aws

Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink: Managed Service for Apache Flink
Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table of Contents

.. xvii
What is Managed Service for Apache FLINK?ciiiiiiiiiiinneeennciiiiiiieiiiinnneeessssssssssscessssssssssssssssns 1
Decide between using Managed Service for Apache Flink or Managed Service for Apache Flink
STUAIO ettt ettt et b et e s b e b et e b s b et et s s et e st e sa s et e st esebe st esasbensenseaasenseneesans 1
Choose which Apache Flink APIs to use in Managed Service for Apache Flinkcccoeeeevnnnenen. 3
ChO0SE @ FLINK AP ..ttt et et s et et s st et s s s e st et s s et e e e e sbastesassassenaesessansesassans 3
Get started with streaming data appliCatioNs ..o 5
HOW Gt WOKKS ..coiiiiiiiiiiiiiiiiiinninnnssssssssssssssssssssssssnss 6
Program your Apache FLink appliCation ...ttt saesra e 6
DAtaSTrEam AP ... ettt ettt s a st b e s b e s s b et e et e b e s e e se s sne et s 6
TADLE AP ettt ettt ettt e b ettt ettt et e b et et e s et et e e se b eneens 7
Create your Managed Service for Apache Flink application ... 7
Create an QPPLICALION ...ttt a et e s te st e st e e se e e e e e e e s e b e besbasseereenneneenaenaan 8
Build your Managed Service for Apache Flink application code ..o, 8
Create your Managed Service for Apache Flink applicationccceeceececeneeenececeeeeeceeeeene, 9
Use customer ManNaged KEYScciceeeeeeeeeeeeteeetectestestestesseeee e eaessestessessessassasseesasssessessensansansanses 10
Start your Managed Service for Apache Flink applicationcceeveveecieciececeneeeeeeeeeeeeeee, 11
Verify your Managed Service for Apache Flink application ..o 11
Enable SYyStem rOLLDACKSccvevieeeeeeeeee ettt a e sa et a et e ssesse s s e neneaennans 11
RUN @N @PPLICALION ettt et et et e st st este st e e se s e e e e s e saesbesba b asseeseesaennensansans 14
Identify application and JOb StAtUScceuieeeeeeeeee e 14
RUN DAtCh WOTKLOQASouoiiieiieeeetc ettt sttt et sttt sa e 16
APPLICAtION FESOUICTES ..ottt ettt te e s te s e e e et e sa et e aesae st esba s e s se s e e s e s esaansansessansassaeseensaneans 16
Managed Service for Apache Flink application reSOUrCEScccveeeeieceeceeceeceseceeeeee e 16
Apache Flink applicCation FESOUICEScceeeeieeieeeeetetecteteete ettt et ste st ae s e e e e e s e s e saesaennan 17
PrICING ettt ettt te e st e st e st e st e s a e e s ae s ssa e s e e e s st e e b e s sa e b e e st e s st e e st et e e atessteessaenaraeseans 18
HOW Tt WOTKS ettt ettt sa e sttt sttt s e st e e s e b et saessasasnees 16
AWS Region aQVAilabilityccoeeeeeeieiceeeceeseee ettt ettt s a e e aa e 19
PriCING EXAMIPLES ...ttt ste e st e e e e e e s et et e st et e s seeseesessa e s e st entensensesasseeseessensanes 20
Review DataStream APl COMPORNENTS ...ttt st e s seeestesssessssessaeesaessaessssesssaesanas 24
COMMECEOLS ..ttt sttt et s b e st b e st e et s bt st e e st e se et e e seeeaesbe st e seensesstessesasasntas 24
OPEFALOIS .eiieeiieecteecterteese et e et e st e s ste e st e s sae s st esbe s st e s saessaasssessssasssasssaesssessstesssassseesssessseesssessseesssessses 34
EVENT traACKING oottt et et e st e st e st s e e e e e e et et e besbessaeseesaesaeneansantans 35

Table APl COMPONENTS ..ottt ettt te e e e e e e s et et e st e st e st e s sa e e sa e s essasaassesasassassessaesaanes 36

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

TabLe AP CONNECTONS ...oouiiiiiiietetreriete ettt sttt et ste st e s e st et e e se st e e ssassesassassessesasans 36
Table API time QttriDULESoeoveieeeereet ettt sttt ettt a et s saesa e nas 38
USE PYTRON ettt re e e a e et st e st e st e e e e e e e e et e aestantessasseeseennansantans 38
Program your Python appliCation ...ttt aenens 39
Create your Python appliCation ...ttt a e 42
Monitor your Python appliCation ...ttt st st s 43
USE FUNTIME PrOPEITIES ...ueeeiieeeeecteee ettt ettt et s ste s s e e s sae s s e e s saesssaesbe s st asssesssaesssasssassssessssesssessseens 44
Manage runtime properties using the CONSOLE ... 44
Manage runtime properties USIiNg the CLI ...t 45
Access runtime properties in a Managed Service for Apache Flink application 48
Use APAche FLINK CONMMECLOIS ...ttt stestesse s e s e e et e ste st et e s bassa e e ssaenaeaanaanean 49
KINOWIN ISSUES ..ttt ettt ettt et s a sttt e st s be et e se s b e st e sesabessteseesasseennens 52
IMplement fAUlt TOLEIANCE ...ttt a e et et srasae e e e e e nnannans 52
Configure checkpointing in Managed Service for Apache Flink ..o 53
Review checkpointing APl @XAMPLES ..ottt e e s stesaessesse e e aennan 54
Manage application backups using SNAPSNOLSccoieiiiicieceecececee e 56
Manage automatic sNaPShot Creation ... 57
Restore from a snapshot that contains incompatible state dataccccoceeeeeceeeeeececceceee. 58
Review sNapshot APl @XAMPLES ...ttt e e e a et st sae e s s sn e e e e aenean 59
Use in-place version upgrades for Apache FLNK ...t 61
UpPGrade @pPliCAtiONS ...ttt ettt st s te s e e e et a e s b et esaesaeese e e e e e e e snenanes 62
UPGrade t0 @ NEW VEISIONocuieieeieeceetetectestee et e e e e testestessessesseesessseaesessessassassessassasssensensensensan 63
Roll back application UPGrades ...ttt ettt s ae st s a e aenaan 69
BEST PrACLICES .ottt st e e st e s e st e e b s s aa e s ae s s ae e s sae e aa e s b e e se e aeesaeessnesnnes 70
KINOWN ISSUES ..ttt ettt ettt et et sae st et b et ae s be st e s s b e s e e sesabesstesseenasseenness 70
Implement application SCALING ..ottt st e e s e e e saestenaans 72
Configure application parallelism and ParallelismPerKPU ... 72
Allocate Kinesis ProCessing UNIESc.cceiiiieiiiiecieecee ettt a et saesaessesse s e e nesna s 73
Update your application's paralleliSIm ...ttt sre e neaens 74
Use aUtOMALIC SCALING c.uviuieieieeeeeeee ettt ettt e st e st e s e e e e e e e et sae st e st e ssesseesaesnennennans 75
MAaXParallelism CONSIAEIatioNScocoieiririiiirereree ettt ettt s nes 78
Add tags t0 QPPLICALIONS ...c.eeeeeeeceeeeeceeee ettt ra et et esae st e s e e e e e e e et e stesaasaeeseesnenaens 78
Add tags when an application is Created ...t 79
Add or update tags for an existing application ..o 80
List tags for an @ppliCation ...ttt 80
Remove tags from an appliCation ...ttt enens 80

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

USE CLOUAFOIMAtION ...ttt ettt sttt et sae st ettt e s s e s e e saaaesassassassesanan 81
BEFOIE YOU DEGIN ettt e ettt e st e st s e s e e e s e e s e saestessessessaesnensannans 81
Write @ Lambda FUNCHION ...ttt ettt et e e s saesa s s 81
Create @ LAmDBAQa FOLE ...ttt sttt st et sa e st be st e s b et e e s sesae s esasnans 83
Invoke the Lambda fUNCHION ..ottt sa e e s s s snans 84
Review an extended @XAMPLEttt sttt st aeaeaens 84

Use the Apache FLink DashbOard ...ttt te e s e s aesaeaan 90
Access your application's Apache Flink Dashboard ... 90

Supported and deprecated VEIrSIONSccceeecciiiiieeiiiiinnnnessenssssssssceess 92

Amazon Managed Service for Apache FLINK T.20 ...ttt 99
SUPPOTEEA FEALUIES ...ttt te s te e st s st e s e b et et e besseesaenaenaenaasanes 100
COMPONENTS ..ttt ettt esee e st e st e s s st e s saessaeesssesssaessaesseesssasssassssessssesssesssessssessssesstessseesssesnses 101
KINOWN ISSUES ..ttt st sttt a e st sttt ssae st e st s b e st e saesenessbesntensasanesnens 101

Amazon Managed Service for Apache FUNK T.T9 ...ttt sae e e 102
SUPPOTEEA FEALUIES ...ttt ettt st e ae s e s e et e b et et e s basseesaenaesaensensanes 102
Changes in Amazon Managed Service for Apache Flink T.79.7 ..o 105
COMPONENTS ..aeiitiieeteeie ettt ste e st e s saessreessaessaeesssesssaesssessssesstasssaesssessseesstesssessssessssesseessseesnsesnses 106
KINOWN ISSUES ..ttt sttt et a e st e b st seae st e st s be st e saesenessbesntensasanesnanns 107

Amazon Managed Service for Apache FUNK T.T8 ...ttt sae e 107
Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 109
COMPONENTS ..aeiitiieeteeie ettt ste e st e s saessreessaessaeesssesssaesssessssesstasssaesssessseesstesssessssessssesseessseesnsesnses 110
KINOWN ISSUES ..ttt ettt ettt st et e bt ssae st e st s b e st e saessnessbesntensassnesnens 111

Amazon Managed Service for Apache FLNK T.T5 ..ottt sae e 112
Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 113
COMPONENTS ..ttt et este e st e s saessreessaessaeesssesssaesssessseesssasssaasssessseesstesssessssessseesssessseesssennses 110
KINOWN ISSUES ..ttt ettt ettt st et e bt ssae st e st s b e st e saessnessbesntensassnesnens 114

EQrliIEr VEISIONS ..ttt ettt sttt ettt st e s b et e s b e st et e sa st et esessasbestesassensenesanes 115
Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions 116
Building applications with Apache FLINK T.8.2 ...ttt 117
Building applications with Apache FLINK T.6.2 ...ttt 118
Upgrading apPLICAtiONSceeiieeieeecececeeete ettt se e st e stesae s e s e s e e e e s et e besaessassassasnnennan 119
Available connectors in Apache Flink 1.6.2 and 1.8.2 ..o 119
Getting Started: FUNK T.713.2 .ottt te e te e et saeste st e te s e se s e e e e nesaennaaans 120
Getting Started: FUNK T.TT.7 ettt e e te et saesae st e te s e se s e e s e aesaesnaneans 146
Getting started: Flink 1.8.2 - deprecating ...ttt re e nnens 172
Getting started: Flink 1.6.2 - deprecatingcccocceeeeeeeeiccetecesecee ettt sae st eeanens 198

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

LEGACY EXAMIPLES ..ttt ettt ettt e te s e te e e e e e e et e s b e st e s besse e s e e sa e e et e tasestasassaeseansensansanes 223
Use Studio notebooks with Managed Service for Apache FLiNKccccciueeeeeeeeeeciiiiiccccinnnneeeneeneens 395
Use the correct Studio notebook RUNTIME VErSiONccevivivieniiireneicereieereeteesese e 396
Create @ StUAIO NOLEDOOKceouiiiieteee ettt ettt a e s s sa e e ssa s e e enens 397
Perform an interactive analysis of streaming dataccccoeeeeeeereececcecceeee e 398
FLINK TINEEIPIELEIS ..ttt ettt ettt et este st e e se e e e s e st e st e st e saesessae s ensensensansansans 398
Apache Flink table environment variables ... 399
Deploy as an application with durable State ... 400
Yot | = A 2V o g ol IRl 1 =] o - OO TSROSO 402
Y@] o 1) (<] - TR 402
JAM PEITNIISSIONS ...vviiriicieeitieteesteestessteesteesseesstessseesseesssesssaesssessseesssessssesssessseesssessssesssesssessssessssesssesssaanns 402
Use connectors and dePendENCIESeciiieciieieeececeeeceete ettt s re s e e et saesaesaesae s e sessaennens 403
DEfAULL CONNECTONS ...ttt ettt a et sttt et e st s sbe s e e saassenaesans 403
Add dependencies and CUStOM CONNECLOLSccccueeiieeeeeieietetetese e e srestesaesse e e e eseens 405
User-defined fUNCLIONS ..ottt sttt sae st e ssa st sa s e nans 406
Considerations with user-defined fUNCLIONS ..ot 407
ENAble CheCKPOINTING ..ottt ettt st e s se e e e e e et e st e st e ae s s e saeseennans 408
Set the checkpointing INTEIVALot 408
Set the cheCKPOINTING LYPE ettt e e e e e aebanaans 409
Upgrade StUAIO RUNTIMIE ...ttt ettt e te s e se s e e s et e s e st et e ssasse s e e saenaenenaan 409
Upgrade your notebook to a new Studio RUNTIMEccooveieiececeeecceeeeee e 409
WOTIK WIth AWS GLUE ..ttt ettt te et e e e sttt e st et e s ae s s e e e e e e e e s aaassansanes 414
TADLE PIrOPEILIES ...ttt ettt e st e s te e se e e e e e s et et e tesaassesseesaennensansans 414
Examples and tutorials for Studio notebooks in Managed Service for Apache Flink 416
Tutorial: Create a Studio notebook in Managed Service for Apache Flinkcccveunnnee. 417
Tutorial: Deploy a Studio notebook as a Managed Service for Apache Flink application with
AUIADLE STATE .ttt ettt ettt s et e e e b e st e e sasae e e ene 437
View example queries to analyza data in a Studio notebookcceeveveieiececeneeeeieeee 440
Troubleshoot Studio notebooks for Managed Service for Apache FLinkccccoeeeeeeeeeeienennene 453
StOp @ STUCK QPPLICALION ettt a e e sa e b es 453
Deploy as an application with durable state in a VPC with no internet accesscuu...... 453
Deploy-as-app size and build time reduction ... 454
CANCEL JODS ettt ra et e st e st e st e st e st e e b e s e e e et et et e sesaassesseeseesaeneenaensantans 456
Restart the Apache FLINK iNterPreter ...ttt 457
Create custom IAM policies for Managed Service for Apache Flink Studio notebooks 457
AWS GLUE ettt et te st e st e st e st e st e s ae e e et e e e s et e s te s b e s s e sseesaeseesaessentassansassasseeseassantensansansansanes 458

Vi

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

(@ Lo U [e AVAT = el o I o Yo L3OO OO TSROSO 458
KIN@SIS SEFRAIMIS .ttt ettt st ettt et s e st st e s e s b e st e snesnessaesnes 459
AMAZON MSK CLUSTELS ..ttt sttt st st st et s st a s e sbe st s saa st e e s e sae st esassassenaens 462
Tutorial: Get started using the DataStream APl in Managed Service for Apache Flink 463
Review application COMPONENTES ...ttt a et st e s aesae e e e e e e nennan 173
Complete the required PrereqUISITESccceceeeeeeeeicccteceecer ettt re e e e e e sae s e saesaenas 464
SEL UP QN QCCOUNT ..ttt ettt te et s e e st e s e e s sae e st e s saasssaessaaessaasssasssaessseessaesssesssaesssasnsaans 465
Sign UP FOr @n AWS QCCOUNT ...ttt ettt te e te e e e sa et e st e sae s besseesa e e e n et e aanes 121
Create a user with adminiStrative QCCESSccuvevieviiiriieireeteec et sae e 122
Grant programMAtiC QCCESSiivviiiriiriercierrercterrte et e sste s st e s ste e st esssesssaessseessnesssesssaessseesssesssessssesases 467
INEXE STEP ceeiiteitieteict ettt ettt e st e st e s s st e st e s saa e s b e s st e s sae s saesssassseesssasssaesssessseesssessssesssesssnanns 468
SEL UP the AWS CLI ettt et ete st e st e st e st e s e e e e e e sa e s e s et e tassassessaesassssnsensansans 469
NEXE ST ittt ettt st s e st e e s ae e st e s ae e st e s ae e st e s sbeessaesssaessaessseessaesssaesstesssenssaesssens 470
Create an APPLICATION ...ttt ettt s e s e e e e e e et e st et e st e ba s e e e e e e e enaenaan 470
Create depPendENnt FESOUICESccicereeeeeeeeeectecte e ste e e e e e e e saesaestestessessessaesassseaessensassansassessasnean 471
Set up your local development enNVIFONMENTc.coueeieieieiieeeceeecee e 472
Download and examine the Apache Flink streaming Java codeccceveveveneeverceeceecveseennene 473
Write sample records to the iNPUL Stream ... 478
RUn your application LOCALLYeov oottt re st sa et et aas 479
Observe input and output data in Kinesis Streamsccceeeeereeveeiiceecrcceceseceee e 482
Stop your application running LOCALLYooveeveeveeeeeeeeeeeeere e 483
Compile and package your application COAE ...ttt 483
Upload the application cod@ JAR file ...ttt 484
Create and configure the Managed Service for Apache Flink applicationccccceeveevennenen. 484
NEXE ST ceiiiieecteerter ettt ettt s e st e e s ae e st e s be e s s e e e ae e st e s baessaesssa e saessseessaesssaesstassseassaenssens 491
CLEAN UP FESOUICEScveeeeeeeereteteetesteseeeeeestestestessessessesssessasaessassansassassassasssessastensansensansessassesssensesensansen 492
Delete your Managed Service for Apache Flink application ... 492
Delete your Kinesis data StrEAMSccveiicieeeeececeeectete ettt ste st ae e ne e ns 492
Delete your Amazon S3 objects and BUCKET ..o 492
DELEte YOUI IAM FESOUICESoocveeveeeiereteteetecte e e ereetee e esestestestessessessessaesasssesesessessansassassessesssensenes 493
Delete your CLOUAWAtCh FESOUICEScueeueeeieeieeeeectetetec ettt te e ae e e e s e s e e e saessansans 493
Explore additional resources for Apache FLINK ...t 494
EXplore additional FESOUICEScoueevieieieeeeetetetestee ettt e ste e te s e s e s e e e e e e aesaestessassassessnennennans 494
Tutorial: Get started using the TableAPI in Managed Service for Apache Flink 495
Review application COMPONENTES ...ttt e e et st esaesaesse e e e e e nennan 495
Complete the required PrereqUISITESccceceeeeeeeececteeesee ettt te s e e et ae s e saesaenas 496

vii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create an APPLICATION ...ttt e s e st e et et s e e e st et e st et e e s e e s e e re e e e e e naentenes 497
Create depPendENnt FESOUICTEScciceeeeeeeeeeeectecte e ste e e e e e e e e sae st e stestessassessaesaessesaesensassansassessasnean 497
Set up your local development enNVIFONMENTc.cceeieiecieieeieeceeeeee et aees 498
Download and examine the Apache Flink streaming Java codecoeevereneecerceeceecvesnennene 499
RUn your application LOCALLYuov ettt sre st a e a e e aeaas 505
Observe the application writing data to an S3 bucket ... 507
Stop your application running LOCALLYooveveeeeeeeeeeeeeeeee e 508
Compile and package your application COAE ...t 508
Upload the application cod@ JAR file ...ttt 509
Create and configure the Managed Service for Apache Flink applicationccccccceveevennnnee. 510

NEXE SEOP titeiieteerteter ettt et e st e st e st e e st e e b e e s e e st e s s sa e st e e sa e s be e saessbe e seeessa e seesstaesaesnsessaennrans 516

CLEAN UP FESOUICES ...ceveeeeeeeeietectestesteseeeetestestestessessassessaessassessassansassassassassaessassessansensassessassesssensesesansen 516
Delete your Managed Service for Apache Flink application ... 516
Delete your Amazon S3 objects and BUCKET ..o 517
DELEte YOUI TAM FESOUICESeecueeveeeiereieteetestestee e s reeee e esesaestestessessessesseesasssessesensessasassassessesssessanes 517
Delete your CLOUAWAtCh FESOUICESccueeueeeieeieietetetetec ettt steste s e s e e s e s et e saesbanaans 518
NEXE SEOP cttieieecteee ettt sttt s e st e e s ae e s e e s b e e s e e s ae e s st e s baessaesssaessaessseessaesssaesstasssenssaenssens 518

EXplore additional FESOUICEScoueevieieieieeetetectestee ettt ste e s te s e s e e e e e e e e saesaestessassassessnennennans 518

Tutorial: Get started using Python in Managed Service for Apache Flinkccccceerreeaaannnnnee. 519

Review application COMPONENTES ...ttt e a et et e s aesae e e e e e e nennan 519

FULFILL the Prer@QUISITES ...ccviieieeeeeeeeeee ettt et et e st esae s e e ve e s e e e s e sae st e stestassessessnesaennans 520

Create an APPLICATION ...ttt ettt e sae st e et s e e et st e st et e b e e aeeseese e e e e e e enaanes 522
Create depPendENnt FESOUICTEScciceeereeeeeeeectete e ete e e e e e e e e sae st e stestessessesssesaessesessensassassassessasnean 522
Set up your local development enNVIFONMENTc.coieieieieceeieeceeecee e 524
Download and examine the Apache Flink streaming Python codeccoeeeieirierecvenennee. 525
Manage JAR dEPENUENCIEScc.eeueeeeiiieteeectecteceree et rte e tesaesteste e e e e e s e s e ae b essassessassassasnnenaanes 528
Write sample records to the iNPUt Stream ... 530
Run your application LOCALLYcuoe oottt ste st a et et aas 532
Observe input and output data in Kinesis Streamsccceeeeeeeeveeieceeceececeececese e 534
Stop your application running LOCALLYcuooveveeieeeeeeeeeeeeere e 534
Package your applicCation COAE ...ttt re e e seennan 534
Upload the application package to an Amazon S3 bucketc.cceeeeeeeeneeeeeeeeeeee, 535
Create and configure the Managed Service for Apache Flink applicationccccceveeveunnnnee. 535
INEXE ST ceiiiieectere ettt et s s e et e e s ae e s e e s b e e st e s se e s st e s baessaesssa e saessseesaesssaesstessseassaennsens 542

CLEAN UP FESOUICES ...eveeeeeeeeietecteeteseseeeetestesaestessessassesssessesaessasassassassassssssassassessansansansassassesssensesesansen 542
Delete your Managed Service for Apache Flink application ..o 542

viii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Kinesis data StrEAMSccveiiiieeeeececececeete ettt e et et ste st ae s s ne e ns 543
Delete your Amazon S3 objects and BUCKET ..o 543
DELEtE YOUI TAM FESOUICESvecveeveeeiereteiteetectesteeeseeeeseesesaessestessessessesssesasssessessessessansassassassesssessanes 544
Delete your CLOUAWAtCh FESOUICEScueeueeeieeieieteteectee ettt ste e ae s e e s e s e s e saesbanaans 544
Tutorial: Get started using Scala in Managed Service for Apache FLinkcccccevveeeeeeeeeeciciieeaens 545
Create dePeNdENT FESOUICEScceceeeeieeeiectecteeteee st e ee e et e saestestesseesessessaesessessassassasseesesssensensensansansanes 545
Write sample records to the iNPUL StreamM ... 546
Download and examine the application COAE ... 548
Compile and upload the application COAE ... 549
Create and run the application (CONSOLE) ...t 550
Create the APPLICALION ...ttt e e e a et sae s e s e se e e e e e aennan 550
Configure the APPLICALION ...ttt sttt sae st e s se e e e e s e e nennanaans 551
Edit the TAM POLICY ettt ettt et e st s e e e e e sa e s et e st e s b e saesse e e esaennenaeneans 553
RUN the @PPLICALION ettt ettt st sa e e s e e e e e e aena e aanes 555
StOP the APPLICALION ..ottt st s s e a e et a et s 555
Create and run the application (CLI) ..ottt nan 555
Create a PermiSSiONS POLICY ..cciciiiciiieteciecese ettt e e e e et et esae st e s s e e e e e e e e aessenaanean 555
Create AN TAM POLICY oottt te et e s e e e e et e st e st e st e s e s e e e essessesaesaesaassassnesaeseans 557
Create the aPPLICALION ...ttt re e et a et e aesae s e s e e s e e e aeaasantans 558
Start the QPPLICALION ..ottt ettt e st e st e s s e e e s e e e e s eaesaesaensans 560
StOP the QPPLICALION ..ottt te b s e e a et a et nns 390
Add a CloudWatch logging OPLioN ...c.ceeeeeieieeece ettt sae e e eesnens 391
Update environmMent ProPerties ... cceeeeieiericiereececesteseeeeseesee s esaessessessessessesssesasssessessansens 391
Update the applicCation COUE ...ttt e s aesbe e a e e e e nnan 392
CLEAN UP AWS IFESOUICTES ...c.veeurerrereresiessesteseeeeeestessessessassassessassessssssessessessassassessassessasssessessessessassassassans 563
Delete your Managed Service for Apache Flink application ... 563
Delete your Kinesis data StrEAMSccveiicieeeeececeeectete ettt ste st ae e ne e ns 563
Delete your Amazon S3 object and bUCKetco e 564
DELEte YOUI IAM FESOUICESoocveeveeeiereteteetecte e e ereetee e esestestestessessessessaesasssesesessessansassassessesssensenes 564
Delete your CLOUAWAtCh FESOUICESccueeueeeieeieieiectetectec ettt ste s e s e e e s e s e e e saesbanaans 564
Use Apache Beam with Managed Service for Apache Flink applicationscccccceeiieneeennenennnn. 565
Limitations of Apache Flink runner with Managed Service for Apache Flinkccccoovenennnien. 565
Apache Beam capabilities with Managed Service for Apache FLinKcoovveeieeeeeneneneeeeeene 566
Creating an application using APache BEam ...ttt 566
Create depPendENnt FESOUICTEScciceeereeeeeeeetecte e ste e e e e e e e e saesaestestessessesssesaessesessensassassassessaenean 567
Write sample records to the iNPUt Stream ...t 567

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Download and examine the application COAE ... 568
Compile the apPliCationN COAE ...ttt e e e sae st aesaasrens 569
Upload the Apache Flink streaming Java Code ...ttt 570
Create and run the Managed Service for Apache Flink applicationccccoceveeenenenenenene. 570
CLEAN UP ettt ettt et e st et e st e st e st e e e e e e e st e st e be st e s b e sbesse e e eseesae st ansesebenseeseesaesaeasensantans 574
NEXE SEEPS eveiieeieeteictee ettt re et s e s sae s st e e ae e s e e s saeessaessse e st e s se e sseessaesssasssesssessseesssessseesseennses 576
Training workshops, labs, and solution implementationsccccccveeeeeeeciiiiccciiiinnnneennenecsssseeees 577
Managed Service for Apache FLink WOIrKSNOPcceouiiieiiieeeeececeete e 577
Develop Apache Flink applications locally before deploying to Managed Service for Apache
FLINMK ettt ettt e et e et e e et e s e st e st et e s s e s sa e e e st esee st et ansessa s eeseeseesaena et et etabenseesaeseeneensansantans 577
Event detection with Managed Service for Apache Flink Studioccceoeeeeeeieciececececeeeeeeee 578
AWS Streaming Data SOLULION ...ttt ettt et ns 578
Practice using a Clickstream lab with Apache Flink and Apache Kafkacccooeeeeeeeirreeennnnne 578
Set up custom scaling using Application Auto Scalingcccceoeeeeieeiceeeeeeeee e 579
View a sample Amazon CloudWatch dashboard ... 579
Use templates for AWS Streaming data solution for Amazon MSKccoeeieneeveeverceeceecienn, 579
Explore more Managed Service for Apache Flink solutions on GitHubccccoeieiiiirerenenneee. 579
Use practical utilities for Managed Service for Apache FLinkcccoiiiiiinnnneennnnecciiccccccinnnnennnne 581
SNAPSNOT MANAGET ..ttt ettt e st e s b e st s e e e e e et et e te s e ssessassnennanes 581
BENCIMAIKING «eeveeeeeeeee ettt e e e et et e st e st e st e s b e e e e e e sa et e aastestassassessassnesesnaans 581
Examples for creating and working with Managed Service for Apache Flink applications 582
Java examples for Managed Service for Apache FLNK ..o 582
Python examples for Managed Service for Apache FLNK ..o 586
.. 586
Scala examples for Managed Service for Apache FUNK ..ot 587
Security in Managed Service for Apache FLiNKiiiiiiiiiiiiinennnncniiiniicininnnneeesneesiiiccceeneessseses 589
DAt PrOTECLION ..ottt s e et esae s st e s sae e s e e s aeessaesaaessnesssaesssasssaesssesssnanns 590
DAta ENCIYPTION .ottt sttt ae st e s e e s sae e s ee s se e s b e s saeessaesssaessaassseasssessaessaesssnanns 590
Key management in AMAzon MSF ...ttt estessessreesssessssessaesssaesssasssnasssesssaasnnens 591
Transparent encryption in AMAzon MSF ...t seessreessaessaesssaesnas 591
Customer managed keys in AMAazon MSF ...ttt se e s s sesaesaesaessens 591
Using customer Managed KEYS ... euieeieeeeeeetetestetesese ettt stestesteste s e e e e e e s et e s e ta s nes 598
Managing CMK USING CONSOLEueouirieieietetetecteeeeee et ee e steste s e s e e e e e e s e aesaessessessassassassnensansans 601
Managing CMK USING APIS ...ttt ettt e st seesssess st e s sse s s e e s saessaaesssasssaesssessssasssasssaanns 602
Identity and Access Management for Managed Service for Apache FLinkcccoeeereeveeennnene. 611
AUAIENCE ..ttt ettt et s b et s s b et et esa b et e e s s et et s sa b et esassasestesassansesessansensesanns 612

