
Developer Guide

Amazon Lex V1

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Lex V1 Developer Guide

Amazon Lex V1: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Lex V1 Developer Guide

Table of Contents

... viii
What Is Amazon Lex? .. 1

Are You a First-time User of Amazon Lex? ... 2
How It Works ... 4

Supported Languages .. 6
Supported Languages and Locales ... 7
Languages and Locales Supported by Amazon Lex Features .. 7

Programming Model .. 8
Model Building API Operations .. 8
Runtime API Operations .. 9
Lambda Functions As Code Hooks .. 11

Managing Messages ... 13
Types of Messages .. 14
Contexts for Configuring Messages .. 15
Supported Message Formats .. 20
Message Groups .. 20
Response Cards ... 22

Managing Conversation Context ... 26
Setting Intent Context ... 27
Using Default Slot Values ... 29
Setting Session Attributes .. 30
Setting Request Attributes ... 32
Setting the Session Timeout .. 35
Sharing Information Between Intents .. 36
Setting Complex Attributes .. 36

Using Confidence Scores .. 38
Session Management ... 40

Conversation Logs .. 41
IAM Policies for Conversation Logs ... 42
Configuring Conversation Logs .. 45
Encrypting Conversation Logs ... 49
Viewing Text Logs in Amazon CloudWatch Logs ... 50
Accessing Audio Logs in Amazon S3 .. 54
Monitoring Conversation Log Status with CloudWatch Metrics .. 55

iii

Amazon Lex V1 Developer Guide

Managing Sessions ... 55
Switching Intents .. 57
Resuming a Prior Intent .. 58
Starting a New Session ... 59
Validating Slot Values .. 59

Deployment Options ... 59
Built-in Intents and Slot Types ... 60

Built-in Intents ... 60
Built-in Slot Types .. 78

Custom Slot Types ... 89
Slot Obfuscation ... 91
Sentiment Analysis .. 92
Tagging Resources .. 93

Tagging Your Resources .. 94
Tag Restrictions ... 94
Tagging Resources (Console) .. 95
Tagging Resources (AWS CLI) ... 97

Getting Started .. 99
Step 1: Set Up an Account ... 99

Sign Up for AWS ... 99
Create a user ... 100
Next Step .. 101

Step 2: Set Up the AWS CLI .. 101
.. 102

Step 3: Getting Started (Console) .. 102
Exercise 1: Create a Bot Using a Blueprint .. 103
Exercise 2: Create a Custom Bot ... 140
Exercise 3: Publish a Version and Create an Alias ... 156

Step 4: Getting Started (AWS CLI) ... 157
Exercise 1: Create a Bot .. 158
Exercise 2: Add a New Utterance .. 176
Exercise 3: Add a Lambda Function ... 181
Exercise 4: Publish a Version .. 185
Exercise 5: Create an Alias .. 192
Exercise 6: Clean Up .. 193

Versioning and Aliases .. 195

iv

Amazon Lex V1 Developer Guide

Versioning .. 195
The $LATEST Version ... 195
Publishing an Amazon Lex Resource Version ... 196
Updating an Amazon Lex Resource .. 197
Deleting an Amazon Lex Resource or Version .. 197

Aliases ... 198
Using Lambda Functions ... 200

Lambda Function Input Event and Response Format .. 200
Input Event Format .. 200
Response Format .. 208

Amazon Lex and AWS Lambda Blueprints ... 215
Updating a Blueprint for a Specific Locale ... 216

Deploying Bots ... 217
Deploying an Amazon Lex Bot on a Messaging Platform ... 217

Integrating with Facebook .. 220
Integrating with Kik ... 223
Integrating with Slack ... 227
Integrating with Twilio SMS ... 233

Deploying an Amazon Lex Bot in Mobile Applications .. 236
Importing and Exporting .. 237

Exporting and Importing in Amazon Lex Format ... 237
Exporting in Amazon Lex Format ... 238
Importing in Amazon Lex Format ... 239
JSON Format for Importing and Exporting .. 241

Exporting to an Alexa Skill .. 244
Bot Examples ... 246

Schedule Appointment ... 246
Overview of the Bot Blueprint (ScheduleAppointment) .. 249
Overview of the Lambda Function Blueprint (lex-make-appointment-python) 250
Step 1: Create an Amazon Lex Bot ... 251
Step 2: Create a Lambda Function ... 253
Step 3: Update the Intent: Configure a Code Hook .. 254
Step 4: Deploy the Bot on the Facebook Messenger Platform ... 255
Details of Information Flow ... 256

Book Trip ... 274
Step 1: Blueprint Review .. 275

v

Amazon Lex V1 Developer Guide

Step 2: Create an Amazon Lex Bot ... 278
Step 3: Create a Lambda function .. 281
Step 4: Add the Lambda Function as a Code Hook .. 282
Details of the Information Flow .. 286

Example: Using a Response Card ... 306
Updating Utterances ... 310
Integrating with a Web site ... 312
Call Center Agent Assistant ... 312

Step 1: Create an Amazon Kendra Index ... 314
Step 2: Create an Amazon Lex Bot ... 314
Step 3: Add a Custom and Built-in Intent ... 315
Step 4: Set up Amazon Cognito .. 316
Step 5: Deploy Your Bot as a Web Application .. 318
Step 6: Use the Bot ... 318

Migrating a bot .. 322
Migrating a bot (Console) .. 322
Migrating a Lambda function ... 323
Migration messages ... 324

Built-in intent .. 324
Built-in slot type ... 324
Conversation logs ... 324
Message groups .. 325
Prompts and phrases ... 325
Other Amazon Lex V1 features ... 326

Migrating a Lambda function ... 326
List of updated fields .. 328

Security .. 336
Data Protection .. 337

Encryption at Rest .. 337
Encryption in Transit .. 339
Key Management .. 339

Identity and Access Management .. 339
Audience ... 339
Authenticating with identities ... 340
Managing access using policies ... 343
How Amazon Lex works with IAM .. 346

vi

Amazon Lex V1 Developer Guide

Identity-based policy examples ... 357
AWS managed policies for Amazon Lex .. 364
Using Service-Linked Roles ... 373
Troubleshooting .. 375

Monitoring ... 376
Monitoring Amazon Lex with CloudWatch .. 377
Logging Amazon Lex API Calls with AWS CloudTrail .. 389

Compliance Validation .. 394
Resilience ... 395
Infrastructure Security .. 395

Guidelines and Quotas .. 396
Supported Regions .. 396
General Guidelines ... 396
Quotas .. 399

Runtime Service Quotas .. 400
Model Building Quotas .. 402

API Reference ... 407
Actions .. 407

Amazon Lex Model Building Service .. 409
Amazon Lex Runtime Service .. 620

Data Types ... 663
Amazon Lex Model Building Service .. 664
Amazon Lex Runtime Service .. 724

Document History .. 744
AWS Glossary ... 751

vii

Amazon Lex V1 Developer Guide

If you are using Amazon Lex V2, refer to the Amazon Lex V2 guide instead.

If you are using Amazon Lex V1, we recommend upgrading your bots to Amazon Lex V2. We are no
longer adding new features to V1 and strongly recommend using V2 for all new bots.

viii

https://docs.aws.amazon.com/lexv2/latest/dg/what-is.html
https://docs.aws.amazon.com/lexv2/latest/dg/migration.html

Amazon Lex V1 Developer Guide

What Is Amazon Lex?

Amazon Lex is an AWS service for building conversational interfaces for applications using voice
and text. With Amazon Lex, the same conversational engine that powers Amazon Alexa is now
available to any developer, enabling you to build sophisticated, natural language chatbots into
your new and existing applications. Amazon Lex provides the deep functionality and flexibility
of natural language understanding (NLU) and automatic speech recognition (ASR) so you can
build highly engaging user experiences with lifelike, conversational interactions, and create new
categories of products.

Amazon Lex enables any developer to build conversational chatbots quickly. With Amazon Lex,
no deep learning expertise is necessary—to create a bot, you just specify the basic conversation
flow in the Amazon Lex console. Amazon Lex manages the dialogue and dynamically adjusts the
responses in the conversation. Using the console, you can build, test, and publish your text or
voice chatbot. You can then add the conversational interfaces to bots on mobile devices, web
applications, and chat platforms (for example, Facebook Messenger).

Amazon Lex provides pre-built integration with AWS Lambda, and you can easily integrate with
many other services on the AWS platform, including Amazon Cognito, AWS Mobile Hub, Amazon
CloudWatch, and Amazon DynamoDB. Integration with Lambda provides bots access to pre-built
serverless enterprise connectors to link to data in SaaS applications, such as Salesforce, HubSpot,
or Marketo.

Some of the benefits of using Amazon Lex include:

• Simplicity – Amazon Lex guides you through using the console to create your own chatbot in
minutes. You supply just a few example phrases, and Amazon Lex builds a complete natural
language model through which the bot can interact using voice and text to ask questions, get
answers, and complete sophisticated tasks.

• Democratized deep learning technologies – Powered by the same technology as Alexa, Amazon
Lex provides ASR and NLU technologies to create a Speech Language Understanding (SLU)
system. Through SLU, Amazon Lex takes natural language speech and text input, understands
the intent behind the input, and fulfills the user intent by invoking the appropriate business
function.

1

Amazon Lex V1 Developer Guide

Speech recognition and natural language understanding are some of the most challenging
problems to solve in computer science, requiring sophisticated deep learning algorithms to
be trained on massive amounts of data and infrastructure. Amazon Lex puts deep learning
technologies within reach of all developers, powered by the same technology as Alexa. Amazon
Lex chatbots convert incoming speech to text and understand the user intent to generate
an intelligent response, so you can focus on building your bots with differentiated value-
add for your customers, to define entirely new categories of products made possible through
conversational interfaces.

• Seamless deployment and scaling – With Amazon Lex, you can build, test, and deploy your
chatbots directly from the Amazon Lex console. Amazon Lex enables you to easily publish your
voice or text chatbots for use on mobile devices, web apps, and chat services (for example,
Facebook Messenger). Amazon Lex scales automatically so you don’t need to worry about
provisioning hardware and managing infrastructure to power your bot experience.

• Built-in integration with the AWS platform – Amazon Lex has native interoperability with other
AWS services, such as Amazon Cognito, AWS Lambda, Amazon CloudWatch, and AWS Mobile
Hub. You can take advantage of the power of the AWS platform for security, monitoring, user
authentication, business logic, storage, and mobile app development.

• Cost-effectiveness – With Amazon Lex, there are no upfront costs or minimum fees. You are
charged only for the text or speech requests that are made. The pay-as-you-go pricing and the
low cost per request make the service a cost-effective way to build conversational interfaces.
With the Amazon Lex free tier, you can easily try Amazon Lex without any initial investment.

Are You a First-time User of Amazon Lex?

If you are a first-time user of Amazon Lex, we recommend that you read the following sections in
order:

1. Getting Started with Amazon Lex – In this section, you set up your account and test Amazon
Lex.

Are You a First-time User of Amazon Lex? 2

Amazon Lex V1 Developer Guide

2. API Reference – This section provides additional examples that you can use to explore Amazon
Lex.

Are You a First-time User of Amazon Lex? 3

Amazon Lex V1 Developer Guide

Amazon Lex: How It Works

Amazon Lex enables you to build applications using a speech or text interface powered by the
same technology that powers Amazon Alexa. Following are the typical steps you perform when
working with Amazon Lex:

1. Create a bot and configure it with one or more intents that you want to support. Configure the
bot so it understands the user's goal (intent), engages in conversation with the user to elicit
information, and fulfills the user's intent.

2. Test the bot. You can use the test window client provided by the Amazon Lex console.

3. Publish a version and create an alias.

4. Deploy the bot. You can deploy the bot on platforms such as mobile applications or messaging
platforms such as Facebook Messenger.

Before you get started, familiarize yourself with the following Amazon Lex core concepts and
terminology:

• Bot – A bot performs automated tasks such as ordering a pizza, booking a hotel, ordering
flowers, and so on. An Amazon Lex bot is powered by Automatic Speech Recognition (ASR) and
Natural Language Understanding (NLU) capabilities. Each bot must have a unique name within
your account.

Amazon Lex bots can understand user input provided with text or speech and converse in
natural language. You can create Lambda functions and add them as code hooks in your intent
configuration to perform user data validation and fulfillment tasks.

• Intent – An intent represents an action that the user wants to perform. You create a bot to
support one or more related intents. For example, you might create a bot that orders pizza and
drinks. For each intent, you provide the following required information:

• Intent name– A descriptive name for the intent. For example, OrderPizza. Intent names
must be unique within your account.

4

Amazon Lex V1 Developer Guide

• Sample utterances – How a user might convey the intent. For example, a user might say "Can I
order a pizza please" or "I want to order a pizza".

• How to fulfill the intent – How you want to fulfill the intent after the user provides the
necessary information (for example, place order with a local pizza shop). We recommend that
you create a Lambda function to fulfill the intent.

You can optionally configure the intent so Amazon Lex simply returns the information back to
the client application to do the necessary fulfillment.

In addition to custom intents such as ordering a pizza, Amazon Lex also provides built-in intents
to quickly set up your bot. For more information, see Built-in Intents and Slot Types.

• Slot – An intent can require zero or more slots or parameters. You add slots as part of the intent
configuration. At runtime, Amazon Lex prompts the user for specific slot values. The user must
provide values for all required slots before Amazon Lex can fulfill the intent.

For example, the OrderPizza intent requires slots such as pizza size, crust type, and number of
pizzas. In the intent configuration, you add these slots. For each slot, you provide slot type and
a prompt for Amazon Lex to send to the client to elicit data from the user. A user can reply with
a slot value that includes additional words, such as "large pizza please" or "let's stick with small."
Amazon Lex can still understand the intended slot value.

• Slot type – Each slot has a type. You can create your custom slot types or use built-in slot types.
Each slot type must have a unique name within your account. For example, you might create and
use the following slot types for the OrderPizza intent:

• Size – With enumeration values Small, Medium, and Large.

• Crust – With enumeration values Thick and Thin.

5

Amazon Lex V1 Developer Guide

Amazon Lex also provides built-in slot types. For example, AMAZON.NUMBER is a built-in slot type
that you can use for the number of pizzas ordered. For more information, see Built-in Intents and
Slot Types.

For a list of AWS Regions where Amazon Lex is available, see AWS Regions and Endpoints in the
Amazon Web Services General Reference.

The following topics provide additional information. We recommend that you review them in order
and then explore the Getting Started with Amazon Lex exercises.

Topics

• Languages Supported in Amazon Lex

• Programming Model

• Managing Messages

• Managing Conversation Context

• Using Confidence Scores

• Conversation Logs

• Managing Sessions With the Amazon Lex API

• Bot Deployment Options

• Built-in Intents and Slot Types

• Custom Slot Types

• Slot Obfuscation

• Sentiment Analysis

• Tagging Your Amazon Lex Resources

Languages Supported in Amazon Lex

Amazon Lex V1 supports a variety of languages and locales. The languages supported and the
features that support them are listed in the following tables.

Amazon Lex V2 supports additional languages, see Languages Supported in Amazon Lex V2

Supported Languages 6

https://docs.aws.amazon.com/general/latest/gr/rande.html#lex_region
https://docs.aws.amazon.com/lexv2/latest/dg/how-languages.html

Amazon Lex V1 Developer Guide

Supported Languages and Locales

Amazon Lex V1 supports the following languages and locales.

Code Language and locale

de-DE German (German)

en-AU English (Australia)

en-GB English (UK)

en-IN English (India)

en-US English (US)

es-419 Spanish (Latin America)

es-ES Spanish (Spain)

es-US Spanish (US)

fr-CA French (Canada)

fr-FR French (France)

it-IT Italian (Italy)

ja-JP Japanese (Japan)

ko-KR Korean (Korea)

Languages and Locales Supported by Amazon Lex Features

All Amazon Lex features are supported in all languages and locales except as listed in this table.

Feature Supported languages and locales

Setting Intent Context English (US) (en-US)

Supported Languages and Locales 7

Amazon Lex V1 Developer Guide

Programming Model

A bot is the primary resource type in Amazon Lex. The other resource types in Amazon Lex are
intent, slot type, alias, and bot channel association.

You create a bot using the Amazon Lex console or the model building API. The console provides a
graphical user interface that you use to build a production-ready bot for your application. If you
prefer, you can use the model building API through the AWS CLI or your own custom program to
create a bot.

After you create a bot, you deploy it on one of the supported platforms or integrate it into your
own application. When a user interacts with the bot, the client application sends requests to the
bot using the Amazon Lex runtime API. For example, when a user says "I want to order pizza," your
client sends this input to Amazon Lex using one of the runtime API operations. Users can provide
input as speech or text.

You can also create Lambda functions and use them in an intent. Use these Lambda function
code hooks to perform runtime activities such as initialization, validation of user input, and intent
fulfillment. The following sections provide additional information.

Topics

• Model Building API Operations

• Runtime API Operations

• Lambda Functions As Code Hooks

Model Building API Operations

To programmatically create bots, intents, and slot types, use the model building API operations.
You can also use the model building API to manage, update, and delete resources for your bot. The
model building API operations include:

• PutBot, PutBotAlias, PutIntent, and PutSlotType to create and update bots, bot aliases, intents,
and slot types, respectively.

• CreateBotVersion, CreateIntentVersion, and CreateSlotTypeVersion to create and publish versions
of your bots, intents, and slot types, respectively.

• GetBot and GetBots to get a specific bot or a list of bots that you have created, respectively.

Programming Model 8

https://docs.aws.amazon.com/lex/latest/dg/chatbot-service.html

Amazon Lex V1 Developer Guide

• GetIntent and GetIntents to get a specific intent or a list of intents that you have created,
respectively.

• GetSlotType and GetSlotTypes to get a specific slot type or a list of slot types that you have
created, respectively.

• GetBuiltinIntent, GetBuiltinIntents, and GetBuiltinSlotTypes to get an Amazon Lex built-in intent,
a list of Amazon Lex built-in intents, or a list of built-in slot types that you can use in your bot,
respectively.

• GetBotChannelAssociation and GetBotChannelAssociations to get an association between your
bot and a messaging platform or a list of the associations between your bot and messaging
platforms, respectively.

• DeleteBot, DeleteBotAlias, DeleteBotChannelAssociation, DeleteIntent, and DeleteSlotType to
remove unneeded resources in your account.

You can use the model building API to create custom tools to manage your Amazon Lex resources.
For example, there is a limit of 100 versions each for bots, intents, and slot types. You could use the
model building API to build a tool that automatically deletes old versions when your bot nears the
limit.

To make sure that only one operation updates a resource at a time, Amazon Lex uses checksums.
When you use a Put API operation—PutBot, PutBotAlias PutIntent, or PutSlotType—to update
a resource, you must pass the current checksum of the resource in the request. If two tools
try to update a resource at the same time, they both provide the same current checksum.
The first request to reach Amazon Lex matches the current checksum of the resource. By the
time that the second request arrives, the checksum is different. The second tool receives a
PreconditionFailedException exception and the update terminates.

The Get operations—GetBot, GetIntent, and GetSlotType—are eventually consistent. If you use a
Get operation immediately after you create or modify a resource with one of the Put operations,
the changes might not be returned. After a Get operation returns the most recent update, it
always returns that updated resource until the resource is modified again. You can determine if an
updated resource has been returned by looking at the checksum.

Runtime API Operations

Client applications use the following runtime API operations to communicate with Amazon Lex:

Runtime API Operations 9

Amazon Lex V1 Developer Guide

• PostContent – Takes speech or text input and returns intent information and a text or speech
message to convey to the user. Currently, Amazon Lex supports the following audio formats:

Input audio formats – LPCM and Opus

Output audio formats – MPEG, OGG, and PCM

The PostContent operation supports audio input at 8 kHz and 16 kHz. Applications where the
end user speaks with Amazon Lex over the telephone, such as an automated call center, can pass
8 kHz audio directly.

• PostText – Takes text as input and returns intent information and a text message to convey to
the user.

Your client application uses the runtime API to call a specific Amazon Lex bot to process utterances
— user text or voice input. For example, suppose that a user says "I want pizza." The client sends
this user input to a bot using one of the Amazon Lex runtime API operations. From the user input,
Amazon Lex recognizes that the user request is for the OrderPizza intent defined in the bot.
Amazon Lex engages the user in a conversation to gather the required information, or slot data,
such as pizza size, toppings, and number of pizzas. After the user provides all of the necessary slot
data, Amazon Lex either invokes the Lambda function code hook to fulfill the intent, or returns the
intent data to the client, depending on how the intent is configured.

Use the PostContent operation when your bot uses speech input. For example, an automated call
center application can send speech to an Amazon Lex bot instead of an agent to address customer
inquiries. You can use the 8 kHz audio format to send audio directly from the telephone to Amazon
Lex.

The test window in the Amazon Lex console uses the PostContent API to send text and speech
requests to Amazon Lex. You use this test window in the Getting Started with Amazon Lex
exercises.

Runtime API Operations 10

Amazon Lex V1 Developer Guide

Lambda Functions As Code Hooks

You can configure your Amazon Lex bot to invoke a Lambda function as a code hook. The code
hook can serve multiple purposes:

• Customizes the user interaction—For example, when Joe asks for available pizza toppings, you
can use prior knowledge of Joe's choices to display a subset of toppings.

• Validates the user's input—Suppose that Jen wants to pick up flowers after hours. You can
validate the time that Jen input and send an appropriate response.

• Fulfills the user's intent—After Joe provides all of the information for his pizza order, Amazon
Lex can invoke a Lambda function to place the order with a local pizzeria.

When you configure an intent, you specify Lambda functions as code hooks in the following places:

• Dialog code hook for initialization and validation—This Lambda function is invoked on each user
input, assuming Amazon Lex understood the user intent.

• Fulfillment code hook—This Lambda function is invoked after the user provides all of the slot
data required to fulfill the intent.

You choose the intent and set the code hooks in the Amazon Lex console, as shown in the
following screen shot:

Lambda Functions As Code Hooks 11

Amazon Lex V1 Developer Guide

Lambda Functions As Code Hooks 12

Amazon Lex V1 Developer Guide

You can also set the code hooks using the dialogCodeHook and fulfillmentActivity fields in
the PutIntent operation.

One Lambda function can perform initialization, validation, and fulfillment. The event data that
the Lambda function receives has a field that identifies the caller as either a dialog or fulfillment
code hook. You can use this information to run the appropriate portion of your code.

You can use a Lambda function to build a bot that can navigate complex dialogs. You use the
dialogAction field in the Lambda function response to direct Amazon Lex to take specific
actions. For example, you can use the ElicitSlot dialog action to tell Amazon Lex to ask the
user for a slot value that isn't required. If you have a clarification prompt defined, you can use the
ElicitIntent dialog action to elicit a new intent when the user is finished with the previous one.

For more information, see Using Lambda Functions.

Managing Messages

Topics

• Types of Messages

• Contexts for Configuring Messages

• Supported Message Formats

• Message Groups

• Response Cards

When you create a bot, you can configure clarifying or informational messages that you want it to
send to the client. Consider the following examples:

• You could configure your bot with the following clarification prompt:

I don't understand. What would you like to do?

Amazon Lex sends this message to the client if it doesn't understand the user's intent.

• Suppose that you create a bot to support an intent called OrderPizza. For a pizza order,
you want users to provide information such as pizza size, toppings, and crust type. You could
configure the following prompts:

Managing Messages 13

Amazon Lex V1 Developer Guide

What size pizza do you want?
What toppings do you want?
Do you want thick or thin crust?

After Amazon Lex determines the user's intent to order pizza, it sends these messages to the
client to get information from the user.

This section explains designing user interactions in your bot configuration.

Types of Messages

A message can be a prompt or a statement.

• A prompt is typically a question and expects a user response.

• A statement is informational. It doesn’t expect a response.

A message can include references to slot, session attributes, and request attributes. At runtime,
Amazon Lex substitutes these references with actual values.

To refer to slots values that have been set, use the following syntax:

{SlotName}

To refer to session attributes, use the following syntax:

[SessionAttributeName]

To refer to request attributes, use the following syntax:

((RequestAttributeName))

Messages can include both slot values, session attributes and request attributes.

For example, suppose that you configure the following message in your bot's OrderPizza intent:

"Hey [FirstName], your {PizzaTopping} pizza will arrive in [DeliveryTime] minutes."

Types of Messages 14

Amazon Lex V1 Developer Guide

This message refers to both slot (PizzaTopping) and session attributes (FirstName and
DeliveryTime). At runtime, Amazon Lex replaces these placeholders with values and returns the
following message to the client:

"Hey John, your cheese pizza will arrive in 30 minutes."

To include brackets ([]) or braces ({}) in a message, use the backslash (\) escape character. For
example, the following message includes the curly braces and square brackets:

\{Text\} \[Text\]

The text returned to the client application looks like this:

{Text} [Text]

For information about session attributes, see the runtime API operations PostText and
PostContent. For an example, see Book Trip.

Lambda functions can also generate messages and return them to Amazon Lex to send to the user.
If you add Lambda functions when you configure your intent, you can create messages dynamically.
By providing the messages while configuring your bot, you can eliminate the need to construct a
prompt in your Lambda function.

Contexts for Configuring Messages

When you are creating your bot, you can create messages in different contexts, such as clarification
prompts in bot, prompts for slot values, and messages from intents. Amazon Lex chooses an
appropriate message in each context to return to your user. You can provide a group of messages
for each context. If you do, Amazon Lex randomly chooses one message from the group. You can
also specify the format of the message or group the messages together. For more information, see
Supported Message Formats.

If you have a Lambda function associated with an intent, you can override any of the messages
that you configured at build time. A Lambda function is not required to use any of these messages,
however.

Bot Messages

You can configure your bot with clarification prompts and session end messages. At runtime,
Amazon Lex uses the clarification prompt if it doesn't understand the user's intent. You can

Contexts for Configuring Messages 15

Amazon Lex V1 Developer Guide

configure the number of times that Amazon Lex requests clarification before sending the session
end message. You configure bot-level messages in the Error Handling section of the Amazon Lex
console, as in the following image:

With the API, you configure messages by setting the clarificationPrompt and
abortStatement fields in the PutBot operation.

If you use a Lambda function with an intent, the Lambda function might return a response
directing Amazon Lex to ask a user's intent. If the Lambda function doesn’t provide such a
message, Amazon Lex uses the clarification prompt.

Slot Prompts

You must specify at least one prompt message for each of the required slots in an intent. At
runtime, Amazon Lex uses one of these messages to prompt the user to provide a value for the
slot. For example, for a cityName slot, the following is a valid prompt:

Which city would you like to fly to?

You can set one or more prompts for each slot using the console. You can also create groups of
prompts using the PutIntent operation. For more information, see Message Groups.

Contexts for Configuring Messages 16

Amazon Lex V1 Developer Guide

Responses

In the console, use the Responses section to build dynamic, engaging conversations for your
bot. You can create one or more message groups for a response. At runtime, Amazon Lex builds
a response by selecting one message from each message group. For more information about
message groups, see Message Groups.

For example, your first message group could contain different greetings: "Hello," "Hi," and
"Greetings." The second message group could contain different forms of introduction: "I am the
reservation bot" and "This is the reservation bot." A third message group could communicate the
bot's capabilities: "I can help with car rentals and hotel reservations," "You can make car rentals and
hotel reservations," and "I can help you rent a car and book a hotel."

Lex uses a message from each of the message groups to dynamically build the responses in a
conversation. For example, one interaction could be the following:

Another one could be the following:

Contexts for Configuring Messages 17

Amazon Lex V1 Developer Guide

In either case, the user could respond with a new intent, such as the BookCar or BookHotel
intent.

You can set up the bot to ask a follow-up question in the response. For example, for the preceding
interaction, you could create a fourth message group with the following questions: "Can I help with
a car or a hotel?", "Would you like to make a reservation now?", and "Is there anything that I can do
for you?". For messages that include "No" as a response, you can create a follow-up prompt. The
following image provides an example:

Contexts for Configuring Messages 18

Amazon Lex V1 Developer Guide

To create a follow-up prompt, choose Wait for user reply. Then type the message or messages
that you want to send when the user says "No." When you create a response to use as a follow-up
prompt, you must also specify an appropriate statement when the answer to the statement is "No."
See the following image for an example:

Contexts for Configuring Messages 19

Amazon Lex V1 Developer Guide

To add responses to an intent with the API, use the PutIntent operation. To specify a response,
set the conclusionStatement field in the PutIntent request. To set a follow-up prompt, set
the followUpPrompt field and include the statement to send when the user says "No." You can't
set both the conclusionStatement field and the followUpPrompt field on the same intent.

Supported Message Formats

When you use the PostText operation, or when you use the PostContent operation with the
Accept header set to text/plain;charset=utf8, Amazon Lex supports messages in the
following formats:

• PlainText—The message contains plain UTF-8 text.

• SSML—The message contains text formatted for voice output.

• CustomPayload—The message contains a custom format that you have created for your client.
You can define the payload to meet the needs of your application.

• Composite—The message is a collection of messages, one from each message group. For more
information about message groups, see Message Groups.

By default, Amazon Lex returns any one of the messages defined for a particular prompt. For
example, if you define five messages to elicit a slot value, Amazon Lex chooses one of the
messages randomly and returns it to the client.

If you want Amazon Lex to return a specific type of message to the client in a run-time request,
set the x-amzn-lex:accept-content-types request parameter. The response is limited to
the type or types requested. If there is more than one message of the specified type, Amazon Lex
returns one at random. For more information about the x-amz-lex:accept-content-types
header, see Setting the Response Type.

Message Groups

A message group is a set of suitable responses to a particular prompt. Use message groups when
you want your bot to dynamically build the responses in a conversation. When Amazon Lex returns
a response to the client application, it randomly chooses one message from each group. You can
create a maximum of five message groups for each response. Each group can contain a maximum
of five messages. For examples of creating message groups in the console, see Responses.

To create a message group, you can use the console or you can use the PutBot, PutIntent, or
PutSlotType operations to assign a group number to a message. If you don't create a message

Supported Message Formats 20

Amazon Lex V1 Developer Guide

group, or if you create only one message group, Amazon Lex sends a single message in the
Message field. Client applications get multiple messages in a response only when you have created
more than one message group in the console, or when you create more than one message group
when you create or update an intent with the PutIntent operation.

When Amazon Lex sends a message from a group, the response's Message field contains an
escaped JSON object that contains the messages. The following example shows the contents of the
Message field when it contains multiple messages.

Note

The example is formatted for readability. A response doesn't contain carriage returns (CR).

{\"messages\":[
 {\"type\":\"PlainText\",\"group\":0,\"value\":\"Plain text\"},
 {\"type\":\"SSML\",\"group\":1,\"value\":\"SSML text\"},
 {\"type\":\"CustomPayload\",\"group\":2,\"value\":\"Custom payload\"}
]}

You can set the format of the messages. The format can be one of the following:

• PlainText—The message is in plain UTF-8 text.

• SSML—The message is Speech Synthesis Markup Language (SSML).

• CustomPayload—The message is in a custom format that you specified.

To control the format of messages that the PostContent and PostText operations return in
the Message field, set the x-amz-lex:accept-content-types request attribute. For example,
if you set the header to the following, you receive only plain text and SSML messages in the
response:

x-amz-lex:accept-content-types: PlainText,SSML

If you request a specific message format and a message group doesn't contain that a message with
that format, you get a NoUsableMessageException exception. When you use a message group
to group messages by type, don't use the x-amz-lex:accept-content-types header.

Message Groups 21

Amazon Lex V1 Developer Guide

For more information about the x-amz-lex:accept-content-types header, see Setting the
Response Type.

Response Cards

Note

Response cards do not work with Amazon Connect chat. However, see Add interactive
messages to chat for similar functionality.

A response card contains a set of appropriate responses to a prompt. Use response cards to simplify
interactions for your users and increase your bot's accuracy by reducing typographical errors in
text interactions. You can send a response card for each prompt that Amazon Lex sends to your
client application. You can use response cards with Facebook Messenger, Slack, Twilio, and your
own client applications.

For example, in a taxi application, you can configure an option in the response card for "Home" and
set the value to the user's home address. When the user selects this option, Amazon Lex receives
the entire address as the input text. See the following image:

You can define a response card for the following prompts:

• Conclusion statement

• Confirmation prompt

• Follow-up prompt

Response Cards 22

https://docs.aws.amazon.com/connect/latest/adminguide/interactive-messages.html
https://docs.aws.amazon.com/connect/latest/adminguide/interactive-messages.html

Amazon Lex V1 Developer Guide

• Rejection statement

• Slot type utterances

You can define only one response card for each prompt.

You configure response cards when you create an intent. You can define a static response card at
build time using the console or the PutIntent operation. Or you can define a dynamic response
card at runtime in a Lambda function. If you define both static and dynamic response cards, the
dynamic response card takes precedence.

Amazon Lex sends response cards in the format that the client understands. It transforms response
cards for Facebook Messenger, Slack, and Twilio. For other clients, Amazon Lex sends a JSON
structure in the PostText response. For example, if the client is Facebook Messenger, Amazon
Lex transforms the response card to a generic template. For more information about Facebook
Messenger generic templates, see Generic Template on the Facebook website. For an example of
the JSON structure, see Generating Response Cards Dynamically.

You can use response cards only with the PostText operation. You can't use response cards with the
PostContent operation.

Defining Static Response Cards

Define static response cards with the PutBot operation or the Amazon Lex console when you create
an intent. A static response card is defined at the same time as the intent. Use a static response
card when the responses are fixed. Suppose that you are creating a bot with an intent that has
a slot for flavor. When defining the flavor slot, you specify prompts, as shown in the following
console screenshot:

When defining prompts, you can optionally associate a response card and define details with the
PutBot operation, or, in the Amazon Lex console, as shown in the following example:

Response Cards 23

https://developers.facebook.com/docs/messenger-platform/send-api-reference/generic-template

Amazon Lex V1 Developer Guide

Now suppose that you've integrated your bot with Facebook Messenger. The user can click the
buttons to choose a flavor, as shown in the following illustration:

Response Cards 24

Amazon Lex V1 Developer Guide

To customize the content of a response card, you can refer to session attributes. At runtime,
Amazon Lex substitutes these references with appropriate values from the session attributes. For
more information, see Setting Session Attributes. For an example, see Using a Response Card.

Generating Response Cards Dynamically

To generate response cards dynamically at runtime, use the initialization and validation Lambda
function for the intent. Use a dynamic response card when the responses are determined at
runtime in the Lambda function. In response to user input, the Lambda function generates a
response card and returns it in the dialogAction section of the response. For more information,
see Response Format.

The following is a partial response from a Lambda function that shows the responseCard
element. It generates a user experience similar to the one shown in the preceding section.

responseCard: {
 "version": 1,

Response Cards 25

Amazon Lex V1 Developer Guide

 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {
 "title": "What Flavor?",
 "subtitle": "What flavor do you want?",
 "imageUrl": "Link to image",
 "attachmentLinkUrl": "Link to attachment",
 "buttons": [
 {
 "text": "Lemon",
 "value": "lemon"
 },
 {
 "text": "Raspberry",
 "value": "raspberry"
 },
 {
 "text": "Plain",
 "value": "plain"
 }
]
 }
]
}

For an example, see Schedule Appointment.

Managing Conversation Context

Conversation context is the information that a user, your application, or a Lambda function provides
to an Amazon Lex bot to fulfill an intent. Conversation context includes slot data that the user
provides, request attributes set by the client application, and session attributes that the client
application and Lambda functions create.

Topics

• Setting Intent Context

• Using Default Slot Values

• Setting Session Attributes

• Setting Request Attributes

• Setting the Session Timeout

Managing Conversation Context 26

Amazon Lex V1 Developer Guide

• Sharing Information Between Intents

• Setting Complex Attributes

Setting Intent Context

You can have Amazon Lex trigger intents based on context. A context is a state variable that can be
associated with an intent when you define a bot.

You configure the contexts for an intent when you create the intent using the console or using
the PutIntent operation. You can only use contexts in the English (US) (en-US) locale, and only if
you set the enableModelImprovements parameter to true when you created the bot with the
PutBot operation.

There are two types of relationships for contexts, output contexts and input contexts. An output
context becomes active when an associated intent is fulfilled. An output context is returned to your
application in the response from the PostText or PostContent operation, and it is set for the current
session. After a context is activated, it stays active for the number of turns or time limit configured
when the context was defined.

An input context specifies conditions under which an intent can be recognized. An intent can only
be recognized during a conversation when all of its input contexts are active. An intent with no
input contexts is always eligible for recognition.

Amazon Lex automatically manages the lifecycle of contexts that are activated by fulfilling intents
with output contexts. You can also set active contexts in a call to the PostContent or PostText
operation.

You can also set the context of a conversation using the Lambda function for the intent. The
output context from Amazon Lex is sent to the Lambda function input event. The Lambda function
can send contexts in its response. For more information, see Lambda Function Input Event and
Response Format.

For example, suppose you have an intent to book a rental car that is configured to return an output
context called "book_car_fulfilled". When the intent is fulfilled, Amazon Lex sets the output context
variable "book_car_fulfilled". Since "book_car_fulfilled" is an active context, an intent with the
"book_car_fulfilled" context set as an input context is now considered for recognition, as long as
a user utterance is recognized as an attempt to elicit that intent. You can use this for intents that
only make sense after booking a car, such as emailing a receipt or modifying a reservation.

Setting Intent Context 27

Amazon Lex V1 Developer Guide

Output Context

Amazon Lex makes an intent's output contexts active when the intent is fulfilled. You can use the
output context to control the intents eligible to follow up the current intent.

Each context has a list of parameters that are maintained in the session. The parameters are the
slot values for the fulfilled intent. You can use these parameters to pre-populate slot values for
other intents. For more information,see Using Default Slot Values.

You configure the output context when you create an intent with the console or with the PutIntent
operation. You can configure an intent with more than one output context. When the intent is
fulfilled, all of the output contexts are activated and returned in the PostText or PostContent
response.

The following shows assigning an output context to an intent using the console.

When you define an output context you also define its time to live, the length of time or number of
turns that the context is included in responses from Amazon Lex. A turn is one request from your
application to Amazon Lex. Once the number of turns or the time has expired, the context is no
longer active.

Your application can use the output context as needed. For example, your application can use the
output context to:

• Change the behavior of the application based on the context. For example, a travel application
could have a different action for the context "book_car_fulfilled" than "rental_hotel_fulfilled."

• Return the output context to Amazon Lex as the input context for the next utterance. If Amazon
Lex recognizes the utterance as an attempt to elicit an intent, it uses the context to limit the
intents that can be returned to ones with the specified context.

Setting Intent Context 28

Amazon Lex V1 Developer Guide

Input Context

You set an input context to limit the points in the conversation where the intent is recognized.
Intents without an input context are always eligible to be recognized.

You set the input contexts that an intent responds to using the console or the PutIntent
operation. An intent can have more than one input context. The following shows assigning an input
context to an intent using the console.

For an intent with more than one input context, all contexts must be active to trigger the intent.
You can set an input context when you call the PostText, PostContent, or PutSession operation.

You can configure the slots in an intent to take default values from the current active context.
Default values are used when Amazon Lex recognizes a new intent but doesn't receive a slot value.
You specify the context name and slot name in the form #context-name.parameter-name
when you define the slot. For more information, see Using Default Slot Values.

Using Default Slot Values

When you use a default value, you specify a source for a slot value to be filled for new intents
when no slot is provided by the user’s input. This source can be previous dialog, request or session
attributes, or a fixed value that you set at build-time.

You can use the following as the source for your default values.

• Previous dialog (contexts) – #context-name.parameter-name

• Session attributes – [attribute-name]

• Request attributes – <attribute-name>

• Fixed value – Any value that doesn't match the previous

Using Default Slot Values 29

Amazon Lex V1 Developer Guide

When you use the PutIntent operation to add slots to an intent, you can add a list of default values.
Default values are used in the order that they are listed. For example, suppose you have an intent
with a slot with the following definition:

"slots": [
 {
 "name": "reservation-start-date",
 "defaultValueSpec": {
 "defaultValueList": [
 {
 "defaultValue": "#book-car-fulfilled.startDate"
 },
 {
 "defaultValue": "[reservationStartDate]"
 }
]
 },
 Other slot configuration settings
 }
]

When the intent is recognized, the slot named "reservation-start-date" has its value set to one of
the following.

1. If the "book-car-fulfilled" context is active, the value of the "startDate" parameter is used as the
default value.

2. If the "book-car-fulfilled" context is not active, or if the "startDate" parameter is not set, the
value of the "reservationStartDate" session attribute is used as the default value.

3. If neither of the first two default values are used, then the slot doesn't have a default value and
Amazon Lex will elicit a value as usual.

If a default value is used for the slot, the slot is not elicited even if it is required.

Setting Session Attributes

Session attributes contain application-specific information that is passed between a bot and a
client application during a session. Amazon Lex passes session attributes to all Lambda functions
configured for a bot. If a Lambda function adds or updates session attributes, Amazon Lex passes
the new information back to the client application. For example:

Setting Session Attributes 30

Amazon Lex V1 Developer Guide

• In Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console), the example bot uses the
price session attribute to maintain the price of flowers. The Lambda function sets this attribute
based on the type of flowers that was ordered. For more information, see Step 5 (Optional):
Review the Details of the Information Flow (Console).

• In Book Trip, the example bot uses the currentReservation session attribute to maintain a
copy of the slot type data during the conversation to book a hotel or to book a rental car. For
more information, see Details of the Information Flow.

Use session attributes in your Lambda functions to initialize a bot and to customize prompts and
response cards. For example:

• Initialization — In a pizza ordering bot, the client application passes the user's location as
a session attribute in the first call to the PostContent or PostText operation. For example,
"Location": "111 Maple Street". The Lambda function uses this information to find the
closest pizzeria to place the order.

• Personalize prompts — Configure prompts and response cards to refer to session attributes.
For example, "Hey [FirstName], what toppings would you like?" If you pass the user's first name
as a session attribute ({"FirstName": "Jo"}), Amazon Lex substitutes the name for the
placeholder. It then sends a personalized prompt to the user, "Hey Jo, which toppings would you
like?"

Session attributes persist for the duration of the session. Amazon Lex stores them in an encrypted
data store until the session ends. The client can create session attributes in a request by calling
either the PostContent or the PostText operation with the sessionAttributes field set to a
value. A Lambda function can create a session attribute in a response. After the client or a Lambda
function creates a session attribute, the stored attribute value is used any time that the client
application doesn't include sessionAttribute field in a request to Amazon Lex.

For example, suppose you have two session attributes, {"x": "1", "y": "2"}. If the client calls
the PostContent or PostText operation without specifying the sessionAttributes field,
Amazon Lex calls the Lambda function with the stored session attributes ({"x": 1, "y": 2}).
If the Lambda function doesn't return session attributes, Amazon Lex returns the stored session
attributes to the client application.

If either the client application or a Lambda function passes session attributes, Amazon Lex updates
the stored session attributes. Passing an existing value, such as {"x": 2}, updates the stored
value. If you pass a new set of session attributes, such as {"z": 3}, the existing values are

Setting Session Attributes 31

Amazon Lex V1 Developer Guide

removed and only the new value is kept. When an empty map, {}, is passed, stored values are
erased.

To send session attributes to Amazon Lex, you create a string-to-string map of the attributes. The
following shows how to map session attributes:

{
 "attributeName": "attributeValue",
 "attributeName": "attributeValue"
}

For the PostText operation, you insert the map into the body of the request using the
sessionAttributes field, as follows:

"sessionAttributes": {
 "attributeName": "attributeValue",
 "attributeName": "attributeValue"
}

For the PostContent operation, you base64 encode the map, and then send it as the x-amz-
lex-session-attributes header.

If you are sending binary or structured data in a session attribute, you must first transform the data
to a simple string. For more information, see Setting Complex Attributes.

Setting Request Attributes

Request attributes contain request-specific information and apply only to the current request. A
client application sends this information to Amazon Lex. Use request attributes to pass information
that doesn't need to persist for the entire session. You can create your own request attributes or
you can use predefined attributes. To send request attributes, use the x-amz-lex-request-
attributes header in a the section called “PostContent” or the requestAttributes field in a
the section called “PostText” request. Because request attributes don't persist across requests like
session attributes do, they are not returned in PostContent or PostText responses.

Note

To send information that persists across requests, use session attributes.

Setting Request Attributes 32

Amazon Lex V1 Developer Guide

The namespace x-amz-lex: is reserved for the predefined request attributes. Don't create request
attributes with the prefix x-amz-lex:.

Setting Predefined Request Attributes

Amazon Lex provides predefined request attributes for managing the way that it processes
information sent to your bot. The attributes do not persist for the entire session, so you must
send the predefined attributes in each request. All predefined attributes are in the x-amz-lex:
namespace.

In addition to the following predefined attributes, Amazon Lex provides predefined attributes
for messaging platforms. For a list of those attributes, see Deploying an Amazon Lex Bot on a
Messaging Platform.

Setting the Response Type

If you have two client applications that have different capabilities, you may need to limit the
format of messages in a response. For example, you might want to restrict messages sent to a Web
client to plain text, but enable a mobile client to use both plain text and Speech Synthesis Markup
Language (SSML). To set the format of messages returned by the PostContent and PostText
operations, use the x-amz-lex:accept-content-types" request attribute.

You can set the attribute to any combination of the following message types:

• PlainText—The message contains plain UTF-8 text.

• SSML—The message contains text formatted for voice output.

• CustomPayload—The message contains a custom format that you have created for your client.
You can define the payload to meet the needs of your application.

Amazon Lex returns only messages with the specified type in the Message field of the response.
You can set more than one value by separating values with a comma. If you are using message
groups, every message group must contain at least one message of the specified type. Otherwise,
you get a NoUsableMessageException error. For more information, see Message Groups.

Note

The x-amz-lex:accept-content-types request attribute has no effect on the contents
of the HTML body. The contents of a PostText operation response is always plain UTF-8

Setting Request Attributes 33

Amazon Lex V1 Developer Guide

text. The body of a PostContent operation response contains data in the format set in the
Accept header in the request.

Setting the Preferred Time Zone

To set the time zone used to resolve dates so that it is relative to the user's time zone, use the
x-amz-lex:time-zone request attribute. If you do not specify a time zone in the x-amz-
lex:time-zone attribute, the default depends on the region that you are using for your bot.

Region Default time zone

US East (N. Virginia) America/New_York

US West (Oregon) America/Los_Angeles

Asia Pacific (Singapore) Asia/Singapore

Asia Pacific (Sydney) Australia/Sydney

Asia Pacific (Tokyo) Asia/Tokyo

Europe (Frankfurt) Europe/Berlin

Europe (Ireland) Europe/Dublin

Europe (London) Europe/London

For example, if the user responds tomorrow in response to the prompt "Which day would you like
your package delivered?" the actual date that the package is delivered depends on the user's time
zone. For example, when it is 01:00 September 16 in New York, it is 22:00 September 15 in Los
Angeles. If your service is running in the US East (N. Virginia) Region and a person in Los Angeles
orders a package to be delivered "tomorrow" using the default time zone, the package would be
delivered on the 17th, not the 16th. However, if you set the x-amz-lex:time-zone request
attribute to America/Los_Angeles, the package would be delivered on the 16th.

You can set the attribute to any of the Internet Assigned Number Authority (IANA) time zone
names. For the list of time zone names, see the List of tz database time zones on Wikipedia.

Setting Request Attributes 34

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Amazon Lex V1 Developer Guide

Setting User-Defined Request Attributes

A user-defined request attribute is data that you send to your bot in each request. You send the
information in the amz-lex-request-attributes header of a PostContent request or in the
requestAttributes field of a PostText request.

To send request attributes to Amazon Lex, you create a string-to-string map of the attributes. The
following shows how to map request attributes:

{
 "attributeName": "attributeValue",
 "attributeName": "attributeValue"
}

For the PostText operation, you insert the map into the body of the request using the
requestAttributes field, as follows:

"requestAttributes": {
 "attributeName": "attributeValue",
 "attributeName": "attributeValue"
}

For the PostContent operation, you base64 encode the map, and then send it as the x-amz-
lex-request-attributes header.

If you are sending binary or structured data in a request attribute, you must first transform the
data to a simple string. For more information, see Setting Complex Attributes.

Setting the Session Timeout

Amazon Lex retains context information—slot data and session attributes—until a conversation
session ends. To control how long a session lasts for a bot, set the session timeout. By default,
session duration is 5 minutes, but you can specify any duration between 0 and 1,440 minutes (24
hours).

For example, suppose that you create a ShoeOrdering bot that supports intents such as
OrderShoes and GetOrderStatus. When Amazon Lex detects that the user's intent is to order
shoes, it asks for slot data. For example, it asks for shoe size, color, brand, etc. If the user provides
some of the slot data but doesn't complete the shoe purchase, Amazon Lex remembers all of the

Setting the Session Timeout 35

Amazon Lex V1 Developer Guide

slot data and session attributes for the entire session. If the user returns to the session before it
expires, he or she can provide the remaining slot data, and complete the purchase.

In the Amazon Lex console, you set the session timeout when you create a bot. With the AWS
command line interface (AWS CLI) or API, you set the timeout when you create or update a bot
with the PutBot operation by setting the idleSessionTTLInSeconds field.

Sharing Information Between Intents

Amazon Lex supports sharing information between intents. To share between intents, use session
attributes.

For example, a user of the ShoeOrdering bot starts by ordering shoes. The bot engages in a
conversation with the user, gathering slot data, such as shoe size, color, and brand. When the
user places an order, the Lambda function that fulfills the order sets the orderNumber session
attribute, which contains the order number. To get the status of the order, the user uses the
GetOrderStatus intent. The bot can ask the user for slot data, such as order number and order
date. When the bot has the required information, it returns the status of the order.

If you think that your users might switch intents during the same session, you can design your
bot to return the status of the latest order. Instead of asking the user for order information again,
you use the orderNumber session attribute to share information across intents and fulfill the
GetOrderStatus intent. The bot does this by returning the status of the last order that the user
placed.

For an example of cross-intent information sharing, see Book Trip.

Setting Complex Attributes

Session and request attributes are string-to-string maps of attributes and values. In many cases,
you can use the string map to transfer attribute values between your client application and a bot.
In some cases, however, you might need to transfer binary data or a complex structure that can't
be easily converted to a string map. For example, the following JSON object represents an array of
the three most populous cities in the United States:

{
 "cities": [
 {
 "city": {
 "name": "New York",

Sharing Information Between Intents 36

https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-idleSessionTTLInSeconds

Amazon Lex V1 Developer Guide

 "state": "New York",
 "pop": "8537673"
 }
 },
 {
 "city": {
 "name": "Los Angeles",
 "state": "California",
 "pop": "3976322"
 }
 },
 {
 "city": {
 "name": "Chicago",
 "state": "Illinois",
 "pop": "2704958"
 }
 }
]
}

This array of data doesn't translate well to a string-to-string map. In such a case, you can transform
an object to a simple string so that you can send it to your bot with the PostContent and PostText
operations.

For example, if you are using JavaScript, you can use the JSON.stringify operation to convert
an object to JSON, and the JSON.parse operation to convert JSON text to a JavaScript object:

// To convert an object to a string.
var jsonString = JSON.stringify(object, null, 2);
// To convert a string to an object.
var obj = JSON.parse(JSON string);

To send session attributes with the PostContent operation, you must base64 encode the
attributes before you add them to the request header, as shown in the following JavaScript code:

var encodedAttributes = new Buffer(attributeString).toString("base64");

You can send binary data to the PostContent and PostText operations by first converting the
data to a base64-encoded string, and then sending the string as the value in the session attributes:

Setting Complex Attributes 37

Amazon Lex V1 Developer Guide

"sessionAttributes" : {
 "binaryData": "base64 encoded data"
}

Using Confidence Scores

When a user makes an utterance, Amazon Lex uses natural language understanding (NLU) to
understand the user's request and return the proper intent. By default, Amazon Lex returns the
most likely intent defined by your bot.

In some cases it may be difficult for Amazon Lex to determine the most likely intent. For example,
the user might make an ambiguous utterance, or there might be two intents that are similar. To
help determine the proper intent, you can combine your domain knowledge with the confidence
scores of a list of alternative intents. A confidence score is a rating that Amazon Lex provides that
shows how confident it is that an intent is the correct intent.

To determine the difference between two alternative intents, you can compare their confidence
scores. For example, if one intent has a confidence score of 0.95 and another has a score of 0.65,
the first intent is probably correct. However, if one intent has a score of 0.75 and another has a
score of 0.72, there is ambiguity between the two intents that you may be able to discriminate
using domain knowledge in your application.

You can also use confidence scores to create test applications that determine if changes to an
intent's utterances make a difference in the behavior of the bot. For example, you can get the
confidence scores for a bot's intents using a set of utterances, then update the intents with new
utterances. You can then check the confidence scores to see if there was an improvement.

The confidence scores that Amazon Lex returns are comparative values. You should not rely on
them as an absolute score. The values may change based on improvements to Amazon Lex.

When you use confidence scores, Amazon Lex returns the most likely intent and up to 4
alternative intents with their associated scores in each response. If all of the confidence
scores are less than a threshold, Amazon Lex includes the AMAZON.FallbackIntent, the
AMAZON.KendraSearchIntent, or both, if you have them configured. You can use the default
threshold or you can set your own threshold.

The following JSON code shows the alternativeIntents field in the response from the
PostText operation.

Using Confidence Scores 38

Amazon Lex V1 Developer Guide

 "alternativeIntents": [
 {
 "intentName": "string",
 "nluIntentConfidence": {
 "score": number
 },
 "slots": {
 "string" : "string"
 }
 }
],

Set the threshold when you create or update a bot. You can use either the API or the Amazon Lex
console. For the regions listed below you need to opt-in to enable accuracy improvements and
confidence scores. In the console, choose confidence scores in the Advanced Options section.
Using the API, set the enableModelImprovements parameter when you call the PutBot
operation. :

• US East (N. Virginia) (us-east-1)

• US West (Oregon) (us-west-2)

• Asia Pacific (Sydney) (ap-southeast-2)

• Europe (Ireland) (eu-west-1)

In all other regions, accuracy improvements and confidence score support is available by default.

To change the confidence threshold, set it in the console or using the PutBot operation. The
threshold must be a number between 1.00 and 0.00.

To use the console, set the confidence threshold when you create or update your bot.

To set the confidence threshold when creating a bot (Console)

• On Create your bot, enter a value in the Confidence score threshold field.

To update the confidence threshold (Console)

1. From the list of your bots, choose the bot to update.

2. Choose the Settings tab.

Using Confidence Scores 39

Amazon Lex V1 Developer Guide

3. In the left navigation, choose General.

4. Update the value in the Confidence score threshold field.

To set or update the confidence threshold (SDK)

• Set the nluIntentConfidenceThreshold parameter of the PutBot operation. The
following JSON code shows the parameter being set.

 "nluIntentConfidenceThreshold": 0.75,

Session Management

To change the intent that Amazon Lex uses in a conversation with the user, you can use the
response from your dialog code hook Lambda function, or you can use the session management
APIs in your custom application.

Using a Lambda function

When you use a Lambda function, Amazon Lex calls it with a JSON structure that contains
the input to the function. The JSON structure contains a field called currentIntent that
contains the intent that Amazon Lex has identified as the most likely intent for the user's
utterance. The JSON structure also includes an alternativeIntents field that contains up
to four additional intents that may satisfy the user's intent. Each intent includes a field called
nluIntentConfidenceScore that contains the confidence score that Amazon Lex assigned to
the intent.

To use an alternative intent, you specify it in the ConfirmIntent or the ElicitSlot dialog
action in your Lambda function.

For more information, see Using Lambda Functions.

Using the Session Management API

To use a different intent from the current intent, use the PutSession operation. For example, if you
decide that the first alternative is preferable to the intent that Amazon Lex chose, you can use the
PutSession operation to change intents so that the next intent that the user interacts with is the
one that you selected.

Session Management 40

Amazon Lex V1 Developer Guide

For more information, see Managing Sessions With the Amazon Lex API.

Conversation Logs

You enable conversation logs to store bot interactions. You can use these logs to review the
performance of your bot and to troubleshoot issues with conversations. You can log text for the
PostText operation. You can log both text and audio for the PostContent operation. By enabling
conversation logs you get a detailed view of conversations that users have with your bot.

For example, a session with your bot has a session ID. You can use this ID to get the transcript of
the conversation including user utterances and the corresponding bot responses. You also get
metadata such as intent name and slot values for an utterance.

Note

You can't use conversation logs with a bot subject to the Children's Online Privacy
Protection Act (COPPA).

Conversation logs are configured for an alias. Each alias can have different settings for their text
and audio logs. You can enable text logs, audio logs, or both for each alias. Text logs store text
input, transcripts of audio input, and associated metadata in CloudWatch Logs. Audio logs store
audio input in Amazon S3. You can enable encryption of text and audio logs using AWS KMS
customer managed CMKs.

To configure logging, use the console or the PutBotAlias operation. You can't log conversations
for the $LATEST alias of your bot or for the test bot available in the Amazon Lex console. After
enabling conversation logs for an alias, PostContent or PostText operation for that alias logs the
text or audio utterances in the configured CloudWatch Logs log group or S3 bucket.

Topics

• IAM Policies for Conversation Logs

• Configuring Conversation Logs

• Encrypting Conversation Logs

• Viewing Text Logs in Amazon CloudWatch Logs

• Accessing Audio Logs in Amazon S3

• Monitoring Conversation Log Status with CloudWatch Metrics

Conversation Logs 41

Amazon Lex V1 Developer Guide

IAM Policies for Conversation Logs

Depending on the type of logging that you select, Amazon Lex requires permission to use Amazon
CloudWatch Logs and Amazon Simple Storage Service (S3) buckets to store your logs. You must
create AWS Identity and Access Management roles and permissions to enable Amazon Lex to access
these resources.

Creating an IAM Role and Policies for Conversation Logs

To enable conversation logs, you must grant write permission for CloudWatch Logs and Amazon
S3. If you enable object encryption for your S3 objects, you need to grant access permission to the
AWS KMS keys used to encrypt the objects.

You can use the IAM AWS Management Console, the IAM API, or the AWS Command Line Interface
to create the role and policies. These instructions use the AWS CLI to create the role and policies.
For information about creating policies with the console, see Creating policies on the JSON tab in
the AWS Identity and Access Management User Guide.

Note

The following code is formatted for Linux and MacOS. For Windows, replace the Linux line
continuation character (\) with a caret (^).

To create an IAM role for conversation logs

1. Create a document in the current directory called
LexConversationLogsAssumeRolePolicyDocument.json, add the following code to it,
and save it. This policy document adds Amazon Lex as a trusted entity to the role. This allows
Lex to assume the role to deliver logs to the resources configured for conversation logs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lex.amazonaws.com"
 },
 "Action": "sts:AssumeRole"

IAM Policies for Conversation Logs 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor

Amazon Lex V1 Developer Guide

 }
]
}

2. In the AWS CLI, run the following command to create the IAM role for conversation logs.

aws iam create-role \
 --role-name role-name \
 --assume-role-policy-document file://
LexConversationLogsAssumeRolePolicyDocument.json

Next, create and attach a policy to the role that enables Amazon Lex to write to CloudWatch Logs.

To create an IAM policy for logging conversation text to CloudWatch Logs

1. Create a document in the current directory called
LexConversationLogsCloudWatchLogsPolicy.json, add the following IAM policy to it,
and save it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:region:account-id:log-group:log-group-name:*"
 }
]
}

2. In the AWS CLI, create the IAM policy that grants write permission to the CloudWatch Logs log
group.

aws iam create-policy \
 --policy-name cloudwatch-policy-name \
 --policy-document file://LexConversationLogsCloudWatchLogsPolicy.json

3. Attach the policy to the IAM role that you created for conversation logs.

IAM Policies for Conversation Logs 43

Amazon Lex V1 Developer Guide

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::account-id:policy/cloudwatch-policy-name \
 --role-name role-name

If you are logging audio to an S3 bucket, create a policy that enables Amazon Lex to write to the
bucket.

To create an IAM policy for audio logging to an S3 bucket

1. Create a document in the current directory called LexConversationLogsS3Policy.json,
add the following policy to it, and save it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::bucket-name/*"
 }
]
}

2. In the AWS CLI, create the IAM policy that grants write permission to your S3 bucket.

aws iam create-policy \
 --policy-name s3-policy-name \
 --policy-document file://LexConversationLogsS3Policy.json

3. Attach the policy to the role that you created for conversation logs.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::account-id:policy/s3-policy-name \
 --role-name role-name

IAM Policies for Conversation Logs 44

Amazon Lex V1 Developer Guide

Granting Permission to Pass an IAM Role

When you use the console, the AWS Command Line Interface, or an AWS SDK to specify an IAM
role to use for conversation logs, the user specifying the conversation logs IAM role must have
permission to pass the role to Amazon Lex. To allow the user to pass the role to Amazon Lex, you
must grant PassRole permission to the user, role, or group.

The following policy defines the permission to grant to the user, role, or group. You can use the
iam:AssociatedResourceArn and iam:PassedToService condition keys to limit the scope
of the permission. For more information, see Granting a User Permissions to Pass a Role to an
AWS Service and IAM and AWS STS Condition Context Keys in the AWS Identity and Access
Management User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::account-id:role/role-name",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "lex.amazonaws.com"
 },
 "StringLike": {
 "iam:AssociatedResourceARN": "arn:aws:lex:region:account-
id:bot:bot-name:bot-alias"
 }
 }
 }
]
}

Configuring Conversation Logs

You enable and disable conversation logs using the console or the conversationLogs field of the
PutBotAlias operation. You can turn on or turn off audio logs, text logs, or both. Logging starts
on new bot sessions. Changes to log settings aren't reflected for active sessions.

To store text logs, use an Amazon CloudWatch Logs log group in your AWS account. You can use
any valid log group. The log group must be in the same region as the Amazon Lex bot. For more

Configuring Conversation Logs 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html

Amazon Lex V1 Developer Guide

information about creating a CloudWatch Logs log group, see Working with Log Groups and Log
Streams in the Amazon CloudWatch Logs User Guide.

To store audio logs, use an Amazon S3 bucket in your AWS account. You can use any valid S3
bucket. The bucket must be in the same region as the Amazon Lex bot. For more information about
creating an S3 bucket, see Create a Bucket in the Amazon Simple Storage Service Getting Started
Guide.

You must provide an IAM role with policies that enable Amazon Lex to write to the configured log
group or bucket. For more information, see Creating an IAM Role and Policies for Conversation
Logs.

If you create a service-linked role using the AWS Command Line Interface, you must add a custom
suffix to the role using the custom-suffix option as follows:

aws iam create-service-linked-role \
 --aws-service-name lex.amazon.aws.com \
 --custom-suffix suffix

The IAM role that you use to enable conversation logs must have the iam:PassRole permission.
The following policy should be attached to the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::account:role/role"
 }
]
}

Enabling Conversation Logs

To turn on logs using the console

1. Open the Amazon Lex console https://console.aws.amazon.com/lex.

2. From the list, choose a bot.

3. Choose the Settings tab, and then from the left menu choose Conversation logs.

Configuring Conversation Logs 46

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://console.aws.amazon.com/lex

Amazon Lex V1 Developer Guide

4. In the list of aliases, choose the settings icon for the alias for which you want to configure
conversation logs.

5. Select whether to log text, audio, or both.

6. For text logging, enter the Amazon CloudWatch Logs log group name.

7. For audio logging, enter the S3 bucket information.

8. Optional. To encrypt audio logs, choose the AWS KMS key to use for encryption.

9. Choose an IAM role with the required permissions.

10. Choose Save to start logging conversations.

To turn on text logs using the API

1. Call the PutBotAlias operation with an entry in the logSettings member of the
conversationLogs field

• Set the destination member to CLOUDWATCH_LOGS

• Set the logType member to TEXT

• Set the resourceArn member to the Amazon Resource Name (ARN) of the CloudWatch
Logs log group that is the destination for the logs

2. Set the iamRoleArn member of the conversationLogs field to the Amazon Resource Name
(ARN) of an IAM role that has the required permissions for enabling conversation logs on the
specified resources.

To turn on audio logs using the API

1. Call the PutBotAlias operation with an entry in the logSettings member of the
conversationLogs field

• Set the destination member to S3

• Set the logType member to AUDIO

• Set the resourceArn member to the ARN of the Amazon S3 bucket where the audio logs
are stored

• Optional. To encrypt audio logs with a specific AWS KMS key, set the kmsKeyArn member of
the ARN of the key that is used for encryption.

Configuring Conversation Logs 47

Amazon Lex V1 Developer Guide

2. Set the iamRoleArn member of the conversationLogs field to the Amazon Resource Name
(ARN) of an IAM role that has the required permissions for enabling conversation logs on the
specified resources.

Disabling Conversation Logs

To turn off logs using the console

1. Open the Amazon Lex console https://console.aws.amazon.com/lex.

2. From the list, choose a bot.

3. Choose the Settings tab, and then from the left menu choose Conversation logs.

4. In the list of aliases, choose the settings icon for the alias for which you want to configure
conversation logs.

5. Clear the check from text, audio, or both to turn off logging.

6. Choose Save to stop logging conversations.

To turn off logs using the API

• Call the PutBotAlias operation without the conversationLogs field.

To turn off text logs using the API

• • If you are logging audio

• Call the PutBotAlias operation with a logSettings entry only for AUDIO.

• The call to the PutBotAlias operation must not have a logSettings entry for TEXT.

• If you are not logging audio

• Call the PutBotAlias operation without the conversationLogs field.

To turn off audio logs using the API

• • If you are logging text

• Call the PutBotAlias operation with a logSettings entry only for TEXT.

• The call to the PutBotAlias operation must not have a logSettings entry for AUDIO.

• If you are not logging text
Configuring Conversation Logs 48

https://console.aws.amazon.com/lex

Amazon Lex V1 Developer Guide

• Call the PutBotAlias operation without the conversationLogs field.

Encrypting Conversation Logs

You can use encryption to help protect the contents of your conversation logs. For text and audio
logs, you can use AWS KMS customer managed CMKs to encrypt data in your CloudWatch Logs log
group and S3 bucket.

Note

Amazon Lex supports only symmetric CMKs. Do not use an asymmetric CMK to encrypt
your data.

You enable encryption using an AWS KMS key on the CloudWatch Logs log group that Amazon
Lex uses for text logs. You can't provide an AWS KMS key in the log settings to enable AWS KMS
encryption of your log group. For more information, see Encrypt Log Data in CloudWatch Logs
Using AWS KMS in the Amazon CloudWatch Logs User Guide.

For audio logs you use default encryption on your S3 bucket or specify an AWS KMS key to encrypt
your audio objects. Even if your S3 bucket uses default encryption you can still specify a different
AWS KMS key to encrypt your audio objects. For more information, see Amazon S3 Default
Encryption for S3 Buckets in the Amazon Simple Storage Service Developer Guide.

Amazon Lex requires AWS KMS permissions if you choose to encrypt your audio logs. You need to
attach additional policies to the IAM role used for conversation logs. If you use default encryption
on your S3 bucket, your policy must grant access to the AWS KMS key configured for that bucket. If
you specify an AWS KMS key in your audio log settings, your must grant access to that key.

If you have not created a role for conversation logs, see IAM Policies for Conversation Logs.

To create an IAM policy for using an AWS KMS key for encrypting audio logs

1. Create a document in the current directory called LexConversationLogsKMSPolicy.json,
add the following policy to it, and save it.

{
 "Version": "2012-10-17",

Encrypting Conversation Logs 49

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html

Amazon Lex V1 Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": "kms-key-arn"
 }
]
}

2. In the AWS CLI, create the IAM policy that grants permission to use the AWS KMS key for
encrypting audio logs.

aws iam create-policy \
 --policy-name kms-policy-name \
 --policy-document file://LexConversationLogsKMSPolicy.json

3. Attach the policy to the role that you created for conversation logs.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::account-id:policy/kms-policy-name \
 --role-name role-name

Viewing Text Logs in Amazon CloudWatch Logs

Amazon Lex stores text logs for your conversations in Amazon CloudWatch Logs. To view the logs,
you can use the CloudWatch Logs console or API. For more information, see Search Log Data Using
Filter Patterns and CloudWatch Logs Insights Query Syntax in the Amazon CloudWatch Logs User
Guide.

To view logs using the Amazon Lex console

1. Open the Amazon Lex console https://console.aws.amazon.com/lex.

2. From the list, choose a bot.

3. Choose the Settings tab, then from the left menu choose Conversation logs.

4. Choose the link under Text logs to view the logs for the alias in the CloudWatch console.

Viewing Text Logs in Amazon CloudWatch Logs 50

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SearchDataFilterPattern.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SearchDataFilterPattern.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://console.aws.amazon.com/lex

Amazon Lex V1 Developer Guide

You can also use the CloudWatch console or API to view your log entries. To find the log entries,
navigate to the log group that you configured for the alias. You find the log stream prefix for your
logs in the Amazon Lex console or by using the GetBotAlias operation.

Log entries for a user utterance is in multiple log streams. An utterance in the conversation has an
entry in one of the log streams with the specified prefix. An entry in the log stream contains the
following information.

{
 "messageVersion": "1.0",
 "botName": "bot name",
 "botAlias": "bot alias",
 "botVersion": "bot version",
 "inputTranscript": "text used to process the request",
 "botResponse": "response from the bot",
 "intent": "matched intent",
 "nluIntentConfidence": "number",
 "slots": {
 "slot name": "slot value",
 "slot name": null,
 "slot name": "slot value"
 ...
 },
 "alternativeIntents": [
 {
 "name": "intent name",
 "nluIntentConfidence": "number",
 "slots": {
 "slot name": slot value,
 "slot name": null,
 "slot name": slot value
 ...
 }
 },
 {
 "name": "intent name",
 "nluIntentConfidence": number,
 "slots": {}
 }
],
 "developerOverride": "true" | "false",
 "missedUtterance": true | false,
 "inputDialogMode": "Text" | "Speech",

Viewing Text Logs in Amazon CloudWatch Logs 51

Amazon Lex V1 Developer Guide

 "requestId": "request ID",
 "s3PathForAudio": "S3 path to audio file",
 "userId": "user ID",
 "sessionId": "session ID",
 "sentimentResponse": {
 "sentimentScore": "{Positive: number, Negative: number, Neutral: number,
 Mixed: number}",
 "sentimentLabel": "Positive" | "Negative" | "Neutral" | "Mixed"
 },
 "slotToElicit": "slot name",
 "dialogState": "ElicitIntent" | "ConfirmIntent" | "ElicitSlot" | "Fulfilled" |
 "ReadyForFulfillment" | "Failed",
 "responseCard": {
 "genericAttachments": [
 ...
],
 "contentType": "application/vnd.amazonaws.card.generic",
 "version": 1
 },
 "locale": "locale",
 "timestamp": "ISO 8601 UTC timestamp",
 "kendraResponse": {
 "totalNumberOfResults": number,
 "resultItems": [
 {
 "id": "query ID",
 "type": "DOCUMENT" | "QUESTION_ANSWER" | "ANSWER",
 "additionalAttributes": [
 {
 ...
 }
],
 "documentId": "document ID",
 "documentTitle": {
 "text": "title",
 "highlights": null
 },
 "documentExcerpt": {
 "text": "text",
 "highlights": [
 {
 "beginOffset": number,
 "endOffset": number,
 "topAnswer": true | false

Viewing Text Logs in Amazon CloudWatch Logs 52

Amazon Lex V1 Developer Guide

 }
]
 },
 "documentURI": "URI",
 "documentAttributes": []
 }
],
 "facetResults": [],
 "sdkResponseMetadata": {
 "requestId": "request ID"
 },
 "sdkHttpMetadata": {
 "httpHeaders": {
 "Content-Length": "number",
 "Content-Type": "application/x-amz-json-1.1",
 "Date": "date and time",
 "x-amzn-RequestId": "request ID"
 },
 "httpStatusCode": 200
 },
 "queryId": "query ID"
 },
 "sessionAttributes": {
 "attribute name": "attribute value"
 ...
 },
 "requestAttributes": {
 "attribute name": "attribute value"
 ...
 }
}

The contents of the log entry depends on the result of a transaction and the configuration of the
bot and request.

• The intent, slots, and slotToElicit fields don't appear in an entry if the
missedUtterance field is true.

• The s3PathForAudio field doesn't appear if audio logs are disabled or if the
inputDialogModefield is Text.

• The responseCard field only appears when you have defined a response card for the bot.

Viewing Text Logs in Amazon CloudWatch Logs 53

Amazon Lex V1 Developer Guide

• The requestAttributes map only appears if you have specified request attributes in the
request.

• The kendraResponse field is only present when the AMAZON.KendraSearchIntent makes a
request to search an Amazon Kendra index.

• The developerOverride field is true when an alternative intent was specified in the bot's
Lambda function.

• The sessionAttributes map only appears if you have specified session attributes in the
request.

• The sentimentResponse map only appears if you configure the bot to return sentiment values.

Note

The input format may change without a corresponding change in the messageVersion.
Your code should not throw an error if new fields are present.

You must have a role and policy set to enable Amazon Lex to write to CloudWatch Logs. For more
information see IAM Policies for Conversation Logs.

Accessing Audio Logs in Amazon S3

Amazon Lex stores audio logs for your conversations in an S3 bucket.

To access audio logs using the console

1. Open the Amazon Lex console https://console.aws.amazon.com/lex.

2. From the list, choose a bot.

3. Choose the Settings tab, then from the left menu choose Conversation logs.

4. Choose the link under Audio logs to access the logs for the alias in the Amazon S3 console.

You can also use the Amazon S3 console or API to access audio logs. You can see the S3 object
key prefix of the audio files in the Amazon Lex console, or in the resourcePrefix field in the
GetBotAlias operation response.

Accessing Audio Logs in Amazon S3 54

https://console.aws.amazon.com/lex

Amazon Lex V1 Developer Guide

Monitoring Conversation Log Status with CloudWatch Metrics

Use Amazon CloudWatch to monitor delivery metrics of your conversation logs. You can set alarms
on metrics so that you are aware of issues with logging if they should occur.

Amazon Lex provides four metrics in the AWS/Lex namespace for conversation logs:

• ConversationLogsAudioDeliverySuccess

• ConversationLogsAudioDeliveryFailure

• ConversationLogsTextDeliverySuccess

• ConversationLogsTextDeliveryFailure

For more information, see CloudWatch Metrics for Conversation Logs.

The success metrics show that Amazon Lex has successfully written your audio or text logs to their
destinations.

The failure metrics show that Amazon Lex couldn't deliver audio or text logs to the specified
destination. Typically, this is a configuration error. When your failure metrics are above zero, check
the following:

• Make sure that Amazon Lex is a trusted entity for the IAM role.

• For text logging, make sure that the CloudWatch Logs log group exists. For audio logging, make
sure that the S3 bucket exists.

• Make sure that the IAM role that Amazon Lex uses to access the CloudWatch Logs log group or
S3 bucket has write permission for the log group or bucket.

• Make sure that the S3 bucket exists in the same region as the Amazon Lex bot and belongs to
your account.

• If you are using an AWS KMS key for S3 encryption, make sure that there are no policies that
prevent Amazon Lex from using your key and make sure that the IAM role you provide has the
necessary AWS KMS permissions. For more information, see IAM Policies for Conversation Logs.

Managing Sessions With the Amazon Lex API

When a user starts a conversation with your bot, Amazon Lex creates a session. The information
exchanged between your application and Amazon Lex makes up the session state for the

Monitoring Conversation Log Status with CloudWatch Metrics 55

Amazon Lex V1 Developer Guide

conversation. When you make a request, the session is identified by a combination of the bot
name and a user identifier that you specify. For more information about the user identifier, see the
userId field in the PostContent or PostText operation.

The response from a session operation includes a unique session identifier that identifies a specific
session with a user. You can use this identifier during testing or to help troubleshoot your bot.

You can modify the session state sent between your application and your bot. For example, you
can create and modify session attributes that contain custom information about the session, and
you can change the flow of the conversation by setting the dialog context to interpret the next
utterance.

There are two ways that you can update session state. The first is to use a Lambda function with
the PostContent or PostText operation that is called after each turn of the conversation. For
more information, see Using Lambda Functions. The other is to use the Amazon Lex runtime API in
your application to make changes to the session state.

The Amazon Lex runtime API provides operations that enable you to manage session information
for a conversation with your bot. The operations are the PutSession operation, the GetSession
operation, and the DeleteSession operation. You use these operations to get information about the
state of your user's session with your bot, and to have fine-grained control over the state.

Use the GetSession operation when you want to get the current state of the session. The
operation returns the current state of the session, including the state of the dialog with your user,
any session attributes that have been set and slot values for the last three intents that the user
interacted with.

The PutSession operation enables you to directly manipulate the current session state. You can
set the type of dialog action that the bot will perform next. This gives you control over the flow of
the conversation with the bot. Set the dialog action type field to Delegate to have Amazon Lex
determine the next action for the bot.

You can use the PutSession operation to create a new session with a bot and set the intent
that the bot should start with. You can also use the PutSession operation to change from one
intent to another. When you create a session or change the intent you also can set session state,
such as slot values and session attributes. When the new intent is finished, you have the option of
restarting the prior intent. You can use the GetSession operation to get the dialog state of the
prior intent from Amazon Lex and use the information to set the dialog state of the intent.

Managing Sessions 56

Amazon Lex V1 Developer Guide

The response from the PutSession operation contains the same information as the
PostContent operation. You can use this information to prompt the user for the next piece of
information, just as you would with the response from the PostContent operation.

Use the DeleteSession operation to remove an existing session and start over with a new
session. For example, when you are testing your bot you can use the DeleteSession operation to
remove test sessions from your bot.

The session operations work with your fulfillment Lambda functions. For example, if your Lambda
function returns Failed as the fulfillment state you can use the PutSession operation to set
the dialog action type to close and fulfillmentState to ReadyForFulfillment to retry the
fulfillment step.

Here are some things that you can do with the session operations:

• Have the bot start a conversation instead of waiting for the user.

• Switch intents during a conversation.

• Return to a previous intent.

• Start or restart a conversation in the middle of the interaction.

• Validate slot values and have the bot re-prompt for values that are not valid.

Each of these are described further below.

Switching Intents

You can use the PutSession operation to switch from one intent to another. You can also use it to
switch back to a previous intent. You can use the PutSession operation to set session attributes
or slot values for the new intent.

• Call the PutSession operation. Set the intent name to the name of the new intent and set the
dialog action to Delegate. You can also set any slot values or session attributes required for the
new intent.

• Amazon Lex will start a conversation with the user using the new intent.

Switching Intents 57

Amazon Lex V1 Developer Guide

Resuming a Prior Intent

To resume a prior intent you use the GetSession operation to get the summary of the intent, and
then use the PutSession operation to set the intent to its previous dialog state.

• Call the GetSession operation. The response from the operation includes a summary of the
dialog state of the last three intents that the user interacted with.

• Using the information from the intent summary, call the PutSession operation. This will return
the user to the previous intent in the same place in the conversation.

In some cases it may be necessary to resume your user's conversation with your bot. For example,
say that you have created a customer service bot. Your application determines that the user needs
to talk to a customer service representative. After talking to the user, the representative can direct
the conversation back to the bot with the information that they collected.

To resume a session, use steps similar to these:

• Your application determines that the user needs to speak to a customer service representative.

• Use the GetSession operation to get the current dialog state of the intent.

• The customer service representative talks to the user and resolves the issue.

• Use the PutSession operation to set the dialog state of the intent. This may include setting slot
values, setting session attributes, or changing the intent.

• The bot resumes the conversation with the user.

You can use the PutSession operation checkpointLabel parameter to label an intent so that
you can find it later. For example, a bot that asks a customer for information might go into a
Waiting intent while the customer gathers the information. The bot creates a checkpoint label for
the current intent and then starts the Waiting intent. When the customer returns the bot can find
the previous intent using the checkpoint label and switch back.

The intent must be present in the recentIntentSummaryView structure returned by the
GetSession operation. If you specify a checkpoint label in the GetSession operation request, it
will return a maximum of three intents with that checkpoint label.

• Use the GetSession operation to get the current state of the session.

Resuming a Prior Intent 58

Amazon Lex V1 Developer Guide

• Use the PutSession operation to add a checkpoint label to the last intent. If necessary you can
use this PutSession call to switch to a different intent.

• When it is time to switch back to the labeled intent, call the GetSession operation to return
a recent intent list. You can use the checkpointLabelFilter parameter so that Amazon Lex
returns only intents with the specified checkpoint label.

Starting a New Session

If you want to have the bot start the conversation with your user, you can use the PutSession
operation.

• Create a welcome intent with no slots and a conclusion message that prompts the user to state
an intent. For example, "What would you like to order? You can say 'Order a drink' or 'Order a
pizza.'"

• Call the PutSession operation. Set the intent name to the name of your welcome intent and
set the dialog action to Delegate.

• Amazon Lex will respond with the prompt from your welcome intent to start the conversation
with your user.

Validating Slot Values

You can validate responses to your bot using your client application. If the response isn't valid, you
can use the PutSession operation to get a new response from your user. For example, suppose
that your flower ordering bot can only sell tulips, roses, and lilies. If the user orders carnations, your
application can do the following:

• Examine the slot value returned from the PostText or PostContent response.

• If the slot value is not valid, call the PutSession operation. Your application should clear
the slot value, set the slotToElicit field, and set the dialogAction.type value to
elicitSlot. Optionally, you can set the message and messageFormat fields if you want to
change the message that Amazon Lex uses to elicit the slot value.

Bot Deployment Options

Currently, Amazon Lex provides the following bot deployment options:

Starting a New Session 59

Amazon Lex V1 Developer Guide

• AWS Mobile SDK – You can build mobile applications that communicate with Amazon Lex using
the AWS Mobile SDKs.

• Facebook Messenger – You can integrate your Facebook Messenger page with your Amazon
Lex bot so that end users on Facebook can communicate with the bot. In the current
implementation, this integration supports only text input messages.

• Slack – You can integrate your Amazon Lex bot with a Slack messaging application.

• Twilio – You can integrate your Amazon Lex bot with the Twilio Simple Messaging Service (SMS).

For examples, see Deploying Amazon Lex Bots.

Built-in Intents and Slot Types

To make it easier to create bots, Amazon Lex allows you to use standard built-in intents and slot
types.

Topics

• Built-in Intents

• Built-in Slot Types

Built-in Intents

For common actions, you can use the standard built-in intents library. To create an intent from a
built-in intent, choose a built-intent in the console, and give it a new name. The new intent has the
configuration of the base intent, such as the sample utterances.

In the current implementation, you can't do the following:

• Add or remove sample utterances from the base intent

• Configure slots for built-in intents

To add a built-in intent to a bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot to add the built-in intent to.

3. In the navigation pane, choose the plus (+) next to Intents.

Built-in Intents and Slot Types 60

https://aws.amazon.com/mobile/sdk/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

4. For Add intent, choose Search existing intents.

5. In the Search intents box, type the name of the built-in intent to add to your bot.

6. For Copy built-in intent, give the intent a name, and then choose Add.

7. Configure the intent as required for your bot.

Topics

• AMAZON.CancelIntent

• AMAZON.FallbackIntent

• AMAZON.HelpIntent

• AMAZON.KendraSearchIntent

• AMAZON.PauseIntent

• AMAZON.RepeatIntent

• AMAZON.ResumeIntent

• AMAZON.StartOverIntent

• AMAZON.StopIntent

Note

For the English (US) (en-US) locale, Amazon Lex supports intents from the Alexa standard
built-in intents. For a list of built-in intents, see Standard Built-in Intents in the Alexa Skills
Kit.
Amazon Lex doesn't support the following intents:

• AMAZON.YesIntent

• AMAZON.NoIntent

• The intents in the Built-in Intent Library in the Alexa Skills Kit

AMAZON.CancelIntent

Responds to words and phrases that indicate the user wants to cancel the current interaction. Your
application can use this intent to remove slot type values and other attributes before ending the
interaction with the user.

