directly using the Lambda console, a function URL HTTP(S)
endpoint, the Lambda API, an AWS SDK, the AWS Command Line Interface (AWS CLI), and AWS
toolkits. You can also configure other AWS services to invoke your function in response to events

or external requests, or on a schedule. For example, Amazon Simple Storage Service (Amazon
S3) can invoke your function when an object is created in an S3 bucket, or Amazon EventBridge
(CloudWatch Events) can invoke your function on a schedule. You can also configure Lambda to
read items from a stream or a queue and invoke your function to process them.

When you invoke a function, you can choose to invoke it synchronously or asynchronously. With
synchronous invocation, you wait for the function to process the event and return a response.

With asynchronous invocation, Lambda queues the event for processing and returns a response

immediately. For asynchronous invocation, Lambda handles retries and can send invocation records
to a destination.

Invoking Lambda functions from another AWS service

For another AWS service to invoke your function directly, you need to create a trigger. A trigger is a
resource you configure to allow another AWS service to invoke your function when certain events
or conditions occur. Your function can have multiple triggers. Each trigger acts as a client invoking
your function independently, and each event that Lambda passes to your function has data from
only one trigger.

You can create a trigger for your function using the Lambda console. You can also configure
another service to invoke your function by using the Events property in the AWS Serverless
Application Model (AWS SAM). To learn more see AWS::Serverless::Function in the AWS Serverless
Application Model Developer Guide.

To create a trigger using the Lambda console

Open the functions page of the Lambda console.

Select the function you want to create a trigger for.

1

2

3. Inthe Function overview pane, choose add trigger.

4. Select the AWS service you want to invoke your function.
5

Fill out the options in the Trigger configuration pane and choose Add.

Invoking Lambda functions from another AWS service 215


https://docs.aws.amazon.com/lambda/latest/dg/API_Reference.html
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/cli/latest/reference/lambda/index.html
https://aws.amazon.com/developer/tools/
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Depending on the AWS service you choose to invoke your function, the trigger configuration
options will be different.

For a full list of the AWS services that can invoke your Lambda function by using a trigger, and for
more information about configuring triggers for different services, see Using Lambda with other

services.

Invoking Lambda functions from a stream or queue

For your Lambda function to process items from a stream or a queue, such as an Amazon Kinesis
stream or an Amazon Simple Queue Service (Amazon SQS) queue, you need to create an event
source mapping. An event source mapping is a resource in Lambda that reads items from a stream

or a queue and creates events containing batches of items to send to your Lambda function. Each
event that your function processes can contain hundreds or thousands of items.

You can create an event source mapping for your Lambda function using the Lambda console, the
AWS CLI, the Lambda API, or an AWS SDK. You can also add an event source mapping using AWS
SAM or AWS CloudFormation. To create an event source mapping in the Lambda console, follow
the instructions to create a trigger in the section called “Invoking Lambda functions from another

AWS service”, and select one of the AWS services that support event source mappings as your
source.

To create an event source mapping using the AWS CLI, Lambda API, or an AWS SDK, and to see
a list of the AWS services which event source mappings can be used with, refer to Lambda event

source mappings. For more information about creating an event source mapping using the Events
property in AWS SAM, see AWS::Serverless::Function in the AWS Serverless Application Model
Developer Guide.

Errors and retries

Depending on how your function is invoked, scaling behavior and the types of errors that occur can
vary. When you invoke a function synchronously, you receive errors in the response and can retry.
When you invoke asynchronously, use an event source mapping, or configure another service to
invoke your function, the retry requirements and the way that your function scales to handle large
numbers of events will vary. For more information, see Error handling and automatic retries in AWS
Lambda.

Invoking Lambda functions from a stream or queue 216


https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

Testing Lambda functions in the console

You can test your Lambda function in the console by invoking your function with a test event. A
test event is a JSON input to your function. If your function doesn't require input, the event can be
an empty document ({3}).

When you run a test in the console, Lambda synchronously invokes your function with the test
event. The function runtime converts the event JSON into an object and passes it to your code's
handler method for processing.

(® Create a test event

Before you can test in the console, you need to create a private or shareable test event.

Invoking functions with test events

To test a function

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to test.

3. Choose the Test tab.

4. Under Test event, choose Create new event or Edit saved event and then choose the saved
event that you want to use.

5. Optionally - choose a Template for the event JSON.

6. Choose Test.

7. Toreview the test results, under Execution result, expand Details.

To invoke your function without saving your test event, choose Test before saving. This creates an
unsaved test event that Lambda preserves only for the duration of the session.

You can also access your saved and unsaved test events on the Code tab. From there, choose Test,
and then choose your test event.

Testing in console 217


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Creating private test events

Private test events are available only to the event creator, and they require no additional
permissions to use. You can create and save up to 10 private test events per function.