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Authenticating With identities ..ottt nnens 613
Managing access USING POLICIES ...cceeeiieiieieceeeceeeeee et ste e ste e e e e e e e e e e s e ste st e sse s e sse e e esaennennan 616
How Amazon Managed Service for Apache Flink works with IAM ..o, 618
Identity-based pPOLliCYy XAMPLES ..ottt s e e e e et saesaenaans 628
TrOUBLESNOOTING ...ttt te e e ettt e st e st e s be s e e sa e e e e e a e s entanean 631
Cross-service confused deputy Prevention ...t e e saeaens 633
Compliance validation for Managed Service for Apache FLiNKccccovevveeiececeneneneeeeeeceeeeeeee. 635
FEARAMP ...ttt ettt et et e st e st e st e e et e s e et et et et e s e ssaesaeseesaessa st ensassansassasseasesnsensanes 636
Resilience and disaster recovery in Managed Service for Apache FLinkcccccoeeeieeeinvecvecienene 636
DISASTEN FECOVETY ...eiieiieieieieeieesteesteste et estessreesaessaeessesssassssessstasssessssesssessssesssessssesssessssesssessssennses 636
VEISIONING «.veiiiiiieeiitieteeeteste et ese e st estessaessaessse e st essaeesssessssesssassseassaessseesssessseesseessseesssessseesseessssesnnes 637
Infrastructure security in Managed Service for Apache FLiNKceoeeievieciiceceneceeeeeeeeeeeene 637
Security best practices for Managed Service for Apache FLiNKcccoeeeveeveiceececeneceeeeeeeee 638
Implement Least PrivVilege @CCESS ...ttt ettt saesae s se e e ennens 638
Use IAM roles to access other AMAzOon SEIVICEScoccvevirereriirerienienieesenteesessesesessessesessessesees 638
Implement server-side encryption in dependent reSOUICESccuveeveecreceecenereeieereeeeeeeaeeens 639
Use CloudTrail to mMOnNitor API CaLls ..ottt sse s e ssesae e 639
Logging and monitoring in Amazon Managed Service for Apache Flinkcccccceveeevevunnennnene. 640
Logging in Managed Service for APache FLNK ...ttt ne e 641
Querying Logs with CloudWatch Logs INSIGhtSs ..o 641
Monitoring in Managed Service for Apache FLINK ... 641
Set up application logging in Managed Service for Apache FLinKcccoeveeeeeceniececeeceecrenenee. 643
Set up CloudWatch logging using the CoNSOLE ... 643
Set up CloudWatch logging using the CLI ...t 644
Control application MOoNItOring LEVELS ...ttt aas 649
Apply Logging DBeSt PracCliCes ...ttt sae e s e e e nnens 650
Perform logging troubleShooting ...ttt 650
Use CloudWatch Logs INSIGIES ...ttt ettt ae s snens 651
Analyze logs with CloudWatch Logs INSIGAtS ...t 651
RUN @ SAMPLE QUETY ettt ste et te e e et e e et e saestesae s e s sa e e e e e s esae st e ssasessessassessaensansansansan 651
REVIEW EXAMPLE QUETIES ...ttt te e e e e e e e et e stestestesse s e e e s e e s e s estessessassassnesesnsensensanes 652
Metrics and dimensions in Managed Service for Apache FLNKcccoceeeeenerecieeceeceeciecececeen 655
APPLICATION MELIICS ettt te s e s e e s e e s e b e b et e e s e s seesaesa e s enaentanes 655
Kinesis Data Streams coONNECtOr METFICS ..ottt eene 683
Amazon MSK CONNECEOr MELIICSoiiiiiiirieeieteeee ettt et sae s et sae e 684
ApPAChe ZepPelin MELIICS ...ttt et e st e sae st e s e e e e e e s e e e sbessessassassessaesnensansans 686

Xi

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

View CLoUdWEAtCh MELIICS ..coueviiiiiieeeieeteee ettt sttt sa et sb e s se e s nan 687

Set CloudWatch metrics reporting LEVELS ...ttt 688

Use custom metrics with Amazon Managed Service for Apache Flinkcccoovevvecvecrecnenneee. 689

Use CloudWatch Alarms with Amazon Managed Service for Apache Flinkcccceeueennneene 693
Write custom messages to CloudWatch LOgGS ...ttt a e 705
Write to CloudWatch logs USING LOG4AJ ...ttt ste e sa e 705
Write to CloudWatch Logs USING SLFAJ ...ttt saesaeaas 706

Log Managed Service for Apache Flink API calls with AWS CloudTrailcceeeeeneceneneeeeeeee 707
Managed Service for Apache Flink information in CloudTrailccooeeeeenenenieeeeeee, 708
Understand Managed Service for Apache Flink log file entriesccceeeeeeeneneeveeceeceecienen, 709

TUNE PEIrfOrMMANCE auuueeiiiiiiiiiiiiiieeenneiiiiieeeittiesesssssssssssssssesssnne 711
Troubleshoot PErformManCE ISSUESceeiecieciecieeeeeceeeetee et ste s e s e e s s saesaesaestesse e e e s ensesassansans 711
Understand the data Path ...ttt ean 711
Performance troubleshooting SOLULIONScc.coiiieecceeeee e 712

Use performance best PractiCes ...ttt re s e e sa e saestestesaesaeese s e e nans 714
Manage SCAlING PrOPEILY ..ottt ettt s e s e e e e e e e e e st e aesaesaasbessaesn e e ennennan 714
Monitor external dependency reSOUICE USAQEcccvueerereerereeeeeeieeesteseessessessesseeeessesaessessenses 716

Run your Apache Flink application LOCAllYc.ooveieieieeeeeeeeeee e 716
MORNILOr PEIrfOIMANCE ..ottt a e st e e e e e e e e e s et et e saassassessaennenaannan 717
Monitor performance using CloudWatch metrics ..ot 717
Monitor performance using CloudWatch logs and alarmsccceceeeeeeenecvecceeceeceeceececenen, 717
Managed Service for Apache Flink and Studio notebook qUOtaccccceirrreeennnneciiiicccciinnnnenenes 718
Manage maintenance tasks for Managed Service for Apache FLInKccccuuueeecciiiiccccninnnneennnenes 720
Choose @ MAINtENANCE WINAOWccuiiriiriiiriinieirenieteesestet et seste s seste s s e sse st e s ssesaesassassesaesasnas 722
Identify Maintenance INSTANCES ...ttt ste st st e e ssesaeaanaans 722
Achieve production readiness for your Managed Service for Apache Flink applications 724
Load-test yoUr @pPLlICAtIONS ...ttt sa et et b e s ae e e e e nennan 724
Define MaxX PAralleliSIM ...ttt te st et s e e e e e e e sa e st e stessassasseesnenaaneans 724
Set @ UUID fOr Qll OPErators ...ttt st e e et saeste s e e e e e e e e s e saeaeaan 725
BESt PraCtiCeS ..ucceeiiiiiiinnnnnneniiiiieieiiiinnneesssenssssseeesssasss 726
Minimize the size Of the UDEr JAR ...ttt sae et saes 726
Fault tolerance: checkpoints and SAVEPOINTS ..o 729
UNsupported CONNECLON VEISIONSccuccueeiieicieeetetetecteste e eseee e e e saestesaessessessessessesssessesaessessensessansens 729
Performance and ParalleliSm ...ttt te et e s e a e a e aan 730
Setting per-operator PAralleliSMm ...t 730
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 731

xii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

@0 o [0T OO OO U TSSOSO O RO 731
ManNaging CrEAENTIALS ..c..oveeeeeceeeee et ettt et e st e e e e e e e e et e besae s e sassaesnennan 732
Reading from sources with few shards/partitions ... 732
Studio NOtebook refresh INTEIVAL ...t a e saes 733
Studio notebook optimum PErformManCe ...t ns 733
How watermark strategies and idle shards affect time Windowscccceevevevececececececeeee, 733
SUMIMAIY eetieitieteetteeteesrteeeeeseeeste s st s st e s stees st e s sasssaasssesssaasssesssaesssassssesssessseesssessseesssessseesssessseesssesssanns 735
EXQIMIPLE ettt ettt et st e st st e e e e e e e et et e st e b e e b e e s e e se e e et et e tentasseeseenaentensentantans 735
Set @ UUID fOr Qll OPErators ...ttt te e e s st et estesse s s e e e e e e s e saeaeean 744
Add ServiceResourceTransformer to the Maven shade plugincccooeeeeeeenincccceccccecece, 745
Apache Flink stateful fUNCLIONSccciiiiiiiiiieeeeniiiiiieiiiiiiieneeneeenniiiieceeeessssssssssssssssssssssssssssssssssssss 746
Apache Flink application te€MPLAte ..ottt re e s seennns 746
Location of the module configuration ... 747
Learn about Apache FLINk Settings ...ccciiiueeeeeeeiiiiiiiiiiiiiinnnnnnnnnisiiiieceeninnssasssssssssssssscssssssssssssssssses 748
Apache FLINK cONfIQUIAtioNooeoiiieeeee ettt a et st esaesae s s e s s e e e s s e aesaenaans 748
SEATE DACKENT ..ttt ettt ettt a et s a e e e ene 749
CRECKPOINTING ettt ettt e st e st e s b e s s e e e e e e e et e te st essasseesneseessensansansansan 749
SAVEPOINTING .ottt ettt st e s stessreaesae s s e esbe s st asssesssaesssesssaesssesssaesssessseesssessseesssessseesssesses 750
HEAP SIZES oottt sttt st s e e s sae e st e s s st s s b e s ae e sae s saa s s s e e e aa e s st e e b e e s st e e s e e st e e beessaeesaenntans 751
BUFfEr dEBLOAtiNg ..ooeeeeeeeeeeee ettt ettt s e s e e et et b e st e s e e se e e a e e e aanes 751
Modifiable Flink configuration Properties ...ttt sae e seeneens 751
RESTAIT STrAt@QY eeeeiiiieeeectrer e rr e st e s s sae e s sbe e s sneesssnessssnassssaassssaasssnaasnns 751
Checkpoints and state backends ...ttt 752
CRECKPOINTING ..ottt s te e st e e e et et et et e s besbassesseesae e enaessansansansanes 752
ROCKSDB NAtiVE MELIICS ..veoveiiiiiieieeretcteetest ettt sa et sttt et s s s st e s e saa e e e saanes 752
ROCKSDB OPLIONS ...ttt ettt st e et et e te st e s e s e e e e e st e b e b e tassassasseenaenaantensansanes 753
Advanced state backends OPLIONS ...ttt e ettt eens 753
FULl TaskManager OPLIONS ...ttt ve e e e se e et et e st e se s e s e e s e e e e saesanean 753
MemMOry CONTIGUIATION ...cceiiiieeececeet ettt e et et este s e e e e e e e e s e s e saestessessessassaesnansansans 754
RPC [AKKQ ..ttt ettt teete et e et e st e b e st e sae st e e s e e e s e e et et e aetessasseeseesee st entensensentansas 754
CLIENT ettt et st ettt ettt e e s b et e e e s et et e s et et e e e b et et e e be s e e e aetentenetans 755
AdVanced CLUSEEI OPLIONS ...ttt et sae st e sessessa e s s s eaensensans 755
Filesystem CONFIGUIAtioONScuoveiieeeeee ettt a ettt sae s aeaeaan 755
Advanced fault tolerance OPLIONS ...ttt stesae e e aeaenens 755
MemMOrY CONTIGUIAtION ...ocueiiiieeeceeee ettt ettt et este s e e e se e e e s e saesaestessessessnessennansansans 754
IMBEFICS ettt ettt sttt s b st et e b e e e e e st s ae et e st e b e st e e st sabesat e st e ssesnteneen 755

xiii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Advanced options for the REST endpoint and clientc.ccooeeereeeeieeeeceeeeeeece e 756
Advanced SSL SECUNtY OPLIONSceceiieieeeeecee ettt e e e et e st e sae st e aesre s e e e s sa e e ennanes 756
Advanced scheduling OPLIONS ...ttt saeste e s e s e e e nesnannens 756
Advanced options for FLINK WEb Ul ...ttt re e nesae s seens 756
View configured FLINK ProPerti@s ... ciecceeeeceeeetetectete e se e e e seesaesaestesaesse s e e e e s esaessessansans 756
Configure MSF to access resources in an AMazon VPCiiieeeeeeeeciisinccennessssssssssssssssssssssssases 757
AMAZON VPO CONCEPLES ceeonieeiiietieiterteeitestessieestesstesseesseeestessaesssaessaesssasssassssessssssssesssessseessseesssesssanns 757
VPC application PEIMISSIONScccccieciicieciecieeeeeeieteee e ste e stessesse s e e s eaesessessessassassasssssssssessensensassansans 758
Add a permissions policy for accessing an AmMazon VPCccoeeeereeeeeeceeceeseeseseeeeeeseens 758
Establish internet and service access for a VPC-connected Managed Service for Apache Flink
=] o] 0] L Tar= 1 o] o HPS U OO OO R 759
Related iNFOrMAtioN ...ttt sa e ss e e s a e 761
Use the Managed Service for Apache FLiNk VPC APl ... ettt sve s 761
Create QPPLICALION oottt ettt te s e st e e e e e e st e st et e besae e e e e e aennenaantans 761
AddAPPLlicationVPCConTiGUIationccceeiereeeeececeeeetete et see e sa et saesaesse e s e e s ennens 762
DeleteApplicationVpcConfiguration ...t 762
UPdate QPPLICALION ..ttt ettt te e s e e e e e e sa e et e st e ae st e s s e sessaenesaentennan 763
EXQMIPLE: USE @ VP ...ttt et et st e s te st et s e s e e s e st et et e st e saeesaeseeneensantansansanes 763
Troubleshoot Managed Service for APache FLINKcccciiieeeeeeeeciiiiiicciiininnneenenessssssccensssscssssssenes 764
Development troubleShOOtiNg ...t e e 764
System rollback best PractiCes ...ttt sa et 765
Hudi configuration best PractiCes ...ttt sae e 766
Apache FLiNk FLame Graphs ...ttt sttt se s sa e a e st s nan 766
Credential provider issue with EFO connector 1.715.2 ...t 766
Applications with unsupported Kinesis CONNECLOrScceceeeeeeeeeeeeeetceecec e 767
Compile error: "Could not resolve dependencies for project”coeoeeeeeeeeveeceeceeceeceeseennn 769
Invalid choice: "KiNeSiSANALYtICSV2"e ittt ettt ste e s e e e e aeaenan 770
UpdateApplication action isn't reloading application code ..o 770
S3 StreamingFileSink FileNOtFOUNAEXCEPLIONSccveveeieeieeeeceeeete et 770
FlinkKafkaConsumer issue with stop with savepoint ..., 772
Flink 1.15 ASYNC SiNK DEAALOCKc.eeveieieeieeeeeeeeeetetectetee et stesveste e e s e e e e s e e e saesaanaaas 773
Amazon Kinesis data streams source processing out of order during re-sharding 782
Real-time vector embedding blueprints FAQ and troubleshootingcccooeeveirveiniennnee. 783
RUNTIME troubLeSNOOTING ..ottt sttt e e nanes 795
TroubleSHOOTING tOOLScvieeeeeeeeee ettt e et ae st st s e s e e e e e e e aanes 795
APPLICATION ISSUBS ..ttt ettt et e s testesae et e e e e e e e e saestetesaassessaesaesasssensansansansan 795

Xiv

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

ApPPLICAtion IS FESTAITINGcccveeieieeeeeeeeee ettt te st s e e e e s s et e st e aesse e e e e e e snenean 800
THroUGRPUL IS 00 SLOW ...ttt e e a et et e e e e e e e e aennan 803
Unbounded sState@ GroWth ...ttt s 804
[/O DOUNA OPEIALOLS ...ttt ettt et e st e s te e e e e e e e e e e st e s aesaessassessaeseeneensenaanes 805
Upstream or source throttling from a Kinesis data streamcccooeveeeeereecieccceneneceeeee 805
CRECKPOINTS ..ttt e e e e e et et e st e st e b e s se e s e e saeas et esesassassassesseesnensansans 806
Checkpointing is tiMING QUL ..ottt st st e e e 812
Checkpoint failure for APache BEAM ...ttt ae e e e e e aeaens 814
BACKPIESSUIE ...ttt ettt st et te st e st e s e e e et et et et e s s e e s e s saese e e e st essensassasansassassaansensensanes 816
DAta SKEW ..ottt ettt et et st et ettt s b e st e s et et e s b et e e s ae b et eseebe e e st esantentenaene 817
STATE SKEW ettt st et ettt et s b et e e s b et aeae st e e e e s et e e setan 817
Integrate with resources in different REQIONSccoooveveeeeeeiceeeeeeeeee e 818
DOCUMENT NISTOIY auuueiiiiiiiiiiiiiieeennnniiiiiiiieeinieennssssssssssssseseesses 819
API eXaMPLe COAEuurrrnriiiiiiiiiiiiiiinnennneessssesieeesss 824
AddApplicationCloudWatchLoggingOPtion ...ttt e e nas 825
AdAAPPLCALIONINPUL ...ttt te e e e et e st e b e b e s e s se e e e e e e e ae st estassassassnesnannans 825
AddApplicationIinputProcessingConfiguration ... 826
AdAAPPLCALIONOUELPUL ..ttt ra et st te s e e e e e e et et e s b e st e s se e e e sa e e anaanes 827
AddApplicatioNRefereNCeDAtASOUICEccvecieeiiceceeeeectete ettt e stesaesae s e s e e e e s e saesaanaans 827
AddApPplicatioNnVPcCoNfIQUIAtion ..ottt e et e saesaesse s s e e e e e e e saannans 828
CrEatEAPPLICALION .ottt et et e st e st e te s e et e e e e e e e e ae st e tebessesaeeanesaeneens 828
Create ApplicatioNSNAPSNOLocuieceee ettt et e s ae b e e e e e aeaans 830
DElETEAPPLICALION ettt e st e st ae e e s e e e e e e e st et e teeseeseesaennenaeneans 830
DeleteApplicationCloudWatchLoggingOPLion ...ttt 830
DeleteApplicationInputProcessingConfigurationoeeceeeeecenececececeeee e 830
DeleteAppPLlICAtiONOULPUL ...ttt s te e st e e e e s e e e et e st e saesbesseesaesessnenean 831
DeleteApplicationReferenCeDAtASOUICEocueeuieieieieeeeeeeee ettt sae e e st e saessanaens 831
DeleteApplicatioNSNAPSNOLoeeeeeeee ettt st a e et aeaens 831
DeleteApplicationVpcConfigUration ...ttt sesae e aens 832
DESCHDEAPPLICALION ..ttt ettt s e st e st e s te e e e e e e e e e saesae st e ssassessasnneseanaans 832
DescribeApplicatioNSNAPSNOL ...ttt e e aenaans 832
DiSCOVEITNPULESCREIMA ...ttt ettt et e st e s e s s e e e e e e e e b e sae st asbassessaesnensensansansans 832
LISEAPPLICATIONS ...ttt e et a et et e st e st e st e e e e e e e e s et et e sbasaasseeseeseenaensansensansansans 833
ListAPPLICAtIONSNAPSNOLS ...ttt e e et et e b e s b et s e e e e aeaenaan 833
STANEAPPLICALION ettt et et e st e st e st esae e e e se e e e s e aesbe st e sessaeseenaenaanean 834
STOPAPPLICATION ettt ettt et e s te s e e s e e e e e e st et e st et e sesseeseeneesaenaansansansan 834

XV

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

(8T oTa = 10T AV o] 0] L Tr=} « [o] [OU OO OO TSRS 834
AP REFEIEINCE «eeueeeereeieeereerreceeeereeesesesesseccsessssssesssessessssase 330
RELEASE VEISIONS .u.eeerreeeenereeereceeecsacesesssessesesessssssessasssssssssssssssssassssnse S 7

XVi

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon Managed Service for Apache Flink (Amazon MSF) was previously known as Amazon Kinesis
Data Analytics for Apache Flink.

XVii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

What is Amazon Managed Service for Apache Flink?

With Amazon Managed Service for Apache Flink, you can use Java, Scala, Python, or SQL to process
and analyze streaming data. The service enables you to author and run code against streaming
sources and static sources to perform time-series analytics, feed real-time dashboards, and metrics.

You can build applications with the language of your choice in Managed Service for Apache Flink
using open-source libraries based on Apache Flink. Apache Flink is a popular framework and engine
for processing data streams.

Managed Service for Apache Flink provides the underlying infrastructure for your Apache Flink
applications. It handles core capabilities like provisioning compute resources, AZ failover resilience,
parallel computation, automatic scaling, and application backups (implemented as checkpoints and
snapshots). You can use the high-level Flink programming features (such as operators, functions,
sources, and sinks) in the same way that you use them when hosting the Flink infrastructure
yourself.

Decide between using Managed Service for Apache Flink or
Managed Service for Apache Flink Studio

You have two options for running your Flink jobs with Amazon Managed Service for Apache Flink.
With Managed Service for Apache Flink, you build Flink applications in Java, Scala, or Python (and
embedded SQL) using an IDE of your choice and the Apache Flink Datastream or Table APIs. With
Managed Service for Apache Flink Studio, you can interactively query data streams in real time and
easily build and run stream processing applications using standard SQL, Python, and Scala.

You can select which method that best suits your use case. If you are unsure, this section will offer
high level guidance to help you.

Decide between using Managed Service for Apache Flink or Managed Service for Apache Flink Studio 1

https://flink.apache.org/
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

— T~

What is the use case?)
W 7

— o
B
Long-running job Data exploration,
experimentation
| S
Interactive
Streaming ETL querying of
streaming data
S St —
Continuous Private, real-time
application dashboard
A
Programming
experience
Python, Java, Scala
(or any JVM language) Selloily
Code versioning
in Git Flink licati Deployed Studio
ink application ;
Do you have - application Studio Notebook
software EVETETET Java, Scala, Python + embedded SQL SGL, Python, Scala
development }—-—ripE — SQL, Python, Scala ’ '
i ezl Develop Iocally in. lo]= Run SQL queries & code in Studio
lifecycle (SDLC) /| (e.g. InteliiJ, Deploy as application on Develop in Studio Notebook. Notebook.
requirements? PyCharm) Amazon Mana\ge'<:jI iﬁsmce for Apache Deploy the a%;?lri:‘?ttli;l)n from Studio Generate dynamic charts.
Unit testing

Before deciding on whether to use Amazon Managed Service for Apache Flink or Amazon Managed
Service for Apache Flink Studio you should consider your use case.

If you plan to operate a long running application that will undertake workloads such as Streaming
ETL or Continuous Applications, you should consider using Managed Service for Apache Flink. This
is because you are able to create your Flink application using the Flink APIs directly in the IDE of
your choice. Developing locally with your IDE also ensures you can leverage software development
lifecycle (SDLC) common processes and tooling such as code versioning in Git, CI/CD automation,
or unit testing.

If you are interested in ad-hoc data exploration, want to query streaming data interactively, or
create private real-time dashboards, Managed Service for Apache Flink Studio will help you meet
these goals in just a few clicks. Users familiar with SQL can consider deploying a long-running
application from Studio directly.

Decide between using Managed Service for Apache Flink or Managed Service for Apache Flink Studio 2

https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

You can promote your Studio notebook to a long-running application. However, if you want
to integrate with your SDLC tools such as code versioning on Git and Cl/CD automation, or
techniques such as unit-testing, we recommend Managed Service for Apache Flink using
the IDE of your choice.

Choose which Apache Flink APIs to use in Managed Service for
Apache Flink

You can build applications using Java, Python, and Scala in Managed Service for Apache Flink using
Apache Flink APIs in an IDE of your choice. You can find guidance on how to build applications
using the Flink Datastream and Table API in the documentation. You can select the language you

create your Flink application in and the APIs you use to best meet the needs of your application
and operations. If you are unsure, this section provides high level guidance to help you.

Choose a Flink API

The Apache Flink APIs have differing levels of abstraction that may effect how you decide to
build your application. They are expressive and flexible and can be used together to build your
application. You do not have to use only one Flink API. You can learn more about the Flink APIs in
the Apache Flink documentation.

Flink offers four levels of API abstraction: Flink SQL, Table API, DataStream API, and Process
Function, which is used in conjunction with the DataStream API. These are all supported in Amazon
Managed Service for Apache Flink. It is advisable to start with a higher level of abstraction where
possible, however some Flink features are only available with the Datastream API where you can

create your application in Java, Python, or Scala. You should consider using the Datastream API if:

» You require fine-grained control over state

« You want to leverage the ability to call an external database or endpoint asynchronously (for
example for inference)

« You want to use custom timers (for example to implement custom windowing or late event
handling)

« You want to be able to modify the flow of your application without resetting the state

Choose which Apache Flink APIs to use in Managed Service for Apache Flink 3

https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/overview/#flinks-apis
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink APIs

High 4
SQL is also embeddable in Java/IVM & Python

Flink sQL

Table API Java/IVM
(tables, joins, groupBy...) Python Programming
DataStream API ava/vm | languages
(streams, windows, keyBy...) Python

Process Function Java/JVM
Low (event handling, state, watermarks, timers...) Python

Abstraction

Low High

Flexibility & Complexity

(® Note
Choosing a language with the DataStream API:
» SQL can be embedded in any Flink application, regardless the programming language
chosen.

« If you are if planning to use the DataStream API, not all connectors are supported in
Python.

« If you need low-latency/high-throughput you should consider Java/Scala regardless the
API.

« If you plan to use Async 10 in the Process Functions APl you will need to use Java.

The choice of the API can also impact your ability to evolve the application logic without
having to reset the state. This depends on a specific feature, the ability to set UID on
operators, that is only available in the DataStream API for both Java and Python. For more
information, see Set UUIDs For All Operators in the Apache Flink Documentation.

Choose a Flink API 4

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/production_ready/#set-uuids-for-all-operators

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Get started with streaming data applications

You can start by creating a Managed Service for Apache Flink application that continuously reads
and processes streaming data. Then, author your code using your IDE of choice, and test it with live
streaming data. You can also configure destinations where you want Managed Service for Apache
Flink to send the results.

To get started, we recommend that you read the following sections:

« Managed Service for Apache Flink: How it works

« Get started with Amazon Managed Service for Apache Flink (DataStream API)

Altenatively, you can start by creating a Managed Service for Apache Flink Studio notebook

that allows you to interactively query data streams in real time, and easily build and run stream
processing applications using standard SQL, Python, and Scala. With a few clicks in the AWS
Management Console, you can launch a serverless notebook to query data streams and get results
in seconds. To get started, we recommend that you read the following sections:

» Use a Studio notebook with Managed Service for Apache Flink

o Create a Studio notebook

Get started with streaming data applications 5

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink: How it works

Managed Service for Apache Flink is a fully managed Amazon service that lets you use an Apache
Flink application to process streaming data. First, you program your Apache Flink application, and
then you create your Managed Service for Apache Flink application.

Program your Apache Flink application

An Apache Flink application is a Java or Scala application that is created with the Apache Flink
framework. You author and build your Apache Flink application locally.

Applications primarily use either the DataStream API or the Table API. The other Apache Flink

APIs are also available for you to use, but they are less commonly used in building streaming
applications.

The features of the two APIs are as follows:

DataStream API
The Apache Flink DataStream API programming model is based on two components:

» Data stream: The structured representation of a continuous flow of data records.

» Transformation operator: Takes one or more data streams as input, and produces one or more
data streams as output.

Applications created with the DataStream API do the following:

» Read data from a Data Source (such as a Kinesis stream or Amazon MSK topic).
« Apply transformations to the data, such as filtering, aggregation, or enrichment.

o Write the transformed data to a Data Sink.

Applications that use the DataStream API can be written in Java or Scala, and can read from a
Kinesis data stream, a Amazon MSK topic, or a custom source.

Your application processes data by using a connector. Apache Flink uses the following types of
connectors:

« Source: A connector used to read external data.

Program your Apache Flink application 6

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/datastream_api.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« Sink: A connector used to write to external locations.

« Operator: A connector used to process data within the application.

A typical application consists of at least one data stream with a source, a data stream with one or
more operators, and at least one data sink.

For more information about using the DataStream API, see Review DataStream API components.

Table API

The Apache Flink Table API programming model is based on the following components:

« Table Environment: An interface to underlying data that you use to create and host one or more
tables.

» Table: An object providing access to a SQL table or view.
» Table Source: Used to read data from an external source, such as an Amazon MSK topic.
» Table Function: A SQL query or API call used to transform data.

» Table Sink: Used to write data to an external location, such as an Amazon S3 bucket.

Applications created with the Table API do the following:

Create a TableEnvironment by connecting to a Table Source.

Create a table in the TableEnvironment using either SQL queries or Table API functions.

Run a query on the table using either Table APl or SQL

Apply transformations on the results of the query using Table Functions or SQL queries.

Write the query or function results to a Table Sink.

Applications that use the Table API can be written in Java or Scala, and can query data using either
API calls or SQL queries.

For more information about using the Table API, see Review Table APl components.

Create your Managed Service for Apache Flink application

Managed Service for Apache Flink is an AWS service that creates an environment for hosting your
Apache Flink application and provides it with the following settings::

Table API 7

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use runtime properties: Parameters that you can provide to your application. You can change

these parameters without recompiling your application code.

Implement fault tolerance: How your application recovers from interrupts and restarts.

Logging and monitoring in Amazon Managed Service for Apache Flink: How your application

logs events to CloudWatch Logs.

Implement application scaling: How your application provisions computing resources.

You create your Managed Service for Apache Flink application using either the console or the
AWS CLI. To get started creating a Managed Service for Apache Flink application, see Tutorial: Get
started using the DataStream API in Managed Service for Apache Flink.

Create a Managed Service for Apache Flink application

This topic contains information about creating a Managed Service for Apache Flink application.

This topic contains the following sections:

 Build your Managed Service for Apache Flink application code

« Create your Managed Service for Apache Flink application

» Use customer managed keys

 Start your Managed Service for Apache Flink application

 Verify your Managed Service for Apache Flink application

» Enable system rollbacks for your Managed Service for Apache Flink application

Build your Managed Service for Apache Flink application code

This section describes the components that you use to build the application code for your Managed
Service for Apache Flink application.

We recommend that you use the latest supported version of Apache Flink for your application
code. For information about upgrading Managed Service for Apache Flink applications, see Use in-
place version upgrades for Apache Flink.

You build your application code using Apache Maven. An Apache Maven project uses a pom. xml file

to specify the versions of components that it uses.

Create an application 8

https://maven.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

Managed Service for Apache Flink supports JAR files up to 512 MB in size. If you use a JAR
file larger than this, your application will fail to start.

Applications can now use the Java API from any Scala version. You must bundle the Scala standard
library of your choice into your Scala applications.

For information about creating a Managed Service for Apache Flink application that uses Apache
Beam, see Use Apache Beam with Managed Service for Apache Flink applications.

Specify your application's Apache Flink version

When using Managed Service for Apache Flink Runtime version 1.1.0 and later, you specify the
version of Apache Flink that your application uses when you compile your application. You provide
the version of Apache Flink with the -Dflink.version parameter. For example, if you are using
Apache Flink 1.19.1, provide the following:

mvn package -Dflink.version=1.19.1

For building applications with earlier versions of Apache Flink, see Earlier versions.