Built-in Intents 61

https://developer.amazon.com/docs/custom-skills/standard-built-in-intents.html
https://developer.amazon.com/docs/custom-skills/built-in-intent-library.html

Amazon Lex V1 Developer Guide

Common utterances:

• cancel

• never mind

• forget it

AMAZON.FallbackIntent

When a user's input to an intent isn't what a bot expects, you can configure Amazon Lex to invoke
a fallback intent. For example, if the user input "I'd like to order candy" doesn't match an intent in
your OrderFlowers bot, Amazon Lex invokes the fallback intent to handle the response.

You add a fallback intent by adding the built-in AMAZON.FallbackIntent intent type to your
bot. You can specify the intent using the PutBot operation or by choosing the intent from the list
of built-in intents in the console.

Invoking a fallback intent uses two steps. In the first step the fallback intent is matched based on
the input from the user. When the fallback intent is matched, the way the bot behaves depends on
the number of retries configured for a prompt. For example, if the maximum number of attempts
to determine an intent is 2, the bot returns the bot's clarification prompt twice before invoking the
fallback intent.

Amazon Lex matches the fallback intent in these situations:

• The user's input to an intent doesn't match the input that the bot expects

• Audio input is noise, or text input isn't recognized as words.

• The user's input is ambiguous and Amazon Lex can't determine which intent to invoke.

The fallback intent is invoked when:

• The bot doesn't recognize the user input as an intent after the configured number of tries for
clarification when the conversation is started.

• An intent doesn't recognize the user input as a slot value after the configured number of tries.

• An intent doesn't recognize the user input as a response to a confirmation prompt after the
configured number of tries.

You can use the following with a fallback intent:

Built-in Intents 62

Amazon Lex V1 Developer Guide

• A fulfillment Lambda function

• A conclusion statement

• A follow up prompt

You can't add the following to a fallback intent:

• Utterances

• Slots

• An initialization and validation Lambda function

• A confirmation prompt

If you have configured both a cancel statement and a fallback intent for a bot, Amazon Lex uses
the fallback intent. If you need your bot to have a cancel statement, you can use the fulfillment
function for the fallback intent to provide the same behavior as a cancel statement. For more
information, see the abortStatement parameter of the PutBot operation.

Using Clarification Prompts

If you provide your bot with a clarification prompt, the prompt is used to solicit a valid intent from
the user. The clarification prompt will be repeated the number of times that you configured. After
that the fallback intent will be invoked.

If you don't set a clarification prompt when you create a bot and the user doesn't start the
conversation with a valid intent, Amazon Lex immediately calls your fallback intent .

When you use a fallback intent without a clarification prompt, Amazon Lex doesn't call the fallback
under these circumstances:

• When the user responds to a follow-up prompt but doesn't provide an intent. For example, in
response to a follow-up prompt that says "Would you like anything else today?", the user says
"Yes." Amazon Lex returns a 400 Bad Request exception because it doesn't have a clarification
prompt to send to the user to get an intent.

• When using an AWS Lambda function, you return an ElicitIntent dialog type. Because
Amazon Lex doesn't have a clarification prompt to get an intent from the user, it returns a 400
Bad Request exception.

Built-in Intents 63

Amazon Lex V1 Developer Guide

• When using the PutSession operation, you send an ElicitIntent dialog type. Because
Amazon Lex doesn't have a clarification prompt to get an intent from the user, it returns a 400
Bad Request exception.

Using a Lambda Function with a Fallback Intent

When a fallback intent is invoked, the response depends on the setting of the
fulfillmentActivity parameter to the PutIntent operation. The bot does one of the following:

• Returns the intent information to the client application.

• Calls the fulfillment Lambda function. It calls the function with the session variables that are set
for the session.

For more information about setting the response when a fallback intent is invoked, see the
fulfillmentActivity parameter of the PutIntent operation.

If you use the fulfillment Lambda function in your fallback intent, you can use this function to
call another intent or to perform some form of communication with the user, such as collecting a
callback number or opening a session with a customer service representative.

You can perform any action in a fallback intent Lambda function that you can perform in the
fulfillment function for any other intent. For more information about creating a fulfillment
function using AWS Lambda, see Using Lambda Functions.

A fallback intent can be invoked multiple times in the same session. For example, suppose that
your Lambda function uses the ElicitIntent dialog action to prompt the user for a different
intent. If Amazon Lex can't infer the user's intent after the configured number of tries, it invokes
the fallback intent again. It also invokes the fallback intent when the user doesn't respond with a
valid slot value after the configured number of tries.

You can configure a Lambda function to keep track of the number of times that the fallback intent
is called using a session variable. Your Lambda function can take a different action if it is called
more times than the threshold that you set in your Lambda function. For more information about
session variables, see Setting Session Attributes.

AMAZON.HelpIntent

Responds to words or phrases that indicate the user needs help while interacting with your bot.
When this intent is invoked, you can configure your Lambda function or application to provide

Built-in Intents 64

Amazon Lex V1 Developer Guide

information about the your bot's capabilities, ask follow up questions about areas of help, or hand
the interaction over to a human agent.

Common utterances:

• help

• help me

• can you help me

AMAZON.KendraSearchIntent

To search documents that you have indexed with Amazon Kendra, use the
AMAZON.KendraSearchIntent intent. When Amazon Lex can't determine the next action in a
conversation with the user, it triggers the search intent.

The AMAZON.KendraSearchIntent is available only in the English (US) (en-US) locale and in the
US East (N. Virginia), US West (Oregon) and Europe (Ireland) Regions.

Amazon Kendra is a machine-learning-based search service that indexes natural language
documents such as PDF documents or Microsoft Word files. It can search indexed documents and
return the following types of responses to a question:

• An answer

• An entry from a FAQ that might answer the question

• A document that is related to the question

For an example of using the AMAZON.KendraSearchIntent, see Example: Creating a FAQ Bot for
an Amazon Kendra Index.

If you configure an AMAZON.KendraSearchIntent intent for your bot, Amazon Lex calls the
intent whenever it can't determine the user utterance for a slot or intent. For example, if your bot
is eliciting a response for a slot type called "pizza topping" and the user says "What is a pizza?,"
Amazon Lex calls the AMAZON.KendraSearchIntent to handle the question. If there is no
response from Amazon Kendra, the conversation continues as configured in the bot.

When you use both the AMAZON.KendraSearchIntent and the AMAZON.FallbackIntent in
the same bot, Amazon Lex uses the intents as follows:

Built-in Intents 65

Amazon Lex V1 Developer Guide

1. Amazon Lex calls the AMAZON.KendraSearchIntent. The intent calls the Amazon Kendra
Query operation.

2. If Amazon Kendra returns a response, Amazon Lex displays the result to the user.

3. If there is no response from Amazon Kendra, Amazon Lex re-prompts the user. The next action
depends on response from the user.

• If the response from the user contains an utterance that Amazon Lex recognizes, such as filling
a slot value or confirming an intent, the conversation with the user proceeds as configured for
the bot.

• If the response from the user does not contain an utterance that Amazon Lex recognizes,
Amazon Lex makes another call to the Query operation.

4. If there is no response after the configured number of retries, Amazon Lex calls the
AMAZON.FallbackIntent and ends the conversation with the user.

There are three ways to use the AMAZON.KendraSearchIntent to make a request to Amazon
Kendra:

• Let the search intent make the request for you. Amazon Lex calls Amazon Kendra with the user's
utterance as the search string. When you create the intent, you can define a query filter string
that limits the number of responses that Amazon Kendra returns. Amazon Lex uses the filter in
the query request.

• Add additional query parameters to the request to narrow the search results using your dialog
Lambda function. You add a kendraQueryFilterString field that contains Amazon Kendra
query parameters to the delegate dialog action. When you add query parameters to the
request with the Lambda function, they take precedence over the query filter that you defined
when you created the intent.

• Create a new query using the dialog Lambda function. You can create a complete
Amazon Kendra query request that Amazon Lex sends. You specify the query in
the kendraQueryRequestPayload field in the delegate dialog action. The
kendraQueryRequestPayload field takes precedence over the kendraQueryFilterString
field.

To specify the queryFilterString parameter when you create a bot, or to specify the
kendraQueryFilterString field when you call the delegate action in a dialog Lambda
function, you specify a string that is used as the attribute filter for the Amazon Kendra query. If
the string isn't a valid attribute filter, you'll get an InvalidBotConfigException exception

Built-in Intents 66

Amazon Lex V1 Developer Guide

at runtime. For more information about attribute filters, see Using document attributes to filter
queries in the Amazon Kendra Developer Guide.

To have control over the query that Amazon Lex sends to Amazon Kendra, you can specify a query
in the kendraQueryRequestPayloadfield in your dialog Lambda function. If the query isn't valid,
Amazon Lex returns an InvalidLambdaResponseException exception. For more information,
see the Query operation in the Amazon Kendra Developer Guide.

For an example of how to use the AMAZON.KendraSearchIntent, see Example: Creating a FAQ
Bot for an Amazon Kendra Index.

IAM Policy for Amazon Kendra Search

To use the AMAZON.KendraSearchIntent intent, you must use a role that provides AWS Identity
and Access Management (IAM) policies that enable Amazon Lex to assume a runtime role that has
permission to call the Amazon Kendra Query intent. The IAM settings that you use depend on
whether you create the AMAZON.KendraSearchIntent using the Amazon Lex console, or using
an AWS SDK or the AWS Command Line Interface (AWS CLI). When you use the console, you can
choose between adding permission to call Amazon Kendra to the Amazon Lex service-linked role
or using a role specifically for calling the Amazon Kendra Query operation. When you use the AWS
CLI or an SDK to create the intent, you must use a role specifically for calling the Query operation.

Attaching Permissions

You can use the console to attach permissions to access the Amazon Kendra Query operation to
the default Amazon Lex service-linked role. When you attach permissions to the service-linked role,
you don't have to create and manage a runtime role specifically to connect to the Amazon Kendra
index.

The user, role, or group that you use to access the Amazon Lex console must have permissions to
manage role policies. Attach the following IAM policy to the console access role. When you grant
these permissions, the role has permissions to change the existing service-linked role policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:PutRolePolicy",

Built-in Intents 67

https://docs.aws.amazon.com/kendra/latest/dg/filtering.html#search-filtering
https://docs.aws.amazon.com/kendra/latest/dg/filtering.html#search-filtering
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html

Amazon Lex V1 Developer Guide

 "iam:GetRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
 },
 {
 "Effect": "Allow",
 "Action": "iam:ListRoles",
 "Resource": "*"
 }
]
}

Specifying a Role

You can use the console, the AWS CLI, or the API to specify a runtime role to use when calling the
Amazon Kendra Query operation.

The user, role, or group that you use to specify the runtime role must have the
iam:PassRole permission. The following policy defines the permission. You can use the
iam:AssociatedResourceArn and iam:PassedToService condition context keys to further
limit the scope of the permissions. For more information, see IAM and AWS STS Condition Context
Keys in the AWS Identity and Access Management User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::account:role/role"
 }
]
}

The runtime role that Amazon Lex needs to use to call Amazon Kendra must have the
kendra:Query permissions. When you use an existing IAM role for permission to call the Amazon
Kendra Query operation, the role must have the following policy attached.

You can use the IAM console, the IAM API, or the AWS CLI to create a policy and attach it to a role.
These instructions use the AWS CLI to create the role and policies.

Built-in Intents 68

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html

Amazon Lex V1 Developer Guide

Note

The following code is formatted for Linux and MacOS. For Windows, replace the Linux line
continuation character (\) with a caret (^).

To add Query operation permission to a role

1. Create a document called KendraQueryPolicy.json in the current directory, add the
following code to it, and save it

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kendra:Query"
],
 "Resource": [
 "arn:aws:kendra:region:account:index/index ID"
]
 }
]
}

2. In the AWS CLI, run the following command to create the IAM policy for running the Amazon
Kendra Query operation.

aws iam create-policy \
 --policy-name query-policy-name \
 --policy-document file://KendraQueryPolicy.json

3. Attach the policy to the IAM role that you are using to call the Query operation.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::account-id:policy/query-policy-name
 --role-name role-name

Built-in Intents 69

Amazon Lex V1 Developer Guide

You can choose to update the Amazon Lex service-linked role or to use a role that you created
when you create the AMAZON.KendraSearchIntent for your bot. The following procedure shows
how to choose the IAM role to use.

To specify the runtime role for AMAZON.KendraSearchIntent

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot that you want to add the AMAZON.KendraSearchIntent to.

3. Choose the plus (+) next to Intents.

4. In Add intent, choose Search existing intents.

5. In Search intents, enter AMAZON.KendraSearchIntent and then choose Add.

6. In Copy built-in intent, enter a name for the intent, such as KendraSearchIntent, and then
choose Add.

7. Open the Amazon Kendra query section.

8. For IAM role choose one of the following options:

• To update the Amazon Lex service-linked role to enable your bot to query Amazon Kendra
indexes, choose Add Amazon Kendra permissions.

• To use a role that has permission to call the Amazon Kendra Query operation, choose Use
an existing role.

Using Request and Session Attributes as Filters

To filter the response from Amazon Kendra to items related to current conversation, use session
and request attributes as filters by adding the queryFilterString parameter when you create
your bot. You specify a placeholder for the attribute when you create the intent, and then Amazon
Lex V2 substitutes a value before it calls Amazon Kendra. For more information about request
attributes, see Setting Request Attributes. For more information about session attributes, see
Setting Session Attributes.

The following is a example of a queryFilterString parameter that uses a string to filter the
Amazon Kendra query.

"{"equalsTo": {"key": "City", "value": {"stringValue": "Seattle"}}}"

Built-in Intents 70

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

The following is an example of a queryFilterString parameter that uses a session attribute
called "SourceURI" to filter the Amazon Kendra query.

"{"equalsTo": {"key": "SourceURI","value": {"stringValue": "[FileURL]"}}}"

The following is an example of a queryFilterString parameter that uses a request attribute
called "DepartmentName" to filter the Amazon Kendra query.

"{"equalsTo": {"key": "Department","value": {"stringValue": "((DepartmentName))"}}}"

The AMAZON.KendraSearchInteng filters use the same format as the Amazon Kendra search
filters. For more information, see Using document attributes to filter search results in the Amazon
Kendra developer guide.

The query filter string used with the AMAZON.KendraSearchIntent must use lower-case
letters for the first letter of each filter. For example, the following is a valid query filter for the
AMAZON.KendraSearchIntent.

{
 "andAllFilters": [
 {
 "equalsTo": {
 "key": "City",
 "value": {
 "stringValue": "Seattle"
 }
 }
 },
 {
 "equalsTo": {
 "key": "State",
 "value": {
 "stringValue": "Washington"
 }
 }
 }
]
}

Built-in Intents 71

https://docs.aws.amazon.com/kendra/latest/dg/filtering.html#search-filtering

Amazon Lex V1 Developer Guide

Using the Search Response

Amazon Kendra returns the response to a search in the intent's conclusion statement. The intent
must have a conclusion statement unless a fulfillment Lambda function produces a conclusion
message.

Amazon Kendra has four types of responses.

• x-amz-lex:kendra-search-response-question_answer-question-<N> – The question
from a FAQ that matches the search.

• x-amz-lex:kendra-search-response-question_answer-answer-<N> – The answer
from a FAQ that matches the search.

• x-amz-lex:kendra-search-response-document-<N> – An excerpt from a document in the
index that is related to the text of the utterance.

• x-amz-lex:kendra-search-response-document-link-<N> – The URL of a document in
the index that is related to the text of the utterance.

• x-amz-lex:kendra-search-response-answer-<N> – An excerpt from a document in the
index that answers the question.

The responses are returned in request attributes. There can be up to five responses for each
attribute, numbered 1 through 5. For more information about responses, see Types of response in
the Amazon Kendra Developer Guide.

The conclusion statement must have one or more message groups. Each message group
contains one or more messages. Each message can contain one or more placeholder variables
that are replaced by request attributes in the response from Amazon Kendra. There must be at
least one message in the message group where all of the variables in the message are replaced by
request attribute values in the runtime response, or there must be a message in the group with
no placeholder variables. The request attributes are set off with double parentheses ("((" "))"). The
following message group messages match any response from Amazon Kendra:

• “I found a FAQ question for you: ((x-amz-lex:kendra-search-response-question_answer-
question-1)), and the answer is ((x-amz-lex:kendra-search-response-question_answer-answer-1))”

• “I found an excerpt from a helpful document: ((x-amz-lex:kendra-search-response-document-1))”

• “I think the answer to your questions is ((x-amz-lex:kendra-search-response-answer-1))”

Built-in Intents 72

https://docs.aws.amazon.com/kendra/latest/dg/response-types.html

Amazon Lex V1 Developer Guide

Using a Lambda Function to Manage the Request and Response

The AMAZON.KendraSearchIntent intent can use your dialog code hook and fulfillment code
hook to manage the request to Amazon Kendra and the response. Use the dialog code hook
Lambda function when you want to modify the query that you send to Amazon Kendra, and the
fulfillment code hook Lambda function when you want to modify the response.

Creating a Query with the Dialog Code Hook

You can use the dialog code hook to create a query to send to Amazon Kendra. Using the dialog
code hook is optional. If you don't specify a dialog code hook, Amazon Lex constructs a query from
the user utterance and uses the queryFilterString that you provided when you configured the
intent, if you provided one.

You can use two fields in the dialog code hook response to modify the request to Amazon Kendra:

• kendraQueryFilterString – Use this string to specify attribute filters for the Amazon
Kendra request. You can filter the query using any of the index fields defined in your index.
For the structure of the filter string, see Using document attributes to filter queries in the
Amazon Kendra Developer Guide. If the specified filter string isn't valid, you will get an
InvalidLambdaResponseException exception. The kendraQueryFilterString string
overrides any query string specified in the queryFilterString configured for the intent.

• kendraQueryRequestPayload – Use this string to specify an Amazon Kendra query. Your
query can use any of the features of Amazon Kendra. If you don't specify a valid query, you get
a InvalidLambdaResponseException exception. For more information, see Query in the
Amazon Kendra Developer Guide.

After you have created the filter or query string, you send the response to Amazon Lex with the
dialogAction field of the response set to delegate. Amazon Lex sends the query to Amazon
Kendra and then returns the query response to the fulfillment code hook.

Using the Fulfillment Code Hook for the Response

After Amazon Lex sends a query to Amazon Kendra, the query response is returned to the
AMAZON.KendraSearchIntent fulfillment Lambda function. The input event to the code hook
contains the complete response from Amazon Kendra. The query data is in the same structure
as the one returned by the Amazon Kendra Query operation. For more information, see Query
response syntax in the Amazon Kendra Developer Guide.

Built-in Intents 73

https://docs.aws.amazon.com/kendra/latest/dg/filtering.html#search-filtering
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html#API_Query_ResponseSyntax
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html#API_Query_ResponseSyntax

Amazon Lex V1 Developer Guide

The fulfillment code hook is optional. If one does not exist, or if the code hook doesn't return a
message in the response, Amazon Lex uses the conclusion statement for responses.

Example: Creating a FAQ Bot for an Amazon Kendra Index

This example creates an Amazon Lex bot that uses an Amazon Kendra index to provide
answers to users' questions. The FAQ bot manages the dialog for the user. It uses the
AMAZON.KendraSearchIntent intent to query the index and to present the response to the user.
To create the bot, you:

1. Create a bot that your customers will interact with to get answers from your bot.

2. Create a custom intent. Your bot requires at least one intent with at least one utterance. This
intent enables your bot to build, but is not used otherwise.

3. Add the KendraSearchIntent intent to your bot and configure it to work with your Amazon
Kendra index.

4. Test the bot by asking questions that are answered by documents stored in your Amazon Kendra
index.

Before you can use this example, you need to create an Amazon Kendra index. For more
information, see Getting started with an S3 bucket (console) in the Amazon Kendra Developer
Guide.

To create a FAQ bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. In the navigation pane, choose Bots.

3. Choose Create.

4. Choose Custom bot. Configure the bot as follows:

• Bot name – Give the bot a name that indicates its purpose, such as KendraTestBot.

• Output voice – Choose None.

• Session timeout – Enter 5.

• Sentiment analysis – Choose No.

• COPPA – Choose No.

• User utterance storage – Choose Do not store.

Built-in Intents 74

https://docs.aws.amazon.com/kendra/latest/dg/gs-console.html
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

5. Choose Create.

To successfully build a bot, you must create at least one intent with at least one sample utterance.
This intent is required to build your Amazon Lex bot, but isn't used for the FAQ response. The
utterance for the intent must not apply to any of the questions that your customer asks.

To create the required intent

1. On the Getting started with your bot page, choose Create intent.

2. For Add intent, choose Create intent.

3. In the Create intent dialog box, give the intent a name, such as RequiredIntent.

4. For Sample utterances, type an utterance, such as Required utterance.

5. Choose Save intent.

Now, create the intent to search an Amazon Kendra index and the response messages that it should
return.

To create an AMAZON.KendraSearchIntent intent and response message

1. In the navigation pane, choose the plus (+) next to Intents.

2. For Add intent, choose Search existing intents.

3. In the Search intents box, enter AMAZON.KendraSearchIntent, then choose it from the list.

4. For Copy built-in intent, give the intent a name, such as KendraSearchIntent, and then
choose Add.

5. In the intent editor, choose Amazon Kendra query to open the query options.

6. From the Amazon Kendra index menu, choose the index that you want the intent to search.

7. In the Response section, add the following three messages:

I found a FAQ question for you: ((x-amz-lex:kendra-search-response-question_answer-
question-1)) and the answer is ((x-amz-lex:kendra-search-response-question_answer-
answer-1)).
I found an excerpt from a helpful document: ((x-amz-lex:kendra-search-response-
document-1)).
I think the answer to your questions is ((x-amz-lex:kendra-search-response-
answer-1)).

Built-in Intents 75

Amazon Lex V1 Developer Guide

8. Choose Save intent, and then choose Build to build the bot.

Finally, use the console test window to test responses from your bot. Your questions should be in
the domain that your index supports.

To test your FAQ bot

1. In the console test window, type a question for your index.

2. Verify the answer in the test window's response section.

3. To reset the test window for another question, choose Clear chat history.

AMAZON.PauseIntent

Responds to words and phrases that enable the user to pause an interaction with a bot so that
they can return to it later. Your Lambda function or application needs to save intent data in session
variables, or you need to use the GetSession operation to retrieve intent data when you resume the
current intent.

Common utterances:

• pause

• pause that

AMAZON.RepeatIntent

Responds to words and phrases that enable the user to repeat the previous message. Your
application needs to use a Lambda function to save the previous intent information in session
variables, or you need to use the GetSession operation to get the previous intent information.

Common utterances:

• repeat

• say that again

• repeat that

Built-in Intents 76

Amazon Lex V1 Developer Guide

AMAZON.ResumeIntent

Responds to words and phrases the enable the user to resume a previously paused intent. You
Lambda function or application must manage the information required to resume the previous
intent.

Common utterances:

• resume

• continue

• keep going

AMAZON.StartOverIntent

Responds to words and phrases that enable the user to stop processing the current intent and start
over from the beginning. You can use your Lambda function or the PutSession operation to elicit
the first slot value again.

Common utterances:

• start over

• restart

• start again

AMAZON.StopIntent

Responds to words and phrases that indicate that the user wants to stop processing the current
intent and end the interaction with a bot. Your Lambda function or application should clear any
existing attributes and slot type values and then end the interaction.

Common utterances:

• stop

• off

• shut up

Built-in Intents 77

Amazon Lex V1 Developer Guide

Built-in Slot Types

Amazon Lex supports built-in slot types that define how data in the slot is recognized and handled.
You can create slots of these types in your intents. This eliminates the need to create enumeration
values for commonly used slot data such as date, time, and location. Built-in slot types do not have
versions.

Slot Type Short Description Supported Locales

AMAZON.Airport Recognizes words
that represent an
airport.

All locales

AMAZON.Al
phaNumeric

Recognizes words
made up of letters
and numbers.

All locales except
Korean (ko-KR)

AMAZON.City Recognizes words
that represent a city.

All locales

AMAZON.Country Recognizes words
that represent a
country.

All locales

AMAZON.DATE Recognizes words
that represent a date
and converts them to
a standard format.

All locales

AMAZON.DURATION Recognizes words
that represent
duration and converts
them to a standard
format.

All locales

AMAZON.Em
ailAddress

Recognizes words
that represent an
email address and
converts them into

All locales

Built-in Slot Types 78

Amazon Lex V1 Developer Guide

Slot Type Short Description Supported Locales

a standard email
address.

AMAZON.FirstName Recognizes words
that represent a first
name.

All locales

AMAZON.LastName Recognizes words
that represent a last
name.

All locales

AMAZON.NUMBER Recognizes numeric
words and converts
them into digits.

All locales

AMAZON.Percentage Recognizes words
that represent a
percentage and
converts them to
a number and a
percent sign (%).

All locales

AMAZON.Ph
oneNumber

Recognizes words
that represent a
phone number and
converts them into a
numeric string.

All locales

AMAZON.SpeedUnit Recognizes words
that represent a
speed unit and
converts them into
a standard abbreviat
ion.

English (US) (en-US)

Built-in Slot Types 79

Amazon Lex V1 Developer Guide

Slot Type Short Description Supported Locales

AMAZON.State Recognizes words
that represent a
state.

All locales

AMAZON.StreetName Recognizes words
that represent a
street name.

All locales except
English (US) (en-US)

AMAZON.TIME Recognizes words
that indicate times
and converts them
into a time format.

All locales

AMAZON.WeightUnit Recognizes words
that represent a
weight unit and
converts them into
a standard abbreviat
ion

English (US) (en-US)

Note

For the English (US) (en-US) locale, Amazon Lex supports slot types from the Alexa Skill Kit.
For a list of available built-in slot types, see the Slot Type Reference in the Alexa Skills Kit
documentation.

• Amazon Lex doesn't support the AMAZON.LITERAL or the AMAZON.SearchQuery built-
in slot types.

AMAZON.Airport

Provides a list of airports. Examples include:

• John F. Kennedy International Airport

• Melbourne Airport

Built-in Slot Types 80

https://developer.amazon.com/docs/custom-skills/slot-type-reference.html

Amazon Lex V1 Developer Guide

AMAZON.AlphaNumeric

Recognizes strings made up of letters and numbers, such as APQ123.

This slot type is not available in the Korean (ko-KR) locale.

You can use the AMAZON.AlphaNumeric slot type for strings that contain:

• Alphabetical characters, such as ABC

• Numeric characters, such as 123

• A combination of alphanumeric characters, such as ABC123

You can add a regular expression to the AMAZON.AlphaNumeric slot type to validate values
entered for the slot. For example, you can use a regular expression to validate:

• United Kingdom or Canadian postal codes

• Driver's license numbers

• Vehicle identification numbers

Use a standard regular expression. Amazon Lex supports the following characters in the regular
expression:

• A-Z, a-z

• 0-9

Amazon Lex also supports Unicode characters in regular expressions. The form is \uUnicode. Use
four digits to represent Unicode characters. For example, [\u0041-\u005A] is equivalent to [A-Z].

The following regular expression operators are not supported:

• Infinite repeaters: *, +, or {x,} with no upper bound.

• Wild card (.)

The maximum length of the regular expression is 300 characters. The maximum length of a string
stored in an AMAZON.AlphaNumeric slot type that uses a regular expression is 30 characters.

The following are some example regular expressions.

Built-in Slot Types 81

Amazon Lex V1 Developer Guide

• Alphanumeric strings, such as APQ123 or APQ1: [A-Z]{3}[0-9]{1,3} or a more constrained
[A-DP-T]{3} [1-5]{1,3}

• US Postal Service Priority Mail International format, such as CP123456789US: CP[0-9]{9}US

• Bank routing numbers, such as 123456789: [0-9]{9}

To set the regular expression for a slot type, use the console or the PutSlotType operation. The
regular expression is validated when you save the slot type. If the expression isn't valid, Amazon
Lex returns an error message.

When you use a regular expression in a slot type, Amazon Lex checks input to slots of that type
against the regular expression. If the input matches the expression, the value is accepted for the
slot. If the input does not match, Amazon Lex prompts the user to repeat the input.

AMAZON.City

Provides a list of local and world cities. The slot type recognizes common variations of city names.
Amazon Lex doesn't convert from a variation to an official name.

Examples:

• New York

• Reykjavik

• Tokyo

• Versailles

AMAZON.Country

The names of countries around the world. Examples:

• Australia

• Germany

• Japan

• United States

• Uruguay

Built-in Slot Types 82

Amazon Lex V1 Developer Guide

AMAZON.DATE

Converts words that represent dates into a date format.

The date is provided to your intent in ISO-8601 date format. The date that your intent receives in
the slot can vary depending on the specific phrase uttered by the user.

• Utterances that map to a specific date, such as "today," "now," or "November twenty-fifth,"
convert to a complete date: 2020-11-25. This defaults to dates on or after the current date.

• Utterances that map to a specific week, such as "this week," or "next week," convert to the date
of the first day of the week. In ISO-8601 format, the week starts on Monday and ends on Sunday.
For example, if today is 2020-11-25, "next week" converts to 2020-11-30.

• Utterances that map to a month, but not a specific day, such as "next month," convert to the last
day of the month. For example, if today is 2020-11-25, "next month" converts to 2020-12-31.

• Utterances that map to a year, but not a specific month or day, such as "next year," convert to
the last day of the following year. For example, if today is 2020-11-25, "next year" converts to
2021-12-31.

AMAZON.DURATION

Converts words that indicate durations into a numeric duration.

The duration is resolved to a format based on the ISO-8601 duration format, PnYnMnWnDTnHnMnS.
The P indicates that this is a duration, the n is a numeric value, and the capital letter following the
n is the specific date or time element. For example, P3D means 3 days. A T is used to indicate that
the remaining values represent time elements rather than date elements.

Examples:

• "ten minutes": PT10M

• "five hours": PT5H

• "three days": P3D

• "forty five seconds": PT45S

• "eight weeks": P8W

• "seven years": P7Y

• "five hours ten minutes": PT5H10M

Built-in Slot Types 83

https://en.wikipedia.org/wiki/ISO_8601#Durations

Amazon Lex V1 Developer Guide

• "two years three hours ten minutes": P2YT3H10M

AMAZON.EmailAddress

Recognizes words that represent an email address provided as username@domain. Addresses can
include the following special characters in a user name: underscore (_), hyphen (-), period (.), and
the plus sign (+).

AMAZON.FirstName

Commonly used first names. This slot type recognizes both formal names and informal nicknames.
The name sent to your intent is the value sent by the user. Amazon Lex doesn't convert from the
nick name to the formal name.

For first names that sound alike but are spelled differently, Amazon Lex sends your intent a single
common form.

In the English (US) (en-US) locale, use the slot name AMAZON.US_First_Name.

Examples:

• Emily

• John

• Sophie

AMAZON.LastName

Commonly used last names. For names that sound alike that are spelled differently, Amazon Lex
sends your intent a single common form.

In the English (US) (en-US) locale, use the slot name AMAZON.US_Last_Name.

Examples:

• Brosky

• Dasher

• Evers

• Parres

Built-in Slot Types 84

Amazon Lex V1 Developer Guide

• Welt

AMAZON.NUMBER

Converts words or numbers that express a number into digits, including decimal numbers. The
following table shows how the AMAZON.NUMBER slot type captures numeric words.

Input Response

one hundred twenty three point four five 123.45

one hundred twenty three dot four five 123.45

point four two 0.42

point forty two 0.42

232.998 232.998

50 50

AMAZON.Percentage

Converts words and symbols that represent a percentage into a numeric value with a percent sign
(%).

If the user enters a number without a percent sign or the word "percent," the slot value is set to the
number. The following table shows how the AMAZON.Percentage slot type captures percentages.

Input Response

50 percent 50%

0.4 percent 0.4%

23.5% 23.5%

twenty five percent 25%

Built-in Slot Types 85

Amazon Lex V1 Developer Guide

AMAZON.PhoneNumber

Converts the numbers or words that represent a phone number into a string format without
punctuation as follows.

Type Description Input Result

International number
with leading plus (+)
sign

11-digit number with
leading plus sign.

+61 7 4445 1061

+1 (509) 555-1212

+61744431061

+15095551212

International number
without leading plus
(+) sign

11-digit number
without leading plus
sign

1 (509) 555-1212

61 7 4445 1061

15095551212

61744451061

National number 10-digit number
without international
code

(03) 5115 4444

(509) 555-1212

0351154444

5095551212

Local number 7-digit phone
number without an
international code or
an area code

555-1212 5551212

AMAZON.SpeedUnit

Converts words that represent speed units into the corresponding abbreviation. For example,
"miles per hour" is converted to mph.

This slot type is available only in the English (US) (en-US) locale.

The following examples show how the AMAZON.SpeedUnit slot type captures speed units.

Speed unit Abbreviation

miles per hour, mph, MPH, m/h mph

Built-in Slot Types 86

Amazon Lex V1 Developer Guide

Speed unit Abbreviation

kilometers per hour, km per hour, kmph,
KMPH, km/h

kmph

meters per second, mps, MPS, m/s mps

nautical miles per hour, knots, knot knot

AMAZON.State

The names of geographical and political regions within countries.

Examples:

• Bavaria

• Fukushima Prefecture

• Pacific Northwest

• Queensland

• Wales

AMAZON.StreetName

The names of streets within a typical street address. This includes just the street name, not the
house number.

This slot type isn't available in the English (US) (en-US) locale.

Examples:

• Canberra Avenue

• Front Street

• Market Road

Built-in Slot Types 87

Amazon Lex V1 Developer Guide

AMAZON.TIME

Converts words that represent times into time values. Includes resolutions for ambiguous times.
When a user enters an ambiguous time, Amazon Lex uses the slotDetails attribute of a Lambda
event to pass resolutions for the ambiguous times to your Lambda function. For example, if your
bot prompts the user for a delivery time, the user can respond by saying "10 o'clock." This time
is ambiguous. It means either 10:00 AM or 10:00 PM. In this case, the value in the slots map is
null, and the slotDetails entity contains the two possible resolutions of the time. Amazon Lex
inputs the following into the Lambda function:

"slots": {
 "deliveryTime": null
},
"slotDetails": {
 "deliveryTime": {
 "resolutions": [
 {
 "value": "10:00"
 },
 {
 "value": "22:00"
 }
]
 }
}

When the user responds with an unambiguous time, Amazon Lex sends the time to your Lambda
function in the slots attribute of the Lambda event and the slotDetails attribute is empty.
For example, if your user responds to the prompt for a delivery time with "10:00 PM," Amazon Lex
inputs the following into the Lambda function:

"slots": {
 "deliveryTime": "22:00"
}

For more information about the data sent from Amazon Lex to a Lambda function, see Input Event
Format.

Built-in Slot Types 88

Amazon Lex V1 Developer Guide

AMAZON.WeightUnit

Converts words that represent a weight unit into the corresponding abbreviation. For example,
"kilogram" is converted to kg.

This slot type is available only in the English (US) (en-US) locale.

The following examples show how the AMAZON.WeightUnit slot type captures weight units:

Weight unit Abbreviation

kilograms, kilos, kgs, KGS kg

grams, gms, gm, GMS, g g

milligrams, mg, mgs mg

pounds, lbs, LBS lbs

ounces, oz, OZ oz

tonne, ton, t t

kiloton, kt kt

Custom Slot Types

For each intent, you can specify parameters that indicate the information that the intent needs to
fulfill the user's request. These parameters, or slots, have a type. A slot type is a list of values that
Amazon Lex uses to train the machine learning model to recognize values for a slot. For example,
you can define a slot type called "Genres." Each value in the slot type is the name of a genre,
"comedy," "adventure," "documentary," etc. You can define a synonym for a slot type value. For
example, you can define the synonyms "funny" and "humorous" for the value "comedy."

You can configure the slot type to restrict resolution to the slot values. The slot values will be used
as an enumeration and the value entered by the user will be resolved to the slot value only if it is
the same as one of the slot values or a synonym. A synonym is resolved to the corresponding slot
value. For example, if the user enters "funny" it will resolve to the slot value "comedy."

Custom Slot Types 89

Amazon Lex V1 Developer Guide

Alternately, you can configure the slot type to expand the values. Slot values will be used as
training data and the slot is resolved to the value provided by the user if it is similar to the slot
values and synonyms. This is the default behavior.

Amazon Lex maintains a list of possible resolutions for a slot. Each entry in the list provides a
resolution value that Amazon Lex recognized as additional possibilities for the slot. A resolution
value is the best effort to match the slot value. The list contains up to five values.

When the value entered by the user is a synonym, the first entry in the list of resolution
values is the slot type value. For example, if the user enters "funny," the slots field contains
"funny" and the first entry in the slotDetails field is "comedy." You can configure the
valueSelectionStrategy when you create or update a slot type with the PutSlotType
operation so that the slot value is filled with the first value in the resolution list.

If you are using a Lambda function, the input event to the function includes a resolution list called
slotDetails. The following example shows the slot and slot details section of the input to a
Lambda function:

 "slots": {
 "MovieGenre": "funny";
 },
 "slotDetails": {
 "Movie": {
 "resolutions": [
 "value": "comedy"
]
 }
 }

For each slot type, you can define a maximum of 10,000 values and synonyms. Each bot can have
a total number of 50,000 slot type values and synonyms. For example, you can have 5 slot types,
each with 5,000 values and 5,000 synonyms, or you can have 10 slot types, each with 2,500 values
and 2,500 synonyms. If you exceed these limits, you will get a LimitExceededException when
you call the PutBot operation.

Custom Slot Types 90

Amazon Lex V1 Developer Guide

Slot Obfuscation

Amazon Lex enables you to obfuscate, or hide, the contents of slots so that the content is not
visible. To protect sensitive data captured as slot values, you can enable slot obfuscation to mask
those values in conversation logs.

When you choose to obfuscate slot values, Amazon Lex replaces the value of the slot with the
name of the slot in conversation logs. For a slot called full_name, the value of the slot would be
obfuscated as follows:

Before obfuscation:
 My name is John Stiles
After obfuscation:
 My name is {full_name}

If an utterance contains bracket characters ({}) Amazon Lex escapes the bracket characters with two
back slashes (\\). For example, the text {John Stiles} is obfuscated as follows:

Before obfuscation:
 My name is {John Stiles}
After obfuscation:
 My name is \\{{full_name}\\}

Slot values are obfuscated in conversation logs. The slot values are still available in the response
from the PostContent and PostText operations, and the slot values are available to your
validation and fulfillment Lambda functions. If you are using slot values in your prompts or
responses, those slot values are not obfuscated in conversation logs.

In the first turn of a conversation, Amazon Lex obfuscates slot values if it recognizes a slot and slot
value in the utterance. If no slot value is recognized, Amazon Lex does not obfuscate the utterance.

On the second and later turns, Amazon Lex knows the slot to elicit and if the slot value should
be obfuscated. If Amazon Lex recognizes the slot value, the value is obfuscated. If Amazon Lex
does not recognize a value, the entire utterance is obfuscated. Any slot values in missed utterances
won't be obfuscated.

Amazon Lex also doesn't obfuscate slot values that you store in request or session attributes. If you
are storing slot values that should be obfuscated as an attribute, you must encrypt or otherwise
obfuscate the value.

Slot Obfuscation 91

Amazon Lex V1 Developer Guide

Amazon Lex doesn't obfuscate the slot value in audio. It does obfuscate the slot value in the audio
transcription.

You don't need to obfuscate all of the slots in a bot. You can choose which slots obfuscate using
the console or by using the Amazon Lex API. In the console, choose Slot obfuscation in the
settings for a slot. If you are using the API, set the obfuscationSetting field of the slot to
DEFAULT_OBFUSCATION when you call the PutIntent operation.

Sentiment Analysis

You can use sentiment analysis to determine the sentiments expressed in a user utterance. With
the sentiment information you can manage conversation flow or perform post-call analysis. For
example, if the user sentiment is negative you can create a flow to hand over a conversation to a
human agent.

Amazon Lex integrates with Amazon Comprehend to detect user sentiment. The response from
Amazon Comprehend indicates whether the overall sentiment of the text is positive, neutral,
negative, or mixed. The response contains the most likely sentiment for the user utterance and the
scores for each of the sentiment categories. The score represents the likelihood that the sentiment
was correctly detected.

You enable sentiment analysis for a bot using the console or by using the Amazon Lex API. On the
Amazon Lex console, choose the Settings tab for your bot, then set the Sentiment Analysis option
to Yes. If you are using the API, call the PutBot operation with the detectSentiment field set to
true.

When sentiment analysis is enabled, the response from the PostContent and PostText operations
return a field called sentimentResponse in the bot response with other metadata. The
sentimentResponse field has two fields, SentimentLabel and SentimentScore, that contain
the result of the sentiment analysis. If you are using a Lambda function, the sentimentResponse
field is included in the event data sent to your function.

The following is an example of the sentimentResponse field returned as part of the PostText
or PostContent response. The SentimentScore field is a string that contains the scores for the
response.

{
 "SentimentScore":
 "{

Sentiment Analysis 92

Amazon Lex V1 Developer Guide

 Mixed: 0.030585512690246105,
 Positive: 0.94992071056365967,
 Neutral: 0.0141543131828308,
 Negative: 0.00893945890665054
 }",
 "SentimentLabel": "POSITIVE"
}

Amazon Lex calls Amazon Comprehend on your behalf to determine the sentiment in every
utterance processed by the bot. By enabling sentiment analysis, you agree to the service terms
and agreements for Amazon Comprehend. For more information about pricing for Amazon
Comprehend, see Amazon Comprehend Pricing.

For more information about how Amazon Comprehend sentiment analysis works, see Determine
the Sentiment in the Amazon Comprehend Developer Guide.

Tagging Your Amazon Lex Resources

To help you manage your Amazon Lex bots, bot aliases, and bot channels, you can assign metadata
to each resource as tags. A tag is a label that you assign to an AWS resource. Each tag consists of a
key and a value.

Tags enable you to categorize your AWS resources in different ways, for example, by purpose,
owner, or application. Tags help you to:

• Identify and organize your AWS resources. Many AWS resources support tagging, so you can
assign the same tag to resources in different services to indicate that the resources are related.
For example, you can tag a bot and the Lambda functions that it uses with the same tag.

• Allocate costs. You activate tags on the AWS Billing and Cost Management dashboard. AWS uses
the tags to categorize your costs and deliver a monthly cost allocation report to you. For Amazon
Lex, you can allocate costs for each alias using tags specific to the alias, except for the $LATEST
alias. You allocate costs for the $LATEST alias using tags for your Amazon Lex bot. For more
information, see Use Cost Allocation Tags in the AWS Billing and Cost Management User Guide.

• Control access to your resources. You can use tags to Amazon Lex to create policies to control
access to Amazon Lex resources. These policies can be attached to an IAM role or user to enable
tag-based access control. For more information, see ABAC with Amazon Lex. To view an example
identity-based policy for limiting access to a resource based on the tags on that resource, see
Use a Tag to Access a Resource.

Tagging Resources 93

https://aws.amazon.com/comprehend/pricing/
https://docs.aws.amazon.com/comprehend/latest/dg/how-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-sentiment.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Lex V1 Developer Guide

You can work with tags using the AWS Management Console, the AWS Command Line Interface, or
the Amazon Lex API.

Tagging Your Resources

If you are using the Amazon Lex console, you can tag resources when you create them, or you can
add the tags later. You can also use the console to update or remove existing tags.

If you are using the AWS CLI or the Amazon Lex API, you use the following operations to manage
tags for your resources:

• ListTagsForResource – view the tags associated with a resource.

• PutBot and PutBotAlias – apply tags when you create a bot or a bot alias.

• TagResource – add and modify tags on an existing resource.

• UntagResource – remove tags from a resource.

The following resources in Amazon Lex support tagging:

• Bots - use an Amazon Resource Name (ARN) like the following:

• arn:${partition}:lex:${region}:${account}:bot:${bot-name}

• Bot aliases - use an ARN like the following:

• arn:${partition}:lex:${region}:${account}:bot:${bot-name}:${bot-alias}

• Bot channels - use an ARN like the following:

• arn:${partition}:lex:${region}:${account}:bot-channel:${bot-name}:
${bot-alias}:${channel-name}

Tag Restrictions

The following basic restrictions apply to tags on Amazon Lex resources:

• Maximum number of tags - 50

• Maximum key length – 128 characters

• Maximum value length – 256 characters

• Valid characters for key and value – a–z, A–Z, 0–9, space, and the following characters: _ . : / = + -
and @

Tagging Your Resources 94

Amazon Lex V1 Developer Guide

• Keys and values are case sensitive.

• Don't use aws: as a prefix for keys; it's reserved for AWS use.

Tagging Resources (Console)

You can use the console to manage tags on a bot, a bot alias, or a bot channel resource. You
can add tags when you create a resource, or you can add, modify, or remove tags from existing
resources.

To add a tag when you create a bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose Create to create a new bot.

3. At the bottom of the Create your bot page, choose Tags.

4. Choose Add tag and add one or more tags to the bot. You can add up to 50 tags.

To add a tag when you create a bot alias

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot that you want to add the bot alias to.

3. Choose Settings.

4. Add the alias name, choose the bot version, and then choose Add tags.

5. Choose Add tag and add one or more tags to the bot alias. You can add up to 50 tags.

To add a tag when you create a bot channel

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot that you want to add the bot channel to.

3. Choose Channels and then choose the channel that you want to add.

4. Add the details for the bot channel, and then choose Tags.

5. Choose Add tag and add one or more tags to the bot channel. You can add up to 50 tags.

Tagging Resources (Console) 95

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

To add a tag when you import a bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose Actions and then choose Import.

3. Choose the zip file for importing the bot.

4. Choose Tags, then choose Add tag to add one or more tags to the bot. You can add up to 50
tags.

To add, remove, or modify a tag on an existing bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the left menu, choose Bots and then choose the bot that you want to modify.

3. Choose Settings and then from the left menu choose General.

4. Choose Tags and then add, modify, or remove tags for the bot.

To add, remove, or modify a tag on a bot alias

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the left menu, choose Bots and then choose the bot that you want to modify.

3. Choose Settings and then from the left menu choose Aliases.

4. Choose Manage tags for the alias that you want to modify, and then add, modify, or remove
tags for the bot alias.

To add, remove, or modify a tag on an existing bot channel

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the left menu, choose Bots and then choose the bot that you want to modify.

3. Choose Channels.

4. Choose Tags and then add, modify, or remove tags for the bot channel.

Tagging Resources (Console) 96

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

Tagging Resources (AWS CLI)

You can use the AWS CLI to manage tags on a bot, a bot alias, or a bot channel resource. You can
add tags when you create a bot or a bot alias, or you can add, modify, or remove tags from a bot, a
bot alias, or a bot channel.

All of the examples are formatted for Linux and macOS. To use the command in Windows, replace
the Linux continuation character (\) with a caret (^).

To add a tag when you create a bot

• The following abbreviated put-bot AWS CLI command shows the parameters that you
must use to add a tag when you create a bot. To actually create a bot, you must supply other
parameters. For more information, see Step 4: Getting Started (AWS CLI).

aws lex-models put-bot \
 --tags '[{"key": "key1", "value": "value1"}, \
 {"key": "key2", "value": "value2"}]'

To add a tag when you create a bot alias

• The following abbreviated put-bot-alias AWS CLI command shows the parameters that
you must use to add a tag when you create a bot alias. To actually create a bot alias, you must
supply other parameters. For more information, see Exercise 5: Create an Alias (AWS CLI).

aws lex-models put-bot \
 --tags '[{"key": "key1", "value": "value1"}, \
 {"key": "key2", "value": "value2"}]"

To list tags on a resource

• Use the list-tags-for-resource AWS CLI command to show the resources associated
with a bot, bot alias, bot channel.

aws lex-models list-tags-for-resource \
 --resource-arn bot, bot alias, or bot channel ARN

Tagging Resources (AWS CLI) 97

Amazon Lex V1 Developer Guide

To add or modify tags on a resource

• Use the tag-resource AWS CLI command to add or modify a bot, bot alias, or bot channel.

aws lex-models tag-resource \
 --resource-arn bot, bot alias, or bot channel ARN \
 --tags '[{"key": "key1", "value": "value1"}, \
 {"key": "key2", "value": "value2"}]'

To remove tags from a resource

• Use the untag-resource AWS CLI command to remove tags from a bot, bot alias, or bot
channel.

aws lex-models untag-resource \
 --resource-arn bot, bot alias, or bot channel ARN \
 --tag-keys '["key1", "key2"]'

Tagging Resources (AWS CLI) 98

Amazon Lex V1 Developer Guide

Getting Started with Amazon Lex

Amazon Lex provides API operations that you can integrate with your existing applications. For a
list of supported operations, see the API Reference. You can use any of the following options:

• AWS SDK — When using the SDKs your requests to Amazon Lex are automatically signed and
authenticated using the credentials that you provide. This is the recommended choice for
building your applications.

• AWS CLI — You can use the AWS CLI to access any Amazon Lex feature without having to write
any code.

• AWS Console — The console is the easiest way to get started testing and using Amazon Lex

If you are new to Amazon Lex, we recommend that you read Amazon Lex: How It Works. first.

Topics

• Step 1: Set Up an AWS Account and Create an Administrator User

• Step 2: Set Up the AWS Command Line Interface

• Step 3: Getting Started (Console)

• Step 4: Getting Started (AWS CLI)

Step 1: Set Up an AWS Account and Create an Administrator
User

Before you use Amazon Lex for the first time, complete the following tasks:

1. Sign Up for AWS

2. Create a user

Sign Up for AWS

If you already have an AWS account, skip this task.

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up
for all services in AWS, including Amazon Lex. You are charged only for the services that you use.

Step 1: Set Up an Account 99

Amazon Lex V1 Developer Guide

With Amazon Lex, you pay only for the resources that you use. If you are a new AWS customer, you
can get started with Amazon Lex for free. For more information, see AWS Free Usage Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, use
the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

Write down your AWS account ID because you'll need it for the next task.

Create a user

Services in AWS, such as Amazon Lex, require that you provide credentials when you access them
so that the service can determine whether you have permissions to access the resources owned by
that service. The console requires your password. However, we don't recommend that you access
AWS using the credentials for your AWS account. Instead, we recommend that you:

• Use AWS Identity and Access Management (IAM) to create a user

• Add the user to an IAM group with administrative permissions

• Grant administrative permissions to the user that you created.

You can then access AWS using a special URL and the user's credentials.

The Getting Started exercises in this guide assume that you have a user (adminuser) with
administrator privileges. Follow the procedure to create adminuser in your account.

Create a user 100

https://aws.amazon.com/free/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Lex V1 Developer Guide

To create an administrator user and sign in to the console

1. Create an administrator user called adminuser in your AWS account. For instructions, see
Creating Your First User and Administrators Group in the IAM User Guide.

2. As a user, you can sign in to the AWS Management Console using a special URL. For more
information, How Users Sign In to Your Account in the IAM User Guide.

For more information about IAM, see the following:

• AWS Identity and Access Management (IAM)

• Getting started

• IAM User Guide

Next Step

Step 2: Set Up the AWS Command Line Interface

Step 2: Set Up the AWS Command Line Interface

If you prefer to use Amazon Lex with the AWS Command Line Interface (AWS CLI), download and
configure it.

Important

You don't need the AWS CLI to perform the steps in the Getting Started exercises. However,
some of the later exercises in this guide use the AWS CLI. If you prefer to start by using the
console, skip this step and go to Step 3: Getting Started (Console). Later, when you need
the AWS CLI, return here to set it up.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Getting Set Up with the AWS Command Line Interface

• Configuring the AWS Command Line Interface

Next Step 101

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Amazon Lex V1 Developer Guide

2. Add a named profile for the administrator user to the end of the AWS CLI config file. You use
this profile when executing AWS CLI commands. For more information about named profiles,
see Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

3. Verify the setup by typing the Help command at the command prompt:

aws help

Step 3: Getting Started (Console)

Step 3: Getting Started (Console)

The easiest way to learn how to use Amazon Lex is by using the console. To get you started, we
created the following exercises, all of which use the console:

• Exercise 1 — Create an Amazon Lex bot using a blueprint, a predefined bot that provides all of
the necessary bot configuration. You do only a minimum of work to test the end-to-end setup.

In addition, you use the Lambda function blueprint, provided by AWS Lambda, to create a
Lambda function. The function is a code hook that uses predefined code that is compatible with
your bot.

• Exercise 2 — Create a custom bot by manually creating and configuring a bot. You also create a
Lambda function as a code hook. Sample code is provided.

• Exercise 3 — Publish a bot, and then create a new version of it. As part of this exercise you create
an alias that points to the bot version.

Topics

• Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console)

102

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Lex V1 Developer Guide

• Exercise 2: Create a Custom Amazon Lex Bot

• Exercise 3: Publish a Version and Create an Alias

Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console)

In this exercise, you do the following:

• Create your first Amazon Lex bot, and test it in the Amazon Lex console.

For this exercise, you use the OrderFlowers blueprint. For information about blueprints, see
Amazon Lex and AWS Lambda Blueprints.

• Create an AWS Lambda function and test it in the Lambda console. While processing a request,
your bot calls this Lambda function. For this exercise, you use a Lambda blueprint (lex-order-
flowers-python) provided in the AWS Lambda console to create your Lambda function. The
blueprint code illustrates how you can use the same Lambda function to perform initialization
and validation, and to fulfill the OrderFlowers intent.

• Update the bot to add the Lambda function as the code hook to fulfill the intent. Test the end-
to-end experience.

The following sections explain what the blueprints do.

Amazon Lex Bot: Blueprint Overview

You use the OrderFlowers blueprint to create an Amazon Lex bot.For more information about the
structure of a bot, see Amazon Lex: How It Works. The bot is preconfigured as follows:

• Intent – OrderFlowers

• Slot types – One custom slot type called FlowerTypes with enumeration values: roses,
lilies, and tulips.

• Slots – The intent requires the following information (that is, slots) before the bot can fulfill the
intent.

• PickupTime (AMAZON.TIME built-in type)

• FlowerType (FlowerTypes custom type)

Exercise 1: Create a Bot Using a Blueprint 103

Amazon Lex V1 Developer Guide

• PickupDate (AMAZON.DATE built-in type)

• Utterance – The following sample utterances indicate the user's intent:

• "I would like to pick up flowers."

• "I would like to order some flowers."

• Prompts – After the bot identifies the intent, it uses the following prompts to fill the slots:

• Prompt for the FlowerType slot – "What type of flowers would you like to order?"

• Prompt for the PickupDate slot – "What day do you want the {FlowerType} to be picked up?"

• Prompt for the PickupTime slot – "At what time do you want the {FlowerType} to be picked
up?"

• Confirmation statement – "Okay, your {FlowerType} will be ready for pickup by {PickupTime}
on {PickupDate}. Does this sound okay?"

AWS Lambda Function: Blueprint Summary

The Lambda function in this exercise performs both initialization and validation and fulfillment
tasks. Therefore, after creating the Lambda function, you update the intent configuration by
specifying the same Lambda function as a code hook to handle both the initialization and
validation and fulfillment tasks.

• As an initialization and validation code hook, the Lambda function performs basic validation.
For example, if the user provides a time for pickup that is outside of normal business hours, the
Lambda function directs Amazon Lex to re-prompt the user for the time.

• As part of the fulfillment code hook, the Lambda function returns a summary message indicating
that the flower order has been placed (that is, the intent is fulfilled).

Next Step

Step 1: Create an Amazon Lex Bot (Console)

Step 1: Create an Amazon Lex Bot (Console)

For this exercise, create a bot for ordering flowers, called OrderFlowersBot.

To create an Amazon Lex bot (console)

Exercise 1: Create a Bot Using a Blueprint 104

Amazon Lex V1 Developer Guide

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. If this is your first bot, choose Get Started; otherwise, on the Bots page, choose Create.

3. On the Create your Lex bot page, provide the following information, and then choose Create.

• Choose the OrderFlowers blueprint.

• Leave the default bot name (OrderFlowers).

• For COPPA, choose No.

• For User utterance storage, choose the appropriate response.

4. Choose Create. The console makes the necessary requests to Amazon Lex to save the
configuration. The console then displays the bot editor window.

5. Wait for confirmation that your bot was built.

6. Test the bot.

Note

You can test the bot by typing text into the test window, or, for compatible browsers,
by choosing the microphone button in the test window and speaking.

Use the following example text to engage in conversation with the bot to order flowers:

Exercise 1: Create a Bot Using a Blueprint 105

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

From this input, the bot infers the OrderFlowers intent and prompts for slot data. When you
provide all of the required slot data, the bot fulfills the intent (OrderFlowers) by returning
all of the information to the client application (in this case, the console). The console shows
the information in the test window.

Specifically:

Exercise 1: Create a Bot Using a Blueprint 106

Amazon Lex V1 Developer Guide

• In the statement "What day do you want the roses to be picked up?,"the term "roses"
appears because the prompt for the pickupDate slot is configured using substitutions,
{FlowerType}. Verify this in the console.

• The "Okay, your roses will be ready..." statement is the confirmation prompt that you
configured.

• The last statement ("FlowerType:roses...") is just the slot data that is returned to the
client, in this case, in the test window. In the next exercise, you use a Lambda function to
fulfill the intent, in which case you get a message indicating that the order is fulfilled.

Next Step

Step 2 (Optional): Review the Details of Information Flow (Console)

Step 2 (Optional): Review the Details of Information Flow (Console)

This section explains the flow of information between a client and Amazon Lex for each user input
in our example conversation.

The example uses the console test window for the conversation with the bot.

To open the Amazon Lex test window

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot to test.

3. From the right side of the console, choose Test chatbot.

To see the flow of information for spoken or typed content, choose the appropriate topic.

Topics

• Step 2a (Optional): Review the Details of the Spoken Information Flow (Console)

• Step 2b (Optional): Review the Details of the Typed Information Flow (Console)

Step 2a (Optional): Review the Details of the Spoken Information Flow (Console)

This section explains the flow of information between the client and Amazon Lex when the client
uses speech to send requests. For more information, see PostContent.

Exercise 1: Create a Bot Using a Blueprint 107

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

1. The user says: I would like to order some flowers.

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "audio/x-l16; sample-rate=16000; channel-count=1"
Accept: "audio/mpeg"

Request body
input stream

Both the request URI and the body provide information to Amazon Lex:

• Request URI – Provides the bot name (OrderFlowers), bot alias ($LATEST), and the
user name (a random string that identifies the user). content indicates that this is a
PostContent API request (not a PostText request).

• Request headers

• x-amz-lex-session-attributes – The base64-encoded value represents "{}".
When the client makes the first request, there are no session attributes.

• Content-Type – Reflects the audio format.

• Request body – The user input audio stream ("I would like to order some flowers.").

Note

If the user chooses to send text ("I would like to order some flowers") to the
PostContent API instead of speaking, the request body is the user input. The
Content-Type header is set accordingly:

POST /bot/OrderFlowers/alias/$LATEST/
user/4o9wwdhx6nlheferh6a73fujd3118f5w/content HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "text/plain; charset=utf-8"
Accept: accept

Request body

Exercise 1: Create a Bot Using a Blueprint 108

Amazon Lex V1 Developer Guide

input stream

b. From the input stream, Amazon Lex detects the intent (OrderFlowers). It then chooses
one of the intent's slots (in this case, the FlowerType) and one of its value elicitation
prompts, and then sends a response with the following headers:

x-amz-lex-dialog-state:ElicitSlot
x-amz-lex-input-transcript:I would like to order some flowers.
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-message:What type of flowers would you like to order?
x-amz-lex-session-attributes:e30=
x-amz-lex-slot-to-elicit:FlowerType
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjpudWxsLCJGbG93ZXJUeXBlIjpudWxsLCJQaWNrdXBEYXRlIjpudWxsfQ==

The header values provide the following information:

• x-amz-lex-input-transcript – Provides the transcript of the audio (user input)
from the request

• x-amz-lex-message – Provides the transcript of the audio Amazon Lex returned in
the response

• x-amz-lex-slots – The base64 encoded version of the slots and values:

{"PickupTime":null,"FlowerType":null,"PickupDate":null}

• x-amz-lex-session-attributes – The base64-encoded version of the session
attributes ({})

The client plays the audio in the response body.

2. The user says: roses

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "audio/x-l16; sample-rate=16000; channel-count=1"
Accept: "audio/mpeg"

Exercise 1: Create a Bot Using a Blueprint 109

Amazon Lex V1 Developer Guide

Request body
input stream ("roses")

The request body is the user input audio stream (roses). The sessionAttributes
remains empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers
that it had asked this user for information pertaining to the FlowerType slot). Amazon
Lex first updates the slot value for the current intent. It then chooses another slot
(PickupDate), along with one of its prompt messages (When do you want to pick up the
roses?), and returns a response with the following headers:

x-amz-lex-dialog-state:ElicitSlot
x-amz-lex-input-transcript:roses
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-message:When do you want to pick up the roses?
x-amz-lex-session-attributes:e30=
x-amz-lex-slot-to-elicit:PickupDate
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjpudWxsLCJGbG93ZXJUeXBlIjoicm9zaSdzIiwiUGlja3VwRGF0ZSI6bnVsbH0=

The header values provide the following information:

• x-amz-lex-slots – The base64-encoded version of the slots and values:

{"PickupTime":null,"FlowerType":"roses","PickupDate":null}

• x-amz-lex-session-attributes – The base64-encoded version of the session
attributes ({})

The client plays the audio in the response body.

3. The user says: tomorrow

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "audio/x-l16; sample-rate=16000; channel-count=1"

Exercise 1: Create a Bot Using a Blueprint 110

Amazon Lex V1 Developer Guide

Accept: "audio/mpeg"

Request body
input stream ("tomorrow")

The request body is the user input audio stream ("tomorrow").The sessionAttributes
remains empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers
that it had asked this user for information pertaining to the PickupDate slot). Amazon
Lex updates the slot (PickupDate) value for the current intent. It then chooses another
slot to elicit value for (PickupTime) and one of the value elicitation prompts (When do
you want to pick up the roses on 2017-03-18?), and returns a response with the following
headers:

x-amz-lex-dialog-state:ElicitSlot
x-amz-lex-input-transcript:tomorrow
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-message:When do you want to pick up the roses on 2017-03-18?
x-amz-lex-session-attributes:e30=
x-amz-lex-slot-to-elicit:PickupTime
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjpudWxsLCJGbG93ZXJUeXBlIjoicm9zaSdzIiwiUGlja3VwRGF0ZSI6IjIwMTctMDMtMTgifQ==
x-amzn-RequestId:3a205b70-0b69-11e7-b447-eb69face3e6f

The header values provide the following information:

• x-amz-lex-slots – The base64-encoded version of the slots and values:

{"PickupTime":null,"FlowerType":"roses","PickupDate":"2017-03-18"}

• x-amz-lex-session-attributes – The base64-encoded version of the session
attributes ({})

The client plays the audio in the response body.

4. The user says: 6 pm

a. The client (console) sends the following PostContent request to Amazon Lex:

Exercise 1: Create a Bot Using a Blueprint 111

Amazon Lex V1 Developer Guide

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "text/plain; charset=utf-8"
Accept: "audio/mpeg"

Request body
input stream ("6 pm")

The request body is the user input audio stream ("6 pm"). The sessionAttributes
remains empty.

b. Amazon Lex interprets the input stream in the context of the current intent (it remembers
that it had asked this user for information pertaining to the PickupTime slot). It first
updates the slot value for the current intent.

Now Amazon Lex detects that it has information for all of the slots. However, the
OrderFlowers intent is configured with a confirmation message. Therefore, Amazon Lex
needs an explicit confirmation from the user before it can proceed to fulfill the intent. It
sends a response with the following headers requesting confirmation before ordering the
flowers:

x-amz-lex-dialog-state:ConfirmIntent
x-amz-lex-input-transcript:six p. m.
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-message:Okay, your roses will be ready for pickup by 18:00 on
 2017-03-18. Does this sound okay?
x-amz-lex-session-attributes:e30=
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjoiMTg6MDAiLCJGbG93ZXJUeXBlIjoicm9zaSdzIiwiUGlja3VwRGF0ZSI6IjIwMTctMDMtMTgifQ==
x-amzn-RequestId:083ca360-0b6a-11e7-b447-eb69face3e6f

The header values provide the following information:

• x-amz-lex-slots – The base64-encoded version of the slots and values:

{"PickupTime":"18:00","FlowerType":"roses","PickupDate":"2017-03-18"}

Exercise 1: Create a Bot Using a Blueprint 112

Amazon Lex V1 Developer Guide

• x-amz-lex-session-attributes – The base64-encoded version of the session
attributes ({})

The client plays the audio in the response body.

5. The user says: Yes

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/
content HTTP/1.1
x-amz-lex-session-attributes: "e30="
Content-Type: "audio/x-l16; sample-rate=16000; channel-count=1"
Accept: "audio/mpeg"

Request body
input stream ("Yes")

The request body is the user input audio stream ("Yes"). The sessionAttributes
remains empty.

b. Amazon Lex interprets the input stream and understands that the user want to proceed
with the order. The OrderFlowers intent is configured with ReturnIntent as the
fulfillment activity. This directs Amazon Lex to return all of the intent data to the client.
Amazon Lex returns a response with following:

x-amz-lex-dialog-state:ReadyForFulfillment
x-amz-lex-input-transcript:yes
x-amz-lex-intent-name:OrderFlowers
x-amz-lex-session-attributes:e30=
x-amz-lex-
slots:eyJQaWNrdXBUaW1lIjoiMTg6MDAiLCJGbG93ZXJUeXBlIjoicm9zaSdzIiwiUGlja3VwRGF0ZSI6IjIwMTctMDMtMTgifQ==

Thex-amz-lex-dialog-state response header is set to ReadyForFulfillment. The
client can then fulfill the intent.

6. Now, retest the bot. To establish a new (user) context, choose the Clear link in the console.
Provide data for the OrderFlowers intent, and include some invalid data. For example:

Exercise 1: Create a Bot Using a Blueprint 113

Amazon Lex V1 Developer Guide

• Jasmine as the flower type (it is not one of the supported flower types)

• Yesterday as the day when you want to pick up the flowers

Notice that the bot accepts these values because you don't have any code to initialize and
validate the user data. In the next section, you add a Lambda function to do this. Note the
following about the Lambda function:

• It validates slot data after every user input. It fulfills the intent at the end. That is, the bot
processes the flower order and returns a message to the user instead of simply returning slot
data to the client. For more information, see Using Lambda Functions.

• It also sets the session attributes. For more information about session attributes, see
PostText.

After you complete the Getting Started section, you can do the additional exercises
(Additional Examples: Creating Amazon Lex Bots). Book Trip uses session attributes to share
cross-intent information to engage in a dynamic conversation with the user.

Next Step

Step 3: Create a Lambda Function (Console)

Step 2b (Optional): Review the Details of the Typed Information Flow (Console)

This section explains flow of information between client and Amazon Lex in which the client uses
the PostText API to send requests. For more information, see PostText.

1. User types: I would like to order some flowers

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "I would like to order some flowers",
 "sessionAttributes": {}
}

Exercise 1: Create a Bot Using a Blueprint 114

Amazon Lex V1 Developer Guide

Both the request URI and the body provide information to Amazon Lex:

• Request URI – Provides bot name (OrderFlowers), bot alias ($LATEST), and user name
(a random string identifying the user). The trailing text indicates that it is a PostText
API request (and not PostContent).

• Request body – Includes the user input (inputText) and empty sessionAttributes.
When the client makes the first request, there are no session attributes. The Lambda
function initiates them later.

b. From the inputText, Amazon Lex detects the intent (OrderFlowers). This intent does
not have any code hooks (that is, the Lambda functions) for initialization and validation of
user input or fulfillment.

Amazon Lex chooses one of the intent's slots (FlowerType) to elicit the value. It
also selects one of the value-elicitation prompts for the slot (all part of the intent
configuration), and then sends the following response back to the client. The console
displays the message in the response to the user.

The client displays the message in the response.

2. User types: roses

a. The client (console) sends the following PostText request to Amazon Lex:

Exercise 1: Create a Bot Using a Blueprint 115

Amazon Lex V1 Developer Guide

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "roses",
 "sessionAttributes": {}
}

The inputText in the request body provides user input. The sessionAttributes
remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—
the service remembers that it had asked the specific user for information about the
FlowerType slot. Amazon Lex first updates the slot value for the current intent and
chooses another slot (PickupDate) along with one of its prompt messages—What day do
you want the roses to be picked up?— for the slot.

Then, Amazon Lex returns the following response:

The client displays the message in the response.

3. User types: tomorrow

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text

Exercise 1: Create a Bot Using a Blueprint 116

Amazon Lex V1 Developer Guide

"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "tomorrow",
 "sessionAttributes": {}
}

The inputText in the request body provides user input. The sessionAttributes
remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—
the service remembers that it had asked the specific user for information about the
PickupDate slot. Amazon Lex updates the slot (PickupDate) value for the current
intent. It chooses another slot to elicit value for (PickupTime). It returns one of the
value-elicitation prompts—Deliver the roses at what time on 2017-01-05?—to the client.

Amazon Lex then returns the following response:

The client displays the message in the response.

4. User types: 6 pm

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

Exercise 1: Create a Bot Using a Blueprint 117

Amazon Lex V1 Developer Guide

{
 "inputText": "6 pm",
 "sessionAttributes": {}
}

The inputText in the request body provides user input. The sessionAttributes
remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent—
the service remembers that it had asked the specific user for information about the
PickupTime slot. Amazon Lex first updates the slot value for the current intent. Now
Amazon Lex detects that it has information for all the slots.

The OrderFlowers intent is configured with a confirmation message. Therefore, Amazon
Lex needs an explicit confirmation from the user before it can proceed to fulfill the intent.
Amazon Lex sends the following message to the client requesting confirmation before
ordering the flowers:

The client displays the message in the response.

5. User types: Yes

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/4o9wwdhx6nlheferh6a73fujd3118f5w/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

Exercise 1: Create a Bot Using a Blueprint 118

Amazon Lex V1 Developer Guide

{
 "inputText": "Yes",
 "sessionAttributes": {}
}

The inputText in the request body provides user input. The sessionAttributes
remains empty.

b. Amazon Lex interprets the inputText in the context of confirming the current intent. It
understands that the user want to proceed with the order. The OrderFlowers intent is
configured with ReturnIntent as the fulfillment activity (there is no Lambda function to
fulfill the intent). Therefore, Amazon Lex returns the following slot data to the client.

Amazon Lex set the dialogState to ReadyForFulfillment. The client can then fulfill
the intent.

6. Now test the bot again. To do that, you must choose the Clear link in the console to establish a
new (user) context. Now as you provide data for the order flowers intent, try to provide invalid
data. For example:

• Jasmine as the flower type (it is not one of the supported flower types).

• Yesterday as the day when you want to pick up the flowers.

Notice that the bot accepts these values because you don't have any code to initialize/validate
user data. In the next section, you add a Lambda function to do this. Note the following about
the Lambda function:

Exercise 1: Create a Bot Using a Blueprint 119

Amazon Lex V1 Developer Guide

• The Lambda function validates slot data after every user input. It fulfills the intent at
the end. That is, the bot processes the flowers order and returns a message to the user
instead of simply returning slot data to the client. For more information, see Using Lambda
Functions.

• The Lambda function also sets the session attributes. For more information about session
attributes, see PostText.

After you complete the Getting Started section, you can do the additional exercises
(Additional Examples: Creating Amazon Lex Bots). Book Trip uses session attributes to share
cross-intent information to engage in a dynamic conversation with the user.

Next Step

Step 3: Create a Lambda Function (Console)

Step 3: Create a Lambda Function (Console)

Create a Lambda function (using the lex-order-flowers-python blueprint) and perform test
invocation using sample event data in the AWS Lambda console.

You return to the Amazon Lex console and add the Lambda function as the code hook to fulfill the
OrderFlowers intent in the OrderFlowersBot that you created in the preceding section.

To create the Lambda function (console)

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function.

3. On the Create function page, choose Use a blueprint. Type lex- in the filter text box and
then press Enter to find the blueprint, choose the lex-order-flowers-python blueprint.

Lambda function blueprints are provided in both Node.js and Python. For this exercise, use the
Python-based blueprint.

4. On the Basic information page, do the following.

• Type a Lambda function name (OrderFlowersCodeHook).

• For the execution role, choose Create a new role with basic Lambda permissions.

Exercise 1: Create a Bot Using a Blueprint 120

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

• Leave the other default values.

5. Choose Create function.

6. If you are using a locale other than English (US) (en-US), update the intent names as described
in Updating a Blueprint for a Specific Locale.

7. Test the Lambda function.

a. Choose Select a test event, Configure test events.

b. Choose Amazon Lex Order Flowers from the Event template list. This sample event
matches the Amazon Lex request/response model (see Using Lambda Functions). Give the
test event a name (LexOrderFlowersTest).

c. Choose Create.

d. Choose Test to test the code hook.

e. Verify that the Lambda function ran successfully. The response in this case matches the
Amazon Lex response model.

Next Step

Step 4: Add the Lambda Function as Code Hook (Console)

Step 4: Add the Lambda Function as Code Hook (Console)

In this section, you update the configuration of the OrderFlowers intent to use the Lambda
function as follows:

• First use the Lambda function as a code hook to perform fulfillment of the OrderFlowers
intent. You test the bot and verify that you received a fulfillment message from the Lambda
function. Amazon Lex invokes the Lambda function only after you provide data for all the
required slots for ordering flowers.

• Configure the same Lambda function as a code hook to perform initialization and validation. You
test and verify that the Lambda function performs validation (as you provide slot data).

To add a Lambda function as a code hook (console)

1. In the Amazon Lex console, select the OrderFlowers bot. The console shows the OrderFlowers
intent. Make sure that the intent version is set to $LATEST because this is the only version that
we can modify.

Exercise 1: Create a Bot Using a Blueprint 121

Amazon Lex V1 Developer Guide

2. Add the Lambda function as the fulfillment code hook and test it.

a. In the Editor, choose AWS Lambda function as Fulfillment, and select the Lambda
function that you created in the preceding step (OrderFlowersCodeHook). Choose OK to
give Amazon Lex permission to invoke the Lambda function.

You are configuring this Lambda function as a code hook to fulfill the intent. Amazon Lex
invokes this function only after it has all the necessary slot data from the user to fulfill the
intent.

b. Specify a Goodbye message.

c. Choose Build.

d. Test the bot using the previous conversation.

The last statement "Thanks, your order for roses....." is a response from the Lambda function
that you configured as a code hook. In the preceding section, there was no Lambda function.
Now you are using a Lambda function to actually fulfill the OrderFlowers intent.

3. Add the Lambda function as an initialization and validation code hook, and test.

The sample Lambda function code that you are using can both perform user input
validation and fulfillment. The input event the Lambda function receives has a field
(invocationSource) that the code uses to determine what portion of the code to run. For
more information, see Lambda Function Input Event and Response Format.

a. Select the $LATEST version of the OrderFlowers intent. That's is the only version that
you can update.

b. In the Editor, choose Initialization and validation in Options.

c. Again, select the same Lambda function.

d. Choose Build.

e. Test the bot.

You are now ready to converse with Amazon Lex as in the following image. To test the
validation portion, choose time 6 PM, and your Lambda function returns a response ("Our
business hours are from 10 AM to 5 PM."), and prompts you again. After you provide all
the valid slot data, the Lambda function fulfills the order.

Exercise 1: Create a Bot Using a Blueprint 122

Amazon Lex V1 Developer Guide

Next Step

Exercise 1: Create a Bot Using a Blueprint 123

Amazon Lex V1 Developer Guide

Step 5 (Optional): Review the Details of the Information Flow (Console)

Step 5 (Optional): Review the Details of the Information Flow (Console)

This section explains the flow of information between the client and Amazon Lex for each user
input, including the integration of the Lambda function.

Note

The section assumes that the client sends requests to Amazon Lex using the PostText
runtime API and shows request and response details accordingly. For an example of
the information flow between the client and Amazon Lex in which client uses the
PostContent API, see Step 2a (Optional): Review the Details of the Spoken Information
Flow (Console) .

For more information about the PostText runtime API and additional details on the requests and
responses shown in the following steps, see PostText.

1. User: I would like to order some flowers.

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "I would like to order some flowers",
 "sessionAttributes": {}
}

Both the request URI and the body provide information to Amazon Lex:

• Request URI – Provides bot name (OrderFlowers), bot alias ($LATEST), and user name
(a random string identifying the user). The trailing text indicates that it is a PostText
API request (and not PostContent).

• Request body – Includes the user input (inputText) and empty sessionAttributes.
When the client makes the first request, there are no session attributes. The Lambda
function initiates them later.

Exercise 1: Create a Bot Using a Blueprint 124

Amazon Lex V1 Developer Guide

b. From the inputText, Amazon Lex detects the intent (OrderFlowers). This intent
is configured with a Lambda function as a code hook for user data initialization and
validation. Therefore, Amazon Lex invokes that Lambda function by passing the following
information as event data:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {},
 "bot": {
 "name": "OrderFlowers",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": null,
 "FlowerType": null,
 "PickupDate": null
 },
 "confirmationStatus": "None"
 }
}

For more information, see Input Event Format.

In addition to the information that the client sent, Amazon Lex also includes the following
additional data:

• messageVersion – Currently Amazon Lex supports only the 1.0 version.

• invocationSource – Indicates the purpose of Lambda function invocation. In this
case, it is to perform user data initialization and validation. At this time, Amazon Lex
knows that the user has not provided all the slot data to fulfill the intent.

• currentIntent information with all of the slot values set to null.

c. At this time, all the slot values are null. There is nothing for the Lambda function to
validate. The Lambda function returns the following response to Amazon Lex:

Exercise 1: Create a Bot Using a Blueprint 125

Amazon Lex V1 Developer Guide

{
 "sessionAttributes": {},
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "PickupTime": null,
 "FlowerType": null,
 "PickupDate": null
 }
 }
}

For information about the response format, see Response Format.

Note the following:

• dialogAction.type – By setting this value to Delegate, Lambda function delegates
the responsibility of deciding the next course of action to Amazon Lex.

Note

If Lambda function detects anything in the user data validation, it instructs
Amazon Lex what to do next, as shown in the next few steps.

d. According to the dialogAction.type, Amazon Lex decides the next course of action.
Because none of the slots are filled, it decides to elicit the value for the FlowerType slot.
It selects one of the value elicitation prompts ("What type of flowers would you like to
order?") for this slot and sends the following response back to the client:

Exercise 1: Create a Bot Using a Blueprint 126

Amazon Lex V1 Developer Guide

The client displays the message in the response.

2. User: roses

a. The client sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "roses",
 "sessionAttributes": {}
}

In the request body, the inputText provides user input. The sessionAttributes
remains empty.

b. Amazon Lex first interprets the inputText in the context of the current intent.
The service remembers that it had asked the specific user for information about the
FlowerType slot. It updates the slot value in the current intent and invokes the Lambda
function with the following event data:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",

Exercise 1: Create a Bot Using a Blueprint 127

Amazon Lex V1 Developer Guide

 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {},
 "bot": {
 "name": "OrderFlowers",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": null,
 "FlowerType": "roses",
 "PickupDate": null
 },
 "confirmationStatus": "None"
 }
}

Note the following:

• invocationSource – continues to be DialogCodeHook (we are simply validating user
data).

• currentIntent.slots – Amazon Lex has updated the FlowerType slot to roses.

c. According to the invocationSource value of DialogCodeHook, the Lambda function
performs user data validation. It recognizes roses as a valid slot value (and sets Price as
a session attribute) and returns the following response to Amazon Lex.

{
 "sessionAttributes": {
 "Price": 25
 },
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "PickupTime": null,
 "FlowerType": "roses",
 "PickupDate": null
 }
 }
}

Exercise 1: Create a Bot Using a Blueprint 128

Amazon Lex V1 Developer Guide

Note the following:

• sessionAttributes – Lambda function has added Price (of the roses) as a session
attribute.

• dialogAction.type – is set to Delegate. The user data was valid so the Lambda
function directs Amazon Lex to choose the next course of action.

d. According to the dialogAction.type, Amazon Lex chooses the next course of action.
Amazon Lex knows it needs more slot data so it picks the next unfilled slot (PickupDate)
with the highest priority according to the intent configuration. Amazon Lex selects one
of the value-elicitation prompt messages—"What day do you want the roses to be picked
up?"—for this slot according to the intent configuration, and then sends the following
response back to the client:

The client simply displays the message in the response – "What day do you want the roses
to be picked up?."

3. User: tomorrow

a. The client sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

Exercise 1: Create a Bot Using a Blueprint 129

Amazon Lex V1 Developer Guide

{
 "inputText": "tomorrow",
 "sessionAttributes": {
 "Price": "25"
 }
}

In the request body, inputText provides user input and the client passes the session
attributes back to the service.

b. Amazon Lex remembers the context—that it was eliciting data for the PickupDate slot.
In this context, it knows the inputText value is for the PickupDate slot. Amazon Lex
then invokes the Lambda function by sending the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {
 "Price": "25"
 },
 "bot": {
 "name": "OrderFlowersCustomWithRespCard",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": null,
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 },
 "confirmationStatus": "None"
 }
}

Amazon Lex has updated the currentIntent.slots by setting the PickupDate
value. Also note that the service passes the sessionAttributes as it is to the Lambda
function.

Exercise 1: Create a Bot Using a Blueprint 130

Amazon Lex V1 Developer Guide

c. As per invocationSource value of DialogCodeHook, the Lambda function performs
user data validation. It recognizes PickupDate slot value is valid and returns the
following response to Amazon Lex:

{
 "sessionAttributes": {
 "Price": 25
 },
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "PickupTime": null,
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 }
 }
}

Note the following:

• sessionAttributes – No change.

• dialogAction.type – is set to Delegate. The user data was valid, and the Lambda
function directs Amazon Lex to choose the next course of action.

d. According to the dialogAction.type, Amazon Lex chooses the next course of action.
Amazon Lex knows it needs more slot data so it picks the next unfilled slot (PickupTime)
with the highest priority according to the intent configuration. Amazon Lex selects one
of the prompt messages ("Deliver the roses at what time on 2017-01-05?") for this slot
according to the intent configuration and sends the following response back to the client:

Exercise 1: Create a Bot Using a Blueprint 131

Amazon Lex V1 Developer Guide

The client displays the message in the response – "Deliver the roses at what time on
2017-01-05?"