To create a private test event

Open the Functions page of the Lambda console.

1

2. Choose the name of the function that you want to test.
3. Choose the Test tab.
4

Under Test event, do the following:

a. Choose a Template.

b. Enter a Name for the test.

¢. Inthe text entry box, enter the JSON test event.
d. Under Event sharing settings, choose Private.

5. Choose Save changes.

You can also create new test events on the Code tab. From there, choose Test, Configure test
event.

Creating shareable test events

Shareable test events are test events that you can share with other users in the same AWS account.
You can edit other users' shareable test events and invoke your function with them.

Lambda saves shareable test events as schemas in an Amazon EventBridge (CloudWatch Events)

schema registry named lambda-testevent-schemas. As Lambda utilizes this registry to store

and call shareable test events you create, we recommend that you do not edit this registry or
create a registry using the lambda-testevent-schemas name.

To see, share, and edit shareable test events, you must have permissions for all of the following
EventBridge (CloudWatch Events) schema registry APl operations:

» schemas.CreateRegistry

e schemas.CreateSchema

e schemas.DeleteSchema

Creating private test events 218


https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-schema-registry.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-schema-registry.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/operations.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#CreateRegistry
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#CreateSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#DeleteSchema

AWS Lambda

Developer Guide

Note that saving edits made to a shareable test event overwrites that event.

schemas.

DeleteSchemaVersion

schemas.

DescribeRegistry

schemas.

DescribeSchema

schemas.

GetDiscoveredSchema

schemas.

ListSchemaVersions

schemas.

UpdateSchema

If you cannot create, edit, or see shareable test events, check that your account has the required

permissions for these operations. If you have the required permissions but still cannot access

shareable test events, check for any resource-based policies that might limit access to the

EventBridge (CloudWatch Events) registry.

To create a shareable test event

P wWN

Open the Functions page of the Lambda console.

Choose the name of the function that you want to test.

Choose the Test tab.

Under Test event, do the following:

a. Choose a Template.

b. Enter a Name for the test.

¢. Inthe text entry box, enter the JSON test event.

d. Under Event sharing settings, choose Shareable.

Choose Save changes.

(@ Use shareable test events with AWS Serverless Application Model.

You can use AWS SAM to invoke shareable test events. See sam remote test-event in

the AWS Serverless Application Model Developer Guide

Creating shareable test events

219


https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-version-schemaversion.html#DeleteSchemaVersion
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#DescribeRegistry
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#DescribeSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-discover.html#GetDiscoveredSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-versions.html#ListSchemaVersions
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#UpdateSchema
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-remote-test-event.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-remote-test-event.html

AWS Lambda Developer Guide

Deleting shareable test event schemas

When you delete shareable test events, Lambda removes them from the 1ambda-testevent-
schemas registry. If you remove the last shareable test event from the registry, Lambda deletes
the registry.

If you delete the function, Lambda does not delete any associated shareable test event schemas.
You must clean up these resources manually from the EventBridge (CloudWatch Events) console.

Deleting shareable test event schemas 220


https://console.aws.amazon.com/events

AWS Lambda Developer Guide

Synchronous invocation

When you invoke a function synchronously, Lambda runs the function and waits for a response.
When the function completes, Lambda returns the response from the function's code with
additional data, such as the version of the function that was invoked. To invoke a function
synchronously with the AWS CLI, use the invoke command.

aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{ "key": "value" }' response.json

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line

Interface User Guide for Version 2.

You should see the following output:

"ExecutedVersion": "$LATEST",
"StatusCode": 200

The following diagram shows clients invoking a Lambda function synchronously. Lambda sends the
events directly to the function and sends the function's response back to the invoker.

Synchronous Invocation

Lambda
Clients Events function
=
 —
=l
—

The payload is a string that contains an event in JSON format. The name of the file where the
AWS CLI writes the response from the function is response. json. If the function returns an

Synchronous invocation 221


https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

object or error, the response body is the object or error in JSON format. If the function exits
without error, the response body is null.

(® Note

Lambda does not wait for external extensions to complete before sending the response.
External extensions run as independent processes in the execution environment and
continue to run after the function invocation is complete. For more information, see
Lambda extensions.

The output from the command, which is displayed in the terminal, includes information from
headers in the response from Lambda. This includes the version that processed the event (useful
when you use aliases), and the status code returned by Lambda. If Lambda was able to run the
function, the status code is 200, even if the function returned an error.

@ Note

For functions with a long timeout, your client might be disconnected during synchronous
invocation while it waits for a response. Configure your HTTP client, SDK, firewall, proxy, or
operating system to allow for long connections with timeout or keep-alive settings.