Create your Managed Service for Apache Flink application

After you've built your application code, you do the following to create your Managed Service for
Apache Flink (Amazon MSF) application:

« Upload your Application code: Upload your application code to an Amazon S3 bucket. You
specify the S3 bucket name and object name of your application code when you create your
application. For a tutorial that shows how to upload your application code, see the Tutorial: Get
started using the DataStream APl in Managed Service for Apache Flink tutorial.

» Create your Managed Service for Apache Flink application: Use one of the following methods
to create your Amazon MSF application:

(® Note

Amazon MSF encrypts your application by default using AWS owned keys. You can also
create your new application using AWS KMS customer managed keys (CMKs) to create,

Create your Managed Service for Apache Flink application 9

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

own, and manage your keys yourself. For information about CMKs, see Key management
in Amazon Managed Service for Apache Flink.

» Create your Amazon MSF application using the AWS console: You can create and configure
your application using the AWS console.

When you create your application using the console, your application's dependent resources
(such as CloudWatch Logs streams, IAM roles, and IAM policies) are created for you.

When you create your application using the console, you specify what version of Apache Flink
your application uses by selecting it from the pull-down on the Managed Service for Apache
Flink - Create application page.

For a tutorial about how to use the console to create an application, see the Tutorial: Get
started using the DataStream APl in Managed Service for Apache Flink tutorial.

» Create your Amazon MSF application using the AWS CLI: You can create and configure your
application using the AWS CLI.

When you create your application using the CLI, you must also create your application's
dependent resources (such as CloudWatch Logs streams, IAM roles, and IAM policies) manually.

When you create your application using the CLI, you specify what version of Apache Flink your
application uses by using the RuntimeEnvironment parameter of the CreateApplication
action.

® Note

You can change the RuntimeEnvironment of an existing application. To learn how, see
Use in-place version upgrades for Apache Flink.

Use customer managed keys

In Amazon MSF, customer managed keys (CMKs) is a feature using which you can encrypt your
application's data with a key that you create, own, and manage on AWS Key Management Service
(AWS KMS). For an Amazon MSF application, this means all data subject to a Flink checkpoint or
snapshot are encrypted with a CMK you define for that application.

Use customer managed keys 10

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To use CMK with your application, you must first create your new application, and then apply a
CMK. For more information about using CMKs, see Key management in Amazon Managed Service
for Apache Flink.

Start your Managed Service for Apache Flink application

After you have built your application code, uploaded it to S3, and created your Managed Service for
Apache Flink application, you then start your application. Starting a Managed Service for Apache
Flink application typically takes several minutes.

Use one of the following methods to start your application:

« Start your Managed Service for Apache Flink application using the AWS console: You can run
your application by choosing Run on your application's page in the AWS console.

» Start your Managed Service for Apache Flink application using the AWS API: You can run your
application using the StartApplication action.

Verify your Managed Service for Apache Flink application
You can verify that your application is working in the following ways:

« Using CloudWatch Logs: You can use CloudWatch Logs and CloudWatch Logs Insights to verify
that your application is running properly. For information about using CloudWatch Logs with
your Managed Service for Apache Flink application, see Logging and monitoring in Amazon
Managed Service for Apache Flink.

« Using CloudWatch Metrics: You can use CloudWatch Metrics to monitor your application's
activity, or activity in the resources your application uses for input or output (such as Kinesis
streams, Firehose streams, or Amazon S3 buckets.) For more information about CloudWatch
metrics, see Working with Metrics in the Amazon CloudWatch User Guide.

« Monitoring Output Locations: If your application writes output to a location (such as an Amazon
S3 bucket or database), you can monitor that location for written data.

Enable system rollbacks for your Managed Service for Apache Flink
application

With system-rollback capability, you can achieve higher availability of your running Apache Flink
application on Amazon Managed Service for Apache Flink. Opting into this configuration enables

Start your Managed Service for Apache Flink application 11

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

the service to automatically revert the application to the previously running version when an action
such as UpdateApplication or autoscaling runs into code or configurations bugs.

(@ Note

To use the system rollback feature, you must opt in by updating your application. Existing
applications will not automatically use system rollback by default.

How it works

When you initiate an application operation, such as an update or scaling action, the Amazon
Managed Service for Apache Flink first attempts to run that operation. If it detects issues that
prevent the operation from succeeding, such as code bugs or insufficient permissions, the service
automatically initiates a RollbackApplication operation.

The rollback attempts to restore the application to the previous version that ran successfully,
along with the associated application state. If the rollback is successful, your application continues
processing data with minimal downtime using the previous version. If the automatic rollback also
fails, Amazon Managed Service for Apache Flink transitions the application to the READY status, so
that you can take further actions, including fixing the error and retrying the operation.

You must opt in to use automatic system rollbacks. You can enable it using the console or API for
all operations on your application from this point forward.

The following example request for the UpdateApplication action enables system rollbacks for
an application:

{
"ApplicationName": "MyApplication",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {
"ApplicationSystemRollbackConfigurationUpdate": {
"RollbackEnabledUpdate": "true"
}
}
}

Review common scenarios for automatic system rollback

The following scenarios illustrate where automatic system rollbacks are beneficial:

Enable system rollbacks 12

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« Application updates: If you update your application with new code that has bugs when
initializing the Flink job through the main method, the automatic rollback allows the previous
working version to be restored. Other update scenarios where system rollbacks are helpful
include:

« If your application is updated to run with a parallelism higher than maxParallelism.

« If your application is updated to run with incorrect subnets for a VPC application that results in
a failure during the Flink job startup.

» Flink version upgrades: When you upgrade to a new Apache Flink version and the upgraded
application encounters a snapshot compatibility issue, system rollback lets you revert to the prior
Flink version automatically.

« AutoScaling: When the application scales up but runs into issues restoring from a savepoint, due
to operator mismatch between the snapshot and the Flink job graph.

Use operation APIs for system rollbacks

To provide better visibility, Amazon Managed Service for Apache Flink has two APIs related to
application operations that can help you track failures and related system rollbacks.

ListApplicationOperations

This API lists all operations performed on the application, including UpdateApplication,
Maintenance, RollbackApplication, and others in reverse chronological order. The following
example request for the ListApplicationOperations action lists the first 10 application
operations for the application:

"ApplicationName": "MyApplication",
"Limit": 10

This following example request for ListApplicationOperations helps filter the list to previous
updates on the application:

"ApplicationName": "MyApplication",
"operation": "UpdateApplication"

Enable system rollbacks 13

https://docs.aws.amazon.com/managed-flink/latest/java/how-scaling.html#how-scaling-auto

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

DescribeApplicationOperation

This API provides detailed information about a specific operation listed by
ListApplicationOperations, including the reason for failure, if applicable. The following
example request for the DescribeApplicationOperation action lists details for a specific
application operation:

"ApplicationName": "MyApplication",
"OperationId": "xyzoperation"

For troubleshooting information, see System rollback best practices.

Run a Managed Service for Apache Flink application

This topic contains information about running a Managed Service for Apache Flink.

When you run your Managed Service for Apache Flink application, the service creates an Apache
Flink job. An Apache Flink job is the execution lifecycle of your Managed Service for Apache Flink
application. The execution of the job, and the resources it uses, are managed by the Job Manager.
The Job Manager separates the execution of the application into tasks. Each task is managed

by a Task Manager. When you monitor your application's performance, you can examine the
performance of each Task Manager, or of the Job Manager as a whole.

For information about Apache Flink jobs, see Jobs and Scheduling in the Apache Flink

Documentation.

Identify application and job status

Both your application and the application's job have a current execution status:

» Application status: Your application has a current status that describes its phase of execution.
Application statuses include the following:

» Steady application statuses: Your application typically stays in these statuses until you make a
status change:

« READY: A new or stopped application is in the READY status until you run it.
« RUNNING: An application that has successfully started is in the RUNNING status.

Run an application 14

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/internals/job_scheduling/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

» Transient application statuses: An application in these statuses is typically in the process of

transitioning to another status. If an application stays in a transient status for a length of time,

you can stop the application using the StopApplication action with the Force parameter set to

true. These statuses include the following:

STARTING: Occurs after the StartApplication action. The application is transitioning from
the READY to the RUNNING status.

STOPPING: Occurs after the StopApplication action. The application is transitioning from
the RUNNING to the READY status.

DELETING: Occurs after the DeleteApplication action. The application is in the process of

being deleted.

UPDATING: Occurs after the UpdateApplication action. The application is updating, and will
transition back to the RUNNING or READY status.

AUTOSCALING: The application has the AutoScalingEnabled property of the
ParallelismConfiguration set to true, and the service is increasing the parallelism of the

application. When the application is in this status, the only valid API action you can use is
the StopApplication action with the Force parameter set to true. For information about

automatic scaling, see Use automatic scaling in Managed Service for Apache Flink.

FORCE_STOPPING: Occurs after the StopApplication action is called with the Force
parameter set to true. The application is in the process of being force stopped. The
application transitions from the STARTING, UPDATING, STOPPING, or AUTOSCALING status
to the READY status.

ROLLING_BACK: Occurs after the RollbackApplication action is called. The application is in
the process of being rolled back to a previous version. The application transitions from the
UPDATING or AUTOSCALING status to the RUNNING status.

MAINTENANCE : Occurs while Managed Service for Apache Flink applies patches to your
application. For more information, see Manage maintenance tasks for Managed Service for

Apache Flink.

You can check your application's status using the console, or by using the DescribeApplication

action.

« Job status: When your application is in the RUNNING status, your job has a status that describes
its current execution phase. A job starts in the CREATED status, and then proceeds to the
RUNNING status when it has started. If error conditions occur, your application enters the
following status:

Identify application and job status 15

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ParallelismConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ParallelismConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_RollbackApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« For applications using Apache Flink 1.11 and later, your application enters the RESTARTING
status.

» For applications using Apache Flink 1.8 and prior, your application enters the FAILING status.

The application then proceeds to either the RESTARTING or FAILED status, depending on
whether the job can be restarted.

You can check the job's status by examining your application's CloudWatch log for status
changes.

Run batch workloads

Managed Service for Apache Flink supports running Apache Flink batch workloads. In a batch
job, when an Apache Flink job gets to the FINISHED status, Managed Service for Apache Flink
application status is set to READY. For more information about Flink job statuses, see Jobs and

Scheduling.

Review Managed Service for Apache Flink application resources

This section describes the system resources that your application uses. Understanding how
Managed Service for Apache Flink provisions and uses resources will help you design, create, and
maintain a performant and stable Managed Service for Apache Flink application.

Managed Service for Apache Flink application resources

Managed Service for Apache Flink is an AWS service that creates an environment for hosting your
Apache Flink application. The Managed Service for Apache Flink service provides resources using
units called Kinesis Processing Units (KPUs).

One KPU represents the following system resources:

e One CPU core
» 4 GB of memory, of which one GB is native memory and three GB are heap memory

» 50 GB of disk space

KPUs run applications in distinct execution units called tasks and subtasks. You can think of a
subtask as the equivalent of a thread.

Run batch workloads 16

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The number of KPUs available to an application is equal to the application's Parallelism setting,
divided by the application's ParallelismPerKPU setting.

For more information about application parallelism, see Implement application scaling.

Apache Flink application resources

The Apache Flink environment allocates resources for your application using units called task slots.
When Managed Service for Apache Flink allocates resources for your application, it assigns one or
more Apache Flink task slots to a single KPU. The number of slots assigned to a single KPU is equal
to your application's ParallelismPerKPU setting. For more information about task slots, see Job
Scheduling in the Apache Flink Documentation.

Operator parallelism

You can set the maximum number of subtasks that an operator can use. This value is called
Operator Parallelism. By default, the parallelism of each operator in your application is equal to
the application's parallelism. This means that by default, each operator in your application can use
all of the available subtasks in the application if needed.

You can set the parallelism of the operators in your application using the setParallelism
method. Using this method, you can control the number of subtasks each operator can use at one
time.

For more information about operators, see Operators in the Apache Flink Documentation.
Operator chaining

Normally, each operator uses a separate subtask to execute, but if several operators always execute
in sequence, the runtime can assign them all to the same task. This process is called Operator
Chaining.

Several sequential operators can be chained into a single task if they all operate on the same data.
The following are some of the criteria needed for this to be true:

» The operators do 1-to-1 simple forwarding.

« The operators all have the same operator parallelism.

When your application chains operators into a single subtask, it conserves system resources,
because the service doesn't need to perform network operations and allocate subtasks for each

Apache Flink application resources 17

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/operators/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

operator. To determine if your application is using operator chaining, look at the job graph in the
Managed Service for Apache Flink console. Each vertex in the application represents one or more
operators. The graph shows operators that have been chained as a single vertex.

Per second billing in Managed Service for Apache Flink

Managed Service for Apache Flink is now billed in one-second increments. There is a ten-minute
minimum charge per application. Per-second billing is applicable to applications that are newly
launched or already running. This section describes how Managed Service for Apache Flink meters
and bills you for your usage. To learn more about Managed Service for Apache Flink pricing, see
Amazon Managed Service for Apache Flink Pricing.

How it works

Managed Service for Apache Flink charges you for the duration and number of Kinesis Processing
Units (KPUs) that are billed in one-second increments in the supported AWS Regions. A single
KPU comprises 1vCPU compute and 4 GB of memory. You are charged an hourly rate based on the
number of KPUs used to run your applications.

For example, an application running for 20 minutes and 10 seconds will be charged for 20 minutes
and 10 seconds, multiplied by the resources it used. An application that is running for 5 minutes
will be charged the ten-minute minimum, multiplied by the resources it used.

Managed Service for Apache Flink states usage in hours. For example, 15 minutes corresponds to
0.25 hours.

For Apache Flink applications, you are charged a single additional KPU per application, used for
orchestration. Applications are also charged for running storage and durable backups. Running
application storage is used for stateful processing capabilities in Managed Service for Apache Flink
and is charged per GB/month. Durable backups are optional and provide point-in-time recovery for
applications, charged per GB/month.

In streaming mode, Managed Service for Apache Flink automatically scales the number of KPUs
required by your stream processing application as the demands of memory and compute fluctuate.
You can choose to provision your application with the required number of KPUs.

Pricing 18

https://aws.amazon.com/managed-service-apache-flink/pricing/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS Region availability

(® Note

At this time, per second billing is not available in the following Regions: AWS GovCloud
(US-East), AWS GovCloud (US-West), China (Beijing), and China (Ningxia).

Per second billing is available in the following AWS Regions:

« US East (N. Virginia) - us-east-1

« US East (Ohio) - us-east-2

« US West (N. California) - us-west-1

« US West (Oregon) - us-west-2
 Africa (Cape Town) - af-south-1

« Asia Pacific (Hong Kong) - ap-east-1

« Asia Pacific (Hyderabad) - ap-south-1
« Asia Pacific (Jakarta) - ap-southeast-3
« Asia Pacific (Melbourne) - ap-southeast-4
« Asia Pacific (Mumbai) - ap-south-1

« Asia Pacific (Osaka) - ap-northeast-3
« Asia Pacific (Seoul) - ap-northeast-2

« Asia Pacific (Singapore) - ap-southeast-1
« Asia Pacific (Sydney) - ap-southeast-2
« Asia Pacific (Tokyo) - ap-northeast-1

« Canada (Central) - ca-central-1

« Canada West (Calgary) - ca-west-1

o Europe (Frankfurt) - eu-central-1

» Europe (Ireland) - eu-west-1

o Europe (London) - eu-west-2

« Europe (Milan) - eu-south-1

» Europe (Paris) - eu-west-3

AWS Region availability

19

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

» Europe (Spain) - eu-south-2

» Europe (Stockholm) - eu-north-1

» Europe (Zurich) - eu-central-2

« Israel (Tel Aviv) - il-central-1

« Middle East (Bahrain) - me-south-1
« Middle East (UAE) - me-central-1

« South America (Sdo Paulo) - sa-east-1

Pricing examples

You can find pricing examples on the Managed Service for Apache Flink pricing page. For more
information, see Amazon Managed Service for Apache Flink Pricing. Following are further examples

with Cost Usage Report illustrations for each.
A long running, heavy workload

You are a large Video streaming service and you would like to build a real-time video
recommendation based on your users’ interactions. You use an Apache Flink application in
Managed Service for Apache Flink to continuously ingest user interaction events from multiple
Kinesis data streams and to process events in real time before outputting to a downstream system.
User interaction events are transformed using several operators. This includes partitioning data

by event type, enriching data with additional metadata, sorting data by timestamp, and buffering
data for 5 minutes before delivery. The application has many transformation steps that are
compute-intensive and parallelizable. Your Flink application is configured to run with 20 KPUs to
accommodate the workload. Your application uses 1 GB of durable application backup every day.
The monthly Managed Service for Apache Flink charges will be computed as follows:

Monthly charges

The price in the US East (N. Virginia) Region is $0.11 per KPU-hour. Managed Service for Apache
Flink allocates 50 GB of running application storage per KPU and charges $0.10 per GB/month.

« Monthly KPU charges: 24 hours * 30 days * (20 KPUs + 1 additional KPU for streaming
application) * $0.11/hour = $1,584.00

« Monthly running application storage charges: 30 days * 20 KPUs * 50 GB/KPUs * $0.10/GB-
month = $100.00

Pricing examples 20

https://aws.amazon.com/managed-service-apache-flink/pricing/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« Monthly durable application storage charges: 30 days * 1 GB * 0.023/GB-month = $0.03
« Total charges: $1,584.00 + $100 + $0.03 = $1,684.03

Cost usage report for Managed Service for Apache Flink on the Billing and Cost Management
console for the month

Kinesis Analytics

« USD 1,684.03 - US East (N. Virginia)
« Amazon Kinesis Analytics CreateSnapshot
« $0.023 per GB-month of durable application backups
« 1 GB-month - USD 0.03
« Amazon Kinesis Analytics StartApplication
« $0.10 per GB-month of running application storage
« 1,000 GB-month - USD 100
« $0.11 per Kinesis Processing Unit-hour for Apache Flink applications

« 15,120 KPU-hour - USD 1,584

A batch workload that runs for ~15 minutes every day

You use an Apache Flink application in Managed Service for Apache Flink to transform log data

in Amazon Simple Storage Service (Amazon S3) in batch mode. The log data is transformed using
several operators. This includes applying a schema to the different log events, partitioning data
by event type, and sorting data by timestamp. The application has many transformation steps,
but none are computationally intensive. This application ingests data at 2,000 records/second for
15 minutes every day in a 30-day month. You do not create any durable application backups. The
monthly Managed Service for Apache Flink charges will be computed as follows:

Monthly charges

The price in the US East (N. Virginia) Region is $0.11 per KPU-hour. Managed Service for Apache
Flink allocates 50 GB of running application storage per KPU and charges $0.10 per GB/month.

» Batch Workload: During the 15 minutes per day, the Managed Service for Apache Flink
application is processing 2,000 records/second, which takes 2KPUs. 30 days/month * 15
minutes/day = 450 minutes/month

Pricing examples 21

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« Monthly KPU charges: 450 minutes/month * (2KPUs + 1 additional KPU for streaming
application) * $0.11/hour = $2.48

o Monthly running application storage charges: 450 minutes/month * 2 KPUs * 50 GB/KPUs *
$0.10/GB-month = $0.11

 Total charges: $2.48 + 0.11 = $2.59

Cost usage report for Managed Service for Apache Flink on the Billing and Cost Management
console for the month

Kinesis Analytics

o USD 2.59 - US East (N. Virginia)
« Amazon Kinesis Analytics StartApplication
« $0.10 per GB-month of running application backups
« 1.042 GB-month - USD 0.11
« $0.11 per Kinesis Processing Unit-hour for Apache Flink applications

» 22.5 KPU-Hour - USD 2.48

A test application that stops and starts continuously in the same hour, attracting multiple
minimum charges

You're a large ecommerce platform that processes millions of transactions every day. You want

to develop real-time fraud detection. You use an Apache Flink application in Managed Service

for Apache Flink to ingest transaction events from Kinesis Data Streams and process events in
real-time with different transformation steps. This includes using a sliding window to aggregate
events, partitioning events by event types, and applying specific detection rules for different event
types. During development, you start and stop your application multiple times to test and debug
behavior. There are occasions when your application only runs for a few minutes. There is an hour
when you're testing your application with 4 KPUs and your application does not use any durable
application backups:

« At 10:05 AM, you start your application, which runs for 30 minutes before it's stopped at 10:35
AM.

« At 10:40 AM, you start your application again, which runs for 5 minutes before it's stopped at
10:45 AM.

Pricing examples 22

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« At 10:50 AM, you start the application again, which runs for 2 minutes before it's stopped at
10:52 AM.

Managed Service for Apache Flink charges a minimum of 10 minutes of usage each time an
application starts running. The monthly Managed Service for Apache Flink usage for your
application will be computed as follows:

o First time your application starts and stops: 30 minutes of usage

» Second time your application starts and stops: 10 minutes of usage (your application runs for 5
minutes rounded up to the 10 minutes minimum charge)

 Third time your application starts and stops: 10 minutes of usage (your application runs for 2
minutes, rounded up to the 10 minutes minimum charge)

In total, your application would be charged for 50 minutes of usage. If there are no other times in
the month your application is running, the monthly Managed Service for Apache Flink charges will
be computed as follows:

Monthly charges

The price in the US East (N. Virginia) Region is $0.11 per KPU-hour. Managed Service for Apache
Flink allocates 50 GB of running application storage per KPU and charges $0.10 per GB/month.

« Monthly KPU charges: 50 minutes * (4KPUs + 1 additional KPU for streaming application) *
$0.11/hour = $0.46 (rounded to the nearest penny)

« Monthly running application storage charges: 50 minutes * 4 KPUs * 50 GB/KPUs * $0.10/GB-
month = $0.03 (rounded to the nearest penny)

 Total charges: $0.46 + 0.03 = $0.49

Cost usage report for Managed Service for Apache Flink on the Billing and Cost Management
console for the month

Kinesis Analytics

« USD 0.49 - US East (N. Virginia)
« Amazon Kinesis Analytics StartApplication

« $0.10 per GB-month of running application storage

Pricing examples 23

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« 0.232 GB-month - USD 0.03
« $0.11 per Kinesis Processing Unit-hour for Apache Flink applications

« 4.167 KPU-Hour - USD 0.46

Review DataStream APl components

Your Apache Flink application uses the Apache Flink DataStream API to transform data in a data

stream.

This section describes the different components that move, transform, and track data:

» Use connectors to move data in Managed Service for Apache Flink with the DataStream

API: These components move data between your application and external data sources and
destinations.

» Transform data using operators in Managed Service for Apache Flink with the DataStream API:

These components transform or group data elements within your application.

» Track events in Managed Service for Apache Flink using the DataStream API: This topic describes
how Managed Service for Apache Flink tracks events when using the DataStream API.

Use connectors to move data in Managed Service for Apache Flink with
the DataStream API

In the Amazon Managed Service for Apache Flink DataStream API, connectors are software
components that move data into and out of a Managed Service for Apache Flink application.
Connectors are flexible integrations that let you read from files and directories. Connectors consist
of complete modules for interacting with Amazon services and third-party systems.

Types of connectors include the following:

» Add streaming data sources: Provide data to your application from a Kinesis data stream, file, or
other data source.

« Write data using sinks: Send data from your application to a Kinesis data stream, Firehose
stream, or other data destination.

« Use Asynchronous I/O: Provides asynchronous access to a data source (such as a database) to

enrich stream events.

Review DataStream APl components 24

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Available connectors

The Apache Flink framework contains connectors for accessing data from a variety of sources.
For information about connectors available in the Apache Flink framework, see Connectors in the
Apache Flink documentation.

/A Warning

If you have applications running on Flink 1.6, 1.8, 1.11 or 1.13 and would like to run in
Middle East (UAE), Asia Pacific (Hyderabad), Israel (Tel Aviv), Europe (Zurich), Middle East
(UAE), Asia Pacific (Melbourne) or Asia Pacific (Jakarta) Regions, you might have to rebuild
your application archive with an updated connector or upgrade to Flink 1.18.

Apache Flink connectors are stored in their own open source repositories. If you're
upgrading to version 1.18 or later, you must update your dependencies. To access the
repository for Apache Flink AWS connectors, see flink-connector-aws.

The former Kinesis source
org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
is discontinued and might be removed with a future release of Flink. Use Kinesis Source

instead.

There is no state compatibility between the F1linkKinesisConsumer and
KinesisStreamsSource. For details, see Migrating existing jobs to new Kinesis Streams
Source in the Apache Flink documentation.

Following are the recommended guidelines:

Connector upgrades

Flink version Connector used Resolution

1.19,1.20 Kinesis Source When upgrading to
Managed Service for
Apache Flink version
1.19 and 1.20, make sure
that you are using the
most recent Kinesis Data
Streams source connector
. That must be any version
5.0.0 or later. For more
information, see Amazon

Connectors 25

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/connectors/
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://github.com/apache/flink-connector-aws
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#kinesis-streams-source
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#migrating-existing-jobs-to-new-kinesis-streams-source-from-kinesis-consumer
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#migrating-existing-jobs-to-new-kinesis-streams-source-from-kinesis-consumer
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Flink version

1.19, 1.20

1.19, 1.20

Connector used

Kinesis Sink

DynamoDB Streams Source

Resolution

Kinesis Data Streams

Connector.

When upgrading to
Managed Service for
Apache Flink version
1.19 and 1.20, make sure
that you are using the
most recent Kinesis Data
Streams sink connector.
That must be any version
5.0.0 or later. For more
information, see Kinesis
Streams Sink.

When upgrading to
Managed Service for
Apache Flink version 1.19
and 1.20, make sure that
you are using the most
recent DynamoDB Streams
source connector. That
must be any version 5.0.0
or later. For more informati
on, see Amazon DynamoDB

Connector.

Connectors

26

https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#kinesis-streams-sink
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#kinesis-streams-sink
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/dynamodb/

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Flink version

1.19, 1.20

1.19, 1.20

1.19, 1.20

Connector used

DynamoDB Sink

Amazon SQS Sink

Amazon Managed Service
for Prometheus Sink

Resolution

When upgrading to
Managed Service for
Apache Flink version 1.19
and 1.20, make sure that
you are using the most
recent DynamoDB sink
connector. That must be
any version 5.0.0 or later.
For more information,
see Amazon DynamoDB

Connector.

When upgrading to
Managed Service for
Apache Flink version 1.19
and 1.20, make sure that
you are using the most
recent Amazon SQS sink
connector. That must be
any version 5.0.0 or later.
For more information, see
Amazon SQS Sink.

When upgrading to
Managed Service for
Apache Flink version 1.19
and 1.20, make sure that
you are using the most
recent Amazon Managed
Service for Prometheus
sink connector. That must
be any version 1.0.0 or
later. For more informati
on, see Prometheus Sink.

Connectors

27

https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/sqs/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/prometheus/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add streaming data sources to Managed Service for Apache Flink

Apache Flink provides connectors for reading from files, sockets, collections, and custom sources.
In your application code, you use an Apache Flink source to receive data from a stream. This section

describes the sources that are available for Amazon services.
Use Kinesis data streams

The KinesisStreamsSource provides streaming data to your application from an Amazon
Kinesis data stream.

Create a KinesisStreamsSource

The following code example demonstrates creating a KinesisStreamsSource:

// Configure the KinesisStreamsSource

Configuration sourceConfig = new Configuration();
sourceConfig.set(KinesisSourceConfigOptions.STREAM_INITIAL_POSITION,
KinesisSourceConfigOptions.InitialPosition.TRIM_HORIZON); // This is optional, by
default connector will read from LATEST

// Create a new KinesisStreamsSource to read from specified Kinesis Stream.
KinesisStreamsSource<String> kdsSource =
KinesisStreamsSource.<String>builder()
.setStreamArn("arn:aws:kinesis:us-east-1:123456789012:stream/test-
stream")
.setSourceConfig(sourceConfig)
.setDeserializationSchema(new SimpleStringSchema())

.setKinesisShardAssigner(ShardAssignerFactory.uniformShardAssigner()) // This is

optional, by default uniformShardAssigner will be used.
.build();

For more information about using a KinesisStreamsSource, see Amazon Kinesis Data Streams

Connector in the Apache Flink documentation and our public KinesisConnectors example on
Github.

Create a KinesisStreamsSource that uses an EFO consumer

The KinesisStreamsSource now supports Enhanced Fan-Out (EFO).

Connectors 28

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/datastream_api.html#data-sources
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisConnectors
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisConnectors
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/connectors/datastream/kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

If a Kinesis consumer uses EFO, the Kinesis Data Streams service gives it its own dedicated
bandwidth, rather than having the consumer share the fixed bandwidth of the stream with the
other consumers reading from the stream.

For more information about using EFO with the Kinesis consumer, see FLIP-128: Enhanced Fan Out

for AWS Kinesis Consumers.

You enable the EFO consumer by setting the following parameters on the Kinesis consumer:

o READER_TYPE: Set this parameter to EFO for your application to use an EFO consumer to
access the Kinesis Data Stream data.

o« EFO_CONSUMER_NAME: Set this parameter to a string value that is unique among the
consumers of this stream. Re-using a consumer name in the same Kinesis Data Stream will cause
the previous consumer using that name to be terminated.

To configure a KinesisStreamsSource to use EFO, add the following parameters to the
consumer:

sourceConfig.set(KinesisSourceConfigOptions.READER_TYPE,
KinesisSourceConfigOptions.ReaderType.EF0);
sourceConfig.set(KinesisSourceConfigOptions.EFO_CONSUMER_NAME, "my-flink-efo-
consumer");

For an example of a Managed Service for Apache Flink application that uses an EFO consumer, see
our public Kinesis Connectors example on Github.

Use Amazon MSK
The KafkaSource source provides streaming data to your application from an Amazon MSK topic.
Create a KafkaSouxce

The following code example demonstrates creating a KafkaSource:

KafkaSource<String> source = KafkaSource.<String>builder()
.setBootstrapServers(brokers)
.setTopics("input-topic")

.setGroupId("my-group")
.setStarting0ffsets(0ffsetsInitializer.earliest())
.setValueOnlyDeserializer(new SimpleStringSchema())
.build();

Connectors 29

https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers
https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisConnectors

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");

For more information about using a KafkaSource, see MSK Replication.

Write data using sinks in Managed Service for Apache Flink

In your application code, you can use any Apache Flink sink connector to write into external

systems, including AWS services, such as Kinesis Data Streams and DynamoDB.

Apache Flink also provides sinks for files and sockets, and you can implement custom sinks. Among
the several supported sinks, the following are frequently used:

Use Kinesis data streams

Apache Flink provides information about the Kinesis Data Streams Connector in the Apache Flink
documentation.