4. User: 4 pm

a. The client sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "4 pm",
 "sessionAttributes": {
 "Price": "25"
 }
}

In the request body, inputText provides user input. The client passes the
sessionAttributes in the request.

b. Amazon Lex understands context. It understands that it was eliciting data for the
PickupTime slot. In this context, it knows that the inputText value is for the
PickupTime slot. Amazon Lex then invokes the Lambda function by sending the
following event:

{
 "messageVersion": "1.0",

Exercise 1: Create a Bot Using a Blueprint 132

Amazon Lex V1 Developer Guide

 "invocationSource": "DialogCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {
 "Price": "25"
 },
 "bot": {
 "name": "OrderFlowersCustomWithRespCard",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": "16:00",
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 },
 "confirmationStatus": "None"
 }
}

Amazon Lex has updated the currentIntent.slots by setting the PickupTime value.

c. According to the invocationSource value of DialogCodeHook, the Lambda function
performs user data validation. It recognizes PickupDate slot value is valid and returns
the following response to Amazon Lex.

{
 "sessionAttributes": {
 "Price": 25
 },
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "PickupTime": "16:00",
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 }
 }
}

Note the following:

Exercise 1: Create a Bot Using a Blueprint 133

Amazon Lex V1 Developer Guide

• sessionAttributes – No change in session attribute.

• dialogAction.type – is set to Delegate. The user data was valid so the Lambda
function directs Amazon Lex to choose the next course of action.

d. At this time Amazon Lex knows it has all the slot data. This intent is configured with a
confirmation prompt. Therefore, Amazon Lex sends the following response to the user
asking for confirmation before fulfilling the intent:

The client simply displays the message in the response and waits for the user response.

5. User: Yes

a. The client sends the following PostText request to Amazon Lex:

POST /bot/OrderFlowers/alias/$LATEST/user/ignw84y6seypre4xly5rimopuri2xwnd/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "yes",
 "sessionAttributes": {
 "Price": "25"
 }
}

b. Amazon Lex interprets the inputText in the context of confirming the current intent.
Amazon Lex understands that the user wants to proceed with the order. This time Amazon
Lex invokes the Lambda function to fulfill the intent by sending the following event,

Exercise 1: Create a Bot Using a Blueprint 134

Amazon Lex V1 Developer Guide

which sets the invocationSource to FulfillmentCodeHook in the event it sends to
the Lambda function. Amazon Lex also sets the confirmationStatus to Confirmed.

{
 "messageVersion": "1.0",
 "invocationSource": "FulfillmentCodeHook",
 "userId": "ignw84y6seypre4xly5rimopuri2xwnd",
 "sessionAttributes": {
 "Price": "25"
 },
 "bot": {
 "name": "OrderFlowersCustomWithRespCard",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderFlowers",
 "slots": {
 "PickupTime": "16:00",
 "FlowerType": "roses",
 "PickupDate": "2017-01-05"
 },
 "confirmationStatus": "Confirmed"
 }
}

Note the following:

• invocationSource – This time Amazon Lex set this value to FulfillmentCodeHook,
directing the Lambda function to fulfill the intent.

• confirmationStatus – is set to Confirmed.

c. This time, the Lambda function fulfills the OrderFlowers intent, and returns the
following response:

{
 "sessionAttributes": {
 "Price": "25"
 },
 "dialogAction": {
 "type": "Close",

Exercise 1: Create a Bot Using a Blueprint 135

Amazon Lex V1 Developer Guide

 "fulfillmentState": "Fulfilled",
 "message": {
 "contentType": "PlainText",
 "content": "Thanks, your order for roses has been placed and will
 be ready for pickup by 16:00 on 2017-01-05"
 }
 }
}

Note the following:

• Sets the dialogAction.type – The Lambda function sets this value to Close,
directing Amazon Lex to not expect a user response.

• dialogAction.fulfillmentState – is set to Fulfilled and includes an appropriate
message to convey to the user.

d. Amazon Lex reviews the fulfillmentState and sends the following response back to
the client.

Amazon Lex then returns the following to the client:

Note that:

• dialogState – Amazon Lex sets this value to fulfilled.

• message – is the same message that the Lambda function provided.

Exercise 1: Create a Bot Using a Blueprint 136

Amazon Lex V1 Developer Guide

The client displays the message.

6. Now test the bot again. To establish a new (user) context, choose the Clear link in the test
window. Now provide invalid slot data for the OrderFlowers intent. This time the Lambda
function performs the data validation, resets invalid slot data value to null, and asks Amazon
Lex to prompt the user for valid data. For example, try the following:

• Jasmine as the flower type (it is not one of the supported flower types).

• Yesterday as the day when you want to pick up the flowers.

• After placing your order, enter another flower type instead of replying "yes" to confirm the
order. In response, the Lambda function updates the Price in the session attribute, keeping
a running total of flower orders.

The Lambda function also performs the fulfillment activity.

Next Step

Step 6: Update the Intent Configuration to Add an Utterance (Console)

Step 6: Update the Intent Configuration to Add an Utterance (Console)

The OrderFlowers bot is configured with only two utterances. This provides limited information
for Amazon Lex to build a machine learning model that recognizes and responds to the user's
intent. Try typing "I want to order flowers", as in the following test window. Amazon Lex doesn’t
recognize the text, and responds with "I didn't understand you, what would you like to do?" You can
improve the machine learning model by adding more utterances.

Exercise 1: Create a Bot Using a Blueprint 137

Amazon Lex V1 Developer Guide

Each utterance that you add provides Amazon Lex with more information about how to respond
to your users. You don't need to add an exact utterance, Amazon Lex generalizes from the samples
that you provide to recognize both exact matches and similar input.

To add an utterance (console)

1. Add the utterance "I want flowers" to the intent by typing it in the Sample utterances section
of the intent editor, as in the following image, and then clicking the plus icon next to the new
utterance.

2. Build your bot to pick up the change. Choose Build, and then choose Build again.

Exercise 1: Create a Bot Using a Blueprint 138

Amazon Lex V1 Developer Guide

3. Test your bot to confirm that it recognized the new utterance. In the test window, as in the
following image, type "I want to order flowers." Amazon Lex recognizes the phrase and
responds with "What type of flowers would you like to order?".

Next Step

Step 7 (Optional): Clean Up (Console)

Step 7 (Optional): Clean Up (Console)

Now, delete the resources that you created and clean up your account.

You can delete only resources that are not in use. In general, you should delete resources in the
following order:

• Delete bots to free up intent resources.

• Delete intents to free up slot type resources.

• Delete slot types last.

Exercise 1: Create a Bot Using a Blueprint 139

Amazon Lex V1 Developer Guide

To clean up your account (console)

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the list of bots, choose the check box next to OrderFlowers.

3. To delete the bot, choose Delete, and then choose Continue in the confirmation dialog box.

4. In the left pane, choose Intents.

5. In the list of intents, choose OrderFlowersIntent.

6. To delete the intent, choose Delete, and then choose Continue in the confirmation dialog box.

7. In the left pane, choose Slot types.

8. In the list of slot types, choose Flowers.

9. To delete the slot type, choose Delete, and then choose Continue in the confirmation dialog
box.

You have removed all of the Amazon Lex resources that you created and cleaned up your account.
If desired, you can use the Lambda console to delete the Lambda function used in this exercise.

Exercise 2: Create a Custom Amazon Lex Bot

In this exercise, you use the Amazon Lex console to create a custom bot that orders pizza
(OrderPizzaBot). You configure the bot by adding a custom intent (OrderPizza), defining
custom slot types, and defining the slots required to fulfill a pizza order (pizza crust, size, and so
on). For more information about slot types and slots, see Amazon Lex: How It Works.

Topics

• Step 1: Create a Lambda Function

• Step 2: Create a Bot

• Step 3: Build and Test the Bot

• Step 4 (Optional): Clean up

Step 1: Create a Lambda Function

First, create a Lambda function which fulfills a pizza order. You specify this function in your
Amazon Lex bot, which you create in the next section.

Exercise 2: Create a Custom Bot 140

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lambda

Amazon Lex V1 Developer Guide

To create a Lambda function

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function.

3. On the Create function page, choose Author from scratch.

Because you are using custom code provided to you in this exercise to create a Lambda
function, you choose author the function from scratch.

Do the following:

a. Type the name (PizzaOrderProcessor).

b. For the Runtime, choose the latest version of Node.js.

c. For the Role, choose Create new role from template(s).

d. Enter a new role name (PizzaOrderProcessorRole).

e. Choose Create function.

4. On the function page, do the following:

In the Function code section, choose Edit code inline, and then copy the following Node.js
function code and paste it in the window.

'use strict';

// Close dialog with the customer, reporting fulfillmentState of Failed or
 Fulfilled ("Thanks, your pizza will arrive in 20 minutes")
function close(sessionAttributes, fulfillmentState, message) {
 return {
 sessionAttributes,
 dialogAction: {
 type: 'Close',
 fulfillmentState,
 message,
 },
 };
}

// --------------- Events -----------------------

Exercise 2: Create a Custom Bot 141

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

function dispatch(intentRequest, callback) {
 console.log(`request received for userId=${intentRequest.userId}, intentName=
${intentRequest.currentIntent.name}`);
 const sessionAttributes = intentRequest.sessionAttributes;
 const slots = intentRequest.currentIntent.slots;
 const crust = slots.crust;
 const size = slots.size;
 const pizzaKind = slots.pizzaKind;

 callback(close(sessionAttributes, 'Fulfilled',
 {'contentType': 'PlainText', 'content': `Okay, I have ordered your ${size}
 ${pizzaKind} pizza on ${crust} crust`}));

}

// --------------- Main handler -----------------------

// Route the incoming request based on intent.
// The JSON body of the request is provided in the event slot.
export const handler = (event, context, callback) => {
 try {
 dispatch(event,
 (response) => {
 callback(null, response);
 });
 } catch (err) {
 callback(err);
 }
};

5. Choose Save.

Test the Lambda Function Using Sample Event Data

In the console, test the Lambda function by using sample event data to manually invoke it.

To test the Lambda function:

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. On the Lambda function page, choose the Lambda function (PizzaOrderProcessor).

3. On the function page, in the list of test events, choose Configure test events.

Exercise 2: Create a Custom Bot 142

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

4. On the Configure test event page, do the following:

a. Choose Create new test event.

b. In the Event name field, enter a name for the event (PizzaOrderProcessorTest).

c. Copy the following Amazon Lex event into the window.

{
 "messageVersion": "1.0",
 "invocationSource": "FulfillmentCodeHook",
 "userId": "user-1",
 "sessionAttributes": {},
 "bot": {
 "name": "PizzaOrderingApp",
 "alias": "$LATEST",
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "OrderPizza",
 "slots": {
 "size": "large",
 "pizzaKind": "meat",
 "crust": "thin"
 },
 "confirmationStatus": "None"
 }
}

5. Choose Create.

AWS Lambda creates the test and you go back to the function page. Choose Test and Lambda runs
your Lambda function.

In the result box, choose Details. The console displays the following output in the Execution result
pane.

{
 "sessionAttributes": {},
 "dialogAction": {
 "type": "Close",
 "fulfillmentState": "Fulfilled",

Exercise 2: Create a Custom Bot 143

Amazon Lex V1 Developer Guide

 "message": {
 "contentType": "PlainText",
 "content": "Okay, I have ordered your large meat pizza on thin crust."
 }
}

Next Step

Step 2: Create a Bot

Step 2: Create a Bot

In this step, you create a bot to handle pizza orders.

Topics

• Create the Bot

• Create an Intent

• Create Slot Types

• Configure the Intent

• Configure the Bot

Create the Bot

Create the PizzaOrderingBot bot with the minimum information needed. You add an intent, an
action that the user wants to perform, for the bot later.

To create the bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Create a bot.

a. If you are creating your first bot, choose Get Started. Otherwise, choose Bots, and then
choose Create.

b. On the Create your Lex bot page, choose Custom bot and provide the following
information:

• Bot name: PizzaOrderingBot

• Language: Choose the language and locale for your bot.

Exercise 2: Create a Custom Bot 144

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

• Output voice: Salli

• Session timeout : 5 minutes.

• COPPA: Choose the appropriate response.

• User utterance storage: Choose the appropriate response.

c. Choose Create.

The console sends Amazon Lex a request to create a new bot. Amazon Lex sets the bot
version to $LATEST. After creating the bot, Amazon Lex shows the bot Editor tab, as in
the following image:

• The bot version, Latest, appears next to the bot name in the console. New Amazon
Lex resources have $LATEST as the version. For more information, see Versioning and
Aliases.

• Because you haven't created any intents or slots types, none are listed.

• Build and Publish are bot-level activities. After you configure the entire bot, you'll learn
more about these activities.

Next Step

Create an Intent

Create an Intent

Now, create the OrderPizza intent , an action that the user wants to perform, with the minimum
information needed. You add slot types for the intent and then configure the intent later.

To create an intent

1. In the Amazon Lex console, choose the plus sign (+) next to Intents, and then choose Create
new intent.

Exercise 2: Create a Custom Bot 145

Amazon Lex V1 Developer Guide

2. In the Create intent dialog box, type the name of the intent (OrderPizza), and then choose
Add.

The console sends a request to Amazon Lex to create the OrderPizza intent. In this example you
create slots for the intent after you create slot types.

Next Step

Create Slot Types

Create Slot Types

Create the slot types, or parameter values, that the OrderPizza intent uses.

To create slot types

1. In the left menu, choose the plus sign (+) next to Slot types.

2. In the Add slot type dialog box, add the following:

• Slot type name – Crusts

• Description – Available crusts

• Choose Restrict to Slot values and Synonyms

• Value – Type thick. Press tab and in the Synonym field type stuffed. Choose the plus
sign (+). Type thin and then choose the plus sign (+) again.

The dialog should look like the following image:

Exercise 2: Create a Custom Bot 146

Amazon Lex V1 Developer Guide

3. Choose Add slot to intent.

4. On the Intent page, choose Required. Change the name of the slot from slotOne to crust.
Change the prompt to What kind of crust would you like?

5. Repeat Step 1 through Step 4 using the values in the following table:

Exercise 2: Create a Custom Bot 147

Amazon Lex V1 Developer Guide

Name Description Values Slot name Prompt

Sizes Available sizes small, medium,
large

size What size
pizza?

PizzaKind Available pizzas veg, cheese pizzaKind Do you want a
veg or cheese
pizza?

Next Step

Configure the Intent

Configure the Intent

Configure the OrderPizza intent to fulfill a user's request to order a pizza.

To configure an intent

• On the OrderPizza configuration page, configure the intent as follows:

• Sample utterances – Type the following strings. The curly braces {} enclose slot names.

• I want to order pizza please

• I want to order a pizza

• I want to order a {pizzaKind} pizza

• I want to order a {size} {pizzaKind} pizza

• I want a {size} {crust} crust {pizzaKind} pizza

• Can I get a pizza please

• Can I get a {pizzaKind} pizza

• Can I get a {size} {pizzaKind} pizza

• Lambda initialization and validation – Leave the default setting.

• Confirmation prompt – Leave the default setting.

• Fulfillment – Perform the following tasks:

• Choose AWS Lambda function.

• Choose PizzaOrderProcessor.

Exercise 2: Create a Custom Bot 148

Amazon Lex V1 Developer Guide

• If the Add permission to Lambda function dialog box is shown, choose OK to give the
OrderPizza intent permission to call the PizzaOrderProcessor Lambda function.

• Leave None selected.

The intent should look like the following:

Next Step

Configure the Bot

Exercise 2: Create a Custom Bot 149

Amazon Lex V1 Developer Guide

Configure the Bot

Configure error handling for the PizzaOrderingBot bot.

1. Navigate to the PizzaOrderingBot bot. Choose Editor. and then choose Error Handling, as
in the following image:

2. Use the Editor tab to configure bot error handling.

• Information you provide in Clarification Prompts maps to the bot's clarificationPrompt
configuration.

When Amazon Lex can't determine the user intent, the service returns a response with this
message.

• Information that you provide in the Hang-up phrase maps to the bot's abortStatement
configuration.

If the service can't determine the user's intent after a set number of consecutive requests,
Amazon Lex returns a response with this message.

Leave the defaults.

Exercise 2: Create a Custom Bot 150

https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-clarificationPrompt
https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-abortStatement

Amazon Lex V1 Developer Guide

Next Step

Step 3: Build and Test the Bot

Step 3: Build and Test the Bot

Make sure the bot works, by building and testing it.

To build and test the bot

1. To build the PizzaOrderingBot bot, choose Build.

Amazon Lex builds a machine learning model for the bot. When you test the bot, the console
uses the runtime API to send the user input back to Amazon Lex. Amazon Lex then uses the
machine learning model to interpret the user input.

It can take some time to complete the build.

2. To test the bot, in the Test Bot window, start communicating with your Amazon Lex bot.

• For example, you might say or type the following:

Exercise 2: Create a Custom Bot 151

Amazon Lex V1 Developer Guide

• Use the sample utterances that you configured in the OrderPizza intent to test the bot.
For example, the following is one of the sample utterances that you configured for the
PizzaOrder intent:

I want a {size} {crust} crust {pizzaKind} pizza

To test it, type the following:

I want a large thin crust cheese pizza

When you type "I want to order a pizza," Amazon Lex detects the intent (OrderPizza). Then,
Amazon Lex asks for slot information.

Exercise 2: Create a Custom Bot 152

Amazon Lex V1 Developer Guide

After you provide all of the slot information, Amazon Lex invokes the Lambda function that
you configured for the intent.

The Lambda function returns a message ("Okay, I have ordered your ...") to Amazon Lex, which
Amazon Lex returns to you..

Inspecting the Response

Underneath the chat window is a pane that enables you to inspect the response from Amazon Lex.
The pane provides comprehensive information about the state of your bot that changes as you
interact with your bot. The contents of the panes show you the current state of the operation.

• Dialog State – The current state of the conversation with the user. It can be ElicitIntent,
ElicitSlot, ConfirmIntent or Fulfilled.

• Summary – Shows a simplified view of the dialog that shows the slot values for the intent
being fulfilled so that you can keep track of the information flow. It shows the intent name, the
number of slots and the number of slots filled, and a list of all of the slots and their associated
values. See the following image:

Exercise 2: Create a Custom Bot 153

Amazon Lex V1 Developer Guide

• Detail – Shows the raw JSON response from the chatbot to give you a deeper view into the bot
interaction and the current state of the dialog as you test and debug your chatbot. If you type
in the chat window, the inspection pane shows the JSON response from the PostText operation.
If you speak to the chat window, the inspection pane shows the response headers from the
PostContent operation. See the following image:

Exercise 2: Create a Custom Bot 154

Amazon Lex V1 Developer Guide

Next Step

Step 4 (Optional): Clean up

Step 4 (Optional): Clean up

Delete the resources that you created and clean up your account to avoid incurring more charges
for the resources you created.

You can delete only resources that are not in use. For example, you cannot delete a slot type that is
referenced by an intent. You cannot delete an intent that is referenced by a bot.

Delete resources in the following order:

• Delete bots to free up intent resources.

Exercise 2: Create a Custom Bot 155

Amazon Lex V1 Developer Guide

• Delete intents to free up slot type resources.

• Delete slot types last.

To clean up your account

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the list of bots, choose PizzaOrderingBot.

3. To delete the bot, choose Delete, and then choose Continue.

4. In the left pane, choose Intents.

5. In the list of intents, choose OrderPizza.

6. To delete the intent, choose Delete, and then choose Continue.

7. In the left menu, choose Slot types.

8. In the list of slot types, choose Crusts.

9. To delete the slot type, choose Delete, and then choose Continue.

10. Repeat Step 8 and Step 9 for the Sizes and PizzaKind slot types.

You have removed all of the resources that you created and cleaned up your account.

Next Steps

• Publish a Version and Create an Alias

• Create an Amazon Lex bot with the AWS Command Line Interface

Exercise 3: Publish a Version and Create an Alias

In Getting Started Exercises 1 and 2, you created a bot and tested it. In this exercise, you do the
following:

• Publish a new version of the bot. Amazon Lex takes a snapshot copy of the $LATEST version to
publish a new version.

• Create an alias that points to the new version.

For more information about versioning and aliases, see Versioning and Aliases.

Exercise 3: Publish a Version and Create an Alias 156

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://docs.aws.amazon.com/lex/latest/dg/gettingstarted-ex3.html
https://docs.aws.amazon.com/lex/latest/dg/gs-cli.html

Amazon Lex V1 Developer Guide

Do the following to publish a version of a bot you created for this exercise:

1. In the Amazon Lex console, choose one of the bots you created.

Verify that the console shows the $LATEST as the bot version next to the bot name.

2. Choose Publish.

3. On the Publish botname wizard, specify the alias BETA, and then choose Publish.

4. Verify that the Amazon Lex console shows the new version next to the bot name, as in the
following image.

Now that you have a working bot with published version and an alias, you can deploy the bot
(in your mobile application or integrate the bot with Facebook Messenger). For an example, see
Integrating an Amazon Lex Bot with Facebook Messenger.

Step 4: Getting Started (AWS CLI)

In this step, you use the AWS CLI to create, test, and modify an Amazon Lex bot. To complete these
exercises, you need to be familiar with using the CLI and have a text editor. For more information,
see Step 2: Set Up the AWS Command Line Interface

• Exercise 1 — Create and test an Amazon Lex bot. The exercise provides all of the JSON objects
that you need to create a custom slot type, an intent, and a bot. For more information, see
Amazon Lex: How It Works

Step 4: Getting Started (AWS CLI) 157

Amazon Lex V1 Developer Guide

• Exercise 2 — Update the bot that you created in Exercise 1 to add an additional sample
utterance. Amazon Lex uses sample utterances to build the machine learning model for your bot.

• Exercise 3 — Update the bot that you created in Exercise 1 to add a Lambda function to validate
user input and to fulfill the intent.

• Exercise 4 — Publish a version of the slot type, intent, and bot resources that you created in
Exercise 1. A version is a snapshot of a resource that can't be changed.

• Exercise 5 — Create an alias for the bot that you created in Exercise 1.

• Exercise 6 — Clean up your account by deleting the slot type, intent, and bot that you created in
Exercise 1, and the alias that you created in Exercise 5.

Topics

• Exercise 1: Create an Amazon Lex Bot (AWS CLI)

• Exercise 2: Add a New Utterance (AWS CLI)

• Exercise 3: Add a Lambda Function (AWS CLI)

• Exercise 4: Publish a Version (AWS CLI)

• Exercise 5: Create an Alias (AWS CLI)

• Exercise 6: Clean Up (AWS CLI)

Exercise 1: Create an Amazon Lex Bot (AWS CLI)

In general, when you create bots, you:

1. Create slot types to define the information that your bot will be working with.

2. Create intents that define the user actions that your bot supports. Use the custom slot types
that you created earlier to define the slots, or parameters, that your intent requires.

3. Create a bot that uses the intents that you defined.

In this exercise you create and test a new Amazon Lex bot using the CLI. Use the JSON structures
that we provide to create the bot. To run the commands in this exercise, you need to know the
region where the commands will be run. For a list of regions, see Model Building Quotas .

Topics

• Step 1: Create a Service-Linked Role (AWS CLI)

Exercise 1: Create a Bot 158

Amazon Lex V1 Developer Guide

• Step 2: Create a Custom Slot Type (AWS CLI)

• Step 3: Create an Intent (AWS CLI)

• Step 4: Create a Bot (AWS CLI)

• Step 5: Test a Bot (AWS CLI)

Step 1: Create a Service-Linked Role (AWS CLI)

Amazon Lex assumes AWS Identity and Access Management service-linked roles to call AWS
services on behalf of your bots. The roles, which are in your account, are linked to Amazon Lex use
cases and have predefined permissions. For more information, see Using Service-Linked Roles for
Amazon Lex.

If you've already created an Amazon Lex bot using the console, the service-linked role was created
automatically. Skip to Step 2: Create a Custom Slot Type (AWS CLI).

To create a service-linked role (AWS CLI)

1. In the AWS CLI, type the following command:

aws iam create-service-linked-role --aws-service-name lex.amazonaws.com

2. Check the policy using the following command:

aws iam get-role --role-name AWSServiceRoleForLexBots

The response is:

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "lex.amazonaws.com"
 }
 }
]

Exercise 1: Create a Bot 159

Amazon Lex V1 Developer Guide

 },
 "RoleName": "AWSServiceRoleForLexBots",
 "Path": "/aws-service-role/lex.amazonaws.com/",
 "Arn": "arn:aws:iam::account-id:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
}

Next Step

Step 2: Create a Custom Slot Type (AWS CLI)

Step 2: Create a Custom Slot Type (AWS CLI)

Create a custom slot type with enumeration values for the flowers that can be ordered. You use
this type in the next step when you create the OrderFlowers intent. A slot type defines the
possible values for a slot, or parameter, of the intent.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

To create a custom slot type (AWS CLI)

1. Create a text file named FlowerTypes.json. Copy the JSON code from FlowerTypes.json into
the text file.

2. Call the PutSlotType operation using the AWS CLI to create the slot type. The example
is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws lex-models put-slot-type \
 --region region \
 --name FlowerTypes \
 --cli-input-json file://FlowerTypes.json

The response from the server is:

{
 "enumerationValues": [
 {
 "value": "tulips"
 },

Exercise 1: Create a Bot 160

Amazon Lex V1 Developer Guide

 {
 "value": "lilies"
 },
 {
 "value": "roses"
 }
],
 "name": "FlowerTypes",
 "checksum": "checksum",
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp,
 "description": "Types of flowers to pick up"
}

Next Step

Step 3: Create an Intent (AWS CLI)

FlowerTypes.json

The following code is the JSON data required to create the FlowerTypes custom slot type:

{
 "enumerationValues": [
 {
 "value": "tulips"
 },
 {
 "value": "lilies"
 },
 {
 "value": "roses"
 }
],
 "name": "FlowerTypes",
 "description": "Types of flowers to pick up"
}

Exercise 1: Create a Bot 161

Amazon Lex V1 Developer Guide

Step 3: Create an Intent (AWS CLI)

Create an intent for the OrderFlowersBot bot and provide three slots, or parameters. The slots
allow the bot to fulfill the intent:

• FlowerType is a custom slot type that specifies which types of flowers can be ordered.

• AMAZON.DATE and AMAZON.TIME are built-in slot types used for getting the date and time to
deliver the flowers from the user.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

To create the OrderFlowers intent (AWS CLI)

1. Create a text file named OrderFlowers.json. Copy the JSON code from OrderFlowers.json
into the text file.

2. In the AWS CLI, call the PutIntent operation to create the intent. The example is formatted for
Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix continuation character at
the end of each line with a caret (^).

aws lex-models put-intent \
 --region region \
 --name OrderFlowers \
 --cli-input-json file://OrderFlowers.json

The server responds with the following:

{
 "confirmationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Okay, your {FlowerType} will be ready for pickup by
 {PickupTime} on {PickupDate}. Does this sound okay?",
 "contentType": "PlainText"
 }
]
 },
 "name": "OrderFlowers",
 "checksum": "checksum",

Exercise 1: Create a Bot 162

Amazon Lex V1 Developer Guide

 "version": "$LATEST",
 "rejectionStatement": {
 "messages": [
 {
 "content": "Okay, I will not place your order.",
 "contentType": "PlainText"
 }
]
 },
 "createdDate": timestamp,
 "lastUpdatedDate": timestamp,
 "sampleUtterances": [
 "I would like to pick up flowers",
 "I would like to order some flowers"
],
 "slots": [
 {
 "slotType": "AMAZON.TIME",
 "name": "PickupTime",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Pick up the {FlowerType} at what time on
 {PickupDate}?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 3,
 "description": "The time to pick up the flowers"
 },
 {
 "slotType": "FlowerTypes",
 "name": "FlowerType",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What type of flowers would you like to
 order?",
 "contentType": "PlainText"

Exercise 1: Create a Bot 163

Amazon Lex V1 Developer Guide

 }
]
 },
 "priority": 1,
 "slotTypeVersion": "$LATEST",
 "sampleUtterances": [
 "I would like to order {FlowerType}"
],
 "description": "The type of flowers to pick up"
 },
 {
 "slotType": "AMAZON.DATE",
 "name": "PickupDate",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What day do you want the {FlowerType} to be
 picked up?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 2,
 "description": "The date to pick up the flowers"
 }
],
 "fulfillmentActivity": {
 "type": "ReturnIntent"
 },
 "description": "Intent to order a bouquet of flowers for pick up"
}

Next Step

Step 4: Create a Bot (AWS CLI)

OrderFlowers.json

The following code is the JSON data required to create the OrderFlowers intent:

{

Exercise 1: Create a Bot 164

Amazon Lex V1 Developer Guide

 "confirmationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Okay, your {FlowerType} will be ready for pickup by
 {PickupTime} on {PickupDate}. Does this sound okay?",
 "contentType": "PlainText"
 }
]
 },
 "name": "OrderFlowers",
 "rejectionStatement": {
 "messages": [
 {
 "content": "Okay, I will not place your order.",
 "contentType": "PlainText"
 }
]
 },
 "sampleUtterances": [
 "I would like to pick up flowers",
 "I would like to order some flowers"
],
 "slots": [
 {
 "slotType": "FlowerTypes",
 "name": "FlowerType",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What type of flowers would you like to order?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 1,
 "slotTypeVersion": "$LATEST",
 "sampleUtterances": [
 "I would like to order {FlowerType}"
],
 "description": "The type of flowers to pick up"
 },

Exercise 1: Create a Bot 165

Amazon Lex V1 Developer Guide

 {
 "slotType": "AMAZON.DATE",
 "name": "PickupDate",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What day do you want the {FlowerType} to be picked
 up?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 2,
 "description": "The date to pick up the flowers"
 },
 {
 "slotType": "AMAZON.TIME",
 "name": "PickupTime",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Pick up the {FlowerType} at what time on
 {PickupDate}?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 3,
 "description": "The time to pick up the flowers"
 }
],
 "fulfillmentActivity": {
 "type": "ReturnIntent"
 },
 "description": "Intent to order a bouquet of flowers for pick up"
}

Exercise 1: Create a Bot 166

Amazon Lex V1 Developer Guide

Step 4: Create a Bot (AWS CLI)

The OrderFlowersBot bot has one intent, the OrderFlowers intent that you created in the
previous step. To run the commands in this exercise, you need to know the region where the
commands will be run. For a list of regions, see Model Building Quotas .

Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST.

To create the OrderFlowersBot bot (AWS CLI)

1. Create a text file named OrderFlowersBot.json. Copy the JSON code from
OrderFlowersBot.json into the text file.

2. In the AWS CLI, call the PutBot operation to create the bot. The example is formatted for Unix,
Linux, and macOS. For Windows, replace the backslash (\) Unix continuation character at the
end of each line with a caret (^).

aws lex-models put-bot \
 --region region \
 --name OrderFlowersBot \
 --cli-input-json file://OrderFlowersBot.json

The response from the server follows. When you create or update bot, the status field is set
to BUILDING. This indicates that the bot isn't ready to use. To determine when the bot is ready
for use, use the GetBot operation in the next step .

{
 "status": "BUILDING",
 "intents": [
 {
 "intentVersion": "$LATEST",
 "intentName": "OrderFlowers"
 }
],
 "name": "OrderFlowersBot",
 "locale": "en-US",
 "checksum": "checksum",

Exercise 1: Create a Bot 167

Amazon Lex V1 Developer Guide

 "abortStatement": {
 "messages": [
 {
 "content": "Sorry, I'm not able to assist at this time",
 "contentType": "PlainText"
 }
]
 },
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp,
 "clarificationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "I didn't understand you, what would you like to do?",
 "contentType": "PlainText"
 }
]
 },
 "voiceId": "Salli",
 "childDirected": false,
 "idleSessionTTLInSeconds": 600,
 "processBehavior": "BUILD",
 "description": "Bot to order flowers on the behalf of a user"
}

3. To determine if your new bot is ready for use, run the following command. Repeat this
command until the status field returns READY. The example is formatted for Unix, Linux, and
macOS. For Windows, replace the backslash (\) Unix continuation character at the end of each
line with a caret (^).

aws lex-models get-bot \
 --region region \
 --name OrderFlowersBot \
 --version-or-alias "\$LATEST"

Look for the status field in the response:

{
 "status": "READY",

Exercise 1: Create a Bot 168

Amazon Lex V1 Developer Guide

 ...

}

Next Step

Step 5: Test a Bot (AWS CLI)

OrderFlowersBot.json

The following code provides the JSON data required to build the OrderFlowers Amazon Lex bot:

{
 "intents": [
 {
 "intentVersion": "$LATEST",
 "intentName": "OrderFlowers"
 }
],
 "name": "OrderFlowersBot",
 "locale": "en-US",
 "abortStatement": {
 "messages": [
 {
 "content": "Sorry, I'm not able to assist at this time",
 "contentType": "PlainText"
 }
]
 },
 "clarificationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "I didn't understand you, what would you like to do?",
 "contentType": "PlainText"
 }
]
 },
 "voiceId": "Salli",
 "childDirected": false,
 "idleSessionTTLInSeconds": 600,
 "description": "Bot to order flowers on the behalf of a user"

Exercise 1: Create a Bot 169

Amazon Lex V1 Developer Guide

}

Step 5: Test a Bot (AWS CLI)

To test the bot,you can use either a text-based or a speech-based test.

Topics

• Test the Bot Using Text Input (AWS CLI)

• Test the Bot Using Speech Input (AWS CLI)

Test the Bot Using Text Input (AWS CLI)

To verify that the bot works correctly with text input, use the PostText operation. To run the
commands in this exercise, you need to know the region where the commands will be run. For a list
of regions, see Runtime Service Quotas.

Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (^).

To use text to test the bot (AWS CLI)

1. In the AWS CLI, start a conversation with the OrderFlowersBot bot. The example
is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws lex-runtime post-text \
 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --input-text "i would like to order flowers"

Amazon Lex recognizes the user's intent and starts a conversation by returning the following
response:

Exercise 1: Create a Bot 170

Amazon Lex V1 Developer Guide

{
 "slotToElicit": "FlowerType",
 "slots": {
 "PickupDate": null,
 "PickupTime": null,
 "FlowerType": null
 },
 "dialogState": "ElicitSlot",
 "message": "What type of flowers would you like to order?",
 "intentName": "OrderFlowers"
}

2. Run the following commands to finish the conversation with the bot.

aws lex-runtime post-text \
 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --input-text "roses"

aws lex-runtime post-text \
 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --input-text "tuesday"

aws lex-runtime post-text \
 --region region \
 --bot-name OrderFlowersBot --bot-alias "\$LATEST" \
 --user-id UserOne \
 --input-text "10:00 a.m."

aws lex-runtime post-text \
 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --input-text "yes"

Exercise 1: Create a Bot 171

Amazon Lex V1 Developer Guide

After you confirm the order, Amazon Lex sends a fulfillment response to complete the
conversation:

{
 "slots": {
 "PickupDate": "2017-05-16",
 "PickupTime": "10:00",
 "FlowerType": "roses"
 },
 "dialogState": "ReadyForFulfillment",
 "intentName": "OrderFlowers"
}

Next Step

Test the Bot Using Speech Input (AWS CLI)

Test the Bot Using Speech Input (AWS CLI)

To test the bot using audio files, use the PostContent operation. You generate the audio files using
Amazon Polly text-to-speech operations.

To run the commands in this exercise, you need to know the region the Amazon Lex and Amazon
Polly commands will be run. For a list of regions for Amazon Lex, see Runtime Service Quotas. For
a list of regions for Amazon Polly see AWS Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (^).

To use a speech input to test the bot (AWS CLI)

1. In the AWS CLI, create an audio file using Amazon Polly. The example is formatted for Unix,
Linux, and macOS. For Windows, replace the backslash (\) Unix continuation character at the
end of each line with a caret (^).

Exercise 1: Create a Bot 172

https://docs.aws.amazon.com/general/latest/gr/rande.html#pol_region

Amazon Lex V1 Developer Guide

aws polly synthesize-speech \
 --region region \
 --output-format pcm \
 --text "i would like to order flowers" \
 --voice-id "Salli" \
 IntentSpeech.mpg

2. To send the audio file to Amazon Lex, run the following command. Amazon Lex saves the
audio from the response in the specified output file.

aws lex-runtime post-content \
 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --content-type "audio/l16; rate=16000; channels=1" \
 --input-stream IntentSpeech.mpg \
 IntentOutputSpeech.mpg

Amazon Lex responds with a request for the first slot. It saves the audio response in the
specified output file.

{
 "contentType": "audio/mpeg",
 "slotToElicit": "FlowerType",
 "dialogState": "ElicitSlot",
 "intentName": "OrderFlowers",
 "inputTranscript": "i would like to order some flowers",
 "slots": {
 "PickupDate": null,
 "PickupTime": null,
 "FlowerType": null
 },
 "message": "What type of flowers would you like to order?"
}

3. To order roses, create the following audio file and send it to Amazon Lex :

aws polly synthesize-speech \
 --region region \
 --output-format pcm \

Exercise 1: Create a Bot 173

Amazon Lex V1 Developer Guide

 --text "roses" \
 --voice-id "Salli" \
 FlowerTypeSpeech.mpg

aws lex-runtime post-content \
 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --content-type "audio/l16; rate=16000; channels=1" \
 --input-stream FlowerTypeSpeech.mpg \
 FlowerTypeOutputSpeech.mpg

4. To set the delivery date, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech \
 --region region \
 --output-format pcm \
 --text "tuesday" \
 --voice-id "Salli" \
 DateSpeech.mpg

aws lex-runtime post-content \
 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --content-type "audio/l16; rate=16000; channels=1" \
 --input-stream DateSpeech.mpg \
 DateOutputSpeech.mpg

5. To set the delivery time, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech \
 --region region \
 --output-format pcm \
 --text "10:00 a.m." \
 --voice-id "Salli" \
 TimeSpeech.mpg

aws lex-runtime post-content \

Exercise 1: Create a Bot 174

Amazon Lex V1 Developer Guide

 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --content-type "audio/l16; rate=16000; channels=1" \
 --input-stream TimeSpeech.mpg \
 TimeOutputSpeech.mpg

6. To confirm the delivery, create the following audio file and send it to Amazon Lex:

aws polly synthesize-speech \
 --region region \
 --output-format pcm \
 --text "yes" \
 --voice-id "Salli" \
 ConfirmSpeech.mpg

aws lex-runtime post-content \
 --region region \
 --bot-name OrderFlowersBot \
 --bot-alias "\$LATEST" \
 --user-id UserOne \
 --content-type "audio/l16; rate=16000; channels=1" \
 --input-stream ConfirmSpeech.mpg \
 ConfirmOutputSpeech.mpg

After you confirm the delivery, Amazon Lex sends a response that confirms fulfillment of the
intent:

{
 "contentType": "text/plain;charset=utf-8",
 "dialogState": "ReadyForFulfillment",
 "intentName": "OrderFlowers",
 "inputTranscript": "yes",
 "slots": {
 "PickupDate": "2017-05-16",
 "PickupTime": "10:00",
 "FlowerType": "roses"
 }
}

Exercise 1: Create a Bot 175

Amazon Lex V1 Developer Guide

Next Step

Exercise 2: Add a New Utterance (AWS CLI)

Exercise 2: Add a New Utterance (AWS CLI)

To improve the machine learning model that Amazon Lex uses to recognize requests from your
users, add another sample utterance to the bot.

Adding a new utterance is a four-step process.

1. Use the GetIntent operation to get an intent from Amazon Lex.

2. Update the intent.

3. Use the PutIntent operation to send the updated intent back to Amazon Lex.

4. Use the GetBot and PutBot operations to rebuild any bot that uses the intent.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

The response from the GetIntent operation contains a field called checksum that identifies a
specific revision of the intent. You must provide the checksum value when you use the PutIntent
operation to update an intent. If you don't, you'll get the following error message:

 An error occurred (PreconditionFailedException) when calling
 the PutIntent operation: Intent intent name already exists.
 If you are trying to update intent name you must specify the
 checksum.

Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (^).

Exercise 2: Add a New Utterance 176

Amazon Lex V1 Developer Guide

To update the OrderFlowers intent (AWS CLI)

1. In the AWS CLI, get the intent from Amazon Lex. Amazon Lex sends the output to a file called
OrderFlowers-V2.json.

aws lex-models get-intent \
 --region region \
 --name OrderFlowers \
 --intent-version "\$LATEST" > OrderFlowers-V2.json

2. Open OrderFlowers-V2.json in a text editor.

1. Find and delete the createdDate, lastUpdatedDate, and version fields.

2. Add the following to the sampleUtterances field:

I want to order flowers

3. Save the file.

3. Send the updated intent to Amazon Lex with the following command:

aws lex-models put-intent \
 --region region \
 --name OrderFlowers \
 --cli-input-json file://OrderFlowers-V2.json

Amazon Lex sends the following response:

{
 "confirmationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Okay, your {FlowerType} will be ready for pickup by
 {PickupTime} on {PickupDate}. Does this sound okay?",
 "contentType": "PlainText"
 }
]
 },
 "name": "OrderFlowers",
 "checksum": "checksum",
 "version": "$LATEST",

Exercise 2: Add a New Utterance 177

Amazon Lex V1 Developer Guide

 "rejectionStatement": {
 "messages": [
 {
 "content": "Okay, I will not place your order.",
 "contentType": "PlainText"
 }
]
 },
 "createdDate": timestamp,
 "lastUpdatedDate": timestamp,
 "sampleUtterances": [
 "I would like to pick up flowers",
 "I would like to order some flowers",
 "I want to order flowers"
],
 "slots": [
 {
 "slotType": "AMAZON.TIME",
 "name": "PickupTime",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "Pick up the {FlowerType} at what time on
 {PickupDate}?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 3,
 "description": "The time to pick up the flowers"
 },
 {
 "slotType": "FlowerTypes",
 "name": "FlowerType",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What type of flowers would you like to
 order?",
 "contentType": "PlainText"

Exercise 2: Add a New Utterance 178

Amazon Lex V1 Developer Guide

 }
]
 },
 "priority": 1,
 "slotTypeVersion": "$LATEST",
 "sampleUtterances": [
 "I would like to order {FlowerType}"
],
 "description": "The type of flowers to pick up"
 },
 {
 "slotType": "AMAZON.DATE",
 "name": "PickupDate",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "What day do you want the {FlowerType} to be
 picked up?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 2,
 "description": "The date to pick up the flowers"
 }
],
 "fulfillmentActivity": {
 "type": "ReturnIntent"
 },
 "description": "Intent to order a bouquet of flowers for pick up"
}

Now that you have updated the intent, rebuild any bot that uses it.

To rebuild the OrderFlowersBot bot (AWS CLI)

1. In the AWS CLI, get the definition of the OrderFlowersBot bot and save it to a file with the
following command:

aws lex-models get-bot \

Exercise 2: Add a New Utterance 179

Amazon Lex V1 Developer Guide

 --region region \
 --name OrderFlowersBot \
 --version-or-alias "\$LATEST" > OrderFlowersBot-V2.json

2. In a text editor, open OrderFlowersBot-V2.json. Remove the createdDate,
lastUpdatedDate, status and version fields.

3. In a text editor, add the following line to the bot definition:

"processBehavior": "BUILD",

4. In the AWS CLI, build a new revision of the bot by running the following command to :

aws lex-models put-bot \
 --region region \
 --name OrderFlowersBot \
 --cli-input-json file://OrderFlowersBot-V2.json

The response from the server is:

{
 "status": "BUILDING",
 "intents": [
 {
 "intentVersion": "$LATEST",
 "intentName": "OrderFlowers"
 }
],
 "name": "OrderFlowersBot",
 "locale": "en-US",
 "checksum": "checksum",
 "abortStatement": {
 "messages": [
 {
 "content": "Sorry, I'm not able to assist at this time",
 "contentType": "PlainText"
 }
]
 },
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp
 "clarificationPrompt": {

Exercise 2: Add a New Utterance 180

Amazon Lex V1 Developer Guide

 "maxAttempts": 2,
 "messages": [
 {
 "content": "I didn't understand you, what would you like to do?",
 "contentType": "PlainText"
 }
]
 },
 "voiceId": "Salli",
 "childDirected": false,
 "idleSessionTTLInSeconds": 600,
 "description": "Bot to order flowers on the behalf of a user"
}

Next Step

Exercise 3: Add a Lambda Function (AWS CLI)

Exercise 3: Add a Lambda Function (AWS CLI)

Add a Lambda function that validates user input and fulfills the user's intent to the bot.

Adding a Lambda expression is a five-step process.

1. Use the Lambda AddPermission function to enable the OrderFlowers intent to call the
Lambda Invoke operation.

2. Use the GetIntent operation to get the intent from Amazon Lex.

3. Update the intent to add the Lambda function.

4. Use the PutIntent operation to send the updated intent back to Amazon Lex.

5. Use the GetBot and PutBot operations to rebuild any bot that uses the intent.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

If you add a Lambda function to an intent before you add the InvokeFunction permission, you
get the following error message:

 An error occurred (BadRequestException) when calling the

Exercise 3: Add a Lambda Function 181

http://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-api-permissions-ref.html

Amazon Lex V1 Developer Guide

 PutIntent operation: Lex is unable to access the Lambda
 function Lambda function ARN in the context of intent
 intent ARN. Please check the resource-based policy on
 the function.

The response from the GetIntent operation contains a field called checksum that identifies a
specific revision of the intent. When you use the PutIntent operation to update an intent, you must
provide the checksum value. If you don't, you get the following error message:

 An error occurred (PreconditionFailedException) when calling
 the PutIntent operation: Intent intent name already exists.
 If you are trying to update intent name you must specify the
 checksum.

This exercise uses the Lambda function from Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console). For instructions to create the Lambda function, see Step 3: Create a Lambda
Function (Console).

Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST.

To add a Lambda function to an intent

1. In the AWS CLI, add the InvokeFunction permission for the OrderFlowers intent:

aws lambda add-permission \
 --region region \
 --function-name OrderFlowersCodeHook \
 --statement-id LexGettingStarted-OrderFlowersBot \
 --action lambda:InvokeFunction \
 --principal lex.amazonaws.com \
 --source-arn "arn:aws:lex:region:account ID:intent:OrderFlowers:*"
 --source-account account ID

Lambda sends the following response:

Exercise 3: Add a Lambda Function 182

Amazon Lex V1 Developer Guide

{
 "Statement": "{\"Sid\":\"LexGettingStarted-OrderFlowersBot\",
 \"Resource\":\"arn:aws:lambda:region:account ID:function:OrderFlowersCodeHook
\",
 \"Effect\":\"Allow\",
 \"Principal\":{\"Service\":\"lex.amazonaws.com\"},
 \"Action\":[\"lambda:InvokeFunction\"],
 \"Condition\":{\"StringEquals\":
 {\"AWS:SourceAccount\": \"account ID\"},
 {\"AWS:SourceArn\":
 \"arn:aws:lex:region:account ID:intent:OrderFlowers:*\"}}}"
}

2. Get the intent from Amazon Lex. Amazon Lex sends the output to a file called
OrderFlowers-V3.json.

aws lex-models get-intent \
 --region region \
 --name OrderFlowers \
 --intent-version "\$LATEST" > OrderFlowers-V3.json

3. In a text editor, open the OrderFlowers-V3.json.

1. Find and delete the createdDate, lastUpdatedDate, and version fields.

2. Update the fulfillmentActivity field :

 "fulfillmentActivity": {
 "type": "CodeHook",
 "codeHook": {
 "uri": "arn:aws:lambda:region:account
 ID:function:OrderFlowersCodeHook",
 "messageVersion": "1.0"
 }
 }

3. Save the file.

4. In the AWS CLI, send the updated intent to Amazon Lex:

aws lex-models put-intent \
 --region region \
 --name OrderFlowers \

Exercise 3: Add a Lambda Function 183

Amazon Lex V1 Developer Guide

 --cli-input-json file://OrderFlowers-V3.json

Now that you have updated the intent, rebuild the bot.

To rebuild the OrderFlowersBot bot

1. In the AWS CLI, get the definition of the OrderFlowersBot bot and save it to a file:

aws lex-models get-bot \
 --region region \
 --name OrderFlowersBot \
 --version-or-alias "\$LATEST" > OrderFlowersBot-V3.json

2. In a text editor,open OrderFlowersBot-V3.json. Remove the createdDate,
lastUpdatedDate, status, and version fields.

3. In the text editor, add the following line to the definition of the bot:

"processBehavior": "BUILD",

4. In the AWS CLI, build a new revision of the bot:

aws lex-models put-bot \
 --region region \
 --name OrderFlowersBot \
 --cli-input-json file://OrderFlowersBot-V3.json

The response from the server is:

{
 "status": "READY",
 "intents": [
 {
 "intentVersion": "$LATEST",
 "intentName": "OrderFlowers"
 }
],
 "name": "OrderFlowersBot",
 "locale": "en-US",
 "checksum": "checksum",
 "abortStatement": {

Exercise 3: Add a Lambda Function 184

Amazon Lex V1 Developer Guide

 "messages": [
 {
 "content": "Sorry, I'm not able to assist at this time",
 "contentType": "PlainText"
 }
]
 },
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp,
 "clarificationPrompt": {
 "maxAttempts": 2,
 "messages": [
 {
 "content": "I didn't understand you, what would you like to do?",
 "contentType": "PlainText"
 }
]
 },
 "voiceId": "Salli",
 "childDirected": false,
 "idleSessionTTLInSeconds": 600,
 "description": "Bot to order flowers on the behalf of a user"
}

Next Step

Exercise 4: Publish a Version (AWS CLI)

Exercise 4: Publish a Version (AWS CLI)

Now, create a version of the bot that you created in Exercise 1. A version is a snapshot of the bot.
After you create a version, you can’t change it. The only version of a bot that you can update is the
$LATEST version. For more information about versions, see Versioning and Aliases.

Before you can publish a version of a bot, you must publish the intents that is uses. Likewise, you
must publish the slot types that those intents refer to. In general, to publish a version of a bot, you
do the following:

1. Publish a version of a slot type with the CreateSlotTypeVersion operation.

2. Publish a version of an intent with the CreateIntentVersion operation.

Exercise 4: Publish a Version 185

Amazon Lex V1 Developer Guide

3. Publish a version of a bot with the CreateBotVersion operation .

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

Topics

• Step 1: Publish the Slot Type (AWS CLI)

• Step 2: Publish the Intent (AWS CLI)

• Step 3: Publish the Bot (AWS CLI)

Step 1: Publish the Slot Type (AWS CLI)

Before you can publish a version of any intents that use a slot type, you must publish a version of
that slot type. In this case, you publish the FlowerTypes slot type.

Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (^).

To publish a slot type (AWS CLI)

1. In the AWS CLI, get the latest version of the slot type:

aws lex-models get-slot-type \
 --region region \
 --name FlowerTypes \
 --slot-type-version "\$LATEST"

The response from Amazon Lex follows. Record the checksum for the current revision of the
$LATEST version.

{
 "enumerationValues": [
 {
 "value": "tulips"

Exercise 4: Publish a Version 186

Amazon Lex V1 Developer Guide

 },
 {
 "value": "lilies"
 },
 {
 "value": "roses"
 }
],
 "name": "FlowerTypes",
 "checksum": "checksum",
 "version": "$LATEST",
 "lastUpdatedDate": timestamp,
 "createdDate": timestamp,
 "description": "Types of flowers to pick up"
}

2. Publish a version of the slot type. Use the checksum that you recorded in the previous step.

aws lex-models create-slot-type-version \
 --region region \
 --name FlowerTypes \
 --checksum "checksum"

The response from Amazon Lex follows. Record the version number for the next step.

{
 "version": "1",
 "enumerationValues": [
 {
 "value": "tulips"
 },
 {
 "value": "lilies"
 },
 {
 "value": "roses"
 }
],
 "name": "FlowerTypes",
 "createdDate": timestamp,
 "lastUpdatedDate": timestamp,
 "description": "Types of flowers to pick up"

Exercise 4: Publish a Version 187

Amazon Lex V1 Developer Guide

}

Next Step

Step 2: Publish the Intent (AWS CLI)

Step 2: Publish the Intent (AWS CLI)

Before you can publish an intent, you have to publish all of the slot types referred to by the intent.
The slot types must be numbered versions, not the $LATEST version.

First, update the OrderFlowers intent to use the version of the FlowerTypes slot type that you
published in the previous step. Then publish a new version of the OrderFlowers intent.

Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (^).

To publish a version of an intent (AWS CLI)

1. In the AWS CLI, get the $LATEST version of the OrderFlowers intent and save it to a file:

aws lex-models get-intent \
 --region region \
 --name OrderFlowers \
 --intent-version "\$LATEST" > OrderFlowers_V4.json

2. In a text editor, open the OrderFlowers_V4.json file. Delete the createdDate,
lastUpdatedDate, and version fields. Find the FlowerTypes slot type and change the
version to the version number that you recorded in the previous step. The following fragment
of the OrderFlowers_V4.json file shows the location of the change:

 {
 "slotType": "FlowerTypes",
 "name": "FlowerType",
 "slotConstraint": "Required",
 "valueElicitationPrompt": {

Exercise 4: Publish a Version 188

Amazon Lex V1 Developer Guide

 "maxAttempts": 2,
 "messages": [
 {
 "content": "What type of flowers?",
 "contentType": "PlainText"
 }
]
 },
 "priority": 1,
 "slotTypeVersion": "version",
 "sampleUtterances": []
 },

3. In the AWS CLI, save the revision of the intent:

aws lex-models put-intent \
 --name OrderFlowers \
 --cli-input-json file://OrderFlowers_V4.json

4. Get the checksum of the latest revision of the intent:

aws lex-models get-intent \
 --region region \
 --name OrderFlowers \
 --intent-version "\$LATEST" > OrderFlowers_V4a.json

The following fragment of the response shows the checksum of the intent. Record this for the
next step.

 "name": "OrderFlowers",
 "checksum": "checksum",
 "version": "$LATEST",

5. Publish a new version of the intent:

aws lex-models create-intent-version \
 --region region \
 --name OrderFlowers \
 --checksum "checksum"

The following fragment of the response shows the new version of the intent. Record the
version number for the next step.

Exercise 4: Publish a Version 189

Amazon Lex V1 Developer Guide

 "name": "OrderFlowers",
 "checksum": "checksum",
 "version": "version",

Next Step

Step 3: Publish the Bot (AWS CLI)

Step 3: Publish the Bot (AWS CLI)

After you have published all of the slot types and intents that are used by your bot, you can publish
the bot.

Update the OrderFlowersBot bot to use the OrderFlowers intent that you updated in the
previous step. Then, publish a new version of the OrderFlowersBot bot.

Note

The following AWS CLI example is formatted for Unix, Linux, and macOS. For Windows,
change "\$LATEST" to $LATEST and replace the backslash (\) continuation character at
the end of each line with a caret (^).

To publish a version of a bot (AWS CLI)

1. In the AWS CLI, get the $LATEST version of the OrderFlowersBot bot and save it to a file:

aws lex-models get-bot \
 --region region \
 --name OrderFlowersBot \
 --version-or-alias "\$LATEST" > OrderFlowersBot_V4.json

2. In a text editor, open the OrderFlowersBot_V4.json file. Delete the createdDate,
lastUpdatedDate, status and version fields. Find the OrderFlowers intent and change
the version to the version number that you recorded in the previous step. The following
fragment of OrderFlowersBot_V4.json shows the location of the change.

 "intents": [

Exercise 4: Publish a Version 190

Amazon Lex V1 Developer Guide

 {
 "intentVersion": "version",
 "intentName": "OrderFlowers"
 }

3. In the AWS CLI, save the new revision of the bot. Make note of the version number returned by
the call to put-bot.

aws lex-models put-bot \
 --name OrderFlowersBot \
 --cli-input-json file://OrderFlowersBot_V4.json

4. Get the checksum of the latest revision of the bot. Use the version number returned in step 3.

aws lex-models get-bot \
 --region region \
 --version-or-alias version \
 --name OrderFlowersBot > OrderFlowersBot_V4a.json

The following fragment of the response shows the checksum of the bot. Record this for the
next step.

 "name": "OrderFlowersBot",
 "locale": "en-US",
 "checksum": "checksum",

5. Publish a new version of the bot:

aws lex-models create-bot-version \
 --region region \
 --name OrderFlowersBot \
 --checksum "checksum"

The following fragment of the response shows the new version of the bot.

 "checksum": "checksum",
 "abortStatement": {
 ...
 },
 "version": "1",
 "lastUpdatedDate": timestamp,

Exercise 4: Publish a Version 191

Amazon Lex V1 Developer Guide

Next Step

Exercise 5: Create an Alias (AWS CLI)

Exercise 5: Create an Alias (AWS CLI)

An alias is a pointer to a specific version of a bot. With an alias you can easily update the version
that your client applications are using. For more information, see Versioning and Aliases.To run the
commands in this exercise, you need to know the region where the commands will be run. For a list
of regions, see Model Building Quotas .

To create an alias (AWS CLI)

1. In the AWS CLI, get the version of the OrderFlowersBot bot that you created in Exercise 4:
Publish a Version (AWS CLI).

aws lex-models get-bot \
 --region region \
 --name OrderFlowersBot \
 --version-or-alias version > OrderFlowersBot_V5.json

2. In a text editor, open OrderFlowersBot_v5.json. Find and record the version number.

3. In the AWS CLI, create the bot alias:

aws lex-models put-bot-alias \
 --region region \
 --name PROD \
 --bot-name OrderFlowersBot \
 --bot-version version

The following is the reponse from the server:

{
 "name": "PROD",
 "createdDate": timestamp,
 "checksum": "checksum",
 "lastUpdatedDate": timestamp,
 "botName": "OrderFlowersBot",
 "botVersion": "1"
}}

Exercise 5: Create an Alias 192

Amazon Lex V1 Developer Guide

Next Step

Exercise 6: Clean Up (AWS CLI)

Exercise 6: Clean Up (AWS CLI)

Delete the resources that you created and clean up your account.

You can delete only resources that are not in use. In general, you should delete resources in the
following order.

1. Delete aliases to free up bot resources.

2. Delete bots to free up intent resources.

3. Delete intents to free up slot type resources.

4. Delete slot types.

To run the commands in this exercise, you need to know the region where the commands will be
run. For a list of regions, see Model Building Quotas .

To clean up your account (AWS CLI)

1. In the AWS CLI command line, delete the alias:

aws lex-models delete-bot-alias \
 --region region \
 --name PROD \
 --bot-name OrderFlowersBot

2. In the AWS CLI command line, delete the bot:

aws lex-models delete-bot \
 --region region \
 --name OrderFlowersBot

3. In the AWS CLI command line, delete the intent:

aws lex-models delete-intent \
 --region region \
 --name OrderFlowers

Exercise 6: Clean Up 193

Amazon Lex V1 Developer Guide

4. From the AWS CLI command line, delete the slot type:

aws lex-models delete-slot-type \
 --region region \
 --name FlowerTypes

You have removed all of the resources that you created and cleaned up your account.

Exercise 6: Clean Up 194

Amazon Lex V1 Developer Guide

Versioning and Aliases

Amazon Lex supports publishing versions of bots, intents, and slot types so that you can control
the implementation that your client applications use. A version is a numbered snapshot of your
work that you can publish for use in different parts of your workflow, such as development, beta
deployment, and production.

Amazon Lex bots also support aliases. An alias is a pointer to a specific version of a bot. With an
alias, you can easily update the version that your client applications are using. For example, you can
point an alias to version 1 of your bot. When you are ready to update the bot, you publish version 2
and change the alias to point to the new version. Because your applications use the alias instead of
a specific version, all of your clients get the new functionality without needing to be updated.

Topics

• Versioning

• Aliases

Versioning

When you version an Amazon Lex resource you create a snapshot of the resource so that you can
use the resource as it existed when the version was made. Once you've created a version it will stay
the same while you continue to work on your application.

The $LATEST Version

When you create an Amazon Lex bot, intent, or slot type there is only one version, the $LATEST
version.

$LATEST is the working copy of your resource. You can update only the $LATEST version and until
you publish your first version, $LATEST is the only version of the resource that you have.

Versioning 195

Amazon Lex V1 Developer Guide

Only the $LATEST version of a resource can use the $LATEST version of another resource.
For example, the $LATEST version of a bot can use the $LATEST version of an intent, and the
$LATEST version of an intent can use the $LATEST version of a slot type.

The $LATEST version of your bot should only be used for manual testing. Amazon Lex limits the
number of runtime requests that you can make to the $LATEST version of the bot.

Publishing an Amazon Lex Resource Version

When you publish a resource, Amazon Lex makes a copy of the $LATEST version and saves it as a
numbered version. The published version can't be changed.

You create and publish versions using the Amazon Lex console or the CreateBotVersion operation.
For an example, see Exercise 3: Publish a Version and Create an Alias.

When you modify the $LATEST version of a resource, you can publish the new version to make the
changes available to your client applications. Every time you publish a version, Amazon Lex copies
the $LATEST version to create the new version and increments the version number by 1. Version
numbers are never reused. For example, if you remove a resource numbered version 10 and then
recreate it, the next version number Amazon Lex assigns is version 11.

Before you can publish a bot, you must point it to a numbered version of any intent that it uses. If
you try to publish a new version of a bot that uses the $LATEST version of an intent, Amazon Lex
returns an HTTP 400 Bad Request exception. Before you can publish a numbered version of the
intent, you must point the intent to a numbered version of any slot type that it uses. Otherwise you
will get an HTTP 400 Bad Request exception.

Publishing an Amazon Lex Resource Version 196

Amazon Lex V1 Developer Guide

Note

Amazon Lex publishes a new version only if the last published version is different from the
$LATEST version. If you try to publish the $LATEST version without modifying it, Amazon
Lex doesn't create or publish a new version.

Updating an Amazon Lex Resource

You can update only the $LATEST version of an Amazon Lex bot, intent, or slot type. Published
versions can't be changed. You can publish a new version any time after you update a resource in
the console or with the CreateBotVersion, the CreateIntentVersion or the CreateSlotTypeVersion
operations.

Deleting an Amazon Lex Resource or Version

Amazon Lex supports deleting a resource or version using the console or one of the API operations:

• DeleteBot

• DeleteBotVersion

• DeleteBotAlias

• DeleteBotChannelAssociation

• DeleteIntent

• DeleteIntentVersion

• DeleteSlotType

• DeleteSlotTypeVersion

Updating an Amazon Lex Resource 197

Amazon Lex V1 Developer Guide

Aliases

An alias is a pointer to a specific version of an Amazon Lex bot. Use an alias to allow client
applications to use a specific version of the bot without requiring the application to track which
version that is.

The following example shows two versions of an Amazon Lex bot, version version 1 and version 2.
Each of these bot versions has an associated alias, BETA and PROD, respectively. Client applications
use the PROD alias to access the bot.

When you create a second version of the bot, you can update the alias to point to the new version
of the bot using the console or the PutBot operation. When you change the alias, all of your client
applications use the new version. If there is a problem with the new version, you can roll back to
the previous version by simply changing the alias to point to that version.

Aliases 198

Amazon Lex V1 Developer Guide

Note

Although you can test the $LATEST version of a bot in the console, we recommend that
when you integrate a bot with your client application, you first publish a version and
create an alias that points to that version. Use the alias in your client application for the
reasons explained in this section. When you update an alias, Amazon Lex will wait until the
session timeout of all current sessions expires before it starts using the new version. For
more information about the session timeout, see the section called “Setting the Session
Timeout”

Aliases 199

Amazon Lex V1 Developer Guide

Using Lambda Functions
You can create AWS Lambda functions to use as code hooks for your Amazon Lex bot. You can
identify Lambda functions to perform initialization and validation, fulfillment, or both in your
intent configuration.

We recommend that you use a Lambda function as a code hook for your bot. Without a Lambda
function, your bot returns the intent information to the client application for fulfillment.

Topics

• Lambda Function Input Event and Response Format

• Amazon Lex and AWS Lambda Blueprints

Lambda Function Input Event and Response Format

This section describes the structure of the event data that Amazon Lex provides to a Lambda
function. Use this information to parse the input in your Lambda code. It also explains the format
of the response that Amazon Lex expects your Lambda function to return.

Topics

• Input Event Format

• Response Format

Input Event Format

The following shows the general format of an Amazon Lex event that is passed to a Lambda
function. Use this information when you are writing your Lambda function.

Note

The input format may change without a corresponding change in the messageVersion.
Your code should not throw an error if new fields are present.

{
 "currentIntent": {

Lambda Function Input Event and Response Format 200

Amazon Lex V1 Developer Guide

 "name": "intent-name",
 "nluIntentConfidenceScore": score,
 "slots": {
 "slot name": "value",
 "slot name": "value"
 },
 "slotDetails": {
 "slot name": {
 "resolutions" : [
 { "value": "resolved value" },
 { "value": "resolved value" }
],
 "originalValue": "original text"
 },
 "slot name": {
 "resolutions" : [
 { "value": "resolved value" },
 { "value": "resolved value" }
],
 "originalValue": "original text"
 }
 },
 "confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if
 configured)"
 },
 "alternativeIntents": [
 {
 "name": "intent-name",
 "nluIntentConfidenceScore": score,
 "slots": {
 "slot name": "value",
 "slot name": "value"
 },
 "slotDetails": {
 "slot name": {
 "resolutions" : [
 { "value": "resolved value" },
 { "value": "resolved value" }
],
 "originalValue": "original text"
 },
 "slot name": {
 "resolutions" : [
 { "value": "resolved value" },

Input Event Format 201

Amazon Lex V1 Developer Guide

 { "value": "resolved value" }
],
 "originalValue": "original text"
 }
 },
 "confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if
 configured)"
 }
],
 "bot": {
 "name": "bot name",
 "alias": "bot alias",
 "version": "bot version"
 },
 "userId": "User ID specified in the POST request to Amazon Lex.",
 "inputTranscript": "Text used to process the request",
 "invocationSource": "FulfillmentCodeHook or DialogCodeHook",
 "outputDialogMode": "Text or Voice, based on ContentType request header in runtime
 API request",
 "messageVersion": "1.0",
 "sessionAttributes": {
 "key": "value",
 "key": "value"
 },
 "requestAttributes": {
 "key": "value",
 "key": "value"
 },
 "recentIntentSummaryView": [
 {
 "intentName": "Name",
 "checkpointLabel": Label,
 "slots": {
 "slot name": "value",
 "slot name": "value"
 },
 "confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if
 configured)",
 "dialogActionType": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or
 Close",
 "fulfillmentState": "Fulfilled or Failed",
 "slotToElicit": "Next slot to elicit"
 }
],

Input Event Format 202

Amazon Lex V1 Developer Guide

 "sentimentResponse": {
 "sentimentLabel": "sentiment",
 "sentimentScore": "score"
 },
 "kendraResponse": {
 Complete query response from Amazon Kendra
 },
 "activeContexts": [
 {
 "timeToLive": {
 "timeToLiveInSeconds": seconds,
 "turnsToLive": turns
 },
 "name": "name",
 "parameters": {
 "key name": "value"
 }
 }
]
}

Note the following additional information about the event fields:

• currentIntent – Provides the intent name, slots, slotDetails and confirmationStatus
fields.

nluIntentConfidenceScore is the confidence that Amazon Lex has that the current intent is
the one that best matches the user's current intent.

slots is a map of slot names, configured for the intent, to slot values that Amazon Lex has
recognized in the user conversation. A slot value remains null until the user provides a value.

The slot value in the input event may not match one of the values configured for the slot. For
example, if the user responds to the prompt "What color car would you like?" with "pizza,"
Amazon Lex will return "pizza" as the slot value. Your function should validate the values to
make sure that they make sense in context.

Input Event Format 203

Amazon Lex V1 Developer Guide

slotDetails provides additional information about a slot value. The resolutions array
contains a list of additional values recognized for the slot. Each slot can have a maximum of five
values.

The originalValue field contains the value that was entered by the user for the slot. When the
slot type is configured to return the top resolution value as the slot value, the originalValue
may be different from the value in the slots field.

confirmationStatus provides the user response to a confirmation prompt, if there is one. For
example, if Amazon Lex asks "Do you want to order a large cheese pizza?," depending on the user
response, the value of this field can be Confirmed or Denied. Otherwise, this value of this field
is None.

If the user confirms the intent, Amazon Lex sets this field to Confirmed. If the user denies the
intent, Amazon Lex sets this value to Denied.

In the confirmation response, a user utterance might provide slot updates. For example, the
user might say "yes, change size to medium." In this case, the subsequent Lambda event has the
updated slot value, PizzaSize set to medium. Amazon Lex sets the confirmationStatus to
None, because the user modified some slot data, requiring the Lambda function to perform user
data validation.

• alternativeIntents – If you enable confidence scores, Amazon Lex returns up to four alternative
intents. Each intent includes a score that indicates the level of confidence that Amazon Lex has
that the intent is the correct intent based on the user's utterance.

Input Event Format 204

Amazon Lex V1 Developer Guide

The contents of the alternative intents is the same as the contents of the currentIntent field.
For more information, see Using Confidence Scores.

• bot – Information about the bot that processed the request.

• name – The name of the bot that processed the request.

• alias – The alias of the bot version that processed the request.

• version – The version of the bot that processed the request.

• userId – This value is provided by the client application. Amazon Lex passes it to the Lambda
function.

• inputTranscript – The text used to process the request.

If the input was text, the inputTranscript field contains the text that was input by the user.

If the input was an audio stream, the inputTranscript field contains the text extracted from
the audio stream. This is the text that is actually processed to recognize intents and slot values.

• invocationSource – To indicate why Amazon Lex is invoking the Lambda function, it sets this to
one of the following values:

• DialogCodeHook – Amazon Lex sets this value to direct the Lambda function to initialize the
function and to validate the user's data input.

When the intent is configured to invoke a Lambda function as an initialization and validation
code hook, Amazon Lex invokes the specified Lambda function on each user input (utterance)
after Amazon Lex understands the intent.

Input Event Format 205

Amazon Lex V1 Developer Guide

Note

If the intent is not clear, Amazon Lex can't invoke the Lambda function.

• FulfillmentCodeHook – Amazon Lex sets this value to direct the Lambda function to fulfill
an intent.

If the intent is configured to invoke a Lambda function as a fulfillment code hook, Amazon Lex
sets the invocationSource to this value only after it has all the slot data to fulfill the intent.

In your intent configuration, you can have two separate Lambda functions to initialize and
validate user data and to fulfill the intent. You can also use one Lambda function to do both. In
that case, your Lambda function can use the invocationSource value to follow the correct
code path.

• outputDialogMode – For each user input, the client sends the request to Amazon Lex using
one of the runtime API operations, PostContent or PostText. Amazon Lex uses the request
parameters to determine whether the response to the client is text or voice, and sets this field
accordingly.

The Lambda function can use this information to generate an appropriate message. For example,
if the client expects a voice response, your Lambda function could return Speech Synthesis
Markup Language (SSML) instead of text.

• messageVersion – The version of the message that identifies the format of the event data going
into the Lambda function and the expected format of the response from a Lambda function.

Input Event Format 206

Amazon Lex V1 Developer Guide

Note

You configure this value when you define an intent. In the current implementation, only
message version 1.0 is supported. Therefore, the console assumes the default value of
1.0 and doesn't show the message version.

• sessionAttributes – Application-specific session attributes that the client sends in the request.
If you want Amazon Lex to include them in the response to the client, your Lambda function
should send these back to Amazon Lex in the response. For more information, see Setting
Session Attributes

• requestAttributes – Request-specific attributes that the client sends in the request. Use request
attributes to pass information that doesn't need to persist for the entire session. If there are no
request attributes, the value will be null. For more information, see Setting Request Attributes

• recentIntentSummaryView – Information about the state of an intent. You can see information
about the last three intents used. You can use this information to set values in the intent or to
return to a previous intent. For more information, see Managing Sessions With the Amazon Lex
API.

• sentimentResponse – The result of an Amazon Comprehend sentiment analysis of the last
utterance. You can use this information to manage the conversation flow of your bot depending
on the sentiment expressed by the user. For more information, see Sentiment Analysis.

• kendraResponse – The result of a query to an Amazon Kendra index. Only present in the input to
a fulfillment code hook and only when the intent extends the AMAZON.KendraSearchIntent
built-in intent. The field contains the entire response from the Amazon Kendra search. For more
information, see AMAZON.KendraSearchIntent.

• activeContexts – One or more contexts that are active during this turn of a conversation with the
user.

Input Event Format 207

Amazon Lex V1 Developer Guide

• timeToLive – The length of time or number of turns in the conversation with the user that the
context remains active.

• name – the name of the context.

• parameters a list of key/value pairs the contains the name and value of the slots from the
intent that activated the context.

For more information, see Setting Intent Context.

Response Format

Amazon Lex expects a response from a Lambda function in the following format:

{
 "sessionAttributes": {
 "key1": "value1",
 "key2": "value2"
 ...
 },
 "recentIntentSummaryView": [
 {
 "intentName": "Name",
 "checkpointLabel": "Label",
 "slots": {
 "slot name": "value",
 "slot name": "value"
 },
 "confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if
 configured)",
 "dialogActionType": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or
 Close",
 "fulfillmentState": "Fulfilled or Failed",
 "slotToElicit": "Next slot to elicit"
 }
],
 "activeContexts": [
 {
 "timeToLive": {
 "timeToLiveInSeconds": seconds,
 "turnsToLive": turns
 },
 "name": "name",

Response Format 208

Amazon Lex V1 Developer Guide

 "parameters": {
 "key name": "value"
 }
 }
],
 "dialogAction": {
 "type": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or Close",
 Full structure based on the type field. See below for details.
 }
}

The response consists of four fields. The sessionAttributes, recentIntentSummaryView,
and activeContexts fields are optional, the dialogAction field is required. The contents of the
dialogAction field depends on the value of the type field. For details, see dialogAction.

sessionAttributes

Optional. If you include the sessionAttributes field it can be empty. If your Lambda function
doesn't return session attributes, the last known sessionAttributes passed via the API or
Lambda function remain. For more information, see the PostContent and PostText operations.

 "sessionAttributes": {
 "key1": "value1",
 "key2": "value2"
 }

recentIntentSummaryView

Optional. If included, sets values for one or more recent intents. You can include information for
up to three intents. For example, you can set values for previous intents based on information
gathered by the current intent. The information in the summary must be valid for the intent. For
example, the intent name must be an intent in the bot. If you include a slot value in the summary
view, the slot must exist in the intent. If you don't include the recentIntentSummaryView in
your response, all of the values for the recent intents remain unchanged. For more information, see
the PutSession operation or the IntentSummary data type.

"recentIntentSummaryView": [
 {
 "intentName": "Name",
 "checkpointLabel": "Label",
 "slots": {

Response Format 209

Amazon Lex V1 Developer Guide

 "slot name": "value",
 "slot name": "value"
 },
 "confirmationStatus": "None, Confirmed, or Denied (intent confirmation, if
 configured)",
 "dialogActionType": "ElicitIntent, ElicitSlot, ConfirmIntent, Delegate, or
 Close",
 "fulfillmentState": "Fulfilled or Failed",
 "slotToElicit": "Next slot to elicit"
 }
]

activeContexts

Optional. If included, sets the value for one or more contexts. For example, you can include a
context to make one or more intents that have that context as an input eligible for recognition in
the next turn of the conversation.

Any active contexts that are not included in the response have their time-to-live values
decremented and may still be active on the next request.

If you specify a time-to-live of 0 for a context that was included in the input event, it will be
inactive on the next request.

For more information, see Setting Intent Context.

dialogAction

Required. The dialogAction field directs Amazon Lex to the next course of action, and describes
what to expect from the user after Amazon Lex returns a response to the client.

The type field indicates the next course of action. It also determines the other fields that the
Lambda function needs to provide as part of the dialogAction value.

• Close — Informs Amazon Lex not to expect a response from the user. For example, "Your pizza
order has been placed" does not require a response.

The fulfillmentState field is required. Amazon Lex uses this value to set the dialogState
field in the PostContent or PostText response to the client application. The message and

Response Format 210

Amazon Lex V1 Developer Guide

responseCard fields are optional. If you don't specify a message, Amazon Lex uses the goodbye
message or the follow-up message configured for the intent.

"dialogAction": {
 "type": "Close",
 "fulfillmentState": "Fulfilled or Failed",
 "message": {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "Message to convey to the user. For example, Thanks, your pizza has
 been ordered."
 },
 "responseCard": {
 "version": integer-value,
 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {
 "title":"card-title",
 "subTitle":"card-sub-title",
 "imageUrl":"URL of the image to be shown",
 "attachmentLinkUrl":"URL of the attachment to be associated with the
 card",
 "buttons":[
 {
 "text":"button-text",
 "value":"Value sent to server on button click"
 }
]
 }
]
 }
 }

• ConfirmIntent — Informs Amazon Lex that the user is expected to give a yes or no answer to
confirm or deny the current intent.

You must include the intentName and slots fields. The slots field must contain an entry
for each of the filled slots for the specified intent. You don't need to include a entry in the
slots field for slots that aren't filled. You must include the message field if the intent's
confirmationPrompt field is null. The contents of the message field returned by the

Response Format 211

Amazon Lex V1 Developer Guide

Lambda function take precedence over the confirmationPrompt specified in the intent. The
responseCard field is optional.

"dialogAction": {
 "type": "ConfirmIntent",
 "message": {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "Message to convey to the user. For example, Are you sure you want a
 large pizza?"
 },
 "intentName": "intent-name",
 "slots": {
 "slot-name": "value",
 "slot-name": "value",
 "slot-name": "value"
 },
 "responseCard": {
 "version": integer-value,
 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {
 "title":"card-title",
 "subTitle":"card-sub-title",
 "imageUrl":"URL of the image to be shown",
 "attachmentLinkUrl":"URL of the attachment to be associated with the
 card",
 "buttons":[
 {
 "text":"button-text",
 "value":"Value sent to server on button click"
 }
]
 }
]
 }
 }

• Delegate — Directs Amazon Lex to choose the next course of action based on the bot
configuration. If the response does not include any session attributes Amazon Lex retains the
existing attributes. If you want a slot value to be null, you don't need to include the slot field

Response Format 212

Amazon Lex V1 Developer Guide

in the request. You will get a DependencyFailedException exception if your fulfillment
function returns the Delegate dialog action without removing any slots.

The kendraQueryRequestPayload and kendraQueryFilterString fields are optional and
only used when the intent is derived from the AMAZON.KendraSearchIntent built-in intent.
for more information, see AMAZON.KendraSearchIntent.

 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "slot-name": "value",
 "slot-name": "value",
 "slot-name": "value"
 },
 "kendraQueryRequestPayload": "Amazon Kendra query",
 "kendraQueryFilterString": "Amazon Kendra attribute filters"
 }

• ElicitIntent — Informs Amazon Lex that the user is expected to respond with an
utterance that includes an intent. For example, "I want a large pizza," which indicates the
OrderPizzaIntent. The utterance "large," on the other hand, is not sufficient for Amazon Lex
to infer the user's intent.

The message and responseCard fields are optional. If you don't provide a message, Amazon
Lex uses one of the bot's clarification prompts. If there is no clarification prompt defined,
Amazon Lex returns a 400 Bad Request exception.

{
 "dialogAction": {
 "type": "ElicitIntent",
 "message": {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "Message to convey to the user. For example, What can I help you
 with?"
 },
 "responseCard": {
 "version": integer-value,
 "contentType": "application/vnd.amazonaws.card.generic",
 "genericAttachments": [
 {

Response Format 213

Amazon Lex V1 Developer Guide

 "title":"card-title",
 "subTitle":"card-sub-title",
 "imageUrl":"URL of the image to be shown",
 "attachmentLinkUrl":"URL of the attachment to be associated with the
 card",
 "buttons":[
 {
 "text":"button-text",
 "value":"Value sent to server on button click"
 }
]
 }
]
 }
 }

• ElicitSlot — Informs Amazon Lex that the user is expected to provide a slot value in the
response.

The intentName, slotToElicit, and slots fields are required. The message and
responseCard fields are optional. If you don't specify a message, Amazon Lex uses one of the
slot elicitation prompts configured for the slot.

 "dialogAction": {
 "type": "ElicitSlot",
 "message": {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "Message to convey to the user. For example, What size pizza would
 you like?"
 },
 "intentName": "intent-name",
 "slots": {
 "slot-name": "value",
 "slot-name": "value",
 "slot-name": "value"
 },
 "slotToElicit" : "slot-name",
 "responseCard": {
 "version": integer-value,
 "contentType": "application/vnd.amazonaws.card.generic",

Response Format 214

Amazon Lex V1 Developer Guide

 "genericAttachments": [
 {
 "title":"card-title",
 "subTitle":"card-sub-title",
 "imageUrl":"URL of the image to be shown",
 "attachmentLinkUrl":"URL of the attachment to be associated with the
 card",
 "buttons":[
 {
 "text":"button-text",
 "value":"Value sent to server on button click"
 }
]
 }
]
 }
 }

Amazon Lex and AWS Lambda Blueprints

The Amazon Lex console provides example bots (called bot blueprints) that are preconfigured
so you can quickly create and test a bot in the console. For each of these bot blueprints, Lambda
function blueprints are also provided. These blueprints provide sample code that works with their
corresponding bots. You can use these blueprints to quickly create a bot that is configured with a
Lambda function as a code hook, and test the end-to-end setup without having to write code.

You can use the following Amazon Lex bot blueprints and the corresponding AWS Lambda function
blueprints as code hooks for bots:

• Amazon Lex blueprint — OrderFlowers

• AWS Lambda blueprint — lex-order-flowers-python

• Amazon Lex blueprint — ScheduleAppointment

• AWS Lambda blueprint — lex-make-appointment-python

• Amazon Lex blueprint — BookTrip

• AWS Lambda blueprint — lex-book-trip-python

Amazon Lex and AWS Lambda Blueprints 215

Amazon Lex V1 Developer Guide

To create a bot using a blueprint and configure it to use a Lambda function as a code hook, see
Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console). For an example of using other
blueprints, see Additional Examples: Creating Amazon Lex Bots.

Updating a Blueprint for a Specific Locale

If you are using a blueprint in a locale other than English (US) (en-US), you need to update the
name of any intents to include the locale. For example, if you are using the OrderFlowers
blueprint, you need to do the following.

• Find the dispatch function near the end of the Lambda function code.

• In the dispatch function, update the name of the intent to include the locale that you are
using. For example, if you are using the English (Australian) (en-AU) locale, change the line:

if intent_name == 'OrderFlowers':

to

if intent_name == 'OrderFlowers_enAU':

Other blueprints use other intent names, they should be updated as above before you use them.

Updating a Blueprint for a Specific Locale 216

Amazon Lex V1 Developer Guide

Deploying Amazon Lex Bots

This section provides examples of deploying Amazon Lex bots on various messaging platforms and
in mobile applications.

Topics

• Deploying an Amazon Lex Bot on a Messaging Platform

• Deploying an Amazon Lex Bot in Mobile Applications

Deploying an Amazon Lex Bot on a Messaging Platform

This section explains how to deploy Amazon Lex bots on the Facebook, Slack, and Twilio messaging
platforms.

Note

When storing your Facebook, Slack, or Twilio configurations, Amazon Lex uses AWS Key
Management Service customer managed keys to encrypt the information. The first time
that you create a channel to one of these messaging platforms, Amazon Lex creates a
default customer managed key (aws/lex). Alternatively, you can create your own customer
managed key with AWS KMS. This gives you more flexibility, including the ability to create,
rotate, and disable keys. You can also define access controls and audit the encryption keys
used to protect your data. For more information, see the AWS Key Management Service
Developer Guide.

When a messaging platform sends a request to Amazon Lex it includes platform-specific
information as a request attribute to your Lambda function. Use these attributes to customize the
way that your bot behaves. For more information, see Setting Request Attributes.

