aws

Developer Guide

Amazon Lex V1

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Lex V1 Developer Guide

Amazon Lex V1: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Lex V1 Developer Guide

Table of Contents

... viii
What IS AMQAzZON LeX? ...ciiiiiiiiiiiiiieneensss 1
Are You a First-time User of AMAzOn LEX? ...c.icviriririinenieinenienteesessestsessessesessessessesessessessssessessessssens 2
HOW If WOKKS cociiiiiiiiinnnninnnnnnnnnnneseemsensssssssesesssssssnessnestmneesiseessens 4
SUPPOItEA LANGUAGESocuverereeieeieeeeieietectesteetestestesseesesaesaesessessassassassassesssessessastensansessessessessssssessensensanes 6
Supported Languages and LOCALES ...ttt sve e e et saesbestesse s e e e s n e s nns 7
Languages and Locales Supported by Amazon Lex FEAtUresceeeeveeceeceeceeceeeceeeeeeeenns 7
Programming MOGEL ...ttt ettt st et esse e e e s e e s et et e s aesaa s e s e esaessenaansensanean 8
Model Building APl OPErations ...ttt e s et e stestessesae s e s e s s e s e s esaesaenes 8
RUNTIME AP OPEIAtiONSueieeieeeeeteee ettt sttt e sae s sae e st e s sse e ssae s sa e s b e s sseassaesssaessassanasssassnes 9
Lambda FunNctions As COde HOOKSccoueiririnirininintnenieeeesestets ettt sse st ssessesassessanes 11
MaANAGING MESSQAGESuveeeriieieririirieeireesteesreestes st estessseesseesssesssaesssessstesssessssesssessseesssessssesssessseesssessseessans 13
TYPES OF MESSAGES ...ttt te st et e st et et e st e s ae st e st e s e e e et e s et e testansassesseesassaensansansansan 14
Contexts for CoNfigUIiNg MESSAGESc.ccueeuirieieeieetectecteste ettt ste s e s se s e s e e e e e e s e e e saensanes 15
Supported MesSsage FOIMALS ...ttt ste e e e e e e s e tesaestessesse e e s e e e enansans 20
MESSAGE GIOUPS ..veeeurirereirieerrteeiterseessteesstessessseesssessseesssesssessssessssesssessssssssesssessssessssssssessssesssesssessssessses 20
RESPONSE CArAS ..uvinveiieeieietetetetestee ettt et e e teste st e s se e e et et e s et assessesseesaessasaessessansasassassessaessensansans 22
Managing Conversation CONTEXT ...ttt e e s e e s e e s sae s s s e ssae e s e essaesssnesanas 26
Setting INTENT CONTEXEoiieee ettt st et e s st s e e ssae e s b e s sse s s aesssaessnassneans 27
USING DEFAULL SLOt VALUES ...ttt s e e et st e st esaesbesse s s e s e aeaebansans 29
Setting SESSION AtTIDULEScveeeeeeeeeeeeee ettt et s te s s ae e e e nea et nes 30
Setting ReqUESt AtLIHDULES ...ttt a et 32
Setting the SeSSION TIMEOUL ..ottt et e s e s ae e e e e e e aesaennan 35
Sharing Information BetWeen INLENLS ..ottt 36
Setting COMPLEX ALEFDULES ...c.eeeeeceeeeee ettt st e s ae s ra e e e s aesaeaan 36
USING CONTIAENCE SCOMES ..ottt e sttt e st e te st e s tesseste s e e e e e et et et assassassessasseensansanean 38
SESSION MANAGEMENToiiiiiiecterteect ettt e ste e st e st e s sae s s e e s sse e st esssasssaesssaessaesssessssessseessaesssennns 40
CONVEISATION LOGS ..oiueiiiiieieinitirieeeteeie st essteeseessaessseessaessseesssesssaessaesssasssassssessssesssesssassssessssesssesssassssensns 41
IAM Policies for CoONVErsation LOGSccceeeeiriiieieiectestecteseeeeee e saestestessessessessesssessessessessessansans 42
Configuring CONVEIrSAtioN LOGScceciecieeieeieeiieeeietete e stestestestessee e e e e essaesaessessessassassesseennesaessansanes 45
ENCrypting ConVersation LOGSccicieiiiirienritinieniecseessresseessreeseessseesssessssesssesssesssaessssessaesssssssaesnns 49
Viewing Text Logs in Amazon CloudWatch LOgS ...ttt 50
Accessing Audio LOgs iN AMAZON S3iiieicecieeecteste st e e s e tesaestestesse s e s e e s e e s saesaessessanean 54

Monitoring Conversation Log Status with CloudWatch Metricsooeeeveieciececececeeeeeeee 55

Amazon Lex V1 Developer Guide

MaANAGING SESSIONSeiiuieeriieierieeriteerteetessreesrteesseesstessseestessstasssessssesssessseesssessssesssessseesssessssesssesssessssessses 55
SWILCRING INEENLS ...ttt ettt e st et e st e e e e s s e s e st e st e aesbassassesseesaensansansans 57
ReSUMING @ PrIOr INTENT ..ottt e sre s e e s re e s e e s sae s sa e s aeessn e s se s snesnnas 58
STArting @ NEW SESSIONiiieiiiiecteeecteere st s e st e s e e st e s aesssaessaeesseesssesssaesssasssnasssessaesnnes 59
Validating SLOt VALUES ...ttt ettt st e e e e e et t e st et e s sesse e e e e e na e s asanean 59

DEPLOYMENT OPLIONS ..ottt ettt cte et e st e st e e e e e s e e s e st e st e sesbessesseesaesaessansansensansassessaeseanes 59

BUilt-in INtents and SLOt TYPES ..ottt a et et te st e s seese e e e e s e e e tenan 60
BUILE-IN INEENTES ettt ettt ettt b et e s st et s e s aa b e ssasaesaenas 60
BUILE-IN SLOT TYPES ettt te et sa et t e s ae s e s s s e e e et et e st e stassassaesesnnennanes 78

CUSEOM SLOT TYPES vttt ettt e te st e st e s te s e e e s et et et e be st e st e s saeseesaesaensansansansasassassassaensanes 89

SLOt ODBFUSCAtION ..ttt ettt st e s ae st et s s b et e s b et e e s e saesse e saassessenens 91

SENTIMENT ANGLYSIS ..ttt te e e et e e e e e e e et et e te st e st e ssesbasseese e s essestansassansassassasseessensanean 92

TAGGING RESOUICESeeeveiieeeiiicteeiteeteeteesteesreestessaeesseesssesssaesssessssesssessssesssessseasssessssesssessseesssessssesssesssenns 93
TAGGING YOUIR RESOUICEScooueeieiiereeiteeteesteesteestesseeesseesssessseesssessssesssessseessssesssesssessssessssessaesssssssaesnns 94
TG RESEFICTIONS .ottt et s e st e s s ae s s e e s b e e st e s ae s e e s saeessaasssessssesssaessaasssenns 94
Tagging ReSoUIrCES (CONSOLE) ...couicueeuiiieeeteciectecteeeeee et e tectestestestesse s e e s e s et e saesaessessassessassnensannans 95
Tagging RESOUICES (AWS CLI) ettt te e ste s e te e e e e e e e stestesaessesse s e s e e s esesessessansans 97

[CT =1 4 T T) = =T« [P UPUP N 929

Step 1: Set UP @n ACCOUNT ...ttt sttt e ssae s re e s sae s sse e s sae e se e s sesssaessaaessaasssasssaesnns 99
SIGN UP TOr AWS ..ottt e st e e et et e st e st e st e b e st e s se e e e st e e et et e be st assassaeseeseensansansansanes 99
CrEATE @ USEI ..ttt ettt ettt s e st et a et e et eese s b e s st e se et e et e eaesbesstenseensessaesnans 100
NEXE STEP ceiiiieitereecteree ettt ettt sste e st e s s st e s ae s sae e s b e s st e s sae s sa e st assseasssasssaesssessseesssesssaesssesssnans 101

SteP 2: SEt UP the AWS CLI ...ttt ettt e ste st e s te s e e e e s sa et et e a e s se s s e e e e e e e e e enaanes 101
.. 102