For an example of an application that uses a Kinesis data stream for input and output, see Tutorial:
Get started using the DataStream API in Managed Service for Apache Flink.

Use Apache Kafka and Amazon Managed Streaming for Apache Kafka (MSK)

The Apache Flink Kafka connector provides extensive support for publishing data to Apache Kafka

and Amazon MSK, including exactly once guarantees. To learn how to write to Kafka, see Kafka
Connectors examples in the Apache Flink documentation.

Use Amazon S3
You can use the Apache Flink StreamingFileSink to write objects to an Amazon S3 bucket.

For an example about how to write objects to S3, see the section called “S3 Sink".

Use Firehose

The FlinkKinesisFirehoseProducer is a reliable, scalable Apache Flink sink for storing
application output using the Firehose service. This section describes how to set up a Maven project
to create and use a FlinkKinesisFirehoseProducer.

Topics

+ Create a FlinkKinesisFirehoseProducer

 FlinkKinesisFirehoseProducer Code Example

Connectors 30

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/kafka/#kafka-sink
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KafkaConnectors
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KafkaConnectors
https://docs.aws.amazon.com/firehose/latest/dev/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a FlinkKinesisFirehoseProducer

The following code example demonstrates creating a FlinkKinesisFirehoseProducer:

Properties outputProperties = new Properties();
outputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);

FlinkKinesisFirehoseProducer<String> sink = new
FlinkKinesisFirehoseProducer<>(outputStreamName, new SimpleStringSchema(),
outputProperties);

FlinkKinesisFirehoseProducer Code Example

The following code example demonstrates how to create and configure a
FlinkKinesisFirehoseProducer and send data from an Apache Flink data stream to the
Firehose service.

package com.amazonaws.services.kinesisanalytics;

import
com.amazonaws.services.kinesisanalytics.flink.connectors.config.ProducerConfigConstants;
import
com.amazonaws.services.kinesisanalytics.flink.connectors.producer.FlinkKinesisFirehoseProducer
import com.amazonaws.services.kinesisanalytics.runtime.KinesisAnalyticsRuntime;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumezr;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisProducer;

import org.apache.flink.streaming.connectors.kinesis.config.ConsumerConfigConstants;
import java.io.IOException;
import java.util.Map;

import java.util.Properties;

public class Streaminglob {

private static final String region = "us-east-1";
private static final String inputStreamName = "ExampleInputStream";
private static final String outputStreamName = "ExampleOutputStream";

Connectors 31

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

private static DataStream<String>
createSourceFromStaticConfig(StreamExecutionEnvironment env) {

Properties inputProperties = new Properties();
inputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);
inputProperties.setProperty(ConsumerConfigConstants.STREAM_INITIAL_POSITION,
"LATEST");

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName, new
SimpleStringSchema(), inputProperties));
}

private static DataStream<String>
createSourceFromApplicationProperties(StreamExecutionEnvironment env)
throws IOException {
Map<String, Properties> applicationProperties =
KinesisAnalyticsRuntime.getApplicationProperties();
return env.addSource(new FlinkKinesisConsumer<>(inputStreamName, new
SimpleStringSchema(),
applicationProperties.get("ConsumerConfigProperties")));

private static FlinkKinesisFirehoseProducer<String>
createFirehoseSinkFromStaticConfig() {
/*

* com.amazonaws.services.kinesisanalytics.flink.connectors.config.

* ProducerConfigConstants

* lists of all of the properties that firehose sink can be configured with.

*/

Properties outputProperties = new Properties();
outputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);

FlinkKinesisFirehoseProducer<String> sink = new
FlinkKinesisFirehoseProducer<>(outputStreamName,

new SimpleStringSchema(), outputProperties);
ProducerConfigConstants config = new ProducerConfigConstants();
return sink;

}

private static FlinkKinesisFirehoseProducer<String>
createFirehoseSinkFromApplicationProperties() throws IOException {
/*
* com.amazonaws.services.kinesisanalytics.flink.connectors.config.
* ProducerConfigConstants

Connectors 32

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

* lists of all of the properties that firehose sink can be configured with.

*/

Map<String, Properties> applicationProperties =
KinesisAnalyticsRuntime.getApplicationProperties();
FlinkKinesisFirehoseProducer<String> sink = new
FlinkKinesisFirehoseProducer<>(outputStreamName,
new SimpleStringSchema(),
applicationProperties.get("ProducerConfigProperties"));
return sink;

}

public static void main(String[] args) throws Exception {
// set up the streaming execution environment

final StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();

/*
* if you would like to use runtime configuration properties, uncomment the
* lines below
* DataStream<String> input = createSourceFromApplicationProperties(env);

*/
DataStream<String> input = createSourceFromStaticConfig(env);

// Kinesis Firehose sink
input.addSink(createFirehoseSinkFromStaticConfig());

// If you would like to use runtime configuration properties, uncomment the
// lines below
// input.addSink(createFirehoseSinkFromApplicationProperties());

env.execute("Flink Streaming Java API Skeleton");

For a complete tutorial about how to use the Firehose sink, see the section called “Firehose sink".

Connectors

33

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use Asynchronous I/0 in Managed Service for Apache Flink

An Asynchronous |I/O operator enriches stream data using an external data source such as a
database. Managed Service for Apache Flink enriches the stream events asynchronously so that
requests can be batched for greater efficiency.

For more information, see Asynchronous |I/O in the Apache Flink Documentation.

Transform data using operators in Managed Service for Apache Flink
with the DataStream API

To transform incoming data in a Managed Service for Apache Flink, you use an Apache Flink
operator. An Apache Flink operator transforms one or more data streams into a new data stream.
The new data stream contains modified data from the original data stream. Apache Flink provides
more than 25 pre-built stream processing operators. For more information, see Operators in the
Apache Flink Documentation.

This topic contains the following sections:

» Use transform operators

« Use aggregation operators

Use transform operators

The following is an example of a simple text transformation on one of the fields of a JSON data
stream.

This code creates a transformed data stream. The new data stream has the same data as the
original stream, with the string" Company" appended to the contents of the TICKER field.

DataStream<ObjectNode> output = input.map(
new MapFunction<ObjectNode, ObjectNode>() {
@Override
public ObjectNode map(ObjectNode value) throws Exception {
return value.put("TICKER", value.get("TICKER").asText() + " Company");
}

);

Operators 34

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/operators/asyncio/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/operators/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use aggregation operators

The following is an example of an aggregation operator. The code creates an aggregated data
stream. The operator creates a 5-second tumbling window and returns the sum of the PRICE
values for the records in the window with the same TICKER value.

DataStream<ObjectNode> output = input.keyBy(node -> node.get("TICKER").asText())
.window(TumblingProcessingTimeWindows.of (Time.seconds(5)))
.reduce((nodel, node2) -> {
double priceTotal = nodel.get("PRICE").asDouble() +
node2.get("PRICE").asDouble();
nodel.replace("PRICE", JsonNodeFactory.instance.numberNode(priceTotal));
return nodel;

1)

For more code examples, see Examples for creating and working with Managed Service for Apache

Flink applications.

Track events in Managed Service for Apache Flink using the DataStream
API

Managed Service for Apache Flink tracks events using the following timestamps:

» Processing Time: Refers to the system time of the machine that is executing the respective
operation.

« Event Time: Refers to the time that each individual event occurred on its producing device.

« Ingestion Time: Refers to the time that events enter the Managed Service for Apache Flink
service.

You set the time used by the streaming environment using setStreamTimeCharacteristic.

env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

For more information about timestamps, see Generating Watermarks in the Apache Flink

documentation.

Event tracking 35

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/event-time/generating_watermarks/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Review Table APl components

Your Apache Flink application uses the Apache Flink Table API to interact with data in a stream

using a relational model. You use the Table API to access data using Table sources, and then use
Table functions to transform and filter table data. You can transform and filter tabular data using
either API functions or SQL commands.

This section contains the following topics:

« Table API connectors: These components move data between your application and external data

sources and destinations.

« Table API time attributes: This topic describes how Managed Service for Apache Flink tracks

events when using the Table API.

Table API connectors

In the Apache Flink programming model, connectors are components that your application uses to
read or write data from external sources, such as other AWS services.

With the Apache Flink Table API, you can use the following types of connectors:

» Table API sources: You use Table API source connectors to create tables within your
TableEnvironment using either API calls or SQL queries.

« Table API sinks: You use SQL commands to write table data to external sources such as an
Amazon MSK topic or an Amazon S3 bucket.

Table API sources

You create a table source from a data stream. The following code creates a table from an Amazon
MSK topic:

//create the table
final FlinkKafkaConsumer<StockRecord> consumer = new
FlinkKafkaConsumer<StockRecord>(kafkaTopic, new KafkaEventDeserializationSchema(),
kafkaProperties);
consumer.setStartFromEarliest();
//0btain stream
DataStream<StockRecord> events = env.addSource(consumer);

Table APl components 36

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/tableapi/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table table = streamTableEnvironment.fromDataStream(events);

For more information about table sources, see Table & SQL Connectors in the Apache Flink
Documentation.

Table API sinks

To write table data to a sink, you create the sink in SQL, and then run the SQL-based sink on the
StreamTableEnvironment object.

The following code example demonstrates how to write table data to an Amazon S3 sink:

final String s3Sink = "CREATE TABLE sink_table (" +
"event_time TIMESTAMP," +
"ticker STRING," +
"price DOUBLE," +
"dt STRING," +
"hr STRING" +
Yy
" PARTITIONED BY (ticker,dt,hr)" +
" WITH" +
n o+
" 'connector' = 'filesystem'," +
" 'path' = '" + s3Path + "', " +
" 'format' = 'json'" +

")

//send to s3
streamTableEnvironment.executeSql(s3Sink);
filteredTable.executeInsert("sink_table");

You can use the format parameter to control what format Managed Service for Apache Flink uses
to write the output to the sink. For information about formats, see Supported Connectors in the

Apache Flink Documentation.
User-defined sources and sinks

You can use existing Apache Kafka connectors for sending data to and from other AWS services,
such as Amazon MSK and Amazon S3. For interacting with other data sources and destinations, you
can define your own sources and sinks. For more information, see User-defined Sources and Sinks

in the Apache Flink Documentation.

Table API connectors 37

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sourcessinks/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table API time attributes

Each record in a data stream has several timestamps that define when events related to the record
occurred:

« Event Time: A user-defined timestamp that defines when the event that created the record
occurred.
« Ingestion Time: The time when your application retrieved the record from the data stream.

» Processing Time: The time when your application processed the record.

When the Apache Flink Table API creates windows based on record times, you define which of
these timestamps it uses by using the setStreamTimeCharacteristic method.

For more information about using timestamps with the Table API, see Time Attributes and Timely
Stream Processing in the Apache Flink Documentation.

Use Python with Managed Service for Apache Flink

(® Note

If you are developing Python Flink application on a new Mac with Apple Silicon chip, you
may encounter some known issues with Python dependencies of PyFlink 1.15. In this case
we recommend running the Python interpreter in Docker. For step-by-step instructions, see
PyFlink 1.15 development on Apple Silicon Mac.

Apache Flink version 1.20 includes support for creating applications using Python version 3.11.
For more information, see Flink Python Docs. You create a Managed Service for Apache Flink

application using Python by doing the following:

« Create your Python application code as a text file with a main method.

« Bundle your application code file and any Python or Java dependencies into a zip file, and upload
it to an Amazon S3 bucket.

» Create your Managed Service for Apache Flink application, specifying your Amazon S3 code
location, application properties, and application settings.

Table API time attributes 38

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/concepts/time_attributes/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/time/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/time/
https://issues.apache.org/jira/browse/FLINK-26981
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/LocalDevelopmentOnAppleSilicon
https://nightlies.apache.org/flink/flink-docs-release-1.20/api/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

At a high level, the Python Table API is a wrapper around the Java Table API. For information about
the Python Table API, see the Table API Tutorial in the Apache Flink Documentation.

Program your Managed Service for Apache Flink Python application

You code your Managed Service for Apache Flink for Python application using the Apache Flink
Python Table API. The Apache Flink engine translates Python Table API statements (running in the
Python VM) into Java Table API statements (running in the Java VM).

You use the Python Table API by doing the following:

Create a reference to the StreamTableEnvironment.

Create table objects from your source streaming data by executing queries on the
StreamTableEnvironment reference.

Execute queries on your table objects to create output tables.

Write your output tables to your destinations using a StatementSet.

To get started using the Python Table API in Managed Service for Apache Flink, see Get started
with Amazon Managed Service for Apache Flink for Python.

Read and write streaming data
To read and write streaming data, you execute SQL queries on the table environment.
Create a table

The following code example demonstrates a user-defined function that creates a SQL query. The
SQL query creates a table that interacts with a Kinesis stream:

def create_table(table_name, stream_name, region, stream_initpos):
return """ CREATE TABLE {0} (

‘record_id® VARCHAR(64) NOT NULL,
“event_time® BIGINT NOT NULL,
‘record_number® BIGINT NOT NULL,
‘num_retries’ BIGINT NOT NULL,
“verified® BOOLEAN NOT NULL

)

PARTITIONED BY (record_id)

WITH (
'connector' = 'kinesis’',

Program your Python application 39

https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/python/table_api_tutorial/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

'stream' = '{1}',
'aws.region' = '{2}°',
'scan.stream.initpos' = '{3}',
'sink.partitioner-field-delimiter' = ';"',
'sink.producer.collection-max-count' = '100',
'format' = 'json',
'json.timestamp-format.standard' = 'IS0-8601'
) """.format(table_name, stream_name, region, stream_initpos)

Read streaming data

The following code example demonstrates how to use preceding CreateTableSQL query on a
table environment reference to read data:

table_env.execute_sql(create_table(input_table, input_stream, input_region,
stream_initpos))

Write streaming data

The following code example demonstrates how to use the SQL query from the CreateTable
example to create an output table reference, and how to use a StatementSet to interact with the
tables to write data to a destination Kinesis stream:

table_result = table_env.execute_sql("INSERT INTO {@} SELECT * FROM {1}"
.format(output_table_name, input_table_name))

Read runtime properties

You can use runtime properties to configure your application without changing your application
code.

You specify application properties for your application the same way as with a Managed Service for
Apache Flink for Java application. You can specify runtime properties in the following ways:

» Using the CreateApplication action.

» Using the UpdateApplication action.

» Configuring your application by using the console.

You retrieve application properties in code by reading a json file called
application_properties. json that the Managed Service for Apache Flink runtime creates.

Program your Python application 40

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The following code example demonstrates reading application properties from the
application_properties. json file:

file_path = '/etc/flink/application_properties.json'
if os.path.isfile(file_path):
with open(file_path, 'r') as file:
contents = file.read()
properties = json.loads(contents)

The following user-defined function code example demonstrates reading a property group from
the application properties object: retrieves:

def property_map(properties, property_group_id):
for prop in props:
if prop["PropertyGroupId"] == property_group_id:
return prop["PropertyMap"]

The following code example demonstrates reading a property called INPUT_STREAM_KEY from a
property group that the previous example returns:

input_stream = input_property_map[INPUT_STREAM_KEY]

Create your application's code package

Once you have created your Python application, you bundle your code file and dependencies into a
zip file.

Your zip file must contain a python script with a main method, and can optionally contain the

following:

 Additional Python code files
» User-defined Java code in JAR files

« Java libraries in JAR files

(® Note

Your application zip file must contain all of the dependencies for your application. You can't
reference libraries from other sources for your application.

Program your Python application 41

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create your Managed Service for Apache Flink Python application

Specify your code files

Once you have created your application's code package, you upload it to an Amazon S3 bucket. You
then create your application using either the console or the CreateApplication action.

When you create your application using the CreateApplication action, you specify the
code files and archives in your zip file using a special application property group called
kinesis.analytics.flink.run.options. You can define the following types files:

python: A text file containing a Python main method.

jarfile: A Java JAR file containing Java user-defined functions.

pyFiles: A Python resource file containing resources to be used by the application.

pyArchives: A zip file containing resource files for the application.

For more information about Apache Flink Python code file types, see Command-Line Interface in

the Apache Flink Documentation.

® Note

Managed Service for Apache Flink does not support the pyModule, pyExecutable, or
pyRequirements file types. All of the code, requirements, and dependencies must be in
your zip file. You can't specify dependencies to be installed using pip.

The following example json snippet demonstrates how to specify file locations within your
application's zip file:

"ApplicationConfiguration": {
"EnvironmentProperties": {
"PropertyGroups": [
{
"PropertyGroupId": "kinesis.analytics.flink.run.options",
"PropertyMap": {
"python": "MyApplication/main.py",
"jarfile": "MyApplication/lib/myJarFile.jar",
"pyFiles": "MyApplication/lib/myDependentFile.py",

Create your Python application 42

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/deployment/cli/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"pyArchives": "MyApplication/lib/myArchive.zip"
}
},

Monitor your Managed Service for Apache Flink Python application

You use your application's CloudWatch log to monitor your Managed Service for Apache Flink
Python application.

Managed Service for Apache Flink logs the following messages for Python applications:

« Messages written to the console using print () in the application's main method.

« Messages sent in user-defined functions using the 1ogging package. The following code
example demonstrates writing to the application log from a user-defined function:

import logging

@udf(input_types=[DataTypes.BIGINT()], result_type=DataTypes.BIGINT())
def doNothingUdf(i):

logging.info("Got {} in the doNothingUdf".format(str(i)))

return i

« Error messages thrown by the application.

If the application throws an exception in the main function, it will appear in your application's
logs.

The following example demonstrates a log entry for an exception thrown from Python code:

2021-03-15 16:21:20.000 ----------—-—~—~—————————-— - Python Process Started
2021-03-15 16:21:21.000 Traceback (most recent call last):

2021-03-15 16:21:21.000 " File ""/tmp/flink-
web-6118109b-1cd2-439c-9dcd-218874197fa9/flink-web-upload/4390b233-75ch-4205-
a532-441a2de83db3_code/PythonKinesisSink/PythonUdfUndeclared.py"", line 101, in

<module>"
2021-03-15 16:21:21.000 main()
2021-03-15 16:21:21.000 " File ""/tmp/flink-

web-6118109b-1cd2-439c-9dcd-218874197fa9/flink-web-upload/4390b233-75cb-4205-
a532-441a2de83db3_code/PythonKinesisSink/PythonUdfUndeclared.py"", line 54, in main"
2021-03-15 16:21:21.000 " table_env.register_function(""doNothingudf"",
doNothingUdf)"

Monitor your Python application 43

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2021-03-15 16:21:21.000 NameError: name 'doNothingUdf' is not defined
2021-03-15 16:21:21.000 @ -------------mmm e Python Process Exited

2021-03-15 16:21:21.000 Run python process failed
2021-03-15 16:21:21.000 Error occurred when trying to start the job

(@ Note

Due to performance issues, we recommend that you only use custom log messages during
application development.

Query logs with CloudWatch Insights

The following CloudWatch Insights query searches for logs created by the Python entrypoint while
executing the main function of your application:

fields @timestamp, message

| sort @timestamp asc

| filter logger like /PythonDriver/
| 1limit 1000

Use runtime properties in Managed Service for Apache Flink

You can use runtime properties to configure your application without recompiling your application
code.

This topic contains the following sections:

« Manage runtime properties using the console

« Manage runtime properties using the CLI

« Access runtime properties in a Managed Service for Apache Flink application

Manage runtime properties using the console

You can add, update, or remove runtime properties from your Managed Service for Apache Flink
application using the AWS Management Console.

Use runtime properties 44

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

If you are using an earlier supported version of Apache Flink and want to upgrade your
existing applications to Apache Flink 1.19.1, you can do so using in-place Apache Flink
version upgrades. With in-place version upgrades, you retain application traceability
against a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags,
Flink configurations, and more. You can use this feature in RUNNING and READY state. For
more information, see Use in-place version upgrades for Apache Flink.

Update Runtime Properties for a Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

Choose your Managed Service for Apache Flink application. Choose Application details.
On the page for your application, choose Configure.

Expand the Properties section.

ok W

Use the controls in the Properties section to define a property group with key-value pairs. Use
these controls to add, update, or remove property groups and runtime properties.

6. Choose Update.

Manage runtime properties using the CLI

You can add, update, or remove runtime properties using the AWS CLI.

This section includes example requests for APl actions for configuring runtime properties for an
application. For information about how to use a JSON file for input for an API action, see Managed
Service for Apache Flink APl example code.

(® Note

Replace the sample account ID (012345678901) in the examples following with your
account ID.

Manage runtime properties using the CLI 45

https://docs.aws.amazon.com/cli

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add runtime properties when creating an application

The following example request for the CreateApplication action adds two runtime property
groups (ProducerConfigProperties and ConsumerConfigProperties) when you create an

application:
{
"ApplicationName": "MyApplication",
"ApplicationDescription": "my java test app",
"RuntimeEnvironment": "FLINK-1_19",
"ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",

"ApplicationConfiguration": {
"ApplicationCodeConfiguration": {
"CodeContent": {
"S3ContentLocation": {
"BucketARN": "arn:aws:s3:::ka-app-code-username",
"FileKey": "java-getting-started-1.0.jar"

}
},
"CodeContentType": "ZIPFILE"
},
"EnvironmentProperties": {
"PropertyGroups": [
{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
},
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}
}

Manage runtime properties using the CLI 46

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add and update runtime properties in an existing application

The following example request for the UpdateApplication action adds or updates runtime
properties for an existing application:

"ApplicationName": "MyApplication",
"CurrentApplicationVersionId": 2,
"ApplicationConfigurationUpdate": {
"EnvironmentPropertyUpdates": {
"PropertyGroups": [
{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
.
{

"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"

® Note

If you use a key that has no corresponding runtime property in a property group, Managed
Service for Apache Flink adds the key-value pair as a new property. If you use a key for an
existing runtime property in a property group, Managed Service for Apache Flink updates
the property value.

Manage runtime properties using the CLI 47

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Remove runtime properties

The following example request for the UpdateApplication action removes all runtime

properties and property groups from an existing application:

{
"ApplicationName": "MyApplication",
"CurrentApplicationVersionId": 3,
"ApplicationConfigurationUpdate": {
"EnvironmentPropertyUpdates": {
"PropertyGroups": []
}
}
}

/A Important

If you omit an existing property group or an existing property key in a property group, that
property group or property is removed.

Access runtime properties in a Managed Service for Apache Flink
application

You retrieve runtime properties in your Java application code using the static
KinesisAnalyticsRuntime.getApplicationProperties() method, which returnsa
Map<String, Properties> object.

The following Java code example retrieves runtime properties for your application:

Map<String, Properties> applicationProperties =
KinesisAnalyticsRuntime.getApplicationProperties();

You retrieve a property group (as a Java.Util.Properties object) as follows:
Properties consumerProperties = applicationProperties.get("ConsumerConfigProperties");

You typically configure an Apache Flink source or sink by passing in the Properties object
without needing to retrieve the individual properties. The following code example demonstrates

Access runtime properties in a Managed Service for Apache Flink application

48

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

how to create an Flink source by passing in a Properties object retrieved from runtime
properties:

private static FlinkKinesisProducer<String> createSinkFromApplicationProperties()
throws IOException {
Map<String, Properties> applicationProperties =
KinesisAnalyticsRuntime.getApplicationProperties();
FlinkKinesisProducer<String> sink = new FlinkKinesisProducer<String>(new
SimpleStringSchema(),
applicationProperties.get("ProducerConfigProperties"));

sink.setDefaultStream(outputStreamName);
sink.setDefaultPartition("0");
return sink;

For code examples, see Examples for creating and working with Managed Service for Apache Flink
applications.

Use Apache Flink connectors with Managed Service for Apache
Flink

Apache Flink connectors are software components that move data into and out of an Amazon
Managed Service for Apache Flink application. Connectors are flexible integrations that let you
read from files and directories. Connectors consist of complete modules for interacting with
Amazon services and third-party systems.

Types of connectors include the following:
» Sources: Provide data to your application from a Kinesis data stream, file, Apache Kafka topic,
file, or other data sources.

« Sinks: Send data from your application to a Kinesis data stream, Firehose stream, Apache Kafka
topic, or other data destinations.

« Asynchronous I/0: Provides asynchronous access to a data source such as a database to enrich
streams.

Use Apache Flink connectors 49

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Apache Flink connectors are stored in their own source repositories. The version and artifact

for Apache Flink connectors changes depending on the Apache Flink version you are using, and
whether you are using the DataStream, Table, or SQL API.

Amazon Managed Service for Apache Flink supports over 40 pre-built Apache Flink source and

sink connectors. The following table provides a summary of the most popular connectors and their

associated versions. You can also build custom sinks using the Async-sink framework. For more

information, see The Generic Asynchronous Base Sink in the Apache Flink documentation.

To access the repository for Apache Flink AWS connectors, see flink-connector-aws.

Connectors for Flink versions

Connector

Kinesis Data
Stream - Source
- DataStream
and Table API

Kinesis Data
Stream - Sink -
DataStream and
Table API

Kinesis Data
Streams -
Source/Sink -
SQL

Kafka -
DataStream and
Table API

Kafka - SQL

Flink version
1.15

flink-connector-
kinesis, 1.15.4

flink-connector-
aws-kinesis-
streams, 1.15.4

flink-sql-
connector-
kinesis, 1.15.4

flink-connector-
kafka, 1.15.4

flink-sql-
connector-kafka,
1.15.4

Flink version
1.18

flink-connector-
kinesis, 4.3.0-1.1
8

flink-connector-
aws-kinesis
-streams,
4.3.0-1.18

flink-sql-
connector-
kinesis, 4.3.0-1.1
8

flink-connector-
kafka, 3.2.0-1.18

flink-sql-
connector-kafka,
3.2.0-1.18

Flink versions
1.19

flink-connector-
kinesis, 5.0.0-1.1
9

flink-connector-
aws-kinesis
-streams,
5.0.0-1.19

flink-sql-
connector-
kinesis, 5.0.0-1.1
9

flink-connector-
kafka, 3.3.0-1.19

flink-sql-
connector-kafka,
3.3.0-1.19

Flink versions
1.20

flink-connector-
kinesis, 5.0.0-1.2
0

flink-connector-
aws-kinesis
-streams,
5.0.0-1.20

flink-sql-
connector-

kinesis-streams,
5.0.0-1.20

flink-connector-
kafka, 3.3.0-1.20

flink-sql-
connector-kafka,
3.3.0-1.20

Use Apache Flink connectors

50

https://flink.apache.org/2022/03/16/the-generic-asynchronous-base-sink/
https://github.com/apache/flink-connector-aws

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Connector

Firehose -
DataStream and
Table API

Firehose - SQL

DynamoDB -
DataStream and
Table API

DynamoDB -
SQL

OpenSearch -
DataStream and
Table API

OpenSearch -
SQL

Amazon
Managed Service
for Prometheus
DataStream

Flink version
1.15

flink-connector-
aws-kinesis-
firehose, 1.15.4

flink-sql-
connector-aws-
kinesis-firehose,
1.15.4

flink-connector-
dynamodb,
3.0.0-1.15

flink-sql-
connector-
dynamodb,
3.0.0-1.15

Flink version
1.18

flink-connector-
aws-firehose,
4.3.0-1.18

flink-sql-
connector-
aws-firehose,
4.3.0-1.18

flink-connector-
dynamodb,
4.3.0-1.18

flink-sql-
connector-
dynamodb,
4.3.0-1.18

flink-connector-
opensearch,
1.2.0-1.18

flink-sql-
connector-
opensearch,
1.2.0-1.18

flink-sql-
connector-
opensearch,
1.2.0-1.18

Flink versions
1.19

flink-connector-
aws-firehose,
5.0.0-1.19

flink-sql-
connector-
aws-firehose,
5.0.0-1.19

flink-connector-
dynamodb,
5.0.0-1.19

flink-sql-
connector-
dynamodb,
5.0.0-1.19

flink-connector-
opensearch,
1.2.0-1.19

flink-sql-
connector-
opensearch,
1.2.0-1.19

flink-connector-
prometheus,
1.0.0-1.19

Flink versions
1.20

flink-connector-
aws-firehose,
5.0.0-1.20

flink-sql-
connector-
aws-firehose,
5.0.0-1.20

flink-connector-
dynamodb,
5.0.0-1.20

flink-sql-
connector-
dynamodb,
5.0.0-1.20

flink-connector-
opensearch,
1.2.0-1.19

flink-sql-
connector-
opensearch,
1.2.0-1.19

flink-connector-
prometheus,
1.0.0-1.20

Use Apache Flink connectors

51

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Connector Flink version Flink version Flink versions Flink versions
1.15 1.18 1.19 1.20
Amazon SQS - flink-sql- flink-connector- flink-connector-
DataStream and connector- sqgs, 5.0.0-1.19 sqgs, 5.0.0-1.20
Table API opensearch,
1.2.0-1.18

To learn more about connectors in Amazon Managed Service for Apache Flink, see:

o DataStream API connectors

« Table API connectors

Known issues

There is a known open source Apache Flink issue with the Apache Kafka connector in Apache Flink
1.15. This issue is resolved in later versions of Apache Flink.

For more information, see the section called “Known issues”.

Implement fault tolerance in Managed Service for Apache Flink

Checkpointing is the method that is used for implementing fault tolerance in Amazon Managed
Service for Apache Flink. A checkpoint is an up-to-date backup of a running application that is used
to recover immediately from an unexpected application disruption or failover.

For details on checkpointing in Apache Flink applications, see Checkpoints in the Apache Flink
Documentation.

A snapshot is a manually created and managed backup of application state. Snapshots let you
restore your application to a previous state by calling UpdateApplication. For more information,

see Manage application backups using snapshots.

If checkpointing is enabled for your application, then the service provides fault tolerance by
creating and loading backups of application data in the event of unexpected application restarts.
These unexpected application restarts could be caused by unexpected job restarts, instance
failures, etc. This gives the application the same semantics as failure-free execution during these
restarts.

Known issues 52

https://docs.aws.amazon.com/managed-flink/latest/java/how-connectors.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-table-connectors.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/state/checkpoints/
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

If snapshots are enabled for the application, and configured using the application's
ApplicationRestoreConfiguration, then the service provides exactly-once processing semantics
during application updates, or during service-related scaling or maintenance.

Configure checkpointing in Managed Service for Apache Flink

You can configure your application's checkpointing behavior. You can define whether it persists the
checkpointing state, how often it saves its state to checkpoints, and the minimum interval between
the end of one checkpoint operation and the beginning of another.

You configure the following settings using the CreateApplication or UpdateApplication API
operations:

o CheckpointingEnabled — Indicates whether checkpointing is enabled in the application.

« CheckpointInterval — Contains the time in milliseconds between checkpoint (persistence)
operations.