All of the attributes take the namespace, x-amz-lex:, as the prefix . For example, the user-
id attribute is called x-amz-lex:user-id. There are common attributes that are sent by all
messaging platforms in addition to attributes that are specific to a particular platform. The
following tables list the request attributes that messaging platforms send to your bot's Lambda
function.

Deploying an Amazon Lex Bot on a Messaging Platform 217

http://docs.aws.amazon.com/kms/latest/developerguide/
http://docs.aws.amazon.com/kms/latest/developerguide/

Amazon Lex V1 Developer Guide

Common Request Attributes

Attribute Description

channel-id The channel endpoint identifier from Amazon Lex.

channel-name The channel name from Amazon Lex.

channel-type One of the following values:

• Facebook

• Kik

• Slack

• Twilio-SMS

webhook-endpoint-u
rl

The Amazon Lex endpoint for the channel.

Facebook Request Attributes

Attribute Description

user-id The Facebook identifier of the sender. See https://developer
s.facebook.com/docs/messenger-platform/webhook-reference/me
ssage-received.

facebook-page-id The Facebook page identifier of the recipient. See https://developer
s.facebook.com/docs/messenger-platform/webhook-reference/me
ssage-received.

Kik Request Attributes

Attribute Description

kik-chat-id The identifier for the conversation that your bot is involved in.
For more information, see https://dev.kik.com/#/docs/messa
ging#message-formats.

Deploying an Amazon Lex Bot on a Messaging Platform 218

https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://developers.facebook.com/docs/messenger-platform/webhook-reference/message-received
https://dev.kik.com/%23/docs/messaging%23message-formats
https://dev.kik.com/%23/docs/messaging%23message-formats

Amazon Lex V1 Developer Guide

Attribute Description

kik-chat-type The type of conversation that the message originated from.
For more information, see https://dev.kik.com/#/docs/messa
ging#message-formats.

kik-message-id A UUID the identifies the message. For more information, see
https://dev.kik.com/#/docs/messaging#message-formats.

kik-message-type The type of message. For more information, see https://dev.kik.c
om/#/docs/messaging#message-types.

Twilio Request Attributes

Attribute Description

user-id The sender's phone number ("From"). See https://www.twilio.com/
docs/api/rest/message.

twilio-target-phon
e-number

The phone number of the recipient ("To"). See https://www.twili
o.com/docs/api/rest/message.

Slack Request Attributes

Attribute Description

user-id The Slack user identifier. See https://api.slack.com/types/user.

slack-team-id The identifier of the team that sent the message. See https://
api.slack.com/methods/team.info.

slack-bot-token The developer token that gives the bot access to the Slack APIs. See
https://api.slack.com/docs/token-types.

Deploying an Amazon Lex Bot on a Messaging Platform 219

https://dev.kik.com/%23/docs/messaging%23message-formats
https://dev.kik.com/%23/docs/messaging%23message-formats
https://dev.kik.com/%23/docs/messaging%23message-formats
https://dev.kik.com/%23/docs/messaging%23message-types
https://dev.kik.com/%23/docs/messaging%23message-types
https://www.twilio.com/docs/api/rest/message
https://www.twilio.com/docs/api/rest/message
https://www.twilio.com/docs/api/rest/message
https://www.twilio.com/docs/api/rest/message
https://api.slack.com/types/user
https://api.slack.com/methods/team.info
https://api.slack.com/methods/team.info
https://api.slack.com/docs/token-types

Amazon Lex V1 Developer Guide

Integrating an Amazon Lex Bot with Facebook Messenger

This exercise shows how to integrate Facebook Messenger with your Amazon Lex bot. You perform
the following steps:

1. Create an Amazon Lex bot

2. Create a Facebook application

3. Integrate Facebook Messenger with your Amazon Lex bot

4. Validate the integration

Topics

• Step 1: Create an Amazon Lex Bot

• Step 2: Create a Facebook Application

• Step 3: Integrate Facebook Messenger with the Amazon Lex Bot

• Step 4: Test the Integration

Step 1: Create an Amazon Lex Bot

If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of
the example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an
Amazon Lex Bot Using a Blueprint (Console).

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and
Create an Alias.

Step 2: Create a Facebook Application

On the Facebook developer portal, create a Facebook application and a Facebook page. For
instructions, see Quick Start in the Facebook Messenger platform documentation. Write down the
following:

• The App Secret for the Facebook App

Integrating with Facebook 220

https://developers.facebook.com/docs/messenger-platform/guides/quick-start

Amazon Lex V1 Developer Guide

• The Page Access Token for the Facebook page

Step 3: Integrate Facebook Messenger with the Amazon Lex Bot

In this section, you integrate Facebook Messenger with your Amazon Lex bot.

After you complete this step, the console provides a callback URL. Write down this URL.

To integrate Facebook Messenger with your bot

1. a. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

b. Choose your Amazon Lex bot.

c. Choose Channels.

d. Choose Facebook under Chatbots. The console displays the Facebook integration page.

e. On the Facebook integration page, do the following:

• Type the following name: BotFacebookAssociation.

• For KMS key, choose aws/lex .

• For Alias, choose the bot alias.

• For Verify token, type a token. This can be any string you choose (for example,
ExampleToken). You use this token later in the Facebook developer portal when you
set up the webhook.

• For Page access token, type the token that you obtained from Facebook in Step 2.

• For App secret key, type the key that you obtained from Facebook in Step 2.

Integrating with Facebook 221

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

f. Choose Activate.

The console creates the bot channel association and returns a callback URL. Write down
this URL.

2. On the Facebook developer portal, choose your app.

3. Choose the Messenger product, and choose Setup webhooks in the Webhooks section of the
page.

For instructions, see Quick Start in the Facebook Messenger platform documentation.

4. On the webhook page of the subscription wizard, do the following:

• For Callback URL, type the callback URL provided in the Amazon Lex console earlier in the
procedure.

• For Verify Token, type the same token that you used in Amazon Lex.

• Choose Subscription Fields (messages, messaging_postbacks, and messaging_optins).

• Choose Verify and Save. This initiates a handshake between Facebook and Amazon Lex.

5. Enable Webhooks integration. Choose the page that you created, and then choose subscribe.

Integrating with Facebook 222

https://developers.facebook.com/docs/messenger-platform/guides/quick-start

Amazon Lex V1 Developer Guide

Note

If you update or recreate a webhook, unsubscribe and then resubscribe to the page.

Step 4: Test the Integration

You can now start a conversation from Facebook Messenger with your Amazon Lex bot.

1. Open your Facebook page, and choose Message.

2. In the Messenger window, use the same test utterances provided in Step 1: Create an Amazon
Lex Bot (Console).

Integrating an Amazon Lex Bot with Kik

This exercise provides instructions for integrating an Amazon Lex bot with the Kik messaging
application. You perform the following steps:

1. Create an Amazon Lex bot.

2. Create a Kik bot using the Kik app and website.

3. Integrate the your Amazon Lex bot with the Kik bot using the Amazon Lex console.

4. Engage in a conversation with your Amazon Lex bot using Kik to test the association between
your Amazon Lex bot and Kik.

Topics

• Step 1: Create an Amazon Lex Bot

• Step 2: Create a Kik Bot

• Step 3: Integrate the Kik Bot with the Amazon Lex Bot

• Step 4: Test the Integration

Step 1: Create an Amazon Lex Bot

If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of

Integrating with Kik 223

Amazon Lex V1 Developer Guide

the example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an
Amazon Lex Bot Using a Blueprint (Console)

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and
Create an Alias.

Next Step

Step 2: Create a Kik Bot

Step 2: Create a Kik Bot

In this step you use the Kik user interface to create a Kik bot. You use information generated while
creating the bot to connect it to your Amazon Lex bot.

1. If you haven't already, download and install the Kik app and sign up for a Kik account. If you
have an account, log in.

2. Open the Kik website at https://dev.kik.com/. Leave the browser window open.

3. In the Kik app, choose the gear icon to open settings, and then choose Your Kik Code.

4. Scan the Kik code on the Kik website to open the Botsworth chatbot. Choose Yes to open the
Bot Dashboard.

5. In the Kik app, choose Create a Bot. Follow the prompts to create your Kik bot.

6. Once the bot is created, choose Configuration in your browser. Make sure that your new bot is
selected.

7. Note the bot name and the API key for the next section.

Next Step

Step 3: Integrate the Kik Bot with the Amazon Lex Bot

Step 3: Integrate the Kik Bot with the Amazon Lex Bot

Now that you have created an Amazon Lex bot and a Kik bot, you are ready to create an channel
association between them in Amazon Lex. When the association is activated, Amazon Lex
automatically sets up a callback URL with Kik.

Integrating with Kik 224

https://dev.kik.com

Amazon Lex V1 Developer Guide

1. Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the Amazon Lex bot that you created in Step 1.

3. Choose the Channels tab.

4. In the Channels section, choose Kik.

5. On the Kik page, provide the following:

• Type a name. For example, BotKikIntegration.

• Type a description.

• Choose "aws/lex" from the KMS key drop-down.

• For Alias, choose an alias from the drop-down.

• For Kik bot user name, type the name that you gave the bot on Kik.

• For Kik API key, type the API key that was assigned to the bot on Kik.

• For User greeting, type the greeting that you would like your bot to send the first time that
a user chats with it.

• For Error message, enter an error message that is shown to the user when part of the
conversation is not understood.

• For Group chat behavior, choose one of the options:

• Enable – Enables the entire chat group to interact with your bot in a single conversation.

• Disable – Restricts the conversation to one user in the chat group.

• Choose Activate to create the association and link it to the Kik bot.

Integrating with Kik 225

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

Next Step

Step 4: Test the Integration

Step 4: Test the Integration

Now that you have created an association between your Amazon Lex bot and Kik, you can use the
Kik app to test the association.

Integrating with Kik 226

Amazon Lex V1 Developer Guide

1. Start the Kik app and log in. Select the bot that you created.

2. You can test the bot with the following:

As you enter each phrase, your Amazon Lex bot will respond through Kik with the prompt that
you created for each slot.

Integrating an Amazon Lex Bot with Slack

This exercise provides instructions for integrating an Amazon Lex bot with the Slack messaging
application. You perform the following steps:

1. Create an Amazon Lex bot.

2. Create a Slack messaging application.

3. Integrate the Slack application with your bot Amazon Lex.

Integrating with Slack 227

Amazon Lex V1 Developer Guide

4. Test the integration by engaging in conversation with your Amazon Lex bot. You send messages
with the Slack application and test in a browser window.

Topics

• Step 1: Create an Amazon Lex Bot

• Step 2: Sign Up for Slack and Create a Slack Team

• Step 3: Create a Slack Application

• Step 4: Integrate the Slack Application with the Amazon Lex Bot

• Step 5: Complete Slack Integration

• Step 6: Test the Integration

Step 1: Create an Amazon Lex Bot

If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of
the example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an
Amazon Lex Bot Using a Blueprint (Console)

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and
Create an Alias.

Next Step

Step 2: Sign Up for Slack and Create a Slack Team

Step 2: Sign Up for Slack and Create a Slack Team

Sign up for a Slack account and create a Slack team. For instructions, see Using Slack. In the next
section, you create a Slack application, which any Slack team can install.

Next Step

Step 3: Create a Slack Application

Integrating with Slack 228

https://get.slack.help/hc/en-us/articles/212675257-Creating-a-Slack-account

Amazon Lex V1 Developer Guide

Step 3: Create a Slack Application

In this section, you do the following:

1. Create a Slack application on the Slack API Console

2. Configure the application to add interactive messaging to your bot:

At the end of this section, you get application credentials (Client Id, Client Secret, and Verification
Token). In the next section, you use this information to configure bot channel association in the
Amazon Lex console.

1. Sign in to the Slack API Console at http://api.slack.com .

2. Create an application.

After you have successfully created the application, Slack displays the Basic Information page
for the application.

3. Configure the application features as follows:

• In the left menu, choose Interactivity & Shortcuts.

• Choose the toggle to turn interactive components on.

• In the Request URL box, specify any valid URL. For example, you can use https://
slack.com.

Note

For now, enter any valid URL to get the verification token that you need in the
next step. You will update this URL after you add the bot channel association in
the Amazon Lex console.

• Choose Save Changes.

4. In the left menu, in Settings, choose Basic Information. Record the following application
credentials:

• Client ID

• Client Secret

• Verification Token

Integrating with Slack 229

http://api.slack.com

Amazon Lex V1 Developer Guide

Next Step

Step 4: Integrate the Slack Application with the Amazon Lex Bot

Step 4: Integrate the Slack Application with the Amazon Lex Bot

Now that you have Slack application credentials, you can integrate the application with your
Amazon Lex bot. To associate the Slack application with your bot, add a bot channel association in
Amazon Lex.

In the Amazon Lex console, activate a bot channel association to associate the bot with your
Slack application. When the bot channel association is activated, Amazon Lex returns two URLs
(Postback URL and OAuth URL). Record these URLs because you need them later.

To integrate the Slack application with your Amazon Lex bot

1. Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the Amazon Lex bot that you created in Step 1.

3. Choose the Channels tab.

4. In the left menu, choose Slack.

5. On the Slack page, provide the following:

• Type a name. For example, BotSlackIntegration.

• Choose "aws/lex" from the KMS key drop-down.

• For Alias, choose the bot alias.

• Type the Client Id, Client secret, and Verification Token, which you recorded in the
preceding step. These are the credentials of the Slack application.

Integrating with Slack 230

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

6. Choose Activate.

The console creates the bot channel association and returns two URLs (Postback URL and
OAuth URL). Record them. In the next section, you update your Slack application configuration
to use these endpoints as follows:

• The Postback URL is the Amazon Lex bot's endpoint that listens to Slack events. You use this
URL:

• As the request URL in the Event Subscriptions feature of the Slack application.

• To replace the placeholder value for the request URL in the Interactive Messages feature
of the Slack application.

Integrating with Slack 231

Amazon Lex V1 Developer Guide

• The OAuth URL is your Amazon Lex bot's endpoint for an OAuth handshake with Slack.

Next Step

Step 5: Complete Slack Integration

Step 5: Complete Slack Integration

In this section, use the Slack API console to complete integration of the Slack application.

1. Sign in to the Slack API console at http://api.slack.com. Choose the app that you created in
Step 3: Create a Slack Application.

2. Update the OAuth & Permissions feature as follows:

a. In the left menu, choose OAuth & Permissions.

b. In the Redirect URLs section, add the OAuth URL that Amazon Lex provided in the
preceding step. Choose Add a new Redirect URL, and then choose Save URLs.

c. In the Bot Token Scopes section, add two permissions with the Add an OAuth Scope
button. Filter the list with the following text:

• chat:write

• team:read

3. Update the Interactivity & Shortcuts feature by updating the Request URL value to the
Postback URL that Amazon Lex provided in the preceding step. Enter the postback URL that
you saved in step 4, and then choose Save Changes.

4. Subscribe to the Event Subscriptions feature as follows:

• Enable events by choosing the On option.

• Set the Request URL value to the Postback URL that Amazon Lex provided in the preceding
step.

• In the Subscribe to Bot Events section, subscribe to the message.im bot event to enable
direct messaging between the end user and the Slack bot.

• Save the changes.

5. Enable sending messages from the messages tab as follows:

• From the left menu, choose App Home.

Integrating with Slack 232

http://api.slack.com

Amazon Lex V1 Developer Guide

• In the Show Tabs section, choose Allow users to send Slash commands and messages from
the messages tab.

Next Step

Step 6: Test the Integration

Step 6: Test the Integration

Now use a browser window to test the integration of Slack with your Amazon Lex bot.

1. Choose Manage Distribution under Settings. Choose Add to Slack to install the application.
Authorize the bot to respond to messages.

2. You are redirected to your Slack team. In the left menu, in the Direct Messages section, choose
your bot. If you don't see your bot, choose the plus icon (+) next to Direct Messages to search
for it.

3. Engage in a chat with your Slack application, which is linked to the Amazon Lex bot. Your bot
now responds to messages.

If you created the bot using Getting Started Exercise 1, you can use the example conversations
provided in that exercise. For more information, see Step 4: Add the Lambda Function as Code
Hook (Console).

Integrating an Amazon Lex Bot with Twilio Programmable SMS

This exercise provides instructions for integrating an Amazon Lex bot with the Twilio simple
messaging service (SMS). You perform the following steps:

1. Create an Amazon Lex bot

2. Integrate Twilio programmable SMS with your bot Amazon Lex

3. Engage in an interaction with the Amazon Lex bot by testing the setup using the SMS service on
your mobile phone

4. Test the integration

Topics

• Step 1: Create an Amazon Lex Bot

Integrating with Twilio SMS 233

Amazon Lex V1 Developer Guide

• Step 2: Create a Twilio SMS Account

• Step 3: Integrate the Twilio Messaging Service Endpoint with the Amazon Lex Bot

• Step 4: Test the Integration

Step 1: Create an Amazon Lex Bot

If you don't already have an Amazon Lex bot, create and deploy one. In this topic, we assume that
you are using the bot that you created in Getting Started Exercise 1. However, you can use any of
the example bots provided in this guide. For Getting Started Exercise 1, see Exercise 1: Create an
Amazon Lex Bot Using a Blueprint (Console).

1. Create an Amazon Lex bot. For instructions, see Exercise 1: Create an Amazon Lex Bot Using a
Blueprint (Console).

2. Deploy the bot and create an alias. For instructions, see Exercise 3: Publish a Version and
Create an Alias.

Step 2: Create a Twilio SMS Account

Sign up for a Twilio account and record the following account information:

• ACCOUNT SID

• AUTH TOKEN

For sign-up instructions, see https://www.twilio.com/console.

Step 3: Integrate the Twilio Messaging Service Endpoint with the Amazon Lex Bot

To integrate Twilio with your Amazon Lex bot

1. To associate the Amazon Lex bot with your Twilio programmable SMS endpoint, activate bot
channel association in the Amazon Lex console. When the bot channel association has been
activated, Amazon Lex returns a callback URL. Record this callback URL because you need it
later.

a. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

b. Choose the Amazon Lex bot that you created in Step 1.

Integrating with Twilio SMS 234

https://www.twilio.com/console
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

c. Choose the Channels tab.

d. In the Chatbots section, choose Twilio SMS.

e. On the Twilio SMS page, provide the following information:

• Type a name. For example, BotTwilioAssociation.

• Choose "aws/lex" from KMS key.

• For Alias, choose the bot alias.

• For Authentication Token, type the AUTH TOKEN for your Twilio account.

• For Account SID, type the ACCOUNT SID for your Twilio account.

f. Choose Activate.

The console creates the bot channel association and returns a callback URL. Record this
URL.

2. On the Twilio console, connect the Twilio SMS endpoint to the Amazon Lex bot.

a. Sign in to the Twilio console at https://www.twilio.com/console.

Integrating with Twilio SMS 235

https://www.twilio.com/console

Amazon Lex V1 Developer Guide

b. If you don't have a Twilio SMS endpoint, create it.

c. Update the Inbound Settings configuration of the messaging service by setting the
REQUEST URL value to the callback URL that Amazon Lex provided in the preceding step.

Step 4: Test the Integration

Use your mobile phone to test the integration between Twilio SMS and your bot.

To test integration

1. Sign in to the Twilio console at https://www.twilio.com/console and do the following:

a. Verify that you have a Twilio number associated with the messaging service under Manage
Numbers.

You send messages to this number and engage in SMS interaction with the Amazon Lex
bot from your mobile phone.

b. Verify that your mobile phone is listed as Verified Caller ID.

If it isn't, follow instructions on the Twilio console to enable the mobile phone that you
plan to use for testing.

Now you can use your mobile phone to send messages to the Twilio SMS endpoint, which
is mapped to the Amazon Lex bot.

2. Using your mobile phone, send messages to the Twilio number.

The Amazon Lex bot responds. If you created the bot using Getting Started Exercise 1, you can
use the example conversations provided in that exercise. For more information, see Step 4: Add
the Lambda Function as Code Hook (Console).

Deploying an Amazon Lex Bot in Mobile Applications

Using AWS Amplify, you can integrate your Amazon Lex bots with mobile or web applications. For
more information, see Interactions – Getting started in the AWS Amplify Docs.

Deploying an Amazon Lex Bot in Mobile Applications 236

https://www.twilio.com/console
https://docs.amplify.aws/lib/interactions/getting-started/q/platform/js

Amazon Lex V1 Developer Guide

Importing and Exporting Amazon Lex Bots, Intents, and
Slot Types

You can import or export a bot, intent, or slot type. For example, if you want to share a bot with
a colleague in a different AWS account, you can export it, then send it to her. If you want to add
multiple utterances to a bot, you can export it, add the utterances, then import it back into your
account.

You can export bots, intents, and slot types in either Amazon Lex (to share or modify them) or an
Alexa skill format. You can import only in Amazon Lex format.

When you export a resource, you have to export it in a format that is compatible with the service
that you are exporting to, Amazon Lex or the Alexa Skills Kit. If you export a bot in Amazon Lex
format, you can reimport it into your account, or an Amazon Lex user in another account can
import it into his account. You can also export a bot in a format compatible with an Alexa skill.
Then you can import the bot using the Alexa Skills Kit to make your bot available with Alexa. For
more information, see Exporting to an Alexa Skill.

When you export a bot, intent or slot type, its resources are written to a JSON file. To export a bot,
intent, or slot type, you can use either the Amazon Lex console or the GetExport operation. Import
a bot, intent or slot type using the StartImport.

Topics

• Exporting and Importing in Amazon Lex Format

• Exporting to an Alexa Skill

Exporting and Importing in Amazon Lex Format

To export bots, intents, and slot types, from Amazon Lex with the intention of reimporting into
Amazon Lex, you use create a JSON file in Amazon Lex format. You can edit your resources in this
file and import it back into Amazon Lex. For example, you can add utterances to an intent and then
import the changed intent back into your account. You can also use the JSON format to share a
resource. For example, you can export a bot from one AWS Region and then import it into another
Region. Or you can send the JSON file to a colleague to share a bot.

Exporting and Importing in Amazon Lex Format 237

Amazon Lex V1 Developer Guide

Topics

• Exporting in Amazon Lex Format

• Importing in Amazon Lex Format

• JSON Format for Importing and Exporting

Exporting in Amazon Lex Format

Export your Amazon Lex bots, intents, and slot types to a format that you can import to an AWS
account. You can export the following resources:

• A bot, including all of the intents and custom slot types used by the bot

• An intent, including all of the custom slot types used by the intent

• A custom slot type, including all of values for the slot type

You can export only a numbered version of a resource. You can't export a resource's $LATEST
version.

Exporting is an asynchronous process. When the export is complete, you get an Amazon S3
presigned URL. The URL provides the location of a .zip archive that contains the exported resource
in JSON format.

You use either the console or the GetExport operation to export bots, intents, and custom slot
types.

The process for exporting, a bot, an intent, or a slot type is the same. In the following procedures,
substitute intent or slot type for bot.

Exporting a Bot

To export a bot

1. Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose Bots, then choose the bot to export.

3. On the Actions menu, choose Export.

4. In the Export Bot dialog, choose the version of the bot to export. For Platform, choose
Amazon Lex.

Exporting in Amazon Lex Format 238

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

5. Choose Export.

6. Download and save the .zip archive.

Amazon Lex exports the bot to a JSON file that is contained in the .zip archive. To update the bot,
modify the JSON text, then import it back into Amazon Lex.

Next step

Importing in Amazon Lex Format

Importing in Amazon Lex Format

After you have exported a resource to a JSON file in the Amazon Lex format, you can import the
JSON file containing the resource into one or more AWS accounts. For example, you can export a
bot, and then import it into another AWS Region. Or you can send the bot to a colleague so that
she can import it into her account.

When you import a bot, intent, or slot type, you must decide whether you want to overwrite the
$LATEST version of a resource, such as an intent or a slot type, during import, or if you want the
import to fail if you want to preserve the resource that is in your account. For example, if you are
uploading an edited version of a resource to your account, you would choose to overwrite the
$LATEST version. If you are uploading a resource sent to you by a colleague, you can choose to
have the import fail if there are are resource conflicts so that your own resources aren't replaced.

When importing a resource, the permissions assigned to the user making the import request apply.
The user must have permissions for all of the resources in the account that the import affects.
The user must also have permission for the GetBot, PutBot, GetIntent PutIntent, GetSlotType,
PutSlotType operations. For more information about permissions, see How Amazon Lex works with
IAM.

The import reports errors that occur during processing. Some errors are reported before the import
begins, others are reported during the import process. For example, if the account that is importing
an intent doesn't have permission to call a Lambda function that the intent uses, the import fails
before changes are made to the slot types or intents. If an import fails during the import process,
the $LATEST version of any intent or slot type imported before the process failed is modified. You
can't roll back changes made to the $LATEST version.

When you import a resource, all dependent resources are imported to the $LATEST version of the
resource and then given a numbered version. For example, if a bot uses an intent, the intent is

Importing in Amazon Lex Format 239

Amazon Lex V1 Developer Guide

given a numbered version. If an intent uses a custom slot type, the slot type is given a numbered
version.

A resource is imported only once. For example, if the bot contains an OrderPizza intent and an
OrderDrink intent that both rely on the custom slot type Size, the Size slot type is imported
once and used for both intents.

Note

If you exported your bot with the enableModelImprovements parameter set to
false, you must open the .zip file containing the bot definition and change the
enableModelImprovements parameter to true in the following Regions:

• Asia Pacific (Singapore) (ap-southeast-1)

• Asia Pacific (Tokyo) (ap-northeast-1)

• EU (Frankfurt) (eu-central-1)

• EU (London) (eu-west-2)

The process for importing a bot, an intent, or a custom slot type is the same. In the following
procedures, substitute intent or slot type, as appropriate.

Importing a Bot

To import a bot

1. Sign in to the AWS Management Console, and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose Bots, then choose the bot to import. To import a new bot, skip this step.

3. For Actions, choose Import.

4. For Import Bot, choose the .zip archive that contains the JSON file that contains the bot
to import. If you want to see merge conflicts before merging, choose Notify me of merge
conflicts. If you turn off conflict checking, the $LATEST version of all of the resources used by
the bot are overwritten.

5. Choose Import. If you have chosen to be notified of merge conflicts and there are conflicts, a
dialog appears that lists them. To overwrite the $LATEST version of all conflicting resources,
choose Overwrite and continue. To stop the import, choose Cancel.

Importing in Amazon Lex Format 240

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

You can now test the bot in your account.

JSON Format for Importing and Exporting

The following examples show the JSON structure for exporting and importing slot types, intents,
and bots in Amazon Lex format.

Slot Type structure

The following is the JSON structure for custom slot types. Use this structure when you import or
export slot types, and when you export intents that depend on custom slot types.

{
 "metadata": {
 "schemaVersion": "1.0",
 "importType": "LEX",
 "importFormat": "JSON"
 },
 "resource": {
 "name": "slot type name",
 "version": "version number",
 "enumerationValues": [
 {
 "value": "enumeration value",
 "synonyms": []
 },
 {
 "value": "enumeration value",
 "synonyms": []
 }
],
 "valueSelectionStrategy": "ORIGINAL_VALUE or TOP_RESOLUTION"
 }
}

Intent structure

The following is the JSON structure for intents. Use this structure when you import or export
intents and bots that depend on an intent.

{
 "metadata": {
 "schemaVersion": "1.0",

JSON Format for Importing and Exporting 241

Amazon Lex V1 Developer Guide

 "importType": "LEX",
 "importFormat": "JSON"
 },
 "resource": {
 "description": "intent description",
 "rejectionStatement": {
 "messages": [
 {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "string"
 }
]
 },
 "name": "intent name",
 "version": "version number",
 "fulfillmentActivity": {
 "type": "ReturnIntent or CodeHook"
 },
 "sampleUtterances": [
 "string",
 "string"
],
 "slots": [
 {
 "name": "slot name",
 "description": "slot description",
 "slotConstraint": "Required or Optional",
 "slotType": "slot type",
 "valueElicitationPrompt": {
 "messages": [
 {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "string"
 }
],
 "maxAttempts": value
 },
 "priority": value,
 "sampleUtterances": []
 }
],
 "confirmationPrompt": {
 "messages": [
 {

JSON Format for Importing and Exporting 242

Amazon Lex V1 Developer Guide

 "contentType": "PlainText or SSML or CustomPayload",
 "content": "string"
 },
 {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "string"
 }
],
 "maxAttempts": value
 },
 "slotTypes": [
 List of slot type JSON structures.
 For more information, see Slot Type structure.
]
 }
}

Bot structure

The following is the JSON structure for bots. Use this structure when you import or export bots.

{
 "metadata": {
 "schemaVersion": "1.0",
 "importType": "LEX",
 "importFormat": "JSON"
 },
 "resource": {
 "name": "bot name",
 "version": "version number",,
 "nluIntentConfidenceThreshold": 0.00-1.00,
 "enableModelImprovements": true | false,
 "intents": [
 List of intent JSON structures.
 For more information, see Intent structure.
],
 "slotTypes": [
 List of slot type JSON structures.
 For more information, see Slot Type structure.
],
 "voiceId": "output voice ID",
 "childDirected": boolean,
 "locale": "en-US",

JSON Format for Importing and Exporting 243

Amazon Lex V1 Developer Guide

 "idleSessionTTLInSeconds": timeout,
 "description": "bot description",
 "clarificationPrompt": {
 "messages": [
 {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "string"
 }
],
 "maxAttempts": value
 },
 "abortStatement": {
 "messages": [
 {
 "contentType": "PlainText or SSML or CustomPayload",
 "content": "string"
 }
]
 }
 }
}

Exporting to an Alexa Skill

You can export your bot schema in a format compatible with an Alexa skill. After you export the
bot to a JSON file, you upload it to Alexa using the skill builder.

To export a bot and its schema (interaction model)

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. Choose the bot that you want to export.

3. For Actions, choose Export.

4. Choose the version of the bot that you want to export. For the format, choose Alexa Skills Kit,
then choose Export.

5. If a download dialog box appears, choose a location to save the file, then choose Save.

The downloaded file is a .zip archive containing one file with the name of the exported bot. It
contains the information necessary to import the bot as an Alexa skill.

Exporting to an Alexa Skill 244

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

Note

Amazon Lex and the Alexa Skills Kit differ in the following ways:

• Session attributes, denoted by square brackets ([]), are not supported by the Alexa Skills
Kit. You need to update prompts that use session attributes.

• Punctuation marks are not supported by the Alexa Skills Kit. You need to update
utterances that use punctuation.

To upload the bot to an Alexa Skill

1. Log in to the developer portal at https://developer.amazon.com/.

2. On the Alexa Skills page, choose Create Skill.

3. On the Create a new skill page, enter a skill name and the default language for the skill. Make
sure that Custom is selected for the skill model, and then choose Create skill.

4. Make sure that Start from scratch is selected and the choose Choose.

5. From the left menu, choose JSON Editor. Drag the JSON file that you exported from Amazon
Lex to the JSON editor.

6. Choose Save Model to save your interaction model.

After uploading the schema into the Alexa skill, make changes necessary for running the skill with
Alexa. For more information about creating an Alexa skill, see Use the Skill Builder (Beta) in the
Alexa Skills Kit.

Exporting to an Alexa Skill 245

https://developer.amazon.com/edw/home.html#/
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/ask-define-the-vui-with-gui

Amazon Lex V1 Developer Guide

Additional Examples: Creating Amazon Lex Bots

The following sections provide additional Amazon Lex exercises with step-by-step instructions.

Topics

• Schedule Appointment

• Book Trip

• Using a Response Card

• Updating Utterances

• Integrating with a Web site

• Call Center Agent Assistant

Schedule Appointment

The example bot in this exercise schedules appointments for a dentist's office. The example
also illustrates using response cards to obtain user input with buttons. Specifically, the example
illustrates generating response cards dynamically at runtime.

You can configure response cards at build time (also referred to as static response cards) or
generate them dynamically in an AWS Lambda function. In this example, the bot uses the following
response cards:

• A response card that lists buttons for appointment type. See the following image for an
example:

Schedule Appointment 246

Amazon Lex V1 Developer Guide

• A response card that lists buttons for appointment date. See the following image for an
example:

• A response card that lists buttons to confirm a suggested appointment time. See the following
image for an example:

The available appointment dates and times vary, which requires you to generate response cards
at runtime. You use an AWS Lambda function to generate these response cards dynamically. The
Lambda function returns response cards in its response to Amazon Lex. Amazon Lex includes the
response card in its response to the client.

If a client (for example, Facebook Messenger) supports response cards, the user can either choose
from the list of buttons or type the response. Otherwise, the user simply types the response.

Schedule Appointment 247

Amazon Lex V1 Developer Guide

In addition to the button shown in the preceding example, you can also include images,
attachments, and other useful information to display on response cards. For information about
response cards, see Response Cards.

In this exercise, you do the following:

• Create and test a bot (using the ScheduleAppointment blueprint). For this exercise, you use a bot
blueprint to quickly set up and test the bot. For a list of available blueprints, see Amazon Lex and
AWS Lambda Blueprints.This bot is preconfigured with one intent (MakeAppointment).

• Create and test a Lambda function (using the lex-make-appointment-python blueprint provided
by Lambda). You configure the MakeAppointment intent to use this Lambda function as a code
hook to perform initialization, validation, and fulfillment tasks.

Note

The provided example Lambda function showcases a dynamic conversation based on the
mocked-up availability of a dentist appointment. In a real application, you might use a
real calendar to set an appointment.

• Update the MakeAppointment intent configuration to use the Lambda function as a code hook.
Then, test the end-to-end experience.

• Publish the schedule appointment bot to Facebook Messenger so you can see the response cards
in action (the client in the Amazon Lex console currently does not support response cards).

The following sections provide summary information about the blueprints you use in this exercise.

Topics

• Overview of the Bot Blueprint (ScheduleAppointment)

• Overview of the Lambda Function Blueprint (lex-make-appointment-python)

• Step 1: Create an Amazon Lex Bot

• Step 2: Create a Lambda Function

• Step 3: Update the Intent: Configure a Code Hook

• Step 4: Deploy the Bot on the Facebook Messenger Platform

• Details of Information Flow

Schedule Appointment 248

Amazon Lex V1 Developer Guide

Overview of the Bot Blueprint (ScheduleAppointment)

The ScheduleAppointment blueprint that you use to create a bot for this exercise is preconfigured
with the following:

• Slot types – One custom slot type called AppointmentTypeValue, with the enumeration
values root canal, cleaning, and whitening.

• Intent – One intent (MakeAppointment), which is preconfigured as follows:

• Slots – The intent is configured with the following slots:

• Slot AppointmentType, of the AppointmentTypes custom type.

• Slot Date, of the AMAZON.DATE built-in type.

• Slot Time, of the AMAZON.TIME built-in type.

• Utterances – The intent is preconfigured with the following utterances:

• "I would like to book an appointment"

• "Book an appointment"

• "Book a {AppointmentType}"

If the user utters any of these, Amazon Lex determines that MakeAppointment is the intent,
and then uses the prompts to elicit slot data.

• Prompts – The intent is preconfigured with the following prompts:

• Prompt for the AppointmentType slot – "What type of appointment would you like to
schedule?"

• Prompt for the Date slot – "When should I schedule your {AppointmentType}?"

• Prompt for the Time slot – "At what time do you want to schedule the {AppointmentType}?"
and

"At what time on {Date}?"

• Confirmation prompt – "{Time} is available, should I go ahead and book your appointment?"

• Cancel message– "Okay, I will not schedule an appointment."

Overview of the Bot Blueprint (ScheduleAppointment) 249

Amazon Lex V1 Developer Guide

Overview of the Lambda Function Blueprint (lex-make-appointment-
python)

The Lambda function blueprint (lex-make-appointment-python) is a code hook for bots that you
create using the ScheduleAppointment bot blueprint.

This Lambda function blueprint code can perform both initialization/validation and fulfillment
tasks.

• The Lambda function code showcases a dynamic conversation that is based on example
availability for a dentist appointment (in real applications, you might use a calendar). For the day
or date that the user specifies, the code is configured as follows:

• If there are no appointments available, the Lambda function returns a response directing
Amazon Lex to prompt the user for another day or date (by setting the dialogAction type to
ElicitSlot). For more information, see Response Format.

• If there is only one appointment available on the specified day or date, the Lambda
function suggests the available time in the response and directs Amazon Lex to obtain
user confirmation by setting the dialogAction in the response to ConfirmIntent. This
illustrates how you can improve the user experience by proactively suggesting the available
time for an appointment.

• If there are multiple appointments available, the Lambda function returns a list of available
times in the response to Amazon Lex. Amazon Lex returns a response to the client with the
message from the Lambda function.

• As the fulfillment code hook, the Lambda function returns a summary message indicating that
an appointment is scheduled (that is, the intent is fulfilled).

Note

In this example, we show how to use response cards. The Lambda function constructs and
returns a response card to Amazon Lex. The response card lists available days and times
as buttons to choose from. When testing the bot using the client provided by the Amazon
Lex console, you cannot see the response card. To see it, you must integrate the bot with
a messaging platform, such as Facebook Messenger. For instructions, see Integrating an
Amazon Lex Bot with Facebook Messenger. For more information about response cards, see
Managing Messages .

Overview of the Lambda Function Blueprint (lex-make-appointment-python) 250

Amazon Lex V1 Developer Guide

When Amazon Lex invokes the Lambda function, it passes event data as input. One of the event
fields is invocationSource, which the Lambda function uses to choose between an input
validation and fulfillment activity. For more information, see Input Event Format.

Next Step

Step 1: Create an Amazon Lex Bot

Step 1: Create an Amazon Lex Bot

In this section, you create an Amazon Lex bot using the ScheduleAppointment blueprint, which is
provided in the Amazon Lex console.

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. On the Bots page, choose Create.

3. On the Create your Lex bot page, do the following:

• Choose the ScheduleAppointment blueprint.

• Leave the default bot name (ScheduleAppointment).

4. Choose Create.

This step saves and builds the bot. The console sends the following requests to Amazon Lex
during the build process:

• Create a new version of the slot types (from the $LATEST version). For information
about slot types defined in this bot blueprint, see Overview of the Bot Blueprint
(ScheduleAppointment).

• Create a version of the MakeAppointment intent (from the $LATEST version). In some
cases, the console sends a request for the update API operation before creating a new
version.

• Update the $LATEST version of the bot.

At this time, Amazon Lex builds a machine learning model for the bot. When you test the
bot in the console, the console uses the runtime API to send user input back to Amazon Lex.
Amazon Lex then uses the machine learning model to interpret the user input.

5. The console shows the ScheduleAppointment bot. On the Editor tab, review the preconfigured
intent (MakeAppointment) details.

Step 1: Create an Amazon Lex Bot 251

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

6. Test the bot in the test window. Use the following screen shot to engage in a test conversation
with your bot:

Note the following:

• From the initial user input ("Book an appointment"), the bot infers the intent
(MakeAppointment).

• The bot then uses the configured prompts to get slot data from the user.

• The bot blueprint has the MakeAppointment intent configured with the following
confirmation prompt:

{Time} is available, should I go ahead and book your appointment?

Step 1: Create an Amazon Lex Bot 252

Amazon Lex V1 Developer Guide

After the user provides all of the slot data, Amazon Lex returns a response to the client with
a confirmation prompt as the message. The client displays the message for the user:

16:00 is available, should I go ahead and book your appointment?

Notice that the bot accepts any appointment date and time values because you don't have any
code to initialize or validate the user data. In the next section, you add a Lambda function to
do this.

Next Step

Step 2: Create a Lambda Function

Step 2: Create a Lambda Function

In this section, you create a Lambda function using a blueprint (lex-make-appointment-python)
that is provided in the Lambda console. You also test the Lambda function by invoking it using
sample Amazon Lex event data that is provided by the console.

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create a Lambda function.

3. For Select blueprint, type lex to find the blueprint, and then choose the lex-make-
appointment-python blueprint.

4. Configure the Lambda function as follows.

• Type the Lambda function name (MakeAppointmentCodeHook).

• For the role, choose Create a new role from template(s), and then type a role name.

• Leave other default values.

5. Choose Create Function.

6. If you are using a locale other than English (US) (en-US), update the intent names as described
in Updating a Blueprint for a Specific Locale.

7. Test the Lambda function.

a. Choose Actions, and then chooseConfigure test event.

Step 2: Create a Lambda Function 253

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

b. From the Sample event template list, choose Lex-Make Appointment (preview). This
sample event uses the Amazon Lex request/response model, with values set to match
a request from your Amazon Lex bot. For information about the Amazon Lex request/
response model, see Using Lambda Functions.

c. Choose Save and test.

d. Verify that the Lambda function ran successfully. The response in this case matches the
Amazon Lex response model.

Next Step

Step 3: Update the Intent: Configure a Code Hook

Step 3: Update the Intent: Configure a Code Hook

In this section, you update the configuration of the MakeAppointment intent to use the Lambda
function as a code hook for the validation and fulfillment activities.

1. In the Amazon Lex console, select the ScheduleAppointment bot. The console shows the
MakeAppointment intent. Modify the intent configuration as follows.

Note

You can update only the $LATEST versions of any of the Amazon Lex resources,
including the intents. Make sure that the intent version is set to $LATEST. You have
not published a version of your bot yet, so it should still be the $LATEST version in the
console.

a. In the Options section, choose Initialization and validation code hook, and then choose
the Lambda function from the list.

b. In the Fulfillment section, choose AWS Lambda function, and then choose the Lambda
function from the list.

c. Choose Goodbye message, and type a message.

2. Choose Save, and then choose Build.

3. Test the bot, as in the following image:

Step 3: Update the Intent: Configure a Code Hook 254

Amazon Lex V1 Developer Guide

Next Step

Step 4: Deploy the Bot on the Facebook Messenger Platform

Step 4: Deploy the Bot on the Facebook Messenger Platform

In the preceding section, you tested the ScheduleAppointment bot using the client in the Amazon
Lex console. Currently, the Amazon Lex console does not support response cards. To test the
dynamically generated response cards that the bot supports, deploy the bot on the Facebook
Messenger platform and test it.

For instructions, see Integrating an Amazon Lex Bot with Facebook Messenger.

Step 4: Deploy the Bot on the Facebook Messenger Platform 255

Amazon Lex V1 Developer Guide

Next Step

Details of Information Flow

Details of Information Flow

The ScheduleAppointment bot blueprint primarily showcases the use of dynamically generated
response cards. The Lambda function in this exercise includes response cards in its response to
Amazon Lex. Amazon Lex includes the response cards in its reply to the client. This section explains
both the following:

• Data flow between client and Amazon Lex.

The section assumes client sends requests to Amazon Lex using the PostText runtime API and
shows request/response details accordingly. For more information about the PostText runtime
API, see PostText.

Note

For an example of information flow between client and Amazon Lex in which client
uses the PostContent API, see Step 2a (Optional): Review the Details of the Spoken
Information Flow (Console) .

• Data flow between Amazon Lex and the Lambda function. For more information, see Lambda
Function Input Event and Response Format.

Note

The example assumes that you are using the Facebook Messenger client, which does not
pass session attributes in the request to Amazon Lex. Accordingly, the example requests
shown in this section show empty sessionAttributes. If you test the bot using the
client provided in the Amazon Lex console, the client includes the session attributes.

Details of Information Flow 256

Amazon Lex V1 Developer Guide

This section describes what happens after each user input.

1. User: Types Book an appointment.

a. The client (console) sends the following PostContent request to Amazon Lex:

POST /bot/ScheduleAppointment/alias/$LATEST/
user/bijt6rovckwecnzesbthrr1d7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"book appointment",
 "sessionAttributes":{}
}

Both the request URI and the body provide information to Amazon Lex:

• Request URI – Provides the bot name (ScheduleAppointment), the bot alias ($LATEST),
and the user name ID. The trailing text indicates that it is a PostText (not
PostContent) API request.

• Request body – Includes the user input (inputText) and empty sessionAttributes.

b. From the inputText, Amazon Lex detects the intent (MakeAppointment). The service
invokes the Lambda function, which is configured as a code hook, to perform initialization
and validation by passing the following event. For details, see Input Event Format.

{
 "currentIntent": {
 "slots": {
 "AppointmentType": null,
 "Date": null,
 "Time": null
 },
 "name": "MakeAppointment",
 "confirmationStatus": "None"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },

Details of Information Flow 257

Amazon Lex V1 Developer Guide

 "userId": "bijt6rovckwecnzesbthrr1d7lv3ja3n",
 "invocationSource": "DialogCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {}
}

In addition to the information sent by the client, Amazon Lex also includes the following
data:

• currentIntent – Provides current intent information.

• invocationSource – Indicates the purpose of the Lambda function invocation. In
this case, the purpose is to perform user data initialization and validation. (Amazon Lex
knows that the user has not provided all of the slot data to fulfill the intent yet.)

• messageVersion – Currently Amazon Lex supports only the 1.0 version.

c. At this time, all of the slot values are null (there is nothing to validate). The Lambda
function returns the following response to Amazon Lex, directing the service to elicit
information for the AppointmentType slot. For information about the response format,
see Response Format.

{
 "dialogAction": {
 "slotToElicit": "AppointmentType",
 "intentName": "MakeAppointment",
 "responseCard": {
 "genericAttachments": [
 {
 "buttons": [
 {
 "text": "cleaning (30 min)",
 "value": "cleaning"
 },
 {
 "text": "root canal (60 min)",
 "value": "root canal"
 },
 {
 "text": "whitening (30 min)",
 "value": "whitening"
 }
],

Details of Information Flow 258

Amazon Lex V1 Developer Guide

 "subTitle": "What type of appointment would you like to
 schedule?",
 "title": "Specify Appointment Type"
 }
],
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic"
 },
 "slots": {
 "AppointmentType": null,
 "Date": null,
 "Time": null
 },
 "type": "ElicitSlot",
 "message": {
 "content": "What type of appointment would you like to schedule?",
 "contentType": "PlainText"
 }
 },
 "sessionAttributes": {}
}

The response includes the dialogAction and sessionAttributes fields. Among other
things, the dialogAction field returns the following fields:

• type – By setting this field to ElicitSlot, the Lambda function directs Amazon Lex to
elicit the value for the slot specified in the slotToElicit field. The Lambda function
also provides a message to convey to the user.

• responseCard – Identifies a list of possible values for the AppointmentType slot.
A client that supports response cards (for example, the Facebook Messenger) displays
a response card to allow the user to choose an appointment type, as in the following
image:

Details of Information Flow 259

Amazon Lex V1 Developer Guide

d. As indicated by the dialogAction.type in the response from the Lambda function,
Amazon Lex sends the following response back to the client:

The client reads the response, and then displays the message: "What type of appointment
would you like to schedule?" and the response card (if the client supports response cards).

2. User: Depending on the client, the user has two options:

• If the response card is shown, choose root canal (60 min) or type root canal.

• If the client does not support response cards, type root canal.

Details of Information Flow 260

Amazon Lex V1 Developer Guide

a. The client sends the following PostText request to Amazon Lex (line breaks have been
added for readability):

POST /bot/BookTrip/alias/$LATEST/user/bijt6rovckwecnzesbthrr1d7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "root canal",
 "sessionAttributes": {}
}

b. Amazon Lex invokes the Lambda function for user data validation by sending the
following event as a parameter:

{
 "currentIntent": {
 "slots": {
 "AppointmentType": "root canal",
 "Date": null,
 "Time": null
 },
 "name": "MakeAppointment",
 "confirmationStatus": "None"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },
 "userId": "bijt6rovckwecnzesbthrr1d7lv3ja3n",
 "invocationSource": "DialogCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {}
}

In the event data, note the following:

Details of Information Flow 261

Amazon Lex V1 Developer Guide

• invocationSource continues to be DialogCodeHook. In this step, we are just
validating user data.

• Amazon Lex sets the AppointmentType field in the currentIntent.slots slot to
root canal.

• Amazon Lex simply passes the sessionAttributes field between the client and the
Lambda function.

c. The Lambda function validates the user input and returns the following response to
Amazon Lex, directing the service to elicit a value for the appointment date.

{
 "dialogAction": {
 "slotToElicit": "Date",
 "intentName": "MakeAppointment",
 "responseCard": {
 "genericAttachments": [
 {
 "buttons": [
 {
 "text": "2-15 (Wed)",
 "value": "Wednesday, February 15, 2017"
 },
 {
 "text": "2-16 (Thu)",
 "value": "Thursday, February 16, 2017"
 },
 {
 "text": "2-17 (Fri)",
 "value": "Friday, February 17, 2017"
 },
 {
 "text": "2-20 (Mon)",
 "value": "Monday, February 20, 2017"
 },
 {
 "text": "2-21 (Tue)",
 "value": "Tuesday, February 21, 2017"
 }
],
 "subTitle": "When would you like to schedule your root
 canal?",

Details of Information Flow 262

Amazon Lex V1 Developer Guide

 "title": "Specify Date"
 }
],
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic"
 },
 "slots": {
 "AppointmentType": "root canal",
 "Date": null,
 "Time": null
 },
 "type": "ElicitSlot",
 "message": {
 "content": "When would you like to schedule your root canal?",
 "contentType": "PlainText"
 }
 },
 "sessionAttributes": {}
}

Again, the response includes the dialogAction and sessionAttributes fields.
Among other things, the dialogAction field returns the following fields:

• type – By setting this field to ElicitSlot, the Lambda function directs Amazon Lex to
elicit the value for the slot specified in the slotToElicit field. The Lambda function
also provides a message to convey to the user.

• responseCard – Identifies a list of possible values for the Date slot. A client that
supports response cards (for example, Facebook Messenger) displays a response card
that allows the user to choose an appointment date, as in the following image:

Details of Information Flow 263

Amazon Lex V1 Developer Guide

Although the Lambda function returned five dates, the client (Facebook Messenger)
has a limit of three buttons for a response card. Therefore, you see only the first three
values in the screen shot.

These dates are hard coded in the Lambda function. In a production application, you
might use a calendar to get available dates in real time. Because the dates are dynamic,
you must generate the response card dynamically in the Lambda function.

d. Amazon Lex notices the dialogAction.type and returns the following response to the
client that includes information from the Lambda function's response.

Details of Information Flow 264

Amazon Lex V1 Developer Guide

The client displays the message: When would you like to schedule your root canal? and
the response card (if the client supports response cards).

3. User: Types Thursday.

a. The client sends the following PostText request to Amazon Lex (line breaks have been
added for readability):

POST /bot/BookTrip/alias/$LATEST/user/bijt6rovckwecnzesbthrr1d7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "Thursday",
 "sessionAttributes": {}
}

b. Amazon Lex invokes the Lambda function for user data validation by sending in the
following event as a parameter:

{
 "currentIntent": {
 "slots": {
 "AppointmentType": "root canal",
 "Date": "2017-02-16",
 "Time": null
 },
 "name": "MakeAppointment",
 "confirmationStatus": "None"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },
 "userId": "u3fpr9gghj02zts7y5tpq5mm4din2xqy",
 "invocationSource": "DialogCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {}
}

Details of Information Flow 265

Amazon Lex V1 Developer Guide

In the event data, note the following:

• invocationSource continues to be DialogCodeHook. In this step, we are just
validating the user data.

• Amazon Lex sets the Date field in the currentIntent.slots slot to 2017-02-16.

• Amazon Lex simply passes the sessionAttributes between the client and the
Lambda function.

c. The Lambda function validates the user input. This time the Lambda function determines
that there are no appointments available on the specified date. It returns the following
response to Amazon Lex, directing the service to again elicit a value for the appointment
date.

{
 "dialogAction": {
 "slotToElicit": "Date",
 "intentName": "MakeAppointment",
 "responseCard": {
 "genericAttachments": [
 {
 "buttons": [
 {
 "text": "2-15 (Wed)",
 "value": "Wednesday, February 15, 2017"
 },
 {
 "text": "2-17 (Fri)",
 "value": "Friday, February 17, 2017"
 },
 {
 "text": "2-20 (Mon)",
 "value": "Monday, February 20, 2017"
 },
 {
 "text": "2-21 (Tue)",
 "value": "Tuesday, February 21, 2017"
 }
],
 "subTitle": "When would you like to schedule your root
 canal?",
 "title": "Specify Date"

Details of Information Flow 266

Amazon Lex V1 Developer Guide

 }
],
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic"
 },
 "slots": {
 "AppointmentType": "root canal",
 "Date": null,
 "Time": null
 },
 "type": "ElicitSlot",
 "message": {
 "content": "We do not have any availability on that date, is there
 another day which works for you?",
 "contentType": "PlainText"
 }
 },
 "sessionAttributes": {
 "bookingMap": "{\"2017-02-16\": []}"
 }
}

Again, the response includes the dialogAction and sessionAttributes fields.
Among other things, the dialogAction returns the following fields:

• dialogAction field:

• type – The Lambda function sets this value to ElicitSlot and resets the
slotToElicit field to Date. The Lambda function also provides an appropriate
message to convey to the user.

• responseCard – Returns a list of values for the Date slot.

• sessionAttributes - This time the Lambda function includes the bookingMap
session attribute. Its value is the requested date of the appointment and available
appointments (an empty object indicates that no appointments are available).

d. Amazon Lex notices the dialogAction.type and returns the following response to the
client that includes information from the Lambda function's response.

Details of Information Flow 267

Amazon Lex V1 Developer Guide

The client displays the message: We do not have any availability on that date, is there
another day which works for you? and the response card (if the client supports response
cards).

4. User: Depending on the client, the user has two options:

• If the response card is shown, choose 2-15 (Wed) or type Wednesday.

• If the client does not support response cards, type Wednesday.

a. The client sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/bijt6rovckwecnzesbthrr1d7lv3ja3n/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText": "Wednesday",
 "sessionAttributes": {
 }
}

Details of Information Flow 268

Amazon Lex V1 Developer Guide

Note

The Facebook Messenger client does not set any session attributes. If you want to
maintain session states between requests, you must do so in the Lambda function.
In a real application, you might need to maintain these session attributes in a
backend database.

b. Amazon Lex invokes the Lambda function for user data validation by sending the
following event as a parameter:

{
 "currentIntent": {
 "slots": {
 "AppointmentType": "root canal",
 "Date": "2017-02-15",
 "Time": null
 },
 "name": "MakeAppointment",
 "confirmationStatus": "None"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",
 "name": "ScheduleAppointment"
 },
 "userId": "u3fpr9gghj02zts7y5tpq5mm4din2xqy",
 "invocationSource": "DialogCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {
 }
}

Amazon Lex updated currentIntent.slots by setting the Date slot to 2017-02-15.

c. The Lambda function validates the user input and returns the following response to
Amazon Lex, directing it to elicit the value for the appointment time.

{
 "dialogAction": {
 "slots": {

Details of Information Flow 269

Amazon Lex V1 Developer Guide

 "AppointmentType": "root canal",
 "Date": "2017-02-15",
 "Time": "16:00"
 },
 "message": {
 "content": "What time on 2017-02-15 works for you? 4:00 p.m. is our
 only availability, does that work for you?",
 "contentType": "PlainText"
 },
 "type": "ConfirmIntent",
 "intentName": "MakeAppointment",
 "responseCard": {
 "genericAttachments": [
 {
 "buttons": [
 {
 "text": "yes",
 "value": "yes"
 },
 {
 "text": "no",
 "value": "no"
 }
],
 "subTitle": "Is 4:00 p.m. on 2017-02-15 okay?",
 "title": "Confirm Appointment"
 }
],
 "version": 1,
 "contentType": "application/vnd.amazonaws.card.generic"
 }
 },
 "sessionAttributes": {
 "bookingMap": "{\"2017-02-15\": [\"10:00\", \"16:00\", \"16:30\"]}"
 }
}

Again, the response includes the dialogAction and sessionAttributes fields.
Among other things, the dialogAction returns the following fields:

• dialogAction field:

Details of Information Flow 270

Amazon Lex V1 Developer Guide

• type – The Lambda function sets this value to ConfirmIntent, directing Amazon
Lex to obtain user confirmation of the appointment time suggested in the message.

• responseCard – Returns a list of yes/no values for the user to choose from. If
the client supports response cards, it displays the response card, as shown in the
following example:

• sessionAttributes - The Lambda function sets the bookingMap session attribute
with its value set to the appointment date and available appointments on that date.
In this example, these are 30-minute appointments. For a root canal that requires one
hour, only 4 p.m. can be booked.

d. As indicated in the dialogAction.type in the Lambda function's response, Amazon Lex
returns the following response to the client:

Details of Information Flow 271

Amazon Lex V1 Developer Guide

The client displays the message: What time on 2017-02-15 works for you? 4:00 p.m. is
our only availability, does that work for you?

5. User: Choose yes.

Amazon Lex invokes the Lambda function with the following event data. Because the user
replied yes, Amazon Lex sets the confirmationStatus to Confirmed, and sets the Time
field in currentIntent.slots to 4 p.m.

{
 "currentIntent": {
 "slots": {
 "AppointmentType": "root canal",
 "Date": "2017-02-15",
 "Time": "16:00"
 },
 "name": "MakeAppointment",
 "confirmationStatus": "Confirmed"
 },
 "bot": {
 "alias": null,
 "version": "$LATEST",

Details of Information Flow 272

Amazon Lex V1 Developer Guide

 "name": "ScheduleAppointment"
 },
 "userId": "u3fpr9gghj02zts7y5tpq5mm4din2xqy",
 "invocationSource": "FulfillmentCodeHook",
 "outputDialogMode": "Text",
 "messageVersion": "1.0",
 "sessionAttributes": {
 }
}

Because the confirmationStatus is confirmed, the Lambda function processes the intent
(books a dental appointment) and returns the following response to Amazon Lex:

{
 "dialogAction": {
 "message": {
 "content": "Okay, I have booked your appointment. We will see you at
 4:00 p.m. on 2017-02-15",
 "contentType": "PlainText"
 },
 "type": "Close",
 "fulfillmentState": "Fulfilled"
 },
 "sessionAttributes": {
 "formattedTime": "4:00 p.m.",
 "bookingMap": "{\"2017-02-15\": [\"10:00\"]}"
 }
}

Note the following:

• The Lambda function has updated the sessionAttributes.

• dialogAction.type is set to Close, which directs Amazon Lex to not expect a user
response.

• dialogAction.fulfillmentState is set to Fulfilled, indicating that the intent is
successfully fulfilled.

The client displays the message: Okay, I have booked your appointment. We will see you at
4:00 p.m. on 2017-02-15.

Details of Information Flow 273

Amazon Lex V1 Developer Guide

Book Trip

This example illustrates creating a bot that is configured to support multiple intents. The example
also illustrates how you can use session attributes for cross-intent information sharing. After
creating the bot, you use a test client in the Amazon Lex console to test the bot (BookTrip). The
client uses the PostText runtime API operation to send requests to Amazon Lex for each user input.

The BookTrip bot in this example is configured with two intents (BookHotel and BookCar). For
example, suppose a user first books a hotel. During the interaction, the user provides information
such as check-in dates, location, and number of nights. After the intent is fulfilled, the client can
persist this information using session attributes. For more information about session attributes, see
PostText.

Now suppose that the user continues to book a car. Using information that the user provided in the
previous BookHotel intent (that is, destination city, and check-in and check-out dates), the code
hook (Lambda function) you configured to initialize and validate the BookCar intent, initializes
slot data for the BookCar intent (that is, destination, pick-up city, pick-up date, and return date).
This illustrates how cross-intent information sharing enables you to build bots that can engage in
dynamic conversation with the user.

In this example, we use the following session attributes. Only the client and the Lambda function
can set and update session attributes. Amazon Lex only passes these between the client and the
Lambda function. Amazon Lex doesn't maintain or modify any session attributes.

• currentReservation – Contains slot data for an in-progress reservation and other relevant
information. For example, the following is a sample request from the client to Amazon Lex. It
shows the currentReservation session attribute in the request body.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"Chicago",
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":\"Moscow\",
 \"RoomType\":null,

Book Trip 274

Amazon Lex V1 Developer Guide

 \"CheckInDate\":null,
 \"Nights\":null}"
 }
}

• lastConfirmedReservation – Contains similar information for a previous intent, if any. For
example, if the user booked a hotel and then is in process of booking a car, this session attribute
stores slot data for the previous BookHotel intent.

• confirmationContext – The Lambda function sets this to AutoPopulate when it
prepopulates some of the slot data based on slot data from the previous reservation (if there is
one). This enables cross-intent information sharing. For example, if the user previously booked
a hotel and now wants to book a car, Amazon Lex can prompt the user to confirm (or deny) that
the car is being booked for the same city and dates as their hotel reservation

In this exercise you use blueprints to create an Amazon Lex bot and a Lambda function. For more
information about blueprints, see Amazon Lex and AWS Lambda Blueprints.

Next Step

Step 1: Review the Blueprints Used in this Exercise

Step 1: Review the Blueprints Used in this Exercise

Topics

• Overview of the Bot Blueprint (BookTrip)

• Overview of the Lambda Function Blueprint (lex-book-trip-python)

Overview of the Bot Blueprint (BookTrip)

The blueprint (BookTrip) you use to create a bot provides the following preconfiguration:

• Slot types – Two custom slot types:

Step 1: Blueprint Review 275

Amazon Lex V1 Developer Guide

• RoomTypes with enumeration values: king, queen, and deluxe, for use in the BookHotel
intent.

• CarTypes with enumeration values: economy, standard, midsize, full size, luxury,
and minivan, for use in the BookCar intent.

• Intent 1 (BookHotel) – It is preconfigured as follows:

• Preconfigured slots

• RoomType, of the RoomTypes custom slot type

• Location, of the AMAZON.US_CITY built-in slot type

• CheckInDate, of the AMAZON.DATE built-in slot type

• Nights, of the AMAZON.NUMBER built-in slot type

• Preconfigured utterances

• "Book a hotel"

• "I want to make hotel reservations"

• "Book a {Nights} stay in {Location}"

If the user utters any of these, Amazon Lex determines that BookHotel is the intent and then
prompts the user for slot data.

• Preconfigured prompts

• Prompt for the Location slot – "What city will you be staying in?"

• Prompt for the CheckInDate slot – "What day do you want to check in?"

• Prompt for the Nights slot – "How many nights will you be staying?"

• Prompt for the RoomType slot – "What type of room would you like, queen, king, or deluxe?"

• Confirmation statement – "Okay, I have you down for a {Nights} night stay in {Location}
starting {CheckInDate}. Shall I book the reservation?"

• Denial – "Okay, I have cancelled your reservation in progress."

• Intent 2 (BookCar) – It is preconfigured as follows:

• Preconfigured slots

• PickUpCity, of the AMAZON.US_CITY built-in type

• PickUpDate, of the AMAZON.DATE built-in typeStep 1: Blueprint Review 276

Amazon Lex V1 Developer Guide

• ReturnDate, of the AMAZON.DATE built-in type

• DriverAge, of the AMAZON.NUMBER built-in type

• CarType, of the CarTypes custom type

• Preconfigured utterances

• "Book a car"

• "Reserve a car"

• "Make a car reservation"

If the user utters any of these, Amazon Lex determines BookCar is the intent and then prompts
the user for slot data.

• Preconfigured prompts

• Prompt for the PickUpCity slot – "In what city do you need to rent a car?"

• Prompt for the PickUpDate slot – "What day do you want to start your rental?""

• Prompt for the ReturnDate slot – "What day do you want to return this car?"

• Prompt for the DriverAge slot – "How old is the driver for this rental?"

• Prompt for the CarType slot – "What type of car would you like to rent? Our most popular
options are economy, midsize, and luxury"

• Confirmation statement – "Okay, I have you down for a {CarType} rental in {PickUpCity} from
{PickUpDate} to {ReturnDate}. Should I book the reservation?"

• Denial – "Okay, I have cancelled your reservation in progress."

Overview of the Lambda Function Blueprint (lex-book-trip-python)

In addition to the bot blueprint, AWS Lambda provides a blueprint (lex-book-trip-python) that
you can use as a code hook with the bot blueprint. For a list of bot blueprints and corresponding
Lambda function blueprints, see Amazon Lex and AWS Lambda Blueprints.

When you create a bot using the BookTrip blueprint, you update configuration of both the intents
(BookCar and BookHotel) by adding this Lambda function as a code hook for both initialization/
validation of user data input and fulfillment of the intents.

This Lambda function code provided showcases dynamic conversation using previously known
information (persisted in session attributes) about a user to initialize slot values for an intent. For
more information, see Managing Conversation Context.

Step 1: Blueprint Review 277

Amazon Lex V1 Developer Guide

Next Step

Step 2: Create an Amazon Lex Bot

Step 2: Create an Amazon Lex Bot

In this section, you create an Amazon Lex bot (BookTrip).

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. On the Bots page, choose Create.

3. On the Create your Lex bot page,

• Choose BookTrip blueprint.

• Leave the default bot name (BookTrip).

4. Choose Create. The console sends a series of requests to Amazon Lex to create the bot. Note
the following:

5. The console shows the BookTrip bot. On the Editor tab, review the details of the preconfigured
intents (BookCar and BookHotel).

6. Test the bot in the test window. Use the following to engage in a test conversation with your
bot:

Step 2: Create an Amazon Lex Bot 278

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

From the initial user input ("Book a hotel"), Amazon Lex infers the intent (BookHotel). The bot
then uses the prompts preconfigured in this intent to elicit slot data from the user. After user
provide all of the slot data, Amazon Lex returns a response back to the client with a message
that includes all the user input as a message. The client displays the message in the response
as shown.

CheckInDate:2016-12-18 Location:Chicago Nights:5 RoomType:queen

Now you continue the conversation and try to book a car in the following conversation.

Step 2: Create an Amazon Lex Bot 279

Amazon Lex V1 Developer Guide

Note that,

• There is no user data validation at this time. For example, you can provide any city to book a
hotel.

Step 2: Create an Amazon Lex Bot 280

Amazon Lex V1 Developer Guide

• You are providing some of the same information again (destination, pick-up city, pick-up
date, and return date) to book a car. In a dynamic conversation, your bot should initialize
some of this information based on prior input user provided for booking hotel.

In this next section, you create a Lambda function to do some of the user data validation, and
initialization using cross-intent information sharing via session attributes. Then you update the
intent configuration by adding the Lambda function as code hook to perform initialization/
validation of user input and fulfill intent.

Next Step

Step 3: Create a Lambda function

Step 3: Create a Lambda function

In this section you create a Lambda function using a blueprint (lex-book-trip-python) provided
in the AWS Lambda console. You also test the Lambda function by invoking it using sample event
data provided by the console.

This Lambda function is written in Python.

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Use a blueprint. Type lex to find the blueprint, choose the lex-book-trip-python
blueprint.

4. Choose Configure the Lambda function as follows.

• Type a Lambda function name (BookTripCodeHook).

• For the role, choose Create a new role from template(s) and then type a role name.

• Leave the other default values.

5. Choose Create function.

6. If you are using a locale other than English (US) (en-US), update the intent names as described
in Updating a Blueprint for a Specific Locale.

7. Test the Lambda function. You invoke the Lambda function twice, using sample data for both
booking a car and booking a hotel.

Step 3: Create a Lambda function 281

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

Amazon Lex V1 Developer Guide

a. Choose Configure test event from the Select a test event drop down.

b. Choose Amazon Lex Book Hotel from the Sample event template list.

This sample event matches the Amazon Lex request/response model. For more
information, see Using Lambda Functions.

c. Choose Save and test.

d. Verify that the Lambda function ran successfully. The response in this case matches the
Amazon Lex response model.

e. Repeat the step. This time you choose the Amazon Lex Book Car from the Sample event
template list. The Lambda function processes the car reservation.

Next Step

Step 4: Add the Lambda Function as a Code Hook

Step 4: Add the Lambda Function as a Code Hook

In this section, you update the configurations of both the BookCar and BookHotel intents by
adding the Lambda function as a code hook for initialization/validation and fulfillment activities.
Make sure you choose the $LATEST version of the intents because you can only update the
$LATEST version of your Amazon Lex resources.

1. In the Amazon Lex console, choose the BookTrip bot.

2. On the Editor tab, choose the BookHotel intent. Update the intent configuration as follows:

a. Make sure the intent version (next to the intent name) is $LATEST.

b. Add the Lambda function as an initialization and validation code hook as follows:

• In Options, choose Initialization and validation code hook.

• Choose your Lambda function from the list.

c. Add the Lambda function as a fulfillment code hook as follows:

• In Fulfillment, choose AWS Lambda function.

• Choose your Lambda function from the list.

Step 4: Add the Lambda Function as a Code Hook 282

Amazon Lex V1 Developer Guide

• Choose Goodbye message and type a message.

d. Choose Save.

3. On the Editor tab, choose the BookCar intent. Follow the preceding step to add your Lambda
function as validation and fulfillment code hook.

4. Choose Build. The console sends a series of requests to Amazon Lex to save the configurations.

5. Test the bot. Now that you a have a Lambda function performing the initialization, user data
validation and fulfillment, you can see the difference in the user interaction in the following
conversation:

Step 4: Add the Lambda Function as a Code Hook 283

Amazon Lex V1 Developer Guide

For more information about the data flow from the client (console) to Amazon Lex, and from
Amazon Lex to the Lambda function, see Data Flow: Book Hotel Intent.

6. Continue the conversation and book a car as shown in the following image:

Step 4: Add the Lambda Function as a Code Hook 284

Amazon Lex V1 Developer Guide

When you choose to book a car, the client (console) sends a request to Amazon Lex that
includes the session attributes (from the previous conversation, BookHotel). Amazon Lex
passes this information to the Lambda function, which then initializes (that is, it prepopulates)
some of the BookCar slot data (that is, PickUpDate, ReturnDate, and PickUpCity).

Step 4: Add the Lambda Function as a Code Hook 285

Amazon Lex V1 Developer Guide

Note

This illustrates how session attributes can be used to maintain context across intents.
The console client provides the Clear link in the test window that a user can use to
clear any prior session attributes.

For more information about the data flow from the client (console) to Amazon Lex, and from
Amazon Lex to the Lambda function, see Data Flow: Book Car Intent.

Details of the Information Flow

In this exercise, you engaged in a conversation with the Amazon Lex BookTrip bot using the test
window client provided in the Amazon Lex console. This section explains the following:

• The data flow between the client and Amazon Lex.

The section assumes that the client sends requests to Amazon Lex using the PostText runtime
API and shows request and response details accordingly. For more information about the
PostText runtime API, see PostText.

Note

For an example of the information flow between the client and Amazon Lex in which
the client uses the PostContent API, see Step 2a (Optional): Review the Details of the
Spoken Information Flow (Console) .

• The data flow between Amazon Lex and the Lambda function. For more information, see
Lambda Function Input Event and Response Format.

Topics

• Data Flow: Book Hotel Intent

Details of the Information Flow 286

Amazon Lex V1 Developer Guide

• Data Flow: Book Car Intent

Data Flow: Book Hotel Intent

This section explains what happens after each user input.

1. User: "book a hotel"

a. The client (console) sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"book a hotel",
 "sessionAttributes":{}
}

Both the request URI and the body provides information to Amazon Lex:

• Request URI – Provides bot name (BookTrip), bot alias ($LATEST) and the user name.
The trailing text indicates that it is a PostText API request (and not PostContent).

• Request body – Includes the user input (inputText) and empty sessionAttributes.
Initially, this is an empty object and the Lambda function first sets the session
attributes.

b. From the inputText, Amazon Lex detects the intent (BookHotel). This intent is
configured with a Lambda function as a code hook for user data initialization/validation.
Therefore, Amazon Lex invokes that Lambda function by passing the following
information as the event parameter (see Input Event Format):

{
 "messageVersion":"1.0",
 "invocationSource":"DialogCodeHook",
 "userId":"wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes":{
 },
 "bot":{

Details of the Information Flow 287

Amazon Lex V1 Developer Guide

 "name":"BookTrip",
 "alias":null,
 "version":"$LATEST"
 },
 "outputDialogMode":"Text",
 "currentIntent":{
 "name":"BookHotel",
 "slots":{
 "RoomType":null,
 "CheckInDate":null,
 "Nights":null,
 "Location":null
 },
 "confirmationStatus":"None"
 }
}

In addition to the information sent by the client, Amazon Lex also includes the following
additional data:

• messageVersion – Currently Amazon Lex supports only the 1.0 version.

• invocationSource – Indicates the purpose of Lambda function invocation. In this
case, it is to perform user data initialization and validation (at this time Amazon Lex
knows that the user has not provided all the slot data to fulfill the intent).

• currentIntent – All of the slot values are set to null.

c. At this time, all the slot values are null. There is nothing for the Lambda function to
validate. The Lambda function returns the following response to Amazon Lex. For
information about response format, see Response Format.

{
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",\"Location\":null,
\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "dialogAction":{
 "type":"Delegate",
 "slots":{
 "RoomType":null,
 "CheckInDate":null,
 "Nights":null,
 "Location":null

Details of the Information Flow 288

Amazon Lex V1 Developer Guide

 }
 }
}

Note

• currentReservation – The Lambda function includes this session attribute.
Its value is a copy of the current slot information and the reservation type.

Only the Lambda function and the client can update these session attributes.
Amazon Lex simply passes these values.

• dialogAction.type – By setting this value to Delegate, the Lambda
function delegates the responsibility for the next course of action to Amazon
Lex.

If the Lambda function detected anything in the user data validation, it instructs
Amazon Lex what to do next.

d. As per the dialogAction.type, Amazon Lex decides the next course of action—elicit
data from the user for the Location slot. It selects one of the prompt messages ("What
city will you be staying in?") for this slot, according to the intent configuration, and then
sends the following response to the user:

The session attributes are passed to the client.

Details of the Information Flow 289

Amazon Lex V1 Developer Guide

The client reads the response and then displays the message: "What city will you be
staying in?"

2. User: "Moscow"

a. The client sends the following PostText request to Amazon Lex (line breaks added for
readability):

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"Moscow",
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":null,
 \"RoomType\":null,
 \"CheckInDate\":null,
 \"Nights\":null}"
 }
}

In addition to the inputText, the client includes the same currentReservation
session attributes it received.

b. Amazon Lex first interprets the inputText in the context of the current intent (the
service remembers that it had asked the specific user for information about Location
slot). It updates the slot value for the current intent and invokes the Lambda function
using the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":null,\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,

Details of the Information Flow 290

Amazon Lex V1 Developer Guide

 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookHotel",
 "slots": {
 "RoomType": null,
 "CheckInDate": null,
 "Nights": null,
 "Location": "Moscow"
 },
 "confirmationStatus": "None"
 }
}

Note

• invocationSource continues to be DialogCodeHook. In this step, we are just
validating user data.

• Amazon Lex is just passing the session attribute to the Lambda function.

• For currentIntent.slots, Amazon Lex has updated the Location slot to
Moscow.

c. The Lambda function performs the user data validation and determines that Moscow is an
invalid location.

Note

The Lambda function in this exercise has a simple list of valid cities and Moscow is
not on the list. In a production application, you might use a back-end database to
get this information.

It resets the slot value back to null and directs Amazon Lex to prompt the user again for
another value by sending the following response:

{
 "sessionAttributes": {

Details of the Information Flow 291

Amazon Lex V1 Developer Guide

 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":
\"Moscow\",\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "dialogAction": {
 "type": "ElicitSlot",
 "intentName": "BookHotel",
 "slots": {
 "RoomType": null,
 "CheckInDate": null,
 "Nights": null,
 "Location": null
 },
 "slotToElicit": "Location",
 "message": {
 "contentType": "PlainText",
 "content": "We currently do not support Moscow as a valid
 destination. Can you try a different city?"
 }
 }
}

Note

• currentIntent.slots.Location is reset to null.

• dialogAction.type is set to ElicitSlot, which directs Amazon Lex to
prompt the user again by providing the following:

• dialogAction.slotToElicit – slot for which to elicit data from the user.

• dialogAction.message – a message to convey to the user.

d. Amazon Lex notices the dialogAction.type and passes the information to the client in
the following response:

Details of the Information Flow 292

Amazon Lex V1 Developer Guide

The client simply displays the message: "We currently do not support Moscow as a valid
destination. Can you try a different city?"

3. User: "Chicago"

a. The client sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"Chicago",
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":\"Moscow\",
 \"RoomType\":null,
 \"CheckInDate\":null,
 \"Nights\":null}"
 }
}

b. Amazon Lex knows the context, that it was eliciting data for the Location slot. In this
context, it knows the inputText value is for the Location slot. It then invokes the
Lambda function by sending the following event:

Details of the Information Flow 293

Amazon Lex V1 Developer Guide

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":Moscow,\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookHotel",
 "slots": {
 "RoomType": null,
 "CheckInDate": null,
 "Nights": null,
 "Location": "Chicago"
 },
 "confirmationStatus": "None"
 }
}

Amazon Lex updated the currentIntent.slots by setting the Location slot to
Chicago.

c. According to the invocationSource value of DialogCodeHook, the Lambda function
performs user data validation. It recognizes Chicago as a valid slot value, updates the
session attribute accordingly, and then returns the following response to Amazon Lex.

{
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":
\"Chicago\",\"RoomType\":null,\"CheckInDate\":null,\"Nights\":null}"
 },
 "dialogAction": {
 "type": "Delegate",
 "slots": {
 "RoomType": null,

Details of the Information Flow 294

Amazon Lex V1 Developer Guide

 "CheckInDate": null,
 "Nights": null,
 "Location": "Chicago"
 }
 }
}

Note

• currentReservation – The Lambda function updates this session attribute by
setting the Location to Chicago.

• dialogAction.type – Is set to Delegate. User data was valid, and the
Lambda function directs Amazon Lex to choose the next course of action.

d. According to dialogAction.type, Amazon Lex chooses the next course of action.
Amazon Lex knows that it needs more slot data and picks the next unfilled slot
(CheckInDate) with the highest priority according to the intent configuration. It selects
one of the prompt messages ("What day do you want to check in?") for this slot according
to the intent configuration and then sends the following response back to the client:

The client displays the message: "What day do you want to check in?"

Details of the Information Flow 295

Amazon Lex V1 Developer Guide

4. The user interaction continues—the user provides data, the Lambda function validates data,
and then delegates the next course of action to Amazon Lex. Eventually the user provides all
of the slot data, the Lambda function validates all of the user input, and then Amazon Lex
recognizes it has all the slot data.

Note

In this exercise, after the user provides all of the slot data, the Lambda function
computes the price of the hotel reservation and returns it as another session attribute
(currentReservationPrice).

At this point, the intent is ready to be fulfilled, but the BookHotel intent is configured with
a confirmation prompt requiring user confirmation before Amazon Lex can fulfill the intent.
Therefore, Amazon Lex sends the following message to the client requesting confirmation
before booking the hotel:

The client display the message: "Okay, I have you down for a 5 night in Chicago starting
2016-12-18. Shall I book the reservation?"

5. User: "yes"

a. The client sends the following PostText request to Amazon Lex:

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"

Details of the Information Flow 296

Amazon Lex V1 Developer Guide

"Content-Encoding":"amz-1.0"

{
 "inputText":"Yes",
 "sessionAttributes":{
 "currentReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":\"Chicago\",
 \"RoomType\":\"queen\",
 \"CheckInDate\":\"2016-12-18\",
 \"Nights\":\"5\"}",
 "currentReservationPrice":"1195"
 }
}

b. Amazon Lex interprets the inputText in the context of confirming the current intent.
Amazon Lex understands that the user wants to proceed with the reservation. This time
Amazon Lex invokes the Lambda function to fulfill the intent by sending the following
event. By setting the invocationSource to FulfillmentCodeHook in the event,
it sends to the Lambda function. Amazon Lex also sets the confirmationStatus to
Confirmed.

{
 "messageVersion": "1.0",
 "invocationSource": "FulfillmentCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Hotel\",\"Location\":
\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights\":
\"5\"}",
 "currentReservationPrice": "956"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookHotel",
 "slots": {
 "RoomType": "queen",
 "CheckInDate": "2016-12-18",
 "Nights": "5",

Details of the Information Flow 297

Amazon Lex V1 Developer Guide

 "Location": "Chicago"
 },
 "confirmationStatus": "Confirmed"
 }
}

Note

• invocationSource – This time, Amazon Lex set this value to
FulfillmentCodeHook, directing the Lambda function to fulfill the intent.

• confirmationStatus – Is set to Confirmed.

c. This time, the Lambda function fulfills the BookHotel intent, Amazon Lex completes the
reservation, and then it returns the following response:

{
 "sessionAttributes": {
 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights
\":\"5\"}"
 },
 "dialogAction": {
 "type": "Close",
 "fulfillmentState": "Fulfilled",
 "message": {
 "contentType": "PlainText",
 "content": "Thanks, I have placed your reservation. Please let me
 know if you would like to book a car rental, or another hotel."
 }
 }
}

Note

• lastConfirmedReservation – Is a new session attribute that
the Lambda function added (instead of the currentReservation,
currentReservationPrice).

• dialogAction.type – The Lambda function sets this value to Close,
indicating that Amazon Lex to not expect a user response.

Details of the Information Flow 298

Amazon Lex V1 Developer Guide

• dialogAction.fulfillmentState – Is set to Fulfilled and includes an
appropriate message to convey to the user.

d. Amazon Lex reviews the fulfillmentState and sends the following response to the
client:

Note

• dialogState – Amazon Lex sets this value to Fulfilled.

• message – Is the same message that the Lambda function provided.

The client displays the message.

Data Flow: Book Car Intent

The BookTrip bot in this exercise supports two intents (BookHotel and BookCar). After booking a
hotel, the user can continue the conversation to book a car. As long as the session hasn't timed out,
in each subsequent request the client continues to send the session attributes (in this example, the
lastConfirmedReservation). The Lambda function can use this information to initialize slot
data for the BookCar intent. This shows how you can use session attributes in cross-intent data
sharing.

Details of the Information Flow 299

Amazon Lex V1 Developer Guide

Specifically, when the user chooses the BookCar intent, the Lambda function uses relevant
information in the session attribute to prepopulate slots (PickUpDate, ReturnDate, and PickUpCity)
for the BookCar intent.

Note

The Amazon Lex console provides the Clear link that you can use to clear any prior session
attributes.

Follow the steps in this procedure to continue the conversation.

1. User: "also book a car"

a. The client sends the following PostText request to Amazon Lex.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"also book a car",
 "sessionAttributes":{
 "lastConfirmedReservation":""{\"ReservationType\":\"Hotel\",
 \"Location\":\"Chicago\",
 \"RoomType\":\"queen\",
 \"CheckInDate\":\"2016-12-18\",
 \"Nights\":\"5\"}"
 }
}

The client includes the lastConfirmedReservation session attribute.

b. Amazon Lex detects the intent (BookCar) from the inputText. This intent is also
configured to invoke the Lambda function to perform the initialization and validation of
the user data. Amazon Lex invokes the Lambda function with the following event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {

Details of the Information Flow 300

Amazon Lex V1 Developer Guide

 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights
\":\"5\"}"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookCar",
 "slots": {
 "PickUpDate": null,
 "ReturnDate": null,
 "DriverAge": null,
 "CarType": null,
 "PickUpCity": null
 },
 "confirmationStatus": "None"
 }
}

Note

• messageVersion – Currently Amazon Lex supports the 1.0 version only.

• invocationSource – Indicates the purpose of invocation is to perform
initialization and user data validation.