If Lambda isn't able to run the function, the error is displayed in the output.

aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload value response.json

You should see the following output:

An error occurred (InvalidRequestContentException) when calling the Invoke operation:
Could not parse request body into json: Unrecognized token 'value': was expecting
('true', 'false' or 'null')
at [Source: (byte[])"value"; line: 1, column: 11]

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

Synchronous invocation 222



AWS Lambda Developer Guide

o AWS Command Line Interface (AWS CLI) version 2

o AWS CLI - Quick configuration with aws configure

You can use the AWS CLI to retrieve logs for an invocation using the --1og-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

"StatusCode": 200,

"LogResult":
"U1RBU1QgUmVxdWVzdE1kOiA4N2QwNDRiOCImMTUOLTEXZTgtOGNkYS@Qy0Tc@YzVINGZiMjEgVmVyc2lvb...",

"ExecutedVersion": "$LATEST"

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line

Interface User Guide for Version 2.

You should see the following output:

Synchronous invocation 223


https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3Jpz2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d0@2e5ca-
£5792818b6fe8368e5b51d50; Parent=191db58857df8395; Sampled=0"",ask/1lib:/opt/1ib",

END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8

REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

For more information about the Invoke API, including a full list of parameters, headers, and
errors, see Invoke.

When you invoke a function directly, you can check the response for errors and retry. The AWS CLI
and AWS SDK also automatically retry on client timeouts, throttling, and service errors. For more
information, see Error handling and automatic retries in AWS Lambda.

Synchronous invocation 224


https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html

AWS Lambda Developer Guide

Asynchronous invocation

Several AWS services, such as Amazon Simple Storage Service (Amazon S3) and Amazon Simple
Notification Service (Amazon SNS), invoke functions asynchronously to process events. When you
invoke a function asynchronously, you don't wait for a response from the function code. You hand
off the event to Lambda and Lambda handles the rest. You can configure how Lambda handles
errors, and can send invocation records to a downstream resource such as Amazon Simple Queue
Service (Amazon SQS) or Amazon EventBridge (EventBridge) to chain together components of your
application.

Sections

How Lambda handles asynchronous invocations

Configuring error handling for asynchronous invocation

Configuring destinations for asynchronous invocation

Asynchronous invocation configuration API

Dead-letter queues

How Lambda handles asynchronous invocations

The following diagram shows clients invoking a Lambda function asynchronously. Lambda queues
the events before sending them to the function.

Asynchronous Invocation

Lambda function

Events Event queue |

=l _ -
-

= Pl”d =]
- —_—

Asynchronous invocation 225



AWS Lambda Developer Guide

For asynchronous invocation, Lambda places the event in a queue and returns a success response
without additional information. A separate process reads events from the queue and sends them to
your function. To invoke a function asynchronously, set the invocation type parameter to Event.

aws lambda invoke \
--function-name my-function \
--invocation-type Event \
--cli-binary-format raw-in-base64-out \
--payload '{ "key": "value" }' response.json

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line

Interface User Guide for Version 2.

"StatusCode": 202

The output file (response. json) doesn't contain any information, but is still created when you
run this command. If Lambda isn't able to add the event to the queue, the error message appears
in the command output.

Lambda manages the function's asynchronous event queue and attempts to retry on errors. If

the function returns an error, Lambda attempts to run it two more times, with a one-minute wait
between the first two attempts, and two minutes between the second and third attempts. Function
errors include errors returned by the function's code and errors returned by the function's runtime,
such as timeouts.

If the function doesn't have enough concurrency available to process all events, additional requests
are throttled. For throttling errors (429) and system errors (500-series), Lambda returns the event
to the queue and attempts to run the function again for up to 6 hours. The retry interval increases
exponentially from 1 second after the first attempt to a maximum of 5 minutes. If the queue
contains many entries, Lambda increases the retry interval and reduces the rate at which it reads
events from the queue.

Even if your function doesn't return an error, it's possible for it to receive the same event from
Lambda multiple times because the queue itself is eventually consistent. If the function can't keep
up with incoming events, events might also be deleted from the queue without being sent to the

How Lambda handles asynchronous invocations 226


https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

function. Ensure that your function code gracefully handles duplicate events, and that you have
enough concurrency available to handle all invocations.

When the queue is very long, new events might age out before Lambda has a chance to send them
to your function. When an event expires or fails all processing attempts, Lambda discards it. You
can configure error handling for a function to reduce the number of retries that Lambda performs,

or to discard unprocessed events more quickly.

You can also configure Lambda to send an invocation record to another service. Lambda supports
the following destinations for asynchronous invocation. Note that SQS FIFO queues and SNS FIFO
topics are not supported.

Amazon SQS - A standard SQS queue.
Amazon SNS - A standard SNS topic.
AWS Lambda - A Lambda function.