« ConfigurationType — Set this value to DEFAULT to use the default checkpointing behavior.
Set this value to CUSTOM to configure other values.

(® Note

The default checkpoint behavior is as follows:
« CheckpointingEnabled: true
» Checkpointinterval: 60000

o MinPauseBetweenCheckpoints: 5000

If ConfigurationType is set to DEFAULT, the preceding values will be used, even if they
are set to other values using either using the AWS Command Line Interface, or by setting
the values in the application code.

(® Note

For Flink 1.15 onward, Managed Service for Apache Flink will use stop-with-
savepoint during Automatic Snapshot Creation, that is, application update, scaling or

stopping.

Configure checkpointing in Managed Service for Apache Flink 53

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ApplicationRestoreConfiguration.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

e MinPauseBetweenCheckpoints — The minimum time in milliseconds between the
end of one checkpoint operation and the start of another. Setting this value prevents the
application from checkpointing continuously when a checkpoint operation takes longer than the
CheckpointInterval.

Review checkpointing APl examples

This section includes example requests for APl actions for configuring checkpointing for an
application. For information about how to use a JSON file for input for an API action, see Managed
Service for Apache Flink APl example code.

Configure checkpointing for a new application

The following example request for the CreateApplication action configures checkpointing

when you are creating an application:

"ApplicationName": "MyApplication",
"RuntimeEnvironment":"FLINK-1_19",
"ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
"ApplicationConfiguration": {

"ApplicationCodeConfiguration":{

"CodeContent":{

"S3ContentLocation":{
"BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
"FileKey":"myflink.jar",
"ObjectVersion":"AbCdEFfGhIjK1MnOpQrStUVWXYz12345"

}

1,
"FlinkApplicationConfiguration": {

"CheckpointConfiguration": {
"CheckpointingEnabled": "true",
"CheckpointInterval": 20000,
"ConfigurationType": "CUSTOM",
"MinPauseBetweenCheckpoints": 10000

Review checkpointing APl examples 54

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Disable checkpointing for a new application

The following example request for the CreateApplication action disables checkpointing when
you are creating an application:

"ApplicationName": "MyApplication",
"RuntimeEnvironment" :"FLINK-1_19",
"ServiceExecutionRole":"arn:aws:iam::123456789123:ro0le/myrole",
"ApplicationConfiguration": {

"ApplicationCodeConfiguration":{

"CodeContent": {

"S3ContentLocation": {
"BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
"FileKey":"myflink.jar",
"ObjectVersion":"AbCdEfGhIjK1MnOpQrStUvWxYz12345"

}

},
"FlinkApplicationConfiguration": {
"CheckpointConfiguration": {
"CheckpointingEnabled": "false"

Configure checkpointing for an existing application

The following example request for the UpdateApplication action configures checkpointing for
an existing application:

"ApplicationName": "MyApplication",
"ApplicationConfigurationUpdate": {
"FlinkApplicationConfigurationUpdate": {
"CheckpointConfigurationUpdate": {

"CheckpointingEnabledUpdate": true,
"CheckpointIntervalUpdate": 20000,
"ConfigurationTypeUpdate": "CUSTOM",
"MinPauseBetweenCheckpointsUpdate": 10000

Review checkpointing APl examples

55

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

Disable checkpointing for an existing application

The following example request for the UpdateApplication action disables checkpointing for an
existing application:

"ApplicationName": "MyApplication",
"ApplicationConfigurationUpdate": {
"FlinkApplicationConfigurationUpdate": {
"CheckpointConfigurationUpdate": {

"CheckpointingEnabledUpdate": false,
"CheckpointIntervalUpdate": 20000,
"ConfigurationTypeUpdate": "CUSTOM",
"MinPauseBetweenCheckpointsUpdate": 10000

Manage application backups using snapshots

A snapshot is the Managed Service for Apache Flink implementation of an Apache Flink Savepoint.
A snapshot is a user- or service-triggered, created, and managed backup of the application state.
For information about Apache Flink Savepoints, see Savepoints in the Apache Flink Documentation.
Using snapshots, you can restart an application from a particular snapshot of the application state.

(® Note

We recommend that your application create a snapshot several times a day to restart
properly with correct state data. The correct frequency for your snapshots depends on your
application's business logic. Taking frequent snapshots lets you recover more recent data,
but increases cost and requires more system resources.

In Managed Service for Apache Flink, you manage snapshots using the following API actions:

o CreateApplicationSnapshot

o DeleteApplicationSnapshot

Manage application backups using snapshots 56

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/state/savepoints/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplicationSnapshot.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

» DescribeApplicationSnapshot

o ListApplicationSnapshots

For the per-application limit on the number of snapshots, see Managed Service for Apache Flink

and Studio notebook quota. If your application reaches the limit on snapshots, then manually

creating a snapshot fails with a LimitExceededException.

Managed Service for Apache Flink never deletes snapshots. You must manually delete your
snapshots using the DeleteApplicationSnapshot action.

To load a saved snapshot of application state when starting an application, use the
ApplicationRestoreConfiguration parameter of the StartApplication or

UpdateApplication action.

This topic contains the following sections:

« Manage automatic snapshot creation

» Restore from a snapshot that contains incompatible state data

» Review snapshot APl examples

Manage automatic snapshot creation

If SnapshotsEnabled is set to true in the ApplicationSnapshotConfiguration for the application,

Managed Service for Apache Flink automatically creates and uses snapshots when the application
is updated, scaled, or stopped to provide exactly-once processing semantics.

® Note

Setting ApplicationSnapshotConfiguration: :SnapshotsEnabled to false will
lead to data loss during application updates.

(® Note

Managed Service for Apache Flink triggers intermediate savepoints during snapshot
creation. For Flink version 1.15 or greater, intermediate savepoints no longer commit any
side effects. See Triggering savepoints.

Manage automatic snapshot creation 57

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplicationSnapshot.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ApplicationRestoreConfiguration.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ApplicationSnapshotConfiguration.html
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#triggering-savepoints

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Automatically created snapshots have the following qualities:

« The snapshot is managed by the service, but you can see the snapshot using the
ListApplicationSnapshots action. Automatically created snapshots count against your snapshot

limit.
« If your application exceeds the snapshot limit, manually created snapshots will fail, but the
Managed Service for Apache Flink service will still successfully create snapshots when the

application is updated, scaled, or stopped. You must manually delete snapshots using the
DeleteApplicationSnapshot action before creating more snapshots manually.

Restore from a snapshot that contains incompatible state data

Because snapshots contain information about operators, restoring state data from a snapshot

for an operator that has changed since the previous application version may have unexpected
results. An application will fault if it attempts to restore state data from a snapshot that does not
correspond to the current operator. The faulted application will be stuck in either the STOPPING or
UPDATING state.

To allow an application to restore from a snapshot that contains incompatible state data, set
the Al1lowNonRestoredState parameter of the FlinkRunConfiguration to true using the
UpdateApplication action.

You will see the following behavior when an application is restored from an obsolete snapshot:

« Operator added: If a new operator is added, the savepoint has no state data for the new
operator. No fault will occur, and it is not necessary to set Al1lowNonRestoredState.

« Operator deleted: If an existing operator is deleted, the savepoint has state data for the missing
operator. A fault will occur unless Al1lowNonRestoredState is set to true.

« Operator modified: If compatible changes are made, such as changing a parameter's type to a
compatible type, the application can restore from the obsolete snapshot. For more information
about restoring from snapshots, see Savepoints in the Apache Flink Documentation. An
application that uses Apache Flink version 1.8 or later can possibly be restored from a snapshot
with a different schema. An application that uses Apache Flink version 1.6 cannot be restored.
For two-phase-commit sinks, we recommend using system snapshot (SwS) instead of user-
created snapshot (CreateApplicationSnapshot).

Restore from a snapshot that contains incompatible state data 58

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_FlinkRunConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/state/savepoints/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For Flink, Managed Service for Apache Flink triggers intermediate savepoints during snapshot
creation. For Flink 1.15 onward, intermediate savepoints no longer commit any side effects. See
Triggering Savepoints.

If you need to resume an application that is incompatible with existing savepoint data, we
recommend that you skip restoring from the snapshot by setting the ApplicationRestoreType
parameter of the StartApplication action to SKIP_RESTORE_FROM_SNAPSHOT.

For more information about how Apache Flink deals with incompatible state data, see State
Schema Evolution in the Apache Flink Documentation.

Review snapshot APl examples

This section includes example requests for APl actions for using snapshots with an application.
For information about how to use a JSON file for input for an API action, see Managed Service for

Apache Flink APl example code.

Enable snapshots for an application

The following example request for the UpdateApplication action enables snapshots for an

application:

"ApplicationName": "MyApplication",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {
"ApplicationSnapshotConfigurationUpdate": {
"SnapshotsEnabledUpdate": "true"
}

Create a snapshot

The following example request for the CreateApplicationSnapshot action creates a snapshot

of the current application state:

"ApplicationName": "MyApplication",
"SnapshotName": "MyCustomSnapshot"

Review snapshot APl examples 59

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#triggering-savepoints
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/schema_evolution/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/schema_evolution/
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

List snapshots for an application

The following example request for the ListApplicationSnapshots action lists the first 50

snapshots for the current application state:

"ApplicationName": "MyApplication",
"Limit": 50

List details for an application snapshot

The following example request for the DescribeApplicationSnapshot action lists details for a

specific application snapshot:

"ApplicationName": "MyApplication",
"SnapshotName": "MyCustomSnapshot"

Delete a snapshot

The following example request for the DeleteApplicationSnapshot action deletes a

previously saved snapshot. You can get the SnapshotCreationTimestamp value using either
ListApplicationSnapshots orDeleteApplicationSnapshot:

{
"ApplicationName": "MyApplication",
"SnapshotName": "MyCustomSnapshot",
"SnapshotCreationTimestamp": 12345678901.0,
}

Restart an application using a named snapshot

The following example request for the StartApplication action starts the application using the

saved state from a specific snapshot:

"ApplicationName": "MyApplication",

Review snapshot APl examples 60

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"RunConfiguration": {
"ApplicationRestoreConfiguration": {
"ApplicationRestoreType": "RESTORE_FROM_CUSTOM_SNAPSHOT",

"SnapshotName": "MyCustomSnapshot"

Restart an application using the most recent snapshot

The following example request for the StartApplication action starts the application using the

rnostrecentsnapshot

{
"ApplicationName": "MyApplication",
"RunConfiguration": {
"ApplicationRestoreConfiguration": {
"ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
}
}
}

Restart an application using no snapshot

The following example request for the StartApplication action starts the application without
loading application state, even if a snapshot is present:

{
"ApplicationName": "MyApplication",
"RunConfiguration": {
"ApplicationRestoreConfiguration": {
"ApplicationRestoreType": "SKIP_RESTORE_FROM_SNAPSHOT"
}
}
}

Use in-place version upgrades for Apache Flink

With in-place version upgrades for Apache Flink, you retain application traceability against a single
ARN across Apache Flink versions. This includes snapshots, logs, metrics, tags, Flink configurations,

resource limit increases, VPCs, and more.

Use in-place version upgrades for Apache Flink 61

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can perform in-place version upgrades for Apache Flink to upgrade existing applications to a
new Flink version in Amazon Managed Service for Apache Flink. To perform this task, you can use
the AWS CLI, AWS CloudFormation, AWS SDK, or the AWS Management Console.

(@ Note

You can't use in-place version upgrades for Apache Flink with Amazon Managed Service for
Apache Flink Studio.

This topic contains the following sections:

» Upgrade applications using in-place version upgrades for Apache Flink

» Upgrade your application to a new Apache Flink version

« Roll back application upgrades

» General best practices and recommendations for application upgrades

» Precautions and known issues with application upgrades

Upgrade applications using in-place version upgrades for Apache Flink

Before you begin, we recommend that you watch this video: In-Place Version Upgrades.

To perform in-place version upgrades for Apache Flink, you can use the AWS CLI, AWS
CloudFormation, AWS SDK, or the AWS Management Console. You can use this feature with any
existing applications that you use with Managed Service for Apache Flink in a READY or RUNNING
state. It uses the UpdateApplication API to add the ability to change the Flink runtime.

Before upgrading: Update your Apache Flink application

When you write your Flink applications, you bundle them with their dependencies into an
application JAR and upload the JAR to your Amazon S3 bucket. From there, Amazon Managed
Service for Apache Flink runs the job in the new Flink runtime that you've selected. You might have
to update your applications to achieve compatibility with the Flink runtime you want to upgrade
to. There can be inconsistencies between Flink versions that cause the version upgrade to fail. Most
commonly, this will be with connectors for sources (ingress) or destinations (sinks, egress) and
Scala dependencies. Flink 1.15 and later versions in Managed Service for Apache Flink are Scala-
agnostic, and your JAR must contain the version of Scala you plan to use.

To update your application

Upgrade applications 62

https://www.youtube.com/watch?v=f1qGGdaP2XI

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Read the advice from the Flink community on upgrading applications with state. See
Upgrading Applications and Flink Versions.

2. Read the list of knowing issues and limitations. See Precautions and known issues with

application upgrades.

3. Update your dependencies and test your applications locally. These dependencies typically are:

1. The Flink runtime and API.

2. Connectors recommended for the new Flink runtime. You can find these on Release versions

for the specific runtime you want to update to.

3. Scala - Apache Flink is Scala-agnostic starting with and including Flink 1.15. You must
include the Scala dependencies you want to use in your application JAR.

4. Build a new application JAR on zipfile and upload it to Amazon S3. We recommend that you
use a different name from the previous JAR/zipfile. If you need to roll back, you will use this
information.

5. If you are running stateful applications, we strongly recommend that you take a snapshot of
your current application. This lets you roll back statefully if you encounter issues during or
after the upgrade.

Upgrade your application to a new Apache Flink version

You can upgrade your Flink application by using the UpdateApplication action.

You can call the UpdateApplication APl in multiple ways:

» Use the existing Configuration workflow on the AWS Management Console.
» Go to your app page on the AWS Management Console.
» Choose Configure.

» Select the new runtime and the snapshot that you want to start from, also known as restore
configuration. Use the latest setting as the restore configuration to start the app from the
latest snapshot. Point to the new upgraded application JAR/zip on Amazon S3.

o Use the AWS CLI update-application action.

o Use AWS CloudFormation (CFN).

» Update the RuntimeEnvironment field. Previously, AWS CloudFormation deleted the
application and created a new one, causing your snapshots and other app history to be lost.

Upgrade to a new version 63

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://docs.aws.amazon.com/managed-flink/latest/java/release-version-list.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kinesisanalyticsv2/update-application.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisanalyticsv2-application.html#cfn-kinesisanalyticsv2-application-runtimeenvironment

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Now AWS CloudFormation updates your RuntimeEnvironment in place and does not delete
your application.

+ Use the AWS SDK.

» Consult the SDK documentation for the programming language of your choice. See
UpdateApplication.

You can perform the upgrade while the application is in RUNNING state or while the application
is stopped in READY state. Amazon Managed Service for Apache Flink validates to verify

the compatibility between the original runtime version and the target runtime version. This
compatibility check runs when you perform UpdateApplication while in RUNNING state or at the
next StartApplication if you upgrade while in READY state.

Upgrade an application in RUNNING state

The following example shows upgrading an app in RUNNING state named UpgradeTest to Flink
1.18 in US East (N. Virginia) using the AWS CLI and starting the upgraded app from the latest
snapshot.

aws --region us-east-1 kinesisanalyticsv2 update-application \
--application-name UpgradeTest --runtime-environment-update "FLINK-1_18" \
--application-configuration-update '{"ApplicationCodeConfigurationUpdate": '\
'{"CodeContentUpdate": {"S3ContentLocationUpdate": '\
'{"FileKeyUpdate": "flink_1_18_app.jar"}}}}' \
--run-configuration-update '{"ApplicationRestoreConfiguration": '\
"{"ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"}}' \
--current-application-version-id ${current_application_version}

« If you enabled service snapshots and want to continue the application from the latest snapshot,
Amazon Managed Service for Apache Flink verifies that the current RUNNING application's
runtime is compatible with the selected target runtime.

« If you have specified a snapshot from which to continue the target runtime, Amazon Managed
Service for Apache Flink verifies that the target runtime is compatible with the specified
snapshot. If the compatibility check fails, your update request is rejected and your application
remains untouched in the RUNNING state.

Upgrade to a new version

64

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« If you choose to start your application without a snapshot, Amazon Managed Service for Apache
Flink doesn't run any compatibility checks.

« If your upgraded application fails or gets stuck in a transitive UPDATING state, follow the
instructions in the Roll back application upgrades section to return to the healthy state.

Process flow for running state applications

Upgrade to a new version 65

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Stateful
application using
older
Flink runtime
version

Update dependencies in
application source code:
new Flink version,
connectors,

Scala version

.

Test the updated application
on target Flink version:
locally, and in non-production
environment

Build & package the
application.
Upload the jar/zipfile to S3
with a different name

Take a Snapshot
from the running original
application

[
Application: RUNNING
v

UpdateApplication
- new Runtime
- new jarfile/zipfile
(restore from latest snapshot)

Compatibility check

T
Compatible

Application: UPDATING
v

Automatic snapshot

A

Roll back to previous version

RollbackApplication
(reload previous code,
runtime and latest successful
snapshot)

«—

Application: Restart
"stuck" from latest snapshot,
in on new runtime,
UPDATING with new application code

UpdateApplication

Application: RUNNING

The old application

is running.
Further work is
required to update

|
Application: RUNNING
Is the job running?
the job is running

Is the application
behaving
as expected?

Update successful.
The application is
running on the new
runtime

ontinuousl
restarting

| Not rejected.
compatible The original application
is unaffected
Application: RUNNING
The application
cannot be directly
updated to the
selected target
version.
The job is

Roll back to previous version:

UpdateApplication
- original Runtime
- original jarfile/zipfile
- snapshot

The application

is misbehaving

Application: RUNNING

The old application

is running.
Further work is
required to update

Upgrade to a new version

66

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrade an application in READY state

The following example shows upgrading an app in READY state named UpgradeTest to Flink 1.18

in US East (N. Virginia) using the AWS CLI. There is no specified snapshot to start the app because
the application is not running. You can specify a snapshot when you issue the start application
request.

aws --region us-east-1 kinesisanalyticsv2 update-application \

--application-name UpgradeTest --runtime-environment-update "FLINK-1_18" \

--application-configuration-update '{"ApplicationCodeConfigurationUpdate": '\
'{"CodeContentUpdate": {"S3ContentLocationUpdate": '\

"{"FileKeyUpdate": "flink_1_18_app.jar"}}}}' \
--current-application-version-id ${current_application_version}

« You can update the runtime of your applications in READY state to any Flink version. Amazon
Managed Service for Apache Flink does not run any checks until you start your application.

« Amazon Managed Service for Apache Flink only runs compatibility checks against the snapshot
you selected to start the app. These are basic compatibility checks following the Flink
Compatibility Table. They only check the Flink version with which the snapshot was taken and
the Flink version you are targeting. If the Flink runtime of the selected snapshot is incompatible
with the app's new runtime, the start request might be rejected.

Process flow for ready state applications

Upgrade to a new version

67

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/#compatibility-table
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/#compatibility-table

Managed Service for

Apache Flink

Managed Service for Apache Flink Developer Guide

Stateful
application using
older
Flink runtime
version

The
application cannot
be directly updated
to the selected
target version

Update dependencies in
application source code:
new Flink version,
connectors,

Scala version

Test the updated application
on target Flink version:
locally, and in non-production
environment

Build & package the
application.
Upload the jar/zipfile to S3
with a different name

Application: RUNNING

A 4

StopApplication

A

Automatic snapshot
(if snapshots are enabled)

f
Application: READY
v

Application: READY——— Not

UpdateApplication
- new Runtime
- new jarfile/zipfile

Runtime update

[
Application: READY
¥

StartApplication
(from latest snapshot)

Compatibility check

compatible

|
Compatible

Application: STARTING

Start
from latest snapshot,
on new runtime,
with new application code

Application: RUNNING

Is the job running?

the job is running

Is the application
behaving
as expected?

The job is
continuously
restarting

!

Roll back to previous version:

UpdateAppli

- original Runtime
- original jarfile/zipfile
- snapshot

The application

is misbehaving

Application: RUNNING

Upgrade to a new

version

Update successful.
The application is
running on the new

The old application
is running.
Further work is

required to update

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Roll back application upgrades

If you have issues with your application or find inconsistencies in your application code between
Flink versions, you can roll back using the AWS CLI, AWS CloudFormation, AWS SDK, or the AWS
Management Console. The following examples show what rolling back looks like in different failure
scenarios.

Runtime upgrade succeeded, the application is in RUNNING state, but the job is
failing and continuously restarting

Assume you are trying to upgrade a stateful application named TestApplication from Flink
1.15 to Flink 1.18 in US East (N. Virginia). However, the upgraded Flink 1.18 application is failing to
start or is constantly restarting, even though the application is in RUNNING state. This is a common
failure scenario. To avoid further downtime, we recommend that you roll back your application
immediately to the previous running version (Flink 1.15), and diagnose the issue later.

To roll back the application to the previous running version, use the rollback-application AWS CLI
command or the RollbackApplication API action. This API action rolls back the changes you've
made that resulted in the latest version. Then it restarts your application using the latest successful
snapshot.

We strongly recommend that you take a snapshot with your existing app before you attempt to
upgrade. This will help to avoid data loss or having to reprocess data.

In this failure scenario, AWS CloudFormation will not roll back the application for you. You must
update the CloudFormation template to point to the previous runtime and to the previous code
to force CloudFormation to update the application. Otherwise, CloudFormation assumes that your
application has been updated when it transitions to the RUNNING state.

Rolling back an application that is stuck in UPDATING

If your application gets stuck in the UPDATING or AUTOSCALING state after an upgrade attempt,
Amazon Managed Service for Apache Flink offers the rollback-applications AWS CLI command, or
the RollbackApplications API action that can roll back the application to the version before the
stuck UPDATING or AUTOSCALING state. This API rolls back the changes that you've made that
caused the application to get stuck in UPDATING or AUTOSCALING transitive state.

Roll back application upgrades 69

https://docs.aws.amazon.com/cli/latest/reference/kinesisanalyticsv2/rollback-application.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_RollbackApplication.html
https://docs.aws.amazon.com/cli/latest/reference/kinesisanalyticsv2/rollback-application.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_RollbackApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

General best practices and recommendations for application upgrades

» Test the new job/runtime without state on a non-production environment before attempting a
production upgrade.

« Consider testing the stateful upgrade with a non-production application first.

« Make sure that your new job graph has a compatible state with the snapshot you will be using to
start your upgraded application.

« Make sure that the types stored in operator states stay the same. If the type has changed,
Apache Flink can't restore the operator state.

» Make sure that the Operator IDs you set using the uid method remain the same. Apache Flink
has a strong recommendation for assigning unique IDs to operators. For more information, see
Assigning Operator IDs in the Apache Flink documentation.

If you don't assign IDs to your operators, Flink automatically generates them. In that case, they
might depend on the program structure and, if changed, can cause compatibility issues. Flink
uses Operator IDs to match state in snapshot to operator. Changing Operator IDs results in the
application not starting, or state stored in the snapshot being dropped, and the new operator
starting without state.

« Don't change the key used to store the keyed state.

« Don't modify the input type of stateful operators like window or join. This implicitly changes
the type of the internal state of the operator, causing a state incompatibility.

Precautions and known issues with application upgrades

Kafka Commit on checkpointing fails repeatedly after a broker restart

There is a known open source Apache Flink issue with the Apache Kafka connector in Flink version
1.15 caused by a critical open source Kafka Client bug in Kafka Client 2.8.1. For more information,
see Kafka Commit on checkpointing fails repeatedly after a broker restart and KafkaConsumer is

unable to recover connection to group coordinator after commitOffsetAsync exception.

To avoid this issue, we recommend that you use Apache Flink 1.18 or later in Amazon Managed
Service for Apache Flink.

Best practices 70

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#assigning-operator-ids
https://issues.apache.org/jira/browse/FLINK-28060
https://issues.apache.org/jira/browse/KAFKA-13840
https://issues.apache.org/jira/browse/KAFKA-13840

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Known limitations of state compatibility

« If you are using the Table API, Apache Flink doesn't guarantee state compatibility between
Flink versions. For more information, see Stateful Upgrades and Evolution in the Apache Flink

documentation.

 Flink 1.6 states are not compatible with Flink 1.18. The API rejects your request if you try to
upgrade from 1.6 to 1.18 and later with state. You can upgrade to 1.8, 1.11, 1.13 and 1.15 and
take a snapshot, and then upgrade to 1.18 and later. For more information, see Upgrading
Applications and Flink Versions in the Apache Flink documentation.

Known issues with the Flink Kinesis Connector

 If you are using Flink 1.11 or earlier and using the amazon-kinesis-connector-flink
connector for Enhanced-fan-out (EFO) support, you must take extra steps for a stateful upgrade
to Flink 1.13 or later. This is because of the change in the package name of the connector. For
more information, see amazon-kinesis-connector-flink.

The amazon-kinesis-connector-flink connector for Flink 1.11 and earlier uses the
packaging software.amazon.kinesis, whereas the Kinesis connector for Flink 1.13 and later
uses org.apache.flink.streaming.connectors.kinesis. Use this tool to support your
migration: amazon-kinesis-connector-flink-state-migrator.

« If you are using Flink 1.13 or earlier with F1inkKinesisProducer and upgrading to Flink
1.15 or later, for a stateful upgrade you must continue to use F1linkKinesisProducer in
Flink 1.15 or later, instead of the newer KinesisStreamsSink. However, if you already have a
custom uid set on your sink, you should be able to switch to KinesisStreamsSink because
FlinkKinesisProducer doesn't keep state. Flink will treat it as the same operator because a
custom uid is set.

Flink applications written in Scala

« As of Flink 1.15, Apache Flink doesn't include Scala in the runtime. You must include the version
of Scala you want to use and other Scala dependencies in your code JAR/zip when upgrading
to Flink 1.15 or later. For more information, see Amazon Managed Service for Apache Flink for
Apache Flink 1.15.2 release.

Known issues 71

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/concepts/overview/#stateful-upgrades-and-evolution
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://github.com/awslabs/amazon-kinesis-connector-flink
https://github.com/awslabs/amazon-kinesis-connector-flink-state-migrator
https://docs.aws.amazon.com/managed-flink/latest/java/flink-1-15-2.html
https://docs.aws.amazon.com/managed-flink/latest/java/flink-1-15-2.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

o If your application uses Scala and you are upgrading it from Flink 1.11 or earlier (Scala 2.11)
to Flink 1.13 (Scala 2.12), make sure that your code uses Scala 2.12. Otherwise, your Flink 1.13
application may fail to find Scala 2.11 classes in the Flink 1.13 runtime.

Things to consider when downgrading Flink application

« Downgrading Flink applications is possible, but limited to cases when the application was
previously running with the older Flink version. For a stateful upgrade Managed Service for
Apache Flink will require using a snapshot taken with matching or earlier version for the
downgrade

« If you are updating your runtime from Flink 1.13 or later to Flink 1.11 or earlier, and if your app
uses the HashMap state backend, your application will continuously fail.

Implement application scaling in Managed Service for Apache
Flink

You can configure the parallel execution of tasks and the allocation of resources for Amazon
Managed Service for Apache Flink to implement scaling. For information about how Apache Flink
schedules parallel instances of tasks, see Parallel Execution in the Apache Flink Documentation.

Topics

» Configure application parallelism and ParallelismPerKPU

Allocate Kinesis Processing Units

Update your application's parallelism

Use automatic scaling in Managed Service for Apache Flink

maxParallelism considerations

Configure application parallelism and ParallelismPerKPU

You configure the parallel execution for your Managed Service for Apache Flink application
tasks (such as reading from a source or executing an operator) using the following
ParallelismConfiguration properties:

Implement application scaling 72

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/execution/parallel/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ApplicationConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« Parallelism— Use this property to set the default Apache Flink application parallelism. All
operators, sources, and sinks execute with this parallelism unless they are overridden in the
application code. The default is 1, and the default maximum is 256.

e ParallelismPerKPU — Use this property to set the number of parallel tasks that can be
scheduled per Kinesis Processing Unit (KPU) of your application. The default is 1, and the
maximum is 8. For applications that have blocking operations (for example, 1/0), a higher value
of ParallelismPexrKPU leads to full utilization of KPU resources.

(® Note

The limit for Parallelismis equal to ParallelismPerKPU times the limit for KPUs
(which has a default of 64). The KPUs limit can be increased by requesting a limit increase.
For instructions on how to request a limit increase, see "To request a limit increase" in
Service Quotas.

For information about setting task parallelism for a specific operator, see Setting the Parallelism:
Operator in the Apache Flink Documentation.

Allocate Kinesis Processing Units

Managed Service for Apache Flink provisions capacity as KPUs. A single KPU provides you with 1
vCPU and 4 GB of memory. For every KPU allocated, 50 GB of running application storage is also
provided.

Managed Service for Apache Flink calculates the KPUs that are needed to run your application
using the Parallelismand ParallelismPexrKPU properties, as follows:

Allocated KPUs for the application = Parallelism/ParallelismPerKPU

Managed Service for Apache Flink quickly gives your applications resources in response to

spikes in throughput or processing activity. It removes resources from your application gradually
after the activity spike has passed. To disable the automatic allocation of resources, set the
AutoScalingEnabled value to false, as described later in Update your application's parallelism.

The default limit for KPUs for your application is 64. For instructions on how to request an increase
to this limit, see "To request a limit increase" in Service Quotas.

Allocate Kinesis Processing Units 73

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/execution/parallel/#operator-level
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/execution/parallel/#operator-level
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

An additional KPU is charged for orchestrations purposes. For more information, see
Managed Service for Apache Flink pricing.

Update your application's parallelism

This section contains sample requests for APl actions that set an application's parallelism. For more
examples and instructions for how to use request blocks with API actions, see Managed Service for
Apache Flink APl example code.