• currentIntent – It includes the intent name and the slots. At this time, all slot
values are null.

c. The Lambda function notices all null slot values with nothing to validate. However, it uses
session attributes to initialize some of the slot values (PickUpDate, ReturnDate, and
PickUpCity), and then returns the following response:

{
 "sessionAttributes": {

Details of the Information Flow 301

Amazon Lex V1 Developer Guide

 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights
\":\"5\"}",
 "currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity
\":null,\"PickUpDate\":null,\"ReturnDate\":null,\"CarType\":null}",
 "confirmationContext": "AutoPopulate"
 },
 "dialogAction": {
 "type": "ConfirmIntent",
 "intentName": "BookCar",
 "slots": {
 "PickUpCity": "Chicago",
 "PickUpDate": "2016-12-18",
 "ReturnDate": "2016-12-22",
 "CarType": null,
 "DriverAge": null
 },
 "message": {
 "contentType": "PlainText",
 "content": "Is this car rental for your 5 night stay in Chicago on
 2016-12-18?"
 }
 }
}

Note

• In addition to the lastConfirmedReservation, the Lambda
function includes more session attributes (currentReservation and
confirmationContext).

• dialogAction.type is set to ConfirmIntent, which informs Amazon Lex
that a yes, no reply is expected from the user (the confirmationContext set
to AutoPopulate, the Lambda function knows that the yes/no user reply is to
obtain user confirmation of the initialization the Lambda function performed
(auto populated slot data).

The Lambda function also includes in the response an informative message in
the dialogAction.message for Amazon Lex to return to the client.

Details of the Information Flow 302

Amazon Lex V1 Developer Guide

Note

The term ConfirmIntent (value of the dialogAction.type) is not
related to any bot intent. In the example, Lambda function uses this
term to direct Amazon Lex to get a yes/no reply from the user.

d. According to the dialogAction.type, Amazon Lex returns the following response to
the client:

The client displays the message: "Is this car rental for your 5 night stay in Chicago on
2016-12-18?"

2. User: "yes"

a. The client sends the following PostText request to Amazon Lex.

POST /bot/BookTrip/alias/$LATEST/user/wch89kjqcpkds8seny7dly5x3otq68j3/text
"Content-Type":"application/json"
"Content-Encoding":"amz-1.0"

{
 "inputText":"yes",
 "sessionAttributes":{
 "confirmationContext":"AutoPopulate",
 "currentReservation":"{\"ReservationType\":\"Car\",

Details of the Information Flow 303

Amazon Lex V1 Developer Guide

 \"PickUpCity\":null,
 \"PickUpDate\":null,
 \"ReturnDate\":null,
 \"CarType\":null}",
 "lastConfirmedReservation":"{\"ReservationType\":\"Hotel\",
 \"Location\":\"Chicago\",
 \"RoomType\":\"queen\",
 \"CheckInDate\":\"2016-12-18\",
 \"Nights\":\"5\"}"
 }
}

b. Amazon Lex reads the inputText and it knows the context (asked the user to confirm
the auto population). Amazon Lex invokes the Lambda function by sending the following
event:

{
 "messageVersion": "1.0",
 "invocationSource": "DialogCodeHook",
 "userId": "wch89kjqcpkds8seny7dly5x3otq68j3",
 "sessionAttributes": {
 "confirmationContext": "AutoPopulate",
 "currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity
\":null,\"PickUpDate\":null,\"ReturnDate\":null,\"CarType\":null}",
 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights
\":\"5\"}"
 },
 "bot": {
 "name": "BookTrip",
 "alias": null,
 "version": "$LATEST"
 },
 "outputDialogMode": "Text",
 "currentIntent": {
 "name": "BookCar",
 "slots": {
 "PickUpDate": "2016-12-18",
 "ReturnDate": "2016-12-22",
 "DriverAge": null,
 "CarType": null,
 "PickUpCity": "Chicago"
 },

Details of the Information Flow 304

Amazon Lex V1 Developer Guide

 "confirmationStatus": "Confirmed"
 }
}

Because the user replied Yes, Amazon Lex sets the confirmationStatus to Confirmed.

c. From the confirmationStatus, the Lambda function knows that the prepopulated
values are correct. The Lambda function does the following:

• Updates the currentReservation session attribute to slot value it had prepopulated.

• Sets the dialogAction.type to ElicitSlot

• Sets the slotToElicit value to DriverAge.

The following response is sent:

{
 "sessionAttributes": {
 "currentReservation": "{\"ReservationType\":\"Car\",\"PickUpCity
\":\"Chicago\",\"PickUpDate\":\"2016-12-18\",\"ReturnDate\":\"2016-12-22\",
\"CarType\":null}",
 "lastConfirmedReservation": "{\"ReservationType\":\"Hotel\",\"Location
\":\"Chicago\",\"RoomType\":\"queen\",\"CheckInDate\":\"2016-12-18\",\"Nights
\":\"5\"}"
 },
 "dialogAction": {
 "type": "ElicitSlot",
 "intentName": "BookCar",
 "slots": {
 "PickUpDate": "2016-12-18",
 "ReturnDate": "2016-12-22",
 "DriverAge": null,
 "CarType": null,
 "PickUpCity": "Chicago"
 },
 "slotToElicit": "DriverAge",
 "message": {
 "contentType": "PlainText",
 "content": "How old is the driver of this car rental?"
 }
 }

Details of the Information Flow 305

Amazon Lex V1 Developer Guide

}

d. Amazon Lex returns following response:

The client displays the message "How old is the driver of this car rental?" and the
conversation continues.

Using a Response Card

In this exercise, you extend Getting Started Exercise 1 by adding a response card. You create a bot
that supports the OrderFlowers intent, and then update the intent by adding a response card for
the FlowerType slot. In addition to the following prompt for the FlowerType slot, the user can
choose the type of flowers from the response card:

What type of flowers would you like to order?

The following is the response card:

Example: Using a Response Card 306

Amazon Lex V1 Developer Guide

The bot user can either type the text or choose from the list of flower types. This response card
is configured with an image, which appears in the client as shown. For more information about
response cards, see Response Cards.

To create and test a bot with a response card:

1. Follow Getting Started Exercise 1 to create and test an OrderFlowers bot. You must complete
steps 1, 2, and 3. You don't need to add a Lambda function to test the response card. For
instructions, see Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console).

2. Update the bot by adding the response card, and then publish a version. When you publish a
version, specify an alias (BETA) to point to it.

a. In the Amazon Lex console, choose your bot.

b. Choose the OrderFlowers intent.

c. Choose the settings gear icon next to the "What type of flowers" Prompt to configure a
response card for the FlowerType, as shown in the following image.

Example: Using a Response Card 307

Amazon Lex V1 Developer Guide

d. Give the card a title and configure three buttons as shown in the following screen shot.
You can optionally add an image to the response card, provided you have an image URL. If
you are deploying your bot using Twilio SMS, you must provide an image URL.

Example: Using a Response Card 308

Amazon Lex V1 Developer Guide

e. Choose Save to save the response card.

f. Choose Save intent to save the intent configuration.

g. To build the bot, choose Build.

h. To publish a bot version, choose Publish. Specify BETA as an alias that points to the bot
version. For information about versioning, see Versioning and Aliases.

3. Deploy the bot on a messaging platform:

Example: Using a Response Card 309

Amazon Lex V1 Developer Guide

• Deploy the bot on the Facebook Messenger platform and test the integration. For
instructions, see Integrating an Amazon Lex Bot with Facebook Messenger. When you order
flowers, the message window shows the response card so you can choose a flower type.

• Deploy the bot on the Slack platform and test the integration. For instructions, see
Integrating an Amazon Lex Bot with Slack . When you order flowers, the message window
shows the response card so you can choose a flower type.

• Deploy the bot on the Twilio SMS platform. For instructions, see Integrating an Amazon
Lex Bot with Twilio Programmable SMS . When you order flowers, the message from Twilio
shows the image from the response card. Twilio SMS does not support buttons in the
response.

Updating Utterances

In this exercise, you add additional utterances to those you created in Getting Started Exercise 1.
You use the Monitoring tab in the Amazon Lex console to view utterances that your bot did not
recognize. To improve the experience for your users, you add those utterances to the bot.

Utterance statistics are not generated under the following conditions:

• The childDirected field was set to true when the bot was created.

• You are using slot obfuscation with one or more slots.

• You opted out of participating in improving Amazon Lex.

Note

Utterance statistics are generated once a day. You can see the utterance that was not
recognized, how many times it was heard, and the last date and time that the utterance
was heard. It can take up to 24 hours for missed utterances to appear in the console.

You can see utterances for different versions of your bot. To change the version of your bot that
you are seeing utterances for, choose a different version from the drop-down next to the bot name.

Updating Utterances 310

Amazon Lex V1 Developer Guide

To view and add missed utterances to a bot:

1. Follow the first step of Getting Started Exercise 1 to create and test an OrderFlowers bot.
For instructions, see Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console).

2. Test the bot by typing the following utterances in the Test Bot window. Type each utterance
several times. The example bot doesn't recognize the following utterances:

• Order flowers

• Get me flowers

• Please order flowers

• Get me some flowers

3. Wait for Amazon Lex to gather usage data about the missed utterances. Utterance data is
generated once per day, generally overnight.

4. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

5. Choose the OrderFlowers bot.

6. Choose the Monitoring tab, and then choose Utterances from the left menu and then choose
the Missed button. The following pane shows a maximum of 100 missed utterances.

7. To choose the missed utterances that you want to add to the bot, select the check box next to
them. To add the utterance to the $LATEST version of the intent, choose the down arrow next
to the Add utterance to intent dropdown, and then choose the intent.

Updating Utterances 311

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

8. To rebuild your bot, choose Build and then Build again to re-build your bot.

9. To verify that your bot recognizes the new utterances, use the Test Bot pane.

Integrating with a Web site

In this example you integrate a bot with a Web site using text and voice. You use JavaScript and
AWS services to build an interactive experience for visitors to your Web site. You can choose from
these examples documented on the AWS AI Blog:

• Deploy a Web UI for Your Chatbot—Demonstrates a full-featured Web UI that provides a Web
client for Amazon Lex chatbots. You can use this to learn about Web clients, or as a building
block for your own application.

• "Greetings, visitor!"—Engage Your Web Users with Amazon Lex—Demonstrates using Amazon
Lex, the AWS SDK for JavaScript in the Browser, and Amazon Cognito to create a conversational
experience on your Web site.

• Capturing Voice Input in a Browser and Sending it to Amazon Lex—Demonstrates embedding a
voice-based chatbot in a Web site using the SDK for JavaScript in the Browser. The application
records audio, sends the audio to Amazon Lex, and then plays the response.

Call Center Agent Assistant

In this tutorial, you use Amazon Lex with Amazon Kendra to build an agent assist bot that assists
customer support agents and publish it as a web application. Amazon Kendra is an enterprise
search service that uses machine learning to search through documents to find answers. For more
information about Amazon Kendra, see the Amazon Kendra Developer Guide.

Amazon Lex bots are widely used in call centers as the first point of contact for customers. A bot is
often capable of resolving customer questions. When a bot can't answer a question, it transfers the
conversation to a customer support employee.

In this tutorial, we create an Amazon Lex bot that agents use to answer customer queries in real
time. By reading the answers that the bot provides, the agent is spared from looking up answers
manually.

Integrating with a Web site 312

https://aws.amazon.com/blogs/ai/
https://aws.amazon.com/blogs/machine-learning/deploy-a-web-ui-for-your-chatbot/
https://aws.amazon.com/blogs/ai/greetings-visitor-engage-your-web-users-with-amazon-lex/
https://aws.amazon.com/blogs/ai/capturing-voice-input-in-a-browser/
https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html

Amazon Lex V1 Developer Guide

The bot and web application that you create in this tutorial helps agents respond to customers
efficiently and accurately by quickly providing the right resources. The following diagram shows
how the web application works.

As the diagram shows, the Amazon Kendra index of documents is stored in an Amazon Simple
Storage Service (Amazon S3) bucket. If you don't already have an S3 bucket, you can set one up
when you create the Amazon Kendra index. In addition to Amazon S3, you will use Amazon Cognito
for this tutorial. Amazon Cognito manages permissions for deploying the bot as a web application.

In this tutorial, you create an Amazon Kendra index that provides answers to customer questions,
create the bot and add intents that allow it to suggest answers based on the conversation with
the customer, set up Amazon Cognito to manage access permissions, and deploy the bot as a web
application.

Estimated time: 75 minutes

Estimated cost: $2.50 per hour for an Amazon Kendra index and $0.75 for 1000 Amazon Lex
requests. Your Amazon Kendra index continues to run after you are finished with this exercise. Be
sure to delete it to avoid unnecessary costs.

Note: Make sure that you choose the same AWS Region for all the services used in this tutorial.

Topics

• Step 1: Create an Amazon Kendra Index

• Step 2: Create an Amazon Lex Bot

• Step 3: Add a Custom and Built-in Intent

• Step 4: Set up Amazon Cognito

• Step 5: Deploy Your Bot as a Web Application

Call Center Agent Assistant 313

Amazon Lex V1 Developer Guide

• Step 6: Use the Bot

Step 1: Create an Amazon Kendra Index

Begin by creating an Amazon Kendra index of documents that answer customer questions. An
index provides a search API for client queries. You create the index from source documents.
Amazon Kendra returns answers it finds in indexed documents to the bot, which displays them to
the agent.

The quality and accuracy of the responses suggested by Amazon Kendra depend on the documents
that you index. Documents should include files that are frequently accessed by the agent and must
be stored in an S3 bucket. You can index unstructured and semi-structured data in .html, Microsoft
Office (.doc, .ppt), PDF, and text formats.

To create an Amazon Kendra index, see Getting started with an S3 bucket (console) in the Amazon
Kendra Developer Guide.

To add questions and answers (FAQs) that help answer customer queries, see Adding questions and
answers in the Amazon Kendra Developer Guide. For this tutorial, use the ML_FAQ.csv file on GitHub.

Next step

Step 2: Create an Amazon Lex Bot

Step 2: Create an Amazon Lex Bot

Amazon Lex provides an interface between the call center agent and the Amazon Kendra
index. It keeps track of the conversation between the agent and the customer and calls the
AMAZON.KendraSearchIntent intent based on the questions the customer asks. An intent is an
action that the user wants to perform.

Amazon Kendra searches the indexed documents and returns an answer to Amazon Lex that it
displays in the bot. This answer is visible only to the agent.

To create an agent assistant bot

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. In the navigation pane, choose Bots.

3. Choose Create.

Step 1: Create an Amazon Kendra Index 314

https://docs.aws.amazon.com/kendra/latest/dg/gs-console.html
https://docs.aws.amazon.com/kendra/latest/dg/in-creating-faq.html
https://docs.aws.amazon.com/kendra/latest/dg/in-creating-faq.html
https://github.com/awsdocs/amazon-lex-developer-guide/blob/master/example_apps/agent_assistance_bot/ML_FAQ.csv
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

4. Choose Custom bot and configure the bot.

a. Bot name – Enter a name that indicates the bot's purpose, such as AgentAssistBot.

b. Output voice – Choose None.

c. Session timeout – Enter 5.

d. COPPA – Choose No.

5. Choose Create. After creating the bot, Amazon Lex displays the bot editor tab.

Next step

Step 3: Add a Custom and Built-in Intent

Step 3: Add a Custom and Built-in Intent

An intent represents an action that the call center agent wants the bot to perform. In this case, the
agent wants the bot to suggest responses and helpful resources based on the agent's conversation
with the customer.

Amazon Lex has two types of intents: custom intents and built-in intents.
AMAZON.KendraSearchIntent is a built-in intent. The bot uses the
AMAZON.KendraSearchIntent intent to query the index and display the responses suggested by
Amazon Kendra.

The bot in this example doesn't need a custom intent. However, to build the bot, you must create
at least one custom intent with at least one sample utterance. This intent is required only to
build your agent assistant bot. It doesn’t perform any other function. The utterance for the
intent must not answer any of the questions that the customer might ask. This ensures that the
AMAZON.KendraSearchIntent is called to answer customer queries. For more information, see
AMAZON.KendraSearchIntent.

To create the required custom intent

1. On the Getting started with your bot page, choose Create intent.

2. For Add intent, choose Create intent.

3. In the Create intent dialog box, enter a descriptive name for the intent, such as
RequiredIntent.

4. For Sample utterances, enter a descriptive utterance, such as Required utterance.

Step 3: Add a Custom and Built-in Intent 315

Amazon Lex V1 Developer Guide

5. Choose Save intent.

To add the AMAZON.KendraSearchIntent intent and response message

1. In the navigation pane, choose the plus sign (+) next to Intents.

2. Choose Search existing intents.

3. In the Search intents box, enter AMAZON.KendraSearchIntent, then choose it from the list.

4. Give the intent a descriptive name, such as AgentAssistSearchIntent, then choose Add.

5. In the intent editor, choose Amazon Kendra query to open the query options.

6. Choose the index that you want the intent to search,

7. In the Response section, add the following three messages to a message group.

I found an answer for the customer query: ((x-amz-lex:kendra-search-response-
question_answer-question-1)) and the answer is ((x-amz-lex:kendra-search-response-
question_answer-answer-1)).
I found an excerpt from a helpful document: ((x-amz-lex:kendra-search-response-
document-1)).
I think this answer will help the customer: ((x-amz-lex:kendra-search-response-
answer-1)).

8. Choose Save intent.

9. Choose Build to build the bot.

Next step

Step 4: Set up Amazon Cognito

Step 4: Set up Amazon Cognito

To manage permissions and users for the web application, you need to set up Amazon Cognito.
Amazon Cognito ensures that the web application is secure and has access control. Amazon
Cognito uses identity pools to provide AWS credentials that grant your users access to other AWS
services. For this tutorial, it provides access to Amazon Lex.

When creating an identity pool, Amazon Cognito provides you with AWS Identity and Access
Management (IAM) roles for authenticated and unauthenticated users. You modify the IAM roles by
adding policies that grant access to Amazon Lex.

Step 4: Set up Amazon Cognito 316

Amazon Lex V1 Developer Guide

To set up Amazon Cognito

1. Sign into the AWS Management Console and open the Amazon Cognito console at https://
console.aws.amazon.com/cognito/.

2. Choose Manage Identity Pools.

3. Choose Create new identity pool.

4. Configure the identity pool.

a. Identity pool name – Enter a name that indicates the pool's purpose, such as BotPool.

b. In the Unauthenticated identities section, choose Enable access to unauthenticated
identities.

5. Choose Create Pool.

6. On the Identify the IAM roles to use with your new identity pool page, choose View Details.

7. Record the IAM role names. You will modify them later.

8. Choose Allow.

9. On the Getting Started with Amazon Cognito page, for Platform, choose JavaScript.

10. In the Get AWS Credentials section, find and record the Identity pool ID.

11. To allow access to Amazon Lex, modify the authenticated and unauthenticated IAM roles.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane, under Access Management, choose Roles.

c. In the search box, enter the name of the authenticated IAM role and choose the checkbox
next to it.

i. Choose Attach policies.

ii. In the search box, enter AmazonLexRunBotsOnly and choose the checkbox next to
it.

iii. Choose Attach policy.

d. Enter the name of the unauthenticated IAM role in the search box and choose the
checkbox next to it.

i. Choose Attach policies.

ii. In the search box, enter AmazonLexRunBotsOnly and choose the checkbox next to
it.

Step 4: Set up Amazon Cognito 317

https://console.aws.amazon.com/cognito
https://console.aws.amazon.com/cognito
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Lex V1 Developer Guide

iii. Choose Attach policy.

Next step

Step 5: Deploy Your Bot as a Web Application

Step 5: Deploy Your Bot as a Web Application

To deploy your bot as a web application

1. Download the repository at https://github.com/awsdocs/amazon-lex-developer-guide/blob/
master/example_apps/agent_assistance_bot/ to your computer.

2. Navigate to the downloaded repository and open the index.html file in an editor.

3. Make the following changes.

a. In the AWS.config.credentials section, enter your Region name and your identity
pool ID.

b. In the Amazon Lex runtime parameters section, enter the bot name.

c. Save the file.

Step 6: Use the Bot

For demo purposes, you provide input to the bot as the customer and as the agent. To differentiate
between the two, questions asked by the customer begin with “Customer:” and answers provided
by the agent begin with “Agent:”. You can choose from a menu of suggested inputs.

Run your web application by opening index.html to engage in a conversation similar to the
following image with your bot:

Step 5: Deploy Your Bot as a Web Application 318

https://github.com/awsdocs/amazon-lex-developer-guide/blob/master/example_apps/agent_assistance_bot/
https://github.com/awsdocs/amazon-lex-developer-guide/blob/master/example_apps/agent_assistance_bot/

Amazon Lex V1 Developer Guide

The pushChat() function in the index.html file is explained below.

 var endConversationStatement = "Customer: I have no more questions. Thank
 you."
 // If the agent has to send a message, start the message with 'Agent'
 var inputText = document.getElementById('input');
 if (inputText && inputText.value && inputText.value.trim().length > 0 &&
 inputText.value[0]=='Agent') {
 showMessage(inputText.value, 'agentRequest','conversation');
 inputText.value = "";
 }
 // If the customer has to send a message, start the message with 'Customer'
 if(inputText && inputText.value && inputText.value.trim().length > 0 &&
 inputText.value[0]=='Customer') {
 // disable input to show we're sending it
 var input = inputText.value.trim();
 inputText.value = '...';
 inputText.locked = true;
 customerInput = input.substring(2);

Step 6: Use the Bot 319

Amazon Lex V1 Developer Guide

 // Send it to the Lex runtime
 var params = {
 botAlias: '$LATEST',
 botName: 'KendraTestBot',
 inputText: customerInput,
 userId: lexUserId,
 sessionAttributes: sessionAttributes
 };

 showMessage(input, 'customerRequest', 'conversation');
 if(input== endConversationStatement){
 showMessage('Conversation
 Ended.','conversationEndRequest','conversation');
 }
 lexruntime.postText(params, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 showMessage('Error: ' + err.message + ' (see console for
 details)', 'lexError', 'conversation1')
 }

 if (data &&input!=endConversationStatement) {
 // capture the sessionAttributes for the next cycle
 sessionAttributes = data.sessionAttributes;

 showMessage(data, 'lexResponse', 'conversation1');
 }
 // re-enable input
 inputText.value = '';
 inputText.locked = false;
 });
 }
 // we always cancel form submission
 return false;

When you provide input as a customer, the Amazon Lex runtime API sends it to Amazon Lex.

The showMessage(daText, senderRequest, displayWindow) fuction displays the
conversation between the agent and the customer in the chat window. Responses suggested by
Amazon Kendra are shown in an adjacent window. The conversation ends when customer says “I
have no more questions. Thank you.”

Step 6: Use the Bot 320

Amazon Lex V1 Developer Guide

Note: Please delete your Amazon Kendra index when not in use.

Step 6: Use the Bot 321

Amazon Lex V1 Developer Guide

Migrating a bot

The Amazon Lex V2 API uses an updated information architecture that enables simplified resource
versioning and support for multiple languages in a bot. For more information, see the Migration
guide in the Amazon Lex V2 Developer Guide.

To use these new features, you need to migrate your bot. When you migrate a bot, Amazon Lex
provides the following:

• Migration copies your custom intents and slot types to the Amazon Lex V2 bot.

• You can add multiple languages to the same Amazon Lex V2 bot. In Amazon Lex V1 you create
a separate bot for each language. You can migrate multiple Amazon Lex V1 bots, each using a
different language, to one Amazon Lex V2 bot.

• Amazon Lex maps Amazon Lex V1 built-in slot types and intents to Amazon Lex V2 built-in slot
types and intents. If a built-in can't be migrated, Amazon Lex returns a message that tells you
what to do next.

The migration process doesn't migrate the following:

• Aliases

• Amazon Kendra indexes

• AWS Lambda functions

• Conversation log settings

• Messaging channels such as Slack

• Tags

To migrate a bot, your user or role must have IAM permission for both Amazon Lex and Amazon
Lex V2 API operations. For the required permissions, see Allow a user to migrate a bot to Amazon
Lex V2 APIs.

Migrating a bot (Console)

Use the Amazon Lex V1 console to migrate the structure of a bot to an Amazon Lex V2 bot.

Migrating a bot (Console) 322

https://docs.aws.amazon.com/lexv2/latest/dg/migration.html
https://docs.aws.amazon.com/lexv2/latest/dg/migration.html

Amazon Lex V1 Developer Guide

To use the console to migrate a bot to the Amazon Lex V2 API

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the left menu, choose Migration tool.

3. From the list of bots, choose the bot that you want to migrate and then choose Migrate.

4. Choose the version of the bot that you want to migrate, then enter the name of the bot to
migrate to. If you enter the name of an existing Amazon Lex V2 bot, the Amazon Lex V1
bot is migrated to the language shown in the details and overwrites the Draft version of the
language.

5. Choose Next.

6. Choose the IAM role that Amazon Lex uses to run the Amazon Lex V2 API version of the bot.
You can choose to create a new role with the minimum permissions required to run the bot, or
you can choose an existing IAM role.

7. Choose Next.

8. Review the settings for migration. If they look OK, choose Start migration.

After you start the migration process, you are returned to the migration tool start page. You can
monitor the progress of the migration in the History table. When the Migration status column says
Complete the migration is finished.

Amazon Lex uses the StartImport operation in the Amazon Lex V2 API to import the migrated
bot. You'll see an entry in the Amazon Lex V2 console import history table for each migration.

During the migration, Amazon Lex may find resources in the bot that can't be migrated. You get an
error or warning message for each resource that can't be migrated. Each message includes a link to
documentation that explains how to resolve the issue.

Migrating a Lambda function

Amazon Lex V2 changes the way that Lambda functions are defined for a bot. It only allows one
Lambda function in an alias for each language in a bot. For more information on migrating your
Lambda functions, see Migrating a Lambda function from Amazon Lex V1 to Amazon Lex V2.

Migrating a Lambda function 323

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/

Amazon Lex V1 Developer Guide

Migration messages

During migration, Amazon Lex may find resources, such as built-in slot types, that it can't migrate
to the equivalent Amazon Lex V2 resource. When this happens, Amazon Lex returns a migration
message that describes what happened and provides a link to the documentation that tells you
how to fix the migration issue. The following sections describe the issues that might arise when you
are migrating a bot and how to fix the issue.

Topics

• Built-in intent

• Built-in slot type

• Conversation logs

• Message groups

• Prompts and phrases

• Other Amazon Lex V1 features

Built-in intent

When you use a built-in intent that is not supported in Amazon Lex V2, the intent is mapped to
a custom intent in your Amazon Lex V2 bot. The custom intent doesn't contain utterances. To
continue using the intent, add sample utterances.

Built-in slot type

Any migrated slot that uses a slot type that is not supported in Amazon Lex V2 won't be given a
slot type value. To use this slot:

• Create a custom slot type

• Add slot type values that are expected for the slot type

• Update the slot to use the new custom slot type

Conversation logs

Migration doesn't update the conversation log settings of the Amazon Lex V2 bot.

Migration messages 324

Amazon Lex V1 Developer Guide

To configure conversation logs

1. Open the Amazon Lex V2 console at https://console.aws.amazon.com/lexv2 .

2. From the list of bots, choose the bot whose conversation logs you want to configure.

3. From the left menu, choose Aliases, and then choose an alias from the list.

4. In the Conversation logs section, choose Manage conversation logs to configure conversation
logs for the bot alias.

Message groups

Amazon Lex V2 supports only one message and two alternative messages per message group. If
you have more than three messages per message group in an Amazon Lex V1 bot, only the first
three messages are migrated. To use more messages in a message group, use a Lambda function to
output various messages.

Prompts and phrases

Amazon Lex V2 uses a different mechanism for follow up, clarification, and hang up prompts.

For follow up prompts, use context carryover to switch to a different intent after fulfillment.

For example, suppose that you have an intent to book a car rental that is configured to return a
output context called book_car_fulfilled. When the intent is fulfilled, Amazon Lex sets the
output context variable to book_car_fulfilled. Since book_car_fulfilled is an active
context, an intent with book_car_fulfilled as an input context is considered for recognition,
as long as the user utterance is recognized as an attempt to elicit that intent. You can use this
for intents that only make sense after booking a car, such as emailing a receipt or modifying a
reservation.

Amazon Lex V2 does not support clarification prompts and hang up phrases (abort statements).
Amazon Lex V2 bots contain a default fallback intent that is invoked if no intents are matched. To
send a clarification prompt with retries, configure a Lambda function and enable the dialog code
hook in the fallback intent. The Lambda function can output a clarification prompt as a response
and the retry value in a session attribute. If the retry value exceeds the maximum number of
retries, you can output a hang up phrase and close the conversation.

Message groups 325

https://console.aws.amazon.com/lexv2

Amazon Lex V1 Developer Guide

Other Amazon Lex V1 features

The migration tool supports only migration of Amazon Lex V1 bots and their underlying
intents, slot types, and slots. For other features, see the following topics in the Amazon Lex V2
documentation.

• Bot aliases: Aliases

• Bot channels: Deploying an Amazon Lex V2 bot on a messaging platform

• Conversation log settings: Monitoring with conversation logs

• Amazon Kendra indexes: AMAZON.KendraSearchIntent

• Lambda functions: Using an AWS Lambda function

• Tags: Tagging resources

Migrating a Lambda function from Amazon Lex V1 to Amazon
Lex V2

Amazon Lex V2 allows only one Lambda function for each language in a bot. The Lambda function
and its settings are configured for the bot alias that you use at runtime.

The Lambda function is invoked for all intents in that language if dialog and fulfillment code hooks
are enabled for the intent.

Amazon Lex V2 Lambda functions have a different input and output message format from Amazon
Lex V1. These are the differences in the Lambda function input format.

• Amazon Lex V2 replaces the currentIntent and alternativeIntents structures with the
interpretations structure. Each interpretation contains an intent, the NLU confidence score
for the intent, and an optional sentiment analysis.

• Amazon Lex V2 moves the activeContexts, sessionAttributes in Amazon Lex V1 to the
unified sessionState structure. This structure provides information about the current state of
the conversation, including the originating request ID.

• Amazon Lex V2 doesn't return the recentIntentSummaryView. Use the information in the
sessionState structure instead.

• The Amazon Lex V2 input provides the botId and localeId in the bot attribute.

Other Amazon Lex V1 features 326

https://docs.aws.amazon.com/lexv2/latest/dg/aliases.html
https://docs.aws.amazon.com/lexv2/latest/dg/deploying-messaging-platform.html
https://docs.aws.amazon.com/lexv2/latest/dg/monitoring-logs.html
https://docs.aws.amazon.com/lexv2/latest/dg/built-in-intent-kendra-search.html
https://docs.aws.amazon.com/lexv2/latest/dg/lambda.html
https://docs.aws.amazon.com/lexv2/latest/dg/tagging.html

Amazon Lex V1 Developer Guide

• The input structure contains an inputMode attribute that provides information on the type of
input: text, speech, or DTMF.

These are the differences in the Lambda function output format:

• The activeContexts and sessionAttributes structures in Amazon Lex V1 are replaced by
the sessionState structure in Amazon Lex V2.

• The recentIntentSummaryView isn't included in the output.

• The Amazon Lex V1 dialogAction structure is split into two structures, dialogAction
that is part of the sessionState structure, and messages that is required when the
dialogAction.type is ElicitIntent. Amazon Lex chooses messages from this structure to
show to the user.

When you build a bot with the Amazon Lex V2 APIs, there is only one Lambda function per bot
alias per language instead of a Lambda function for each intent. If you want to continue to use
separate functions, you can create a router function that activates a separate function for each
intent. The following is a router function that you can use or modify for your application.

import os
import json
import boto3

reuse client connection as global
client = boto3.client('lambda')

def router(event):
 intent_name = event['sessionState']['intent']['name']
 fn_name = os.environ.get(intent_name)
 print(f"Intent: {intent_name} -> Lambda: {fn_name}")
 if (fn_name):
 # invoke lambda and return result
 invoke_response = client.invoke(FunctionName=fn_name, Payload =
 json.dumps(event))
 print(invoke_response)
 payload = json.load(invoke_response['Payload'])
 return payload
 raise Exception('No environment variable for intent: ' + intent_name)

def lambda_handler(event, context):

Migrating a Lambda function 327

Amazon Lex V1 Developer Guide

 print(event)
 response = router(event)
 return response

List of updated fields

The following tables provide detailed information about the updated fields in the Amazon Lex V2
Lambda request and response. You can use these tables to map fields between the versions.

Request

The following fields have been updated in the Lambda function request format.

Active contexts

The activeContexts structure is now part of the sessionState structure.

V1 structure V2 structure

activeContexts sessionState.activeContexts

activeContexts[*].timeToLive sessionState.activeContexts[*].timeToLive

activeContexts[*].timeToLive.timeToLiveInSeco
nds

sessionState.activeContexts[*].timeToLive.tim
eToLiveInSeconds

activeContexts[*].timeToLive.turnsToLive sessionState.activeContexts[*].timeToLive.tur
nsToLive

activeContexts[*].name sessionState.activeContexts[*].name

activeContexts[*].parameters sessionState.activeContexts[*].contextAttribu
tes

Alternative intents

The interpretations list from index 1 to N contains the list of alternative intents predicted
by Amazon Lex V2, along with their confidence scores. The recentIntentSummaryView
is removed from the request structure in Amazon Lex V2. To see the details from the
recentIntentSummaryView, use the GetSession operation.

List of updated fields 328

Amazon Lex V1 Developer Guide

V1 structure V2 structure

alternativeIntents interpretations[1:*]

recentIntentSummaryView N/A

Bot

In Amazon Lex V2, bots and aliases have identifiers. The bot ID is part of the codehook input. The
alias ID is included, but not the alias name. Amazon Lex V2 supports multiple locales for the same
bot so the locale ID is included.

V1 structure V2 structure

bot bot

bot.name bot.name

N/A bot.id

bot.alias N/A

N/A bot.aliasId

bot.version bot.version

N/A bot.localeId

Current intent

The sessionState.intent structure contains the details of the active intent. Amazon
Lex V2 also returns a list of all of the intents, including alternative intents, in the
interpretations structure. The first element in the interpretations list is always the same as
sessionState.intent.

List of updated fields 329

Amazon Lex V1 Developer Guide

V1 structure V2 structure

currentIntent sessionState.intent OR interpretations[0]
.intent

currentIntent.name sessionState.intent.name OR interpret
ations[0].intent.name

currentIntent.nluConfidenceScore interpretations[0].nluConfidence.score

Dialog action

The confirmationStatus field is now part of the sessionState structure.

V1 structure V2 structure

currentIntent.confirmationStatus sessionState.intent.confirmationState OR
interpretations[0].intent.confirmationState

N/A sessionState.intent.state OR interpretations[*]
.intent.state

Amazon Kendra

The kendraResponse field is now part of the sessionState and interpretations structures.

V1 structure V2 structure

kendraResponse sessionState.intent.kendraResponse OR
interpretations[0].intent.kendraResponse

Sentiment

The sentimentResponse structure is moved to the new interpretations structure.

List of updated fields 330

Amazon Lex V1 Developer Guide

V1 structure V2 structure

sentimentResponse interpretations[0].sentimentResponse

sentimentResponse.sentimentLabel interpretations[0].sentimentResponse
.sentiment

sentimentResponse.sentimentScore interpretations[0].sentimentResponse
.sentimentScore

Slots

Amazon Lex V2 provides a single slots object inside the sessionState.intent structure
that contains the resolved values, interpreted value, and the original value of what the user said.
Amazon Lex V2 also supports multi-valued slots by setting the slotShape as List and setting
the values list. Single-value slots are supported by the value field, their shape is assumed to be
Scalar.

V1 structure V2 structure

currentIntent.slots sessionState.intent.slots OR interpretations[0]
.intent.slots

currentIntent.slots[*].value sessionState.intent.slots[*].value.interprete
dValue OR interpretations[0].intent.slots[*].v
alue.interpretedValue

N/A sessionState.intent.slots[*].value.shape OR
interpretations[0].intent.slots[*].shape

N/A sessionState.intent.slots[*].values OR interpret
ations[0].intent.slots[*].values

currentIntent.slotDetails sessionState.intent.slots OR interpretations[0]
.intent.slots

List of updated fields 331

Amazon Lex V1 Developer Guide

V1 structure V2 structure

currentIntent.slotDetails[*].resolutions sessionState.intent.slots[*].resolvedValues OR
interpretations[0].intent.slots[*].resolvedVa
lues

currentIntent.slotDetails[*].originalValue sessionState.intent.slots[*].originalValue OR
interpretations[0].intent.slots[*].originalValue

Others

The Amazon Lex V2 sessionId field is the same as the userId field in Amazon Lex V1. Amazon
Lex V2 also sends the inputMode of the caller: text, DTMF, or speech.

V1 structure V2 structure

userId sessionId

inputTranscript inputTranscript

invocationSource invocationSource

outputDialogMode responseContentType

messageVersion messageVersion

sessionAttributes sessionState.sessionAttributes

requestAttributes requestAttributes

N/A inputMode

N/A originatingRequestId

Response

The following fields have been changed in the Lambda function response message format.

List of updated fields 332

Amazon Lex V1 Developer Guide

Active contexts

The activeContexts structure moved to the sessionState structure.

V1 structure V2 structure

activeContexts sessionState.activeContexts

activeContexts[*].timeToLive sessionState.activeContexts[*].timeToLive

activeContexts[*].timeToLive.timeToLiveInSeco
nds

sessionState.activeContexts[*].timeToLive.tim
eToLiveInSeconds

activeContexts[*].timeToLive.turnsToLive sessionState.activeContexts[*].timeToLive.tur
nsToLive

activeContexts[*].name sessionState.activeContexts[*].name

activeContexts[*].parameters sessionState.activeContexts[*].contextAttribu
tes

Dialog action

The dialogAction structure moved to the sessionState structure. You can now specify
multiple messages in a dialog action, and the genericAttachments structure is now the
imageResponseCard structure.

V1 structure V2 structure

dialogAction sessionState.dialogAction

dialogAction.type sessionState.dialogAction.type

dialogAction.slotToElicit sessionState.intent.dialogAction.slotToElicit

dialogAction.type.fulfillmentState sessionState.intent.state

dialogAction.message messages

dialogAction.message.contentType messages[*].contentType

List of updated fields 333

Amazon Lex V1 Developer Guide

V1 structure V2 structure

dialogAction.message.content messages[*].content

dialogAction.responseCard messages[*].imageResponseCard

dialogAction.responseCard.version N/A

dialogAction.responseCard.contentType messages[*].contentType

dialogAction.responseCard.genericAtt
achments

N/A

dialogAction.responseCard.genericAtt
achments[*].title

messages[*].imageResponseCard.title

dialogAction.responseCard.genericAtt
achments[*].subTitle

messages[*].imageResponseCard.subtitle

dialogAction.responseCard.genericAtt
achments[*].imageUrl

messages[*].imageResponseCard.imageUrl

dialogAction.responseCard.genericAtt
achments[*].buttons

messages[*].imageResponseCard.buttons

dialogAction.responseCard.genericAtt
achments[*].buttons[*].value

messages[*].imageResponseCard.button
s[*].value

dialogAction.responseCard.genericAtt
achments[*].buttons[*].text

messages[*].imageResponseCard.button
s[*].text

dialogAction.kendraQueryRequestPayload dialogAction.kendraQueryRequestPayload

dialogAction.kendraQueryFilterString dialogAction.kendraQueryFilterString

Intents and slots

Intent and slot fields that were part of the dialogAction structure are now part of the
sessionState structure.

List of updated fields 334

Amazon Lex V1 Developer Guide

V1 structure V2 structure

dialogAction.intentName sessionState.intent.name

dialogAction.slots sessionState.intent.slots

dialogAction.slots[*].key sessionState.intent.slots[*].key

dialogAction.slots[*].value sessionState.intent.slots[*].value.interprete
dValue

N/A sessionState.intent.slots[*].value.shape

N/A sessionState.intent.slots[*].values

Others

The sessionAttributes structure is now part of the sessionState structure. The
recentIntentSummaryReview structure has been removed.

V1 structure V2 structure

sessionAttributes sessionState.sessionAttributes

recentIntentSummaryView N/A

List of updated fields 335

Amazon Lex V1 Developer Guide

Security in Amazon Lex

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of the
AWS compliance programs. To learn about the compliance programs that apply to Amazon Lex,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using Amazon Lex. The following topics show you how to configure Amazon Lex to meet your
security and compliance objectives. You'll also learn how to use other AWS services that can help
you to monitor and secure your Amazon Lex resources.

Topics

• Data Protection in Amazon Lex

• Identity and Access Management for Amazon Lex

• Monitoring in Amazon Lex

• Compliance Validation for Amazon Lex

• Resilience in Amazon Lex

• Infrastructure Security in Amazon Lex

336

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Lex V1 Developer Guide

Data Protection in Amazon Lex

Amazon Lex collects customer content for troubleshooting and to help improve the service.
Customer content is secured by default. You can delete content for individual customers using the
Amazon Lex API.

Amazon Lex stores four types of content:

• Sample utterances, which are used to build and train a bot

• Customer utterances from users interacting with the bot

• Session attributes, which provide application-specific information for the duration of a user's
interaction with a bot

• Request attributes, which contain information that applies to a single request to a bot

Any Amazon Lex bot that is designed for use by children is governed by the Children's Online
Privacy Protection Act (COPPA). You tell Amazon Lex that the bot is subject to COPPA by
using the console or the Amazon Lex API to set the childDirected field to true. When the
childDirected field is set to true, no user utterances are stored.

Topics

• Encryption at Rest

• Encryption in Transit

• Key Management

Encryption at Rest

Amazon Lex encrypts the user utterances that it stores.

Topics

• Sample Utterances

• Customer Utterances

• Session Attributes

• Request Attributes

Data Protection 337

Amazon Lex V1 Developer Guide

Sample Utterances

When you develop a bot, you can provide sample utterances for each intent and slot. You can also
provide custom values and synonyms for slots. This information is encrypted at rest, and it is used
to build the bot and to create the user experience.

Customer Utterances

Amazon Lex encrypts utterances that users send to your bot unless the childDirected field is set
to true.

When the childDirected field is set to true, no user utterances are stored.

When the childDirected field is set to false (the default), user utterances are encrypted and
stored for 15 days for use with the GetUtterancesView operation. To delete stored utterances for a
specific user, use the DeleteUtterances operation .

When your bot accepts voice input, the input is stored indefinitely. Amazon Lex uses it to improve
your bot's ability to respond to user input.

Use the DeleteUtterances operation to delete stored utterances for a specific user.

Session Attributes

Session attributes contain application-specific information that is passed between Amazon Lex and
client applications. Amazon Lex passes session attributes to all AWS Lambda functions configured
for a bot. If a Lambda function adds or updates session attributes, Amazon Lex passes the new
information back to the client application.

Session attributes persist in an encrypted store for the duration of the session. You can configure
the session to remain active for a minimum of 1 minute and up to 24 hours after the last user
utterance. The default session duration is 5 minutes.

Request Attributes

Request attributes contain request-specific information and apply only to the current request. A
client application uses request attributes to send information to Amazon Lex at runtime.

You use request attributes to pass information that doesn't need to persist for the entire session.
Because request attributes don't persist across requests, they aren't stored.

Encryption at Rest 338

Amazon Lex V1 Developer Guide

Encryption in Transit

Amazon Lex uses the HTTPS protocol to communicate with your client application. It uses HTTPS
and AWS signatures to communicate with other services, such as Amazon Polly and AWS Lambda
on your application's behalf.

Key Management

Amazon Lex protects your content from unauthorized use with internal keys.

Identity and Access Management for Amazon Lex

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon Lex resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Lex works with IAM

• Identity-based policy examples for Amazon Lex

• AWS managed policies for Amazon Lex

• Using Service-Linked Roles for Amazon Lex

• Troubleshooting Amazon Lex identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon Lex.

Service user – If you use the Amazon Lex service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon Lex features to
do your work, you might need additional permissions. Understanding how access is managed can

Encryption in Transit 339

Amazon Lex V1 Developer Guide

help you request the right permissions from your administrator. If you cannot access a feature in
Amazon Lex, see Troubleshooting Amazon Lex identity and access.

Service administrator – If you're in charge of Amazon Lex resources at your company, you
probably have full access to Amazon Lex. It's your job to determine which Amazon Lex features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon Lex, see How Amazon Lex works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Amazon Lex. To view example Amazon Lex identity-based
policies that you can use in IAM, see Identity-based policy examples for Amazon Lex.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the

Authenticating with identities 340

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html

Amazon Lex V1 Developer Guide

AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier

Authenticating with identities 341

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

Amazon Lex V1 Developer Guide

to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

Authenticating with identities 342

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Lex V1 Developer Guide

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Managing access using policies 343

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Lex V1 Developer Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Managing access using policies 344

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Lex V1 Developer Guide

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 345

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Lex V1 Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Lex works with IAM

Before you use IAM to manage access to Amazon Lex, learn what IAM features are available to use
with Amazon Lex.

IAM features you can use with Amazon Lex

IAM feature Amazon Lex support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Amazon Lex and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

How Amazon Lex works with IAM 346

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Lex V1 Developer Guide

Identity-based policies for Amazon Lex

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon Lex

To view examples of Amazon Lex identity-based policies, see Identity-based policy examples for
Amazon Lex.

Resource-based policies within Amazon Lex

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

How Amazon Lex works with IAM 347

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Lex V1 Developer Guide

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for Amazon Lex

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon Lex actions, see Actions defined by Amazon Lex in the Service Authorization
Reference.

Policy actions in Amazon Lex use the following prefix before the action:

lex

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "lex:action1",
 "lex:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

How Amazon Lex works with IAM 348

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlex.html#your_service-actions-as-permissions

Amazon Lex V1 Developer Guide

"Action": "lex:Describe*"

Policy resources for Amazon Lex

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

An Amazon Lex bot resource ARN has the following format.

arn:aws:lex:${Region}:${Account}:bot:${Bot-Name}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
Service Namespaces.

For example, to specify the OrderFlowers bot in your statement, use the following ARN.

"Resource": "arn:aws:lex:us-east-2:123456789012:bot:OrderFlowers"

To specify all bots that belong to a specific account, use the wildcard (*).

"Resource": "arn:aws:lex:us-east-2:123456789012:bot:*"

Some Amazon Lex actions, such as those for creating resources, can't be performed on a specific
resource. In those cases, you must use the wildcard, (*).

How Amazon Lex works with IAM 349

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Lex V1 Developer Guide

"Resource": "*"

To see a list of Amazon Lex resource types and their ARNs, see Resources defined by Amazon Lex
in the Service Authorization Reference. To learn with which actions you can specify the ARN of each
resource, see Actions defined by Amazon Lex.

Policy condition keys for Amazon Lex

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Amazon Lex condition keys, see Condition keys for Amazon Lex in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by Amazon Lex.

The following table lists the Amazon Lex condition keys that apply to Amazon Lex resources. You
can include these keys in Condition elements in an IAM permissions policy.

How Amazon Lex works with IAM 350

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlex.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlex.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlex.html#your_service-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlex.html#your_service-actions-as-permissions

Amazon Lex V1 Developer Guide

ACLs in Amazon Lex

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Amazon Lex

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

You can associate tags with certain types of Amazon Lex resources for authorization. To control
access based on tags, provide tag information in the condition element of a policy by using the
lex:ResourceTag/${TagKey}, aws:RequestTag/${TagKey}, or aws:TagKeys condition
keys.

How Amazon Lex works with IAM 351

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Lex V1 Developer Guide

For more information about tagging Amazon Lex resources, see Tagging Your Amazon Lex
Resources.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Use a Tag to Access a Resource.

The following table lists the actions and corresponding resource types for tag-based access control.
Each action is authorized based on the tags associated with the corresponding resource type.

Action Resource type Condition keys Notes

CreateBotVersion bot lex:ResourceTag

DeleteBot bot lex:ResourceTag

DeleteBotAlias alias lex:ResourceTag

DeleteBotChannelAs
sociation

channel lex:ResourceTag

DeleteBotVersion bot lex:ResourceTag

DeleteSession bot or alias lex:ResourceTag Uses tags associate
d with the bot
when alias is set
to $LATEST. Uses
tags associated with
the specified alias
when used with other
aliases.

DeleteUtterances bot lex:ResourceTag

GetBot bot or alias lex:ResourceTag Uses tags associate
d with the bot when
versionOrAlias
is set to $LATEST
or numeric version.
Uses tags associate
d with the specified

How Amazon Lex works with IAM 352

Amazon Lex V1 Developer Guide

Action Resource type Condition keys Notes

alias when used with
aliases

GetBotAlias alias lex:ResourceTag

GetBotChannelAssoc
iation

chanel lex:ResourceTag

GetBotChannelAssoc
iations

chanel lex:ResourceTag Uses tags associate
d with the bot when
alias is set to "-". Uses
tags associated with
the specified alias
when a bot alias is
specified

GetBotVersions bot lex:ResourceTag

GetExport bot lex:ResourceTag

GetSession bot or alias lex:ResourceTag Uses tags associate
d with the bot
when alias is set
to $LATEST. Uses
tags associated with
the specified alias
when used with other
aliases.

GetUtterancesView bot lex:ResourceTag

ListTagsForResource bot, alias, or channel lex:ResourceTag

How Amazon Lex works with IAM 353

Amazon Lex V1 Developer Guide

Action Resource type Condition keys Notes

PostContent bot or alias lex:ResourceTag Uses tags associate
d with the bot
when alias is set
to $LATEST. Uses
tags associated with
the specified alias
when used with other
aliases.

PostText bot or alias lex:ResourceTag Uses tags associate
d with the bot
when alias is set
to $LATEST. Uses
tags associated with
the specified alias
when used with other
aliases.

PutBot bot lex:Resou
rceTag,
aws:RequestTag,
aws:TagKeys

PutBotAlias alias lex:Resou
rceTag,
aws:RequestTag,
aws:TagKeys

How Amazon Lex works with IAM 354

Amazon Lex V1 Developer Guide

Action Resource type Condition keys Notes

PutSession bot or alias lex:ResourceTag Uses tags associate
d with the bot
when alias is set
to $LATEST. Uses
tags associated with
the specified alias
when used with other
aliases.

StartImport bot lex:ResourceTag Relies on access
policy for the PutBot
operation. Tags and
permissions specific
to the StartImpo
rt operation are
ignored.

TagResource bot, alias, or channel lex:Resou
rceTag,
aws:RequestTag,
aws:TagKeys

UntagResource bot, alias, or channel lex:Resou
rceTag,
aws:RequestTag,
aws:TagKeys

Using temporary credentials with Amazon Lex

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

How Amazon Lex works with IAM 355

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Lex V1 Developer Guide

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

Cross-service principal permissions for Amazon Lex

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon Lex

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

How Amazon Lex works with IAM 356

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Lex V1 Developer Guide

Warning

Changing the permissions for a service role might break Amazon Lex functionality. Edit
service roles only when Amazon Lex provides guidance to do so.

Choosing an IAM role in Amazon Lex

Amazon Lex uses service-linked roles to call Amazon Comprehend and Amazon Polly. It uses
resource-level permissions on your AWS Lambda functions to invoke them.

You must provide an IAM role to enable conversation tagging. For more information, see Creating
an IAM Role and Policies for Conversation Logs.

Service-linked roles for Amazon Lex

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing Amazon Lex service-linked roles, see Using Service-Linked
Roles for Amazon Lex.

Identity-based policy examples for Amazon Lex

By default, users and roles don't have permission to create or modify Amazon Lex resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

Identity-based policy examples 357

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html

Amazon Lex V1 Developer Guide

For details about actions and resource types defined by Amazon Lex, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon Lex in
the Service Authorization Reference.

Topics

• Policy best practices

• Using the Amazon Lex console

• Allow users to view their own permissions

• Delete All Amazon Lex Bots

• Allow a user to migrate a bot to Amazon Lex V2 APIs

• Use a Tag to Access a Resource

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon Lex
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

Identity-based policy examples 358

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonlex.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Lex V1 Developer Guide

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon Lex console

To access the Amazon Lex console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon Lex resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

AWS addresses many common use cases by providing standalone IAM policies that are created
and administered by AWS. These policies are called AWS managed policies. AWS managed policies
make it easier for you to assign appropriate permissions to users, groups, and roles than if you had
to write the policies yourself. For more information, see AWS Managed Policies in the IAM User
Guide.

The following AWS managed policies, which you can attach to groups and roles in your account, are
specific to Amazon Lex:

• AmazonLexReadOnly — Grants read-only access to Amazon Lex resources.

• AmazonLexRunBotsOnly — Grants access to run Amazon Lex conversational bots.

Identity-based policy examples 359

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Lex V1 Developer Guide

• AmazonLexFullAccess — Grants full access to create, read, update, delete, and run all Amazon
Lex resources. Also grants the ability to associate Lambda functions whose name starts with
AmazonLex with Amazon Lex intents.

Note

You can review these permissions policies by signing in to the IAM console and searching
for specific policies.

The AmazonLexFullAccess policy doesn't grant the user permission to use the
KendraSearchIntent intent to query an Amazon Kendra index. To query an index, you must
add additional permissions to the policy. For the required permissions, see IAM Policy for Amazon
Kendra Search.

You can also create your own custom IAM policies to allow permissions for Amazon Lex API actions.
You can attach these custom policies to the IAM roles or groups that require those permission.

For details about AWS managed policies for Amazon Lex, see AWS managed policies for Amazon
Lex.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"

Identity-based policy examples 360

Amazon Lex V1 Developer Guide

],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Delete All Amazon Lex Bots

This example policy grants a user in your AWS account permission to delete any bot in your
account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:DeleteBot"
],
 "Resource": [
 "*"
]
 }
]
}

Identity-based policy examples 361

Amazon Lex V1 Developer Guide

Allow a user to migrate a bot to Amazon Lex V2 APIs

The following IAM permission policy allows a user to start migrating a bot from Amazon Lex to
Amazon Lex V2 APIs and to see the list of migrations and their progress.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "startMigration",
 "Effect": "Allow",
 "Action": "lex:StartMigration",
 "Resource": "arn:aws:lex:<Region>:<123456789012>:bot:*"
 },
 {
 "Sid": "passRole",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::<123456789012>:role/<v2 bot role>"
 },
 {
 "Sid": "allowOperations",
 "Effect": "Allow",
 "Action": [
 "lex:CreateBot",
 "lex:CreateIntent",
 "lex:UpdateSlot",
 "lex:DescribeBotLocale",
 "lex:UpdateBotAlias",
 "lex:CreateSlotType",
 "lex:DeleteBotLocale",
 "lex:DescribeBot",
 "lex:UpdateBotLocale",
 "lex:CreateSlot",
 "lex:DeleteSlot",
 "lex:UpdateBot",
 "lex:DeleteSlotType",
 "lex:DescribeBotAlias",
 "lex:CreateBotLocale",
 "lex:DeleteIntent",
 "lex:StartImport",
 "lex:UpdateSlotType",
 "lex:UpdateIntent",

Identity-based policy examples 362

Amazon Lex V1 Developer Guide

 "lex:DescribeImport",
 "lex:CreateCustomVocabulary",
 "lex:UpdateCustomVocabulary",
 "lex:DeleteCustomVocabulary",
 "lex:DescribeCustomVocabulary",
 "lex:DescribeCustomVocabularyMetadata"
],
 "Resource": [
 "arn:aws:lex:<Region>:<123456789012>:bot/*",
 "arn:aws:lex:<Region>:<123456789012>:bot-alias/*/*"
]
 },
 {
 "Sid": "showBots",
 "Effect": "Allow",
 "Action": [
 "lex:CreateUploadUrl",
 "lex:ListBots"
],
 "Resource": "*"
 },
 {
 "Sid": "showMigrations",
 "Effect": "Allow",
 "Action": [
 "lex:GetMigration",
 "lex:GetMigrations"
],
 "Resource": "*"
 }
]
}

Use a Tag to Access a Resource

This example policy grants a user or role in your AWS account permission to use the PostText
operation with any resource tagged with the key Department and the value Support.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "lex:PostText",

Identity-based policy examples 363

Amazon Lex V1 Developer Guide

 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "lex:ResourceTag/Department": "Support"
 }
 }
 }
]
}

AWS managed policies for Amazon Lex

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonLexReadOnly

You can attach the AmazonLexReadOnly policy to your IAM identities.

AWS managed policies for Amazon Lex 364

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Lex V1 Developer Guide

This policy grants read-only permissions that allow users to view all actions in the Amazon Lex and
Amazon Lex V2 model building service.

Permissions details

This policy includes the following permissions:

• lex – Read-only access to Amazon Lex and Amazon Lex V2 resources in the model building
service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:GetBot",
 "lex:GetBotAlias",
 "lex:GetBotAliases",
 "lex:GetBots",
 "lex:GetBotChannelAssociation",
 "lex:GetBotChannelAssociations",
 "lex:GetBotVersions",
 "lex:GetBuiltinIntent",
 "lex:GetBuiltinIntents",
 "lex:GetBuiltinSlotTypes",
 "lex:GetIntent",
 "lex:GetIntents",
 "lex:GetIntentVersions",
 "lex:GetSlotType",
 "lex:GetSlotTypes",
 "lex:GetSlotTypeVersions",
 "lex:GetUtterancesView",
 "lex:DescribeBot",
 "lex:DescribeBotAlias",
 "lex:DescribeBotChannel",
 "lex:DescribeBotLocale",
 "lex:DescribeBotVersion",
 "lex:DescribeExport",
 "lex:DescribeImport",
 "lex:DescribeIntent",
 "lex:DescribeResourcePolicy",

AWS managed policies for Amazon Lex 365

Amazon Lex V1 Developer Guide

 "lex:DescribeSlot",
 "lex:DescribeSlotType",
 "lex:ListBots",
 "lex:ListBotLocales",
 "lex:ListBotAliases",
 "lex:ListBotChannels",
 "lex:ListBotVersions",
 "lex:ListBuiltInIntents",
 "lex:ListBuiltInSlotTypes",
 "lex:ListExports",
 "lex:ListImports",
 "lex:ListIntents",
 "lex:ListSlots",
 "lex:ListSlotTypes",
 "lex:ListTagsForResource"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AmazonLexRunBotsOnly

You can attach the AmazonLexRunBotsOnly policy to your IAM identities.

This policy grants read-only permissions that allow access to run Amazon Lex and Amazon Lex V2
conversational bots.

Permissions details

This policy includes the following permissions:

• lex – Read-only access to all actions in the Amazon Lex and Amazon Lex V2 runtime.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lex:PostContent",
 "lex:PostText",
 "lex:PutSession",

AWS managed policies for Amazon Lex 366

Amazon Lex V1 Developer Guide

 "lex:GetSession",
 "lex:DeleteSession",
 "lex:RecognizeText",
 "lex:RecognizeUtterance",
 "lex:StartConversation"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AmazonLexFullAccess

You can attach the AmazonLexFullAccess policy to your IAM identities.

This policy grants administrative permissions that allow the user permission to create, read,
update, and delete Amazon Lex and Amazon Lex V2 resources, and to run Amazon Lex and Amazon
Lex V2 conversational bots.

Permissions details

This policy includes the following permissions:

• lex – Allows principals read and write access to all actions in the Amazon Lex and Amazon Lex
V2 model building and runtime services.

• cloudwatch – Allows principals to view Amazon CloudWatch metrics and alarms.

• iam – Allows principals to create and delete service-linked roles, pass roles, and attach and
detach policies to a role. The permissions are restricted to "lex.amazonaws.com" for Amazon Lex
operations and to "lexv2.amazonaws.com" for Amazon Lex V2 operations.

• kendra – Allows principals to list Amazon Kendra indexes.

• kms – Allows principals to describe AWS KMS keys and aliases.

• lambda – Allows principals to list AWS Lambda functions and manage permissions attached to
any Lambda function.

• polly – Allows principals to describe Amazon Polly voices and synthesize speech.

{
 "Version": "2012-10-17",
 "Statement": [
 {

AWS managed policies for Amazon Lex 367

Amazon Lex V1 Developer Guide

 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DescribeAlarmsForMetric",
 "kms:DescribeKey",
 "kms:ListAliases",
 "lambda:GetPolicy",
 "lambda:ListFunctions",
 "lex:*",
 "polly:DescribeVoices",
 "polly:SynthesizeSpeech",
 "kendra:ListIndices",
 "iam:ListRoles",
 "s3:ListAllMyBuckets",
 "logs:DescribeLogGroups",
 "s3:GetBucketLocation"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission"
],
 "Resource": "arn:aws:lambda:*:*:function:AmazonLex*",
 "Condition": {
 "StringEquals": {
 "lambda:Principal": "lex.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots",

AWS managed policies for Amazon Lex 368

Amazon Lex V1 Developer Guide

 "arn:aws:iam::*:role/aws-service-role/channels.lex.amazonaws.com/
AWSServiceRoleForLexChannels",
 "arn:aws:iam::*:role/aws-service-role/lexv2.amazonaws.com/
AWSServiceRoleForLexV2Bots*",
 "arn:aws:iam::*:role/aws-service-role/channels.lexv2.amazonaws.com/
AWSServiceRoleForLexV2Channels*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
],
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "lex.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/channels.lex.amazonaws.com/
AWSServiceRoleForLexChannels"
],
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "channels.lex.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [

AWS managed policies for Amazon Lex 369

Amazon Lex V1 Developer Guide

 "arn:aws:iam::*:role/aws-service-role/lexv2.amazonaws.com/
AWSServiceRoleForLexV2Bots*"
],
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "lexv2.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/channels.lexv2.amazonaws.com/
AWSServiceRoleForLexV2Channels*"
],
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "channels.lexv2.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots",
 "arn:aws:iam::*:role/aws-service-role/channels.lex.amazonaws.com/
AWSServiceRoleForLexChannels",
 "arn:aws:iam::*:role/aws-service-role/lexv2.amazonaws.com/
AWSServiceRoleForLexV2Bots*",
 "arn:aws:iam::*:role/aws-service-role/channels.lexv2.amazonaws.com/
AWSServiceRoleForLexV2Channels*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

AWS managed policies for Amazon Lex 370

Amazon Lex V1 Developer Guide

 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "lex.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/lexv2.amazonaws.com/
AWSServiceRoleForLexV2Bots*"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "lexv2.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/channels.lexv2.amazonaws.com/
AWSServiceRoleForLexV2Channels*"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "channels.lexv2.amazonaws.com"

AWS managed policies for Amazon Lex 371

Amazon Lex V1 Developer Guide

]
 }
 }
 }
]
}

Amazon Lex updates to AWS managed policies

View details about updates to AWS managed policies for Amazon Lex since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Amazon Lex Document History for Amazon Lex page.

Change Description Date

AmazonLexFullAccess –
Update to an existing policy

Amazon Lex added new
permissions to allow read-
only access to Amazon Lex
V2 model building service
operations.

August 18, 2021

AmazonLexReadOnly –
Update to an existing policy

Amazon Lex added new
permissions to allow read-
only access to Amazon Lex
V2 model building service
operations.

August 18, 2021

AmazonLexRunBotsOnly –
Update to an existing policy

Amazon Lex added new
permissions to allow read-
only access to Amazon Lex V2
runtime service operations.

August 18, 2021

Amazon Lex started tracking
changes

Amazon Lex started tracking
changes for its AWS managed
policies.

August 18, 2021

AWS managed policies for Amazon Lex 372

Amazon Lex V1 Developer Guide

Using Service-Linked Roles for Amazon Lex

Amazon Lex uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked
role is a unique type of IAM role that is linked directly to Amazon Lex. Service-linked roles are
predefined by Amazon Lex and include all the permissions that the service requires to call other
AWS services on your behalf.

A service-linked role makes setting up Amazon Lex easier because you don’t have to manually add
the necessary permissions. Amazon Lex defines the permissions of its service-linked roles, and
unless defined otherwise, only Amazon Lex can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

You can delete a service-linked role only after first deleting its related resources. This protects your
Amazon Lex resources because you can't inadvertently remove permission to access the resources.

Service-Linked Roles Permissions for Amazon Lex

Amazon Lex uses two service linked roles:

• AWSServiceRoleForLexBots – Amazon Lex uses this service-linked role to invoke Amazon Polly
to synthesize speech responses for your bot, to call Amazon Comprehend for sentiment analyisis,
and optionally Amazon Kendra for searching indexes.

• AWSServiceRoleForLexChannels – Amazon Lex uses this service-linked role to post text to your
bot when managing channels.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Creating a Service-Linked Role for Amazon Lex

You don't need to manually create a service-linked role. When you create a bot, bot channel, or
Amazon Kendra search intent in the AWS Management Console, Amazon Lex creates the service-
linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a new bot, channel association, or Amazon
Kendra search intent, Amazon Lex creates the service-linked role for you again.

Using Service-Linked Roles 373

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Lex V1 Developer Guide

You can also use the AWS CLI to create a service-linked role with the AWSServiceRoleForLexBots
use case. In the AWS CLI create a service-linked role with the Amazon Lex service name
lex.amazonaws.com. For more information, see Step 1: Create a Service-Linked Role (AWS CLI). If
you delete this service-linked role, you can use this same process to create the role again.

Editing a Service-Linked Role for Amazon Lex

Amazon Lex does not allow you to edit Amazon Lex service-linked roles. After you create a service-
linked role, you cannot change the name of the role because various entities might reference the
role. However, you can edit the description of the role using IAM. For more information, see Editing
a Service-Linked Role in the IAM User Guide.

Deleting a Service-Linked Role for Amazon Lex

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Note

If the Amazon Lex service is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete Amazon Lex resources used by service-linked roles:

1. Delete any bot channels that you are using.

2. Delete any bots in your account.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the Amazon Lex service-linked roles.
For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for Amazon Lex Service-Linked Roles

Amazon Lex supports using service-linked roles in all of the regions where the service is available.
For more information, see Amazon Lex endpoints and quotas.

Using Service-Linked Roles 374

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/lex.html

Amazon Lex V1 Developer Guide

Troubleshooting Amazon Lex identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon Lex and IAM.

Topics

• I am not authorized to perform an action in Amazon Lex

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon Lex resources

I am not authorized to perform an action in Amazon Lex

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
lex:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 lex:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the lex:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon Lex.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

Troubleshooting 375

Amazon Lex V1 Developer Guide

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon Lex. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon Lex
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon Lex supports these features, see How Amazon Lex works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Monitoring in Amazon Lex

Monitoring is important for maintaining the reliability, availability, and performance of your
Amazon Lex chatbots. This topic describes how to use Amazon CloudWatch Logs and AWS
CloudTrail to monitor Amazon Lex and describes the Amazon Lex runtime and channel association
metrics.

Monitoring 376

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Lex V1 Developer Guide

Topics

• Monitoring Amazon Lex with Amazon CloudWatch

• Monitoring Amazon Lex API Calls with AWS CloudTrail Logs

Monitoring Amazon Lex with Amazon CloudWatch

To track the health of your Amazon Lex bots, use Amazon CloudWatch. With CloudWatch, you can
get metrics for individual Amazon Lex operations or for global Amazon Lex operations for your
account. You can also set up CloudWatch alarms to be notified when one or more metrics exceeds
a threshold that you define. For example, you can monitor the number of requests made to a bot
over a particular time period, view the latency of successful requests, or raise an alarm when errors
exceed a threshold.

CloudWatch Metrics for Amazon Lex

To get metrics for your Amazon Lex operations , you must specify the following information:

• The metric dimension. A dimension is a set of name-value pairs that you use to identify a metric.
Amazon Lex has three dimensions:

• BotAlias, BotName, Operation

• BotAlias, BotName, InputMode, Operation

• BotName, BotVersion, InputMode, Operation

• The metric name, such as MissedUtteranceCount or RuntimeRequestCount.

You can get metrics for Amazon Lex with the AWS Management Console, the AWS CLI, or the
CloudWatch API. You can use the CloudWatch API through one of the Amazon AWS Software
Development Kits (SDKs) or the CloudWatch API tools. The Amazon Lex console displays graphs
based on the raw data from the CloudWatch API.

You must have the appropriate CloudWatch permissions to monitor Amazon Lex with CloudWatch .
For more information, see Authentication and Access Control for Amazon CloudWatch in the
Amazon CloudWatch User Guide.

Viewing Amazon Lex Metrics

View Amazon Lex metrics using the Amazon Lex console or the CloudWatch console.

Monitoring Amazon Lex with CloudWatch 377

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html

Amazon Lex V1 Developer Guide

To view metrics (Amazon Lex console)

1. Sign in to the AWS Management Console and open the Amazon Lex console at https://
console.aws.amazon.com/lex/.

2. From the list of bots, choose the one whose metrics you want to see.

3. Choose Monitoring. Metrics are displayed in graphs.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Metrics, choose All Metrics, and then choose AWS/Lex.

3. Choose the dimension, choose a metric name, then choose Add to graph.

4. Choose a value for the date range. The metric count for the selected date range is displayed in
the graph.

Creating an Alarm

A CloudWatch alarm watches a single metric over a specified time period, and performs one or
more actions: sending a notification to an Amazon Simple Notification Service (Amazon SNS) topic
or Auto Scaling policy. The action or actions are based on the value of the metric relative to a
given threshold over a number of time periods that you specify. CloudWatch can also send you an
Amazon SNS message when the alarm changes state.

CloudWatch alarms invoke actions only when the state changes and has persisted for the period
that you specify.

To set an alarm

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Alarms, and then choose Create Alarm.

3. Choose AWS/Lex Metrics, and then choose a metric.

4. For Time Range, choose a time range to monitor, and then choose Next.

5. Enter a Name and Description.

6. For Whenever, choose >=, and type a maximum value.

Monitoring Amazon Lex with CloudWatch 378

https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/lex/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Lex V1 Developer Guide

7. If you want CloudWatch to send an email when the alarm state is reached, in the Actions
section, for Whenever this alarm, choose State is ALARM. For Send notification to, choose a
mailing list or choose New list and create a new mailing list.

8. Preview the alarm in the Alarm Preview section. If you are satisfied with the alarm, choose
Create Alarm.

CloudWatch Metrics for Amazon Lex Runtime

The following table describes the Amazon Lex runtime metrics.

Metric Description

KendraIndexAccessE
rror

The number of times that Amazon Lex could not access your
Amazon Kendra index.

Valid dimension for the PostContent operation with the Text or
Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

Unit: Count

KendraLatency The amount of time that it takes Amazon Kendra to respond to a
request from the AMAZON.KendraSearchIntent .

Valid dimensions for the PostContent operation with the Text
or Speech InputMode :

• BotName, BotVersion, Operation, InputMode

• BotName, BotAlias, Operation, InputMode

Valid dimensions for the PostText operation:

Monitoring Amazon Lex with CloudWatch 379

Amazon Lex V1 Developer Guide

Metric Description

• BotName, BotVersion, Operation

• BotName, BotAlias, Operation

Unit: Milliseconds

KendraSuccess The number of successful requests from the AMAZON.Ke
ndraSearchIntent to your Amazon Kendra index.

Valid dimensions for the PostContent operation with the Text
or Speech InputMode :

• BotName, BotVersion, Operation, InputMode

• BotName, BotAlias, Operation, InputMode

Valid dimensions for the PostText operation:

• BotName, BotVersion, Operation

• BotName, BotAlias, Operation

Unit: Count

KendraSystemErrors The number of times that Amazon Lex couldn't query the Amazon
Kendra index.

Valid dimension for the PostContent operation with the Text or
Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

Unit: Count

Monitoring Amazon Lex with CloudWatch 380

Amazon Lex V1 Developer Guide

Metric Description

KendraThrottledEve
nts

The number of times Amazon Kendra throttled requests from the
AMAZON.KendraSearchIntent .

Valid dimension for the PostContent operation with the Text or
Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

Unit: Count

MissedUtteranceCou
nt

The number of utterances that were not recognized in the specified
period.

Valid dimensions for the PostContent operation with the Text
or Speech InputMode :

• BotName, BotVersion, Operation, InputMode

• BotName, BotAlias, Operation, InputMode

Valid dimensions for the PostText operation:

• BotName, BotVersion, Operation

• BotName, BotAlias, Operation

Monitoring Amazon Lex with CloudWatch 381

Amazon Lex V1 Developer Guide

Metric Description

RuntimeConcurrency The number of concurrent connections in the specified time period.
RuntimeConcurrency is reported as a StatisticSet .

Valid dimensions for the PostContent operation with the Text
or Speech InputMode :

• Operation, BotName, BotVersion, InputMode

• Operation, BotName, BotAlias, InputMode

Valid dimensions for other operations:

• Operation, BotName, BotVersion

• Operation, BotName, BotAlias

Unit: Count

RuntimeInvalidLamb
daResponses

The number of invalid AWS Lambda (Lambda) responses in the
specified period.

Valid dimension for the PostContent operation with the Text or
Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

Monitoring Amazon Lex with CloudWatch 382

Amazon Lex V1 Developer Guide

Metric Description

RuntimeLambdaError
s

The number of Lambda runtime errors in the specified period.

Valid dimension for the PostContent operation with the Text
or Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

RuntimePollyErrors The number of invalid Amazon Polly responses in the specified
period.

Valid dimension for the PostContent operation with the Text or
Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

Monitoring Amazon Lex with CloudWatch 383

Amazon Lex V1 Developer Guide

Metric Description

RuntimeRequestCoun
t

The number of runtime requests in the specified period.

Valid dimensions for the PostContent operation with the Text
or Speech InputMode :

• BotName, BotVersion, Operation, InputMode

• BotName, BotAlias, Operation, InputMode

Valid dimensions for the PostText operation:

• BotName, BotVersion, Operation

• BotName, BotAlias, Operation

Unit: Count

RuntimeSucessfulRe
questLatency

Important

This metric is
RuntimeSu
cessfulRe
questLate
ncy and not
RuntimeSu
ccessfulR
equestLat
ency .

The latency for successful requests between the time that the
request was made and the response was passed back.

Valid dimensions for the PostContent operation with the Text
or Speech InputMode :

• BotName, BotVersion, Operation, InputMode

• BotName, BotAlias, Operation, InputMode

Valid dimensions for the PostText operation:

• BotName, BotVersion, Operation

• BotName, BotAlias, Operation

Unit: Milliseconds

Monitoring Amazon Lex with CloudWatch 384

Amazon Lex V1 Developer Guide

Metric Description

RuntimeSystemError
s

The number of system errors in the specified period. The response
code range for a system error is 500 to 599.

Valid dimension for the PostContent operation with the Text or
Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

Unit: Count

RuntimeThrottledEv
ents

The number of throttled requests. Amazon Lex throttles a request
when it receives more requests than the limit of transactions per
second set for your account. If the limit set for your account is
frequently exceeded, you can request a limit increase. To request an
increase, see AWS Service Limits.

Valid dimension for the PostContent operation with the Text or
Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

Unit: Count

Monitoring Amazon Lex with CloudWatch 385

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Lex V1 Developer Guide

Metric Description

RuntimeUserErrors The number of user errors in the specified period. The response
code range for a user error is 400 to 499.

Valid dimension for the PostContent operation with Text or
Speech InputMode :

• BotName, BotAlias, Operation, InputMode

Valid dimension for the PostText operation:

• BotName, BotAlias, Operation

Unit: Count

Amazon Lex runtime metrics use the AWS/Lex namespace, and provide metrics in the following
dimensions. You can group metrics by dimensions in the CloudWatch console:

Dimension Description

BotName, BotAlias,
Operation,
InputMode

Groups metrics by the bot's alias, the bot's name, the operation
 (PostContent), and by whether the input was text or speech.

BotName, BotVersio
n, Operation,
InputMode

Groups metrics by the bot's name, the version of the bot, the
operation (PostContent), and by whether the input was text or
speech.

BotName, BotVersio
n, Operation

Groups metrics by the bot's name, the bots version, and by the
operation, PostText.

BotName, BotAlias,
Operation

Groups metrics by the bot's name, the bot's alias, and by the
operation, PostText.

Monitoring Amazon Lex with CloudWatch 386

Amazon Lex V1 Developer Guide

CloudWatch Metrics for Amazon Lex Channel Associations

A channel association is the association between Amazon Lex and a messaging channel, such as
Facebook. The following table describes the Amazon Lex channel association metrics.

Metric Description

BotChannelAuthErro
rs

The number of authentication errors returned by the messaging
channel in the specified time period. An authentication error
indicates that the secret token provided during channel creation is
invalid or has expired.

BotChannelConfigur
ationErrors

The number of configuration errors in the specified period. A
configuration error indicates that one or more configuration entries
for the channel are invalid.

BotChannelInboundT
hrottledEvents

The number of times that messages that were sent by the
messaging channel were throttled by Amazon Lex in the specified
period.

BotChannelOutbound
ThrottledEvents

The number of times that outbound events from Amazon Lex to the
messaging channel were throttled in the specified time period.

BotChannelRequestC
ount

The number of requests made on a channel in the specified time
period.

BotChannelResponse
CardErrors

The number of times that Amazon Lex could not post response
cards in the specified period.

BotChannelSystemEr
rors

The number of internal errors that occurred in Amazon Lex for a
channel in the specified period.

Amazon Lex channel association metrics use the AWS/Lex namespace, and provide metrics for the
following dimension. You can group metrics by dimensions in the CloudWatch console:

Monitoring Amazon Lex with CloudWatch 387

Amazon Lex V1 Developer Guide

Dimension Description

BotAlias, BotChanne
lName, BotName,
Source

Group metrics by the bot's alias, the channel name, the bot's name,
and the source of traffic.

CloudWatch Metrics for Conversation Logs

Amazon Lex uses the following metrics for conversation logging:

Metric Description

ConversationLogsAudioDelive
rySuccess

The number of audio logs successfully
delivered to the S3 bucket in the specified
 time period.

Units: Count

ConversationLogsAudioDelive
ryFailure

The number of audio logs that failed to be
delivered to the S3 bucket in the specified
time period. A delivery failure indicates
an error with the resources configured for
conversation logs. Errors can include insuffici
ent IAM permissions, an inaccessible AWS KMS
key, or an inaccessible S3 bucket.

Units: Count

ConversationLogsTextDeliver
ySuccess

The number of text logs successfully delivered
to CloudWatch Logs in the specified time
period.

Units: Count

ConversationLogsTextDeliver
yFailure

The number of text logs that failed to be
delivered to CloudWatch Logs in the specified
time period. A delivery failure indicates
an error with the resources configured for

Monitoring Amazon Lex with CloudWatch 388

Amazon Lex V1 Developer Guide

Metric Description

conversation logs. Errors can include insuffici
ent IAM permissions, an inaccessible AWS KMS
key, or an inaccessible CloudWatch Logs log
group.

Units: Count

Amazon Lex conversation log metrics use the AWS/Lex namespace, and provide metrics for the
following dimensions. You can group metrics by dimension in the CloudWatch console.

Dimension Description

BotAlias Group metrics by the bot's alias.

BotName Group metrics by the bot's name.

BotVersion Group metrics by the bot's version.

Monitoring Amazon Lex API Calls with AWS CloudTrail Logs

Amazon Lex is integrated with AWS CloudTrail, a service that provides a record of actions taken by
a user, role, or an AWS service in Amazon Lex. CloudTrail captures a subset of API calls for Amazon
Lex as events, including calls from the Amazon Lex console and from code calls to the Amazon Lex
APIs. If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon
S3 bucket, including events for Amazon Lex. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history. Using the information collected
by CloudTrail, you can determine the request that was made to Amazon Lex, the IP address from
which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon Lex Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in Amazon Lex, that activity is recorded in a CloudTrail event along with other AWS

Logging Amazon Lex API Calls with AWS CloudTrail 389

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Lex V1 Developer Guide

service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Lex, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon Simple Storage Service (Amazon
S3) bucket. By default, when you create a trail in the console, the trail applies to all AWS Regions.
The trail logs events from all Regions in the AWS partition and delivers the log files to the S3
bucket that you specify. Additionally, you can configure other AWS services to further analyze and
act upon the event data collected in CloudTrail logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Amazon Lex supports logging the following operations as events in CloudTrail log files:

• CreateBotVersion

• CreateIntentVersion

• CreateSlotTypeVersion

• DeleteBot

• DeleteBotAlias

• DeleteBotChannelAssociation

• DeleteBotVersion

• DeleteIntent

• DeleteIntentVersion

• DeleteSlotType

• DeleteSlotTypeVersion

• DeleteUtterances

• GetBot

• GetBotAlias

• GetBotAliases

• GetBotChannelAssociation

Logging Amazon Lex API Calls with AWS CloudTrail 390

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Lex V1 Developer Guide

• GetBotChannelAssociations

• GetBots

• GetBotVersions

• GetBuiltinIntent

• GetBuiltinIntents

• GetBuiltinSlotTypes

• GetSlotTypeVersions

• GetUtterancesView

• PutBot

• PutBotAlias

• PutIntent

• PutSlotType

Every event or log entry contains information about who generated the request. This information
helps you determine the following:

• Whether the request was made with root or user credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another AWS service

For more information, see the CloudTrail userIdentity Element.

For information about the Amazon Lex actions that are logged in CloudTrail logs, see Amazon
Lex Model Building Service. For example, calls to the PutBot, GetBot, and DeleteBot operations
generate entries in the CloudTrail log. The actions documented in Amazon Lex Runtime Service,
PostContent and PostText, are not logged.

Example: Amazon Lex Log File Entries

A trail is a configuration that enables delivery of events as log files to an S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request
from any source and includes information about the requested action, the date and time of the
action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

Logging Amazon Lex API Calls with AWS CloudTrail 391

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/lex/latest/dg/API_Operations_Amazon_Lex_Model_Building_Service.html
https://docs.aws.amazon.com/lex/latest/dg/API_Operations_Amazon_Lex_Model_Building_Service.html
https://docs.aws.amazon.com/lex/latest/dg/API_Operations_Amazon_Lex_Runtime_Service.html

Amazon Lex V1 Developer Guide

The following example CloudTrail log entry shows the result of a call to the PutBot operation.