Step 3: Getting Started (CONSOLE) ...ttt s e s s e e e e e ae s 102
Exercise 1: Create a Bot UsSing @ BLUEPIINT ...c.oovioeieieeeeeeeeeeeeeeee ettt n e 103
Exercise 2: Create @ CUSTOM BOt ...ttt e et sae s 140
Exercise 3: Publish a Version and Create an ALIasc.ccvvevevineninnieneneeesenietsesseseeessesseees 156

Step 4: Getting Start@d (AWS CLI) .ottt te e e e e e ste st e ae s e s sa e s sa e aa s s 157
EXErcise 1: Create @ BOt ...ttt ettt e sae st s sa e st e snene 158
Exercise 2: Add @ NeW ULLEIraNCe ...ttt sttt sae st e s s e s e s 176
Exercise 3: Add @ Lambda FUNCLIONcociiiriiniiirinetctnetetsenietseseste et steesaesae e ssessesasasaens 181
EXercise 4: PUDLISN @ VEISION ..ottt sttt st sae st ss et s sse e e nas 185
EXErcise 5: Create @n ALIAS ..ottt ste st et e st et esae st e e s e s b e st e sbasae e e e neen 192
EXEICISE 6: CLEAN UP oottt ettt e it et e saesae s s e e e e s e et et e aesaesbasse s e esaesaensansansansanes 193

Versioning and ALIASESciiiiiiiiiiiiieeeeeneesiisssseeeissessssssssssssssssscsss 195

Amazon Lex V1 Developer Guide

VEISIONING euviiitieieeiteete st es e et estese e e e ste e st e saesssesssaessseesstessa e ssassaesssessseesssesssaesssessseesssessseesstessseessaenses 195
THE SLATEST VEISION ...eoueeeereeeeeeereeeeeeecesesessesesssasssssssss s s s s sssssasasssssasssssasssasssssssssasssssssasasnsssases 195
Publishing an Amazon Lex RESOUICE VEISIONcceceeeeereeeeietetectestestesseseeeesessessessessessessens 196
Updating an AMAazon LEX RESOUICEccuecueeieriereeeeietetestestestesseseseesessssessessessessessassessssssessenss 197
Deleting an Amazon Lex RESOUICE OF VEISIONc.cccveiecieriecienieseeeeeeeeeesessessessessessesseesesssssennes 197

ALIGSES ...ttt ettt s te sttt et e s b et e s st et e st et e e A et et e e e et e R e h et et e R et et e Re b et e e e se e et esaebe st eneeaenee 198

Using Lambda FUNCHIONScceeeeeeiiiiiiiiiiiiiinennnnnnsiiiineceeisess 200

Lambda Function Input Event and Response FOrMatccceceecieiecieneneneneseeeeeecee e seseeseeeennens 200
INPUL EVENT FOrMAt ..ottt sttt ettt e s re e st e s ae s sae s sae e s saessaaessaasnaessnassnnanns 200
RESPONSE FOIMIAT ...ttt ettt e s sae s sa e s sae s sa e s b e s ssaesbeessaasssesssaesssassnaans 208

Amazon Lex and AWS Lambda BLUEPIINTS ...ttt ste e e e ae e eaeneaens 215
Updating a Blueprint for @ Specific LOCALEcueeueeeieieeeeeeeeeeeee et 216

DePloying BOtS ...cccciiiiiiieeennneciiiieeeiiniinnesssssssssssseecssses 217

Deploying an Amazon Lex Bot on a Messaging Platformcccoeeeiecieciececececeeeeeeeeee s 217
INtegrating With FACEDOOK ...ttt st 220
INtEGrating With KiKcoeoueeeeeeeeeeeee ettt s ae e s sa e st sa e b s 223
INtEGrating With SLACKe ettt e et ettt e st nn e an 227
INtegrating With TWIlio SMS ... ettt st st n e e nes 233

Deploying an Amazon Lex Bot in Mobile Applicationsccoeoeerieciecieciccececeeceeee e 236

IMPOrting and EXPOrting ...ccccccciiiiieeeeeeniiiiiiieeeiineneesss 237

Exporting and Importing in AMazon Lex FOrmMatccoeieeenececeeeereceeceseee e saesae e e 237
Exporting in AMazon LeX FOIMAL ...ttt ssse e sae e e e s sessvaesaeessnessaasnns 238
Importing in AMAzon LeX FOMMAL ...ttt st e re et e s saessseessaessseesssessvnessnens 239
JSON Format for Importing and EXPOrtingc.cceoeeeieeeciececesececeeeeeeee et cte e sve e eesenens 241

EXPOrting t0 @n ALEXA SKill ..c..ceeeeeeeeeeeee ettt sa ettt re e s a e saeaan 244

BOt EXQIMIPLES ..ceeeeiiiiiiiiiiiiiinnennnnniiisiseeesesss 246

Schedule APPOINTMENT ...ttt e e st e s e e e e e e e et et e st e ssassasse s e ennensenaassansans 246
Overview of the Bot Blueprint (ScheduleAppointment)ccveeeeciececececereeeeee e 249
Overview of the Lambda Function Blueprint (lex-make-appointment-python) 250
Step 1: Create an AMAzon LeX BOt ...ttt esressveeseesssessssessaaessnessanens 251
Step 2: Create @ Lambda FUNCLION ...ttt ettt te s e e nenens 253
Step 3: Update the Intent: Configure a Code HOOKcooiireiieieieeeceeececee e 254
Step 4: Deploy the Bot on the Facebook Messenger Platformcccceeeeeeieeeienececceecienens 255
Details of INFOrMAtion FLOWc.oouiiiiiiicieeccteteteretee ettt et sa s sae s sans 256

BOOK THIP cteeueeteietestesteseetee ettt et et e st esteste e e e e e e et e e e st et e s bessaesessaeseesaensasbansansansasessaeseansassansansansensanes 274
StepP 1: BLUEPIINT REVIEW ...ttt ettt s teste s e e e e s e e s et e st e stassasse s e esnennennan 275

Amazon Lex V1 Developer Guide

Step 2: Create an AMAzon LeX BOt ...ttt et e s nessveesaesssesssnesssaessnessneens 278
Step 3: Create @ Lambda fUNCLION ...ttt aan 281
Step 4: Add the Lambda Function as @ Code HOOKcceeveeeeenerieeeeeeeecesee e 282
Details of the INfOrmMation FLOW ..ottt ettt sse st saenes 286
Example: Using @ RESPONSE Cardcviieiecieiieeeceeeeeetetetete st ste e e eee s s tesaessessessessee e saessesaesanean 306
UPAting ULEErANCES ...ttt ettt et e e e a et et e st e sae b e se e e e seenn et enanes 310
INtegrating With @ WED SIte ...ttt e se e e b aens 312
Call Center AQENt ASSISTANTcoeeieieeieecteeeeseree ettt te e et a e st e st e s ae e e e se e e e s e aessansanes 312
Step 1: Create an AMAzon Kendra INAEXceceeieiecieeienereeeeeeeeeeeectectecae e s e re e saessesaeaas 314
Step 2: Create an AMAzon LeX BOt ...ttt et esressreeseesssesssessaaessnessnnens 314
Step 3: Add a Custom and BUilt=in INteNt ..o 315
Step 4: Set Up AMAZON COGNITO ...eiiviiiiiiiciieieerteet et este s sressreessaeestessaesssaessseessnessseesssesssasssaens 316
Step 5: Deploy Your Bot as @ Web Application ...t 318
SEEP 6: USE The BOt ettt e et sa e sae st e s e s e s e s e e e a e aenaanaans 318
MiIgrating @ DOt ... iiiiiiiiiiiiiieeciiiiieeeiininieeessssessissssesesssesss 322
Migrating @ DOt (CONSOLE) .ttt ettt s ae s ae e s e e et et nes 322
Migrating @ Lambda FUNCLION ...ttt ettt snens 323
MiIGrationN MESSAGEScocuiieiiiteeeecterreert et ettt s st e s ste s st e sseesssaessaessseessaessseassaessssasssesssaesssessssesssassseans 324
BUILE-IN INTENT ettt ettt st et s et et s e st et e e saessenaenans 324
BUILE-IN SLOT tY P ettt sa et e b e st e e e e e e et e aesbe st e aasseesnennennanes 324
(@o] 0 V7T =1 To] o T Fo Yo [OOOOTT TSROSO 324
MESSAGE GIOUPS ..eecvverveirierireeetersreestessseesstessseesssessseesssesssessssesssessssesssessssessseesssesssessssesssessssesssesssssssses 325
Prompts @nd PRIASES ...ttt e et e st et ae st e sesse e e e e e e e e e aesabansans 325
Other AmMAzon LeX VT fEAUIES ..ottt sttt sttt et e e ssesse s e e ssa s e e enes 326
Migrating @ Lambda fFUNCLION ...ttt st st e e e s snens 326
List OF UPAAted fIELAS ...ttt st et e st s e e e e e e aesaeaens 328
SECUNITY ceiiiiiiiieennniiiiiieieiitnensessssssssssssecss 336
DAta Prot@CLION ..c.coiiieeee ettt sttt st s a et s b st sene s b e st e nesaesneesnes 337
ENCrYPLION @t REST ..ttt re e e st e s sae s ae e s sae s s ae e s b e sssaesbessneassaessnaessnans 337
ENCryPLion iN TranSIt c.eeeoiiiecececctestesterte sttt s et e st s te s re e st e s saesssbessaasssnessaessssessnsessaassseanns 339
KEY MANAGEMENT ..ottt ettt re st e s ste s sre e s ae s s st e s b e s saeessaessaaessaesssasssaassseessaesssannns 339
Identity and Access ManNAgQEIMENTccuecieieeiieieieteteste ettt e e aesaestestesaesse s e e e e e e s e s e aensessensanes 339
AUAIENCE ..ttt sttt sttt s b et st s bt et s s b et e e s s et et s sa b et esassassestesassansesessansensesanns 339
Authenticating With identities ...ttt 340
Managing access USING POLICIEScceieeieiieieececeeeeee et ste et s e e e re e e e s e s e stessesse s e sse e e esaennennan 343
How Amazon Lex WOrks WIith TAM ...ttt sse s se e sse e s e ssens 346