The following example request for the CreateApplication action sets parallelism when you are
creating an application:

"ApplicationName": "string",
"RuntimeEnvironment":"FLINK-1_18",
"ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
"ApplicationConfiguration": {

"ApplicationCodeConfiguration":{

"CodeContent": {

"S3ContentLocation":{
"BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
"FileKey":"myflink.jar",
"ObjectVersion":"AbCAEfGhIjKI1MnOpQrStUvWxYz12345"
}

b

"CodeContentType":"ZIPFILE"
b
"FlinkApplicationConfiguration": {

"ParallelismConfiguration": {

"AutoScalingEnabled": "true",
"ConfigurationType": "CUSTOM",
"Parallelism": 4,
"ParallelismPerKPU": 4

Update your application's parallelism 74

https://aws.amazon.com/kinesis/data-analytics/pricing/
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The following example request for the UpdateApplication action sets parallelism for an existing
application:

"ApplicationName": "MyApplication",

"CurrentApplicationVersionId": 4,

"ApplicationConfigurationUpdate": {

"FlinkApplicationConfigurationUpdate": {
"ParallelismConfigurationUpdate": {

"AutoScalingEnabledUpdate": "true",
"ConfigurationTypeUpdate": "CUSTOM",
"ParallelismPerKPUUpdate": 4,
"ParallelismUpdate": 4

The following example request for the UpdateApplication action disables parallelism for an
existing application:

"ApplicationName": "MyApplication",
"CurrentApplicationVersionId": 4,
"ApplicationConfigurationUpdate": {
"FlinkApplicationConfigurationUpdate": {
"ParallelismConfigurationUpdate": {
"AutoScalingEnabledUpdate": "false"

Use automatic scaling in Managed Service for Apache Flink

Managed Service for Apache Flink elastically scales your application’s parallelism to accommodate
the data throughput of your source and your operator complexity for most scenarios. Automatic
scaling is enabled by default. Managed Service for Apache Flink monitors the resource (CPU) usage
of your application, and elastically scales your application's parallelism up or down accordingly:

Use automatic scaling 75

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

» Your application scales up (increases parallelism) if CloudWatch metric maximum
containerCPUUtilization is larger than 75 percent or above for 15 minutes. That means the
ScaleUp action is initiated when there are 15 consecutive datapoints with 1 minute period equal
to or over 75 percent. A ScaleUp action doubles the CurrentParallelism of your application.
ParallelismPerKPU is not modified. As a consequence, the number of allocated KPUs also
doubles.

 Your application scales down (decreases parallelism) when your CPU usage remains below
10 percent for six hours. That means the ScaleDown action is initiated when there are 360
consecutive datapoints with 1 minute period less than 10 percent. A ScaleDown action halves
(rounded up) the parallelism of the application. ParallelismPexrKPU is not modified, and the
number of allocated KPUs also halves (rounded up).

(® Note

Max of containerCPUUtilization over 1 minute period can be referenced to find the
correlation with a datapoint used for Scaling action, but it's not necessary to reflect the
exact moment when the action is initialized.

Managed Service for Apache Flink will not reduce your application's CurrentParallelism value
to less than your application's Parallelism setting.

When the Managed Service for Apache Flink service is scaling your application, it will be in the
AUTOSCALING status. You can check your current application status using the DescribeApplication
or ListApplications actions. While the service is scaling your application, the only valid API action
you can use is StopApplication with the Force parameter set to true.

You can use the AutoScalingEnabled property (part of FlinkApplicationConfiguration
) to enable or disable auto scaling behavior. Your AWS account is charged for KPUs that Managed
Service for Apache Flink provisions which is a function of your application's parallelismand
parallelismPerKPU settings. An activity spike increases your Managed Service for Apache Flink
costs.

For information about pricing, see Amazon Managed Service for Apache Flink pricing.

Note the following about application scaling:

« Automatic scaling is enabled by default.

Use automatic scaling 76

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_FlinkApplicationConfiguration.html
https://aws.amazon.com/kinesis/data-analytics/pricing/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

» Scaling doesn't apply to Studio notebooks. However, if you deploy a Studio notebook as an
application with durable state, then scaling will apply to the deployed application.

» Your application has a default limit of 64 KPUs. For more information, see Managed Service for

Apache Flink and Studio notebook quota.

« When autoscaling updates application parallelism, the application experiences downtime. To
avoid this downtime, do the following:

 Disable automatic scaling

» Configure your application's parallelismand parallelismPerKPU with the
UpdateApplication action. For more information about setting your application's parallelism
settings, see the section called “"Update your application's parallelism”.

 Periodically monitor your application's resource usage to verify that your application has the
correct parallelism settings for its workload. For information about monitoring allocation
resource usage, see the section called “"Metrics and dimensions in Managed Service for Apache
Flink”.

Implement custom autoscaling

If you want finer grained control on autoscaling or use trigger metrics other than
containerCPUUtilization, you can use this example:

« AutoScaling

This examples illustrates how to scale your Managed Service for Apache Flink application using a
different CloudWatch metric from the Apache Flink application, including metrics from Amazon
MSK and Amazon Kinesis Data Streams, used as sources or sink.

For additional information, see Enhanced monitoring and automatic scaling for Apache Flink.

Implement scheduled autoscaling

If your workload follows a predictable profile over time, you might prefer to scale your Apache
Flink application preemptively. This scales your application at a scheduled time, as opposed to
scaling reactively based on a metric. To set up scaling up and down at fixed hours of the day, you
can use this example:

o ScheduledScaling

Use automatic scaling 77

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/infrastructure/AutoScaling
https://aws.amazon.com/blogs/big-data/enhanced-monitoring-and-automatic-scaling-for-apache-flink/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/infrastructure/ScheduledScaling

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

maxParallelism considerations

The maximum parallelism a Flink job can scale is limited by the minimum maxParallelism across
all operators of the job. For example, if you have a simple job with only a source and a sink, and
the source has amaxParallelism of 16 and the sink has 8, the application can't scale beyond
parallelism of 8.

To learn how the default maxParallelism of an operator is calculated and how to override the
default, refer to Setting the Maximum Parallelism in the Apache Flink docummentation.

As a basic rule, be aware that that if you don't define maxParallelism for any operator and
you start your application with parallelism less than or equal to 128, all operators will have a
maxParallelism of 128.

(® Note

The job's maximum parallelism is the upper limit of parallelism for scaling your application
retaining the state.

If you modify maxParallelism of an existing application, the application won't be able
to restart from a previous snapshot taken with the old maxParallelism. You can only
restart the application without snapshot.

If you plan to scale your application to a parallelism greater that 128, you must explicitly
set the maxParallelismin your application.

» Autoscaling logic will prevent scaling a Flink job to a parallelism that will exceed maximum
parallelism of the job.

« If you use a custom autoscaling or scheduled scaling, configure them so that they don't exceed
the maximum parallelism of the job.

o If you manually scale your application beyond maximum parallelism, the application fails to
start.

Add tags to Managed Service for Apache Flink applications

This section describes how to add key-value metadata tags to Managed Service for Apache Flink
applications. These tags can be used for the following purposes:

maxParallelism considerations 78

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/execution/parallel/#setting-the-maximum-parallelism

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« Determining billing for individual Managed Service for Apache Flink applications. For more
information, see Using Cost Allocation Tags in the Billing and Cost Management Guide.

« Controlling access to application resources based on tags. For more information, see Controlling
Access Using Tags in the AWS Identity and Access Management User Guide.

» User-defined purposes. You can define application functionality based on the presence of user
tags.

Note the following information about tagging:

« The maximum number of application tags includes system tags. The maximum number of user-
defined application tags is 50.

« If an action includes a tag list that has duplicate Key values, the service throws an
InvalidArgumentException.

This topic contains the following sections:

Add tags when an application is created

Add or update tags for an existing application

List tags for an application

Remove tags from an application

Add tags when an application is created

You add tags when creating an application using the tags parameter of the CreateApplication

action.

The following example request shows the Tags node for a CreateApplication request:

"Tags": [
{
"Key": "Keyl",
"Value": "Valuel"
},
{
"Key": "Key2",
"Value": "Value2"
}

Add tags when an application is created 79

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

]

Add or update tags for an existing application

You add tags to an application using the TagResource action. You cannot add tags to an application
using the UpdateApplication action.

To update an existing tag, add a tag with the same key of the existing tag.

The following example request for the TagResource action adds new tags or updates existing

tags:
{
"ResourceARN": "string",
"Tags": [
{
"Key": "NewTagKey",
"Value": "NewTagValue"
1,
{
"Key": "ExistingKeyOfTagToUpdate",
"Value": "NewValueForExistingTag"
}
]
}

List tags for an application

To list existing tags, you use the ListTagsForResource action.

The following example request for the ListTagsForResource action lists tags for an application:

{

"ResourceARN": "arn:aws:kinesisanalyticsus-west-2:012345678901:application/
MyApplication"
}

Remove tags from an application

To remove tags from an application, you use the UntagResource action.

The following example request for the UntagResource action removess tags from an application:

Add or update tags for an existing application 80

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_TagResource.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListTagsForResource.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UntagResource.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"ResourceARN": "arn:aws:kinesisanalyticsus-west-2:012345678901:application/
MyApplication",
"TagKeys": ["KeyOfFirstTagToRemove", "KeyOfSecondTagToRemove"]

Use CloudFormation with Managed Service for Apache Flink

The following exercise shows how to start a Flink application created with AWS CloudFormation
using a Lambda function in the same stack.

Before you begin

Before you begin this exercise, follow the steps on creating a Flink application using AWS
CloudFormation at AWS::KinesisAnalytics::Application.

Write a Lambda function

To start a Flink application after creation or update, we use the kinesisanalyticsv2 start-application
API. The call will be triggered by an AWS CloudFormation event after Flink application creation.
We'll discuss how to set up the stack to trigger the Lambda function later in this exercise, but first
we focus on the Lambda function declaration and its code. We use Python3. 8 runtime in this

example.

StartApplicationLambda:
Type: AWS::Lambda::Function
DependsOn: StartApplicationLambdaRole
Properties:
Description: Starts an application when invoked.
Runtime: python3.8
Role: !GetAtt StartApplicationLambdaRole.Arn
Handler: index.lambda_handler
Timeout: 30
Code:
ZipFile: |
import logging
import cfnresponse
import boto3

logger = logging.getlLogger()
logger.setlLevel(logging.INFO)

Use CloudFormation 81

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesis-analyticsapplication.html
https://docs.aws.amazon.com/cli/latest/reference/kinesisanalyticsv2/start-application.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

def lambda_handler(event, context):
logger.info('Incoming CFN event {}'.format(event))

try:
application_name = event['ResourceProperties']['ApplicationName']

filter out events other than Create or Update,
you can also omit Update in order to start an application on Create
only.
if event['RequestType'] not in ["Create", "Update"]:
logger.info('No-op for Application {} because CFN RequestType {3} is
filtered'.format(application_name, event['RequestType']))
cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

return

use kinesisanalyticsv2 API to start an application.
client_kda = boto3.client('kinesisanalyticsv2',
region_name=event['ResourceProperties']['Region'])

get application status.

describe_response =
client_kda.describe_application(ApplicationName=application_name)

application_status = describe_response['ApplicationDetail']
['ApplicationStatus']

an application can be started from 'READY' status only.
if application_status != 'READY':
logger.info('No-op for Application {} because ApplicationStatus {3} is
filtered'.format(application_name, application_status))
cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

return

create RunConfiguration.
run_configuration = {
'ApplicationRestoreConfiguration': {
'ApplicationRestoreType': 'RESTORE_FROM_LATEST_SNAPSHOT',

logger.info('RunConfiguration for Application {}:
{}'.format(application_name, run_configuration))

Write a Lambda function 82

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

this call doesn't wait for an application to transfer to 'RUNNING'
state.

client_kda.start_application(ApplicationName=application_name,
RunConfiguration=run_configuration)

logger.info('Started Application: {}'.format(application_name))
cfnresponse.send(event, context, cfnresponse.SUCCESS, {})
except Exception as err:
logger.error(err)
cfnresponse.send(event, context, cfnresponse.FAILED, {"Data": str(err)})

In the preceding code, Lambda processes incoming AWS CloudFormation events, filters out
everything besides Create and Update, gets the application state and start it if the state is
READY. To get the application state, you must create the Lambda role, as shown following.

Create a Lambda role

You create a role for Lambda to successfully “talk” to the application and write logs. This role uses
default managed policies, but you might want to narrow it down to using custom policies.

StartApplicationLambdaRole:
Type: AWS::IAM::Role
DependsOn: TestFlinkApplication
Properties:
Description: A role for lambda to use while interacting with an application.
AssumeRolePolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Principal:
Service:
- lambda.amazonaws.com
Action:
- sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/Amazonmanaged-flinkFullAccess
- arn:aws:iam::aws:policy/CloudWatchLogsFullAccess
Path: /

Note that the Lambda resources will be created after creation of the Flink application in the same
stack because they depend on it.

Create a Lambda role 83

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Invoke the Lambda function

Now all that is left is to invoke the Lambda function. You do this by using a custom resource.

StartApplicationLambdaInvoke:
Description: Invokes StartApplicationLambda to start an application.
Type: AWS::CloudFormation::CustomResource
DependsOn: StartApplicationLambda
Version: "1.0"
Properties:
ServiceToken: !GetAtt StartApplicationLambda.Arn
Region: !Ref AWS::Region
ApplicationName: !Ref TestFlinkApplication

This is all you need to start your Flink application using Lambda. You are now ready to create your
own stack or use the full example below to see how all those steps work in practice.

Review an extended example

The following example is a slightly extended version of the previous steps with an additional
RunConfiguration adjusting done via template parameters. This is a working stack for you to
try. Be sure to read the accompanying notes:

stack.yaml

Description: 'kinesisanalyticsv2 CloudFormation Test Application'
Parameters:
ApplicationRestoreType:
Description: ApplicationRestoreConfiguration option, can
be SKIP_RESTORE_FROM_SNAPSHOT, RESTORE_FROM_LATEST_SNAPSHOT or
RESTORE_FROM_CUSTOM_SNAPSHOT.
Type: String
Default: SKIP_RESTORE_FROM_SNAPSHOT
AllowedValues: [SKIP_RESTORE_FROM_SNAPSHOT, RESTORE_FROM_LATEST_SNAPSHOT,
RESTORE_FROM_CUSTOM_SNAPSHOT]
SnapshotName:
Description: ApplicationRestoreConfiguration option, name of a snapshot to restore
to, used with RESTORE_FROM_CUSTOM_SNAPSHOT ApplicationRestoreType.
Type: String
Default: ''
AllowNonRestoredState:
Description: FlinkRunConfiguration option, can be true or false.

Invoke the Lambda function 84

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Default: true
Type: String
AllowedValues: [true, false]
CodeContentBucketArn:
Description: ARN of a bucket with application code.
Type: String
CodeContentFileKey:
Description: A jar filename with an application code inside a bucket.
Type: String
Conditions:
IsSnapshotNameEmpty: !Equals [!Ref SnapshotName, '']
Resources:
TestServiceExecutionRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Principal:
Service:
- kinesisanlaytics.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/AmazonKinesisFullAccess
- arn:aws:iam::aws:policy/AmazonS3FullAccess
Path: /
InputKinesisStream:
Type: AWS::Kinesis::Stream
Properties:
ShardCount: 1
OutputKinesisStream:
Type: AWS::Kinesis::Stream
Properties:
ShardCount: 1
TestFlinkApplication:
Type: 'AWS::kinesisanalyticsv2::Application'
Properties:
ApplicationName: 'CFNTestFlinkApplication'
ApplicationDescription: 'Test Flink Application'
RuntimeEnvironment: 'FLINK-1_18'
ServiceExecutionRole: !GetAtt TestServiceExecutionRole.Arn
ApplicationConfiguration:
EnvironmentProperties:

Review an extended example 85

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

PropertyGroups:
- PropertyGroupId: 'KinesisStreams'
PropertyMap:
INPUT_STREAM_NAME: !Ref InputKinesisStream
OUTPUT_STREAM_NAME: !Ref OutputKinesisStream
AWS_REGION: !Ref AWS::Region
FlinkApplicationConfiguration:
CheckpointConfiguration:
ConfigurationType: 'CUSTOM'
CheckpointingEnabled: True
CheckpointInterval: 1500
MinPauseBetweenCheckpoints: 500
MonitoringConfiguration:
ConfigurationType: 'CUSTOM'
MetricsLevel: 'APPLICATION'
LogLevel: 'INFO'
ParallelismConfiguration:
ConfigurationType: 'CUSTOM'
Parallelism: 1
ParallelismPerKPU: 1
AutoScalingEnabled: True
ApplicationSnapshotConfiguration:
SnapshotsEnabled: True
ApplicationCodeConfiguration:
CodeContent:
S3ContentLocation:
BucketARN: !Ref CodeContentBucketArn
FileKey: !Ref CodeContentFileKey
CodeContentType: 'ZIPFILE'
StartApplicationLambdaRole:
Type: AWS::IAM::Role
DependsOn: TestFlinkApplication
Properties:
Description: A role for lambda to use while interacting with an application.
AssumeRolePolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Principal:
Service:
- lambda.amazonaws.com
Action:
- sts:AssumeRole
ManagedPolicyAzrns:

Review an extended example 86

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

- arn:aws:iam::aws:policy/Amazonmanaged-flinkFullAccess
- arn:aws:iam::aws:policy/CloudWatchLogsFullAccess
Path: /
StartApplicationLambda:
Type: AWS::Lambda::Function
DependsOn: StartApplicationLambdaRole
Properties:
Description: Starts an application when invoked.
Runtime: python3.8
Role: !GetAtt StartApplicationLambdaRole.Arn
Handler: index.lambda_handler
Timeout: 30
Code:
ZipFile: |
import logging
import cfnresponse
import boto3

logger = logging.getlLogger()
logger.setlLevel(logging.INFO)

def lambda_handler(event, context):
logger.info('Incoming CFN event {}'.format(event))

try:
application_name = event['ResourceProperties']['ApplicationName']

filter out events other than Create or Update,
you can also omit Update in order to start an application on Create
only.
if event['RequestType'] not in ["Create", "Update"]:
logger.info('No-op for Application {} because CFN RequestType {3} is
filtered'.format(application_name, event['RequestType']))
cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

return

use kinesisanalyticsv2 API to start an application.
client_kda = boto3.client('kinesisanalyticsv2',
region_name=event['ResourceProperties']['Region'])

get application status.
describe_response =
client_kda.describe_application(ApplicationName=application_name)

Review an extended example 87

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

application_status = describe_response['ApplicationDetail']
['ApplicationStatus']

an application can be started from 'READY' status only.
if application_status != 'READY':
logger.info('No-op for Application {} because ApplicationStatus {3} is
filtered'.format(application_name, application_status))
cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

return

create RunConfiguration from passed parameters.
run_configuration = {
'FlinkRunConfiguration': {
'AllowNonRestoredState': event['ResourceProperties']
['AllowNonRestoredState'] == 'true'
},
'ApplicationRestoreConfiguration’': {
'ApplicationRestoreType': event['ResourceProperties']
['ApplicationRestoreType'],
}

add SnapshotName to RunConfiguration if specified.
if event['ResourceProperties']['SnapshotName'] != '':
run_configuration['ApplicationRestoreConfiguration']['SnapshotName'] =
event['ResourceProperties']['SnapshotName']

logger.info('RunConfiguration for Application {}:
{}'.format(application_name, run_configuration))

this call doesn't wait for an application to transfer to 'RUNNING'
state.

client_kda.start_application(ApplicationName=application_name,
RunConfiguration=run_configuration)

logger.info('Started Application: {}'.format(application_name))
cfnresponse.send(event, context, cfnresponse.SUCCESS, {})
except Exception as err:
logger.error(err)
cfnresponse.send(event, context, cfnresponse.FAILED, {"Data": str(err)})
StartApplicationLambdaInvoke:
Description: Invokes StartApplicationLambda to start an application.
Type: AWS::CloudFormation::CustomResource

Review an extended example 88

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

DependsOn: StartApplicationLambda

Version: "1.0"
Properties:
ServiceToken:

!GetAtt StartApplicationLambda.Azrn

Region: !Ref AWS::Region
ApplicationName: !Ref TestFlinkApplication
ApplicationRestoreType: !Ref ApplicationRestoreType

SnapshotName:

!Ref SnapshotName

AllowNonRestoredState: !Ref AllowNonRestoredState

Again, you might want to adjust the roles for Lambda as well as an application itself.

Before creating the stack above, don't forget to specify your parameters.

parameters.json
[
{
"ParameterKey":
"ParameterValue"
b
{
"ParameterKey":
"ParameterValue"
b
{
"ParameterKey":
"ParameterValue"
b
{
"ParameterKey":
"ParameterValue"
}
]

"CodeContentBucketArn",
: "YOUR_BUCKET_ARN"

"CodeContentFileKey",
: "YOUR_JAR"

"ApplicationRestoreType",
: "SKIP_RESTORE_FROM_SNAPSHOT"

"AllowNonRestoredState",
: "true"

Replace YOUR_BUCKET_ARN and YOUR_JAR with your specific requirements. You can follow this
guide to create an Amazon S3 bucket and an application jar.

Now create the stack (replace YOUR_REGION with a region of your choice, e.g. us-east-1):

aws cloudformation create-stack --region YOUR_REGION --template-body "file://
stack.yaml" --parameters "file://parameters.json" --stack-name "TestManaged Service for

Apache FlinkStack"

--capabilities CAPABILITY_NAMED_IAM

Review an extended example

89

https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can now navigate to https://console.aws.amazon.com/cloudformation and view the progress.

Once created you should see your Flink application in Starting state. It may take a few minutes
until it will start Running.

For more information, see the following:

» Four ways to retrieve any AWS service property using AWS CloudFormation (Part 1 of 3).

« Walkthrough: Looking up Amazon Machine Image IDs.

Use the Apache Flink Dashboard with Managed Service for
Apache Flink

You can use your application's Apache Flink Dashboard to monitor your Managed Service for
Apache Flink application's health. Your application's dashboard shows the following information:
» Resources in use, including Task Managers and Task Slots.

« Information about Jobs, including those that are running, completed, canceled, and failed.

For information about Apache Flink Task Managers, Task Slots, and Jobs, see Apache Flink
Architecture on the Apache Flink website.

Note the following about using the Apache Flink Dashboard with Managed Service for Apache Flink
applications:

« The Apache Flink Dashboard for Managed Service for Apache Flink applications is read-only. You
can't make changes to your Managed Service for Apache Flink application using the Apache Flink
Dashboard.

« The Apache Flink Dashboard is not compatible with Microsoft Internet Explorer.
Access your application's Apache Flink Dashboard

You can access your application's Apache Flink Dashboard either through the Managed Service for
Apache Flink console, or by requesting a secure URL endpoint using the CLI.

Use the Apache Flink Dashboard 90

https://console.aws.amazon.com/cloudformation
https://aws.amazon.com/blogs/mt/four-ways-to-retrieve-any-aws-service-property-using-aws-cloudformation-part-1/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/walkthrough-custom-resources-lambda-lookup-amiids.html
https://flink.apache.org/what-is-flink/flink-architecture/
https://flink.apache.org/what-is-flink/flink-architecture/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Access your application's Apache Flink Dashboard using the Managed Service for
Apache Flink console

To access your application's Apache Flink Dashboard from the console, choose Apache Flink
Dashboard on your application's page.

® Note

When you open the dashboard from the Managed Service for Apache Flink console, the
URL that the console generates will be valid for 12 hours.

Access your application's Apache Flink Dashboard using the Managed Service for
Apache Flink CLI

You can use the Managed Service for Apache Flink CLI to generate a URL to access your application
dashboard. The URL that you generate is valid for a specified amount of time.

® Note

If you don't access the generated URL within three minutes, it will no longer be valid.

You generate your dashboard URL using the CreateApplicationPresignedUrl action. You specify the
following parameters for the action:

« The application name
o The time in seconds that the URL will be valid
» You specify FLINK_DASHBOARD_URL as the URL type.

Access your application's Apache Flink Dashboard 91

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplicationPresignedUrl.html

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Supported and deprecated Apache Flink versions

This topic contains information about the supported versions of Apache Flink in Managed Service
for Apache Flink. This topic also lists the supported Apache Flink features in each release.

(® Note

If you're using a version of Apache Flink that's deprecating, we recommend that you
upgrade your application to the most recent supported Flink version using the Use in-place
version upgrades for Apache Flink feature in Managed Service for Apache Flink.

Apache Flink

version

1.20.0

1.19.1

1.18.1

1.15.2

Status - Amazon
Managed
Service for
Apache Flink

Supported

Supported

Supported

Supported

Status -
Apache Flink
community

Supported

Supported

Unsupported

Unsupported

Link

Amazon
Managed Service

for Apache Flink
1.20

Amazon
Managed Service

for Apache Flink
1.19

Amazon
Managed Service

for Apache Flink
1.18

Amazon
Managed Service
for Apache Flink
1.15

Note

92

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Apache Flink
version

1.13.1

Status - Amazon
Managed
Service for
Apache Flink

Deprecating

Status -
Apache Flink
community

Unsupported

Link

Getting started:

Flink 1.13.2

Note

The support

for this version
in Amazon
Managed Service
for Apache

Flink will end

on October 16,
2025.

93

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink Status - Amazon Status - Link Note
version Managed Apache Flink

Service for community

Apache Flink

Deprecating Unsupported

Earlier version

information for

Managed Service

for Apache
Flink (This
version won't be
supported from
February 2025)

We plan to end
support for
Apache Flink
versions 1.6,

1.8, and 1.11

in Amazon
Managed Service
for Apache Flink.

From July 14,
2025, we will
place applicati
ons using these
versions into a
READY state.

From July 28,
2025, you will
not be able to
START applicati
ons using these
versions.

We recommend
that you now
immediately
upgrade your
applications to
Flink version
1.20 using the
in-place version
upgrades

94

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Note

feature in
Amazon
Managed Service
for Apache

Flink. For more
information,

see Use in-

place version
upgrades for
Apache Flink.

95

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Apache Flink
version

1.8.2

Status - Amazon
Managed
Service for
Apache Flink

Deprecating

Status -
Apache Flink
community

Unsupported

Link

Earlier version

information for

Managed Service

for Apache
Flink (This
version won't be
supported from
February 2025)

Note

We plan to end
support for
Apache Flink
versions 1.6,

1.8, and 1.11

in Amazon
Managed Service
for Apache Flink.

From July 14,
2025, we will
place applicati
ons using these
versions into a
READY state.

From July 28,
2025, you will
not be able to
START applicati
ons using these
versions.

We recommend
that you now
immediately
upgrade your
applications to
Flink version
1.20 using the
in-place version
upgrades

96

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Note

feature in
Amazon
Managed Service
for Apache

Flink. For more
information,

see Use in-

place version
upgrades for
Apache Flink.

97

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Apache Flink
version

1.6.2

Status - Amazon
Managed
Service for
Apache Flink

Deprecating

Status -
Apache Flink
community

Unsupported

Link

Earlier version

information for

Managed Service

for Apache
Flink (This
version won't be
supported from
February 2025)

Note

We plan to end
support for
Apache Flink
versions 1.6,

1.8, and 1.11

in Amazon
Managed Service
for Apache Flink.

From July 14,
2025, we will
place applicati
ons using these
versions into a
READY state.

From July 28,
2025, you will
not be able to
START applicati
ons using these
versions.

We recommend
that you now
immediately
upgrade your
applications to
Flink version
1.20 using the
in-place version
upgrades

98

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink Status - Amazon Status - Link Note
version Managed Apache Flink
Service for community

Apache Flink

feature in
Amazon
Managed Service
for Apache

Flink. For more
information,

see Use in-

place version
upgrades for
Apache Flink.

Topics

Amazon Managed Service for Apache Flink 1.20

Amazon Managed Service for Apache Flink 1.19

Amazon Managed Service for Apache Flink 1.18

Amazon Managed Service for Apache Flink 1.15

Earlier version information for Managed Service for Apache Flink

Amazon Managed Service for Apache Flink 1.20

Managed Service for Apache Flink now supports Apache Flink version 1.20.0. This section
introduces you to the key new features and changes introduced with Managed Service for Apache
Flink support of Apache Flink 1.20.0. Apache Flink 1.20 is expected to be the last 1.x release and a
Flink long-term support (LTS) version. For more information, see FLIP-458: Long-Term Support for
the Final Release of Apache Flink 1.x Line.

(® Note

If you are using an earlier supported version of Apache Flink and want to upgrade
your existing applications to Apache Flink 1.20.0, you can do so using in-place Apache

Amazon Managed Service for Apache Flink 1.20 99

https://cwiki.apache.org/confluence/display/FLINK/FLIP-458%3A+Long-Term+Support+for+the+Final+Release+of+Apache+Flink+1.x+Line
https://cwiki.apache.org/confluence/display/FLINK/FLIP-458%3A+Long-Term+Support+for+the+Final+Release+of+Apache+Flink+1.x+Line

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Flink version upgrades. For more information, see Use in-place version upgrades for

Apache Flink. With in-place version upgrades, you retain application traceability against
a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags, Flink

configurations, and more.

Supported features

Apache Flink 1.20.0 introduces improvements in the SQL APIs, in the DataStream APIs, and in the

Flink dashboard.

Supported features and related documentation

Supported features

Add DISTRIBUTED BY clause

DataStream API: Support Full
Partition Proessing

Show data skew score on
Flink Dashboard

Description

Many SQL engines expose the
concepts of Partitioning ,
Bucketing , or Clusterin
g . Flink 1.20 introduces the
concept of Bucketing to
Flink.

Flink 1.20 introduces built-in
support for aggregations on
non-keyed streams through

the FullPartitionWindo

w API.

The Flink 1.20 dashboard now
shows data skew infrmation.
Each operator on the Flink job
graph Ul shows an additional
data skew score.

Apache Flink documentation
reference

FLIP-376: Add DISTRIBUTED
BY clause

FLIP-380: Support Full
Partition Processing on Non-

keyed DataStream

FLIP-418: Show data skew
score on Flink Dashboard

For the Apache Flink 1.20.0 release documentation, see Apache Flink Documentation v1.20.0. For

Flink 1.20 release notes, see Release notes - Flink 1.20

Supported features

100

https://cwiki.apache.org/confluence/display/FLINK/FLIP-376%3A+Add+DISTRIBUTED+BY+clause
https://cwiki.apache.org/confluence/display/FLINK/FLIP-376%3A+Add+DISTRIBUTED+BY+clause
https://cwiki.apache.org/confluence/display/FLINK/FLIP-380%3A+Support+Full+Partition+Processing+On+Non-keyed+DataStream
https://cwiki.apache.org/confluence/display/FLINK/FLIP-380%3A+Support+Full+Partition+Processing+On+Non-keyed+DataStream
https://cwiki.apache.org/confluence/display/FLINK/FLIP-380%3A+Support+Full+Partition+Processing+On+Non-keyed+DataStream
https://cwiki.apache.org/confluence/display/FLINK/FLIP-418%3A+Show+data+skew+score+on+Flink+Dashboard
https://cwiki.apache.org/confluence/display/FLINK/FLIP-418%3A+Show+data+skew+score+on+Flink+Dashboard
https://nightlies.apache.org/flink/flink-docs-stable/
https://nightlies.apache.org/flink/flink-docs-release-1.20/release-notes/flink-1.20/

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Components

Flink 1.20 components
Component
Java
Python

Kinesis Data Analytics Flink Runtime (aws-kine
sisanalytics-runtime)

Connectors

Apache Beam (Beam applications only)

Known issues

Apache Beam

Version
11 (recommended)
3.11

1.2.0

For information about available connectors,
see Apache Flink connectors.