 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole | FederatedUser | IAMUser | Root | SAMLUser |
 WebIdentityUser",
 "principalId": "principal ID",
 "arn": "ARN",
 "accountId": "account ID",
 "accessKeyId": "access key ID",
 "userName": "user name"
 },
 "eventTime": "timestamp",
 "eventSource": "lex.amazonaws.com",
 "eventName": "PutBot",
 "awsRegion": "region",
 "sourceIPAddress": "source IP address",
 "userAgent": "user agent",
 "requestParameters": {
 "name": "CloudTrailBot",
 "intents": [
 {
 "intentVersion": "11",
 "intentName": "TestCloudTrail"
 }
],
 "voiceId": "Salli",
 "childDirected": false,
 "locale": "en-US",
 "idleSessionTTLInSeconds": 500,
 "processBehavior": "BUILD",
 "description": "CloudTrail test bot",
 "clarificationPrompt": {
 "messages": [
 {
 "contentType": "PlainText",
 "content": "I didn't understand you. What would you
 like to do?"
 }
],
 "maxAttempts": 2
 },
 "abortStatement": {

Logging Amazon Lex API Calls with AWS CloudTrail 392

Amazon Lex V1 Developer Guide

 "messages": [
 {
 "contentType": "PlainText",
 "content": "Sorry. I'm not able to assist at this
 time."
 }
]
 }
 },
 "responseElements": {
 "voiceId": "Salli",
 "locale": "en-US",
 "childDirected": false,
 "abortStatement": {
 "messages": [
 {
 "contentType": "PlainText",
 "content": "Sorry. I'm not able to assist at this
 time."
 }
]
 },
 "status": "BUILDING",
 "createdDate": "timestamp",
 "lastUpdatedDate": "timestamp",
 "idleSessionTTLInSeconds": 500,
 "intents": [
 {
 "intentVersion": "11",
 "intentName": "TestCloudTrail"
 }
],
 "clarificationPrompt": {
 "messages": [
 {
 "contentType": "PlainText",
 "content": "I didn't understand you. What would you
 like to do?"
 }
],
 "maxAttempts": 2
 },
 "version": "$LATEST",
 "description": "CloudTrail test bot",

Logging Amazon Lex API Calls with AWS CloudTrail 393

Amazon Lex V1 Developer Guide

 "checksum": "checksum",
 "name": "CloudTrailBot"
 },
 "requestID": "request ID",
 "eventID": "event ID",
 "eventType": "AwsApiCall",
 "recipientAccountId": "account ID"
 }
 }

Compliance Validation for Amazon Lex

Third-party auditors assess the security and compliance of Amazon Lex as part of multiple AWS
compliance programs. Amazon Lex is a HIPAA eligible service. It is PCI, SOC, and ISO compliant.
You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Amazon Lex is determined by the sensitivity of your
data, your organization’s compliance objectives, and applicable laws and regulations. If your use
of Amazon Lex is subject to compliance with standards such as PCI, AWS provides the following
resources to help:

• Security and Compliance Quick Start Guides – Deployment guides that discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – A collection of workbooks and guides that might apply to your
industry and location

• AWS Config – A service that assesses how well your resource configurations comply with internal
practices, industry guidelines, and regulations

• AWS Security Hub – A comprehensive view of your security state within AWS that helps you
check your compliance with security industry standards and best practices

For a list of AWS services in scope for specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

Compliance Validation 394

https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/

Amazon Lex V1 Developer Guide

Resilience in Amazon Lex

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon Lex offers several features to help support
your data resiliency and backup needs.

Infrastructure Security in Amazon Lex

As a managed service, Amazon Lex is protected by the AWS global network security procedures
that are described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use published AWS API calls to access Amazon Lex through the network. Clients must support
TLS (Transport Layer Security) 1.0. We recommend TLS 1.2 or later. Clients must also support
cipher suites with perfect forward secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic
Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems, such as Java 7 and later, support
these modes. Additionally, requests must be signed by using an access key ID and a secret access
key that is associated with an IAM principal. Or you can use the AWS Security Token Service (AWS
STS) to generate temporary security credentials to sign requests.

You can call these API operations from any network location, but Amazon Lex supports resource-
level access policies, which can include restrictions based on the source IP address. You can also use
Amazon Lex policies to control access from specific Amazon Virtual Private Cloud (Amazon VPC)
endpoints or specific VPCs. Effectively, this isolates network access to a given Amazon Lex resource
from only the specific VPC within the AWS network.

Resilience 395

https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Lex V1 Developer Guide

Guidelines and Quotas in Amazon Lex

The following sections provide guidelines and quotas when using Amazon Lex.

Topics

• Supported Regions

• General Guidelines

• Quotas

Supported Regions

For a list of AWS Regions where Amazon Lex is available, see AWS Regions and Endpoints in the
Amazon Web Services General Reference.

General Guidelines

This section describes general guidelines when using Amazon Lex.

• Signing requests – All Amazon Lex model-building and runtime API operations in the
API Reference use signature V4 for authenticating requests. For more information about
authenticating requests, see Signature Version 4 Signing Process in the Amazon Web Services
General Reference.

For PostContent, Amazon Lex uses the unsigned payload option described in Signature
Calculations for the Authorization Header: Transferring Payload in a Single Chunk (AWS
Signature Version 4) in the Amazon Simple Storage Service (S3) API Reference.

When you use the unsigned payload option, don't include the hash of the payload in the
canonical request. Instead, you use the literal string "UNSIGNED-PAYLOAD" as the hash of
the payload. Also include a header with the name x-amz-content-sha256 and the value
UNSIGNED-PAYLOAD in the PostContent request.

Supported Regions 396

https://docs.aws.amazon.com/general/latest/gr/lex.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html

Amazon Lex V1 Developer Guide

• Note the following about how Amazon Lex captures slot values from user utterances:

Amazon Lex uses the enumeration values you provide in a slot type definition to train its
machine learning models. Suppose you define an intent called GetPredictionIntent with the
following sample utterance:

"Tell me the prediction for {Sign}"

Where {Sign} is a slot of custom type ZodiacSign. It has 12 enumeration values, Aries
through Pisces. From the user utterance "Tell me the prediction for ..." Amazon Lex
understands what follows is a zodiac sign.

When the valueSelectionStrategy field is set to ORIGINAL_VALUE using the PutSlotType
operation, or if Expand values is selected in the console, if the user says "Tell me the prediction
for earth", Amazon Lex infers that "earth" is a ZodiacSign and passes it to your client
application or Lambda functions. You must check that slot values have valid values before using
them in your fulfillment activity.

If you set the valueSelectionStrategy field to TOP_RESOLUTION using the PutSlotType
operation, or if Restrict to slot values and synonyms is selected in the console, the values that
are returned are limited to the values that you defined for the slot type. For example, if the
user says "Tell me the prediction for earth" the value would not be recognized because it is not
one of the values defined for the slot type. When you define synonyms for slot values, they are
recognized the same as a slot value, however, the slot value is returned instead of the synonym.

When Amazon Lex calls a Lambda function or returns the result of a speech interaction with
your client application, the case of the slot values is not guaranteed. For example, if you are
eliciting values for the AMAZON.Movie built-in slot type, and a user says or types "Gone with the
wind," Amazon Lex may return "Gone with the Wind," "gone with the wind," or "Gone With The
Wind." In text interactions, the case of the slot values matches the text entered or the slot value,
depending on the value of the valueResolutionStrategy field.

General Guidelines 397

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference#movie

Amazon Lex V1 Developer Guide

• When defining slot values that contain acronyms, use the following patterns:

• Capital letters separated by periods (D.V.D.)

• Capital letters separated by spaces (D V D)

• Amazon Lex does not support the AMAZON.LITERAL built-in slot type that the Alexa Skills
Kit supports. However, Amazon Lex supports creating custom slot types that you can use to
implement this functionality. As mentioned in the previous bullet, you can capture values
outside the custom slot type definition. Add more and diverse enumeration values to boost the
automatic speech recognition (ASR) and natural language understanding (NLU) accuracy.

• The AMAZON.DATE and AMAZON.TIME built-in slot types capture both absolute and relative
dates and times. Relative dates and times are resolved in the region where Amazon Lex is
processing the request.

For the AMAZON.TIME built-in slot type, if the user doesn't specify that a time is before or
after noon, the time is ambiguous and Amazon Lex will prompt the user again. We recommend
prompts that elicit an absolute time. For example, use a prompt such as "When do you want your
pizza delivered? You can say 6 PM or 6 in the evening."

• Providing confusable training data in your bot reduces Amazon Lex's ability to understand user
input. Consider these examples:

Suppose you have two intents (OrderPizza and OrderDrink) in your bot and both are
configured with an "I want to order" utterance. This utterance does not map to a specific intent
that Amazon Lex can learn from while building the language model for the bot at build time.
As a result, when a user inputs this utterance at runtime, Amazon Lex can't pick an intent with a
high degree of confidence.

General Guidelines 398

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference#date
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference#time

Amazon Lex V1 Developer Guide

Consider another example where you define a custom intent for getting a confirmation from
the user (for example, MyCustomConfirmationIntent) and configure the intent with the
utterances "Yes" and "No." Note that Amazon Lex also has a language model for understanding
user confirmations. This can create conflicting situation. When the user responds with a "Yes,"
does this mean that this is a confirmation for the ongoing intent or that the user is requesting
the custom intent that you created?

In general, the sample utterances you provide should map to a specific intent and, optionally, to
specific slot values.

• The runtime API operations PostContent and PostText take a user ID as the required parameter.
Developers can set this to any value that meets the constraints described in the API. We
recommend you don't use this parameter to send any confidential information such as
user logins, emails, or social security numbers. This ID is primarily used to uniquely identify
conversation with a bot (there can be multiple users ordering pizza).

• If your client application uses Amazon Cognito for authentication, you might use the Amazon
Cognito user ID as Amazon Lex user ID. Note that any Lambda function configured for your bot
must have its own authentication mechanism to identify the user on whose behalf Amazon Lex is
invoking the Lambda function.

• We encourage you to define an intent that captures a user's intention to discontinue the
conversation. For example, you can define an intent (NothingIntent) with sample utterances
("I don't want anything", "exit", "bye bye"), no slots, and no Lambda function configured as a code
hook. This lets users gracefully close a conversation.

Quotas

This section describes current quotas in Amazon Lex. These quotas are grouped by categories.

Quotas 399

Amazon Lex V1 Developer Guide

Service quotas can be adjusted or increased. Contact AWS customer support to increase a quota. It
can take a few days to increase a service quota. If you're increasing your quota as part of a larger
project, be sure to add this time to your plan.

Topics

• Runtime Service Quotas

• Model Building Quotas

Runtime Service Quotas

In addition to the quotas described in the API reference, note the following:

API Quotas

• Speech input to the PostContent operation can be up to 15 seconds long.

• In both the runtime API operations PostContent and PostText, the input text size can be up to
1024 Unicode characters.

• The maximum size of PostContent headers is 16 KB. The maximum size of request and session
headers combined is 12 KB.

• When using the PostContent or PostText operations in text mode, the maximum number of
concurrent conversations with a bot is 2 for the $LATEST alias and 50 for all other aliases. The
quota applies separately for each API.

• When using the PostContent operation in voice mode, the maximum number of concurrent
text-mode conversations with a bot is 2 for the $LATEST alias and 125 for all other aliases. The
quota applies separately for each API.

• The maximum number of concurrent session management calls (PutSession, GetSession, and
DeleteSession) is 2 for the $LATEST alias of a bot and 50 for all other aliases.

Runtime Service Quotas 400

Amazon Lex V1 Developer Guide

• The maximum input size to a Lambda function is 12 KB. The maximum output size is 25 KB, of
which 12 KB can be session attributes.

Using the $LATEST version

• The $LATEST version of your bot should only be used for manual testing. Amazon Lex limits the
number of runtime requests that you can make to the $LATEST version of the bot.

• When you update the $LATEST version of the bot, Amazon Lex terminates any in-progress
conversations for any client application using the $LATEST version of the bot. Generally, you
should not use the $LATEST version of a bot in production because $LATEST version can be
updated. You should publish a version and use it instead.

• When you update an alias, Amazon Lex takes a few minutes to pick up the change. When you
modify the $LATEST version of the bot, the change is picked up immediately.

Session Timeout

• The session timeout set when the bot was created determines how long the bot retains
conversation context, such as current user intent and slot data.

• After a user starts the conversation with your bot and until the session expires, Amazon Lex uses
the same bot version, even if you update the bot alias to point to another version.

Runtime Service Quotas 401

Amazon Lex V1 Developer Guide

Model Building Quotas

Model building refers to creating and managing bots. This includes creating and managing bots,
intents, slot types, slots, and bot channel associations.

Topics

• Bot Quotas

• Intent Quotas

• Slot Type Quotas

Bot Quotas

• You configure prompts and statements throughout the model building API. Each of these
prompts or statements can have up to five messages and each message can contain from 1 to
1000 UTF-8 characters.

• When using message groups you can define up to five message groups for each message. Each
message group can contain a maximum of five messages, and you are limited to 15 messages in
all message groups.

• You can define sample utterances for intents and slots. You can use a maximum of 200,000
characters for all utterances.

• Each slot type can define a maximum of 10,000 values and synonyms. Each bot can contain a
maximum of 50,000 slot type values and synonyms.

• Bot, alias, and bot channel association names are case insensitive at the time of creation. If
you create PizzaBot and then try to create pizzaBot, you will get an error. However, when
accessing a resource, the resource names are case sensitive, you must specify PizzaBot and not
pizzaBot. These names must be between 2 and 50 ASCII characters.

Model Building Quotas 402

Amazon Lex V1 Developer Guide

• The maximum number of versions you can publish for all resource types is 100. Note that there is
no versioning for aliases.

• Within a bot, intent names and slot names must be unique, you can't have an intent and a slot by
the same name.

• You can create a bot that is configured to support multiple intents. If two intents have a slot by
the same name, then the corresponding slot type must be the same.

For example, suppose you create a bot to support two intents (OrderPizza and OrderDrink).
If both these intents have the size slot, then the slot type must be the same in both places.

In addition, the sample utterances you provide for a slot in one of the intents applies to a slot
with the same name in other intents.

• You can associate a maximum of 250 intents with a bot.

• When you create a bot, you specify a session timeout. The session timeout can be between one
minute and one day. The default is five minutes.

• You can create up to five aliases for a bot.

• You can create up to 250 bots per AWS account.

• You cannot create multiple intents that extend from the same built-in intent.

Model Building Quotas 403

Amazon Lex V1 Developer Guide

Intent Quotas

• Intent and slot names are case insensitive at the time of creation. That is, if you create
OrderPizza intent and then again try to create another orderPizza intent, you will get an
error. However, when accessing these resources, the resource names are case sensitive, specify
OrderPizza and not orderPizza. These names must be between 1 and 100 ASCII characters.

• An intent can have up to 1,500 sample utterances. A minimum of one sample utterance is
required. Each sample utterance can be up to 200 UTF-8 characters long. You can use up to
200,000 characters for all intent and slot utterances in a bot. A sample utterance for an intent:

• Can refer to zero or more slot names.

• Can refer to a slot name only once.

For example:

I want a pizza
I want a {pizzaSize} pizza
I want a {pizzaSize} {pizzaTopping} pizza

• Although each intent supports up to 1,500 utterances, if you use fewer utterances Amazon Lex
may have a better ability to recognize inputs outside your provided set.

• You can create up to five message groups for each message in an intent. There can be a total of
15 messages in all message groups for a message.

• The console can only create message groups for the conclusionStatement and
followUpPrompt messages. You can create message groups for any other message using the
Amazon Lex API.

• Each slot can have up to 10 sample utterances. Each sample utterance must refer to the slot
name exactly once. For example:

Model Building Quotas 404

Amazon Lex V1 Developer Guide

{pizzaSize} please

• Each bot can have a maximum of 200,000 characters for intent and slot utterances combined.

• You cannot provide utterances for intents that extend from built-in intents. For all other intents
you must provide at least one sample utterance. Intents contain slots, but the slot level sample
utterances are optional.

• Built-in intents

• Currently, Amazon Lex does not support slot elicitation for built-in intents. You cannot create
Lambda functions to return the ElicitSlot directive in the response with an intent that is
derived from built-in intents. For more information, see Response Format.

• The service does not support adding sample utterances to built-in intents. Similarly, you
cannot add or remove slots to built-in intents.

• You can create up to 1,000 intents per AWS account. You can create up to 100 slots in an intent.

Slot Type Quotas

• Slot type names are case insensitive at the time of creation. If you create the PizzaSize slot
type and then again try to create the pizzaSize slot type, you will get an error. However, when
accessing these resources, the resource names are case sensitive (you must specify PizzaSize
and not pizzaSize). Names must be between 1 and 100 ASCII characters.

• A custom slot type you create can have a maximum of 10,000 enumeration values and
synonyms. Each value can be up to 140 UTF-8 characters long. The enumeration values and
synonyms cannot contain duplicates.

Model Building Quotas 405

Amazon Lex V1 Developer Guide

• For a slot type value, where appropriate, specify both upper and lower case. For example, for a
slot type called Procedure, if value is MRI, specify both "MRI" and "mri" as values.

• Built-in slot types – Currently, Amazon Lex doesn't support adding enumeration values or
synonyms for the built-in slot types.

Model Building Quotas 406

Amazon Lex V1 Developer Guide

API Reference

This section provides documentation for the Amazon Lex API operations. For a list of AWS Regions
where Amazon Lex is available, see AWS Regions and Endpoints in the Amazon Web Services
General Reference.

Topics

• Actions

• Data Types

Actions

The following actions are supported by Amazon Lex Model Building Service:

• CreateBotVersion

• CreateIntentVersion

• CreateSlotTypeVersion

• DeleteBot

• DeleteBotAlias

• DeleteBotChannelAssociation

• DeleteBotVersion

• DeleteIntent

• DeleteIntentVersion

• DeleteSlotType

• DeleteSlotTypeVersion

• DeleteUtterances

• GetBot

• GetBotAlias

• GetBotAliases

• GetBotChannelAssociation

• GetBotChannelAssociations

• GetBots

Actions 407

https://docs.aws.amazon.com/general/latest/gr/rande.html#lex_region

Amazon Lex V1 Developer Guide

• GetBotVersions

• GetBuiltinIntent

• GetBuiltinIntents

• GetBuiltinSlotTypes

• GetExport

• GetImport

• GetIntent

• GetIntents

• GetIntentVersions

• GetMigration

• GetMigrations

• GetSlotType

• GetSlotTypes

• GetSlotTypeVersions

• GetUtterancesView

• ListTagsForResource

• PutBot

• PutBotAlias

• PutIntent

• PutSlotType

• StartImport

• StartMigration

• TagResource

• UntagResource

The following actions are supported by Amazon Lex Runtime Service:

• DeleteSession

• GetSession

• PostContent

• PostText

Actions 408

Amazon Lex V1 Developer Guide

• PutSession

Amazon Lex Model Building Service

The following actions are supported by Amazon Lex Model Building Service:

• CreateBotVersion

• CreateIntentVersion

• CreateSlotTypeVersion

• DeleteBot

• DeleteBotAlias

• DeleteBotChannelAssociation

• DeleteBotVersion

• DeleteIntent

• DeleteIntentVersion

• DeleteSlotType

• DeleteSlotTypeVersion

• DeleteUtterances

• GetBot

• GetBotAlias

• GetBotAliases

• GetBotChannelAssociation

• GetBotChannelAssociations

• GetBots

• GetBotVersions

• GetBuiltinIntent

• GetBuiltinIntents

• GetBuiltinSlotTypes

• GetExport

• GetImport

• GetIntent

• GetIntents

Amazon Lex Model Building Service 409

Amazon Lex V1 Developer Guide

• GetIntentVersions

• GetMigration

• GetMigrations

• GetSlotType

• GetSlotTypes

• GetSlotTypeVersions

• GetUtterancesView

• ListTagsForResource

• PutBot

• PutBotAlias

• PutIntent

• PutSlotType

• StartImport

• StartMigration

• TagResource

• UntagResource

Amazon Lex Model Building Service 410

Amazon Lex V1 Developer Guide

CreateBotVersion
Service: Amazon Lex Model Building Service

Creates a new version of the bot based on the $LATEST version. If the $LATEST version of this
resource hasn't changed since you created the last version, Amazon Lex doesn't create a new
version. It returns the last created version.

Note

You can update only the $LATEST version of the bot. You can't update the numbered
versions that you create with the CreateBotVersion operation.

When you create the first version of a bot, Amazon Lex sets the version to 1. Subsequent versions
increment by 1. For more information, see Versioning.

This operation requires permission for the lex:CreateBotVersion action.

Request Syntax

POST /bots/name/versions HTTP/1.1
Content-type: application/json

{
 "checksum": "string"
}

URI Request Parameters

The request uses the following URI parameters.

name

The name of the bot that you want to create a new version of. The name is case sensitive.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Amazon Lex Model Building Service 411

Amazon Lex V1 Developer Guide

Request Body

The request accepts the following data in JSON format.

checksum

Identifies a specific revision of the $LATEST version of the bot. If you specify a checksum and
the $LATEST version of the bot has a different checksum, a PreconditionFailedException
exception is returned and Amazon Lex doesn't publish a new version. If you don't specify a
checksum, Amazon Lex publishes the $LATEST version.

Type: String

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

{
 "abortStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "checksum": "string",
 "childDirected": boolean,
 "clarificationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],

Amazon Lex Model Building Service 412

Amazon Lex V1 Developer Guide

 "responseCard": "string"
 },
 "createdDate": number,
 "description": "string",
 "detectSentiment": boolean,
 "enableModelImprovements": boolean,
 "failureReason": "string",
 "idleSessionTTLInSeconds": number,
 "intents": [
 {
 "intentName": "string",
 "intentVersion": "string"
 }
],
 "lastUpdatedDate": number,
 "locale": "string",
 "name": "string",
 "status": "string",
 "version": "string",
 "voiceId": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

abortStatement

The message that Amazon Lex uses to cancel a conversation. For more information, see PutBot.

Type: Statement object

checksum

Checksum identifying the version of the bot that was created.

Type: String

childDirected

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must
specify whether your use of Amazon Lex is related to a website, program, or other application
that is directed or targeted, in whole or in part, to children under age 13 and subject to

Amazon Lex Model Building Service 413

Amazon Lex V1 Developer Guide

the Children's Online Privacy Protection Act (COPPA) by specifying true or false in the
childDirected field. By specifying true in the childDirected field, you confirm that your
use of Amazon Lex is related to a website, program, or other application that is directed or
targeted, in whole or in part, to children under age 13 and subject to COPPA. By specifying
false in the childDirected field, you confirm that your use of Amazon Lex is not related
to a website, program, or other application that is directed or targeted, in whole or in part,
to children under age 13 and subject to COPPA. You may not specify a default value for the
childDirected field that does not accurately reflect whether your use of Amazon Lex is
related to a website, program, or other application that is directed or targeted, in whole or in
part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed
in whole or in part, to children under age 13, you must obtain any required verifiable parental
consent under COPPA. For information regarding the use of Amazon Lex in connection with
websites, programs, or other applications that are directed or targeted, in whole or in part, to
children under age 13, see the Amazon Lex FAQ.

Type: Boolean

clarificationPrompt

The message that Amazon Lex uses when it doesn't understand the user's request. For more
information, see PutBot.

Type: Prompt object

createdDate

The date when the bot version was created.

Type: Timestamp

description

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

detectSentiment

Indicates whether utterances entered by the user should be sent to Amazon Comprehend for
sentiment analysis.

Amazon Lex Model Building Service 414

https://aws.amazon.com/lex/faqs#data-security

Amazon Lex V1 Developer Guide

Type: Boolean

enableModelImprovements

Indicates whether the bot uses accuracy improvements. true indicates that the bot is using the
improvements, otherwise, false.

Type: Boolean

failureReason

If status is FAILED, Amazon Lex provides the reason that it failed to build the bot.

Type: String

idleSessionTTLInSeconds

The maximum time in seconds that Amazon Lex retains the data gathered in a conversation. For
more information, see PutBot.

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 86400.

intents

An array of Intent objects. For more information, see PutBot.

Type: Array of Intent objects

lastUpdatedDate

The date when the $LATEST version of this bot was updated.

Type: Timestamp

locale

Specifies the target locale for the bot.

Type: String

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

name

The name of the bot.

Amazon Lex Model Building Service 415

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

status

When you send a request to create or update a bot, Amazon Lex sets the status response
element to BUILDING. After Amazon Lex builds the bot, it sets status to READY. If Amazon
Lex can't build the bot, it sets status to FAILED. Amazon Lex returns the reason for the failure
in the failureReason response element.

Type: String

Valid Values: BUILDING | READY | READY_BASIC_TESTING | FAILED | NOT_BUILT

version

The version of the bot.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

voiceId

The Amazon Polly voice ID that Amazon Lex uses for voice interactions with the user.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

Amazon Lex Model Building Service 416

Amazon Lex V1 Developer Guide

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in
the request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 417

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/CreateBotVersion
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/CreateBotVersion
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/CreateBotVersion
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/CreateBotVersion
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/CreateBotVersion
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/CreateBotVersion
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/CreateBotVersion
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/CreateBotVersion
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/CreateBotVersion

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 418

Amazon Lex V1 Developer Guide

CreateIntentVersion
Service: Amazon Lex Model Building Service

Creates a new version of an intent based on the $LATEST version of the intent. If the $LATEST
version of this intent hasn't changed since you last updated it, Amazon Lex doesn't create a new
version. It returns the last version you created.

Note

You can update only the $LATEST version of the intent. You can't update the numbered
versions that you create with the CreateIntentVersion operation.

When you create a version of an intent, Amazon Lex sets the version to 1. Subsequent versions
increment by 1. For more information, see Versioning.

This operation requires permissions to perform the lex:CreateIntentVersion action.

Request Syntax

POST /intents/name/versions HTTP/1.1
Content-type: application/json

{
 "checksum": "string"
}

URI Request Parameters

The request uses the following URI parameters.

name

The name of the intent that you want to create a new version of. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Amazon Lex Model Building Service 419

Amazon Lex V1 Developer Guide

Request Body

The request accepts the following data in JSON format.

checksum

Checksum of the $LATEST version of the intent that should be used to create the new version.
If you specify a checksum and the $LATEST version of the intent has a different checksum,
Amazon Lex returns a PreconditionFailedException exception and doesn't publish a new
version. If you don't specify a checksum, Amazon Lex publishes the $LATEST version.

Type: String

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

{
 "checksum": "string",
 "conclusionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "confirmationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },

Amazon Lex Model Building Service 420

Amazon Lex V1 Developer Guide

 "createdDate": number,
 "description": "string",
 "dialogCodeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "followUpPrompt": {
 "prompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 }
 },
 "fulfillmentActivity": {
 "codeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "type": "string"
 },
 "inputContexts": [
 {
 "name": "string"
 }
],
 "kendraConfiguration": {
 "kendraIndex": "string",
 "queryFilterString": "string",

Amazon Lex Model Building Service 421

Amazon Lex V1 Developer Guide

 "role": "string"
 },
 "lastUpdatedDate": number,
 "name": "string",
 "outputContexts": [
 {
 "name": "string",
 "timeToLiveInSeconds": number,
 "turnsToLive": number
 }
],
 "parentIntentSignature": "string",
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "sampleUtterances": ["string"],
 "slots": [
 {
 "defaultValueSpec": {
 "defaultValueList": [
 {
 "defaultValue": "string"
 }
]
 },
 "description": "string",
 "name": "string",
 "obfuscationSetting": "string",
 "priority": number,
 "responseCard": "string",
 "sampleUtterances": ["string"],
 "slotConstraint": "string",
 "slotType": "string",
 "slotTypeVersion": "string",
 "valueElicitationPrompt": {
 "maxAttempts": number,
 "messages": [

Amazon Lex Model Building Service 422

Amazon Lex V1 Developer Guide

 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 }
 }
],
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

checksum

Checksum of the intent version created.

Type: String

conclusionStatement

After the Lambda function specified in the fulfillmentActivity field fulfills the intent,
Amazon Lex conveys this statement to the user.

Type: Statement object

confirmationPrompt

If defined, the prompt that Amazon Lex uses to confirm the user's intent before fulfilling it.

Type: Prompt object

createdDate

The date that the intent was created.

Type: Timestamp

description

A description of the intent.

Amazon Lex Model Building Service 423

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

dialogCodeHook

If defined, Amazon Lex invokes this Lambda function for each user input.

Type: CodeHook object

followUpPrompt

If defined, Amazon Lex uses this prompt to solicit additional user activity after the intent is
fulfilled.

Type: FollowUpPrompt object

fulfillmentActivity

Describes how the intent is fulfilled.

Type: FulfillmentActivity object

inputContexts

An array of InputContext objects that lists the contexts that must be active for Amazon Lex
to choose the intent in a conversation with the user.

Type: Array of InputContext objects

Array Members: Minimum number of 0 items. Maximum number of 5 items.

kendraConfiguration

Configuration information, if any, for connecting an Amazon Kendra index with the
AMAZON.KendraSearchIntent intent.

Type: KendraConfiguration object

lastUpdatedDate

The date that the intent was updated.

Type: Timestamp

name

The name of the intent.

Amazon Lex Model Building Service 424

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

outputContexts

An array of OutputContext objects that lists the contexts that the intent activates when the
intent is fulfilled.

Type: Array of OutputContext objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

parentIntentSignature

A unique identifier for a built-in intent.

Type: String

rejectionStatement

If the user answers "no" to the question defined in confirmationPrompt, Amazon Lex
responds with this statement to acknowledge that the intent was canceled.

Type: Statement object

sampleUtterances

An array of sample utterances configured for the intent.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 1500 items.

Length Constraints: Minimum length of 1. Maximum length of 200.

slots

An array of slot types that defines the information required to fulfill the intent.

Type: Array of Slot objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.

Amazon Lex Model Building Service 425

Amazon Lex V1 Developer Guide

version

The version number assigned to the new version of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in
the request. Check the resource's checksum and try again.

Amazon Lex Model Building Service 426

Amazon Lex V1 Developer Guide

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 427

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/CreateIntentVersion
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/CreateIntentVersion
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/CreateIntentVersion
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/CreateIntentVersion
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/CreateIntentVersion
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/CreateIntentVersion
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/CreateIntentVersion
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/CreateIntentVersion
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/CreateIntentVersion

Amazon Lex V1 Developer Guide

CreateSlotTypeVersion
Service: Amazon Lex Model Building Service

Creates a new version of a slot type based on the $LATEST version of the specified slot type. If the
$LATEST version of this resource has not changed since the last version that you created, Amazon
Lex doesn't create a new version. It returns the last version that you created.

Note

You can update only the $LATEST version of a slot type. You can't update the numbered
versions that you create with the CreateSlotTypeVersion operation.

When you create a version of a slot type, Amazon Lex sets the version to 1. Subsequent versions
increment by 1. For more information, see Versioning.

This operation requires permissions for the lex:CreateSlotTypeVersion action.

Request Syntax

POST /slottypes/name/versions HTTP/1.1
Content-type: application/json

{
 "checksum": "string"
}

URI Request Parameters

The request uses the following URI parameters.

name

The name of the slot type that you want to create a new version for. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Amazon Lex Model Building Service 428

Amazon Lex V1 Developer Guide

Request Body

The request accepts the following data in JSON format.

checksum

Checksum for the $LATEST version of the slot type that you want to publish. If you specify
a checksum and the $LATEST version of the slot type has a different checksum, Amazon Lex
returns a PreconditionFailedException exception and doesn't publish the new version. If
you don't specify a checksum, Amazon Lex publishes the $LATEST version.

Type: String

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

{
 "checksum": "string",
 "createdDate": number,
 "description": "string",
 "enumerationValues": [
 {
 "synonyms": ["string"],
 "value": "string"
 }
],
 "lastUpdatedDate": number,
 "name": "string",
 "parentSlotTypeSignature": "string",
 "slotTypeConfigurations": [
 {
 "regexConfiguration": {
 "pattern": "string"
 }
 }
],
 "valueSelectionStrategy": "string",
 "version": "string"

Amazon Lex Model Building Service 429

Amazon Lex V1 Developer Guide

}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

checksum

Checksum of the $LATEST version of the slot type.

Type: String

createdDate

The date that the slot type was created.

Type: Timestamp

description

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

enumerationValues

A list of EnumerationValue objects that defines the values that the slot type can take.

Type: Array of EnumerationValue objects

Array Members: Minimum number of 0 items. Maximum number of 10000 items.

lastUpdatedDate

The date that the slot type was updated. When you create a resource, the creation date and last
update date are the same.

Type: Timestamp

name

The name of the slot type.

Type: String

Amazon Lex Model Building Service 430

Amazon Lex V1 Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

parentSlotTypeSignature

The built-in slot type used a the parent of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^((AMAZON\.)_?|[A-Za-z]_?)+

slotTypeConfigurations

Configuration information that extends the parent built-in slot type.

Type: Array of SlotTypeConfiguration objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

valueSelectionStrategy

The strategy that Amazon Lex uses to determine the value of the slot. For more information,
see PutSlotType.

Type: String

Valid Values: ORIGINAL_VALUE | TOP_RESOLUTION

version

The version assigned to the new slot type version.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

Amazon Lex Model Building Service 431

Amazon Lex V1 Developer Guide

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in
the request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

Amazon Lex Model Building Service 432

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/CreateSlotTypeVersion
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/CreateSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/CreateSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/CreateSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/CreateSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/CreateSlotTypeVersion

Amazon Lex V1 Developer Guide

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 433

https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/CreateSlotTypeVersion
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/CreateSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/CreateSlotTypeVersion

Amazon Lex V1 Developer Guide

DeleteBot
Service: Amazon Lex Model Building Service

Deletes all versions of the bot, including the $LATEST version. To delete a specific version of the
bot, use the DeleteBotVersion operation. The DeleteBot operation doesn't immediately remove
the bot schema. Instead, it is marked for deletion and removed later.

Amazon Lex stores utterances indefinitely for improving the ability of your bot to respond to user
inputs. These utterances are not removed when the bot is deleted. To remove the utterances, use
the DeleteUtterances operation.

If a bot has an alias, you can't delete it. Instead, the DeleteBot operation returns a
ResourceInUseException exception that includes a reference to the alias that refers to the bot.
To remove the reference to the bot, delete the alias. If you get the same exception again, delete the
referring alias until the DeleteBot operation is successful.

This operation requires permissions for the lex:DeleteBot action.

Request Syntax

DELETE /bots/name HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the bot. The name is case sensitive.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Request Body

The request does not have a request body.

Amazon Lex Model Building Service 434

Amazon Lex V1 Developer Guide

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

Amazon Lex Model Building Service 435

Amazon Lex V1 Developer Guide

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 436

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteBot
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteBot
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteBot
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteBot
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteBot
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteBot
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteBot
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteBot
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteBot

Amazon Lex V1 Developer Guide

DeleteBotAlias
Service: Amazon Lex Model Building Service

Deletes an alias for the specified bot.

You can't delete an alias that is used in the association between a bot and a messaging
channel. If an alias is used in a channel association, the DeleteBot operation returns a
ResourceInUseException exception that includes a reference to the channel association that
refers to the bot. You can remove the reference to the alias by deleting the channel association.
If you get the same exception again, delete the referring association until the DeleteBotAlias
operation is successful.

Request Syntax

DELETE /bots/botName/aliases/name HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

botName

The name of the bot that the alias points to.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

name

The name of the alias to delete. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Request Body

The request does not have a request body.

Amazon Lex Model Building Service 437

Amazon Lex V1 Developer Guide

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

Amazon Lex Model Building Service 438

Amazon Lex V1 Developer Guide

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 439

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteBotAlias
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteBotAlias
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteBotAlias
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteBotAlias
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteBotAlias
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteBotAlias
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteBotAlias
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteBotAlias
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteBotAlias

Amazon Lex V1 Developer Guide

DeleteBotChannelAssociation
Service: Amazon Lex Model Building Service

Deletes the association between an Amazon Lex bot and a messaging platform.

This operation requires permission for the lex:DeleteBotChannelAssociation action.

Request Syntax

DELETE /bots/botName/aliases/aliasName/channels/name HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

aliasName

An alias that points to the specific version of the Amazon Lex bot to which this association is
being made.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

botName

The name of the Amazon Lex bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

name

The name of the association. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Amazon Lex Model Building Service 440

Amazon Lex V1 Developer Guide

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

Amazon Lex Model Building Service 441

Amazon Lex V1 Developer Guide

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 442

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteBotChannelAssociation
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteBotChannelAssociation
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteBotChannelAssociation

Amazon Lex V1 Developer Guide

DeleteBotVersion
Service: Amazon Lex Model Building Service

Deletes a specific version of a bot. To delete all versions of a bot, use the DeleteBot operation.

This operation requires permissions for the lex:DeleteBotVersion action.

Request Syntax

DELETE /bots/name/versions/version HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

version

The version of the bot to delete. You cannot delete the $LATEST version of the bot. To delete
the $LATEST version, use the DeleteBot operation.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Amazon Lex Model Building Service 443

Amazon Lex V1 Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

Amazon Lex Model Building Service 444

Amazon Lex V1 Developer Guide

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 445

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteBotVersion
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteBotVersion
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteBotVersion
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteBotVersion
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteBotVersion
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteBotVersion
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteBotVersion
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteBotVersion
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteBotVersion

Amazon Lex V1 Developer Guide

DeleteIntent
Service: Amazon Lex Model Building Service

Deletes all versions of the intent, including the $LATEST version. To delete a specific version of the
intent, use the DeleteIntentVersion operation.

You can delete a version of an intent only if it is not referenced. To delete an intent that is referred
to in one or more bots (see Amazon Lex: How It Works), you must remove those references first.

Note

If you get the ResourceInUseException exception, it provides an example reference
that shows where the intent is referenced. To remove the reference to the intent, either
update the bot or delete it. If you get the same exception when you attempt to delete the
intent again, repeat until the intent has no references and the call to DeleteIntent is
successful.

This operation requires permission for the lex:DeleteIntent action.

Request Syntax

DELETE /intents/name HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the intent. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Request Body

The request does not have a request body.

Amazon Lex Model Building Service 446

Amazon Lex V1 Developer Guide

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

Amazon Lex Model Building Service 447

Amazon Lex V1 Developer Guide

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 448

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteIntent
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteIntent
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteIntent
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteIntent
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteIntent
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteIntent
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteIntent
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteIntent
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteIntent

Amazon Lex V1 Developer Guide

DeleteIntentVersion
Service: Amazon Lex Model Building Service

Deletes a specific version of an intent. To delete all versions of a intent, use the DeleteIntent
operation.

This operation requires permissions for the lex:DeleteIntentVersion action.

Request Syntax

DELETE /intents/name/versions/version HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the intent.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

version

The version of the intent to delete. You cannot delete the $LATEST version of the intent. To
delete the $LATEST version, use the DeleteIntent operation.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+

Required: Yes

Request Body

The request does not have a request body.

Amazon Lex Model Building Service 449

Amazon Lex V1 Developer Guide

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

Amazon Lex Model Building Service 450

Amazon Lex V1 Developer Guide

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 451

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteIntentVersion
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteIntentVersion
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteIntentVersion
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteIntentVersion
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteIntentVersion
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteIntentVersion
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteIntentVersion
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteIntentVersion
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteIntentVersion

Amazon Lex V1 Developer Guide

DeleteSlotType
Service: Amazon Lex Model Building Service

Deletes all versions of the slot type, including the $LATEST version. To delete a specific version of
the slot type, use the DeleteSlotTypeVersion operation.

You can delete a version of a slot type only if it is not referenced. To delete a slot type that is
referred to in one or more intents, you must remove those references first.

Note

If you get the ResourceInUseException exception, the exception provides an example
reference that shows the intent where the slot type is referenced. To remove the reference
to the slot type, either update the intent or delete it. If you get the same exception when
you attempt to delete the slot type again, repeat until the slot type has no references and
the DeleteSlotType call is successful.

This operation requires permission for the lex:DeleteSlotType action.

Request Syntax

DELETE /slottypes/name HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the slot type. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Request Body

The request does not have a request body.

Amazon Lex Model Building Service 452

Amazon Lex V1 Developer Guide

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

Amazon Lex Model Building Service 453

Amazon Lex V1 Developer Guide

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 454

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteSlotType
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteSlotType
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteSlotType
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteSlotType
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteSlotType
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteSlotType
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteSlotType
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteSlotType
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteSlotType

Amazon Lex V1 Developer Guide

DeleteSlotTypeVersion
Service: Amazon Lex Model Building Service

Deletes a specific version of a slot type. To delete all versions of a slot type, use the DeleteSlotType
operation.

This operation requires permissions for the lex:DeleteSlotTypeVersion action.

Request Syntax

DELETE /slottypes/name/version/version HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the slot type.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

version

The version of the slot type to delete. You cannot delete the $LATEST version of the slot type.
To delete the $LATEST version, use the DeleteSlotType operation.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+

Required: Yes

Request Body

The request does not have a request body.

Amazon Lex Model Building Service 455

Amazon Lex V1 Developer Guide

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

ResourceInUseException

The resource that you are attempting to delete is referred to by another resource. Use this
information to remove references to the resource that you are trying to delete.

Amazon Lex Model Building Service 456

Amazon Lex V1 Developer Guide

The body of the exception contains a JSON object that describes the resource.

{ "resourceType": BOT | BOTALIAS | BOTCHANNEL | INTENT,

"resourceReference": {

"name": string, "version": string } }

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 457

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteSlotTypeVersion
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteSlotTypeVersion
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteSlotTypeVersion
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteSlotTypeVersion

Amazon Lex V1 Developer Guide

DeleteUtterances
Service: Amazon Lex Model Building Service

Deletes stored utterances.

Amazon Lex stores the utterances that users send to your bot. Utterances are stored for 15 days for
use with the GetUtterancesView operation, and then stored indefinitely for use in improving the
ability of your bot to respond to user input.

Use the DeleteUtterances operation to manually delete stored utterances for a specific user.
When you use the DeleteUtterances operation, utterances stored for improving your bot's
ability to respond to user input are deleted immediately. Utterances stored for use with the
GetUtterancesView operation are deleted after 15 days.

This operation requires permissions for the lex:DeleteUtterances action.

Request Syntax

DELETE /bots/botName/utterances/userId HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

botName

The name of the bot that stored the utterances.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

userId

The unique identifier for the user that made the utterances. This is the user ID that was sent in
the PostContent or PostText operation request that contained the utterance.

Length Constraints: Minimum length of 2. Maximum length of 100.

Required: Yes

Amazon Lex Model Building Service 458

http://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostContent.html
http://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostText.html

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

Amazon Lex Model Building Service 459

Amazon Lex V1 Developer Guide

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 460

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/DeleteUtterances
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/DeleteUtterances
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/DeleteUtterances
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/DeleteUtterances
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/DeleteUtterances
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/DeleteUtterances
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/DeleteUtterances
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/DeleteUtterances
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/DeleteUtterances

Amazon Lex V1 Developer Guide

GetBot
Service: Amazon Lex Model Building Service

Returns metadata information for a specific bot. You must provide the bot name and the bot
version or alias.

This operation requires permissions for the lex:GetBot action.

Request Syntax

GET /bots/name/versions/versionoralias HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the bot. The name is case sensitive.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

versionoralias

The version or alias of the bot.

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "abortStatement": {
 "messages": [

Amazon Lex Model Building Service 461

Amazon Lex V1 Developer Guide

 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "checksum": "string",
 "childDirected": boolean,
 "clarificationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "createdDate": number,
 "description": "string",
 "detectSentiment": boolean,
 "enableModelImprovements": boolean,
 "failureReason": "string",
 "idleSessionTTLInSeconds": number,
 "intents": [
 {
 "intentName": "string",
 "intentVersion": "string"
 }
],
 "lastUpdatedDate": number,
 "locale": "string",
 "name": "string",
 "nluIntentConfidenceThreshold": number,
 "status": "string",
 "version": "string",
 "voiceId": "string"
}

Amazon Lex Model Building Service 462

Amazon Lex V1 Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

abortStatement

The message that Amazon Lex returns when the user elects to end the conversation without
completing it. For more information, see PutBot.

Type: Statement object

checksum

Checksum of the bot used to identify a specific revision of the bot's $LATEST version.

Type: String

childDirected

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must
specify whether your use of Amazon Lex is related to a website, program, or other application
that is directed or targeted, in whole or in part, to children under age 13 and subject to
the Children's Online Privacy Protection Act (COPPA) by specifying true or false in the
childDirected field. By specifying true in the childDirected field, you confirm that your
use of Amazon Lex is related to a website, program, or other application that is directed or
targeted, in whole or in part, to children under age 13 and subject to COPPA. By specifying
false in the childDirected field, you confirm that your use of Amazon Lex is not related
to a website, program, or other application that is directed or targeted, in whole or in part,
to children under age 13 and subject to COPPA. You may not specify a default value for the
childDirected field that does not accurately reflect whether your use of Amazon Lex is
related to a website, program, or other application that is directed or targeted, in whole or in
part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed
in whole or in part, to children under age 13, you must obtain any required verifiable parental
consent under COPPA. For information regarding the use of Amazon Lex in connection with
websites, programs, or other applications that are directed or targeted, in whole or in part, to
children under age 13, see the Amazon Lex FAQ.

Type: Boolean

Amazon Lex Model Building Service 463

https://aws.amazon.com/lex/faqs#data-security

Amazon Lex V1 Developer Guide

clarificationPrompt

The message Amazon Lex uses when it doesn't understand the user's request. For more
information, see PutBot.

Type: Prompt object

createdDate

The date that the bot was created.

Type: Timestamp

description

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

detectSentiment

Indicates whether user utterances should be sent to Amazon Comprehend for sentiment
analysis.

Type: Boolean

enableModelImprovements

Indicates whether the bot uses accuracy improvements. true indicates that the bot is using the
improvements, otherwise, false.

Type: Boolean

failureReason

If status is FAILED, Amazon Lex explains why it failed to build the bot.

Type: String

idleSessionTTLInSeconds

The maximum time in seconds that Amazon Lex retains the data gathered in a conversation. For
more information, see PutBot.

Type: Integer

Amazon Lex Model Building Service 464

Amazon Lex V1 Developer Guide

Valid Range: Minimum value of 60. Maximum value of 86400.

intents

An array of intent objects. For more information, see PutBot.

Type: Array of Intent objects

lastUpdatedDate

The date that the bot was updated. When you create a resource, the creation date and last
updated date are the same.

Type: Timestamp

locale

The target locale for the bot.

Type: String

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

name

The name of the bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

nluIntentConfidenceThreshold

The score that determines where Amazon Lex inserts the AMAZON.FallbackIntent,
AMAZON.KendraSearchIntent, or both when returning alternative intents in a PostContent
or PostText response. AMAZON.FallbackIntent is inserted if the confidence score for all
intents is below this value. AMAZON.KendraSearchIntent is only inserted if it is configured
for the bot.

Type: Double

Valid Range: Minimum value of 0. Maximum value of 1.

Amazon Lex Model Building Service 465

https://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostContent.html
https://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostText.html

Amazon Lex V1 Developer Guide

status

The status of the bot.

When the status is BUILDING Amazon Lex is building the bot for testing and use.

If the status of the bot is READY_BASIC_TESTING, you can test the bot using the exact
utterances specified in the bot's intents. When the bot is ready for full testing or to run, the
status is READY.

If there was a problem with building the bot, the status is FAILED and the failureReason
field explains why the bot did not build.

If the bot was saved but not built, the status is NOT_BUILT.

Type: String

Valid Values: BUILDING | READY | READY_BASIC_TESTING | FAILED | NOT_BUILT

version

The version of the bot. For a new bot, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

voiceId

The Amazon Polly voice ID that Amazon Lex uses for voice interaction with the user. For more
information, see PutBot.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

Amazon Lex Model Building Service 466

Amazon Lex V1 Developer Guide

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 467

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBot
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBot
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBot
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBot
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBot
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBot
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBot
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBot
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBot

Amazon Lex V1 Developer Guide

GetBotAlias
Service: Amazon Lex Model Building Service

Returns information about an Amazon Lex bot alias. For more information about aliases, see
Versioning and Aliases.

This operation requires permissions for the lex:GetBotAlias action.

Request Syntax

GET /bots/botName/aliases/name HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

botName

The name of the bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

name

The name of the bot alias. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200

Amazon Lex Model Building Service 468

Amazon Lex V1 Developer Guide

Content-type: application/json

{
 "botName": "string",
 "botVersion": "string",
 "checksum": "string",
 "conversationLogs": {
 "iamRoleArn": "string",
 "logSettings": [
 {
 "destination": "string",
 "kmsKeyArn": "string",
 "logType": "string",
 "resourceArn": "string",
 "resourcePrefix": "string"
 }
]
 },
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botName

The name of the bot that the alias points to.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

botVersion

The version of the bot that the alias points to.

Type: String

Amazon Lex Model Building Service 469

Amazon Lex V1 Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

checksum

Checksum of the bot alias.

Type: String

conversationLogs

The settings that determine how Amazon Lex uses conversation logs for the alias.

Type: ConversationLogsResponse object

createdDate

The date that the bot alias was created.

Type: Timestamp

description

A description of the bot alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

lastUpdatedDate

The date that the bot alias was updated. When you create a resource, the creation date and the
last updated date are the same.

Type: Timestamp

name

The name of the bot alias.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Amazon Lex Model Building Service 470

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 471

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotAlias
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotAlias
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotAlias
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotAlias
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBotAlias
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBotAlias
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotAlias
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotAlias
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBotAlias

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 472

Amazon Lex V1 Developer Guide

GetBotAliases
Service: Amazon Lex Model Building Service

Returns a list of aliases for a specified Amazon Lex bot.

This operation requires permissions for the lex:GetBotAliases action.

Request Syntax

GET /bots/botName/aliases/?
maxResults=maxResults&nameContains=nameContains&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

botName

The name of the bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

maxResults

The maximum number of aliases to return in the response. The default is 50. .

Valid Range: Minimum value of 1. Maximum value of 50.

nameContains

Substring to match in bot alias names. An alias will be returned if any part of its name matches
the substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

nextToken

A pagination token for fetching the next page of aliases. If the response to this call is truncated,
Amazon Lex returns a pagination token in the response. To fetch the next page of aliases,
specify the pagination token in the next request.

Amazon Lex Model Building Service 473

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "BotAliases": [
 {
 "botName": "string",
 "botVersion": "string",
 "checksum": "string",
 "conversationLogs": {
 "iamRoleArn": "string",
 "logSettings": [
 {
 "destination": "string",
 "kmsKeyArn": "string",
 "logType": "string",
 "resourceArn": "string",
 "resourcePrefix": "string"
 }
]
 },
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Amazon Lex Model Building Service 474

Amazon Lex V1 Developer Guide

BotAliases

An array of BotAliasMetadata objects, each describing a bot alias.

Type: Array of BotAliasMetadata objects

nextToken

A pagination token for fetching next page of aliases. If the response to this call is truncated,
Amazon Lex returns a pagination token in the response. To fetch the next page of aliases,
specify the pagination token in the next request.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

Amazon Lex Model Building Service 475

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotAliases
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotAliases
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotAliases

Amazon Lex V1 Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 476

https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotAliases
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBotAliases
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBotAliases
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotAliases
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotAliases
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBotAliases

Amazon Lex V1 Developer Guide

GetBotChannelAssociation
Service: Amazon Lex Model Building Service

Returns information about the association between an Amazon Lex bot and a messaging platform.

This operation requires permissions for the lex:GetBotChannelAssociation action.

Request Syntax

GET /bots/botName/aliases/aliasName/channels/name HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

aliasName

An alias pointing to the specific version of the Amazon Lex bot to which this association is being
made.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

botName

The name of the Amazon Lex bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

name

The name of the association between the bot and the channel. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Amazon Lex Model Building Service 477

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "botAlias": "string",
 "botConfiguration": {
 "string" : "string"
 },
 "botName": "string",
 "createdDate": number,
 "description": "string",
 "failureReason": "string",
 "name": "string",
 "status": "string",
 "type": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botAlias

An alias pointing to the specific version of the Amazon Lex bot to which this association is being
made.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

botConfiguration

Provides information that the messaging platform needs to communicate with the Amazon Lex
bot.

Amazon Lex Model Building Service 478

Amazon Lex V1 Developer Guide

Type: String to string map

Map Entries: Maximum number of 10 items.

botName

The name of the Amazon Lex bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

createdDate

The date that the association between the bot and the channel was created.

Type: Timestamp

description

A description of the association between the bot and the channel.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

failureReason

If status is FAILED, Amazon Lex provides the reason that it failed to create the association.

Type: String

name

The name of the association between the bot and the channel.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

status

The status of the bot channel.

Amazon Lex Model Building Service 479

Amazon Lex V1 Developer Guide

• CREATED - The channel has been created and is ready for use.

• IN_PROGRESS - Channel creation is in progress.

• FAILED - There was an error creating the channel. For information about the reason for the
failure, see the failureReason field.

Type: String

Valid Values: IN_PROGRESS | CREATED | FAILED

type

The type of the messaging platform.

Type: String

Valid Values: Facebook | Slack | Twilio-Sms | Kik

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

Amazon Lex Model Building Service 480

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 481

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotChannelAssociation
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotChannelAssociation
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBotChannelAssociation

Amazon Lex V1 Developer Guide

GetBotChannelAssociations
Service: Amazon Lex Model Building Service

Returns a list of all of the channels associated with the specified bot.

The GetBotChannelAssociations operation requires permissions for the
lex:GetBotChannelAssociations action.

Request Syntax

GET /bots/botName/aliases/aliasName/channels/?
maxResults=maxResults&nameContains=nameContains&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

aliasName

An alias pointing to the specific version of the Amazon Lex bot to which this association is being
made.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^(-|^([A-Za-z]_?)+$)$

Required: Yes

botName

The name of the Amazon Lex bot in the association.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

maxResults

The maximum number of associations to return in the response. The default is 50.

Valid Range: Minimum value of 1. Maximum value of 50.

Amazon Lex Model Building Service 482

Amazon Lex V1 Developer Guide

nameContains

Substring to match in channel association names. An association will be returned if any part
of its name matches the substring. For example, "xyz" matches both "xyzabc" and "abcxyz." To
return all bot channel associations, use a hyphen ("-") as the nameContains parameter.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

nextToken

A pagination token for fetching the next page of associations. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
associations, specify the pagination token in the next request.

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "botChannelAssociations": [
 {
 "botAlias": "string",
 "botConfiguration": {
 "string" : "string"
 },
 "botName": "string",
 "createdDate": number,
 "description": "string",
 "failureReason": "string",
 "name": "string",
 "status": "string",
 "type": "string"
 }
],
 "nextToken": "string"

Amazon Lex Model Building Service 483

Amazon Lex V1 Developer Guide

}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botChannelAssociations

An array of objects, one for each association, that provides information about the Amazon Lex
bot and its association with the channel.

Type: Array of BotChannelAssociation objects

nextToken

A pagination token that fetches the next page of associations. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
associations, specify the pagination token in the next request.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

Amazon Lex Model Building Service 484

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 485

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotChannelAssociations
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotChannelAssociations
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotChannelAssociations
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotChannelAssociations
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBotChannelAssociations
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBotChannelAssociations
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotChannelAssociations
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotChannelAssociations
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBotChannelAssociations

Amazon Lex V1 Developer Guide

GetBots
Service: Amazon Lex Model Building Service

Returns bot information as follows:

• If you provide the nameContains field, the response includes information for the $LATEST
version of all bots whose name contains the specified string.

• If you don't specify the nameContains field, the operation returns information about the
$LATEST version of all of your bots.

This operation requires permission for the lex:GetBots action.

Request Syntax

GET /bots/?maxResults=maxResults&nameContains=nameContains&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

maxResults

The maximum number of bots to return in the response that the request will return. The default
is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

nameContains

Substring to match in bot names. A bot will be returned if any part of its name matches the
substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

nextToken

A pagination token that fetches the next page of bots. If the response to this call is truncated,
Amazon Lex returns a pagination token in the response. To fetch the next page of bots, specify
the pagination token in the next request.

Amazon Lex Model Building Service 486

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "bots": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "status": "string",
 "version": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

bots

An array of botMetadata objects, with one entry for each bot.

Type: Array of BotMetadata objects

nextToken

If the response is truncated, it includes a pagination token that you can specify in your next
request to fetch the next page of bots.

Type: String

Amazon Lex Model Building Service 487

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 488

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBots
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBots
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBots
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBots
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBots
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBots
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBots
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBots
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBots

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 489

Amazon Lex V1 Developer Guide

GetBotVersions
Service: Amazon Lex Model Building Service

Gets information about all of the versions of a bot.

The GetBotVersions operation returns a BotMetadata object for each version of a bot. For
example, if a bot has three numbered versions, the GetBotVersions operation returns four
BotMetadata objects in the response, one for each numbered version and one for the $LATEST
version.

The GetBotVersions operation always returns at least one version, the $LATEST version.

This operation requires permissions for the lex:GetBotVersions action.

Request Syntax

GET /bots/name/versions/?maxResults=maxResults&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

maxResults

The maximum number of bot versions to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

name

The name of the bot for which versions should be returned.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

nextToken

A pagination token for fetching the next page of bot versions. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Amazon Lex Model Building Service 490

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "bots": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "status": "string",
 "version": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

bots

An array of BotMetadata objects, one for each numbered version of the bot plus one for the
$LATEST version.

Type: Array of BotMetadata objects

nextToken

A pagination token for fetching the next page of bot versions. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Type: String

Amazon Lex Model Building Service 491

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 492

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBotVersions
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBotVersions
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBotVersions
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBotVersions
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBotVersions
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBotVersions
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBotVersions
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBotVersions
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBotVersions

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 493

Amazon Lex V1 Developer Guide

GetBuiltinIntent
Service: Amazon Lex Model Building Service

Returns information about a built-in intent.

This operation requires permission for the lex:GetBuiltinIntent action.

Request Syntax

GET /builtins/intents/signature HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

signature

The unique identifier for a built-in intent. To find the signature for an intent, see Standard Built-
in Intents in the Alexa Skills Kit.

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "signature": "string",
 "slots": [
 {
 "name": "string"
 }
],
 "supportedLocales": ["string"]
}

Amazon Lex Model Building Service 494

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents

Amazon Lex V1 Developer Guide

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

signature

The unique identifier for a built-in intent.

Type: String

slots

An array of BuiltinIntentSlot objects, one entry for each slot type in the intent.

Type: Array of BuiltinIntentSlot objects

supportedLocales

A list of locales that the intent supports.

Type: Array of strings

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

Amazon Lex Model Building Service 495

Amazon Lex V1 Developer Guide

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 496

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBuiltinIntent
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBuiltinIntent
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBuiltinIntent
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBuiltinIntent
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBuiltinIntent
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBuiltinIntent
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBuiltinIntent
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBuiltinIntent
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBuiltinIntent

Amazon Lex V1 Developer Guide

GetBuiltinIntents
Service: Amazon Lex Model Building Service

Gets a list of built-in intents that meet the specified criteria.

This operation requires permission for the lex:GetBuiltinIntents action.

Request Syntax

GET /builtins/intents/?
locale=locale&maxResults=maxResults&nextToken=nextToken&signatureContains=signatureContains
 HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

locale

A list of locales that the intent supports.

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

maxResults

The maximum number of intents to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

nextToken

A pagination token that fetches the next page of intents. If this API call is truncated, Amazon
Lex returns a pagination token in the response. To fetch the next page of intents, use the
pagination token in the next request.

signatureContains

Substring to match in built-in intent signatures. An intent will be returned if any part of its
signature matches the substring. For example, "xyz" matches both "xyzabc" and "abcxyz." To
find the signature for an intent, see Standard Built-in Intents in the Alexa Skills Kit.

Amazon Lex Model Building Service 497

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "intents": [
 {
 "signature": "string",
 "supportedLocales": ["string"]
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

intents

An array of builtinIntentMetadata objects, one for each intent in the response.

Type: Array of BuiltinIntentMetadata objects

nextToken

A pagination token that fetches the next page of intents. If the response to this API call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
intents, specify the pagination token in the next request.

Type: String

Amazon Lex Model Building Service 498

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 499

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBuiltinIntents
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBuiltinIntents
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBuiltinIntents
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBuiltinIntents
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBuiltinIntents
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBuiltinIntents
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBuiltinIntents
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBuiltinIntents
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBuiltinIntents

Amazon Lex V1 Developer Guide

GetBuiltinSlotTypes
Service: Amazon Lex Model Building Service

Gets a list of built-in slot types that meet the specified criteria.

For a list of built-in slot types, see Slot Type Reference in the Alexa Skills Kit.

This operation requires permission for the lex:GetBuiltInSlotTypes action.

Request Syntax

GET /builtins/slottypes/?
locale=locale&maxResults=maxResults&nextToken=nextToken&signatureContains=signatureContains
 HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

locale

A list of locales that the slot type supports.

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

maxResults

The maximum number of slot types to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

nextToken

A pagination token that fetches the next page of slot types. If the response to this API call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
slot types, specify the pagination token in the next request.

signatureContains

Substring to match in built-in slot type signatures. A slot type will be returned if any part of its
signature matches the substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Amazon Lex Model Building Service 500

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "nextToken": "string",
 "slotTypes": [
 {
 "signature": "string",
 "supportedLocales": ["string"]
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

nextToken

If the response is truncated, the response includes a pagination token that you can use in your
next request to fetch the next page of slot types.

Type: String

slotTypes

An array of BuiltInSlotTypeMetadata objects, one entry for each slot type returned.

Type: Array of BuiltinSlotTypeMetadata objects

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

Amazon Lex Model Building Service 501

Amazon Lex V1 Developer Guide

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 502

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetBuiltinSlotTypes
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetBuiltinSlotTypes
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetBuiltinSlotTypes
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetBuiltinSlotTypes
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetBuiltinSlotTypes
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetBuiltinSlotTypes
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetBuiltinSlotTypes
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetBuiltinSlotTypes
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetBuiltinSlotTypes

Amazon Lex V1 Developer Guide

GetExport
Service: Amazon Lex Model Building Service

Exports the contents of a Amazon Lex resource in a specified format.

Request Syntax

GET /exports/?exportType=exportType&name=name&resourceType=resourceType&version=version
 HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

exportType

The format of the exported data.

Valid Values: ALEXA_SKILLS_KIT | LEX

Required: Yes

name

The name of the bot to export.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: [a-zA-Z_]+

Required: Yes

resourceType

The type of resource to export.

Valid Values: BOT | INTENT | SLOT_TYPE

Required: Yes

version

The version of the bot to export.

Amazon Lex Model Building Service 503

Amazon Lex V1 Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "exportStatus": "string",
 "exportType": "string",
 "failureReason": "string",
 "name": "string",
 "resourceType": "string",
 "url": "string",
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

exportStatus

The status of the export.

• IN_PROGRESS - The export is in progress.

• READY - The export is complete.

• FAILED - The export could not be completed.

Type: String

Valid Values: IN_PROGRESS | READY | FAILED

Amazon Lex Model Building Service 504

Amazon Lex V1 Developer Guide

exportType

The format of the exported data.

Type: String

Valid Values: ALEXA_SKILLS_KIT | LEX

failureReason

If status is FAILED, Amazon Lex provides the reason that it failed to export the resource.

Type: String

name

The name of the bot being exported.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: [a-zA-Z_]+

resourceType

The type of the exported resource.

Type: String

Valid Values: BOT | INTENT | SLOT_TYPE

url

An S3 pre-signed URL that provides the location of the exported resource. The exported
resource is a ZIP archive that contains the exported resource in JSON format. The structure of
the archive may change. Your code should not rely on the archive structure.

Type: String

version

The version of the bot being exported.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Amazon Lex Model Building Service 505

Amazon Lex V1 Developer Guide

Pattern: [0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

Amazon Lex Model Building Service 506

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetExport
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetExport
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetExport
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetExport
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetExport
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetExport
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetExport

Amazon Lex V1 Developer Guide

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 507

https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetExport
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetExport

Amazon Lex V1 Developer Guide

GetImport
Service: Amazon Lex Model Building Service

Gets information about an import job started with the StartImport operation.

Request Syntax

GET /imports/importId HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

importId

The identifier of the import job information to return.

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "createdDate": number,
 "failureReason": ["string"],
 "importId": "string",
 "importStatus": "string",
 "mergeStrategy": "string",
 "name": "string",
 "resourceType": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

Amazon Lex Model Building Service 508

Amazon Lex V1 Developer Guide

The following data is returned in JSON format by the service.

createdDate

A timestamp for the date and time that the import job was created.

Type: Timestamp

failureReason

A string that describes why an import job failed to complete.

Type: Array of strings

importId

The identifier for the specific import job.

Type: String

importStatus

The status of the import job. If the status is FAILED, you can get the reason for the failure from
the failureReason field.

Type: String

Valid Values: IN_PROGRESS | COMPLETE | FAILED

mergeStrategy

The action taken when there was a conflict between an existing resource and a resource in the
import file.

Type: String

Valid Values: OVERWRITE_LATEST | FAIL_ON_CONFLICT

name

The name given to the import job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: [a-zA-Z_]+

Amazon Lex Model Building Service 509

Amazon Lex V1 Developer Guide

resourceType

The type of resource imported.

Type: String

Valid Values: BOT | INTENT | SLOT_TYPE

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

Amazon Lex Model Building Service 510

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetImport
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetImport
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetImport

Amazon Lex V1 Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 511

https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetImport
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetImport
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetImport
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetImport
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetImport
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetImport

Amazon Lex V1 Developer Guide

GetIntent
Service: Amazon Lex Model Building Service

Returns information about an intent. In addition to the intent name, you must specify the intent
version.

This operation requires permissions to perform the lex:GetIntent action.

Request Syntax

GET /intents/name/versions/version HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the intent. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

version

The version of the intent.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

Amazon Lex Model Building Service 512

Amazon Lex V1 Developer Guide

{
 "checksum": "string",
 "conclusionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "confirmationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "createdDate": number,
 "description": "string",
 "dialogCodeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "followUpPrompt": {
 "prompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "rejectionStatement": {
 "messages": [

Amazon Lex Model Building Service 513

Amazon Lex V1 Developer Guide

 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 }
 },
 "fulfillmentActivity": {
 "codeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "type": "string"
 },
 "inputContexts": [
 {
 "name": "string"
 }
],
 "kendraConfiguration": {
 "kendraIndex": "string",
 "queryFilterString": "string",
 "role": "string"
 },
 "lastUpdatedDate": number,
 "name": "string",
 "outputContexts": [
 {
 "name": "string",
 "timeToLiveInSeconds": number,
 "turnsToLive": number
 }
],
 "parentIntentSignature": "string",
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],

Amazon Lex Model Building Service 514

Amazon Lex V1 Developer Guide

 "responseCard": "string"
 },
 "sampleUtterances": ["string"],
 "slots": [
 {
 "defaultValueSpec": {
 "defaultValueList": [
 {
 "defaultValue": "string"
 }
]
 },
 "description": "string",
 "name": "string",
 "obfuscationSetting": "string",
 "priority": number,
 "responseCard": "string",
 "sampleUtterances": ["string"],
 "slotConstraint": "string",
 "slotType": "string",
 "slotTypeVersion": "string",
 "valueElicitationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 }
 }
],
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Amazon Lex Model Building Service 515

Amazon Lex V1 Developer Guide

checksum

Checksum of the intent.

Type: String

conclusionStatement

After the Lambda function specified in the fulfillmentActivity element fulfills the intent,
Amazon Lex conveys this statement to the user.

Type: Statement object

confirmationPrompt

If defined in the bot, Amazon Lex uses prompt to confirm the intent before fulfilling the user's
request. For more information, see PutIntent.

Type: Prompt object

createdDate

The date that the intent was created.

Type: Timestamp

description

A description of the intent.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

dialogCodeHook

If defined in the bot, Amazon Amazon Lex invokes this Lambda function for each user input. For
more information, see PutIntent.

Type: CodeHook object

followUpPrompt

If defined in the bot, Amazon Lex uses this prompt to solicit additional user activity after the
intent is fulfilled. For more information, see PutIntent.

Type: FollowUpPrompt object

Amazon Lex Model Building Service 516

Amazon Lex V1 Developer Guide

fulfillmentActivity

Describes how the intent is fulfilled. For more information, see PutIntent.

Type: FulfillmentActivity object

inputContexts

An array of InputContext objects that lists the contexts that must be active for Amazon Lex
to choose the intent in a conversation with the user.

Type: Array of InputContext objects

Array Members: Minimum number of 0 items. Maximum number of 5 items.

kendraConfiguration

Configuration information, if any, to connect to an Amazon Kendra index with the
AMAZON.KendraSearchIntent intent.

Type: KendraConfiguration object

lastUpdatedDate

The date that the intent was updated. When you create a resource, the creation date and the
last updated date are the same.

Type: Timestamp

name

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

outputContexts

An array of OutputContext objects that lists the contexts that the intent activates when the
intent is fulfilled.

Type: Array of OutputContext objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Amazon Lex Model Building Service 517

Amazon Lex V1 Developer Guide

parentIntentSignature

A unique identifier for a built-in intent.

Type: String

rejectionStatement

If the user answers "no" to the question defined in confirmationPrompt, Amazon Lex
responds with this statement to acknowledge that the intent was canceled.

Type: Statement object

sampleUtterances

An array of sample utterances configured for the intent.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 1500 items.

Length Constraints: Minimum length of 1. Maximum length of 200.

slots

An array of intent slots configured for the intent.

Type: Array of Slot objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.

version

The version of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

Amazon Lex Model Building Service 518

Amazon Lex V1 Developer Guide

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 519

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetIntent
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetIntent
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetIntent
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetIntent
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetIntent
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetIntent
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetIntent
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetIntent
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetIntent

Amazon Lex V1 Developer Guide

GetIntents
Service: Amazon Lex Model Building Service

Returns intent information as follows:

• If you specify the nameContains field, returns the $LATEST version of all intents that contain
the specified string.

• If you don't specify the nameContains field, returns information about the $LATEST version of
all intents.

The operation requires permission for the lex:GetIntents action.

Request Syntax

GET /intents/?maxResults=maxResults&nameContains=nameContains&nextToken=nextToken
 HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

maxResults

The maximum number of intents to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

nameContains

Substring to match in intent names. An intent will be returned if any part of its name matches
the substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

nextToken

A pagination token that fetches the next page of intents. If the response to this API call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
intents, specify the pagination token in the next request.

Amazon Lex Model Building Service 520

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "intents": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

intents

An array of Intent objects. For more information, see PutBot.

Type: Array of IntentMetadata objects

nextToken

If the response is truncated, the response includes a pagination token that you can specify in
your next request to fetch the next page of intents.

Type: String

Amazon Lex Model Building Service 521

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 522

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetIntents
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetIntents
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetIntents
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetIntents
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetIntents
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetIntents
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetIntents
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetIntents
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetIntents

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 523

Amazon Lex V1 Developer Guide

GetIntentVersions
Service: Amazon Lex Model Building Service

Gets information about all of the versions of an intent.

The GetIntentVersions operation returns an IntentMetadata object for each version of an
intent. For example, if an intent has three numbered versions, the GetIntentVersions operation
returns four IntentMetadata objects in the response, one for each numbered version and one for
the $LATEST version.

The GetIntentVersions operation always returns at least one version, the $LATEST version.

This operation requires permissions for the lex:GetIntentVersions action.

Request Syntax

GET /intents/name/versions/?maxResults=maxResults&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

maxResults

The maximum number of intent versions to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

name

The name of the intent for which versions should be returned.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

nextToken

A pagination token for fetching the next page of intent versions. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Amazon Lex Model Building Service 524

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "intents": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

intents

An array of IntentMetadata objects, one for each numbered version of the intent plus one for
the $LATEST version.

Type: Array of IntentMetadata objects

nextToken

A pagination token for fetching the next page of intent versions. If the response to this call is
truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Type: String

Amazon Lex Model Building Service 525

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 526

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetIntentVersions
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetIntentVersions
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetIntentVersions
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetIntentVersions
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetIntentVersions
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetIntentVersions
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetIntentVersions
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetIntentVersions
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetIntentVersions

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 527

Amazon Lex V1 Developer Guide

GetMigration
Service: Amazon Lex Model Building Service

Provides details about an ongoing or complete migration from an Amazon Lex V1 bot to an
Amazon Lex V2 bot. Use this operation to view the migration alerts and warnings related to the
migration.

Request Syntax

GET /migrations/migrationId HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

migrationId

The unique identifier of the migration to view. The migrationID is returned by the
StartMigration operation.

Length Constraints: Fixed length of 10.

Pattern: ^[0-9a-zA-Z]+$

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "alerts": [
 {
 "details": ["string"],
 "message": "string",
 "referenceURLs": ["string"],
 "type": "string"

Amazon Lex Model Building Service 528

Amazon Lex V1 Developer Guide

 }
],
 "migrationId": "string",
 "migrationStatus": "string",
 "migrationStrategy": "string",
 "migrationTimestamp": number,
 "v1BotLocale": "string",
 "v1BotName": "string",
 "v1BotVersion": "string",
 "v2BotId": "string",
 "v2BotRole": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

alerts

A list of alerts and warnings that indicate issues with the migration for the Amazon Lex V1
bot to Amazon Lex V2. You receive a warning when an Amazon Lex V1 feature has a different
implementation in Amazon Lex V2.

For more information, see Migrating a bot in the Amazon Lex V2 developer guide.

Type: Array of MigrationAlert objects

migrationId

The unique identifier of the migration. This is the same as the identifier used when calling the
GetMigration operation.

Type: String

Length Constraints: Fixed length of 10.

Pattern: ^[0-9a-zA-Z]+$

migrationStatus

Indicates the status of the migration. When the status is COMPLETE the migration is finished
and the bot is available in Amazon Lex V2. There may be alerts and warnings that need to be
resolved to complete the migration.

Amazon Lex Model Building Service 529

https://docs.aws.amazon.com/lexv2/latest/dg/migrate.html

Amazon Lex V1 Developer Guide

Type: String

Valid Values: IN_PROGRESS | COMPLETED | FAILED

migrationStrategy

The strategy used to conduct the migration.

• CREATE_NEW - Creates a new Amazon Lex V2 bot and migrates the Amazon Lex V1 bot to the
new bot.

• UPDATE_EXISTING - Overwrites the existing Amazon Lex V2 bot metadata and the locale
being migrated. It doesn't change any other locales in the Amazon Lex V2 bot. If the locale
doesn't exist, a new locale is created in the Amazon Lex V2 bot.

Type: String

Valid Values: CREATE_NEW | UPDATE_EXISTING

migrationTimestamp

The date and time that the migration started.

Type: Timestamp

v1BotLocale

The locale of the Amazon Lex V1 bot migrated to Amazon Lex V2.

Type: String

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

v1BotName

The name of the Amazon Lex V1 bot migrated to Amazon Lex V2.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

v1BotVersion

The version of the Amazon Lex V1 bot migrated to Amazon Lex V2.

Amazon Lex Model Building Service 530

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

v2BotId

The unique identifier of the Amazon Lex V2 bot that the Amazon Lex V1 is being migrated to.

Type: String

Length Constraints: Fixed length of 10.

Pattern: ^[0-9a-zA-Z]+$

v2BotRole

The IAM role that Amazon Lex uses to run the Amazon Lex V2 bot.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:iam::[\d]{12}:role/.+$

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

Amazon Lex Model Building Service 531

Amazon Lex V1 Developer Guide

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 532

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetMigration
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetMigration
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetMigration
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetMigration
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetMigration
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetMigration
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetMigration
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetMigration
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetMigration

Amazon Lex V1 Developer Guide

GetMigrations
Service: Amazon Lex Model Building Service

Gets a list of migrations between Amazon Lex V1 and Amazon Lex V2.

Request Syntax

GET /migrations?
maxResults=maxResults&migrationStatusEquals=migrationStatusEquals&nextToken=nextToken&sortByAttribute=sortByAttribute&sortByOrder=sortByOrder&v1BotNameContains=v1BotNameContains
 HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

maxResults

The maximum number of migrations to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

migrationStatusEquals

Filters the list to contain only migrations in the specified state.

Valid Values: IN_PROGRESS | COMPLETED | FAILED

nextToken

A pagination token that fetches the next page of migrations. If the response to this operation
is truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
migrations, specify the pagination token in the request.

sortByAttribute

The field to sort the list of migrations by. You can sort by the Amazon Lex V1 bot name or the
date and time that the migration was started.

Valid Values: V1_BOT_NAME | MIGRATION_DATE_TIME

sortByOrder

The order so sort the list.

Amazon Lex Model Building Service 533

Amazon Lex V1 Developer Guide

Valid Values: ASCENDING | DESCENDING

v1BotNameContains

Filters the list to contain only bots whose name contains the specified string. The string is
matched anywhere in the bot name.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "migrationSummaries": [
 {
 "migrationId": "string",
 "migrationStatus": "string",
 "migrationStrategy": "string",
 "migrationTimestamp": number,
 "v1BotLocale": "string",
 "v1BotName": "string",
 "v1BotVersion": "string",
 "v2BotId": "string",
 "v2BotRole": "string"
 }
],
 "nextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Amazon Lex Model Building Service 534

Amazon Lex V1 Developer Guide

migrationSummaries

An array of summaries for migrations from Amazon Lex V1 to Amazon Lex V2. To see details of
the migration, use the migrationId from the summary in a call to the GetMigration operation.

Type: Array of MigrationSummary objects

nextToken

If the response is truncated, it includes a pagination token that you can specify in your next
request to fetch the next page of migrations.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

Amazon Lex Model Building Service 535

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetMigrations
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetMigrations
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetMigrations

Amazon Lex V1 Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 536

https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetMigrations
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetMigrations
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetMigrations
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetMigrations
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetMigrations
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetMigrations

Amazon Lex V1 Developer Guide

GetSlotType
Service: Amazon Lex Model Building Service

Returns information about a specific version of a slot type. In addition to specifying the slot type
name, you must specify the slot type version.

This operation requires permissions for the lex:GetSlotType action.

Request Syntax

GET /slottypes/name/versions/version HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

name

The name of the slot type. The name is case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

version

The version of the slot type.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

Amazon Lex Model Building Service 537

Amazon Lex V1 Developer Guide

{
 "checksum": "string",
 "createdDate": number,
 "description": "string",
 "enumerationValues": [
 {
 "synonyms": ["string"],
 "value": "string"
 }
],
 "lastUpdatedDate": number,
 "name": "string",
 "parentSlotTypeSignature": "string",
 "slotTypeConfigurations": [
 {
 "regexConfiguration": {
 "pattern": "string"
 }
 }
],
 "valueSelectionStrategy": "string",
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

checksum

Checksum of the $LATEST version of the slot type.

Type: String

createdDate

The date that the slot type was created.

Type: Timestamp

description

A description of the slot type.

Amazon Lex Model Building Service 538

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

enumerationValues

A list of EnumerationValue objects that defines the values that the slot type can take.

Type: Array of EnumerationValue objects

Array Members: Minimum number of 0 items. Maximum number of 10000 items.

lastUpdatedDate

The date that the slot type was updated. When you create a resource, the creation date and last
update date are the same.

Type: Timestamp

name

The name of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

parentSlotTypeSignature

The built-in slot type used as a parent for the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^((AMAZON\.)_?|[A-Za-z]_?)+

slotTypeConfigurations

Configuration information that extends the parent built-in slot type.

Type: Array of SlotTypeConfiguration objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Amazon Lex Model Building Service 539

Amazon Lex V1 Developer Guide

valueSelectionStrategy

The strategy that Amazon Lex uses to determine the value of the slot. For more information,
see PutSlotType.

Type: String

Valid Values: ORIGINAL_VALUE | TOP_RESOLUTION

version

The version of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

Amazon Lex Model Building Service 540

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 541

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetSlotType
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetSlotType
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetSlotType
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetSlotType
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetSlotType
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetSlotType
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetSlotType
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetSlotType
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetSlotType

Amazon Lex V1 Developer Guide

GetSlotTypes
Service: Amazon Lex Model Building Service

Returns slot type information as follows:

• If you specify the nameContains field, returns the $LATEST version of all slot types that
contain the specified string.

• If you don't specify the nameContains field, returns information about the $LATEST version of
all slot types.

The operation requires permission for the lex:GetSlotTypes action.

Request Syntax

GET /slottypes/?maxResults=maxResults&nameContains=nameContains&nextToken=nextToken
 HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

maxResults

The maximum number of slot types to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

nameContains

Substring to match in slot type names. A slot type will be returned if any part of its name
matches the substring. For example, "xyz" matches both "xyzabc" and "abcxyz."

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

nextToken

A pagination token that fetches the next page of slot types. If the response to this API call is
truncated, Amazon Lex returns a pagination token in the response. To fetch next page of slot
types, specify the pagination token in the next request.

Amazon Lex Model Building Service 542

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "nextToken": "string",
 "slotTypes": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

nextToken

If the response is truncated, it includes a pagination token that you can specify in your next
request to fetch the next page of slot types.

Type: String

slotTypes

An array of objects, one for each slot type, that provides information such as the name of the
slot type, the version, and a description.

Type: Array of SlotTypeMetadata objects

Amazon Lex Model Building Service 543

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 544

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetSlotTypes
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetSlotTypes
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetSlotTypes
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetSlotTypes
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetSlotTypes
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetSlotTypes
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetSlotTypes
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetSlotTypes
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetSlotTypes

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 545

Amazon Lex V1 Developer Guide

GetSlotTypeVersions
Service: Amazon Lex Model Building Service

Gets information about all versions of a slot type.

The GetSlotTypeVersions operation returns a SlotTypeMetadata object for each version of
a slot type. For example, if a slot type has three numbered versions, the GetSlotTypeVersions
operation returns four SlotTypeMetadata objects in the response, one for each numbered
version and one for the $LATEST version.

The GetSlotTypeVersions operation always returns at least one version, the $LATEST version.

This operation requires permissions for the lex:GetSlotTypeVersions action.

Request Syntax

GET /slottypes/name/versions/?maxResults=maxResults&nextToken=nextToken HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

maxResults

The maximum number of slot type versions to return in the response. The default is 10.

Valid Range: Minimum value of 1. Maximum value of 50.

name

The name of the slot type for which versions should be returned.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

nextToken

A pagination token for fetching the next page of slot type versions. If the response to this call
is truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Amazon Lex Model Building Service 546

Amazon Lex V1 Developer Guide

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "nextToken": "string",
 "slotTypes": [
 {
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "version": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

nextToken

A pagination token for fetching the next page of slot type versions. If the response to this call
is truncated, Amazon Lex returns a pagination token in the response. To fetch the next page of
versions, specify the pagination token in the next request.

Type: String

slotTypes

An array of SlotTypeMetadata objects, one for each numbered version of the slot type plus
one for the $LATEST version.

Type: Array of SlotTypeMetadata objects

Amazon Lex Model Building Service 547

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 548

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetSlotTypeVersions
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetSlotTypeVersions
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetSlotTypeVersions
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetSlotTypeVersions
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetSlotTypeVersions
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetSlotTypeVersions
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetSlotTypeVersions
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetSlotTypeVersions
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetSlotTypeVersions

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 549

Amazon Lex V1 Developer Guide

GetUtterancesView
Service: Amazon Lex Model Building Service

Use the GetUtterancesView operation to get information about the utterances that your users
have made to your bot. You can use this list to tune the utterances that your bot responds to.

For example, say that you have created a bot to order flowers. After your users have used your bot
for a while, use the GetUtterancesView operation to see the requests that they have made and
whether they have been successful. You might find that the utterance "I want flowers" is not being
recognized. You could add this utterance to the OrderFlowers intent so that your bot recognizes
that utterance.

After you publish a new version of a bot, you can get information about the old version and the
new so that you can compare the performance across the two versions.

Utterance statistics are generated once a day. Data is available for the last 15 days. You can request
information for up to 5 versions of your bot in each request. Amazon Lex returns the most frequent
utterances received by the bot in the last 15 days. The response contains information about a
maximum of 100 utterances for each version.

Utterance statistics are not generated under the following conditions:

• The childDirected field was set to true when the bot was created.

• You are using slot obfuscation with one or more slots.

• You opted out of participating in improving Amazon Lex.

This operation requires permissions for the lex:GetUtterancesView action.

Request Syntax

GET /bots/botname/utterances?
view=aggregation&bot_versions=botVersions&status_type=statusType HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

botname

The name of the bot for which utterance information should be returned.

Amazon Lex Model Building Service 550

Amazon Lex V1 Developer Guide

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

botVersions

An array of bot versions for which utterance information should be returned. The limit is 5
versions per request.

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: Yes

statusType

To return utterances that were recognized and handled, use Detected. To return utterances
that were not recognized, use Missed.