Amazon EventBridge - An EventBridge event bus.

The invocation record contains details about the request and response in JSON format. You can
configure separate destinations for events that are processed successfully, and events that fail all
processing attempts. Alternatively, you can configure a standard Amazon SQS queue or standard
Amazon SNS topic as a dead-letter queue for discarded events. For dead-letter queues, Lambda

only sends the content of the event, without details about the response.

If Lambda can't send a record to a destination you have configured, it sends a
DestinationDeliveryFailures metric to Amazon CloudWatch. This can happen if your
configuration includes an unsupported destination type, such as an Amazon SQS FIFO queue or an
Amazon SNS FIFO topic. Delivery errors can also occur due to permissions errors and size limits. For
more information on Lambda invocation metrics, see Invocation metrics.

(® Note

To prevent a function from triggering, you can set the function's reserved concurrency to
zero. When you set reserved concurrency to zero for an asynchronously invoked function,
Lambda begins sending new events to the configured dead-letter queue or the on-failure

event destination, without any retries. To process events that were sent while reserved

concurrency was set to zero, you must consume the events from the dead-letter queue or
the on-failure event destination.

How Lambda handles asynchronous invocations 227



AWS Lambda Developer Guide

Configuring error handling for asynchronous invocation

Use the Lambda console to configure error handling settings on a function, a version, or an alias.
To configure error handling

1. Open the Functions page of the Lambda console.

Choose a function.
Choose Configuration and then choose Asynchronous invocation.

Under Asynchronous invocation, choose Edit.

ok W

Configure the following settings.

« Maximum age of event — The maximum amount of time Lambda retains an event in the
asynchronous event queue, up to 6 hours.

» Retry attempts — The nhumber of times Lambda retries when the function returns an error,
between 0 and 2.

6. Choose Save.

When an invocation event exceeds the maximum age or fails all retry attempts, Lambda discards it.
To retain a copy of discarded events, configure a failed-event destination.

Configuring destinations for asynchronous invocation

To retain records of asynchronous invocations, add a destination to your function. You can choose
to send either successful or failed invocations to a destination. Each function can have multiple
destinations, so you can configure separate destinations for successful and failed events. Each
record sent to the destination is a JSON document with details about the invocation. Like error
handling settings, you can configure destinations on a function, function version, or alias.

® Note

You can also retain records of failed invocations for certain event source mapping types.
For more information, see the section called “Configuring destinations for event source
mapping invocations”

Configuring error handling for asynchronous invocation 228


https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda

Developer Guide

The following table lists supported destinations for asynchronous invocation records. For Lambda

to successfully send records to your chosen destination, ensure that your function's execution role

also contains the relevant permissions. The table also describes how each destination type receives

the JSON invocation record.

Destination type Required permission
Amazon SQS queue sgs:SendMessage
Amazon SNS topic sns:Publish

Lambda function InvokeFunction
EventBridge events:PutEvents

Destination-specific JSON
format

Lambda passes the invocation
record as the Message to the
destination.

Lambda passes the invocation
record as the Message to the
destination.

Lambda passes the invocatio
n record as the payload to the
function.

» Lambda passes the
invocation record as the
detail in the PutEvents
call.

e The value for the source
event field is 1ambda.

e The value for the detail -
type event field is either
"Lambda Function Invocatio
n Result - Success" or
"Lambda Function Invocatio
n Result - Failure".

e The resource event field
contains the function
and destination Amazon
Resource Names (ARNS).

Configuring destinations for asynchronous invocation

229


https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html

AWS Lambda Developer Guide

Destination type Required permission Destination-specific JSON
format

o For other event fields,
see Amazon EventBridge

events.

The following example shows an invocation record for an event that failed three processing
attempts due to a function error. The invocation record contains details about the event, the
response, and the reason that the record was sent.

{
"version": "1.0",
"timestamp": "2019-11-14T18:16:05.5682",
"requestContext": {
"requestId": "e4b46cbf-b738-xmpl-8880-a18cdf61200e",
"functionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-function:
$LATEST",
"condition": "RetriesExhausted",

"approximateInvokeCount": 3
b
"requestPayload": {

"ORDER_IDS": [
"9e@7af0@3-ce31-4ff3-xmpl-36dce652ch4f",
"637de236-e7b2-464e-xmpl-baf57f86bb53",
"a8lddcab-2c35-45¢c7-xmpl-c3a@3a3ledls”

1,

"responseContext": {
"statusCode": 200,
"executedVersion": "$LATEST",
"functionError": "Unhandled"

Iy

"responsePayload": {
"errorMessage": "RequestId: e4b46cbf-b738-xmpl-8880-al8cdf61200e Process exited

before com