Vi

Amazon Lex V1 Developer Guide

Identity-based POLliCYy XAMPLESccucoueeieeeeeeeeeeee ettt re e e e et saesaenaens 357

AWS managed policies fOr AMAzZON LEXeeereeeeeseeceetete e see e e ae s stesae e e s e s s e saenes 364
USING Service-LiNKEA ROLES ...ttt te e a et et te st st a e st saeaan 373
TrOUBLESNOOTING ...ttt te e e ettt e st e st e s be s e e sa e e e e e a e s entanean 375
MORNIEOTING «eviiviiiieiteeieeet ettt es e st s et e e et e st e s s seessaeesaeesssesssaesssesssaesstessseesssessssasssessseesssessstesssenssaensees 376
Monitoring Amazon Lex With CLoudWatch ..o 377
Logging Amazon Lex API Calls with AWS CloudTrailcccceeeeeeeeeeeeeeeeeceeceeeeee e 389
ComMPLIANCE Valid@tion ...ttt te e e e s et e st e saesbesse s e eseennesaaneans 394
RESILIEICE .ottt sttt sttt ettt s a et et s s et et e e b et e sesae st e st esasaassesasansensans 395
INFrAaStrUCTUIE SECUIILY ..cuveeeeeeeeeeee ettt e st et e s e e e e e e s et e stessassessasanesaanaans 395
GUIdEliNes aNd QUOLAS ..ccuueeeeueeeeeeeeeenneeeeeneeeesseceessecessssccsssssesssssscssssssssssssssssssssssssscssssssssssssssnssane 396
SUPPOITEA REGIONS ...ttt ettt e testeste e e e e e e e s et e te b e ssessessaessessessansassassassesssessensansansansansans 396
GENETAL GUIAELINES ..ottt sttt ettt et st et s et e st s e s et e e sae s enaesasansnas 396

L@] U]) = L3RRS 399
RUNEIME SErVICE QUOTAS ...ueeeeeceeeeceteee ettt e ceetteeceesareeeeesaaeesesssaeeeesssssessssssssesssssssesessssnnesens 400
Model BUilding QUOLASooueiieieeeececee ettt e e e e e e ste st e st e s b e s e e e e e e e e aesaesaaaeneas 402

APl REFEIEONCE auvvevvvervreeennnnnnnnnenniiiiiiiiiiiiiieiieesessses 407
ACTIONS ettt ettt st a et e s b e st a e e et e e st s b e et e st e b e et e bt st e et e e ae et e et e enesbesnees 407
Amazon Lex Model BUilding SEIVICE ...ttt ste s e sae e e e saesaesaessassans 409
AmaAzon LeX RUNTIME SEIVICE ...ttt ettt sae st sae s sae s nes 620

DAt TYPES ettt sttt et e st s e s st et e s st s s e e e b e e e e e st e e e e e e b e e s R e e e ae e s ra e et e e st e teesraeeraesntans 663
Amazon Lex Model BUilding SEIVICE ...ttt ste s e ste e e se st saessassans 664
AmaAzon LeX RUNTIME SEIVICE ...ttt ettt sae st sae s sae s nes 724

(0T oYal 1Ty 1 L= 31 o 1T o oV UPTR 744
AWS GLOSSANY .cceeernnnniiseecennneassesses 751

vii

Amazon Lex V1 Developer Guide

If you are using Amazon Lex V2, refer to the Amazon Lex V2 guide instead.

If you are using Amazon Lex V1, we recommend upgrading your bots to Amazon Lex V2. We are no
longer adding new features to V1 and strongly recommend using V2 for all new bots.

viii

https://docs.aws.amazon.com/lexv2/latest/dg/what-is.html
https://docs.aws.amazon.com/lexv2/latest/dg/migration.html

Amazon Lex V1 Developer Guide

What Is Amazon Lex?

Amazon Lex is an AWS service for building conversational interfaces for applications using voice
and text. With Amazon Lex, the same conversational engine that powers Amazon Alexa is now
available to any developer, enabling you to build sophisticated, natural language chatbots into
your new and existing applications. Amazon Lex provides the deep functionality and flexibility
of natural language understanding (NLU) and automatic speech recognition (ASR) so you can
build highly engaging user experiences with lifelike, conversational interactions, and create new
categories of products.

Amazon Lex enables any developer to build conversational chatbots quickly. With Amazon Lex,
no deep learning expertise is necessary—to create a bot, you just specify the basic conversation
flow in the Amazon Lex console. Amazon Lex manages the dialogue and dynamically adjusts the
responses in the conversation. Using the console, you can build, test, and publish your text or
voice chatbot. You can then add the conversational interfaces to bots on mobile devices, web
applications, and chat platforms (for example, Facebook Messenger).

Amazon Lex provides pre-built integration with AWS Lambda, and you can easily integrate with
many other services on the AWS platform, including Amazon Cognito, AWS Mobile Hub, Amazon
CloudWatch, and Amazon DynamoDB. Integration with Lambda provides bots access to pre-built
serverless enterprise connectors to link to data in SaaS applications, such as Salesforce, HubSpot,
or Marketo.

Some of the benefits of using Amazon Lex include:

« Simplicity - Amazon Lex guides you through using the console to create your own chatbot in
minutes. You supply just a few example phrases, and Amazon Lex builds a complete natural
language model through which the bot can interact using voice and text to ask questions, get
answers, and complete sophisticated tasks.

- Democratized deep learning technologies — Powered by the same technology as Alexa, Amazon
Lex provides ASR and NLU technologies to create a Speech Language Understanding (SLU)
system. Through SLU, Amazon Lex takes natural language speech and text input, understands
the intent behind the input, and fulfills the user intent by invoking the appropriate business
function.

Amazon Lex V1 Developer Guide

Speech recognition and natural language understanding are some of the most challenging
problems to solve in computer science, requiring sophisticated deep learning algorithms to

be trained on massive amounts of data and infrastructure. Amazon Lex puts deep learning
technologies within reach of all developers, powered by the same technology as Alexa. Amazon
Lex chatbots convert incoming speech to text and understand the user intent to generate

an intelligent response, so you can focus on building your bots with differentiated value-

add for your customers, to define entirely new categories of products made possible through
conversational interfaces.