Valid Values: Detected | Missed

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "botName": "string",
 "utterances": [
 {
 "botVersion": "string",
 "utterances": [

Amazon Lex Model Building Service 551

Amazon Lex V1 Developer Guide

 {
 "count": number,
 "distinctUsers": number,
 "firstUtteredDate": number,
 "lastUtteredDate": number,
 "utteranceString": "string"
 }
]
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botName

The name of the bot for which utterance information was returned.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

utterances

An array of UtteranceList objects, each containing a list of UtteranceData objects describing
the utterances that were processed by your bot. The response contains a maximum of 100
UtteranceData objects for each version. Amazon Lex returns the most frequent utterances
received by the bot in the last 15 days.

Type: Array of UtteranceList objects

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

Amazon Lex Model Building Service 552

Amazon Lex V1 Developer Guide

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 553

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/GetUtterancesView
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/GetUtterancesView
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/GetUtterancesView
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/GetUtterancesView
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/GetUtterancesView
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/GetUtterancesView
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/GetUtterancesView
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/GetUtterancesView
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/GetUtterancesView

Amazon Lex V1 Developer Guide

ListTagsForResource
Service: Amazon Lex Model Building Service

Gets a list of tags associated with the specified resource. Only bots, bot aliases, and bot channels
can have tags associated with them.

Request Syntax

GET /tags/resourceArn HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

resourceArn

The Amazon Resource Name (ARN) of the resource to get a list of tags for.

Length Constraints: Minimum length of 1. Maximum length of 1011.

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

Amazon Lex Model Building Service 554

Amazon Lex V1 Developer Guide

The following data is returned in JSON format by the service.

tags

The tags associated with a resource.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

Amazon Lex Model Building Service 555

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/ListTagsForResource
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/ListTagsForResource

Amazon Lex V1 Developer Guide

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 556

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/ListTagsForResource
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/ListTagsForResource
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/ListTagsForResource

Amazon Lex V1 Developer Guide

PutBot
Service: Amazon Lex Model Building Service

Creates an Amazon Lex conversational bot or replaces an existing bot. When you create or update
a bot you are only required to specify a name, a locale, and whether the bot is directed toward
children under age 13. You can use this to add intents later, or to remove intents from an existing
bot. When you create a bot with the minimum information, the bot is created or updated but
Amazon Lex returns the response FAILED. You can build the bot after you add one or more
intents. For more information about Amazon Lex bots, see Amazon Lex: How It Works.

If you specify the name of an existing bot, the fields in the request replace the existing values in
the $LATEST version of the bot. Amazon Lex removes any fields that you don't provide values
for in the request, except for the idleTTLInSeconds and privacySettings fields, which are
set to their default values. If you don't specify values for required fields, Amazon Lex throws an
exception.

This operation requires permissions for the lex:PutBot action. For more information, see Identity
and Access Management for Amazon Lex.

Request Syntax

PUT /bots/name/versions/$LATEST HTTP/1.1
Content-type: application/json

{
 "abortStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "checksum": "string",
 "childDirected": boolean,
 "clarificationPrompt": {
 "maxAttempts": number,
 "messages": [
 {

Amazon Lex Model Building Service 557

Amazon Lex V1 Developer Guide

 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "createVersion": boolean,
 "description": "string",
 "detectSentiment": boolean,
 "enableModelImprovements": boolean,
 "idleSessionTTLInSeconds": number,
 "intents": [
 {
 "intentName": "string",
 "intentVersion": "string"
 }
],
 "locale": "string",
 "nluIntentConfidenceThreshold": number,
 "processBehavior": "string",
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
],
 "voiceId": "string"
}

URI Request Parameters

The request uses the following URI parameters.

name

The name of the bot. The name is not case sensitive.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Amazon Lex Model Building Service 558

Amazon Lex V1 Developer Guide

Request Body

The request accepts the following data in JSON format.

abortStatement

When Amazon Lex can't understand the user's input in context, it tries to elicit the information
a few times. After that, Amazon Lex sends the message defined in abortStatement
to the user, and then cancels the conversation. To set the number of retries, use the
valueElicitationPrompt field for the slot type.

For example, in a pizza ordering bot, Amazon Lex might ask a user "What type of crust would
you like?" If the user's response is not one of the expected responses (for example, "thin crust,
"deep dish," etc.), Amazon Lex tries to elicit a correct response a few more times.

For example, in a pizza ordering application, OrderPizza might be one of the intents. This
intent might require the CrustType slot. You specify the valueElicitationPrompt field
when you create the CrustType slot.

If you have defined a fallback intent the cancel statement will not be sent to the user, the
fallback intent is used instead. For more information, see AMAZON.FallbackIntent.

Type: Statement object

Required: No

checksum

Identifies a specific revision of the $LATEST version.

When you create a new bot, leave the checksum field blank. If you specify a checksum you get
a BadRequestException exception.

When you want to update a bot, set the checksum field to the checksum of the most recent
revision of the $LATEST version. If you don't specify the checksum field, or if the checksum
does not match the $LATEST version, you get a PreconditionFailedException exception.

Type: String

Required: No

Amazon Lex Model Building Service 559

https://docs.aws.amazon.com/lex/latest/dg/built-in-intent-fallback.html

Amazon Lex V1 Developer Guide

childDirected

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must
specify whether your use of Amazon Lex is related to a website, program, or other application
that is directed or targeted, in whole or in part, to children under age 13 and subject to
the Children's Online Privacy Protection Act (COPPA) by specifying true or false in the
childDirected field. By specifying true in the childDirected field, you confirm that your
use of Amazon Lex is related to a website, program, or other application that is directed or
targeted, in whole or in part, to children under age 13 and subject to COPPA. By specifying
false in the childDirected field, you confirm that your use of Amazon Lex is not related
to a website, program, or other application that is directed or targeted, in whole or in part,
to children under age 13 and subject to COPPA. You may not specify a default value for the
childDirected field that does not accurately reflect whether your use of Amazon Lex is
related to a website, program, or other application that is directed or targeted, in whole or in
part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed
in whole or in part, to children under age 13, you must obtain any required verifiable parental
consent under COPPA. For information regarding the use of Amazon Lex in connection with
websites, programs, or other applications that are directed or targeted, in whole or in part, to
children under age 13, see the Amazon Lex FAQ.

Type: Boolean

Required: Yes

clarificationPrompt

When Amazon Lex doesn't understand the user's intent, it uses this message to get clarification.
To specify how many times Amazon Lex should repeat the clarification prompt, use the
maxAttempts field. If Amazon Lex still doesn't understand, it sends the message in the
abortStatement field.

When you create a clarification prompt, make sure that it suggests the correct response from
the user. for example, for a bot that orders pizza and drinks, you might create this clarification
prompt: "What would you like to do? You can say 'Order a pizza' or 'Order a drink.'"

If you have defined a fallback intent, it will be invoked if the clarification prompt is repeated
the number of times defined in the maxAttempts field. For more information, see
AMAZON.FallbackIntent.

Amazon Lex Model Building Service 560

https://aws.amazon.com/lex/faqs#data-security
https://docs.aws.amazon.com/lex/latest/dg/built-in-intent-fallback.html
https://docs.aws.amazon.com/lex/latest/dg/built-in-intent-fallback.html

Amazon Lex V1 Developer Guide

If you don't define a clarification prompt, at runtime Amazon Lex will return a 400 Bad Request
exception in three cases:

• Follow-up prompt - When the user responds to a follow-up prompt but does not provide an
intent. For example, in response to a follow-up prompt that says "Would you like anything
else today?" the user says "Yes." Amazon Lex will return a 400 Bad Request exception because
it does not have a clarification prompt to send to the user to get an intent.

• Lambda function - When using a Lambda function, you return an ElicitIntent dialog
type. Since Amazon Lex does not have a clarification prompt to get an intent from the user, it
returns a 400 Bad Request exception.

• PutSession operation - When using the PutSession operation, you send an ElicitIntent
dialog type. Since Amazon Lex does not have a clarification prompt to get an intent from the
user, it returns a 400 Bad Request exception.

Type: Prompt object

Required: No

createVersion

When set to true a new numbered version of the bot is created. This is the same as calling the
CreateBotVersion operation. If you don't specify createVersion, the default is false.

Type: Boolean

Required: No

description

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

detectSentiment

When set to true user utterances are sent to Amazon Comprehend for sentiment analysis. If
you don't specify detectSentiment, the default is false.

Type: Boolean

Amazon Lex Model Building Service 561

Amazon Lex V1 Developer Guide

Required: No

enableModelImprovements

Set to true to enable access to natural language understanding improvements.

When you set the enableModelImprovements parameter to true you can use the
nluIntentConfidenceThreshold parameter to configure confidence scores. For more
information, see Confidence Scores.

You can only set the enableModelImprovements parameter in certain Regions. If you set the
parameter to true, your bot has access to accuracy improvements.

The Regions where you can set the enableModelImprovements parameter to false for the
en-US locale are:

• US East (N. Virginia) (us-east-1)

• US West (Oregon) (us-west-2)

• Asia Pacific (Sydney) (ap-southeast-2)

• EU (Ireland) (eu-west-1)

In other Regions and locales, the enableModelImprovements parameter is set to
true by default. In these Regions and locales setting the parameter to false throws a
ValidationException exception.

Type: Boolean

Required: No

idleSessionTTLInSeconds

The maximum time in seconds that Amazon Lex retains the data gathered in a conversation.

A user interaction session remains active for the amount of time specified. If no conversation
occurs during this time, the session expires and Amazon Lex deletes any data provided before
the timeout.

For example, suppose that a user chooses the OrderPizza intent, but gets sidetracked halfway
through placing an order. If the user doesn't complete the order within the specified time,
Amazon Lex discards the slot information that it gathered, and the user must start over.

If you don't include the idleSessionTTLInSeconds element in a PutBot operation request,
Amazon Lex uses the default value. This is also true if the request replaces an existing bot.

Amazon Lex Model Building Service 562

https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html

Amazon Lex V1 Developer Guide

The default is 300 seconds (5 minutes).

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 86400.

Required: No

intents

An array of Intent objects. Each intent represents a command that a user can express. For
example, a pizza ordering bot might support an OrderPizza intent. For more information, see
Amazon Lex: How It Works.

Type: Array of Intent objects

Required: No

locale

Specifies the target locale for the bot. Any intent used in the bot must be compatible with the
locale of the bot.

The default is en-US.

Type: String

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

Required: Yes

nluIntentConfidenceThreshold

Determines the threshold where Amazon Lex will insert the AMAZON.FallbackIntent,
AMAZON.KendraSearchIntent, or both when returning alternative intents in a PostContent
or PostText response. AMAZON.FallbackIntent and AMAZON.KendraSearchIntent are
only inserted if they are configured for the bot.

You must set the enableModelImprovements parameter to true to use confidence scores in
the following regions.

• US East (N. Virginia) (us-east-1)

• US West (Oregon) (us-west-2)

Amazon Lex Model Building Service 563

https://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostContent.html
https://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostText.html

Amazon Lex V1 Developer Guide

• Asia Pacific (Sydney) (ap-southeast-2)

• EU (Ireland) (eu-west-1)

In other Regions, the enableModelImprovements parameter is set to true by default.

For example, suppose a bot is configured with the confidence threshold of 0.80 and the
AMAZON.FallbackIntent. Amazon Lex returns three alternative intents with the following
confidence scores: IntentA (0.70), IntentB (0.60), IntentC (0.50). The response from the
PostText operation would be:

• AMAZON.FallbackIntent

• IntentA

• IntentB

• IntentC

Type: Double

Valid Range: Minimum value of 0. Maximum value of 1.

Required: No

processBehavior

If you set the processBehavior element to BUILD, Amazon Lex builds the bot so that it can
be run. If you set the element to SAVE Amazon Lex saves the bot, but doesn't build it.

If you don't specify this value, the default value is BUILD.

Type: String

Valid Values: SAVE | BUILD

Required: No

tags

A list of tags to add to the bot. You can only add tags when you create a bot, you can't use
the PutBot operation to update the tags on a bot. To update tags, use the TagResource
operation.

Type: Array of Tag objects

Amazon Lex Model Building Service 564

Amazon Lex V1 Developer Guide

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: No

voiceId

The Amazon Polly voice ID that you want Amazon Lex to use for voice interactions with the user.
The locale configured for the voice must match the locale of the bot. For more information, see
Voices in Amazon Polly in the Amazon Polly Developer Guide.

Type: String

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "abortStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "checksum": "string",
 "childDirected": boolean,
 "clarificationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },

Amazon Lex Model Building Service 565

https://docs.aws.amazon.com/polly/latest/dg/voicelist.html

Amazon Lex V1 Developer Guide

 "createdDate": number,
 "createVersion": boolean,
 "description": "string",
 "detectSentiment": boolean,
 "enableModelImprovements": boolean,
 "failureReason": "string",
 "idleSessionTTLInSeconds": number,
 "intents": [
 {
 "intentName": "string",
 "intentVersion": "string"
 }
],
 "lastUpdatedDate": number,
 "locale": "string",
 "name": "string",
 "nluIntentConfidenceThreshold": number,
 "status": "string",
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
],
 "version": "string",
 "voiceId": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

abortStatement

The message that Amazon Lex uses to cancel a conversation. For more information, see PutBot.

Type: Statement object

checksum

Checksum of the bot that you created.

Type: String

Amazon Lex Model Building Service 566

Amazon Lex V1 Developer Guide

childDirected

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must
specify whether your use of Amazon Lex is related to a website, program, or other application
that is directed or targeted, in whole or in part, to children under age 13 and subject to
the Children's Online Privacy Protection Act (COPPA) by specifying true or false in the
childDirected field. By specifying true in the childDirected field, you confirm that your
use of Amazon Lex is related to a website, program, or other application that is directed or
targeted, in whole or in part, to children under age 13 and subject to COPPA. By specifying
false in the childDirected field, you confirm that your use of Amazon Lex is not related
to a website, program, or other application that is directed or targeted, in whole or in part,
to children under age 13 and subject to COPPA. You may not specify a default value for the
childDirected field that does not accurately reflect whether your use of Amazon Lex is
related to a website, program, or other application that is directed or targeted, in whole or in
part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed
in whole or in part, to children under age 13, you must obtain any required verifiable parental
consent under COPPA. For information regarding the use of Amazon Lex in connection with
websites, programs, or other applications that are directed or targeted, in whole or in part, to
children under age 13, see the Amazon Lex FAQ.

Type: Boolean

clarificationPrompt

The prompts that Amazon Lex uses when it doesn't understand the user's intent. For more
information, see PutBot.

Type: Prompt object

createdDate

The date that the bot was created.

Type: Timestamp

createVersion

True if a new version of the bot was created. If the createVersion field was not specified in
the request, the createVersion field is set to false in the response.

Amazon Lex Model Building Service 567

https://aws.amazon.com/lex/faqs#data-security

Amazon Lex V1 Developer Guide

Type: Boolean

description

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

detectSentiment

true if the bot is configured to send user utterances to Amazon Comprehend for
sentiment analysis. If the detectSentiment field was not specified in the request, the
detectSentiment field is false in the response.

Type: Boolean

enableModelImprovements

Indicates whether the bot uses accuracy improvements. true indicates that the bot is using the
improvements, otherwise, false.

Type: Boolean

failureReason

If status is FAILED, Amazon Lex provides the reason that it failed to build the bot.

Type: String

idleSessionTTLInSeconds

The maximum length of time that Amazon Lex retains the data gathered in a conversation. For
more information, see PutBot.

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 86400.

intents

An array of Intent objects. For more information, see PutBot.

Type: Array of Intent objects

Amazon Lex Model Building Service 568

Amazon Lex V1 Developer Guide

lastUpdatedDate

The date that the bot was updated. When you create a resource, the creation date and last
updated date are the same.

Type: Timestamp

locale

The target locale for the bot.

Type: String

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

name

The name of the bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

nluIntentConfidenceThreshold

The score that determines where Amazon Lex inserts the AMAZON.FallbackIntent,
AMAZON.KendraSearchIntent, or both when returning alternative intents in a PostContent
or PostText response. AMAZON.FallbackIntent is inserted if the confidence score for all
intents is below this value. AMAZON.KendraSearchIntent is only inserted if it is configured
for the bot.

Type: Double

Valid Range: Minimum value of 0. Maximum value of 1.

status

When you send a request to create a bot with processBehavior set to BUILD, Amazon Lex
sets the status response element to BUILDING.

In the READY_BASIC_TESTING state you can test the bot with user inputs that exactly match
the utterances configured for the bot's intents and values in the slot types.

Amazon Lex Model Building Service 569

https://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostContent.html
https://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostText.html

Amazon Lex V1 Developer Guide

If Amazon Lex can't build the bot, Amazon Lex sets status to FAILED. Amazon Lex returns the
reason for the failure in the failureReason response element.

When you set processBehavior to SAVE, Amazon Lex sets the status code to NOT BUILT.

When the bot is in the READY state you can test and publish the bot.

Type: String

Valid Values: BUILDING | READY | READY_BASIC_TESTING | FAILED | NOT_BUILT

tags

A list of tags associated with the bot.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

version

The version of the bot. For a new bot, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

voiceId

The Amazon Polly voice ID that Amazon Lex uses for voice interaction with the user. For more
information, see PutBot.

Type: String

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

Amazon Lex Model Building Service 570

Amazon Lex V1 Developer Guide

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in
the request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 571

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/PutBot
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/PutBot
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/PutBot
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/PutBot
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/PutBot
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/PutBot
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/PutBot
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/PutBot
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/PutBot

Amazon Lex V1 Developer Guide

PutBotAlias
Service: Amazon Lex Model Building Service

Creates an alias for the specified version of the bot or replaces an alias for the specified bot. To
change the version of the bot that the alias points to, replace the alias. For more information about
aliases, see Versioning and Aliases.

This operation requires permissions for the lex:PutBotAlias action.

Request Syntax

PUT /bots/botName/aliases/name HTTP/1.1
Content-type: application/json

{
 "botVersion": "string",
 "checksum": "string",
 "conversationLogs": {
 "iamRoleArn": "string",
 "logSettings": [
 {
 "destination": "string",
 "kmsKeyArn": "string",
 "logType": "string",
 "resourceArn": "string"
 }
]
 },
 "description": "string",
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}

URI Request Parameters

The request uses the following URI parameters.

Amazon Lex Model Building Service 572

Amazon Lex V1 Developer Guide

botName

The name of the bot.

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

name

The name of the alias. The name is not case sensitive.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Request Body

The request accepts the following data in JSON format.

botVersion

The version of the bot.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: Yes

checksum

Identifies a specific revision of the $LATEST version.

When you create a new bot alias, leave the checksum field blank. If you specify a checksum you
get a BadRequestException exception.

Amazon Lex Model Building Service 573

Amazon Lex V1 Developer Guide

When you want to update a bot alias, set the checksum field to the checksum of the most
recent revision of the $LATEST version. If you don't specify the checksum field, or if the
checksum does not match the $LATEST version, you get a PreconditionFailedException
exception.

Type: String

Required: No

conversationLogs

Settings for conversation logs for the alias.

Type: ConversationLogsRequest object

Required: No

description

A description of the alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

tags

A list of tags to add to the bot alias. You can only add tags when you create an alias, you can't
use the PutBotAlias operation to update the tags on a bot alias. To update tags, use the
TagResource operation.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

Amazon Lex Model Building Service 574

Amazon Lex V1 Developer Guide

{
 "botName": "string",
 "botVersion": "string",
 "checksum": "string",
 "conversationLogs": {
 "iamRoleArn": "string",
 "logSettings": [
 {
 "destination": "string",
 "kmsKeyArn": "string",
 "logType": "string",
 "resourceArn": "string",
 "resourcePrefix": "string"
 }
]
 },
 "createdDate": number,
 "description": "string",
 "lastUpdatedDate": number,
 "name": "string",
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botName

The name of the bot that the alias points to.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Amazon Lex Model Building Service 575

Amazon Lex V1 Developer Guide

botVersion

The version of the bot that the alias points to.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

checksum

The checksum for the current version of the alias.

Type: String

conversationLogs

The settings that determine how Amazon Lex uses conversation logs for the alias.

Type: ConversationLogsResponse object

createdDate

The date that the bot alias was created.

Type: Timestamp

description

A description of the alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

lastUpdatedDate

The date that the bot alias was updated. When you create a resource, the creation date and the
last updated date are the same.

Type: Timestamp

name

The name of the alias.

Type: String

Amazon Lex Model Building Service 576

Amazon Lex V1 Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

tags

A list of tags associated with a bot.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in
the request. Check the resource's checksum and try again.

HTTP Status Code: 412

Amazon Lex Model Building Service 577

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 578

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/PutBotAlias
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/PutBotAlias
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/PutBotAlias
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/PutBotAlias
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/PutBotAlias
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/PutBotAlias
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/PutBotAlias
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/PutBotAlias
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/PutBotAlias

Amazon Lex V1 Developer Guide

PutIntent
Service: Amazon Lex Model Building Service

Creates an intent or replaces an existing intent.

To define the interaction between the user and your bot, you use one or more intents. For a pizza
ordering bot, for example, you would create an OrderPizza intent.

To create an intent or replace an existing intent, you must provide the following:

• Intent name. For example, OrderPizza.

• Sample utterances. For example, "Can I order a pizza, please." and "I want to order a pizza."

• Information to be gathered. You specify slot types for the information that your bot will request
from the user. You can specify standard slot types, such as a date or a time, or custom slot types
such as the size and crust of a pizza.

• How the intent will be fulfilled. You can provide a Lambda function or configure the intent to
return the intent information to the client application. If you use a Lambda function, when all of
the intent information is available, Amazon Lex invokes your Lambda function. If you configure
your intent to return the intent information to the client application.

You can specify other optional information in the request, such as:

• A confirmation prompt to ask the user to confirm an intent. For example, "Shall I order your
pizza?"

• A conclusion statement to send to the user after the intent has been fulfilled. For example, "I
placed your pizza order."

• A follow-up prompt that asks the user for additional activity. For example, asking "Do you want
to order a drink with your pizza?"

If you specify an existing intent name to update the intent, Amazon Lex replaces the values in
the $LATEST version of the intent with the values in the request. Amazon Lex removes fields that
you don't provide in the request. If you don't specify the required fields, Amazon Lex throws an
exception. When you update the $LATEST version of an intent, the status field of any bot that
uses the $LATEST version of the intent is set to NOT_BUILT.

For more information, see Amazon Lex: How It Works.

This operation requires permissions for the lex:PutIntent action.

Amazon Lex Model Building Service 579

Amazon Lex V1 Developer Guide

Request Syntax

PUT /intents/name/versions/$LATEST HTTP/1.1
Content-type: application/json

{
 "checksum": "string",
 "conclusionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "confirmationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "createVersion": boolean,
 "description": "string",
 "dialogCodeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "followUpPrompt": {
 "prompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],

Amazon Lex Model Building Service 580

Amazon Lex V1 Developer Guide

 "responseCard": "string"
 },
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 }
 },
 "fulfillmentActivity": {
 "codeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "type": "string"
 },
 "inputContexts": [
 {
 "name": "string"
 }
],
 "kendraConfiguration": {
 "kendraIndex": "string",
 "queryFilterString": "string",
 "role": "string"
 },
 "outputContexts": [
 {
 "name": "string",
 "timeToLiveInSeconds": number,
 "turnsToLive": number
 }
],
 "parentIntentSignature": "string",
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number

Amazon Lex Model Building Service 581

Amazon Lex V1 Developer Guide

 }
],
 "responseCard": "string"
 },
 "sampleUtterances": ["string"],
 "slots": [
 {
 "defaultValueSpec": {
 "defaultValueList": [
 {
 "defaultValue": "string"
 }
]
 },
 "description": "string",
 "name": "string",
 "obfuscationSetting": "string",
 "priority": number,
 "responseCard": "string",
 "sampleUtterances": ["string"],
 "slotConstraint": "string",
 "slotType": "string",
 "slotTypeVersion": "string",
 "valueElicitationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 }
 }
]
}

URI Request Parameters

The request uses the following URI parameters.

Amazon Lex Model Building Service 582

Amazon Lex V1 Developer Guide

name

The name of the intent. The name is not case sensitive.

The name can't match a built-in intent name, or a built-in intent name with "AMAZON."
removed. For example, because there is a built-in intent called AMAZON.HelpIntent, you can't
create a custom intent called HelpIntent.

For a list of built-in intents, see Standard Built-in Intents in the Alexa Skills Kit.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Request Body

The request accepts the following data in JSON format.

checksum

Identifies a specific revision of the $LATEST version.

When you create a new intent, leave the checksum field blank. If you specify a checksum you
get a BadRequestException exception.

When you want to update a intent, set the checksum field to the checksum of the most recent
revision of the $LATEST version. If you don't specify the checksum field, or if the checksum
does not match the $LATEST version, you get a PreconditionFailedException exception.

Type: String

Required: No

conclusionStatement

The statement that you want Amazon Lex to convey to the user after the intent is successfully
fulfilled by the Lambda function.

This element is relevant only if you provide a Lambda function in the fulfillmentActivity.
If you return the intent to the client application, you can't specify this element.

Amazon Lex Model Building Service 583

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents

Amazon Lex V1 Developer Guide

Note

The followUpPrompt and conclusionStatement are mutually exclusive. You can
specify only one.

Type: Statement object

Required: No

confirmationPrompt

Prompts the user to confirm the intent. This question should have a yes or no answer.

Amazon Lex uses this prompt to ensure that the user acknowledges that the intent is ready
for fulfillment. For example, with the OrderPizza intent, you might want to confirm that
the order is correct before placing it. For other intents, such as intents that simply respond
to user questions, you might not need to ask the user for confirmation before providing the
information.

Note

You you must provide both the rejectionStatement and the
confirmationPrompt, or neither.

Type: Prompt object

Required: No

createVersion

When set to true a new numbered version of the intent is created. This is the same as calling
the CreateIntentVersion operation. If you do not specify createVersion, the default is
false.

Type: Boolean

Required: No

description

A description of the intent.

Amazon Lex Model Building Service 584

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

dialogCodeHook

Specifies a Lambda function to invoke for each user input. You can invoke this Lambda function
to personalize user interaction.

For example, suppose your bot determines that the user is John. Your Lambda function might
retrieve John's information from a backend database and prepopulate some of the values. For
example, if you find that John is gluten intolerant, you might set the corresponding intent slot,
GlutenIntolerant, to true. You might find John's phone number and set the corresponding
session attribute.

Type: CodeHook object

Required: No

followUpPrompt

Amazon Lex uses this prompt to solicit additional activity after fulfilling an intent. For example,
after the OrderPizza intent is fulfilled, you might prompt the user to order a drink.

The action that Amazon Lex takes depends on the user's response, as follows:

• If the user says "Yes" it responds with the clarification prompt that is configured for the bot.

• if the user says "Yes" and continues with an utterance that triggers an intent it starts a
conversation for the intent.

• If the user says "No" it responds with the rejection statement configured for the the follow-up
prompt.

• If it doesn't recognize the utterance it repeats the follow-up prompt again.

The followUpPrompt field and the conclusionStatement field are mutually exclusive. You
can specify only one.

Type: FollowUpPrompt object

Required: No

Amazon Lex Model Building Service 585

Amazon Lex V1 Developer Guide

fulfillmentActivity

Required. Describes how the intent is fulfilled. For example, after a user provides all of the
information for a pizza order, fulfillmentActivity defines how the bot places an order
with a local pizza store.

You might configure Amazon Lex to return all of the intent information to the client
application, or direct it to invoke a Lambda function that can process the intent (for example,
place an order with a pizzeria).

Type: FulfillmentActivity object

Required: No

inputContexts

An array of InputContext objects that lists the contexts that must be active for Amazon Lex
to choose the intent in a conversation with the user.

Type: Array of InputContext objects

Array Members: Minimum number of 0 items. Maximum number of 5 items.

Required: No

kendraConfiguration

Configuration information required to use the AMAZON.KendraSearchIntent intent to
connect to an Amazon Kendra index. For more information, see AMAZON.KendraSearchIntent.

Type: KendraConfiguration object

Required: No

outputContexts

An array of OutputContext objects that lists the contexts that the intent activates when the
intent is fulfilled.

Type: Array of OutputContext objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Required: No

Amazon Lex Model Building Service 586

http://docs.aws.amazon.com/lex/latest/dg/built-in-intent-kendra-search.html

Amazon Lex V1 Developer Guide

parentIntentSignature

A unique identifier for the built-in intent to base this intent on. To find the signature for an
intent, see Standard Built-in Intents in the Alexa Skills Kit.

Type: String

Required: No

rejectionStatement

When the user answers "no" to the question defined in confirmationPrompt, Amazon Lex
responds with this statement to acknowledge that the intent was canceled.

Note

You must provide both the rejectionStatement and the confirmationPrompt, or
neither.

Type: Statement object

Required: No

sampleUtterances

An array of utterances (strings) that a user might say to signal the intent. For example, "I want
{PizzaSize} pizza", "Order {Quantity} {PizzaSize} pizzas".

In each utterance, a slot name is enclosed in curly braces.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 1500 items.

Length Constraints: Minimum length of 1. Maximum length of 200.

Required: No

slots

An array of intent slots. At runtime, Amazon Lex elicits required slot values from the user using
prompts defined in the slots. For more information, see Amazon Lex: How It Works.

Type: Array of Slot objects

Amazon Lex Model Building Service 587

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents

Amazon Lex V1 Developer Guide

Array Members: Minimum number of 0 items. Maximum number of 100 items.

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "checksum": "string",
 "conclusionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "confirmationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "createdDate": number,
 "createVersion": boolean,
 "description": "string",
 "dialogCodeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "followUpPrompt": {
 "prompt": {
 "maxAttempts": number,
 "messages": [

Amazon Lex Model Building Service 588

Amazon Lex V1 Developer Guide

 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 }
 },
 "fulfillmentActivity": {
 "codeHook": {
 "messageVersion": "string",
 "uri": "string"
 },
 "type": "string"
 },
 "inputContexts": [
 {
 "name": "string"
 }
],
 "kendraConfiguration": {
 "kendraIndex": "string",
 "queryFilterString": "string",
 "role": "string"
 },
 "lastUpdatedDate": number,
 "name": "string",
 "outputContexts": [
 {
 "name": "string",
 "timeToLiveInSeconds": number,
 "turnsToLive": number
 }

Amazon Lex Model Building Service 589

Amazon Lex V1 Developer Guide

],
 "parentIntentSignature": "string",
 "rejectionStatement": {
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 },
 "sampleUtterances": ["string"],
 "slots": [
 {
 "defaultValueSpec": {
 "defaultValueList": [
 {
 "defaultValue": "string"
 }
]
 },
 "description": "string",
 "name": "string",
 "obfuscationSetting": "string",
 "priority": number,
 "responseCard": "string",
 "sampleUtterances": ["string"],
 "slotConstraint": "string",
 "slotType": "string",
 "slotTypeVersion": "string",
 "valueElicitationPrompt": {
 "maxAttempts": number,
 "messages": [
 {
 "content": "string",
 "contentType": "string",
 "groupNumber": number
 }
],
 "responseCard": "string"
 }
 }
],

Amazon Lex Model Building Service 590

Amazon Lex V1 Developer Guide

 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

checksum

Checksum of the $LATESTversion of the intent created or updated.

Type: String

conclusionStatement

After the Lambda function specified in thefulfillmentActivityintent fulfills the intent,
Amazon Lex conveys this statement to the user.

Type: Statement object

confirmationPrompt

If defined in the intent, Amazon Lex prompts the user to confirm the intent before fulfilling it.

Type: Prompt object

createdDate

The date that the intent was created.

Type: Timestamp

createVersion

True if a new version of the intent was created. If the createVersion field was not specified
in the request, the createVersion field is set to false in the response.

Type: Boolean

description

A description of the intent.

Amazon Lex Model Building Service 591

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

dialogCodeHook

If defined in the intent, Amazon Lex invokes this Lambda function for each user input.

Type: CodeHook object

followUpPrompt

If defined in the intent, Amazon Lex uses this prompt to solicit additional user activity after the
intent is fulfilled.

Type: FollowUpPrompt object

fulfillmentActivity

If defined in the intent, Amazon Lex invokes this Lambda function to fulfill the intent after the
user provides all of the information required by the intent.

Type: FulfillmentActivity object

inputContexts

An array of InputContext objects that lists the contexts that must be active for Amazon Lex
to choose the intent in a conversation with the user.

Type: Array of InputContext objects

Array Members: Minimum number of 0 items. Maximum number of 5 items.

kendraConfiguration

Configuration information, if any, required to connect to an Amazon Kendra index and use the
AMAZON.KendraSearchIntent intent.

Type: KendraConfiguration object

lastUpdatedDate

The date that the intent was updated. When you create a resource, the creation date and last
update dates are the same.

Type: Timestamp

Amazon Lex Model Building Service 592

Amazon Lex V1 Developer Guide

name

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

outputContexts

An array of OutputContext objects that lists the contexts that the intent activates when the
intent is fulfilled.

Type: Array of OutputContext objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

parentIntentSignature

A unique identifier for the built-in intent that this intent is based on.

Type: String

rejectionStatement

If the user answers "no" to the question defined in confirmationPrompt Amazon Lex
responds with this statement to acknowledge that the intent was canceled.

Type: Statement object

sampleUtterances

An array of sample utterances that are configured for the intent.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 1500 items.

Length Constraints: Minimum length of 1. Maximum length of 200.

slots

An array of intent slots that are configured for the intent.

Type: Array of Slot objects

Amazon Lex Model Building Service 593

Amazon Lex V1 Developer Guide

Array Members: Minimum number of 0 items. Maximum number of 100 items.

version

The version of the intent. For a new intent, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in
the request. Check the resource's checksum and try again.

HTTP Status Code: 412

Amazon Lex Model Building Service 594

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 595

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/PutIntent
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/PutIntent
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/PutIntent
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/PutIntent
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/PutIntent
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/PutIntent
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/PutIntent
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/PutIntent
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/PutIntent

Amazon Lex V1 Developer Guide

PutSlotType
Service: Amazon Lex Model Building Service

Creates a custom slot type or replaces an existing custom slot type.

To create a custom slot type, specify a name for the slot type and a set of enumeration values,
which are the values that a slot of this type can assume. For more information, see Amazon Lex:
How It Works.

If you specify the name of an existing slot type, the fields in the request replace the existing values
in the $LATEST version of the slot type. Amazon Lex removes the fields that you don't provide in
the request. If you don't specify required fields, Amazon Lex throws an exception. When you update
the $LATEST version of a slot type, if a bot uses the $LATEST version of an intent that contains the
slot type, the bot's status field is set to NOT_BUILT.

This operation requires permissions for the lex:PutSlotType action.

Request Syntax

PUT /slottypes/name/versions/$LATEST HTTP/1.1
Content-type: application/json

{
 "checksum": "string",
 "createVersion": boolean,
 "description": "string",
 "enumerationValues": [
 {
 "synonyms": ["string"],
 "value": "string"
 }
],
 "parentSlotTypeSignature": "string",
 "slotTypeConfigurations": [
 {
 "regexConfiguration": {
 "pattern": "string"
 }
 }
],
 "valueSelectionStrategy": "string"
}

Amazon Lex Model Building Service 596

Amazon Lex V1 Developer Guide

URI Request Parameters

The request uses the following URI parameters.

name

The name of the slot type. The name is not case sensitive.

The name can't match a built-in slot type name, or a built-in slot type name with "AMAZON."
removed. For example, because there is a built-in slot type called AMAZON.DATE, you can't
create a custom slot type called DATE.

For a list of built-in slot types, see Slot Type Reference in the Alexa Skills Kit.

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

Request Body

The request accepts the following data in JSON format.

checksum

Identifies a specific revision of the $LATEST version.

When you create a new slot type, leave the checksum field blank. If you specify a checksum you
get a BadRequestException exception.

When you want to update a slot type, set the checksum field to the checksum of the most
recent revision of the $LATEST version. If you don't specify the checksum field, or if the
checksum does not match the $LATEST version, you get a PreconditionFailedException
exception.

Type: String

Required: No

Amazon Lex Model Building Service 597

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference

Amazon Lex V1 Developer Guide

createVersion

When set to true a new numbered version of the slot type is created. This is the same as calling
the CreateSlotTypeVersion operation. If you do not specify createVersion, the default is
false.

Type: Boolean

Required: No

description

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

enumerationValues

A list of EnumerationValue objects that defines the values that the slot type can take. Each
value can have a list of synonyms, which are additional values that help train the machine
learning model about the values that it resolves for a slot.

A regular expression slot type doesn't require enumeration values. All other slot types require a
list of enumeration values.

When Amazon Lex resolves a slot value, it generates a resolution list that contains up to
five possible values for the slot. If you are using a Lambda function, this resolution list is
passed to the function. If you are not using a Lambda function you can choose to return
the value that the user entered or the first value in the resolution list as the slot value. The
valueSelectionStrategy field indicates the option to use.

Type: Array of EnumerationValue objects

Array Members: Minimum number of 0 items. Maximum number of 10000 items.

Required: No

parentSlotTypeSignature

The built-in slot type used as the parent of the slot type. When you define a parent slot type,
the new slot type has all of the same configuration as the parent.

Amazon Lex Model Building Service 598

Amazon Lex V1 Developer Guide

Only AMAZON.AlphaNumeric is supported.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^((AMAZON\.)_?|[A-Za-z]_?)+

Required: No

slotTypeConfigurations

Configuration information that extends the parent built-in slot type. The configuration is added
to the settings for the parent slot type.

Type: Array of SlotTypeConfiguration objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Required: No

valueSelectionStrategy

Determines the slot resolution strategy that Amazon Lex uses to return slot type values. The
field can be set to one of the following values:

• ORIGINAL_VALUE - Returns the value entered by the user, if the user value is similar to the
slot value.

• TOP_RESOLUTION - If there is a resolution list for the slot, return the first value in the
resolution list as the slot type value. If there is no resolution list, null is returned.

If you don't specify the valueSelectionStrategy, the default is ORIGINAL_VALUE.

Type: String

Valid Values: ORIGINAL_VALUE | TOP_RESOLUTION

Required: No

Response Syntax

HTTP/1.1 200

Amazon Lex Model Building Service 599

Amazon Lex V1 Developer Guide

Content-type: application/json

{
 "checksum": "string",
 "createdDate": number,
 "createVersion": boolean,
 "description": "string",
 "enumerationValues": [
 {
 "synonyms": ["string"],
 "value": "string"
 }
],
 "lastUpdatedDate": number,
 "name": "string",
 "parentSlotTypeSignature": "string",
 "slotTypeConfigurations": [
 {
 "regexConfiguration": {
 "pattern": "string"
 }
 }
],
 "valueSelectionStrategy": "string",
 "version": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

checksum

Checksum of the $LATEST version of the slot type.

Type: String

createdDate

The date that the slot type was created.

Type: Timestamp

Amazon Lex Model Building Service 600

Amazon Lex V1 Developer Guide

createVersion

True if a new version of the slot type was created. If the createVersion field was not
specified in the request, the createVersion field is set to false in the response.

Type: Boolean

description

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

enumerationValues

A list of EnumerationValue objects that defines the values that the slot type can take.

Type: Array of EnumerationValue objects

Array Members: Minimum number of 0 items. Maximum number of 10000 items.

lastUpdatedDate

The date that the slot type was updated. When you create a slot type, the creation date and last
update date are the same.

Type: Timestamp

name

The name of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

parentSlotTypeSignature

The built-in slot type used as the parent of the slot type.

Type: String

Amazon Lex Model Building Service 601

Amazon Lex V1 Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^((AMAZON\.)_?|[A-Za-z]_?)+

slotTypeConfigurations

Configuration information that extends the parent built-in slot type.

Type: Array of SlotTypeConfiguration objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

valueSelectionStrategy

The slot resolution strategy that Amazon Lex uses to determine the value of the slot. For more
information, see PutSlotType.

Type: String

Valid Values: ORIGINAL_VALUE | TOP_RESOLUTION

version

The version of the slot type. For a new slot type, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

Amazon Lex Model Building Service 602

Amazon Lex V1 Developer Guide

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

PreconditionFailedException

The checksum of the resource that you are trying to change does not match the checksum in
the request. Check the resource's checksum and try again.

HTTP Status Code: 412

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 603

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/PutSlotType
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/PutSlotType
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/PutSlotType
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/PutSlotType
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/PutSlotType
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/PutSlotType
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/PutSlotType
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/PutSlotType
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/PutSlotType

Amazon Lex V1 Developer Guide

StartImport
Service: Amazon Lex Model Building Service

Starts a job to import a resource to Amazon Lex.

Request Syntax

POST /imports/ HTTP/1.1
Content-type: application/json

{
 "mergeStrategy": "string",
 "payload": blob,
 "resourceType": "string",
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}

URI Request Parameters

The request does not use any URI parameters.

Request Body

The request accepts the following data in JSON format.

mergeStrategy

Specifies the action that the StartImport operation should take when there is an existing
resource with the same name.

• FAIL_ON_CONFLICT - The import operation is stopped on the first conflict between a resource
in the import file and an existing resource. The name of the resource causing the conflict is in
the failureReason field of the response to the GetImport operation.

OVERWRITE_LATEST - The import operation proceeds even if there is a conflict with an
existing resource. The $LASTEST version of the existing resource is overwritten with the data
from the import file.

Amazon Lex Model Building Service 604

Amazon Lex V1 Developer Guide

Type: String

Valid Values: OVERWRITE_LATEST | FAIL_ON_CONFLICT

Required: Yes

payload

A zip archive in binary format. The archive should contain one file, a JSON file containing the
resource to import. The resource should match the type specified in the resourceType field.

Type: Base64-encoded binary data object

Required: Yes

resourceType

Specifies the type of resource to export. Each resource also exports any resources that it
depends on.

• A bot exports dependent intents.

• An intent exports dependent slot types.

Type: String

Valid Values: BOT | INTENT | SLOT_TYPE

Required: Yes

tags

A list of tags to add to the imported bot. You can only add tags when you import a bot, you
can't add tags to an intent or slot type.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

Amazon Lex Model Building Service 605

Amazon Lex V1 Developer Guide

{
 "createdDate": number,
 "importId": "string",
 "importStatus": "string",
 "mergeStrategy": "string",
 "name": "string",
 "resourceType": "string",
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

createdDate

A timestamp for the date and time that the import job was requested.

Type: Timestamp

importId

The identifier for the specific import job.

Type: String

importStatus

The status of the import job. If the status is FAILED, you can get the reason for the failure using
the GetImport operation.

Type: String

Valid Values: IN_PROGRESS | COMPLETE | FAILED

mergeStrategy

The action to take when there is a merge conflict.

Amazon Lex Model Building Service 606

Amazon Lex V1 Developer Guide

Type: String

Valid Values: OVERWRITE_LATEST | FAIL_ON_CONFLICT

name

The name given to the import job.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: [a-zA-Z_]+

resourceType

The type of resource to import.

Type: String

Valid Values: BOT | INTENT | SLOT_TYPE

tags

A list of tags added to the imported bot.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

Amazon Lex Model Building Service 607

Amazon Lex V1 Developer Guide

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 608

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/StartImport
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/StartImport
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/StartImport
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/StartImport
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/StartImport
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/StartImport
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/StartImport
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/StartImport
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/StartImport

Amazon Lex V1 Developer Guide

StartMigration
Service: Amazon Lex Model Building Service

Starts migrating a bot from Amazon Lex V1 to Amazon Lex V2. Migrate your bot when you want to
take advantage of the new features of Amazon Lex V2.

For more information, see Migrating a bot in the Amazon Lex developer guide.

Request Syntax

POST /migrations HTTP/1.1
Content-type: application/json

{
 "migrationStrategy": "string",
 "v1BotName": "string",
 "v1BotVersion": "string",
 "v2BotName": "string",
 "v2BotRole": "string"
}

URI Request Parameters

The request does not use any URI parameters.

Request Body

The request accepts the following data in JSON format.

migrationStrategy

The strategy used to conduct the migration.

• CREATE_NEW - Creates a new Amazon Lex V2 bot and migrates the Amazon Lex V1 bot to the
new bot.

• UPDATE_EXISTING - Overwrites the existing Amazon Lex V2 bot metadata and the locale
being migrated. It doesn't change any other locales in the Amazon Lex V2 bot. If the locale
doesn't exist, a new locale is created in the Amazon Lex V2 bot.

Type: String

Valid Values: CREATE_NEW | UPDATE_EXISTING

Amazon Lex Model Building Service 609

https://docs.aws.amazon.com/lex/latest/dg/migrate.html

Amazon Lex V1 Developer Guide

Required: Yes

v1BotName

The name of the Amazon Lex V1 bot that you are migrating to Amazon Lex V2.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

v1BotVersion

The version of the bot to migrate to Amazon Lex V2. You can migrate the $LATEST version as
well as any numbered version.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: Yes

v2BotName

The name of the Amazon Lex V2 bot that you are migrating the Amazon Lex V1 bot to.

• If the Amazon Lex V2 bot doesn't exist, you must use the CREATE_NEW migration strategy.

• If the Amazon Lex V2 bot exists, you must use the UPDATE_EXISTING migration strategy to
change the contents of the Amazon Lex V2 bot.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([0-9a-zA-Z][_-]?)+$

Required: Yes

v2BotRole

The IAM role that Amazon Lex uses to run the Amazon Lex V2 bot.

Amazon Lex Model Building Service 610

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:iam::[\d]{12}:role/.+$

Required: Yes

Response Syntax

HTTP/1.1 202
Content-type: application/json

{
 "migrationId": "string",
 "migrationStrategy": "string",
 "migrationTimestamp": number,
 "v1BotLocale": "string",
 "v1BotName": "string",
 "v1BotVersion": "string",
 "v2BotId": "string",
 "v2BotRole": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 202 response.

The following data is returned in JSON format by the service.

migrationId

The unique identifier that Amazon Lex assigned to the migration.

Type: String

Length Constraints: Fixed length of 10.

Pattern: ^[0-9a-zA-Z]+$

migrationStrategy

The strategy used to conduct the migration.

Amazon Lex Model Building Service 611

Amazon Lex V1 Developer Guide

Type: String

Valid Values: CREATE_NEW | UPDATE_EXISTING

migrationTimestamp

The date and time that the migration started.

Type: Timestamp

v1BotLocale

The locale used for the Amazon Lex V1 bot.

Type: String

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

v1BotName

The name of the Amazon Lex V1 bot that you are migrating to Amazon Lex V2.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

v1BotVersion

The version of the bot to migrate to Amazon Lex V2.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

v2BotId

The unique identifier for the Amazon Lex V2 bot.

Type: String

Length Constraints: Fixed length of 10.

Amazon Lex Model Building Service 612

Amazon Lex V1 Developer Guide

Pattern: ^[0-9a-zA-Z]+$

v2BotRole

The IAM role that Amazon Lex uses to run the Amazon Lex V2 bot.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:iam::[\d]{12}:role/.+$

Errors

AccessDeniedException

Your IAM user or role does not have permission to call the Amazon Lex V2 APIs required to
migrate your bot.

HTTP Status Code: 403

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

Amazon Lex Model Building Service 613

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 614

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/StartMigration
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/StartMigration
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/StartMigration
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/StartMigration
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/StartMigration
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/StartMigration
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/StartMigration
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/StartMigration
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/StartMigration

Amazon Lex V1 Developer Guide

TagResource
Service: Amazon Lex Model Building Service

Adds the specified tags to the specified resource. If a tag key already exists, the existing value is
replaced with the new value.

Request Syntax

POST /tags/resourceArn HTTP/1.1
Content-type: application/json

{
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}

URI Request Parameters

The request uses the following URI parameters.

resourceArn

The Amazon Resource Name (ARN) of the bot, bot alias, or bot channel to tag.

Length Constraints: Minimum length of 1. Maximum length of 1011.

Required: Yes

Request Body

The request accepts the following data in JSON format.

tags

A list of tag keys to add to the resource. If a tag key already exists, the existing value is replaced
with the new value.

Type: Array of Tag objects

Amazon Lex Model Building Service 615

Amazon Lex V1 Developer Guide

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Required: Yes

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

Amazon Lex Model Building Service 616

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 617

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/TagResource
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/TagResource
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/TagResource
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/TagResource
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/TagResource
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/TagResource
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/TagResource
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/TagResource
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/TagResource

Amazon Lex V1 Developer Guide

UntagResource
Service: Amazon Lex Model Building Service

Removes tags from a bot, bot alias or bot channel.

Request Syntax

DELETE /tags/resourceArn?tagKeys=tagKeys HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

resourceArn

The Amazon Resource Name (ARN) of the resource to remove the tags from.

Length Constraints: Minimum length of 1. Maximum length of 1011.

Required: Yes

tagKeys

A list of tag keys to remove from the resource. If a tag key does not exist on the resource, it is
ignored.

Array Members: Minimum number of 0 items. Maximum number of 200 items.

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements

If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Amazon Lex Model Building Service 618

Amazon Lex V1 Developer Guide

Errors

BadRequestException

The request is not well formed. For example, a value is invalid or a required field is missing.
Check the field values, and try again.

HTTP Status Code: 400

ConflictException

There was a conflict processing the request. Try your request again.

HTTP Status Code: 409

InternalFailureException

An internal Amazon Lex error occurred. Try your request again.

HTTP Status Code: 500

LimitExceededException

The request exceeded a limit. Try your request again.

HTTP Status Code: 429

NotFoundException

The resource specified in the request was not found. Check the resource and try again.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

Amazon Lex Model Building Service 619

https://docs.aws.amazon.com/goto/aws-cli/lex-models-2017-04-19/UntagResource
https://docs.aws.amazon.com/goto/DotNetSDKV3/lex-models-2017-04-19/UntagResource
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/UntagResource
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/UntagResource
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/UntagResource

Amazon Lex V1 Developer Guide

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Runtime Service

The following actions are supported by Amazon Lex Runtime Service:

• DeleteSession

• GetSession

• PostContent

• PostText

• PutSession

Amazon Lex Runtime Service 620

https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/lex-models-2017-04-19/UntagResource
https://docs.aws.amazon.com/goto/SdkForPHPV3/lex-models-2017-04-19/UntagResource
https://docs.aws.amazon.com/goto/boto3/lex-models-2017-04-19/UntagResource
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/UntagResource

Amazon Lex V1 Developer Guide

DeleteSession
Service: Amazon Lex Runtime Service

Removes session information for a specified bot, alias, and user ID.

Request Syntax

DELETE /bot/botName/alias/botAlias/user/userId/session HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

botAlias

The alias in use for the bot that contains the session data.

Required: Yes

botName

The name of the bot that contains the session data.

Required: Yes

userId

The identifier of the user associated with the session data.

Length Constraints: Minimum length of 2. Maximum length of 100.

Pattern: [0-9a-zA-Z._:-]+

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{

Amazon Lex Runtime Service 621

Amazon Lex V1 Developer Guide

 "botAlias": "string",
 "botName": "string",
 "sessionId": "string",
 "userId": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

botAlias

The alias in use for the bot associated with the session data.

Type: String

botName

The name of the bot associated with the session data.

Type: String

sessionId

The unique identifier for the session.

Type: String

userId

The ID of the client application user.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 100.

Pattern: [0-9a-zA-Z._:-]+

Errors

BadRequestException

Request validation failed, there is no usable message in the context, or the bot build failed, is
still in progress, or contains unbuilt changes.

Amazon Lex Runtime Service 622

Amazon Lex V1 Developer Guide

HTTP Status Code: 400

ConflictException

Two clients are using the same AWS account, Amazon Lex bot, and user ID.

HTTP Status Code: 409

InternalFailureException

Internal service error. Retry the call.

HTTP Status Code: 500

LimitExceededException

Exceeded a limit.

HTTP Status Code: 429

NotFoundException

The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 623

https://docs.aws.amazon.com/goto/aws-cli/runtime.lex-2016-11-28/DeleteSession
https://docs.aws.amazon.com/goto/DotNetSDKV3/runtime.lex-2016-11-28/DeleteSession
https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/DeleteSession
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/DeleteSession
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/DeleteSession
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/runtime.lex-2016-11-28/DeleteSession
https://docs.aws.amazon.com/goto/SdkForPHPV3/runtime.lex-2016-11-28/DeleteSession
https://docs.aws.amazon.com/goto/boto3/runtime.lex-2016-11-28/DeleteSession
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/DeleteSession

Amazon Lex V1 Developer Guide

GetSession
Service: Amazon Lex Runtime Service

Returns session information for a specified bot, alias, and user ID.

Request Syntax

GET /bot/botName/alias/botAlias/user/userId/session/?
checkpointLabelFilter=checkpointLabelFilter HTTP/1.1

URI Request Parameters

The request uses the following URI parameters.

botAlias

The alias in use for the bot that contains the session data.

Required: Yes

botName

The name of the bot that contains the session data.

Required: Yes

checkpointLabelFilter

A string used to filter the intents returned in the recentIntentSummaryView structure.

When you specify a filter, only intents with their checkpointLabel field set to that string are
returned.

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9-]+

userId

The ID of the client application user. Amazon Lex uses this to identify a user's conversation with
your bot.

Length Constraints: Minimum length of 2. Maximum length of 100.

Pattern: [0-9a-zA-Z._:-]+

Amazon Lex Runtime Service 624

Amazon Lex V1 Developer Guide

Required: Yes

Request Body

The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "activeContexts": [
 {
 "name": "string",
 "parameters": {
 "string" : "string"
 },
 "timeToLive": {
 "timeToLiveInSeconds": number,
 "turnsToLive": number
 }
 }
],
 "dialogAction": {
 "fulfillmentState": "string",
 "intentName": "string",
 "message": "string",
 "messageFormat": "string",
 "slots": {
 "string" : "string"
 },
 "slotToElicit": "string",
 "type": "string"
 },
 "recentIntentSummaryView": [
 {
 "checkpointLabel": "string",
 "confirmationStatus": "string",
 "dialogActionType": "string",
 "fulfillmentState": "string",
 "intentName": "string",
 "slots": {

Amazon Lex Runtime Service 625

Amazon Lex V1 Developer Guide

 "string" : "string"
 },
 "slotToElicit": "string"
 }
],
 "sessionAttributes": {
 "string" : "string"
 },
 "sessionId": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

activeContexts

A list of active contexts for the session. A context can be set when an intent is fulfilled or by
calling the PostContent, PostText, or PutSession operation.

You can use a context to control the intents that can follow up an intent, or to modify the
operation of your application.

Type: Array of ActiveContext objects

Array Members: Minimum number of 0 items. Maximum number of 20 items.

dialogAction

Describes the current state of the bot.

Type: DialogAction object

recentIntentSummaryView

An array of information about the intents used in the session. The array can contain a
maximum of three summaries. If more than three intents are used in the session, the
recentIntentSummaryView operation contains information about the last three intents used.

If you set the checkpointLabelFilter parameter in the request, the array contains only the
intents with the specified label.

Type: Array of IntentSummary objects

Amazon Lex Runtime Service 626

Amazon Lex V1 Developer Guide

Array Members: Minimum number of 0 items. Maximum number of 3 items.

sessionAttributes

Map of key/value pairs representing the session-specific context information. It contains
application information passed between Amazon Lex and a client application.

Type: String to string map

sessionId

A unique identifier for the session.

Type: String

Errors

BadRequestException

Request validation failed, there is no usable message in the context, or the bot build failed, is
still in progress, or contains unbuilt changes.

HTTP Status Code: 400

InternalFailureException

Internal service error. Retry the call.

HTTP Status Code: 500

LimitExceededException

Exceeded a limit.

HTTP Status Code: 429

NotFoundException

The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

Amazon Lex Runtime Service 627

Amazon Lex V1 Developer Guide

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 628

https://docs.aws.amazon.com/goto/aws-cli/runtime.lex-2016-11-28/GetSession
https://docs.aws.amazon.com/goto/DotNetSDKV3/runtime.lex-2016-11-28/GetSession
https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/GetSession
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/GetSession
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/GetSession
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/runtime.lex-2016-11-28/GetSession
https://docs.aws.amazon.com/goto/SdkForPHPV3/runtime.lex-2016-11-28/GetSession
https://docs.aws.amazon.com/goto/boto3/runtime.lex-2016-11-28/GetSession
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/GetSession

Amazon Lex V1 Developer Guide

PostContent
Service: Amazon Lex Runtime Service

Sends user input (text or speech) to Amazon Lex. Clients use this API to send text and audio
requests to Amazon Lex at runtime. Amazon Lex interprets the user input using the machine
learning model that it built for the bot.

The PostContent operation supports audio input at 8kHz and 16kHz. You can use 8kHz audio to
achieve higher speech recognition accuracy in telephone audio applications.

In response, Amazon Lex returns the next message to convey to the user. Consider the following
example messages:

• For a user input "I would like a pizza," Amazon Lex might return a response with a message
eliciting slot data (for example, PizzaSize): "What size pizza would you like?".

• After the user provides all of the pizza order information, Amazon Lex might return a response
with a message to get user confirmation: "Order the pizza?".

• After the user replies "Yes" to the confirmation prompt, Amazon Lex might return a conclusion
statement: "Thank you, your cheese pizza has been ordered.".

Not all Amazon Lex messages require a response from the user. For example, conclusion
statements do not require a response. Some messages require only a yes or no response. In
addition to the message, Amazon Lex provides additional context about the message in the
response that you can use to enhance client behavior, such as displaying the appropriate client user
interface. Consider the following examples:

• If the message is to elicit slot data, Amazon Lex returns the following context information:

• x-amz-lex-dialog-state header set to ElicitSlot

• x-amz-lex-intent-name header set to the intent name in the current context

• x-amz-lex-slot-to-elicit header set to the slot name for which the message is eliciting
information

• x-amz-lex-slots header set to a map of slots configured for the intent with their current
values

• If the message is a confirmation prompt, the x-amz-lex-dialog-state header is set to
Confirmation and the x-amz-lex-slot-to-elicit header is omitted.

Amazon Lex Runtime Service 629

Amazon Lex V1 Developer Guide

• If the message is a clarification prompt configured for the intent, indicating that the user intent
is not understood, the x-amz-dialog-state header is set to ElicitIntent and the x-amz-
slot-to-elicit header is omitted.

In addition, Amazon Lex also returns your application-specific sessionAttributes. For more
information, see Managing Conversation Context.

Request Syntax

POST /bot/botName/alias/botAlias/user/userId/content HTTP/1.1
x-amz-lex-session-attributes: sessionAttributes
x-amz-lex-request-attributes: requestAttributes
Content-Type: contentType
Accept: accept
x-amz-lex-active-contexts: activeContexts

inputStream

URI Request Parameters

The request uses the following URI parameters.

accept

You pass this value as the Accept HTTP header.

The message Amazon Lex returns in the response can be either text or speech based on the
Accept HTTP header value in the request.

• If the value is text/plain; charset=utf-8, Amazon Lex returns text in the response.

• If the value begins with audio/, Amazon Lex returns speech in the response. Amazon Lex
uses Amazon Polly to generate the speech (using the configuration you specified in the
Accept header). For example, if you specify audio/mpeg as the value, Amazon Lex returns
speech in the MPEG format.

• If the value is audio/pcm, the speech returned is audio/pcm in 16-bit, little endian format.

• The following are the accepted values:

• audio/mpeg

• audio/ogg

• audio/pcm

Amazon Lex Runtime Service 630

https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html

Amazon Lex V1 Developer Guide

• text/plain; charset=utf-8

• audio/* (defaults to mpeg)

activeContexts

A list of contexts active for the request. A context can be activated when a previous intent is
fulfilled, or by including the context in the request,

If you don't specify a list of contexts, Amazon Lex will use the current list of contexts for the
session. If you specify an empty list, all contexts for the session are cleared.

botAlias

Alias of the Amazon Lex bot.

Required: Yes

botName

Name of the Amazon Lex bot.

Required: Yes

contentType

You pass this value as the Content-Type HTTP header.

Indicates the audio format or text. The header value must start with one of the following
prefixes:

• PCM format, audio data must be in little-endian byte order.

• audio/l16; rate=16000; channels=1

• audio/x-l16; sample-rate=16000; channel-count=1

• audio/lpcm; sample-rate=8000; sample-size-bits=16; channel-count=1; is-big-endian=false

• Opus format

• audio/x-cbr-opus-with-preamble; preamble-size=0; bit-rate=256000; frame-size-
milliseconds=4

• Text format

• text/plain; charset=utf-8

Required: Yes

Amazon Lex Runtime Service 631

Amazon Lex V1 Developer Guide

requestAttributes

You pass this value as the x-amz-lex-request-attributes HTTP header.

Request-specific information passed between Amazon Lex and a client application. The value
must be a JSON serialized and base64 encoded map with string keys and values. The total size
of the requestAttributes and sessionAttributes headers is limited to 12 KB.

The namespace x-amz-lex: is reserved for special attributes. Don't create any request
attributes with the prefix x-amz-lex:.

For more information, see Setting Request Attributes.

sessionAttributes

You pass this value as the x-amz-lex-session-attributes HTTP header.

Application-specific information passed between Amazon Lex and a client application. The
value must be a JSON serialized and base64 encoded map with string keys and values. The total
size of the sessionAttributes and requestAttributes headers is limited to 12 KB.

For more information, see Setting Session Attributes.

userId

The ID of the client application user. Amazon Lex uses this to identify a user's conversation with
your bot. At runtime, each request must contain the userID field.

To decide the user ID to use for your application, consider the following factors.

• The userID field must not contain any personally identifiable information of the user, for
example, name, personal identification numbers, or other end user personal information.

• If you want a user to start a conversation on one device and continue on another device, use a
user-specific identifier.

• If you want the same user to be able to have two independent conversations on two different
devices, choose a device-specific identifier.

• A user can't have two independent conversations with two different versions of the same
bot. For example, a user can't have a conversation with the PROD and BETA versions of the
same bot. If you anticipate that a user will need to have conversation with two different
versions, for example, while testing, include the bot alias in the user ID to separate the two
conversations.

Amazon Lex Runtime Service 632

https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-request-attribs
https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-session-attribs

Amazon Lex V1 Developer Guide

Length Constraints: Minimum length of 2. Maximum length of 100.

Pattern: [0-9a-zA-Z._:-]+

Required: Yes

Request Body

The request accepts the following binary data.

inputStream

User input in PCM or Opus audio format or text format as described in the Content-Type
HTTP header.

You can stream audio data to Amazon Lex or you can create a local buffer that captures all of
the audio data before sending. In general, you get better performance if you stream audio data
rather than buffering the data locally.

Required: Yes

Response Syntax

HTTP/1.1 200
Content-Type: contentType
x-amz-lex-intent-name: intentName
x-amz-lex-nlu-intent-confidence: nluIntentConfidence
x-amz-lex-alternative-intents: alternativeIntents
x-amz-lex-slots: slots
x-amz-lex-session-attributes: sessionAttributes
x-amz-lex-sentiment: sentimentResponse
x-amz-lex-message: message
x-amz-lex-encoded-message: encodedMessage
x-amz-lex-message-format: messageFormat
x-amz-lex-dialog-state: dialogState
x-amz-lex-slot-to-elicit: slotToElicit
x-amz-lex-input-transcript: inputTranscript
x-amz-lex-encoded-input-transcript: encodedInputTranscript
x-amz-lex-bot-version: botVersion
x-amz-lex-session-id: sessionId
x-amz-lex-active-contexts: activeContexts

Amazon Lex Runtime Service 633

Amazon Lex V1 Developer Guide

audioStream

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The response returns the following HTTP headers.

activeContexts

A list of active contexts for the session. A context can be set when an intent is fulfilled or by
calling the PostContent, PostText, or PutSession operation.

You can use a context to control the intents that can follow up an intent, or to modify the
operation of your application.

alternativeIntents

One to four alternative intents that may be applicable to the user's intent.

Each alternative includes a score that indicates how confident Amazon Lex is that the intent
matches the user's intent. The intents are sorted by the confidence score.

botVersion

The version of the bot that responded to the conversation. You can use this information to help
determine if one version of a bot is performing better than another version.

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+|\$LATEST

contentType

Content type as specified in the Accept HTTP header in the request.

dialogState

Identifies the current state of the user interaction. Amazon Lex returns one of the following
values as dialogState. The client can optionally use this information to customize the user
interface.

• ElicitIntent - Amazon Lex wants to elicit the user's intent. Consider the following
examples:

Amazon Lex Runtime Service 634

Amazon Lex V1 Developer Guide

For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot
infer the user intent from this utterance, it will return this dialog state.

• ConfirmIntent - Amazon Lex is expecting a "yes" or "no" response.

For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a
simple "yes" or "no" response, a user might respond with additional information. For example,
"yes, but make it a thick crust pizza" or "no, I want to order a drink." Amazon Lex can process
such additional information (in these examples, update the crust type slot or change the
intent from OrderPizza to OrderDrink).

• ElicitSlot - Amazon Lex is expecting the value of a slot for the current intent.

For example, suppose that in the response Amazon Lex sends this message: "What size pizza
would you like?". A user might reply with the slot value (e.g., "medium"). The user might also
provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex
can process such additional information appropriately.

• Fulfilled - Conveys that the Lambda function has successfully fulfilled the intent.

• ReadyForFulfillment - Conveys that the client has to fulfill the request.

• Failed - Conveys that the conversation with the user failed.

This can happen for various reasons, including that the user does not provide an appropriate
response to prompts from the service (you can configure how many times Amazon Lex can
prompt a user for specific information), or if the Lambda function fails to fulfill the intent.

Valid Values: ElicitIntent | ConfirmIntent | ElicitSlot | Fulfilled |
ReadyForFulfillment | Failed

encodedInputTranscript

The text used to process the request.

If the input was an audio stream, the encodedInputTranscript field contains the text
extracted from the audio stream. This is the text that is actually processed to recognize intents
and slot values. You can use this information to determine if Amazon Lex is correctly processing
the audio that you send.

The encodedInputTranscript field is base-64 encoded. You must decode the field before
you can use the value.

Amazon Lex Runtime Service 635

Amazon Lex V1 Developer Guide

encodedMessage

The message to convey to the user. The message can come from the bot's configuration or from
a Lambda function.

If the intent is not configured with a Lambda function, or if the Lambda function returned
Delegate as the dialogAction.type in its response, Amazon Lex decides on the next course
of action and selects an appropriate message from the bot's configuration based on the current
interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a
clarification prompt message.

When you create an intent you can assign messages to groups. When messages are assigned to
groups Amazon Lex returns one message from each group in the response. The message field is
an escaped JSON string containing the messages. For more information about the structure of
the JSON string returned, see Supported Message Formats.

If the Lambda function returns a message, Amazon Lex passes it to the client in its response.

The encodedMessage field is base-64 encoded. You must decode the field before you can use
the value.

Length Constraints: Minimum length of 1. Maximum length of 1366.

inputTranscript

This header has been deprecated.

The text used to process the request.

You can use this field only in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA, fr-
FR, and it-IT locales. In all other locales, the inputTranscript field is null. You should use the
encodedInputTranscript field instead.

If the input was an audio stream, the inputTranscript field contains the text extracted from
the audio stream. This is the text that is actually processed to recognize intents and slot values.
You can use this information to determine if Amazon Lex is correctly processing the audio that
you send.

intentName

Current user intent that Amazon Lex is aware of.

Amazon Lex Runtime Service 636

Amazon Lex V1 Developer Guide

message

This header has been deprecated.

You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA,
fr-FR, and it-IT locales. In all other locales, the message field is null. You should use the
encodedMessage field instead.

The message to convey to the user. The message can come from the bot's configuration or from
a Lambda function.

If the intent is not configured with a Lambda function, or if the Lambda function returned
Delegate as the dialogAction.type in its response, Amazon Lex decides on the next course
of action and selects an appropriate message from the bot's configuration based on the current
interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a
clarification prompt message.

When you create an intent you can assign messages to groups. When messages are assigned to
groups Amazon Lex returns one message from each group in the response. The message field is
an escaped JSON string containing the messages. For more information about the structure of
the JSON string returned, see Supported Message Formats.

If the Lambda function returns a message, Amazon Lex passes it to the client in its response.

Length Constraints: Minimum length of 1. Maximum length of 1024.

messageFormat

The format of the response message. One of the following values:

• PlainText - The message contains plain UTF-8 text.

• CustomPayload - The message is a custom format for the client.

• SSML - The message contains text formatted for voice output.

• Composite - The message contains an escaped JSON object containing one or more
messages from the groups that messages were assigned to when the intent was created.

Valid Values: PlainText | CustomPayload | SSML | Composite

nluIntentConfidence

Provides a score that indicates how confident Amazon Lex is that the returned intent is the one
that matches the user's intent. The score is between 0.0 and 1.0.

Amazon Lex Runtime Service 637

Amazon Lex V1 Developer Guide

The score is a relative score, not an absolute score. The score may change based on
improvements to Amazon Lex.

sentimentResponse

The sentiment expressed in an utterance.

When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis,
this field contains the result of the analysis.

sessionAttributes

Map of key/value pairs representing the session-specific context information.

sessionId

The unique identifier for the session.

slots

Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input
during the conversation. The field is base-64 encoded.

Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns
is determined by the valueSelectionStrategy selected when the slot type was created or
updated. If valueSelectionStrategy is set to ORIGINAL_VALUE, the value provided by the
user is returned, if the user value is similar to the slot values. If valueSelectionStrategy
is set to TOP_RESOLUTION Amazon Lex returns the first value in the resolution list or, if there
is no resolution list, null. If you don't specify a valueSelectionStrategy, the default is
ORIGINAL_VALUE.

slotToElicit

If the dialogState value is ElicitSlot, returns the name of the slot for which Amazon Lex
is eliciting a value.

The response returns the following as the HTTP body.

audioStream

The prompt (or statement) to convey to the user. This is based on the bot configuration
and context. For example, if Amazon Lex did not understand the user intent, it sends the
clarificationPrompt configured for the bot. If the intent requires confirmation before
taking the fulfillment action, it sends the confirmationPrompt. Another example: Suppose

Amazon Lex Runtime Service 638

Amazon Lex V1 Developer Guide

that the Lambda function successfully fulfilled the intent, and sent a message to convey to the
user. Then Amazon Lex sends that message in the response.

Errors

BadGatewayException

Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly,
AWS Lambda) failed with an internal service error.

HTTP Status Code: 502

BadRequestException

Request validation failed, there is no usable message in the context, or the bot build failed, is
still in progress, or contains unbuilt changes.

HTTP Status Code: 400

ConflictException

Two clients are using the same AWS account, Amazon Lex bot, and user ID.

HTTP Status Code: 409

DependencyFailedException

One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For
example,

• If Amazon Lex does not have sufficient permissions to call a Lambda function.

• If a Lambda function takes longer than 30 seconds to execute.

• If a fulfillment Lambda function returns a Delegate dialog action without removing any slot
values.

HTTP Status Code: 424

InternalFailureException

Internal service error. Retry the call.

HTTP Status Code: 500

LimitExceededException

Exceeded a limit.

Amazon Lex Runtime Service 639

Amazon Lex V1 Developer Guide

HTTP Status Code: 429

LoopDetectedException

This exception is not used.

HTTP Status Code: 508

NotAcceptableException

The accept header in the request does not have a valid value.

HTTP Status Code: 406

NotFoundException

The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.

HTTP Status Code: 404

RequestTimeoutException

The input speech is too long.

HTTP Status Code: 408

UnsupportedMediaTypeException

The Content-Type header (PostContent API) has an invalid value.

HTTP Status Code: 415

Examples

Example 1

In this request, the URI identifies a bot (Traffic), bot version ($LATEST), and end user name
(someuser). The Content-Type header identifies the format of the audio in the body. Amazon Lex
also supports other formats. To convert audio from one format to another, if necessary, you can
use SoX open source software. You specify the format in which you want to get the response by
adding the Accept HTTP header.

In the response, the x-amz-lex-message header shows the response that Amazon Lex returned.
The client can then send this response to the user. The same message is sent in audio/MPEG format
through chunked encoding (as requested).

Amazon Lex Runtime Service 640

Amazon Lex V1 Developer Guide

Sample Request

"POST /bot/Traffic/alias/$LATEST/user/someuser/content HTTP/1.1[\r][\n]"
"x-amz-lex-session-attributes: eyJ1c2VyTmFtZSI6IkJvYiJ9[\r][\n]"
"Content-Type: audio/x-l16; channel-count=1; sample-rate=16000f[\r][\n]"
"Accept: audio/mpeg[\r][\n]"
"Host: runtime.lex.us-east-1.amazonaws.com[\r][\n]"
"Authorization: AWS4-HMAC-SHA256 Credential=BLANKED_OUT/20161230/us-east-1/lex/
aws4_request,
SignedHeaders=accept;content-type;host;x-amz-content-sha256;x-amz-date;x-amz-lex-
session-attributes,
 Signature=78ca5b54ea3f64a17ff7522de02cd90a9acd2365b45a9ce9b96ea105bb1c7ec2[\r][\n]"
"X-Amz-Date: 20161230T181426Z[\r][\n]"
"X-Amz-Content-Sha256:
 e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855[\r][\n]"
"Transfer-Encoding: chunked[\r][\n]"
"Connection: Keep-Alive[\r][\n]"
"User-Agent: Apache-HttpClient/4.5.x (Java/1.8.0_112)[\r][\n]"
"Accept-Encoding: gzip,deflate[\r][\n]"
"[\r][\n]"
"1000[\r][\n]"
"[0x7][0x0][0x7][0x0][\n]"
"[0x0][0x7][0x0][0xfc][0xff][\n]"
"[0x0][\n]"
…

Sample Response

"HTTP/1.1 200 OK[\r][\n]"
"x-amzn-RequestId: cc8b34af-cebb-11e6-a35c-55f3a992f28d[\r][\n]"
"x-amz-lex-message: Sorry, can you repeat that?[\r][\n]"
"x-amz-lex-dialog-state: ElicitIntent[\r][\n]"
"x-amz-lex-session-attributes: eyJ1c2VyTmFtZSI6IkJvYiJ9[\r][\n]"
"Content-Type: audio/mpeg[\r][\n]"
"Transfer-Encoding: chunked[\r][\n]"
"Date: Fri, 30 Dec 2016 18:14:28 GMT[\r][\n]"
"[\r][\n]"
"2000[\r][\n]"
"ID3[0x4][0x0][0x0][0x0][0x0][0x0]#TSSE[0x0][0x0][0x0][0xf][0x0][0x0]
[0x3]Lavf57.41.100[0x0][0x0][0x0][0x0][0x0][0x0][0x0][0x0][0x0][0x0][0x0][0xff]
[0xf3]`[0xc4][0x0][0x1b]{[0x8d][0xe8][0x1]C[0x18][0x1][0x0]J[0xe0]`b[0xdd][0xd1]
[0xb][0xfd][0x11][0xdf][0xfe]";[0xbb][0xbb][0x9f][0xee][0xee][0xee][0xee]|DDD/[0xff]
[0xff][0xff][0xff]www?D[0xf7]w^?[0xff][0xfa]h[0x88][0x85][0xfe][0x88][0x88][0x88]

Amazon Lex Runtime Service 641

Amazon Lex V1 Developer Guide

[[0xa2]'[0xff][0xfa]"{[0x9f][0xe8][0x88]]D[0xeb][0xbb][0xbb][0xa2]!u[0xfd][0xdd][0xdf]
[0x88][0x94][0x0]F[0xef][0xa1]8[0x0][0x82]w[0x88]N[0x0][0x0][0x9b][0xbb][0xe8][0xe
…

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 642

https://docs.aws.amazon.com/goto/aws-cli/runtime.lex-2016-11-28/PostContent
https://docs.aws.amazon.com/goto/DotNetSDKV3/runtime.lex-2016-11-28/PostContent
https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/PostContent
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/PostContent
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/PostContent
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/runtime.lex-2016-11-28/PostContent
https://docs.aws.amazon.com/goto/SdkForPHPV3/runtime.lex-2016-11-28/PostContent
https://docs.aws.amazon.com/goto/boto3/runtime.lex-2016-11-28/PostContent
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/PostContent

Amazon Lex V1 Developer Guide

PostText
Service: Amazon Lex Runtime Service

Sends user input to Amazon Lex. Client applications can use this API to send requests to Amazon
Lex at runtime. Amazon Lex then interprets the user input using the machine learning model it
built for the bot.

In response, Amazon Lex returns the next message to convey to the user an optional
responseCard to display. Consider the following example messages:

• For a user input "I would like a pizza", Amazon Lex might return a response with a message
eliciting slot data (for example, PizzaSize): "What size pizza would you like?"

• After the user provides all of the pizza order information, Amazon Lex might return a response
with a message to obtain user confirmation "Proceed with the pizza order?".

• After the user replies to a confirmation prompt with a "yes", Amazon Lex might return a
conclusion statement: "Thank you, your cheese pizza has been ordered.".

Not all Amazon Lex messages require a user response. For example, a conclusion statement does
not require a response. Some messages require only a "yes" or "no" user response. In addition to
the message, Amazon Lex provides additional context about the message in the response that you
might use to enhance client behavior, for example, to display the appropriate client user interface.
These are the slotToElicit, dialogState, intentName, and slots fields in the response.
Consider the following examples:

• If the message is to elicit slot data, Amazon Lex returns the following context information:

• dialogState set to ElicitSlot

• intentName set to the intent name in the current context

• slotToElicit set to the slot name for which the message is eliciting information

• slots set to a map of slots, configured for the intent, with currently known values

• If the message is a confirmation prompt, the dialogState is set to ConfirmIntent and
SlotToElicit is set to null.

• If the message is a clarification prompt (configured for the intent) that indicates that user intent
is not understood, the dialogState is set to ElicitIntent and slotToElicit is set to null.

Amazon Lex Runtime Service 643

Amazon Lex V1 Developer Guide

In addition, Amazon Lex also returns your application-specific sessionAttributes. For more
information, see Managing Conversation Context.

Request Syntax

POST /bot/botName/alias/botAlias/user/userId/text HTTP/1.1
Content-type: application/json

{
 "activeContexts": [
 {
 "name": "string",
 "parameters": {
 "string" : "string"
 },
 "timeToLive": {
 "timeToLiveInSeconds": number,
 "turnsToLive": number
 }
 }
],
 "inputText": "string",
 "requestAttributes": {
 "string" : "string"
 },
 "sessionAttributes": {
 "string" : "string"
 }
}

URI Request Parameters

The request uses the following URI parameters.

botAlias

The alias of the Amazon Lex bot.

Required: Yes

botName

The name of the Amazon Lex bot.

Amazon Lex Runtime Service 644

https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html

Amazon Lex V1 Developer Guide

Required: Yes

userId

The ID of the client application user. Amazon Lex uses this to identify a user's conversation with
your bot. At runtime, each request must contain the userID field.

To decide the user ID to use for your application, consider the following factors.

• The userID field must not contain any personally identifiable information of the user, for
example, name, personal identification numbers, or other end user personal information.

• If you want a user to start a conversation on one device and continue on another device, use a
user-specific identifier.

• If you want the same user to be able to have two independent conversations on two different
devices, choose a device-specific identifier.

• A user can't have two independent conversations with two different versions of the same
bot. For example, a user can't have a conversation with the PROD and BETA versions of the
same bot. If you anticipate that a user will need to have conversation with two different
versions, for example, while testing, include the bot alias in the user ID to separate the two
conversations.

Length Constraints: Minimum length of 2. Maximum length of 100.

Pattern: [0-9a-zA-Z._:-]+

Required: Yes

Request Body

The request accepts the following data in JSON format.

activeContexts

A list of contexts active for the request. A context can be activated when a previous intent is
fulfilled, or by including the context in the request,

If you don't specify a list of contexts, Amazon Lex will use the current list of contexts for the
session. If you specify an empty list, all contexts for the session are cleared.

Type: Array of ActiveContext objects

Array Members: Minimum number of 0 items. Maximum number of 20 items.

Amazon Lex Runtime Service 645

Amazon Lex V1 Developer Guide

Required: No

inputText

The text that the user entered (Amazon Lex interprets this text).

When you are using the AWS CLI, you can't pass a URL in the --input-text parameter. Pass
the URL using the --cli-input-json parameter instead.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: Yes

requestAttributes

Request-specific information passed between Amazon Lex and a client application.

The namespace x-amz-lex: is reserved for special attributes. Don't create any request
attributes with the prefix x-amz-lex:.

For more information, see Setting Request Attributes.

Type: String to string map

Required: No

sessionAttributes

Application-specific information passed between Amazon Lex and a client application.

For more information, see Setting Session Attributes.

Type: String to string map

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "activeContexts": [
 {

Amazon Lex Runtime Service 646

https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-request-attribs
https://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-session-attribs

Amazon Lex V1 Developer Guide

 "name": "string",
 "parameters": {
 "string" : "string"
 },
 "timeToLive": {
 "timeToLiveInSeconds": number,
 "turnsToLive": number
 }
 }
],
 "alternativeIntents": [
 {
 "intentName": "string",
 "nluIntentConfidence": {
 "score": number
 },
 "slots": {
 "string" : "string"
 }
 }
],
 "botVersion": "string",
 "dialogState": "string",
 "intentName": "string",
 "message": "string",
 "messageFormat": "string",
 "nluIntentConfidence": {
 "score": number
 },
 "responseCard": {
 "contentType": "string",
 "genericAttachments": [
 {
 "attachmentLinkUrl": "string",
 "buttons": [
 {
 "text": "string",
 "value": "string"
 }
],
 "imageUrl": "string",
 "subTitle": "string",
 "title": "string"
 }

Amazon Lex Runtime Service 647

Amazon Lex V1 Developer Guide

],
 "version": "string"
 },
 "sentimentResponse": {
 "sentimentLabel": "string",
 "sentimentScore": "string"
 },
 "sessionAttributes": {
 "string" : "string"
 },
 "sessionId": "string",
 "slots": {
 "string" : "string"
 },
 "slotToElicit": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

activeContexts

A list of active contexts for the session. A context can be set when an intent is fulfilled or by
calling the PostContent, PostText, or PutSession operation.

You can use a context to control the intents that can follow up an intent, or to modify the
operation of your application.

Type: Array of ActiveContext objects

Array Members: Minimum number of 0 items. Maximum number of 20 items.

alternativeIntents

One to four alternative intents that may be applicable to the user's intent.

Each alternative includes a score that indicates how confident Amazon Lex is that the intent
matches the user's intent. The intents are sorted by the confidence score.

Type: Array of PredictedIntent objects

Amazon Lex Runtime Service 648

Amazon Lex V1 Developer Guide

Array Members: Maximum number of 4 items.

botVersion

The version of the bot that responded to the conversation. You can use this information to help
determine if one version of a bot is performing better than another version.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [0-9]+|\$LATEST

dialogState

Identifies the current state of the user interaction. Amazon Lex returns one of the following
values as dialogState. The client can optionally use this information to customize the user
interface.

• ElicitIntent - Amazon Lex wants to elicit user intent.

For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot
infer the user intent from this utterance, it will return this dialogState.

• ConfirmIntent - Amazon Lex is expecting a "yes" or "no" response.

For example, Amazon Lex wants user confirmation before fulfilling an intent.

Instead of a simple "yes" or "no," a user might respond with additional information. For
example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can
process such additional information (in these examples, update the crust type slot value, or
change intent from OrderPizza to OrderDrink).

• ElicitSlot - Amazon Lex is expecting a slot value for the current intent.

For example, suppose that in the response Amazon Lex sends this message: "What size pizza
would you like?". A user might reply with the slot value (e.g., "medium"). The user might also
provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex
can process such additional information appropriately.