There is no compatible Apache Flink Runner
for Flink 1.20. For more information, see Flink
Version Compatibility.

There is presently no compatible Apache Flink Runner for Flink 1.20 in Apache Beam. For more

information, see Flink Version Compatibility.

Amazon Managed Service for Apache Flink Studio

Amazon Managed Service for Apache Flink Studio uses Apache Zeppelin notebooks to provide a
single-interface development experience for developing, debugging code, and running Apache

Flink stream processing applications. An upgrade is required to Zeppelin's Flink Interpreter to
enable support of Flink 1.20. This work is scheduled with the Zeppelin community. We will update
these notes when that work is complete. You can continue to use Flink 1.15 with Amazon Managed
Service for Apache Flink Studio. For more information, see Creating a Studio notebook.

Backported bug fixes

Amazon Managed Service for Apache Flink backports fixes from the Flink community for critical
issues. Following is a list of bug fixes that we have backported:

Components

101

https://docs.aws.amazon.com/managed-flink/latest/java/how-flink-connectors.html
https://aws.amazon.com/developer/language/python/
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://docs.aws.amazon.com/managed-flink/latest/java/how-zeppelin-creating.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Backported bug fixes

Apache Flink JIRA link Description

FLINK-35886 This fix addresses an issue causing incorrect
accounting of watermark idleness timeouts
when a subtask is backpressured/blocked.

Amazon Managed Service for Apache Flink 1.19

Managed Service for Apache Flink now supports Apache Flink version 1.19.1. This section
introduces you to the key new features and changes introduced with Managed Service for Apache
Flink support of Apache Flink 1.19.1.

(® Note

If you are using an earlier supported version of Apache Flink and want to upgrade
your existing applications to Apache Flink 1.19.1, you can do so using in-place Apache
Flink version upgrades. For more information, see Use in-place version upgrades for

Apache Flink. With in-place version upgrades, you retain application traceability against
a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags, Flink
configurations, and more.

Supported features

Apache Flink 1.19.1 introduces improvements in the SQL API, such as named parameters, custom
source parallelism, and different state TTLs for various Flink operators.

Supported features and related documentation

Supported features Description Apache Flink documentation
reference

SQL API: Support Configuri Users can now configure state FLIP-373: Configuring

ng Different State TTLs using TTL on stream regular joins Different State TTLs using

SQL Hint and group aggregate. SQL Hint

Amazon Managed Service for Apache Flink 1.19 102

https://issues.apache.org/jira/browse/FLINK-35886
https://cwiki.apache.org/confluence/display/FLINK/FLIP-373%3A+Support+Configuring+Different+State+TTLs+using+SQL+Hint
https://cwiki.apache.org/confluence/display/FLINK/FLIP-373%3A+Support+Configuring+Different+State+TTLs+using+SQL+Hint
https://cwiki.apache.org/confluence/display/FLINK/FLIP-373%3A+Support+Configuring+Different+State+TTLs+using+SQL+Hint

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Supported features

SQL API: Support named
parameters for functions and
call procedures

SQL API: Setting parallelism
for SQL sources

SQL API: Support Session
Window TVF

SQL API: Window TVF
Aggregation Supports
Changelog Inputs

Support Python 3.11

Provide metrics for
TwoPhaseCommitting sink

Description

Users can now use named
parameters in functions,
rather than relying on the
order of parameters.

Users can now specify
parallelism for SQL sources.

Users can now use session
window Table-Valued
Functions.

Users can now perform
window aggregation on
changelog inputs.

Flink now supports Python
3.11, which is 10-60% faster
compared to Python 3.10. For
more information, see What's
New in Python 3.11.

Users can view statistic

s around the status of
committers in two phase
committing sinks.

Apache Flink documentation
reference

FLIP-378: Support named
parameters for functions and

call procedures

FLIP-367: Support Setting
Parallelism for Table/SQL
Sources

FLINK-24024: Support session
Window TVF

FLINK-20281: Window
aggregation supports
changelog stream input

FLINK-33030: Add python
3.11 support

FLIP-371: Provide initializ
ation context for Committer

creation in TwoPhaseC

ommittingSink

Supported features

103

https://cwiki.apache.org/confluence/display/FLINK/FLIP-387%3A+Support+named+parameters+for+functions+and+call+procedures
https://cwiki.apache.org/confluence/display/FLINK/FLIP-387%3A+Support+named+parameters+for+functions+and+call+procedures
https://cwiki.apache.org/confluence/display/FLINK/FLIP-387%3A+Support+named+parameters+for+functions+and+call+procedures
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=263429150
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=263429150
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=263429150
https://issues.apache.org/jira/browse/FLINK-24024
https://issues.apache.org/jira/browse/FLINK-24024
https://issues.apache.org/jira/browse/FLINK-20281
https://issues.apache.org/jira/browse/FLINK-20281
https://issues.apache.org/jira/browse/FLINK-20281
https://docs.python.org/3/whatsnew/3.11.html#summary-release-highlights
https://docs.python.org/3/whatsnew/3.11.html#summary-release-highlights
https://issues.apache.org/jira/browse/FLINK-33030
https://issues.apache.org/jira/browse/FLINK-33030
https://cwiki.apache.org/confluence/display/FLINK/FLIP-371%3A+Provide+initialization+context+for+Committer+creation+in+TwoPhaseCommittingSink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-371%3A+Provide+initialization+context+for+Committer+creation+in+TwoPhaseCommittingSink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-371%3A+Provide+initialization+context+for+Committer+creation+in+TwoPhaseCommittingSink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-371%3A+Provide+initialization+context+for+Committer+creation+in+TwoPhaseCommittingSink

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Supported features

Trace Reporters for job restart
and checkpointing

® Note

Description

Users can nhow monitor traces
around checkpoint duration
and recvery trends. In
Amazon Managed Service for
Apache Flink, we enable Slf4;j
trace reporters by default, so
users can monitor checkpoin
t and job traces through
application CloudWatch Logs.

Apache Flink documentation
reference

FLIP-384: Introduce
TraceReporter and use it to

create checkpointing and

recovery traces

You can opt into the following features by submitting a support case:

Opt-in features and related documentation

Opt-in features

Support using larger
checkpointing interval when
source is processing backlog

Redirect System.out and
System.err to Java logs

Description

This is an opt-in feature,
because users must tune the
configuration for their specific
job requirements.

This is an opt-in feature.

On Amazon Managed

Service for Apache Flink,

the default behavior is to
ignore output from System.ou
t and System.err because best
practice in production is to
use the native Java logger.

Apache Flink documentation
reference

FLIP-309: Support using
larger checkpointing interval

when source is processing
backlog

FLIP-390: Support System out
and err to be redirected to
LOG or discarded

Supported features

104

https://cwiki.apache.org/confluence/display/FLINK/FLIP-384%3A+Introduce+TraceReporter+and+use+it+to+create+checkpointing+and+recovery+traces
https://cwiki.apache.org/confluence/display/FLINK/FLIP-384%3A+Introduce+TraceReporter+and+use+it+to+create+checkpointing+and+recovery+traces
https://cwiki.apache.org/confluence/display/FLINK/FLIP-384%3A+Introduce+TraceReporter+and+use+it+to+create+checkpointing+and+recovery+traces
https://cwiki.apache.org/confluence/display/FLINK/FLIP-384%3A+Introduce+TraceReporter+and+use+it+to+create+checkpointing+and+recovery+traces
https://console.aws.amazon.com/support/home#/
https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog
https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog
https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog
https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog
https://cwiki.apache.org/confluence/display/FLINK/FLIP-390%3A+Support+System+out+and+err+to+be+redirected+to+LOG+or+discarded
https://cwiki.apache.org/confluence/display/FLINK/FLIP-390%3A+Support+System+out+and+err+to+be+redirected+to+LOG+or+discarded
https://cwiki.apache.org/confluence/display/FLINK/FLIP-390%3A+Support+System+out+and+err+to+be+redirected+to+LOG+or+discarded

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For the Apache Flink 1.19.1 release documentation, see Apache Flink Documentation v1.19.1.

Changes in Amazon Managed Service for Apache Flink 1.19.1

Logging Trace Reporter enabled by default

Apache Flink 1.19.1 introduced checkpoint and recovery traces, enabling users to better debug
checkpoint and job recovery issues. In Amazon Managed Service for Apache Flink, these traces
are logged into the CloudWatch log stream, allowing users to break down the time spent on job
initialization, and record the historical size of checkpoints.

Default restart strategy is now exponential-delay

In Apache Flink 1.19.1, there are significant improvements to the exponential-delay restart
strategy. In Amazon Managed Service for Apache Flink from Flink 1.19.1 onwards, Flink jobs use
the exponential-delay restart strategy by default. This means that user jobs will recover quicker
from transient errors, but will not overload external systems if job restarts persist.

Backported bug fixes

Amazon Managed Service for Apache Flink backports fixes from the Flink community for critical
issues. This means that the runtime differs from the Apache Flink 1.19.1 release. Following is a list
of bug fixes that we have backported:

Backported bug fixes

Apache Flink JIRA link Description

FLINK-35531 This fix addresses the performance regression
introduced in 1.17.0 that causes slower writes
to HDFS.

FLINK-35157 This fix addresses the issue of stuck Flink

jobs when sources with watermark alignment
encounter finished subtasks.

FLINK-34252 This fix addresses the issue in watermark
generation that results in an erroneous IDLE
watermark state.

Changes in Amazon Managed Service for Apache Flink 1.19.1 105

https://nightlies.apache.org/flink/flink-docs-stable/
https://issues.apache.org/jira/browse/FLINK-35531
https://issues.apache.org/jira/browse/FLINK-35157
https://issues.apache.org/jira/browse/FLINK-34252

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Apache Flink JIRA link

FLINK-34252

FLINK-33936

FLINK-35498

FLINK-33192

FLINK-35069

FLINK-35832

FLINK-35886

Components

Component
Java
Python

Kinesis Data Analytics Flink Runtime (aws-kine
sisanalytics-runtime)

Description

This fix addresses the performance regressio
n during watermark generation by reducing
system calls.

This fix addresses the issue with duplicate
records during mini-batch aggregation on
Table API.

This fix addresses the issue with argument
name conflicts when defining named
parameters in Table APl UDFs.

This fix addresses the issue of a state memory
leak in window operators due to improper
timer cleanup.

This fix addresses the issue when a Flink job
gets stuck triggering a timer at the end of a
window.

This fix addresses the issue when IFNULL
returns incorrect results.

This fix addresses the issue when backpress
ured tasks are considered as idle.

Version
11 (recommended)
3.11

1.2.0

Components

106

https://issues.apache.org/jira/browse/FLINK-34252
https://issues.apache.org/jira/browse/FLINK-33936
https://issues.apache.org/jira/browse/FLINK-35498
https://issues.apache.org/jira/browse/FLINK-33192
https://issues.apache.org/jira/browse/FLINK-35069
https://issues.apache.org/jira/browse/FLINK-35832
https://issues.apache.org/jira/browse/FLINK-35886

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Connectors For information about available connectors,
see Apache Flink connectors.

Apache Beam (Beam applications only) From version 2.61.0. For more information,
see Flink Version Compatibility.

Known issues

Amazon Managed Service for Apache Flink Studio

Studio uses Apache Zeppelin notebooks to provide a single-interface development experience
for developing, debugging code, and running Apache Flink stream processing applications. An
upgrade is required to Zeppelin's Flink Interpreter to enable support of Flink 1.19. This work is
scheduled with the Zeppelin community and we will update these notes when it is complete. You
can continue to use Flink 1.15 with Amazon Managed Service for Apache Flink Studio. For more
information, see Creating a Studio notebook.

Amazon Managed Service for Apache Flink 1.18

Managed Service for Apache Flink now supports Apache Flink version 1.18.1. Learn about the key
new features and changes introduced with Managed Service for Apache Flink support of Apache
Flink 1.18.1.

(® Note

If you are using an earlier supported version of Apache Flink and want to upgrade your
existing applications to Apache Flink 1.18.1, you can do so using in-place Apache Flink
version upgrades. With in-place version upgrades, you retain application traceability
against a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags,
Flink configurations, and more. You can use this feature in RUNNING and READY state. For
more information, see Use in-place version upgrades for Apache Flink.

Known issues 107

https://docs.aws.amazon.com/managed-flink/latest/java/how-flink-connectors.html
https://aws.amazon.com/developer/language/python/
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://docs.aws.amazon.com/managed-flink/latest/java/how-zeppelin-creating.html

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Supported features with Apache Flink documentation references

Supported Features

Opensearch connector

Amazon DynamoDB
connector

MongoDB connector

Decouple Hive with Flink
planner

Disable WAL in RocksDBWr
iteBatchWrapper by default

Improve the watermark
aggregation performance
when enabling the watermark
alignment

Make watermark alignment
ready for production use

Configurable RateLimit
ingStratey for Async Sink

Description

This connector includes a sink
that provides at-least-once
guarantees.

This connector includes a sink
that provides at-least-once
guarantees.

This connector includes a
source and sink that provide
at-least-once guarantees.

You can use the Hive dialect
directly without the extra JAR
swapping.

This provides faster recovery
times.

Improves the watermark
aggregation performance
when enabling the watermark
alignment, and adds the
related benchmark.

Removes risk of large jobs
overloading JobManager

RateLimitingStrategy lets
you configure the decision of
what to scale, when to scale,
and how much to scale.

Apache Flink documentation
reference

github: Opensearch

Connector

Amazon DynamoDB Sink

MongoDB Connector

FLINK-26603: Decouple Hive
with Flink planner

FLINK-32326: Disable WAL in
RocksDBWriteBatchWrapper

by default

FLINK-32524: Watermark
aggregation performance

FLINK-32548: Make
watermark alignment ready

FLIP-242: Introduce configura
ble RateLimitingStrategy for

Async Sink

Amazon Managed Service for Apache Flink 1.18

108

https://github.com/apache/flink-connector-opensearch/blob/main/docs/content/docs/connectors/datastream/opensearch.md
https://github.com/apache/flink-connector-opensearch/blob/main/docs/content/docs/connectors/datastream/opensearch.md
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/mongodb/
https://issues.apache.org/jira/browse/FLINK-26603
https://issues.apache.org/jira/browse/FLINK-26603
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32420
https://issues.apache.org/jira/browse/FLINK-32420
https://issues.apache.org/jira/browse/FLINK-32548
https://issues.apache.org/jira/browse/FLINK-32548
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Supported Features Description Apache Flink documentation
reference

Bulk fetch table and column Improved query performance. FLIP-247: Bulk fetch of table

statistics and column statistics for

given partitions

For the Apache Flink 1.18.1 release documentation, see Apache Flink 1.18.71 Release

Announcement.

Changes in Amazon Managed Service for Apache Flink with Apache
Flink 1.18

Akka replaced with Pekko

Apache Flink replaced Akka with Pekko in Apache Flink 1.18. This change is fully supported in
Managed Service for Apache Flink from Apache Flink 1.18.1 and later. You don't need to modify
your applications as a result of this change. For more information, see FLINK-32468: Replace Akka

by Pekko.

Support PyFlink Runtime execution in Thread Mode

This Apache Flink change introduces a new execution mode for the Pyflink Runtime framework,
Process Mode. Process Mode can now execute Python user-defined functions in the same thread
instead of a separate process.

Backported bug fixes

Amazon Managed Service for Apache Flink backports fixes from the Flink community for critical
issues. This means that the runtime differs from the Apache Flink 1.18.1 release. Following is a list
of bug fixes that we have backported:

Backported bug fixes
Apache Flink JIRA link Description

FLINK-33863 This fix addresses the issue when a state
restore fails for compressed snapshots.

Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 109

https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions
https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions
https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions
https://flink.apache.org/2024/01/19/apache-flink-1.18.1-release-announcement/
https://flink.apache.org/2024/01/19/apache-flink-1.18.1-release-announcement/
https://issues.apache.org/jira/browse/FLINK-32468
https://issues.apache.org/jira/browse/FLINK-32468
https://issues.apache.org/jira/browse/FLINK-33863

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Apache Flink JIRA link

FLINK-34063

FLINK-35069

FLINK-35097

FLINK-34379

FLINK-28693

FLINK-35217

Components

Component

Java

Description

This fix addresses the issue when source
operators lose splits when snapshot compressi
on is enabled. Apache Flink offers optional
compression (default: off) for all checkpoin

ts and savepoints. Apache Flink identified a
bug in Flink 1.18.1 where the operator state
couldn't be properly restored when snapshot
compression was enabled. This could result

in either data loss or inability to restore from
checkpoint.

This fix addresses the issue when a Flink job
gets stuck triggering a timer at the end of a
window.

This fix addresses the pissue of duplicate
records in a Table API Filesystem connector
with the raw format.

This fix addresses the issue of an OutOfMemo
ryError when enabling dynamic table filtering.

This fix addresses the issue of the Table
API being unable to generate a graph if the
watermark has a columnBy expression.

This fix addresses the issue of a corrupted
checkpoint during a specific Flink job failure
mode.

Version

11 (recommended)

Components

110

https://issues.apache.org/jira/browse/FLINK-34063
https://issues.apache.org/jira/browse/FLINK-35069
https://issues.apache.org/jira/browse/FLINK-35097
https://issues.apache.org/jira/browse/FLINK-34379
https://issues.apache.org/jira/browse/FLINK-28693
https://issues.apache.org/jira/browse/FLINK-35217

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Scala Since version 1.15, Flink is Scala-agnostic. For
reference, MSF Flink 1.18 has been verified
against Scala 3.3 (LTS).

Managed Service for Apache Flink Flink 1.2.0
Runtime (aws-kinesisanalytics-runtime)

AWS Kinesis Connector (flink-connector-k 4.2.0-1.18
inesis)[Source]

AWS Kinesis Connector (flink-connector-k 42.0-1.18
inesis)[Sink]

Apache Beam (Beam applications only) From version 2.57.0. For more information,
see Flink Version Compatibility.

Known issues

Amazon Managed Service for Apache Flink Studio

Studio uses Apache Zeppelin notebooks to provide a single-interface development experience
for developing, debugging code, and running Apache Flink stream processing applications. An
upgrade is required to Zeppelin's Flink Interpreter to enable support of Flink 1.18. This work is
scheduled with the Zeppelin community and we will update these notes when it is complete. You
can continue to use Flink 1.15 with Amazon Managed Service for Apache Flink Studio. For more
information, see Creating a Studio notebook.

Incorrect watermark idleness when subtask is backpressured

There is a known issue in watermark generation when a subtask is backpressured, which has been
fixed from Flink 1.19 and later. This can show up as a spike in the number of late records when a
Flink job graph is backpressured. We recommend that you upgrade to the latest Flink version to
pull in this fix. For more information, see Incorrect watermark idleness timeout accounting when
subtask is backpressured/blocked.

Known issues 111

https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-aws-kinesis-streams/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-aws-kinesis-streams/4.2.0-1.18
https://aws.amazon.com/developer/language/python/
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://docs.aws.amazon.com/managed-flink/latest/java/how-zeppelin-creating.html
https://issues.apache.org/jira/browse/FLINK-35886
https://issues.apache.org/jira/browse/FLINK-35886

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Amazon Managed Service for Apache Flink 1.15

Managed Service for Apache Flink supports the following new features in Apache 1.15.2:

Feature

Async Sink

Kinesis Data Firehose Sink

Stop with Savepoint

Scala Decoupling

Scala

Description

An AWS contributed
framework for building async
destinations that allows
developers to build custom
AWS connectors with less
than half the previous effort.
For more information, see The
Generic Asynchronous Base
Sink.

AWS has contributed a new
Amazon Kinesis Firehose Sink
using the Async framework.

Stop with Savepoint ensures
a clean stop operation, most
importantly supporting
exactly-once semantics for
customers that rely on them.

Users can now leverage the
Java API from any Scala
version, including Scala

3. Customers will need to
bundle the Scala standard
library of their choice in their
Scala applications.

See Scala decoupling above

Apache FLIP reference

FLIP-171: Async Sink.

Amazon Kinesis Data Firehose
Sink.

FLIP-34: Terminate/Suspend
Job with Savepoint.

FLIP-28: Long-term goal of

making flink-table Scala-free.

FLIP-28: Long-term goal of

making flink-table Scala-free.

Amazon Managed Service for Apache Flink 1.15

https://flink.apache.org/2022/05/06/async-sink-base.html
https://flink.apache.org/2022/05/06/async-sink-base.html
https://flink.apache.org/2022/05/06/async-sink-base.html
https://cwiki.apache.org/confluence/display/FLINK/FLIP-171%3A+Async+Sink
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=103090212
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=103090212
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Feature

Unified Connector Metrics

Checkpointing finished tasks

Description

Flink has defined standard
metrics for jobs, tasks and

operators. Managed Service
for Apache Flink will continue
to support sink and source
metrics and in 1.15 introduce
numRestarts in parallel
with fullRestarts for
Availability Metrics.

This feature is enabled by
default in Flink 1.15 and
makes it possible to continue
performing checkpoints even
if parts of the job graph have
finished processing all data,
which might happen if it
contains bounded (batch)
sources.

Apache FLIP reference

FLIP-33: Standardize
Connector Metrics and
FLIP-179: Expose Standardi
zed Operator Metrics.

FLIP-147: Support Checkpoin
ts After Tasks Finished.

Changes in Amazon Managed Service for Apache Flink with Apache

Flink 1.15

Studio notebooks

Managed Service for Apache Flink Studio now supports Apache Flink 1.15. Managed Service for
Apache Flink Studio utilizes Apache Zeppelin notebooks to provide a single-interface development
experience for developing, debugging code, and running Apache Flink stream processing
applications. You can learn more about Managed Service for Apache Flink Studio and how to get
started at Use a Studio notebook with Managed Service for Apache Flink.

EFO connector

Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15

https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/ops/metrics/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/ops/metrics/
https://cwiki.apache.org/confluence/display/FLINK/FLIP-33%3A+Standardize+Connector+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-33%3A+Standardize+Connector+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-179%3A+Expose+Standardized+Operator+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-179%3A+Expose+Standardized+Operator+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-147%3A+Support+Checkpoints+After+Tasks+Finished
https://cwiki.apache.org/confluence/display/FLINK/FLIP-147%3A+Support+Checkpoints+After+Tasks+Finished

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When upgrading to Managed Service for Apache Flink version 1.15, ensure that you are using the
most recent EFO Connector, that is any version 1.15.3 or newer. For more information as to why,
see FLINK-29324.,

Scala Decoupling

Starting with Flink 1.15.2, you will need to bundle the Scala standard library of your choice in your
Scala applications.

Kinesis Data Firehose Sink

When upgrading to Managed Service for Apache Flink version 1.15, ensure that you are using the
most recent Amazon Kinesis Data Firehose Sink.

Kafka Connectors

When upgrading to Amazon Managed Service for Apache Flink for Apache Flink version 1.15,
ensure that you are using the most recent Kafka connector APIs. Apache Flink has deprecated
FlinkKafkaConsumer and FlinkKafkaProducer These APIs for the Kafka sink cannot commit to Kafka
for Flink 1.15. Ensure you are using KafkaSource and KafkaSink.

Components
Component Version
Java 11 (recommended)
Scala 2.12
Managed Service for Apache Flink Flink 1.2.0

Runtime (aws-kinesisanalytics-runtime)

AWS Kinesis Connector (flink-connector-k 1.15.4
inesis)
Apache Beam (Beam applications only) 2.33.0, with Jackson version 2.12.2

Known issues

Kafka Commit on checkpointing fails repeatedly after a broker restart

Components 114

https://issues.apache.org/jira/browse/FLINK-29324
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-consumer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-producer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-source
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-sink
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/1.15.4
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/1.15.4
https://aws.amazon.com/developer/language/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

There is a known open source Apache Flink issue with the Apache Kafka connector in Flink version
1.15 caused by a critical open source Kafka Client bug in Kafka Client 2.8.1. For more information,
see Kafka Commit on checkpointing fails repeatedly after a broker restart and KafkaConsumer is

unable to recover connection to group coordinator after commitOffsetAsync exception.

To avoid this issue, we recommend that you use Apache Flink 1.18 or later in Amazon Managed
Service for Apache Flink.

Earlier version information for Managed Service for Apache
Flink

® Note

Apache Flink versions 1.6, 1.8, and 1.11 haven't been supported by the Apache Flink
community for over three years. We issued notice of this change in June 2024 and October
2024 and will now end support for these versions in Amazon Managed Service for Apache
Flink.

o OnJuly 14, 2025, we'll stop your applications and place them into a READY state. You'll
be able to re-start your applications at that time and continue to use your applications as
normal, subject to service limits.

o From July 28, 2025, we'll disable the ability to START your applications. You won't be
able to start or operate your Flink version 1.6 applications from this time.

We recommend that you immediately upgrade any existing applications using Apache Flink
version 1.6, 1.8, or 1.11, to Apache Flink version 1.20. This is the most recent supported
Flink version. You can upgrade your applications using the in-place version upgrades
feature in Amazon Managed Service for Apache Flink. For more information, see Use in-
place version upgrades for Apache Flink.

If you have further questions or concerns, you can contact AWS Support.

(® Note

Apache Flink version 1.13 has not been supported by the Apache Flink community for over
three years. We now plan to end support for this version in Amazon Managed Service for
Apache Flink on October 16, 2025. After this date, you will no longer be able to create,

Earlier versions 115

https://issues.apache.org/jira/browse/FLINK-28060
https://issues.apache.org/jira/browse/KAFKA-13840
https://issues.apache.org/jira/browse/KAFKA-13840
https://aws.amazon.com/support

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

start, or run applications using Apache Flink version 1.13 in Amazon Managed Service for
Apache Flink.

You can upgrade your applications statefully using the in-place version upgrades feature in
Managed Service for Apache Flink. For more information, see Use in-place version upgrades
for Apache Flink.

Version 1.15.2 is supported by Managed Service for Apache Flink, but is no longer supported by
the Apache Flink community.

This topic contains the following sections:

» Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions

 Building applications with Apache Flink 1.8.2

 Building applications with Apache Flink 1.6.2

» Upgrading applications

« Available connectors in Apache Flink 1.6.2 and 1.8.2
o Getting started: Flink 1.13.2

» Getting started: Flink 1.11.1 - deprecating

» Getting started: Flink 1.8.2 - deprecating

» Getting started: Flink 1.6.2 - deprecating

« Earlier version (legacy) examples for Managed Service for Apache Flink

Using the Apache Flink Kinesis Streams connector with previous
Apache Flink versions

The Apache Flink Kinesis Streams connector was not included in Apache Flink prior to version
1.11. In order for your application to use the Apache Flink Kinesis connector with previous
versions of Apache Flink, you must download, compile, and install the version of Apache Flink that
your application uses. This connector is used to consume data from a Kinesis stream used as an
application source, or to write data to a Kinesis stream used for application output.

(® Note

Ensure that you are building the connector with KPL version 0.14.0 or higher.

Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions 116

https://mvnrepository.com/artifact/com.amazonaws/amazon-kinesis-producer/0.14.0

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To download and install the Apache Flink version 1.8.2 source code, do the following:

1.

Ensure that you have Apache Maven installed, and your JAVA_HOME environment variable
points to a JDK rather than a JRE. You can test your Apache Maven install with the following
command:

mvn -version

Download the Apache Flink version 1.8.2 source code:

wget https://archive.apache.org/dist/flink/flink-1.8.2/flink-1.8.2-src.tgz

Uncompress the Apache Flink source code:

tar -xvf flink-1.8.2-src.tgz

Change to the Apache Flink source code directory:

cd flink-1.8.2

Compile and install Apache Flink:

mvn clean install -Pinclude-kinesis -DskipTests

® Note

If you are compiling Flink on Microsoft Windows, you need to add the -
Drat.skip=true parameter.

Building applications with Apache Flink 1.8.2

This section contains information about components that you use for building Managed Service for
Apache Flink applications that work with Apache Flink 1.8.2.

Use the following component versions for Managed Service for Apache Flink applications:

Building applications with Apache Flink 1.8.2

https://maven.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Java 1.8 (recommended)
Apache Flink 1.8.2

Managed Service for Apache Flink for Flink 1.0.1

Runtime (aws-kinesisanalytics-runtime)

Managed Service for Apache Flink Flink 1.0.1
Connectors (aws-kinesisanalytics-flink)

Apache Maven 3.1

To compile an application using Apache Flink 1.8.2, run Maven with the following parameter:

mvn package -Dflink.version=1.8.2

For an example of a pom. xml file for a Managed Service for Apache Flink application that uses
Apache Flink version 1.8.2, see the Managed Service for Apache Flink 1.8.2 Getting Started
Application.

For information about how to build and use application code for a Managed Service for Apache
Flink application, see Create an application.

Building applications with Apache Flink 1.6.2

This section contains information about components that you use for building Managed Service for
Apache Flink applications that work with Apache Flink 1.6.2.

Use the following component versions for Managed Service for Apache Flink applications:

Component Version

Java 1.8 (recommended)
AWS Java SDK 1.11.379

Apache Flink 1.6.2

Building applications with Apache Flink 1.6.2 118

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_8/pom.xml
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_8/pom.xml

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Managed Service for Apache Flink for Flink 1.0.1
Runtime (aws-kinesisanalytics-runtime)

Managed Service for Apache Flink Flink 1.0.1
Connectors (aws-kinesisanalytics-flink)

Apache Maven 3.1
Apache Beam Not supported with Apache Flink 1.6.2.
(® Note

When using Managed Service for Apache Flink Runtime version 1.0.1, you specify the
version of Apache Flink in your pom. xml file rather than using the -Dflink.version
parameter when compiling your application code.

For an example of a pom. xml file for a Managed Service for Apache Flink application that uses
Apache Flink version 1.6.2, see the Managed Service for Apache Flink 1.6.2 Getting Started

Application.

For information about how to build and use application code for a Managed Service for Apache
Flink application, see Create an application.

Upgrading applications

To upgrade the Apache Flink version of an Amazon Managed Service for Apache Flink application,
use the in-place Apache Flink version upgrade feature using the AWS CLI, AWS SDK, AWS
CloudFormation, or the AWS Management Console. For more information, see Use in-place version
upgrades for Apache Flink.