« Seamless deployment and scaling — With Amazon Lex, you can build, test, and deploy your
chatbots directly from the Amazon Lex console. Amazon Lex enables you to easily publish your
voice or text chatbots for use on mobile devices, web apps, and chat services (for example,
Facebook Messenger). Amazon Lex scales automatically so you don't need to worry about
provisioning hardware and managing infrastructure to power your bot experience.

 Built-in integration with the AWS platform — Amazon Lex has native interoperability with other
AWS services, such as Amazon Cognito, AWS Lambda, Amazon CloudWatch, and AWS Mobile
Hub. You can take advantage of the power of the AWS platform for security, monitoring, user
authentication, business logic, storage, and mobile app development.

» Cost-effectiveness — With Amazon Lex, there are no upfront costs or minimum fees. You are
charged only for the text or speech requests that are made. The pay-as-you-go pricing and the
low cost per request make the service a cost-effective way to build conversational interfaces.
With the Amazon Lex free tier, you can easily try Amazon Lex without any initial investment.

Are You a First-time User of Amazon Lex?

If you are a first-time user of Amazon Lex, we recommend that you read the following sections in
order:

1. Getting Started with Amazon Lex - In this section, you set up your account and test Amazon

Lex.

Are You a First-time User of Amazon Lex? 2

Amazon Lex V1 Developer Guide

2. API Reference - This section provides additional examples that you can use to explore Amazon

Lex.

Are You a First-time User of Amazon Lex? 3

Amazon Lex V1

Amazon Lex: How It Works

Amazon Lex enables you to build applications using a speech or text interface powered by the

same technology that powers Amazon Alexa. Following are the typical steps you perform when
working with Amazon Lex:

1.

Create a bot and configure it with one or more intents that you want to support. Configure the
bot so it understands the user's goal (intent), engages in conversation with the user to elicit
information, and fulfills the user's intent.

. Test the bot. You can use the test window client provided by the Amazon Lex console.
. Publish a version and create an alias.

. Deploy the bot. You can deploy the bot on platforms such as mobile applications or messaging

platforms such as Facebook Messenger.

Before you get started, familiarize yourself with the following Amazon Lex core concepts and

terminology:

Bot — A bot performs automated tasks such as ordering a pizza, booking a hotel, ordering
flowers, and so on. An Amazon Lex bot is powered by Automatic Speech Recognition (ASR) and
Natural Language Understanding (NLU) capabilities. Each bot must have a unique name within
your account.

Amazon Lex bots can understand user input provided with text or speech and converse in
natural language. You can create Lambda functions and add them as code hooks in your intent
configuration to perform user data validation and fulfillment tasks.

Intent — An intent represents an action that the user wants to perform. You create a bot to
support one or more related intents. For example, you might create a bot that orders pizza and
drinks. For each intent, you provide the following required information:

« Intent name- A descriptive name for the intent. For example, OxrdexPizza. Intent names
must be unique within your account.

Developer Guide

Amazon Lex V1 Developer Guide

« Sample utterances — How a user might convey the intent. For example, a user might say "Can |
order a pizza please" or "l want to order a pizza".

« How to fulfill the intent - How you want to fulfill the intent after the user provides the
necessary information (for example, place order with a local pizza shop). We recommend that
you create a Lambda function to fulfill the intent.

You can optionally configure the intent so Amazon Lex simply returns the information back to
the client application to do the necessary fulfillment.

In addition to custom intents such as ordering a pizza, Amazon Lex also provides built-in intents
to quickly set up your bot. For more information, see Built-in Intents and Slot Types.

» Slot — An intent can require zero or more slots or parameters. You add slots as part of the intent
configuration. At runtime, Amazon Lex prompts the user for specific slot values. The user must
provide values for all required slots before Amazon Lex can fulfill the intent.

For example, the OrderPizza intent requires slots such as pizza size, crust type, and number of
pizzas. In the intent configuration, you add these slots. For each slot, you provide slot type and
a prompt for Amazon Lex to send to the client to elicit data from the user. A user can reply with
a slot value that includes additional words, such as "large pizza please" or "let's stick with small."
Amazon Lex can still understand the intended slot value.

« Slot type — Each slot has a type. You can create your custom slot types or use built-in slot types.
Each slot type must have a unique name within your account. For example, you might create and
use the following slot types for the OrderPizza intent:

» Size — With enumeration values Small, Medium, and Large.

e Crust — With enumeration values Thick and Thin.

Amazon Lex V1 Developer Guide

Amazon Lex also provides built-in slot types. For example, AMAZON.NUMBER is a built-in slot type
that you can use for the number of pizzas ordered. For more information, see Built-in Intents and

Slot Types.

For a list of AWS Regions where Amazon Lex is available, see AWS Regions and Endpoints in the

Amazon Web Services General Reference.

The following topics provide additional information. We recommend that you review them in order
and then explore the Getting Started with Amazon Lex exercises.

Topics

« Languages Supported in Amazon Lex

« Programming Model

» Managing Messages

« Managing Conversation Context

» Using Confidence Scores

« Conversation Logs

« Managing Sessions With the Amazon Lex API

« Bot Deployment Options

 Built-in Intents and Slot Types

o Custom Slot Types

o Slot Obfuscation

« Sentiment Analysis

« Tagging Your Amazon Lex Resources

Languages Supported in Amazon Lex

Amazon Lex V1 supports a variety of languages and locales. The languages supported and the
features that support them are listed in the following tables.

Amazon Lex V2 supports additional languages, see Languages Supported in Amazon Lex V2

Supported Languages 6

https://docs.aws.amazon.com/general/latest/gr/rande.html#lex_region
https://docs.aws.amazon.com/lexv2/latest/dg/how-languages.html

Amazon Lex V1

Developer Guide

Supported Languages and Locales

Amazon Lex V1 supports the following languages and locales.

Code
de-DE
en-AU
en-GB
en-IN
en-US
es-419
es-ES
es-US
fr-CA
fr-FR
it-1T
ja-JP

ko-KR

Languages and Locales Supported by Amazon Lex Features

Language and locale
German (German)
English (Australia)
English (UK)

English (India)
English (US)

Spanish (Latin America)
Spanish (Spain)
Spanish (US)

French (Canada)
French (France)
Italian (Italy)
Japanese (Japan)

Korean (Korea)

All Amazon Lex features are supported in all languages and locales except as listed in this table.

Feature

Setting Intent Context

Supported languages and locales

English (US) (en-US)

Supported Languages and Locales

Amazon Lex V1 Developer Guide

Programming Model

A bot is the primary resource type in Amazon Lex. The other resource types in Amazon Lex are
intent, slot type, alias, and bot channel association.

You create a bot using the Amazon Lex console or the model building API. The console provides a
graphical user interface that you use to build a production-ready bot for your application. If you
prefer, you can use the model building API through the AWS CLI or your own custom program to
create a bot.

After you create a bot, you deploy it on one of the supported platforms or integrate it into your
own application. When a user interacts with the bot, the client application sends requests to the
bot using the Amazon Lex runtime API. For example, when a user says "l want to order pizza," your
client sends this input to Amazon Lex using one of the runtime API operations. Users can provide
input as speech or text.

You can also create Lambda functions and use them in an intent. Use these Lambda function
code hooks to perform runtime activities such as initialization, validation of user input, and intent
fulfillment. The following sections provide additional information.

Topics

« Model Building APl Operations

o Runtime API Operations

« Lambda Functions As Code Hooks

Model Building APl Operations

To programmatically create bots, intents, and slot types, use the model building API operations.
You can also use the model building API to manage, update, and delete resources for your bot. The
model building APl operations include:

« PutBot, PutBotAlias, Putintent, and PutSlotType to create and update bots, bot aliases, intents,

and slot types, respectively.

» CreateBotVersion, CreatelntentVersion, and CreateSlotTypeVersion to create and publish versions
of your bots, intents, and slot types, respectively.

» GetBot and GetBots to get a specific bot or a list of bots that you have created, respectively.