• Fulfilled - Conveys that the Lambda function configured for the intent has successfully
fulfilled the intent.

• ReadyForFulfillment - Conveys that the client has to fulfill the intent.

• Failed - Conveys that the conversation with the user failed.

Amazon Lex Runtime Service 649

Amazon Lex V1 Developer Guide

This can happen for various reasons including that the user did not provide an appropriate
response to prompts from the service (you can configure how many times Amazon Lex can
prompt a user for specific information), or the Lambda function failed to fulfill the intent.

Type: String

Valid Values: ElicitIntent | ConfirmIntent | ElicitSlot | Fulfilled |
ReadyForFulfillment | Failed

intentName

The current user intent that Amazon Lex is aware of.

Type: String

message

The message to convey to the user. The message can come from the bot's configuration or from
a Lambda function.

If the intent is not configured with a Lambda function, or if the Lambda function returned
Delegate as the dialogAction.type its response, Amazon Lex decides on the next course
of action and selects an appropriate message from the bot's configuration based on the current
interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a
clarification prompt message.

When you create an intent you can assign messages to groups. When messages are assigned to
groups Amazon Lex returns one message from each group in the response. The message field is
an escaped JSON string containing the messages. For more information about the structure of
the JSON string returned, see Supported Message Formats.

If the Lambda function returns a message, Amazon Lex passes it to the client in its response.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

messageFormat

The format of the response message. One of the following values:

• PlainText - The message contains plain UTF-8 text.

• CustomPayload - The message is a custom format defined by the Lambda function.

Amazon Lex Runtime Service 650

Amazon Lex V1 Developer Guide

• SSML - The message contains text formatted for voice output.

• Composite - The message contains an escaped JSON object containing one or more
messages from the groups that messages were assigned to when the intent was created.

Type: String

Valid Values: PlainText | CustomPayload | SSML | Composite

nluIntentConfidence

Provides a score that indicates how confident Amazon Lex is that the returned intent is the one
that matches the user's intent. The score is between 0.0 and 1.0. For more information, see
Confidence Scores.

The score is a relative score, not an absolute score. The score may change based on
improvements to Amazon Lex.

Type: IntentConfidence object

responseCard

Represents the options that the user has to respond to the current prompt. Response Card can
come from the bot configuration (in the Amazon Lex console, choose the settings button next
to a slot) or from a code hook (Lambda function).

Type: ResponseCard object

sentimentResponse

The sentiment expressed in and utterance.

When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis,
this field contains the result of the analysis.

Type: SentimentResponse object

sessionAttributes

A map of key-value pairs representing the session-specific context information.

Type: String to string map

sessionId

A unique identifier for the session.

Amazon Lex Runtime Service 651

https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html

Amazon Lex V1 Developer Guide

Type: String

slots

The intent slots that Amazon Lex detected from the user input in the conversation.

Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns
is determined by the valueSelectionStrategy selected when the slot type was created or
updated. If valueSelectionStrategy is set to ORIGINAL_VALUE, the value provided by the
user is returned, if the user value is similar to the slot values. If valueSelectionStrategy
is set to TOP_RESOLUTION Amazon Lex returns the first value in the resolution list or, if there
is no resolution list, null. If you don't specify a valueSelectionStrategy, the default is
ORIGINAL_VALUE.

Type: String to string map

slotToElicit

If the dialogState value is ElicitSlot, returns the name of the slot for which Amazon Lex
is eliciting a value.

Type: String

Errors

BadGatewayException

Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly,
AWS Lambda) failed with an internal service error.

HTTP Status Code: 502

BadRequestException

Request validation failed, there is no usable message in the context, or the bot build failed, is
still in progress, or contains unbuilt changes.

HTTP Status Code: 400

ConflictException

Two clients are using the same AWS account, Amazon Lex bot, and user ID.

HTTP Status Code: 409

Amazon Lex Runtime Service 652

Amazon Lex V1 Developer Guide

DependencyFailedException

One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For
example,

• If Amazon Lex does not have sufficient permissions to call a Lambda function.

• If a Lambda function takes longer than 30 seconds to execute.

• If a fulfillment Lambda function returns a Delegate dialog action without removing any slot
values.

HTTP Status Code: 424

InternalFailureException

Internal service error. Retry the call.

HTTP Status Code: 500

LimitExceededException

Exceeded a limit.

HTTP Status Code: 429

LoopDetectedException

This exception is not used.

HTTP Status Code: 508

NotFoundException

The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

Amazon Lex Runtime Service 653

https://docs.aws.amazon.com/goto/aws-cli/runtime.lex-2016-11-28/PostText
https://docs.aws.amazon.com/goto/DotNetSDKV3/runtime.lex-2016-11-28/PostText
https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/PostText

Amazon Lex V1 Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 654

https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/PostText
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/PostText
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/runtime.lex-2016-11-28/PostText
https://docs.aws.amazon.com/goto/SdkForPHPV3/runtime.lex-2016-11-28/PostText
https://docs.aws.amazon.com/goto/boto3/runtime.lex-2016-11-28/PostText
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/PostText

Amazon Lex V1 Developer Guide

PutSession
Service: Amazon Lex Runtime Service

Creates a new session or modifies an existing session with an Amazon Lex bot. Use this operation
to enable your application to set the state of the bot.

For more information, see Managing Sessions.

Request Syntax

POST /bot/botName/alias/botAlias/user/userId/session HTTP/1.1
Accept: accept
Content-type: application/json

{
 "activeContexts": [
 {
 "name": "string",
 "parameters": {
 "string" : "string"
 },
 "timeToLive": {
 "timeToLiveInSeconds": number,
 "turnsToLive": number
 }
 }
],
 "dialogAction": {
 "fulfillmentState": "string",
 "intentName": "string",
 "message": "string",
 "messageFormat": "string",
 "slots": {
 "string" : "string"
 },
 "slotToElicit": "string",
 "type": "string"
 },
 "recentIntentSummaryView": [
 {
 "checkpointLabel": "string",
 "confirmationStatus": "string",
 "dialogActionType": "string",

Amazon Lex Runtime Service 655

https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html

Amazon Lex V1 Developer Guide

 "fulfillmentState": "string",
 "intentName": "string",
 "slots": {
 "string" : "string"
 },
 "slotToElicit": "string"
 }
],
 "sessionAttributes": {
 "string" : "string"
 }
}

URI Request Parameters

The request uses the following URI parameters.

accept

The message that Amazon Lex returns in the response can be either text or speech based
depending on the value of this field.

• If the value is text/plain; charset=utf-8, Amazon Lex returns text in the response.

• If the value begins with audio/, Amazon Lex returns speech in the response. Amazon Lex
uses Amazon Polly to generate the speech in the configuration that you specify. For example,
if you specify audio/mpeg as the value, Amazon Lex returns speech in the MPEG format.

• If the value is audio/pcm, the speech is returned as audio/pcm in 16-bit, little endian
format.

• The following are the accepted values:

• audio/mpeg

• audio/ogg

• audio/pcm

• audio/* (defaults to mpeg)

• text/plain; charset=utf-8

botAlias

The alias in use for the bot that contains the session data.

Required: Yes

Amazon Lex Runtime Service 656

Amazon Lex V1 Developer Guide

botName

The name of the bot that contains the session data.

Required: Yes

userId

The ID of the client application user. Amazon Lex uses this to identify a user's conversation with
your bot.

Length Constraints: Minimum length of 2. Maximum length of 100.

Pattern: [0-9a-zA-Z._:-]+

Required: Yes

Request Body

The request accepts the following data in JSON format.

activeContexts

A list of contexts active for the request. A context can be activated when a previous intent is
fulfilled, or by including the context in the request,

If you don't specify a list of contexts, Amazon Lex will use the current list of contexts for the
session. If you specify an empty list, all contexts for the session are cleared.

Type: Array of ActiveContext objects

Array Members: Minimum number of 0 items. Maximum number of 20 items.

Required: No

dialogAction

Sets the next action that the bot should take to fulfill the conversation.

Type: DialogAction object

Required: No

Amazon Lex Runtime Service 657

Amazon Lex V1 Developer Guide

recentIntentSummaryView

A summary of the recent intents for the bot. You can use the intent summary view to set a
checkpoint label on an intent and modify attributes of intents. You can also use it to remove or
add intent summary objects to the list.

An intent that you modify or add to the list must make sense for the bot. For example, the
intent name must be valid for the bot. You must provide valid values for:

• intentName

• slot names

• slotToElict

If you send the recentIntentSummaryView parameter in a PutSession request, the
contents of the new summary view replaces the old summary view. For example, if a
GetSession request returns three intents in the summary view and you call PutSession with
one intent in the summary view, the next call to GetSession will only return one intent.

Type: Array of IntentSummary objects

Array Members: Minimum number of 0 items. Maximum number of 3 items.

Required: No

sessionAttributes

Map of key/value pairs representing the session-specific context information. It contains
application information passed between Amazon Lex and a client application.

Type: String to string map

Required: No

Response Syntax

HTTP/1.1 200
Content-Type: contentType
x-amz-lex-intent-name: intentName
x-amz-lex-slots: slots
x-amz-lex-session-attributes: sessionAttributes
x-amz-lex-message: message
x-amz-lex-encoded-message: encodedMessage
x-amz-lex-message-format: messageFormat

Amazon Lex Runtime Service 658

Amazon Lex V1 Developer Guide

x-amz-lex-dialog-state: dialogState
x-amz-lex-slot-to-elicit: slotToElicit
x-amz-lex-session-id: sessionId
x-amz-lex-active-contexts: activeContexts

audioStream

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The response returns the following HTTP headers.

activeContexts

A list of active contexts for the session.

contentType

Content type as specified in the Accept HTTP header in the request.

dialogState

• ConfirmIntent - Amazon Lex is expecting a "yes" or "no" response to confirm the intent
before fulfilling an intent.

• ElicitIntent - Amazon Lex wants to elicit the user's intent.

• ElicitSlot - Amazon Lex is expecting the value of a slot for the current intent.

• Failed - Conveys that the conversation with the user has failed. This can happen for various
reasons, including the user does not provide an appropriate response to prompts from the
service, or if the Lambda function fails to fulfill the intent.

• Fulfilled - Conveys that the Lambda function has sucessfully fulfilled the intent.

• ReadyForFulfillment - Conveys that the client has to fulfill the intent.

Valid Values: ElicitIntent | ConfirmIntent | ElicitSlot | Fulfilled |
ReadyForFulfillment | Failed

encodedMessage

The next message that should be presented to the user.

The encodedMessage field is base-64 encoded. You must decode the field before you can use
the value.

Amazon Lex Runtime Service 659

Amazon Lex V1 Developer Guide

Length Constraints: Minimum length of 1. Maximum length of 1366.

intentName

The name of the current intent.

message

This header has been deprecated.

The next message that should be presented to the user.

You can only use this field in the de-DE, en-AU, en-GB, en-US, es-419, es-ES, es-US, fr-CA,
fr-FR, and it-IT locales. In all other locales, the message field is null. You should use the
encodedMessage field instead.

Length Constraints: Minimum length of 1. Maximum length of 1024.

messageFormat

The format of the response message. One of the following values:

• PlainText - The message contains plain UTF-8 text.

• CustomPayload - The message is a custom format for the client.

• SSML - The message contains text formatted for voice output.

• Composite - The message contains an escaped JSON object containing one or more
messages from the groups that messages were assigned to when the intent was created.

Valid Values: PlainText | CustomPayload | SSML | Composite

sessionAttributes

Map of key/value pairs representing session-specific context information.

sessionId

A unique identifier for the session.

slots

Map of zero or more intent slots Amazon Lex detected from the user input during the
conversation.

Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns
is determined by the valueSelectionStrategy selected when the slot type was created or

Amazon Lex Runtime Service 660

Amazon Lex V1 Developer Guide

updated. If valueSelectionStrategy is set to ORIGINAL_VALUE, the value provided by the
user is returned, if the user value is similar to the slot values. If valueSelectionStrategy
is set to TOP_RESOLUTION Amazon Lex returns the first value in the resolution list or, if there
is no resolution list, null. If you don't specify a valueSelectionStrategy the default is
ORIGINAL_VALUE.

slotToElicit

If the dialogState is ElicitSlot, returns the name of the slot for which Amazon Lex is
eliciting a value.

The response returns the following as the HTTP body.

audioStream

The audio version of the message to convey to the user.

Errors

BadGatewayException

Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly,
AWS Lambda) failed with an internal service error.

HTTP Status Code: 502

BadRequestException

Request validation failed, there is no usable message in the context, or the bot build failed, is
still in progress, or contains unbuilt changes.

HTTP Status Code: 400

ConflictException

Two clients are using the same AWS account, Amazon Lex bot, and user ID.

HTTP Status Code: 409

DependencyFailedException

One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For
example,

Amazon Lex Runtime Service 661

Amazon Lex V1 Developer Guide

• If Amazon Lex does not have sufficient permissions to call a Lambda function.

• If a Lambda function takes longer than 30 seconds to execute.

• If a fulfillment Lambda function returns a Delegate dialog action without removing any slot
values.

HTTP Status Code: 424

InternalFailureException

Internal service error. Retry the call.

HTTP Status Code: 500

LimitExceededException

Exceeded a limit.

HTTP Status Code: 429

NotAcceptableException

The accept header in the request does not have a valid value.

HTTP Status Code: 406

NotFoundException

The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.

HTTP Status Code: 404

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for JavaScript V3

Amazon Lex Runtime Service 662

https://docs.aws.amazon.com/goto/aws-cli/runtime.lex-2016-11-28/PutSession
https://docs.aws.amazon.com/goto/DotNetSDKV3/runtime.lex-2016-11-28/PutSession
https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/PutSession
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/PutSession
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/PutSession
https://docs.aws.amazon.com/goto/SdkForJavaScriptV3/runtime.lex-2016-11-28/PutSession

Amazon Lex V1 Developer Guide

• AWS SDK for PHP V3

• AWS SDK for Python

• AWS SDK for Ruby V3

Data Types

The following data types are supported by Amazon Lex Model Building Service:

• BotAliasMetadata

• BotChannelAssociation

• BotMetadata

• BuiltinIntentMetadata

• BuiltinIntentSlot

• BuiltinSlotTypeMetadata

• CodeHook

• ConversationLogsRequest

• ConversationLogsResponse

• EnumerationValue

• FollowUpPrompt

• FulfillmentActivity

• InputContext

• Intent

• IntentMetadata

• KendraConfiguration

• LogSettingsRequest

• LogSettingsResponse

• Message

• MigrationAlert

• MigrationSummary

• OutputContext

• Prompt

Data Types 663

https://docs.aws.amazon.com/goto/SdkForPHPV3/runtime.lex-2016-11-28/PutSession
https://docs.aws.amazon.com/goto/boto3/runtime.lex-2016-11-28/PutSession
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/PutSession

Amazon Lex V1 Developer Guide

• ResourceReference

• Slot

• SlotDefaultValue

• SlotDefaultValueSpec

• SlotTypeConfiguration

• SlotTypeMetadata

• SlotTypeRegexConfiguration

• Statement

• Tag

• UtteranceData

• UtteranceList

The following data types are supported by Amazon Lex Runtime Service:

• ActiveContext

• ActiveContextTimeToLive

• Button

• DialogAction

• GenericAttachment

• IntentConfidence

• IntentSummary

• PredictedIntent

• ResponseCard

• SentimentResponse

Amazon Lex Model Building Service

The following data types are supported by Amazon Lex Model Building Service:

• BotAliasMetadata

• BotChannelAssociation

• BotMetadata

Amazon Lex Model Building Service 664

Amazon Lex V1 Developer Guide

• BuiltinIntentMetadata

• BuiltinIntentSlot

• BuiltinSlotTypeMetadata

• CodeHook

• ConversationLogsRequest

• ConversationLogsResponse

• EnumerationValue

• FollowUpPrompt

• FulfillmentActivity

• InputContext

• Intent

• IntentMetadata

• KendraConfiguration

• LogSettingsRequest

• LogSettingsResponse

• Message

• MigrationAlert

• MigrationSummary

• OutputContext

• Prompt

• ResourceReference

• Slot

• SlotDefaultValue

• SlotDefaultValueSpec

• SlotTypeConfiguration

• SlotTypeMetadata

• SlotTypeRegexConfiguration

• Statement

• Tag

• UtteranceData

Amazon Lex Model Building Service 665

Amazon Lex V1 Developer Guide

• UtteranceList

Amazon Lex Model Building Service 666

Amazon Lex V1 Developer Guide

BotAliasMetadata
Service: Amazon Lex Model Building Service

Provides information about a bot alias.

Contents

botName

The name of the bot to which the alias points.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: No

botVersion

The version of the Amazon Lex bot to which the alias points.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

checksum

Checksum of the bot alias.

Type: String

Required: No

conversationLogs

Settings that determine how Amazon Lex uses conversation logs for the alias.

Type: ConversationLogsResponse object

Required: No

Amazon Lex Model Building Service 667

Amazon Lex V1 Developer Guide

createdDate

The date that the bot alias was created.

Type: Timestamp

Required: No

description

A description of the bot alias.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

lastUpdatedDate

The date that the bot alias was updated. When you create a resource, the creation date and last
updated date are the same.

Type: Timestamp

Required: No

name

The name of the bot alias.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

Amazon Lex Model Building Service 668

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BotAliasMetadata

Amazon Lex V1 Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 669

https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BotAliasMetadata
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/BotAliasMetadata
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/BotAliasMetadata

Amazon Lex V1 Developer Guide

BotChannelAssociation
Service: Amazon Lex Model Building Service

Represents an association between an Amazon Lex bot and an external messaging platform.

Contents

botAlias

An alias pointing to the specific version of the Amazon Lex bot to which this association is being
made.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: No

botConfiguration

Provides information necessary to communicate with the messaging platform.

Type: String to string map

Map Entries: Maximum number of 10 items.

Required: No

botName

The name of the Amazon Lex bot to which this association is being made.

Note

Currently, Amazon Lex supports associations with Facebook and Slack, and Twilio.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Amazon Lex Model Building Service 670

Amazon Lex V1 Developer Guide

Required: No

createdDate

The date that the association between the Amazon Lex bot and the channel was created.

Type: Timestamp

Required: No

description

A text description of the association you are creating.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

failureReason

If status is FAILED, Amazon Lex provides the reason that it failed to create the association.

Type: String

Required: No

name

The name of the association between the bot and the channel.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: No

status

The status of the bot channel.

• CREATED - The channel has been created and is ready for use.

• IN_PROGRESS - Channel creation is in progress.

Amazon Lex Model Building Service 671

Amazon Lex V1 Developer Guide

• FAILED - There was an error creating the channel. For information about the reason for the
failure, see the failureReason field.

Type: String

Valid Values: IN_PROGRESS | CREATED | FAILED

Required: No

type

Specifies the type of association by indicating the type of channel being established between
the Amazon Lex bot and the external messaging platform.

Type: String

Valid Values: Facebook | Slack | Twilio-Sms | Kik

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 672

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/BotChannelAssociation
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/BotChannelAssociation

Amazon Lex V1 Developer Guide

BotMetadata
Service: Amazon Lex Model Building Service

Provides information about a bot. .

Contents

createdDate

The date that the bot was created.

Type: Timestamp

Required: No

description

A description of the bot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

lastUpdatedDate

The date that the bot was updated. When you create a bot, the creation date and last updated
date are the same.

Type: Timestamp

Required: No

name

The name of the bot.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: No

Amazon Lex Model Building Service 673

Amazon Lex V1 Developer Guide

status

The status of the bot.

Type: String

Valid Values: BUILDING | READY | READY_BASIC_TESTING | FAILED | NOT_BUILT

Required: No

version

The version of the bot. For a new bot, the version is always $LATEST.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 674

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BotMetadata
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BotMetadata
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/BotMetadata
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/BotMetadata

Amazon Lex V1 Developer Guide

BuiltinIntentMetadata
Service: Amazon Lex Model Building Service

Provides metadata for a built-in intent.

Contents

signature

A unique identifier for the built-in intent. To find the signature for an intent, see Standard Built-
in Intents in the Alexa Skills Kit.

Type: String

Required: No

supportedLocales

A list of identifiers for the locales that the intent supports.

Type: Array of strings

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 675

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/standard-intents
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BuiltinIntentMetadata
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BuiltinIntentMetadata
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/BuiltinIntentMetadata
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/BuiltinIntentMetadata

Amazon Lex V1 Developer Guide

BuiltinIntentSlot
Service: Amazon Lex Model Building Service

Provides information about a slot used in a built-in intent.

Contents

name

A list of the slots defined for the intent.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 676

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BuiltinIntentSlot
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BuiltinIntentSlot
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/BuiltinIntentSlot
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/BuiltinIntentSlot

Amazon Lex V1 Developer Guide

BuiltinSlotTypeMetadata
Service: Amazon Lex Model Building Service

Provides information about a built in slot type.

Contents

signature

A unique identifier for the built-in slot type. To find the signature for a slot type, see Slot Type
Reference in the Alexa Skills Kit.

Type: String

Required: No

supportedLocales

A list of target locales for the slot.

Type: Array of strings

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 677

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/built-in-intent-ref/slot-type-reference
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/BuiltinSlotTypeMetadata
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/BuiltinSlotTypeMetadata
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/BuiltinSlotTypeMetadata
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/BuiltinSlotTypeMetadata

Amazon Lex V1 Developer Guide

CodeHook
Service: Amazon Lex Model Building Service

Specifies a Lambda function that verifies requests to a bot or fulfills the user's request to a bot..

Contents

messageVersion

The version of the request-response that you want Amazon Lex to use to invoke your Lambda
function. For more information, see Using Lambda Functions.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 5.

Required: Yes

uri

The Amazon Resource Name (ARN) of the Lambda function.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-zA-Z-]*:lambda:[a-z]+-[a-z]+(-[a-z]+)*-[0-9]:[0-9]
{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-
[0-9a-f]{4}-[0-9a-f]{12})?(:[a-zA-Z0-9-_]+)?

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 678

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/CodeHook
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/CodeHook
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/CodeHook
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/CodeHook

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 679

Amazon Lex V1 Developer Guide

ConversationLogsRequest
Service: Amazon Lex Model Building Service

Provides the settings needed for conversation logs.

Contents

iamRoleArn

The Amazon Resource Name (ARN) of an IAM role with permission to write to your CloudWatch
Logs for text logs and your S3 bucket for audio logs. If audio encryption is enabled, this role
also provides access permission for the AWS KMS key used for encrypting audio logs. For more
information, see Creating an IAM Role and Policy for Conversation Logs.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:iam::[\d]{12}:role/.+$

Required: Yes

logSettings

The settings for your conversation logs. You can log the conversation text, conversation audio,
or both.

Type: Array of LogSettingsRequest objects

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 680

https://docs.aws.amazon.com/lex/latest/dg/conversation-logs-role-and-policy.html
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/ConversationLogsRequest
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/ConversationLogsRequest
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/ConversationLogsRequest
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/ConversationLogsRequest

Amazon Lex V1 Developer Guide

ConversationLogsResponse
Service: Amazon Lex Model Building Service

Contains information about conversation log settings.

Contents

iamRoleArn

The Amazon Resource Name (ARN) of the IAM role used to write your logs to CloudWatch Logs
or an S3 bucket.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:iam::[\d]{12}:role/.+$

Required: No

logSettings

The settings for your conversation logs. You can log text, audio, or both.

Type: Array of LogSettingsResponse objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 681

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/ConversationLogsResponse
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/ConversationLogsResponse
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/ConversationLogsResponse
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/ConversationLogsResponse

Amazon Lex V1 Developer Guide

EnumerationValue
Service: Amazon Lex Model Building Service

Each slot type can have a set of values. Each enumeration value represents a value the slot type
can take.

For example, a pizza ordering bot could have a slot type that specifies the type of crust that the
pizza should have. The slot type could include the values

• thick

• thin

• stuffed

Contents

value

The value of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 140.

Required: Yes

synonyms

Additional values related to the slot type value.

Type: Array of strings

Length Constraints: Minimum length of 1. Maximum length of 140.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

Amazon Lex Model Building Service 682

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/EnumerationValue

Amazon Lex V1 Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 683

https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/EnumerationValue
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/EnumerationValue
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/EnumerationValue

Amazon Lex V1 Developer Guide

FollowUpPrompt
Service: Amazon Lex Model Building Service

A prompt for additional activity after an intent is fulfilled. For example, after the OrderPizza
intent is fulfilled, you might prompt the user to find out whether the user wants to order drinks.

Contents

prompt

Prompts for information from the user.

Type: Prompt object

Required: Yes

rejectionStatement

If the user answers "no" to the question defined in the prompt field, Amazon Lex responds with
this statement to acknowledge that the intent was canceled.

Type: Statement object

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 684

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/FollowUpPrompt
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/FollowUpPrompt
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/FollowUpPrompt
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/FollowUpPrompt

Amazon Lex V1 Developer Guide

FulfillmentActivity
Service: Amazon Lex Model Building Service

Describes how the intent is fulfilled after the user provides all of the information required for
the intent. You can provide a Lambda function to process the intent, or you can return the intent
information to the client application. We recommend that you use a Lambda function so that the
relevant logic lives in the Cloud and limit the client-side code primarily to presentation. If you need
to update the logic, you only update the Lambda function; you don't need to upgrade your client
application.

Consider the following examples:

• In a pizza ordering application, after the user provides all of the information for placing an order,
you use a Lambda function to place an order with a pizzeria.

• In a gaming application, when a user says "pick up a rock," this information must go back to the
client application so that it can perform the operation and update the graphics. In this case, you
want Amazon Lex to return the intent data to the client.

Contents

type

How the intent should be fulfilled, either by running a Lambda function or by returning the slot
data to the client application.

Type: String

Valid Values: ReturnIntent | CodeHook

Required: Yes

codeHook

A description of the Lambda function that is run to fulfill the intent.

Type: CodeHook object

Required: No

Amazon Lex Model Building Service 685

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 686

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/FulfillmentActivity
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/FulfillmentActivity
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/FulfillmentActivity
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/FulfillmentActivity

Amazon Lex V1 Developer Guide

InputContext
Service: Amazon Lex Model Building Service

The name of a context that must be active for an intent to be selected by Amazon Lex.

Contents

name

The name of the context.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 687

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/InputContext
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/InputContext
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/InputContext
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/InputContext

Amazon Lex V1 Developer Guide

Intent
Service: Amazon Lex Model Building Service

Identifies the specific version of an intent.

Contents

intentName

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

intentVersion

The version of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 688

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Intent
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Intent
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/Intent
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/Intent

Amazon Lex V1 Developer Guide

IntentMetadata
Service: Amazon Lex Model Building Service

Provides information about an intent.

Contents

createdDate

The date that the intent was created.

Type: Timestamp

Required: No

description

A description of the intent.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

lastUpdatedDate

The date that the intent was updated. When you create an intent, the creation date and last
updated date are the same.

Type: Timestamp

Required: No

name

The name of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: No

Amazon Lex Model Building Service 689

Amazon Lex V1 Developer Guide

version

The version of the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 690

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/IntentMetadata
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/IntentMetadata
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/IntentMetadata
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/IntentMetadata

Amazon Lex V1 Developer Guide

KendraConfiguration
Service: Amazon Lex Model Building Service

Provides configuration information for the AMAZON.KendraSearchIntent intent. When you use this
intent, Amazon Lex searches the specified Amazon Kendra index and returns documents from the
index that match the user's utterance. For more information, see AMAZON.KendraSearchIntent.

Contents

kendraIndex

The Amazon Resource Name (ARN) of the Amazon Kendra index that you want the
AMAZON.KendraSearchIntent intent to search. The index must be in the same account and
Region as the Amazon Lex bot. If the Amazon Kendra index does not exist, you get an exception
when you call the PutIntent operation.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws:kendra:[a-z]+-[a-z]+-[0-9]:[0-9]{12}:index\/[a-zA-Z0-9][a-
zA-Z0-9_-]*

Required: Yes

role

The Amazon Resource Name (ARN) of an IAM role that has permission to search the Amazon
Kendra index. The role must be in the same account and Region as the Amazon Lex bot. If the
role does not exist, you get an exception when you call the PutIntent operation.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws:iam::[0-9]{12}:role/.*

Required: Yes

queryFilterString

A query filter that Amazon Lex sends to Amazon Kendra to filter the response from the query.
The filter is in the format defined by Amazon Kendra. For more information, see Filtering
queries.

Amazon Lex Model Building Service 691

http://docs.aws.amazon.com/lex/latest/dg/built-in-intent-kendra-search.html
http://docs.aws.amazon.com/kendra/latest/dg/filtering.html
http://docs.aws.amazon.com/kendra/latest/dg/filtering.html

Amazon Lex V1 Developer Guide

You can override this filter string with a new filter string at runtime.

Type: String

Length Constraints: Minimum length of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 692

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/KendraConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/KendraConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/KendraConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/KendraConfiguration

Amazon Lex V1 Developer Guide

LogSettingsRequest
Service: Amazon Lex Model Building Service

Settings used to configure delivery mode and destination for conversation logs.

Contents

destination

Where the logs will be delivered. Text logs are delivered to a CloudWatch Logs log group. Audio
logs are delivered to an S3 bucket.

Type: String

Valid Values: CLOUDWATCH_LOGS | S3

Required: Yes

logType

The type of logging to enable. Text logs are delivered to a CloudWatch Logs log group. Audio
logs are delivered to an S3 bucket.

Type: String

Valid Values: AUDIO | TEXT

Required: Yes

resourceArn

The Amazon Resource Name (ARN) of the CloudWatch Logs log group or S3 bucket where the
logs should be delivered.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:(?:logs:[\w\-]+:[\d]{12}:log-group:[\.\-_/#A-Za-z0-9]
{1,512}(?::*)?|s3:::[a-z0-9][\.\-a-z0-9]{1,61}[a-z0-9])$

Required: Yes

Amazon Lex Model Building Service 693

Amazon Lex V1 Developer Guide

kmsKeyArn

The Amazon Resource Name (ARN) of the AWS KMS customer managed key for encrypting
audio logs delivered to an S3 bucket. The key does not apply to CloudWatch Logs and is
optional for S3 buckets.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:kms:[\w\-]+:[\d]{12}:(?:key\/[\w\-]+|alias\/[a-zA-
Z0-9:\/_\-]{1,256})$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 694

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/LogSettingsRequest
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/LogSettingsRequest
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/LogSettingsRequest
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/LogSettingsRequest

Amazon Lex V1 Developer Guide

LogSettingsResponse
Service: Amazon Lex Model Building Service

The settings for conversation logs.

Contents

destination

The destination where logs are delivered.

Type: String

Valid Values: CLOUDWATCH_LOGS | S3

Required: No

kmsKeyArn

The Amazon Resource Name (ARN) of the key used to encrypt audio logs in an S3 bucket.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:kms:[\w\-]+:[\d]{12}:(?:key\/[\w\-]+|alias\/[a-zA-
Z0-9:\/_\-]{1,256})$

Required: No

logType

The type of logging that is enabled.

Type: String

Valid Values: AUDIO | TEXT

Required: No

resourceArn

The Amazon Resource Name (ARN) of the CloudWatch Logs log group or S3 bucket where the
logs are delivered.

Amazon Lex Model Building Service 695

Amazon Lex V1 Developer Guide

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:(?:logs:[\w\-]+:[\d]{12}:log-group:[\.\-_/#A-Za-z0-9]
{1,512}(?::*)?|s3:::[a-z0-9][\.\-a-z0-9]{1,61}[a-z0-9])$

Required: No

resourcePrefix

The resource prefix is the first part of the S3 object key within the S3 bucket that you specified
to contain audio logs. For CloudWatch Logs it is the prefix of the log stream name within the
log group that you specified.

Type: String

Length Constraints: Maximum length of 1024.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 696

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/LogSettingsResponse
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/LogSettingsResponse
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/LogSettingsResponse
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/LogSettingsResponse

Amazon Lex V1 Developer Guide

Message
Service: Amazon Lex Model Building Service

The message object that provides the message text and its type.

Contents

content

The text of the message.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1000.

Required: Yes

contentType

The content type of the message string.

Type: String

Valid Values: PlainText | SSML | CustomPayload

Required: Yes

groupNumber

Identifies the message group that the message belongs to. When a group is assigned to a
message, Amazon Lex returns one message from each group in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 5.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

Amazon Lex Model Building Service 697

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Message

Amazon Lex V1 Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 698

https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Message
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/Message
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/Message

Amazon Lex V1 Developer Guide

MigrationAlert
Service: Amazon Lex Model Building Service

Provides information about alerts and warnings that Amazon Lex sends during a migration. The
alerts include information about how to resolve the issue.

Contents

details

Additional details about the alert.

Type: Array of strings

Required: No

message

A message that describes why the alert was issued.

Type: String

Required: No

referenceURLs

A link to the Amazon Lex documentation that describes how to resolve the alert.

Type: Array of strings

Required: No

type

The type of alert. There are two kinds of alerts:

• ERROR - There was an issue with the migration that can't be resolved. The migration stops.

• WARN - There was an issue with the migration that requires manual changes to the new
Amazon Lex V2 bot. The migration continues.

Type: String

Valid Values: ERROR | WARN

Required: No

Amazon Lex Model Building Service 699

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 700

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/MigrationAlert
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/MigrationAlert
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/MigrationAlert
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/MigrationAlert

Amazon Lex V1 Developer Guide

MigrationSummary
Service: Amazon Lex Model Building Service

Provides information about migrating a bot from Amazon Lex V1 to Amazon Lex V2.

Contents

migrationId

The unique identifier that Amazon Lex assigned to the migration.

Type: String

Length Constraints: Fixed length of 10.

Pattern: ^[0-9a-zA-Z]+$

Required: No

migrationStatus

The status of the operation. When the status is COMPLETE the bot is available in Amazon Lex
V2. There may be alerts and warnings that need to be resolved to complete the migration.

Type: String

Valid Values: IN_PROGRESS | COMPLETED | FAILED

Required: No

migrationStrategy

The strategy used to conduct the migration.

Type: String

Valid Values: CREATE_NEW | UPDATE_EXISTING

Required: No

migrationTimestamp

The date and time that the migration started.

Type: Timestamp

Amazon Lex Model Building Service 701

Amazon Lex V1 Developer Guide

Required: No

v1BotLocale

The locale of the Amazon Lex V1 bot that is the source of the migration.

Type: String

Valid Values: de-DE | en-AU | en-GB | en-IN | en-US | es-419 | es-ES | es-US
| fr-FR | fr-CA | it-IT | ja-JP | ko-KR

Required: No

v1BotName

The name of the Amazon Lex V1 bot that is the source of the migration.

Type: String

Length Constraints: Minimum length of 2. Maximum length of 50.

Pattern: ^([A-Za-z]_?)+$

Required: No

v1BotVersion

The version of the Amazon Lex V1 bot that is the source of the migration.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

v2BotId

The unique identifier of the Amazon Lex V2 that is the destination of the migration.

Type: String

Length Constraints: Fixed length of 10.

Pattern: ^[0-9a-zA-Z]+$

Amazon Lex Model Building Service 702

Amazon Lex V1 Developer Guide

Required: No

v2BotRole

The IAM role that Amazon Lex uses to run the Amazon Lex V2 bot.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:[\w\-]+:iam::[\d]{12}:role/.+$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 703

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/MigrationSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/MigrationSummary
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/MigrationSummary
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/MigrationSummary

Amazon Lex V1 Developer Guide

OutputContext
Service: Amazon Lex Model Building Service

The specification of an output context that is set when an intent is fulfilled.

Contents

name

The name of the context.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

timeToLiveInSeconds

The number of seconds that the context should be active after it is first sent in a PostContent
or PostText response. You can set the value between 5 and 86,400 seconds (24 hours).

Type: Integer

Valid Range: Minimum value of 5. Maximum value of 86400.

Required: Yes

turnsToLive

The number of conversation turns that the context should be active. A conversation turn is one
PostContent or PostText request and the corresponding response from Amazon Lex.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 20.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

Amazon Lex Model Building Service 704

Amazon Lex V1 Developer Guide

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 705

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/OutputContext
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/OutputContext
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/OutputContext
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/OutputContext

Amazon Lex V1 Developer Guide

Prompt
Service: Amazon Lex Model Building Service

Obtains information from the user. To define a prompt, provide one or more messages and specify
the number of attempts to get information from the user. If you provide more than one message,
Amazon Lex chooses one of the messages to use to prompt the user. For more information, see
Amazon Lex: How It Works.

Contents

maxAttempts

The number of times to prompt the user for information.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 5.

Required: Yes

messages

An array of objects, each of which provides a message string and its type. You can specify the
message string in plain text or in Speech Synthesis Markup Language (SSML).

Type: Array of Message objects

Array Members: Minimum number of 1 item. Maximum number of 15 items.

Required: Yes

responseCard

A response card. Amazon Lex uses this prompt at runtime, in the PostText API response. It
substitutes session attributes and slot values for placeholders in the response card. For more
information, see Using a Response Card.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50000.

Required: No

Amazon Lex Model Building Service 706

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 707

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Prompt
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Prompt
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/Prompt
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/Prompt

Amazon Lex V1 Developer Guide

ResourceReference
Service: Amazon Lex Model Building Service

Describes the resource that refers to the resource that you are attempting to delete. This object is
returned as part of the ResourceInUseException exception.

Contents

name

The name of the resource that is using the resource that you are trying to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: [a-zA-Z_]+

Required: No

version

The version of the resource that is using the resource that you are trying to delete.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 708

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/ResourceReference
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/ResourceReference
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/ResourceReference
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/ResourceReference

Amazon Lex V1 Developer Guide

Amazon Lex Model Building Service 709

Amazon Lex V1 Developer Guide

Slot
Service: Amazon Lex Model Building Service

Identifies the version of a specific slot.

Contents

name

The name of the slot.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z](-|_|.)?)+$

Required: Yes

slotConstraint

Specifies whether the slot is required or optional.

Type: String

Valid Values: Required | Optional

Required: Yes

defaultValueSpec

A list of default values for the slot. Default values are used when Amazon Lex hasn't determined
a value for a slot. You can specify default values from context variables, session attributes, and
defined values.

Type: SlotDefaultValueSpec object

Required: No

description

A description of the slot.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Amazon Lex Model Building Service 710

Amazon Lex V1 Developer Guide

Required: No

obfuscationSetting

Determines whether a slot is obfuscated in conversation logs and stored utterances. When
you obfuscate a slot, the value is replaced by the slot name in curly braces ({}). For example,
if the slot name is "full_name", obfuscated values are replaced with "{full_name}". For more
information, see Slot Obfuscation .

Type: String

Valid Values: NONE | DEFAULT_OBFUSCATION

Required: No

priority

Directs Amazon Lex the order in which to elicit this slot value from the user. For example, if the
intent has two slots with priorities 1 and 2, AWS Amazon Lex first elicits a value for the slot with
priority 1.

If multiple slots share the same priority, the order in which Amazon Lex elicits values is
arbitrary.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

responseCard

A set of possible responses for the slot type used by text-based clients. A user chooses an
option from the response card, instead of using text to reply.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50000.

Required: No

sampleUtterances

If you know a specific pattern with which users might respond to an Amazon Lex request for a
slot value, you can provide those utterances to improve accuracy. This is optional. In most cases,
Amazon Lex is capable of understanding user utterances.

Amazon Lex Model Building Service 711

https://docs.aws.amazon.com/lex/latest/dg/how-obfuscate.html

Amazon Lex V1 Developer Guide

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Length Constraints: Minimum length of 1. Maximum length of 200.

Required: No

slotType

The type of the slot, either a custom slot type that you defined or one of the built-in slot types.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^((AMAZON\.)_?|[A-Za-z]_?)+

Required: No

slotTypeVersion

The version of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

valueElicitationPrompt

The prompt that Amazon Lex uses to elicit the slot value from the user.

Type: Prompt object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

Amazon Lex Model Building Service 712

Amazon Lex V1 Developer Guide

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 713

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Slot
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Slot
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/Slot
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/Slot

Amazon Lex V1 Developer Guide

SlotDefaultValue
Service: Amazon Lex Model Building Service

A default value for a slot.

Contents

defaultValue

The default value for the slot. You can specify one of the following:

• #context-name.slot-name - The slot value "slot-name" in the context "context-name."

• {attribute} - The slot value of the session attribute "attribute."

• 'value' - The discrete value "value."

Type: String

Length Constraints: Minimum length of 1. Maximum length of 202.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 714

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/SlotDefaultValue
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/SlotDefaultValue
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/SlotDefaultValue
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/SlotDefaultValue

Amazon Lex V1 Developer Guide

SlotDefaultValueSpec
Service: Amazon Lex Model Building Service

Contains the default values for a slot. Default values are used when Amazon Lex hasn't determined
a value for a slot.

Contents

defaultValueList

The default values for a slot. You can specify more than one default. For example, you can
specify a default value to use from a matching context variable, a session attribute, or a fixed
value.

The default value chosen is selected based on the order that you specify them in the list. For
example, if you specify a context variable and a fixed value in that order, Amazon Lex uses the
context variable if it is available, else it uses the fixed value.

Type: Array of SlotDefaultValue objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 715

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/SlotDefaultValueSpec
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/SlotDefaultValueSpec
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/SlotDefaultValueSpec
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/SlotDefaultValueSpec

Amazon Lex V1 Developer Guide

SlotTypeConfiguration
Service: Amazon Lex Model Building Service

Provides configuration information for a slot type.

Contents

regexConfiguration

A regular expression used to validate the value of a slot.

Type: SlotTypeRegexConfiguration object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 716

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/SlotTypeConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/SlotTypeConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/SlotTypeConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/SlotTypeConfiguration

Amazon Lex V1 Developer Guide

SlotTypeMetadata
Service: Amazon Lex Model Building Service

Provides information about a slot type..

Contents

createdDate

The date that the slot type was created.

Type: Timestamp

Required: No

description

A description of the slot type.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Required: No

lastUpdatedDate

The date that the slot type was updated. When you create a resource, the creation date and last
updated date are the same.

Type: Timestamp

Required: No

name

The name of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: No

Amazon Lex Model Building Service 717

Amazon Lex V1 Developer Guide

version

The version of the slot type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 718

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/SlotTypeMetadata
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/SlotTypeMetadata
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/SlotTypeMetadata
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/SlotTypeMetadata

Amazon Lex V1 Developer Guide

SlotTypeRegexConfiguration
Service: Amazon Lex Model Building Service

Provides a regular expression used to validate the value of a slot.

Contents

pattern

A regular expression used to validate the value of a slot.

Use a standard regular expression. Amazon Lex supports the following characters in the regular
expression:

• A-Z, a-z

• 0-9

• Unicode characters ("\ u<Unicode>")

Represent Unicode characters with four digits, for example "\u0041" or "\u005A".

The following regular expression operators are not supported:

• Infinite repeaters: *, +, or {x,} with no upper bound.

• Wild card (.)

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 719

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/SlotTypeRegexConfiguration
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/SlotTypeRegexConfiguration
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/SlotTypeRegexConfiguration
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/SlotTypeRegexConfiguration

Amazon Lex V1 Developer Guide

Statement
Service: Amazon Lex Model Building Service

A collection of messages that convey information to the user. At runtime, Amazon Lex selects the
message to convey.

Contents

messages

A collection of message objects.

Type: Array of Message objects

Array Members: Minimum number of 1 item. Maximum number of 15 items.

Required: Yes

responseCard

At runtime, if the client is using the PostText API, Amazon Lex includes the response card in
the response. It substitutes all of the session attributes and slot values for placeholders in the
response card.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 50000.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 720

http://docs.aws.amazon.com/lex/latest/dg/API_runtime_PostText.html
https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Statement
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Statement
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/Statement
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/Statement

Amazon Lex V1 Developer Guide

Tag
Service: Amazon Lex Model Building Service

A list of key/value pairs that identify a bot, bot alias, or bot channel. Tag keys and values can
consist of Unicode letters, digits, white space, and any of the following symbols: _ . : / = + - @.

Contents

key

The key for the tag. Keys are not case-sensitive and must be unique.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: Yes

value

The value associated with a key. The value may be an empty string but it can't be null.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 721

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/Tag
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/Tag
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/Tag
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/Tag

Amazon Lex V1 Developer Guide

UtteranceData
Service: Amazon Lex Model Building Service

Provides information about a single utterance that was made to your bot.

Contents

count

The number of times that the utterance was processed.

Type: Integer

Required: No

distinctUsers

The total number of individuals that used the utterance.

Type: Integer

Required: No

firstUtteredDate

The date that the utterance was first recorded.

Type: Timestamp

Required: No

lastUtteredDate

The date that the utterance was last recorded.

Type: Timestamp

Required: No

utteranceString

The text that was entered by the user or the text representation of an audio clip.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2000.

Amazon Lex Model Building Service 722

Amazon Lex V1 Developer Guide

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Model Building Service 723

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/UtteranceData
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/UtteranceData
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/UtteranceData
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/UtteranceData

Amazon Lex V1 Developer Guide

UtteranceList
Service: Amazon Lex Model Building Service

Provides a list of utterances that have been made to a specific version of your bot. The list contains
a maximum of 100 utterances.

Contents

botVersion

The version of the bot that processed the list.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: \$LATEST|[0-9]+

Required: No

utterances

One or more UtteranceData objects that contain information about the utterances that have
been made to a bot. The maximum number of object is 100.

Type: Array of UtteranceData objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service

The following data types are supported by Amazon Lex Runtime Service:

Amazon Lex Runtime Service 724

https://docs.aws.amazon.com/goto/SdkForCpp/lex-models-2017-04-19/UtteranceList
https://docs.aws.amazon.com/goto/SdkForGoV1/lex-models-2017-04-19/UtteranceList
https://docs.aws.amazon.com/goto/SdkForJavaV2/lex-models-2017-04-19/UtteranceList
https://docs.aws.amazon.com/goto/SdkForRubyV3/lex-models-2017-04-19/UtteranceList

Amazon Lex V1 Developer Guide

• ActiveContext

• ActiveContextTimeToLive

• Button

• DialogAction

• GenericAttachment

• IntentConfidence

• IntentSummary

• PredictedIntent

• ResponseCard

• SentimentResponse

Amazon Lex Runtime Service 725

Amazon Lex V1 Developer Guide

ActiveContext
Service: Amazon Lex Runtime Service

A context is a variable that contains information about the current state of the conversation
between a user and Amazon Lex. Context can be set automatically by Amazon Lex when an intent
is fulfilled, or it can be set at runtime using the PutContent, PutText, or PutSession operation.

Contents

name

The name of the context.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 100.

Pattern: ^([A-Za-z]_?)+$

Required: Yes

parameters

State variables for the current context. You can use these values as default values for slots in
subsequent events.

Type: String to string map

Map Entries: Minimum number of 0 items. Maximum number of 10 items.

Key Length Constraints: Minimum length of 1. Maximum length of 100.

Value Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: Yes

timeToLive

The length of time or number of turns that a context remains active.

Type: ActiveContextTimeToLive object

Required: Yes

Amazon Lex Runtime Service 726

Amazon Lex V1 Developer Guide

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 727

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/ActiveContext
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/ActiveContext
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/ActiveContext
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/ActiveContext

Amazon Lex V1 Developer Guide

ActiveContextTimeToLive
Service: Amazon Lex Runtime Service

The length of time or number of turns that a context remains active.

Contents

timeToLiveInSeconds

The number of seconds that the context should be active after it is first sent in a PostContent
or PostText response. You can set the value between 5 and 86,400 seconds (24 hours).

Type: Integer

Valid Range: Minimum value of 5. Maximum value of 86400.

Required: No

turnsToLive

The number of conversation turns that the context should be active. A conversation turn is one
PostContent or PostText request and the corresponding response from Amazon Lex.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 20.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 728

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/ActiveContextTimeToLive
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/ActiveContextTimeToLive
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/ActiveContextTimeToLive
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/ActiveContextTimeToLive

Amazon Lex V1 Developer Guide

Button
Service: Amazon Lex Runtime Service

Represents an option to be shown on the client platform (Facebook, Slack, etc.)

Contents

text

Text that is visible to the user on the button.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 15.

Required: Yes

value

The value sent to Amazon Lex when a user chooses the button. For example, consider button
text "NYC." When the user chooses the button, the value sent can be "New York City."

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1000.

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 729

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/Button
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/Button
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/Button
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/Button

Amazon Lex V1 Developer Guide

DialogAction
Service: Amazon Lex Runtime Service

Describes the next action that the bot should take in its interaction with the user and provides
information about the context in which the action takes place. Use the DialogAction data type
to set the interaction to a specific state, or to return the interaction to a previous state.

Contents

type

The next action that the bot should take in its interaction with the user. The possible values are:

• ConfirmIntent - The next action is asking the user if the intent is complete and ready to be
fulfilled. This is a yes/no question such as "Place the order?"

• Close - Indicates that the there will not be a response from the user. For example, the
statement "Your order has been placed" does not require a response.

• Delegate - The next action is determined by Amazon Lex.

• ElicitIntent - The next action is to determine the intent that the user wants to fulfill.

• ElicitSlot - The next action is to elicit a slot value from the user.

Type: String

Valid Values: ElicitIntent | ConfirmIntent | ElicitSlot | Close | Delegate

Required: Yes

fulfillmentState

The fulfillment state of the intent. The possible values are:

• Failed - The Lambda function associated with the intent failed to fulfill the intent.

• Fulfilled - The intent has fulfilled by the Lambda function associated with the intent.

• ReadyForFulfillment - All of the information necessary for the intent is present and the
intent ready to be fulfilled by the client application.

Type: String

Valid Values: Fulfilled | Failed | ReadyForFulfillment

Required: No

Amazon Lex Runtime Service 730

Amazon Lex V1 Developer Guide

intentName

The name of the intent.

Type: String

Required: No

message

The message that should be shown to the user. If you don't specify a message, Amazon Lex will
use the message configured for the intent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

messageFormat

• PlainText - The message contains plain UTF-8 text.

• CustomPayload - The message is a custom format for the client.

• SSML - The message contains text formatted for voice output.

• Composite - The message contains an escaped JSON object containing one or more
messages. For more information, see Message Groups.

Type: String

Valid Values: PlainText | CustomPayload | SSML | Composite

Required: No

slots

Map of the slots that have been gathered and their values.

Type: String to string map

Required: No

slotToElicit

The name of the slot that should be elicited from the user.

Amazon Lex Runtime Service 731

https://docs.aws.amazon.com/lex/latest/dg/howitworks-manage-prompts.html

Amazon Lex V1 Developer Guide

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 732

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/DialogAction
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/DialogAction
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/DialogAction
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/DialogAction

Amazon Lex V1 Developer Guide

GenericAttachment
Service: Amazon Lex Runtime Service

Represents an option rendered to the user when a prompt is shown. It could be an image, a button,
a link, or text.

Contents

attachmentLinkUrl

The URL of an attachment to the response card.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

buttons

The list of options to show to the user.

Type: Array of Button objects

Array Members: Minimum number of 0 items. Maximum number of 5 items.

Required: No

imageUrl

The URL of an image that is displayed to the user.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: No

subTitle

The subtitle shown below the title.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 80.

Amazon Lex Runtime Service 733

Amazon Lex V1 Developer Guide

Required: No

title

The title of the option.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 80.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 734

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/GenericAttachment
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/GenericAttachment
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/GenericAttachment
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/GenericAttachment

Amazon Lex V1 Developer Guide

IntentConfidence
Service: Amazon Lex Runtime Service

Provides a score that indicates the confidence that Amazon Lex has that an intent is the one that
satisfies the user's intent.

Contents

score

A score that indicates how confident Amazon Lex is that an intent satisfies the user's intent.
Ranges between 0.00 and 1.00. Higher scores indicate higher confidence.

Type: Double

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 735

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/IntentConfidence
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/IntentConfidence
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/IntentConfidence
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/IntentConfidence

Amazon Lex V1 Developer Guide

IntentSummary
Service: Amazon Lex Runtime Service

Provides information about the state of an intent. You can use this information to get the current
state of an intent so that you can process the intent, or so that you can return the intent to its
previous state.

Contents

dialogActionType

The next action that the bot should take in its interaction with the user. The possible values are:

• ConfirmIntent - The next action is asking the user if the intent is complete and ready to be
fulfilled. This is a yes/no question such as "Place the order?"

• Close - Indicates that the there will not be a response from the user. For example, the
statement "Your order has been placed" does not require a response.

• ElicitIntent - The next action is to determine the intent that the user wants to fulfill.

• ElicitSlot - The next action is to elicit a slot value from the user.

Type: String

Valid Values: ElicitIntent | ConfirmIntent | ElicitSlot | Close | Delegate

Required: Yes

checkpointLabel

A user-defined label that identifies a particular intent. You can use this label to return to a
previous intent.

Use the checkpointLabelFilter parameter of the GetSessionRequest operation to filter
the intents returned by the operation to those with only the specified label.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9-]+

Required: No

Amazon Lex Runtime Service 736

Amazon Lex V1 Developer Guide

confirmationStatus

The status of the intent after the user responds to the confirmation prompt. If the user confirms
the intent, Amazon Lex sets this field to Confirmed. If the user denies the intent, Amazon Lex
sets this value to Denied. The possible values are:

• Confirmed - The user has responded "Yes" to the confirmation prompt, confirming that the
intent is complete and that it is ready to be fulfilled.

• Denied - The user has responded "No" to the confirmation prompt.

• None - The user has never been prompted for confirmation; or, the user was prompted but
did not confirm or deny the prompt.

Type: String

Valid Values: None | Confirmed | Denied

Required: No

fulfillmentState

The fulfillment state of the intent. The possible values are:

• Failed - The Lambda function associated with the intent failed to fulfill the intent.

• Fulfilled - The intent has fulfilled by the Lambda function associated with the intent.

• ReadyForFulfillment - All of the information necessary for the intent is present and the
intent ready to be fulfilled by the client application.

Type: String

Valid Values: Fulfilled | Failed | ReadyForFulfillment

Required: No

intentName

The name of the intent.

Type: String

Required: No

slots

Map of the slots that have been gathered and their values.

Amazon Lex Runtime Service 737

Amazon Lex V1 Developer Guide

Type: String to string map

Required: No

slotToElicit

The next slot to elicit from the user. If there is not slot to elicit, the field is blank.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 738

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/IntentSummary
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/IntentSummary
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/IntentSummary
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/IntentSummary

Amazon Lex V1 Developer Guide

PredictedIntent
Service: Amazon Lex Runtime Service

An intent that Amazon Lex suggests satisfies the user's intent. Includes the name of the intent,
the confidence that Amazon Lex has that the user's intent is satisfied, and the slots defined for the
intent.

Contents

intentName

The name of the intent that Amazon Lex suggests satisfies the user's intent.

Type: String

Required: No

nluIntentConfidence

Indicates how confident Amazon Lex is that an intent satisfies the user's intent.

Type: IntentConfidence object

Required: No

slots

The slot and slot values associated with the predicted intent.

Type: String to string map

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 739

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/PredictedIntent
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/PredictedIntent
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/PredictedIntent
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/PredictedIntent

Amazon Lex V1 Developer Guide

Amazon Lex Runtime Service 740

Amazon Lex V1 Developer Guide

ResponseCard
Service: Amazon Lex Runtime Service

If you configure a response card when creating your bots, Amazon Lex substitutes the session
attributes and slot values that are available, and then returns it. The response card can also come
from a Lambda function (dialogCodeHook and fulfillmentActivity on an intent).

Contents

contentType

The content type of the response.

Type: String

Valid Values: application/vnd.amazonaws.card.generic

Required: No

genericAttachments

An array of attachment objects representing options.

Type: Array of GenericAttachment objects

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Required: No

version

The version of the response card format.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

Amazon Lex Runtime Service 741

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/ResponseCard

Amazon Lex V1 Developer Guide

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 742

https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/ResponseCard
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/ResponseCard
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/ResponseCard

Amazon Lex V1 Developer Guide

SentimentResponse
Service: Amazon Lex Runtime Service

The sentiment expressed in an utterance.

When the bot is configured to send utterances to Amazon Comprehend for sentiment analysis, this
field structure contains the result of the analysis.

Contents

sentimentLabel

The inferred sentiment that Amazon Comprehend has the highest confidence in.

Type: String

Required: No

sentimentScore

The likelihood that the sentiment was correctly inferred.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the
following:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java V2

• AWS SDK for Ruby V3

Amazon Lex Runtime Service 743

https://docs.aws.amazon.com/goto/SdkForCpp/runtime.lex-2016-11-28/SentimentResponse
https://docs.aws.amazon.com/goto/SdkForGoV1/runtime.lex-2016-11-28/SentimentResponse
https://docs.aws.amazon.com/goto/SdkForJavaV2/runtime.lex-2016-11-28/SentimentResponse
https://docs.aws.amazon.com/goto/SdkForRubyV3/runtime.lex-2016-11-28/SentimentResponse

Amazon Lex V1 Developer Guide

Document History for Amazon Lex

• Latest documentation update: September 9, 2021

The following table describes important changes in each release of Amazon Lex. For notification
about updates to this documentation, you can subscribe to an RSS feed.

Change Description Date

New feature Amazon Lex now supports
the Korean (ko-KR) locale.
For more information, see
Languages supported by
Amazon Lex.

September 9, 2021

New feature Amazon Lex now supports
the English (Indian) locale.
For more information, see
Languages supported in
Amazon Lex.

July 15, 2021

New feature Amazon Lex now provides a
tool to migrate a bot to the
Amazon Lex V2 API. For more
information, see Migrating a
bot.

July 13, 2021

New feature Amazon Lex now supports
the Japanese (Japan) locale.
For more information, see
Languages supported by
Amazon Lex.

April 1, 2021

New feature Amazon Lex now supports
the German (German) (de-DE)
and Spanish (Latin American)
(es-419) locales. For more

November 23, 2020

744

https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/migrate.html
https://docs.aws.amazon.com/lex/latest/dg/migrate.html
https://docs.aws.amazon.com/lex/latest/dg/migrate.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html

Amazon Lex V1 Developer Guide

information, see Languages
 supported by Amazon Lex.

New feature Amazon Lex now supports
using contexts to manage
activating intents. For more
information, see Setting
Intent Context.

November 19, 2020

New feature Amazon Lex now supports
the French (fr-FR), French
Canadian (fr-CA), Italian
(it-IT) and Spanish (es-ES)
locales. For a complete list
of supported locales, see
Languages supported by
Amazon Lex.

November 11, 2020

New feature Amazon Lex now supports the
Spanish (US) (es-US) locale.
For more information, see
Languages supported by
Amazon Lex.

September 22, 2020

New feature Amazon Lex now supports
the English (British) (en-GB)
locale. For more information,
see Languages supported by
Amazon Lex.

September 15, 2020

New feature Amazon Lex now supports the
English (Australian) (en-AU)
locale. For more information,
see Languages supported by
Amazon Lex.

September 8, 2020

745

https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/context-mgmt-active-context.html
https://docs.aws.amazon.com/lex/latest/dg/context-mgmt-active-context.html
https://docs.aws.amazon.com/lex/latest/dg/context-mgmt-active-context.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-language.html

Amazon Lex V1 Developer Guide

New feature Amazon Lex now has 7 new
built-in intents and 9 new
built-in slot types. For more
information, see Built-in
Intents and Slot Types.

September 8, 2020

New example Learn how to create an
Amazon Lex bot that
customer support agents
can use to answer customer
questions by searching for
answers with Amazon Kendra.
For more information, see
Example: Call Center Agent
Assistant.

August 10, 2020

New feature Amazon Lex can now return
up to four alternative intents
based on confidence scores.
For more information, see
Using Confidence Scores.

August 6, 2020

Region expansion Amazon Lex is now available
in Asia Pacific (Tokyo) (ap-
northeast-1).

June 30, 2020

New feature Amazon Lex now supports
searching Amazon Kendra
indexes for answers to
frequently asked questions
. For more information, see
AMAZON.KendraSearchIntent.

June 11, 2020

746

https://docs.aws.amazon.com/lex/latest/dg/howitworks-builtins.html
https://docs.aws.amazon.com/lex/latest/dg/howitworks-builtins.html
https://docs.aws.amazon.com/lex/latest/dg/howitworks-builtins.html
https://docs.aws.amazon.com/lex/latest/dg/ex-agent.html
https://docs.aws.amazon.com/lex/latest/dg/ex-agent.html
https://docs.aws.amazon.com/lex/latest/dg/ex-agent.html
https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html
https://docs.aws.amazon.com/lex/latest/dg/confidence-scores.html
https://docs.aws.amazon.com/general/latest/gr/lex.html
https://docs.aws.amazon.com/lex/latest/dg/built-in-intent-kendra-search.html
https://docs.aws.amazon.com/lex/latest/dg/built-in-intent-kendra-search.html

Amazon Lex V1 Developer Guide

New feature Amazon Lex now returns
more information in conversat
ion logs. For more informati
on, see Viewing Text Logs in
Amazon CloudWatch Logs.

June 9, 2020

Region expansion Amazon Lex is now available
in Asia Pacific (Singapore)
(ap-southeast-1) , Europe
(Frankfurt) (eu-central-1), and
Europe (London) (eu-west-2).

April 23, 2020

New feature Amazon Lex now supports
tagging. You can use tagging
to identify resources, allocate
costs, and control access.
For more information, see
Tagging your Amazon Lex
Resources.

March 12, 2020

New feature Amazon Lex now supports
regular expressions for the
AMAZON.AlphaNumeric
built-in slot type. For more
information, see AMAZON.Al
phaNumeric.

February 6, 2020

New feature Amazon Lex can now log
conversation information and
obfuscate slot values in those
logs. For more information,
see Creating Conversation
Logs and Slot Obfuscation.

December 19, 2019

Region expansion Amazon Lex is now available
in Asia Pacific (Sydney) (ap-
southeast-2).

December 17, 2019

747

https://docs.aws.amazon.com/lex/latest/dg/conversation-logs-cw.html
https://docs.aws.amazon.com/lex/latest/dg/conversation-logs-cw.html
https://docs.aws.amazon.com/lex/latest/dg/conversation-logs-cw.html
https://docs.aws.amazon.com/general/latest/gr/lex.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-tags.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-tags.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works-tags.html
https://docs.aws.amazon.com/lex/latest/dg/built-in-slot-alphanumeric.html
https://docs.aws.amazon.com/lex/latest/dg/built-in-slot-alphanumeric.html
https://docs.aws.amazon.com/lex/latest/dg/built-in-slot-alphanumeric.html
https://docs.aws.amazon.com/lex/latest/dg/how-it-works.html
https://docs.aws.amazon.com/lex/latest/dg/conversation-logs.html
https://docs.aws.amazon.com/lex/latest/dg/conversation-logs.html
https://docs.aws.amazon.com/lex/latest/dg/how-obfuscate.html
https://docs.aws.amazon.com/general/latest/gr/lex.html

Amazon Lex V1 Developer Guide

New feature Amazon Lex is now HIPAA
compliant. For more informati
on, see Compliance Validation
for Amazon Lex.

December 10, 2019

New feature Amazon Lex can now send
user utterances to Amazon
Comprehend to analyze the
sentiment of the utterance
. For more information, see
Sentiment Analysis.

November 21, 2019

New feature Amazon Lex is now SOC
compliant. For more informati
on, see Compliance Validation
for Amazon Lex.

November 19, 2019

New feature Amazon Lex is now PCI
compliant. For more informati
on, see Compliance Validation
for Amazon Lex.

October 17, 2019

New feature Added support for adding a
checkpoint to an intent so
that you can easily return to
the intent during a conversat
ion. For more information, see
Managing Sessions.

October 10, 2019

New feature Added support for the
AMAZON.FallbackInt
ent so that your bot can
handle situations when user
input is not as expected.
For more information, see
AMAZON.FallbackIntent.

October 3, 2019

748

https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/sentiment-analysis.html
https://docs.aws.amazon.com/lex/latest/dg/sentiment-analysis.html
https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/compliance.html
https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html
https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html
https://docs.aws.amazon.com/lex/latest/dg/built-in-intent-fallback.html
https://docs.aws.amazon.com/lex/latest/dg/built-in-intent-fallback.html

Amazon Lex V1 Developer Guide

New feature Amazon Lex enables you to
manage session informati
on for your bots. For more
information, see Managing
Sessions With the Amazon
Lex API.

August 8, 2019

Region expansion Amazon Lex is now available
in US West (Oregon) (us-west-
2).

May 8, 2018

New feature Added support for exporting
and importing in Amazon Lex
format. For more information,
see Importing and Exporting
Amazon Lex Bots, Intents, and
Slot Types.

February 13, 2018

New feature Amazon Lex now supports
additional response messages
for bots. For more informati
on, see Responses.

February 8, 2018

Region expansion Amazon Lex is now available
in Europe (Ireland) (eu-west-
1).

November 21, 2017

New feature Added support for deploying
Amazon Lex bots on Kik.
For more information, see
Integrating an Amazon Lex
Bot with Kik.

November 20, 2017

New feature Added support for new built-
in slot types and request
attributes. For more informati
on, see Built-in Slot Types and
Setting Request Attributes .

November 3, 2017

749

https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html
https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html
https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html
https://docs.aws.amazon.com/lex/latest/dg/how-session-api.html
https://docs.aws.amazon.com/lex/latest/dg/import-export.html
https://docs.aws.amazon.com/lex/latest/dg/import-export.html
https://docs.aws.amazon.com/lex/latest/dg/import-export.html
https://docs.aws.amazon.com/lex/latest/dg/howitworks-manage-prompts.html#msg-prompts-response
https://docs.aws.amazon.com/lex/latest/dg/kik-bot-association.html
https://docs.aws.amazon.com/lex/latest/dg/kik-bot-association.html
https://docs.aws.amazon.com/lex/latest/dg/howitworks-builtins-slots.html
https://docs.aws.amazon.com/lex/latest/dg/context-mgmt-request-attribs

Amazon Lex V1 Developer Guide

New feature Added export to Alexa
Skills Kit feature. For more
information, see Exporting to
an Alexa Skill.

September 7, 2017

New feature Added synonym support for
slot type values. For more
information, see Custom Slot
Types .

August 31, 2017

New feature Added AWS CloudTrai
l integration. For more
information, see Monitorin
g Amazon Lex API Calls with
AWS CloudTrail Logs .

August 15, 2017

Expanded documentation Added Getting Started
examples for the AWS CLI.
For more information, see
https://docs.aws.amazon.co
m/lex/latest/dg/gs-cli.html

May 22, 2017

New guide This is the first release of the
Amazon Lex User Guide.

April 19, 2017

750

https://docs.aws.amazon.com/lex/latest/dg/export-to-alexa.html
https://docs.aws.amazon.com/lex/latest/dg/export-to-alexa.html
https://docs.aws.amazon.com/lex/latest/dg/howitworks-custom-slots.html
https://docs.aws.amazon.com/lex/latest/dg/howitworks-custom-slots.html
https://docs.aws.amazon.com/lex/latest/dg/monitoring-aws-lex-cloudtrail.html
https://docs.aws.amazon.com/lex/latest/dg/monitoring-aws-lex-cloudtrail.html
https://docs.aws.amazon.com/lex/latest/dg/monitoring-aws-lex-cloudtrail.html
https://docs.aws.amazon.com/lex/latest/dg/gs-cli.html
https://docs.aws.amazon.com/lex/latest/dg/gs-cli.html

Amazon Lex V1 Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

751

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Lex V1
	Table of Contents
	
	What Is Amazon Lex?
	Are You a First-time User of Amazon Lex?

	Amazon Lex: How It Works
	Languages Supported in Amazon Lex
	Supported Languages and Locales
	Languages and Locales Supported by Amazon Lex Features

	Programming Model
	Model Building API Operations
	Runtime API Operations
	Lambda Functions As Code Hooks

	Managing Messages
	Types of Messages
	Contexts for Configuring Messages
	Bot Messages
	Slot Prompts
	Responses

	Supported Message Formats
	Message Groups
	Response Cards
	Defining Static Response Cards
	Generating Response Cards Dynamically

	Managing Conversation Context
	Setting Intent Context
	Output Context
	Input Context

	Using Default Slot Values
	Setting Session Attributes
	Setting Request Attributes
	Setting Predefined Request Attributes
	Setting the Response Type
	Setting the Preferred Time Zone

	Setting User-Defined Request Attributes

	Setting the Session Timeout
	Sharing Information Between Intents
	Setting Complex Attributes

	Using Confidence Scores
	Session Management
	Using a Lambda function
	Using the Session Management API

	Conversation Logs
	IAM Policies for Conversation Logs
	Creating an IAM Role and Policies for Conversation Logs
	Granting Permission to Pass an IAM Role

	Configuring Conversation Logs
	Enabling Conversation Logs
	Disabling Conversation Logs

	Encrypting Conversation Logs
	Viewing Text Logs in Amazon CloudWatch Logs
	Accessing Audio Logs in Amazon S3
	Monitoring Conversation Log Status with CloudWatch Metrics

	Managing Sessions With the Amazon Lex API
	Switching Intents
	Resuming a Prior Intent
	Starting a New Session
	Validating Slot Values

	Bot Deployment Options
	Built-in Intents and Slot Types
	Built-in Intents
	AMAZON.CancelIntent
	AMAZON.FallbackIntent
	Using Clarification Prompts
	Using a Lambda Function with a Fallback Intent

	AMAZON.HelpIntent
	AMAZON.KendraSearchIntent
	IAM Policy for Amazon Kendra Search
	Attaching Permissions
	Specifying a Role

	Using Request and Session Attributes as Filters
	Using the Search Response
	Using a Lambda Function to Manage the Request and Response
	Creating a Query with the Dialog Code Hook
	Using the Fulfillment Code Hook for the Response

	Example: Creating a FAQ Bot for an Amazon Kendra Index

	AMAZON.PauseIntent
	AMAZON.RepeatIntent
	AMAZON.ResumeIntent
	AMAZON.StartOverIntent
	AMAZON.StopIntent

	Built-in Slot Types
	AMAZON.Airport
	AMAZON.AlphaNumeric
	AMAZON.City
	AMAZON.Country
	AMAZON.DATE
	AMAZON.DURATION
	AMAZON.EmailAddress
	AMAZON.FirstName
	AMAZON.LastName
	AMAZON.NUMBER
	AMAZON.Percentage
	AMAZON.PhoneNumber
	AMAZON.SpeedUnit
	AMAZON.State
	AMAZON.StreetName
	AMAZON.TIME
	AMAZON.WeightUnit

	Custom Slot Types
	Slot Obfuscation
	Sentiment Analysis
	Tagging Your Amazon Lex Resources
	Tagging Your Resources
	Tag Restrictions
	Tagging Resources (Console)
	Tagging Resources (AWS CLI)

	Getting Started with Amazon Lex
	Step 1: Set Up an AWS Account and Create an Administrator User
	Sign Up for AWS
	Create a user
	Next Step

	Step 2: Set Up the AWS Command Line Interface
	

	Step 3: Getting Started (Console)
	Exercise 1: Create an Amazon Lex Bot Using a Blueprint (Console)
	Amazon Lex Bot: Blueprint Overview
	AWS Lambda Function: Blueprint Summary
	Step 1: Create an Amazon Lex Bot (Console)
	Step 2 (Optional): Review the Details of Information Flow (Console)
	Step 2a (Optional): Review the Details of the Spoken Information Flow (Console)
	Step 2b (Optional): Review the Details of the Typed Information Flow (Console)

	Step 3: Create a Lambda Function (Console)
	Step 4: Add the Lambda Function as Code Hook (Console)
	Step 5 (Optional): Review the Details of the Information Flow (Console)
	Step 6: Update the Intent Configuration to Add an Utterance (Console)
	Step 7 (Optional): Clean Up (Console)

	Exercise 2: Create a Custom Amazon Lex Bot
	Step 1: Create a Lambda Function
	Test the Lambda Function Using Sample Event Data
	Next Step

	Step 2: Create a Bot
	Create the Bot
	Next Step

	Create an Intent
	Next Step

	Create Slot Types
	Next Step

	Configure the Intent
	Next Step

	Configure the Bot
	Next Step

	Step 3: Build and Test the Bot
	Inspecting the Response
	Next Step

	Step 4 (Optional): Clean up
	Next Steps

	Exercise 3: Publish a Version and Create an Alias

	Step 4: Getting Started (AWS CLI)
	Exercise 1: Create an Amazon Lex Bot (AWS CLI)
	Step 1: Create a Service-Linked Role (AWS CLI)
	Next Step

	Step 2: Create a Custom Slot Type (AWS CLI)
	Next Step
	FlowerTypes.json

	Step 3: Create an Intent (AWS CLI)
	Next Step
	OrderFlowers.json

	Step 4: Create a Bot (AWS CLI)
	Next Step
	OrderFlowersBot.json

	Step 5: Test a Bot (AWS CLI)
	Test the Bot Using Text Input (AWS CLI)
	Next Step

	Test the Bot Using Speech Input (AWS CLI)
	Next Step

	Exercise 2: Add a New Utterance (AWS CLI)
	Next Step

	Exercise 3: Add a Lambda Function (AWS CLI)
	Next Step

	Exercise 4: Publish a Version (AWS CLI)
	Step 1: Publish the Slot Type (AWS CLI)
	Next Step

	Step 2: Publish the Intent (AWS CLI)
	Next Step

	Step 3: Publish the Bot (AWS CLI)
	Next Step

	Exercise 5: Create an Alias (AWS CLI)
	Next Step

	Exercise 6: Clean Up (AWS CLI)

	Versioning and Aliases
	Versioning
	The $LATEST Version
	Publishing an Amazon Lex Resource Version
	Updating an Amazon Lex Resource
	Deleting an Amazon Lex Resource or Version

	Aliases

	Using Lambda Functions
	Lambda Function Input Event and Response Format
	Input Event Format
	Response Format
	sessionAttributes
	recentIntentSummaryView
	activeContexts
	dialogAction

	Amazon Lex and AWS Lambda Blueprints
	Updating a Blueprint for a Specific Locale

	Deploying Amazon Lex Bots
	Deploying an Amazon Lex Bot on a Messaging Platform
	Integrating an Amazon Lex Bot with Facebook Messenger
	Step 1: Create an Amazon Lex Bot
	Step 2: Create a Facebook Application
	Step 3: Integrate Facebook Messenger with the Amazon Lex Bot
	Step 4: Test the Integration

	Integrating an Amazon Lex Bot with Kik
	Step 1: Create an Amazon Lex Bot
	Step 2: Create a Kik Bot
	Step 3: Integrate the Kik Bot with the Amazon Lex Bot
	Step 4: Test the Integration

	Integrating an Amazon Lex Bot with Slack
	Step 1: Create an Amazon Lex Bot
	Step 2: Sign Up for Slack and Create a Slack Team
	Step 3: Create a Slack Application
	Step 4: Integrate the Slack Application with the Amazon Lex Bot
	Step 5: Complete Slack Integration
	Step 6: Test the Integration

	Integrating an Amazon Lex Bot with Twilio Programmable SMS
	Step 1: Create an Amazon Lex Bot
	Step 2: Create a Twilio SMS Account
	Step 3: Integrate the Twilio Messaging Service Endpoint with the Amazon Lex Bot
	Step 4: Test the Integration

	Deploying an Amazon Lex Bot in Mobile Applications

	Importing and Exporting Amazon Lex Bots, Intents, and Slot Types
	Exporting and Importing in Amazon Lex Format
	Exporting in Amazon Lex Format
	Exporting a Bot

	Importing in Amazon Lex Format
	Importing a Bot

	JSON Format for Importing and Exporting
	Slot Type structure
	Intent structure
	Bot structure

	Exporting to an Alexa Skill

	Additional Examples: Creating Amazon Lex Bots
	Schedule Appointment
	Overview of the Bot Blueprint (ScheduleAppointment)
	Overview of the Lambda Function Blueprint (lex-make-appointment-python)
	Step 1: Create an Amazon Lex Bot
	Step 2: Create a Lambda Function
	Step 3: Update the Intent: Configure a Code Hook
	Step 4: Deploy the Bot on the Facebook Messenger Platform
	Details of Information Flow

	Book Trip
	Step 1: Review the Blueprints Used in this Exercise
	Overview of the Bot Blueprint (BookTrip)
	Overview of the Lambda Function Blueprint (lex-book-trip-python)

	Step 2: Create an Amazon Lex Bot
	Step 3: Create a Lambda function
	Step 4: Add the Lambda Function as a Code Hook
	Details of the Information Flow
	Data Flow: Book Hotel Intent
	Data Flow: Book Car Intent

	Using a Response Card
	Updating Utterances
	Integrating with a Web site
	Call Center Agent Assistant
	Step 1: Create an Amazon Kendra Index
	Next step

	Step 2: Create an Amazon Lex Bot
	Next step

	Step 3: Add a Custom and Built-in Intent
	Next step

	Step 4: Set up Amazon Cognito
	Next step

	Step 5: Deploy Your Bot as a Web Application
	Step 6: Use the Bot

	Migrating a bot
	Migrating a bot (Console)
	Migrating a Lambda function
	Migration messages
	Built-in intent
	Built-in slot type
	Conversation logs
	Message groups
	Prompts and phrases
	Other Amazon Lex V1 features

	Migrating a Lambda function from Amazon Lex V1 to Amazon Lex V2
	List of updated fields
	Request
	Active contexts
	Alternative intents
	Bot
	Current intent
	Dialog action
	Amazon Kendra
	Sentiment
	Slots
	Others

	Response
	Active contexts
	Dialog action
	Intents and slots
	Others

	Security in Amazon Lex
	Data Protection in Amazon Lex
	Encryption at Rest
	Sample Utterances
	Customer Utterances
	Session Attributes
	Request Attributes

	Encryption in Transit
	Key Management

	Identity and Access Management for Amazon Lex
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Lex works with IAM
	Identity-based policies for Amazon Lex
	Identity-based policy examples for Amazon Lex

	Resource-based policies within Amazon Lex
	Policy actions for Amazon Lex
	Policy resources for Amazon Lex
	Policy condition keys for Amazon Lex
	ACLs in Amazon Lex
	ABAC with Amazon Lex
	Using temporary credentials with Amazon Lex
	Cross-service principal permissions for Amazon Lex
	Service roles for Amazon Lex
	Choosing an IAM role in Amazon Lex

	Service-linked roles for Amazon Lex

	Identity-based policy examples for Amazon Lex
	Policy best practices
	Using the Amazon Lex console
	Allow users to view their own permissions
	Delete All Amazon Lex Bots
	Allow a user to migrate a bot to Amazon Lex V2 APIs
	Use a Tag to Access a Resource

	AWS managed policies for Amazon Lex
	AWS managed policy: AmazonLexReadOnly
	AWS managed policy: AmazonLexRunBotsOnly
	AWS managed policy: AmazonLexFullAccess
	Amazon Lex updates to AWS managed policies

	Using Service-Linked Roles for Amazon Lex
	Service-Linked Roles Permissions for Amazon Lex
	Creating a Service-Linked Role for Amazon Lex
	Editing a Service-Linked Role for Amazon Lex
	Deleting a Service-Linked Role for Amazon Lex
	Supported Regions for Amazon Lex Service-Linked Roles

	Troubleshooting Amazon Lex identity and access
	I am not authorized to perform an action in Amazon Lex
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon Lex resources

	Monitoring in Amazon Lex
	Monitoring Amazon Lex with Amazon CloudWatch
	CloudWatch Metrics for Amazon Lex
	Viewing Amazon Lex Metrics
	Creating an Alarm
	CloudWatch Metrics for Amazon Lex Runtime
	CloudWatch Metrics for Amazon Lex Channel Associations
	CloudWatch Metrics for Conversation Logs

	Monitoring Amazon Lex API Calls with AWS CloudTrail Logs
	Amazon Lex Information in CloudTrail
	Example: Amazon Lex Log File Entries

	Compliance Validation for Amazon Lex
	Resilience in Amazon Lex
	Infrastructure Security in Amazon Lex

	Guidelines and Quotas in Amazon Lex
	Supported Regions
	General Guidelines
	Quotas
	Runtime Service Quotas
	API Quotas
	Using the $LATEST version
	Session Timeout

	Model Building Quotas
	Bot Quotas
	Intent Quotas
	Slot Type Quotas

	API Reference
	Actions
	Amazon Lex Model Building Service
	CreateBotVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateIntentVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	CreateSlotTypeVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteBot
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteBotAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteBotChannelAssociation
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteBotVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteIntent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteIntentVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteSlotType
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteSlotTypeVersion
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	DeleteUtterances
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBot
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotAliases
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotChannelAssociation
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotChannelAssociations
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBots
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBotVersions
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBuiltinIntent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBuiltinIntents
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetBuiltinSlotTypes
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetExport
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetImport
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetIntent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetIntents
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetIntentVersions
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetMigration
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetMigrations
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetSlotType
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetSlotTypes
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetSlotTypeVersions
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetUtterancesView
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	ListTagsForResource
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutBot
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutBotAlias
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutIntent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutSlotType
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	StartImport
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	StartMigration
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	TagResource
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	UntagResource
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	Amazon Lex Runtime Service
	DeleteSession
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	GetSession
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PostContent
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	Examples
	Example 1
	Sample Request
	Sample Response

	See Also

	PostText
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	PutSession
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	See Also

	Data Types
	Amazon Lex Model Building Service
	BotAliasMetadata
	Contents
	See Also

	BotChannelAssociation
	Contents
	See Also

	BotMetadata
	Contents
	See Also

	BuiltinIntentMetadata
	Contents
	See Also

	BuiltinIntentSlot
	Contents
	See Also

	BuiltinSlotTypeMetadata
	Contents
	See Also

	CodeHook
	Contents
	See Also

	ConversationLogsRequest
	Contents
	See Also

	ConversationLogsResponse
	Contents
	See Also

	EnumerationValue
	Contents
	See Also

	FollowUpPrompt
	Contents
	See Also

	FulfillmentActivity
	Contents
	See Also

	InputContext
	Contents
	See Also

	Intent
	Contents
	See Also

	IntentMetadata
	Contents
	See Also

	KendraConfiguration
	Contents
	See Also

	LogSettingsRequest
	Contents
	See Also

	LogSettingsResponse
	Contents
	See Also

	Message
	Contents
	See Also

	MigrationAlert
	Contents
	See Also

	MigrationSummary
	Contents
	See Also

	OutputContext
	Contents
	See Also

	Prompt
	Contents
	See Also

	ResourceReference
	Contents
	See Also

	Slot
	Contents
	See Also

	SlotDefaultValue
	Contents
	See Also

	SlotDefaultValueSpec
	Contents
	See Also

	SlotTypeConfiguration
	Contents
	See Also

	SlotTypeMetadata
	Contents
	See Also

	SlotTypeRegexConfiguration
	Contents
	See Also

	Statement
	Contents
	See Also

	Tag
	Contents
	See Also

	UtteranceData
	Contents
	See Also

	UtteranceList
	Contents
	See Also

	Amazon Lex Runtime Service
	ActiveContext
	Contents
	See Also

	ActiveContextTimeToLive
	Contents
	See Also

	Button
	Contents
	See Also

	DialogAction
	Contents
	See Also

	GenericAttachment
	Contents
	See Also

	IntentConfidence
	Contents
	See Also

	IntentSummary
	Contents
	See Also

	PredictedIntent
	Contents
	See Also

	ResponseCard
	Contents
	See Also

	SentimentResponse
	Contents
	See Also

	Document History for Amazon Lex
	AWS Glossary