Programming Model 8

https://docs.aws.amazon.com/lex/latest/dg/chatbot-service.html

Amazon Lex V1 Developer Guide

« GetIntent and GetIntents to get a specific intent or a list of intents that you have created,

respectively.

» GetSlotType and GetSlotTypes to get a specific slot type or a list of slot types that you have
created, respectively.

o GetBuiltinIntent, GetBuiltinintents, and GetBuiltinSlotTypes to get an Amazon Lex built-in intent,
a list of Amazon Lex built-in intents, or a list of built-in slot types that you can use in your bot,
respectively.

» GetBotChannelAssociation and GetBotChannelAssociations to get an association between your
bot and a messaging platform or a list of the associations between your bot and messaging
platforms, respectively.

» DeleteBot, DeleteBotAlias, DeleteBotChannelAssociation, Deletelntent, and DeleteSlotType to

remove unneeded resources in your account.

You can use the model building API to create custom tools to manage your Amazon Lex resources.
For example, there is a limit of 100 versions each for bots, intents, and slot types. You could use the
model building API to build a tool that automatically deletes old versions when your bot nears the
limit.

To make sure that only one operation updates a resource at a time, Amazon Lex uses checksums.
When you use a Put APl operation—PutBot, PutBotAlias Putintent, or PutSlotType—to update
a resource, you must pass the current checksum of the resource in the request. If two tools

try to update a resource at the same time, they both provide the same current checksum.

The first request to reach Amazon Lex matches the current checksum of the resource. By the
time that the second request arrives, the checksum is different. The second tool receives a

PreconditionFailedException exception and the update terminates.

The Get operations—GetBot, GetIntent, and GetSlotType—are eventually consistent. If you use a

Get operation immediately after you create or modify a resource with one of the Put operations,
the changes might not be returned. After a Get operation returns the most recent update, it
always returns that updated resource until the resource is modified again. You can determine if an
updated resource has been returned by looking at the checksum.

Runtime API Operations

Client applications use the following runtime API operations to communicate with Amazon Lex:

Runtime API Operations 9

Amazon Lex V1 Developer Guide

« PostContent — Takes speech or text input and returns intent information and a text or speech
message to convey to the user. Currently, Amazon Lex supports the following audio formats:

Input audio formats — LPCM and Opus

Output audio formats - MPEG, OGG, and PCM

The PostContent operation supports audio input at 8 kHz and 16 kHz. Applications where the
end user speaks with Amazon Lex over the telephone, such as an automated call center, can pass
8 kHz audio directly.

» PostText — Takes text as input and returns intent information and a text message to convey to
the user.

Your client application uses the runtime API to call a specific Amazon Lex bot to process utterances
— user text or voice input. For example, suppose that a user says "l want pizza." The client sends
this user input to a bot using one of the Amazon Lex runtime API operations. From the user input,
Amazon Lex recognizes that the user request is for the OrderPizza intent defined in the bot.
Amazon Lex engages the user in a conversation to gather the required information, or slot data,
such as pizza size, toppings, and number of pizzas. After the user provides all of the necessary slot
data, Amazon Lex either invokes the Lambda function code hook to fulfill the intent, or returns the
intent data to the client, depending on how the intent is configured.

Use the PostContent operation when your bot uses speech input. For example, an automated call
center application can send speech to an Amazon Lex bot instead of an agent to address customer
inquiries. You can use the 8 kHz audio format to send audio directly from the telephone to Amazon
Lex.

The test window in the Amazon Lex console uses the PostContent API to send text and speech
requests to Amazon Lex. You use this test window in the Getting Started with Amazon Lex

exercises.

Runtime API Operations 10

Amazon Lex V1 Developer Guide

Lambda Functions As Code Hooks

You can configure your Amazon Lex bot to invoke a Lambda function as a code hook. The code
hook can serve multiple purposes:

» Customizes the user interaction—For example, when Joe asks for available pizza toppings, you
can use prior knowledge of Joe's choices to display a subset of toppings.

« Validates the user's input—Suppose that Jen wants to pick up flowers after hours. You can
validate the time that Jen input and send an appropriate response.

o Fulfills the user's intent—After Joe provides all of the information for his pizza order, Amazon
Lex can invoke a Lambda function to place the order with a local pizzeria.

When you configure an intent, you specify Lambda functions as code hooks in the following places:
» Dialog code hook for initialization and validation—This Lambda function is invoked on each user
input, assuming Amazon Lex understood the user intent.

« Fulfillment code hook—This Lambda function is invoked after the user provides all of the slot
data required to fulfill the intent.

You choose the intent and set the code hooks in the Amazon Lex console, as shown in the
following screen shot:

Lambda Functions As Code Hooks 11

Amazon Lex V1 Developer Guide

OrderFlowers Latest =

~ Sample utterances @

e.g. | would like to book a flight [+]
| would like to pick up flowers [%]
I would like to order some flowers (x}
Order flowers Q

+ Lambda initialization and validation €

+| Initialization and validation code hook

Lambda Function Name -
v Slots @
Priority Required Name Slot type Prompt
e.g. Location egA. - e.g. What city? o (+)
1. v v FlowerType Flowe... = 1w What type of flow | £ [x]
2. v PickupDate AMA... - Built-in « What day do you | £ (%]
3.0~ E PickupTime AMA... = Built-in » Atwhattime doy £ Q

+ Confirmation prompt @
v| Confirmation prompt
Confirm

Okay, your {FlowerType} will be ready for pickup by {Picku] £%

Cancel (if the user says "no")

Ckay, | will not place your order. o
« Fulfillment @
® AWS Lambda function Return parameters to client
L ambda Function NMame hd

Laml'::da ﬁ'@%ﬁ?}sﬁé éotaHooks 12

Amazon Lex V1 Developer Guide

You can also set the code hooks using the dialogCodeHook and fulfillmentActivity fields in
the Putintent operation.

One Lambda function can perform initialization, validation, and fulfillment. The event data that
the Lambda function receives has a field that identifies the caller as either a dialog or fulfillment
code hook. You can use this information to run the appropriate portion of your code.

You can use a Lambda function to build a bot that can navigate complex dialogs. You use the
dialogAction field in the Lambda function response to direct Amazon Lex to take specific
actions. For example, you can use the E1icitSlot dialog action to tell Amazon Lex to ask the
user for a slot value that isn't required. If you have a clarification prompt defined, you can use the
ElicitIntent dialog action to elicit a new intent when the user is finished with the previous one.

For more information, see Using Lambda Functions.

Managing Messages

Topics

» Types of Messages

Contexts for Configuring Messages

Supported Message Formats

Message Groups

Response Cards

When you create a bot, you can configure clarifying or informational messages that you want it to
send to the client. Consider the following examples:

» You could configure your bot with the following clarification prompt:

I don't understand. What would you like to do?

Amazon Lex sends this message to the client if it doesn't understand the user's intent.

« Suppose that you create a bot to support an intent called OrderPizza. For a pizza order,
you want users to provide information such as pizza size, toppings, and crust type. You could
configure the following prompts:

Managing Messages 13

Amazon Lex V1 Developer Guide

What size pizza do you want?
What toppings do you want?
Do you want thick or thin crust?

After Amazon Lex determines the user's intent to order pizza, it sends these messages to the
client to get information from the user.

This section explains designing user interactions in your bot configuration.

Types of Messages

A message can be a prompt or a statement.

« A prompt is typically a question and expects a user response.

« A statement is informational. It doesn't expect a response.

A message can include references to slot, session attributes, and request attributes. At runtime,
Amazon Lex substitutes these references with actual values.

To refer to slots values that have been set, use the following syntax:

{SlotName}

To refer to session attributes, use the following syntax:
[SessionAttributeName]

To refer to request attributes, use the following syntax:
((RequestAttributeName))

Messages can include both slot values, session attributes and request attributes.

For example, suppose that you configure the following message in your bot's OrderPizza intent:

"Hey [FirstName], your {PizzaTopping} pizza will arrive in [DeliveryTime] minutes."

Types of Messages

14

Amazon Lex V1 Developer Guide

This message refers to both slot (PizzaTopping) and session attributes (FirstName and
DeliveryTime). At runtime, Amazon Lex replaces these placeholders with values and returns the
following message to the client:

"Hey John, your cheese pizza will arrive in 30 minutes."

To include brackets ([]) or braces ({}) in a message, use the backslash (\) escape character. For
example, the following message includes the curly braces and square brackets:

\{Text\} \[Text\]
The text returned to the client application looks like this:

{Text} [Text]

For information about session attributes, see the runtime API operations PostText and
PostContent. For an example, see Book Trip.

Lambda functions can also generate messages and return them to Amazon Lex to send to the user.
If you add Lambda functions when you configure your intent, you can create messages dynamically.
By providing the messages while configuring your bot, you can eliminate the need to construct a
prompt in your Lambda function.

Contexts for Configuring Messages

When you are creating your bot, you can create messages in different contexts, such as clarification
prompts in bot, prompts for slot values, and messages from intents. Amazon Lex chooses an
appropriate message in each context to return to your user. You can provide a group of messages
for each context. If you do, Amazon Lex randomly chooses one message from the group. You can
also specify the format of the message or group the messages together. For more information, see
Supported Message Formats.

If you have a Lambda function associated with an intent, you can override any of the messages
that you configured at build time. A Lambda function is not required to use any of these messages,
however.

Bot Messages

You can configure your bot with clarification prompts and session end messages. At runtime,
Amazon Lex uses the clarification prompt if it doesn't understand the user's intent. You can

Contexts for Configuring Messages 15

Amazon Lex V1 Developer Guide

configure the number of times that Amazon Lex requests clarification before sending the session
end message. You configure bot-level messages in the Error Handling section of the Amazon Lex

console, as in the following image:

¢ OrderFlowers Bulld m i

Editor Settings Channels Monitoring

[+ Error handling
OrderFlowers I Clarification prompts I

o L+
Appointment Typel

’ didn'l understand you, whal would you likelod = £

CarType\values
Crusls Maximum number of retries
Flower Types ’
Pizzakind
RoomTypeValues
Sizes L+
IError Handling Sorry, I'm nol able 1o assist al this time [

With the API, you configure messages by setting the clarificationPrompt and
abortStatement fields in the PutBot operation.

If you use a Lambda function with an intent, the Lambda function might return a response
directing Amazon Lex to ask a user's intent. If the Lambda function doesn’t provide such a
message, Amazon Lex uses the clarification prompt.

Slot Prompts

You must specify at least one prompt message for each of the required slots in an intent. At
runtime, Amazon Lex uses one of these messages to prompt the user to provide a value for the
slot. For example, for a cityName slot, the following is a valid prompt:

Which city would you like to fly to?

You can set one or more prompts for each slot using the console. You can also create groups of
prompts using the Putintent operation. For more information, see Message Groups.

Contexts for Configuring Messages

16

Amazon Lex V1 Developer Guide

Responses

In the console, use the Responses section to build dynamic, engaging conversations for your
bot. You can create one or more message groups for a response. At runtime, Amazon Lex builds
a response by selecting one message from each message group. For more information about
message groups, see Message Groups.

For example, your first message group could contain different greetings: "Hello," "Hi," and
"Greetings." The second message group could contain different forms of introduction: "l am the
reservation bot" and "This is the reservation bot." A third message group could communicate the
bot's capabilities: "I can help with car rentals and hotel reservations," "You can make car rentals and
hotel reservations," and "l can help you rent a car and book a hotel."

Lex uses a message from each of the message groups to dynamically build the responses in a
conversation. For example, one interaction could be the following:

> Test Bot (Latest) @ READY

Hi
| am the reservation bot.

| can make car rentals and hotel

resenvations.

Another one could be the following:

Contexts for Configuring Messages 17

Amazon Lex V1 Developer Guide

> Test Bot (Latest) © READY

Hello
Hit

This is the reservation bot

I can help you rent a car and book a hotel.

In either case, the user could respond with a new intent, such as the BookCar or BookHotel

intent.

You can set up the bot to ask a follow-up question in the response. For example, for the preceding
interaction, you could create a fourth message group with the following questions: "Can | help with
a car or a hotel?", "Would you like to make a reservation now?", and "Is there anything that | can do
for you?". For messages that include "No" as a response, you can create a follow-up prompt. The
following image provides an example:

Contexts for Configuring Messages 18

Amazon Lex V1 Developer Guide

> Test Bot (Latest) © READY

Hi

Hil

This is the reservation bot

| can help you rent a car and book a hotel.

Is there anything that | can do for you today?

| am always here if you want to make a
reservation.

To create a follow-up prompt, choose Wait for user reply. Then type the message or messages
that you want to send when the user says "No." When you create a response to use as a follow-up
prompt, you must also specify an appropriate statement when the answer to the statement is "No."
See the following image for an example:

v Wait for user reply
IT the user says "'no,” the following message will be presentad.

Message €9

Cne of these messages will be presented at random.

Ok. Thank you. Have a great day! (+]

I'm always here if you want to make a reservation. Q

Contexts for Configuring Messages 19

Amazon Lex V1 Developer Guide

To add responses to an intent with the API, use the PutIntent operation. To specify a response,
set the conclusionStatement field in the PutIntent request. To set a follow-up prompt, set
the followUpPrompt field and include the statement to send when the user says "No." You can't
set both the conclusionStatement field and the followUpPrompt field on the same intent.

Supported Message Formats

When you use the PostText operation, or when you use the PostContent operation with the
Accept header set to text/plain; charset=utf8, Amazon Lex supports messages in the
following formats:

 PlainText—The message contains plain UTF-8 text.
« SSML—The message contains text formatted for voice output.

« CustomPayload—The message contains a custom format that you have created for your client.
You can define the payload to meet the needs of your application.

» Composite—The message is a collection of messages, one from each message group. For more
information about message groups, see Message Groups.

By default, Amazon Lex returns any one of the messages defined for a particular prompt. For
example, if you define five messages to elicit a slot value, Amazon Lex chooses one of the
messages randomly and returns it to the client.

If you want Amazon Lex to return a specific type of message to the client in a run-time request,
set the x-amzn-1lex:accept-content-types request parameter. The response is limited to
the type or types requested. If there is more than one message of the specified type, Amazon Lex
returns one at random. For more information about the x-amz-1lex:accept-content-types
header, see Setting the Response Type.

Message Groups

A message group is a set of suitable responses to a particular prompt. Use message groups when
you want your bot to dynamically build the responses in a conversation. When Amazon Lex returns
a response to the client application, it randomly chooses one message from each group. You can
create a maximum of five message groups for each response. Each group can contain a maximum
of five messages. For examples of creating message groups in the console, see Responses.

To create a message group, you can use the console or you can use the PutBot, Putintent, or
PutSlotType operations to assign a group number to a message. If you don't create a message

Supported Message Formats 20

Amazon Lex V1 Developer Guide

group, or if you create only one message group, Amazon Lex sends a single message in the
Message field. Client applications get multiple messages in a response only when you have created
more than one message group in the console, or when you create more than one message group
when you create or update an intent with the Putintent operation.

When Amazon Lex sends a message from a group, the response's Message field contains an
escaped JSON object that contains the messages. The following example shows the contents of the
Message field when it contains multiple messages.

(® Note

The example is formatted for readability. A response doesn't contain carriage returns (CR).

{\"messages\":[
{\"type\":\"PlainText\",\"group\":0,\"value\":\"Plain text\"},
{\"type\":\"SSML\",\"group\":1,\"value\":\"SSML text\"},
{\"type\":\"CustomPayload\",\"group\":2,\"value\":\"Custom payload\"}
13

You can set the format of the messages. The format can be one of the following:

» PlainText—The message is in plain UTF-8 text.
o SSML—The message is Speech Synthesis Markup Language (SSML).

« CustomPayload—The message is in a custom format that you specified.

To control the format of messages that the PostContent and PostText operations return in
the Message field, set the x-amz-lex:accept-content-types request attribute. For example,
if you set the header to the following, you receive only plain text and SSML messages in the
response:

x-amz-lex:accept-content-types: PlainText, SSML

If you request a specific message format and a message group doesn't contain that a message with
that format, you get a NoUsableMessageException exception. When you use a message group
to group messages by type, don't use the x-amz-lex:accept-content-types header.

Message Groups 21

Amazon Lex V1 Developer Guide

For more information about the x-amz-lex:accept-content-types header, see Setting the
Response Type.

Response Cards

(® Note

Response cards do not work with Amazon Connect chat. However, see Add interactive

messages to chat for similar functionality.

A response card contains a set of appropriate responses to a prompt. Use response cards to simplify
interactions for your users and increase your bot's accuracy by reducing typographical errors in

text interactions. You can send a response card for each prompt that Amazon Lex sends to your
client application. You can use response cards with Facebook Messenger, Slack, Twilio, and your
own client applications.

For example, in a taxi application, you can configure an option in the response card for "Home" and
set the value to the user's home address. When the user selects this option, Amazon Lex receives
the entire address as the input text. See the following image:

TAXI

Where To?

Home
Wark

Someplace else

You can define a response card for the following prompts:

« Conclusion statement
« Confirmation prompt

» Follow-up prompt

Response Cards 22

https://docs.aws.amazon.com/connect/latest/adminguide/interactive-messages.html
https://docs.aws.amazon.com/connect/latest/adminguide/interactive-messages.html

Amazon Lex V1 Developer Guide

» Rejection statement

» Slot type utterances

You can define only one response card for each prompt.

You configure response cards when you create an intent. You can define a static response card at
build time using the console or the Putintent operation. Or you can define a dynamic response
card at runtime in a Lambda function. If you define both static and dynamic response cards, the
dynamic response card takes precedence.

Amazon Lex sends response cards in the format that the client understands. It transforms response
cards for Facebook Messenger, Slack, and Twilio. For other clients, Amazon Lex sends a JSON
structure in the PostText response. For example, if the client is Facebook Messenger, Amazon

Lex transforms the response card to a generic template. For more information about Facebook
Messenger generic templates, see Generic Template on the Facebook website. For an example of

the JSON structure, see Generating Response Cards Dynamically.

You can use response cards only with the PostText operation. You can't use response cards with the
PostContent operation.

Defining Static Response Cards

Define static response cards with the PutBot operation or the Amazon Lex console when you create
an intent. A static response card is defined at the same time as the intent. Use a static response
card when the responses are fixed. Suppose that you are creating a bot with an intent that has

a slot for flavor. When defining the flavor slot, you specify prompts, as shown in the following
console screenshot:

~ Slots @
Priority Required MName Slot type Prompt
v e.q. What city? f+] o
1 v teaSize - What size iced tea wc £ O
2. - v teaFlavor teaFlavor w Would you like a flave & o

When defining prompts, you can optionally associate a response card and define details with the
PutBot operation, or, in the Amazon Lex console, as shown in the following example:

Response Cards 23

https://developers.facebook.com/docs/messenger-platform/send-api-reference/generic-template

Amazon Lex V1

Developer Guide

teaFlavor Prompts

IVIGAITTIUNTT TIWNNIWSD W TSLH SO

2
Corresponding utterances

e.g. | would like to go to {foCily}

Prompt response cards

0
Card image Card title
What Flavor?
Button value Button title
lemon v Lemon
raspberry - Raspberry
plain v Plain
None v e g. Button
None - e.g. Button
Delete card

Card subtitle

What flavor tea would

L+
[+

Preview
Facebook -

What Flavor?

Leman
Raspberry

Plain

Now suppose that you've integrated your bot with Facebook Messenger. The user can click the
buttons to choose a flavor, as shown in the following illustration:

Response Cards

24

Amazon Lex V1 Developer Guide

What flavor tea would you like?

e W ok
| ¥ £

What flavor?

L W LA AL 3

Lemon
Raspberry
Flain
To customize the content of a response card, you can refer to session attributes. At runtime,

Amazon Lex substitutes these references with appropriate values from the session attributes. For
more information, see Setting Session Attributes. For an example, see Using a Response Card.

Generating Response Cards Dynamically

To generate response cards dynamically at runtime, use the initialization and validation Lambda
function for the intent. Use a dynamic response card when the responses are determined at
runtime in the Lambda function. In response to user input, the Lambda function generates a
response card and returns it in the dialogAction section of the response. For more information,
see Response Format.

The following is a partial response from a Lambda function that shows the responseCard
element. It generates a user experience similar to the one shown in the preceding section.

responseCard: {
"version": 1,

Response Cards 25

Amazon Lex V1 Developer Guide

"contentType": "application/vnd.amazonaws.card.generic",
"genericAttachments": [
{

"title": "What Flavor?",
"subtitle": "What flavor do you want?",

"imageUrl": "Link to image",
"attachmentLinkUrl": "Link to attachment",
"buttons": [
{
"text": "Lemon",
"value": "lemon"
I
{
"text": "Raspberry",
"value": "raspberry"
I
{
"text": "Plain",
"value": "plain"
}
]
}
]

For an example, see Schedule Appointment.

Managing Conversation Context

Conversation context is the information that a user, your application, or a Lambda function provides

to an Amazon Lex bot to fulfill an intent. Conversation context includes slot data that the user
provides, request attributes set by the client application, and session attributes that the client
application and Lambda functions create.

Topics

Setting Intent Context
Using Default Slot Values

Setting Session Attributes

Setting Request Attributes

Setting the Session Timeout

Managing Conversation Context

26

Amazon Lex V1 Developer Guide

« Sharing Information Between Intents

» Setting Complex Attributes

Setting Intent Context

You can have Amazon Lex trigger intents based on context. A context is a state variable that can be
associated with an intent when you define a bot.

You configure the contexts for an intent when you create the intent using the console or using
the Putintent operation. You can only use contexts in the English (US) (en-US) locale, and only if
you set the enableModelImprovements parameter to true when you created the bot with the
PutBot operation.

There are two types of relationships for contexts, output contexts and input contexts. An output
context becomes active when an associated intent is fulfilled. An output context is returned to your
application in the response from the PostText or PostContent operation, and it is set for the current

session. After a context is activated, it stays active for the number of turns or time limit configured
when the context was defined.

An input context specifies conditions under which an intent can be recognized. An intent can only
be recognized during a conversation when all of its input contexts are active. An intent with no
input contexts is always eligible for recognition.

Amazon Lex automatically manages the lifecycle of contexts that are activated by fulfilling intents
with output contexts. You can also set active contexts in a call to the PostContent or PostText
operation.

You can also set the context of a conversation using the Lambda function for the intent. The
output context from Amazon Lex is sent to the Lambda function input event. The Lambda function
can send contexts in its response. For more information, see Lambda Function Input Event and
Response Format.

For example, suppose you have an intent to book a rental car that is configured to return an output
context called "book_car_fulfilled". When the intent is fulfilled, Amazon Lex sets the output context
variable "book_car_fulfilled". Since "book_car_fulfilled" is an active context, an intent with the
"book_car_fulfilled" context set as an input context is now considered for recognition, as long as

a user utterance is recognized as an attempt to elicit that intent. You can use this for intents that
only make sense after booking a car, such as emailing a receipt or modifying a reservation.

Setting Intent Context 27

Amazon Lex V1 Developer Guide

Output Context

Amazon Lex makes an intent's output contexts active when the intent is fulfilled. You can use the
output context to control the intents eligible to follow up the current intent.

Each context has a list of parameters that are maintained in the session. The parameters are the
slot values for the fulfilled intent. You can use these parameters to pre-populate slot values for
other intents. For more information,see Using Default Slot Values.

You configure the output context when you create an intent with the console or with the Putintent
operation. You can configure an intent with more than one output context. When the intent is
fulfilled, all of the output contexts are activated and returned in the PostText or PostContent

response.

The following shows assigning an output context to an intent using the console.

Input tags €

Output tags ©

order_complete €
£F 5tuns 90 secs

When you define an output context you also define its time to live, the length of time or number of
turns that the context is included in responses from Amazon Lex. A turn is one request from your
application to Amazon Lex. Once the number of turns or the time has expired, the context is no
longer active.

Your application can use the output context as needed. For example, your application can use the
output context to:

« Change the behavior of the application based on the context. For example, a travel application
could have a different action for the context "book_car_fulfilled" than "rental_hotel_fulfilled."

» Return the output context to Amazon Lex as the input context for the next utterance. If Amazon
Lex recognizes the utterance as an attempt to elicit an intent, it uses the context to limit the
intents that can be returned to ones with the specified context.

Setting Intent Context 28

Amazon Lex V1 Developer Guide

Input Context

You set an input context to limit the points in the conversation where the intent is recognized.
Intents without an input context are always eligible to be recognized.

You set the input contexts that an intent responds to using the console or the PutIntent
operation. An intent can have more than one input context. The following shows assigning an input
context to an intent using the console.

+~ Context @&
Input tags €@
v
order_complete @
Output tags €
-

For an intent with more than one input context, all contexts must be active to trigger the intent.
You can set an input context when you call the PostText, PostContent, or PutSession operation.

You can configure the slots in an intent to take default values from the current active context.
Default values are used when Amazon Lex recognizes a new intent but doesn't receive a slot value.
You specify the context name and slot name in the form #context-name.parameter-name
when you define the slot. For more information, see Using Default Slot Values.

Using Default Slot Values

When you use a default value, you specify a source for a slot value to be filled for new intents
when no slot is provided by the user’s input. This source can be previous dialog, request or session
attributes, or a fixed value that you set at build-time.

You can use the following as the source for your default values.

Previous dialog (contexts) — #context-name.parameter-name

Session attributes — [attribute-name]

Request attributes — <attribute-name>

Fixed value — Any value that doesn't match the previous

Using Default Slot Values 29

Amazon Lex V1 Developer Guide

When you use the Putintent operation to add slots to an intent, you can add a list of default values.
Default values are used in the order that they are listed. For example, suppose you have an intent
with a slot with the following definition:

"slots": [
{
"name": "reservation-start-date",
"defaultValueSpec": {
"defaultValuelList": [

{
"defaultValue": "#book-car-fulfilled.startDate"
1,
{
"defaultValue": "[reservationStartDate]"
}

Iy

Other slot configuration settings

When the intent is recognized, the slot named "reservation-start-date" has its value set to one of
the following.

1. If the "book-car-fulfilled" context is active, the value of the "startDate" parameter is used as the
default value.

2. If the "book-car-fulfilled" context is not active, or if the "startDate" parameter is not set, the
value of the "reservationStartDate" session attribute is used as the default value.

3. If neither of the first two default values are used, then the slot doesn't have a default value and
Amazon Lex will elicit a value as usual.

If a default value is used for the slot, the slot is not elicited even if it is required.

Setting Session Attributes

Session attributes contain application-specific information that is passed between a bot and a
client application during a session. Amazon Lex passes session attributes to all Lambda functions
configured for a bot. If a Lambda function adds or updates session attributes, Amazon Lex passes
the new information back to the client application. For example:

Setting Session Attributes 30

Amazon Lex V1 Developer Guide

 In Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console), the example bot uses the
price session attribute to maintain the price of flowers. The Lambda function sets this attribute
based on the type of flowers that was ordered. For more information, see Step 5 (Optional):
Review the Details of the Information Flow (Console).

 In Book Trip, the example bot uses the currentReservation session attribute to maintain a
copy of the slot type data during the conversation to book a hotel or to book a rental car. For
more information, see Details of the Information Flow.

Use session attributes in your Lambda functions to initialize a bot and to customize prompts and
response cards. For example:

« Initialization — In a pizza ordering bot, the client application passes the user's location as
a session attribute in the first call to the PostContent or PostText operation. For example,

"Location": "111 Maple Street". The Lambda function uses this information to find the
closest pizzeria to place the order.

» Personalize prompts — Configure prompts and response cards to refer to session attributes.
For example, "Hey [FirstName], what toppings would you like?" If you pass the user's first name
as a session attribute ({"FirstName": "Jo"}), Amazon Lex substitutes the name for the
placeholder. It then sends a personalized prompt to the user, "Hey Jo, which toppings would you
like?"

Session attributes persist for the duration of the session. Amazon Lex stores them in an encrypted
data store until the session ends. The client can create session attributes in a request by calling
either the PostContent or the PostText operation with the sessionAttributes field setto a
value. A Lambda function can create a session attribute in a response. After the client or a Lambda
function creates a session attribute, the stored attribute value is used any time that the client
application doesn't include sessionAttribute field in a request to Amazon Lex.

For example, suppose you have two session attributes, {"x": "1", "y": "2"}.If the client calls
the PostContent or PostText operation without specifying the sessionAttributes field,
Amazon Lex calls the Lambda function with the stored session attributes ({"x": 1, "y": 23}).

If the Lambda function doesn't return session attributes, Amazon Lex returns the stored session
attributes to the client application.

If either the client application or a Lambda function passes session attributes, Amazon Lex updates
the stored session attributes. Passing an existing value, suchas {"x": 2}, updates the stored
value. If you pass a new set of session attributes, such as {"z": 3}, the existing values are

Setting Session Attributes 31

Amazon Lex V1 Developer Guide

removed and only the new value is kept. When an empty map, {3}, is passed, stored values are
erased.

To send session attributes to Amazon Lex, you create a string-to-string map of the attributes. The
following shows how to map session attributes:

"attributeName": "attributeValue",
"attributeName": "attributeValue"

For the PostText operation, you insert the map into the body of the request using the
sessionAttributes field, as follows:

"sessionAttributes": {
"attributeName": "attributeValue",
"attributeName": "attributeValue"

For the PostContent operation, you base64 encode the map, and then send it as the x-amz-
lex-session-attributes header.

If you are sending binary or structured data in a session attribute, you must first transform the data
to a simple string. For more information, see Setting Complex Attributes.

Setting Request Attributes

Request attributes contain request-specific information and apply only to the current request. A
client application sends this information to Amazon Lex. Use request attributes to pass information
that doesn't need to persist for the entire session. You can create your own request attributes or
you can use predefined attributes. To send request attributes, use the x-amz-lex-request-
attributes header in a the section called “PostContent” or the requestAttributes field in a

the section called “PostText” request. Because request attributes don't persist across requests like

session attributes do, they are not returned in PostContent or PostText responses.

(® Note

To send information that persists across requests, use session attributes.

Setting Request Attributes 32

Amazon Lex V1 Developer Guide

The namespace x-amz-1lex: is reserved for the predefined request attributes. Don't create request
attributes with the prefix x-amz-1lex:.

Setting Predefined Request Attributes

Amazon Lex provides predefined request attributes for managing the way that it processes
information sent to your bot. The attributes do not persist for the entire session, so you must
send the predefined attributes in each request. All predefined attributes are in the x-amz-1lex:
namespace.

In addition to the following predefined attributes, Amazon Lex provides predefined attributes
for messaging platforms. For a list of those attributes, see Deploying an Amazon Lex Bot on a
Messaging Platform.

Setting the Response Type

If you have two client applications that have different capabilities, you may need to limit the
format of messages in a response. For example, you might want to restrict messages sent to a Web
client to plain text, but enable a mobile client to use both plain text and Speech Synthesis Markup
Language (SSML). To set the format of messages returned by the PostContent and PostText
operations, use the x-amz-1lex:accept-content-types" request attribute.

You can set the attribute to any combination of the following message types:

e PlainText—The message contains plain UTF-8 text.
e SSML—The message contains text formatted for voice output.

« CustomPayload—The message contains a custom format that you have created for your client.
You can define the payload to meet the needs of your application.

Amazon Lex returns only messages with the specified type in the Message field of the response.
You can set more than one value by separating values with a comma. If you are using message
groups, every message group must contain at least one message of the specified type. Otherwise,
you get a NoUsableMessageException error. For more information, see Message Groups.

(@ Note

The x-amz-lex:accept-content-types request attribute has no effect on the contents
of the HTML body. The contents of a PostText operation response is always plain UTF-8

Setting Request Attributes 33

Amazon Lex V1 Developer Guide

text. The body of a PostContent operation response contains data in the format set in the
Accept header in the request.

Setting the Preferred Time Zone

To set the time zone used to resolve dates so that it is relative to the user's time zone, use the
x-amz-lex:time-zone request attribute. If you do not specify a time zone in the x-amz-
lex:time-zone attribute, the default depends on the region that you are using for your