You can use this feature with any existing applications you use with Amazon Managed Service for
Apache Flink in READY or RUNNING state.

Available connectors in Apache Flink 1.6.2 and 1.8.2

The Apache Flink framework contains connectors for accessing data from a variety of sources.

Upgrading applications 119

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_6/pom.xml
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_6/pom.xml

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« For information about connectors available in the Apache Flink 1.6.2 framework, see Connectors
(1.6.2) in the Apache Flink documentation (1.6.2).

« For information about connectors available in the Apache Flink 1.8.2 framework, see Connectors
(1.8.2) in the Apache Flink documentation (1.8.2).

Getting started: Flink 1.13.2

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
the DataStream API. It describes the available options for creating and testing your applications. It
also provides instructions for installing the necessary tools to complete the tutorials in this guide
and to create your first application.

Topics

« Components of a Managed Service for Apache Flink application

» Prerequisites for completing the exercises

o Step 1: Set up an AWS account and create an administrator user

» Next step
o Step 2: Set up the AWS Command Line Interface (AWS CLI)

» Step 3: Create and run a Managed Service for Apache Flink application

» Step 4: Clean up AWS resources

o Step 5: Next steps

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

Managed Service for Apache Flink application has the following components:
« Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

» Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Add streaming data

sources.

Getting Started: Flink 1.13.2 120

https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

« Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Write data using sinks.

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

« Java Development Kit (JDK) version 11. Set the JAVA_HOME environment variable to point to

your JDK install location.

» We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

« Git client. Install the Git client if you haven't already.

« Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven

installation, enter the following:

$ mvn -version

To get started, go to Set up an AWS account and create an administrator user.

Step 1: Set up an AWS account and create an administrator user
Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

Getting Started: Flink 1.13.2 121

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
https://portal.aws.amazon.com/billing/signup

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Ildentity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to a user.

Getting Started: Flink 1.13.2 122

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

o Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In 1AM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs To By
programmatic access?

Workforce identity Use temporary credentials to Following the instructions for
sign programmatic requests the interface that you want to

(s melegeEe) [A to the AWS CLI, AWS SDKs, or use.

Identity Center) AWS APIs.

Getting Started: Flink 1.13.2 123

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs To By
programmatic access?

e For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

« For AWS SDKs, tools, and
AWS APIs, see |IAM Identity

Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to Following the instructions in
sign programmatic requests Using temporary credentia
to the AWS CLI, AWS SDKs, or s with AWS resources in the
AWS APIs. IAM User Guide.

Getting Started: Flink 1.13.2 124

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

IAM

Next step

To

(Not recommended)

Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Set up the AWS Command Line Interface (AWS CLI)

Next step

Step 2: Set up the AWS Command Line Interface (AWS CLI)

By

Following the instructions for
the interface that you want to
use.

e For the AWS CLI, see
Authenticating using IAM

user credentials in the AWS

Command Line Interface
User Guide.

e For AWS SDKs and tools,
see Authenticate using

long-term credentials in
the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 2: Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with Managed Service for Apache

Flink.

Getting Started: Flink 1.13.2

125

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

(® Note
If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version
The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

« Installing the AWS Command Line Interface

» Configuring the AWS CLI

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]

aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

Getting Started: Flink 1.13.2 126

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

® Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you
configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

e Create two Amazon Kinesis data streams

» Write sample records to the input stream

» Download and examine the Apache Flink streaming Java code

« Compile the application code

» Upload the Apache Flink streaming Java code

« Create and run the Managed Service for Apache Flink application

» Next step

Getting Started: Flink 1.13.2 127

https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStreamand ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \

--region us-west-2 \

--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleQutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \

--region us-west-2 \

--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

® Note
This section requires the AWS SDK for Python (Boto).

Getting Started: Flink 1.13.2 128

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Create a file named stock. py with the following contents:

import datetime
import json
import random
import boto3
STREAM_NAME = "ExampleInputStream"
def get_data():
return {
'event_time': datetime.datetime.now().isoformat(),
'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
'price': round(random.random() * 100, 2)}
def generate(stream_name, kinesis_client):
while True:
data = get_data()
print(data)
kinesis_client.put_record(
StreamName=stream_name,
Data=json.dumps(data),
PartitionKey="partitionkey")
if __name__ == '_main__"':
generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Laterin the tutorial, you run the stock. py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/GettingStarted
directory.

Note the following about the application code:

Getting Started: Flink 1.13.2 129

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

The BasicStreamingJob. java file contains the main method that defines the application's
functionality.

The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
new SimpleStringSchema(), inputProperties));

Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Use runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Fulfill the
prerequisites for completing the exercises.

To compile the application code

1.

To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

« Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom. xml file:

mvn package -Dflink.version=1.13.2

» Use your development environment. See your development environment documentation for
details.

Getting Started: Flink 1.13.2 130

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

The provided source code relies on libraries from Java 11.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the AWS CLI, you specify your code
content type (JAR or ZIP).

If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1.
2.

W

© N o v &

Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

Choose Create bucket.

Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

In the Configure options step, keep the settings as they are, and choose Next.

In the Set permissions step, keep the settings as they are, and choose Next.

Choose Create bucket.

In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0. jar file that you created in the previous step. Choose Next.

You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Getting Started: Flink 1.13.2 131

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLL.

® Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

» Create and run the application (console)

» Create and run the application (AWS CLI)

Create and run the application (console)
Follow these steps to create, configure, update, and run the application using the console.

Create the Application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. Onthe Managed Service for Apache Flink - Create application page, provide the application
details as follows:
« For Application name, enter MyApplication.
« For Description, enter M\y java test app.
« For Runtime, choose Apache Flink.
» Leave the version pulldown as Apache Flink version 1.13.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Getting Started: Flink 1.13.2 132

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

When you create a Managed Service for Apache Flink application using the console,

you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

» Policy: kinesis-analytics-service-MyApplication-us-west-2

* Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy
Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

"Version": "2012-10-17",
"Statement": [
{
"Sid": "ReadCode",
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:GetObjectVexrsion"
1,
"Resource": [
"arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-
java-apps-1.0.jar"
]
}I

Getting Started: Flink 1.13.2 133

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
"Sid": "DescribelLogGroups",
"Effect": "Allow",
"Action": [
"logs:DescribelLogGroups"
]I
"Resouxce": [
"arn:aws:logs:us-west-2:012345678901:1og-group:*"
]
}I
{

"Sid": "DescribelLogStreams",

"Effect": "Allow",

"Action": [
"logs:DescribelLogStreams"

]I

"Resource": [
"arn:aws:logs:us-west-2:012345678901:10g-group:/aws/kinesis-

analytics/MyApplication:log-stxeam:*"

]

},

{
"Sid": "PutLogEvents",
"Effect": "Allow",
"Action": [

"logs:PutLogEvents"

1,

"Resource": [
"arn:aws:logs:us-west-2:012345678901:1og-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
}I
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
}

{
"Sid": "WriteOutputStream",

"Effect": "Allow",
"Action": "kinesis:*",

Getting Started: Flink 1.13.2 134

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"

}
1

Configure the application

1. On the MyApplication page, choose Configure.
2. On the Configure application page, provide the Code location:

« For Amazon S3 bucket, enter ka-app-code-<username>.
« For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following:

Group ID Key Value
ProducerConfigProp flink.inputstream. LATEST
erties initpos

ProducerConfigProp aws.region us-west-2
erties

ProducerConfigProp AggregationEnabled false
erties

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.
6. For CloudWatch logging, select the Enable check box.
7. Choose Update.

(® Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

Getting Started: Flink 1.13.2 135

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

e Log group: /aws/kinesis-analytics/MyApplication

e Logstream: kinesis-analytics-log-stream

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application
On the MyApplication page, choose Stop. Confirm the action.
Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 AWS CLI command
to create and interact with Managed Service for Apache Flink applications.

Create a permissions policy

(® Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).

Getting Started: Flink 1.13.2 136

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNSs)
(012345678901) with your account ID.

JSON
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "s3",
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:GetObjectVexrsion"
]I
"Resource": ["arn:aws:s3:::ka-app-code-username",
"arn:aws:s3:::ka-app-code-username/*"
]
}I
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stxeam/
ExampleInputStream"
},
{
"Sid": "WriteOutputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOQutputStxream"
}
]
}

Getting Started: Flink 1.13.2 137

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

® Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.
To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Inthe navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust

and permissions policies for the role.

6. Attach the permissions policy to the role.

Getting Started: Flink 1.13.2

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy".

a. Onthe Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. Inthe search box, enter AKReadSourceStreamWriteSinkStream (the policy that you

created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1.

Save the following JSON code to a file named create_request. json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
"ApplicationName": "test",
"ApplicationDescription": "my java test app",
"RuntimeEnvironment": "FLINK-1_15",
"ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",

"ApplicationConfiguration": {
"ApplicationCodeConfiguration": {
"CodeContent": {
"S3ContentLocation": {
"BucketARN": "arn:aws:s3:::ka-app-code-username",
"FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"

Getting Started: Flink 1.13.2 139

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}
I
"CodeContentType": "ZIPFILE"
I
"EnvironmentProperties": {
"PropertyGroups": [
{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
I
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}
}
]

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.
Start the Application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request. json.

Getting Started: Flink 1.13.2 140

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"ApplicationName": "test",

"RunConfiguration": {
"ApplicationRestoreConfiguration": {
"ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the Application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request. json.

"ApplicationName": "test"

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.
Add a CloudWatch Logging Option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up

application logging in Managed Service for Apache Flink”.

Getting Started: Flink 1.13.2 141

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update Environment Properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {

"EnvironmentPropertyUpdates": {
"PropertyGroups": [

{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
3,
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}
}

2. Execute the UpdateApplication action with the preceding request to update environment

properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Getting Started: Flink 1.13.2 142

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the Application Code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

(@ Note
To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionlId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
"ApplicationName": "test",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {
"ApplicationCodeConfigurationUpdate": {
"CodeContentUpdate": {
"S3ContentLocationUpdate": {
"BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
"FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",
"ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfthypvDU"
}
}
}
}
}
Next step

Step 4: Clean up AWS resources

Getting Started: Flink 1.13.2 143

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 4: Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

» Delete your Managed Service for Apache Flink application

» Delete your Kinesis data streams

» Delete your Amazon S3 object and bucket

o Delete your IAM resources

» Delete your CloudWatch resources

» Next step

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Inthe Managed Service for Apache Flink panel, choose MyApplication.

3. Inthe application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Inthe Kinesis Data Streams panel, choose ExamplelnputStream.

3. In the ExamplelnputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Getting Started: Flink 1.13.2 144

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.
5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.
4. Choose Delete Log Group and then confirm the deletion.
Next step

Step 5: Next steps

Step 5: Next steps

Now that you've created and run a basic Managed Service for Apache Flink application, see the
following resources for more advanced Managed Service for Apache Flink solutions.

« The AWS Streaming Data Solution for Amazon Kinesis: The AWS Streaming Data Solution

for Amazon Kinesis automatically configures the AWS services necessary to easily capture,
store, process, and deliver streaming data. The solution provides multiple options for solving
streaming data use cases. The Managed Service for Apache Flink option provides an end-to-end
streaming ETL example demonstrating a real-world application that runs analytical operations
on simulated New York taxi data. The solution sets up all necessary AWS resources such as IAM
roles and policies, a CloudWatch dashboard, and CloudWatch alarms.

Getting Started: Flink 1.13.2 145

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS Streaming Data Solution for Amazon MSK: The AWS Streaming Data Solution for Amazon
MSK provides AWS CloudFormation templates where data flows through producers, streaming
storage, consumers, and destinations.

Clickstream Lab with Apache Flink and Apache Kafka: An end to end lab for clickstream use
cases using Amazon Managed Streaming for Apache Kafka for streaming storage and Managed
Service for Apache Flink for Apache Flink applications for stream processing.

Amazon Managed Service for Apache Flink Workshop: In this workshop, you build an end-to-
end streaming architecture to ingest, analyze, and visualize streaming data in near real-time. You
set out to improve the operations of a taxi company in New York City. You analyze the telemetry
data of a taxi fleet in New York City in near real-time to optimize their fleet operations.

Learn Flink: Hands On Training: Offical introductory Apache Flink training that gets you started
writing scalable streaming ETL, analytics, and event-driven applications.

® Note

Be aware that Managed Service for Apache Flink does not support the Apache Flink
version (1.12) used in this training. You can use Flink 1.15.2 in Flink Managed Service for
Apache Flink.

Getting started: Flink 1.11.1 - deprecating

® Note

Apache Flink versions 1.6, 1.8, and 1.11 have not been supported by the Apache Flink
community for over three years. We plan to deprecate these versions in Amazon Managed
Service for Apache Flink on November 5, 2024. Starting from this date, you will not

be able to create new applications for these Flink versions. You can continue running
existing applications at this time. You can upgrade your applications statefully using the
in-place version upgrades feature in Amazon Managed Service for Apache Flink For more
information, see Use in-place version upgrades for Apache Flink.

This topic contains a version of the Tutorial: Get started using the DataStream API in Managed
Service for Apache Flink tutorial that uses Apache Flink 1.11.1.

Getting Started: Flink 1.11.1 146

https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html
https://catalog.workshops.aws/managed-flink
https://ci.apache.org/projects/flink/flink-docs-master/learn-flink/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
the DataStream API. It describes the available options for creating and testing your applications. It
also provides instructions for installing the necessary tools to complete the tutorials in this guide
and to create your first application.

Topics

« Components of a Managed Service for Apache Flink application

» Prerequisites for completing the exercises

o Step 1: Set up an AWS account and create an administrator user

« Step 2: Set up the AWS Command Line Interface (AWS CLlI)

» Step 3: Create and run a Managed Service for Apache Flink application

o Step 4: Clean up AWS resources

« Step 5: Next steps

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

An Managed Service for Apache Flink application has the following components:
« Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

 Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Add streaming data

sources.

« Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

« Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Write data using sinks.

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for

Getting Started: Flink 1.11.1 147

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

« Java Development Kit (JDK) version 11. Set the JAVA_HOME environment variable to point to
your JDK install location.

« We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ

Idea) to develop and compile your application.
« Git client. Install the Git client if you haven't already.

« Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven

installation, enter the following:

$ mvn -version

To get started, go to Set up an AWS account and create an administrator user.

Step 1: Set up an AWS account and create an administrator user
Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

Getting Started: Flink 1.11.1 148

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/earlier-gs-1_11-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

« Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Getting Started: Flink 1.11.1 149

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in

the AWS Sign-In User Guide.

Assign access to additional users

1. In 1AM Identity Center, create a permission set that follows the best practice of applying least-

privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS

Management Console. The way to grant programmatic access depends on the type of user that's

accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

Workforce identity

(Users managed in IAM
Identity Center)

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APlIs.

By

Following the instructions for
the interface that you want to
use.

e For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

« For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in

Getting Started: Flink 1.11.1

150

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

IAM

IAM

Next step

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

(Not recommended)

Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Set up the AWS Command Line Interface (AWS CLI)

By
the AWS SDKs and Tools
Reference Guide.

Following the instructions in
Using temporary credentia

s with AWS resources in the
IAM User Guide.

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Authenticating using IAM

user credentials in the AWS
Command Line Interface
User Guide.

« For AWS SDKs and tools,
see Authenticate using

long-term credentials in
the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 2: Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with Managed Service for Apache

Flink.

Getting Started: Flink 1.11.1

151

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

(® Note
If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version
The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

« Installing the AWS Command Line Interface

» Configuring the AWS CLI

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]

aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

Getting Started: Flink 1.11.1 152

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-earlier-gs-1_11.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3.

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

® Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you

configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a

source and a sink.

This section contains the following steps:

Create two Amazon Kinesis data streams

Write sample records to the input stream

Download and examine the Apache Flink streaming Java code

Compile the application code

Upload the Apache Flink streaming Java code

Create and run the Managed Service for Apache Flink application

Next step

Getting Started: Flink 1.11.1 153

https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStreamand ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \

--region us-west-2 \

--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleQutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \

--region us-west-2 \

--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

® Note
This section requires the AWS SDK for Python (Boto).

Getting Started: Flink 1.11.1 154

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://aws.amazon.com/sdk-for-python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Create a file named stock. py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
return {
"EVENT_TIME": datetime.datetime.now().isoformat(),
"TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
"PRICE": round(random.random() * 100, 2),

def generate(stream_name, kinesis_client):
while True:
data = get_data()
print(data)
kinesis_client.put_record(
StreamName=stream_name, Data=json.dumps(data),
PartitionKey="partitionkey"

)

if __name__ == "__main__":
generate(STREAM_NAME, boto3.client("kinesis"))

2. Later in the tutorial, you run the stock. py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

Getting Started: Flink 1.11.1 155

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/GettingStarted
directory.

Note the following about the application code:

A Project Object Model (pom.xml) file contains information about the application's configuration

and dependencies, including the Managed Service for Apache Flink libraries.

« The BasicStreamingJob. java file contains the main method that defines the application's
functionality.

» The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
new SimpleStringSchema(), inputProperties));

« Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

» The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Use runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Fulfill the
prerequisites for completing the exercises.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

Getting Started: Flink 1.11.1 156

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

» Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom. xml file:

mvn package -Dflink.version=1.11.3

» Use your development environment. See your development environment documentation for
details.

(@ Note

The provided source code relies on libraries from Java 11. Ensure that your project's
Java version is 11.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the AWS CLI, you specify your code
content type (JAR or ZIP).

If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1.
2.

Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

Choose Create bucket.

Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

In the Configure options step, keep the settings as they are, and choose Next.

In the Set permissions step, keep the settings as they are, and choose Next.

Getting Started: Flink 1.11.1 157

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. Choose Create bucket.
7. Inthe Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. Inthe Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0. jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.
Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI.

® Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

» Create and run the application (console)

» Create and run the application (AWS CLI)

Create and run the application (console)
Follow these steps to create, configure, update, and run the application using the console.
Create the application

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Onthe Managed Service for Apache Flink dashboard, choose Create analytics application.

3. Onthe Managed Service for Apache Flink - Create application page, provide the application
details as follows:

» For Application name, enter MyApplication.

Getting Started: Flink 1.11.1 158

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

» For Description, enter M\y java test app.
o For Runtime, choose Apache Flink.
» Leave the version pulldown as Apache Flink version 1.11 (Recommended version).

For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

Choose Create application.

(@ Note

When you create a Managed Service for Apache Flink application using the console,

you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

o Policy: kinesis-analytics-service-MyApplication-us-west-2

» Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1.
2.

Open the IAM console at https://console.aws.amazon.com/iam/.

Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

On the Summary page, choose Edit policy. Choose the JSON tab.

Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

"Version": "2012-10-17",
"Statement": [

{
"Sid": "ReadCode",

Getting Started: Flink 1.11.1 159

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:GetObjectVexrsion"
1,
"Resourxce": [
"arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-
java-apps-1.0.jar"
]
}I
{
"Sid": "DescribelLogGroups",
"Effect": "Allow",
"Action": [
"logs:DescribelogGroups"
]I
"Resource": [
"arn:aws:logs:us-west-2:012345678901:1og-group:*"

"Sid": "DescribelLogStreams",

"Effect": "Allow",

"Action": [
"logs:DescribelLogStreams"

]I

"Resource": [
"arn:aws:logs:us-west-2:012345678901:10g-group:/aws/kinesis-

analytics/MyApplication:log-stxeam:*"

]

},

{
"Sid": "PutLogEvents",
"Effect": "Allow",
"Action": [

"logs:PutLogEvents"

1,

"Resourxce": [
"arn:aws:logs:us-west-2:012345678901:1og-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
}I

{
"Sid": "ReadInputStream",

Getting Started: Flink 1.11.1 160

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Effect": "Allow",
"Action": "kinesis:*",

"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
}
{
"Sid": "WriteOutputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource'": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
}

Configure the application

1. On the MyApplication page, choose Configure.
2. On the Configure application page, provide the Code location:

» For Amazon S3 bucket, enter ka-app-code-<username>.
« For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, for Group ID, enter ProducerConfigProperties.

Enter the following application properties and values:

Group ID Key Value
ProducexConfigProp flink.inputstream. LATEST
erties initpos

ProducexConfigProp aws.region us-west-2
erties

ProducexConfigProp AggregationEnabled false
erties

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

Getting Started: Flink 1.11.1 161

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

7. For CloudWatch logging, select the Enable check box.
8. Choose Update.

® Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

e Log group: /aws/kinesis-analytics/MyApplication

e Logstream: kinesis-analytics-log-stream

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application
On the MyApplication page, choose Stop. Confirm the action.
Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application. a Managed Service for Apache Flink uses the kinesisanalyticsv2 AWS CLI
command to create and interact with Managed Service for Apache Flink applications.

Getting Started: Flink 1.11.1 162

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a Permissions Policy

(@ Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNSs)
(012345678901) with your account ID.

JSON

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "s3",
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:GetObjectVexrsion"
1,
"Resource": ["arn:aws:s3:::ka-app-code-username",
"arn:aws:s3:::ka-app-code-username/*"
]
},
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"

Getting Started: Flink 1.11.1 163

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

},
{
"Sid": "WriteOutputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOQutputStxream"
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

® Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Create an IAM Role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.
To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Inthe navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Getting Started: Flink 1.11.1 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Choose Next: Permissions.

On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

On the Create role page, enter MF-stream-xw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

Attach the permissions policy to the role.

(® Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a Permissions Policy”.

a. On the Summary page, choose the Permissions tab.
b. Choose Attach Policies.

c. Inthe search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1.

Save the following JSON code to a file named create_request. json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

Getting Started: Flink 1.11.1 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
"ApplicationName": "test",
"ApplicationDescription": "my java test app",
"RuntimeEnvironment": "FLINK-1_11",
"ServiceExecutionRole": "arn:aws:iam::012345678901:ro0le/MF-stream-rw-role",
"ApplicationConfiguration": {
"ApplicationCodeConfiguration": {
"CodeContent": {
"S3ContentLocation": {
"BucketARN": "arn:aws:s3:::ka-app-code-username",
"FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"
}
.
"CodeContentType": "ZIPFILE"
.
"EnvironmentProperties": {
"PropertyGroups": [
{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
.
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}
}
]
}
}
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

Getting Started: Flink 1.11.1 166

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application is now created. You start the application in the next step.
Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request. json.

{
"ApplicationName": "test",
"RunConfiguration": {
"ApplicationRestoreConfiguration": {
"ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
}
}
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json
The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.
Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request. json.

"ApplicationName": "test"

2. Execute the StopApplication action with the following request to stop the application:

Getting Started: Flink 1.11.1 167

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.
Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up
application logging in Managed Service for Apache Flink”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for

the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request. json.

{"ApplicationName": "test",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {

"EnvironmentPropertyUpdates": {
"PropertyGroups": [

{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
},
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}
}

Getting Started: Flink 1.11.1 168

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

}

2. Execute the UpdateApplication action with the preceding request to update environment

properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

(@ Note
To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

"ApplicationName": "test",
"CurrentApplicationVersionId": I,
"ApplicationConfigurationUpdate": {
"ApplicationCodeConfigurationUpdate": {
"CodeContentUpdate": {
"S3ContentLocationUpdate": {
"BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
"FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",

Getting Started: Flink 1.11.1 169

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"

Next step

Step 4: Clean up AWS resources

Step 4: Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

» Delete your Managed Service for Apache Flink application

» Delete your Kinesis data streams

» Delete your Amazon S3 object and bucket

« Delete rour IAM resources

» Delete your CloudWatch resources

» Next step

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Inthe Managed Service for Apache Flink panel, choose MyApplication.

3. Inthe application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Inthe Kinesis Data Streams panel, choose ExamplelnputStream.

3. In the ExamplelnputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Getting Started: Flink 1.11.1 170

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete rour 1AM resources

Open the IAM console at https://console.aws.amazon.com/iam/.

In the navigation bar, choose Policies.
In the filter control, enter kinesis.

Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

In the navigation bar, choose Roles.

1
2
3
4
5. Choose Policy Actions and then choose Delete.
6
7. Choose the kinesis-analytics-MyApplication-us-west-2 role.
8

Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

1
2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.
4

Choose Delete Log Group and then confirm the deletion.

Next step

Step 5: Next steps

Step 5: Next steps

Now that you've created and run a basic Managed Service for Apache Flink application, see the
following resources for more advanced Managed Service for Apache Flink solutions.

Getting Started: Flink 1.11.1 171

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« The AWS Streaming Data Solution for Amazon Kinesis: The AWS Streaming Data Solution
for Amazon Kinesis automatically configures the AWS services necessary to easily capture,

store, process, and deliver streaming data. The solution provides multiple options for solving
streaming data use cases. The Managed Service for Apache Flink option provides an end-to-end
streaming ETL example demonstrating a real-world application that runs analytical operations
on simulated New York taxi data. The solution sets up all necessary AWS resources such as IAM
roles and policies, a CloudWatch dashboard, and CloudWatch alarms.

AWS Streaming Data Solution for Amazon MSK: The AWS Streaming Data Solution for Amazon
MSK provides AWS CloudFormation templates where data flows through producers, streaming

storage, consumers, and destinations.

Clickstream Lab with Apache Flink and Apache Kafka: An end to end lab for clickstream use
cases using Amazon Managed Streaming for Apache Kafka for streaming storage and Managed

Service for Apache Flink for Apache Flink applications for stream processing.

Amazon Managed Service for Apache Flink Workshop: In this workshop, you build an end-to-

end streaming architecture to ingest, analyze, and visualize streaming data in near real-time. You
set out to improve the operations of a taxi company in New York City. You analyze the telemetry
data of a taxi fleet in New York City in near real-time to optimize their fleet operations.

Learn Flink: Hands On Training: Offical introductory Apache Flink training that gets you started

writing scalable streaming ETL, analytics, and event-driven applications.

® Note

Be aware that Managed Service for Apache Flink does not support the Apache Flink
version (1.12) used in this training. You can use Flink 1.15.2 in Flink Managed Service for
Apache Flink.

» Apache Flink Code Examples: A GitHub repository of a wide variety of Apache Flink application

examples.
Getting started: Flink 1.8.2 - deprecating

(® Note

Apache Flink versions 1.6, 1.8, and 1.11 have not been supported by the Apache Flink
community for over three years. We plan to deprecate these versions in Amazon Managed
Service for Apache Flink on November 5, 2024. Starting from this date, you will not

Getting started: Flink 1.8.2 - deprecating 172

https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html
https://catalog.workshops.aws/managed-flink
https://ci.apache.org/projects/flink/flink-docs-master/learn-flink/
https://github.com/apache/flink/tree/master/flink-examples/flink-examples-streaming/src/main/java/org/apache/flink/streaming/examples

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

be able to create new applications for these Flink versions. You can continue running
existing applications at this time. You can upgrade your applications statefully using the
in-place version upgrades feature in Amazon Managed Service for Apache Flink For more
information, see Use in-place version upgrades for Apache Flink.

This topic contains a version of the Tutorial: Get started using the DataStream API in Managed

Service for Apache Flink tutorial that uses Apache Flink 1.8.2.

Topics

« Components of Managed Service for Apache Flink application

» Prerequisites for completing the exercises

o Step 1: Set up an AWS account and create an administrator user

o Step 2: Set up the AWS Command Line Interface (AWS CLI)

» Step 3: Create and run a Managed Service for Apache Flink application

» Step 4: Clean up AWS resources

Components of Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

An Managed Service for Apache Flink application has the following components:
« Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

» Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Add streaming data

sources.

« Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

« Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Write data using sinks.

Getting started: Flink 1.8.2 - deprecating 173

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises
To complete the steps in this guide, you must have the following:

« Java Development Kit (JDK) version 8. Set the JAVA_HOME environment variable to point to your
JDK install location.

» To use the Apache Flink Kinesis connector in this tutorial, you must download and install Apache
Flink. For details, see Using the Apache Flink Kinesis Streams connector with previous Apache
Flink versions.

« We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

« Git client. Install the Git client if you haven't already.

« Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an AWS account and create an administrator user.

Step 1: Set up an AWS account and create an administrator user
Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

Getting started: Flink 1.8.2 - deprecating 174

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
https://portal.aws.amazon.com/billing/signup

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Getting started: Flink 1.8.2 - deprecating 175

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Sign in as the user with administrative access

e Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in

the AWS Sign-In User Guide.

Assign access to additional users

1. InlAM Identity Center, create a permission set that follows the best practice of applying least-

privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS

Management Console. The way to grant programmatic access depends on the type of user that's

accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

Workforce identity

(Users managed in IAM
Identity Center)

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

By

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

Getting started: Flink 1.8.2 - deprecating

176

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

IAM

IAM

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

(Not recommended)

Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

By

e For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Following the instructions in
Using temporary credentia

s with AWS resources in the
IAM User Guide.

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Authenticating using IAM

user credentials in the AWS

Command Line Interface
User Guide.

« For AWS SDKs and tools,
see Authenticate using

long-term credentials in
the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 2: Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with Managed Service for Apache

Flink.

Getting started: Flink 1.8.2 - deprecating

177

https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

(® Note
If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version
The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

« Installing the AWS Command Line Interface

» Configuring the AWS CLI

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]

aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

Getting started: Flink 1.8.2 - deprecating 178

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3.

For a list of available Regions, see Regions and Endpoints in the Amazon Web Services General

Reference.

® Note

The example code and commands in this tutorial use the US West (Oregon) Region.
To use a different AWS Region, change the Region in the code and commands for this
tutorial to the Region you want to use.

Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you

configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a

source and a sink.

This section contains the following steps:

Create two Amazon Kinesis data streams

Write sample records to the input stream

Download and examine the Apache Flink streaming Java code

Compile the application code

Upload the Apache Flink streaming Java code

Create and run the Managed Service for Apache Flink application

Next step

Getting started: Flink 1.8.2 - deprecating 179

https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStreamand ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \

--region us-west-2 \

--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleQutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \

--region us-west-2 \

--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

® Note
This section requires the AWS SDK for Python (Boto).

Getting started: Flink 1.8.2 - deprecating 180

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Create a file named stock. py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
return {
"EVENT_TIME": datetime.datetime.now().isoformat(),
"TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
"PRICE": round(random.random() * 100, 2),

def generate(stream_name, kinesis_client):
while True:
data = get_data()
print(data)
kinesis_client.put_record(
StreamName=stream_name, Data=json.dumps(data),
PartitionKey="partitionkey"

)

if __name__ == "__main__":
generate(STREAM_NAME, boto3.client("kinesis"))

2. Later in the tutorial, you run the stock. py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

Getting started: Flink 1.8.2 - deprecating 181

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/
GettingStarted_1_8 directory.

Note the following about the application code:

A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

 The BasicStreamingJob. java file contains the main method that defines the application's
functionality.

« The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
new SimpleStringSchema(), inputProperties));

« Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

» The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Use runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

(® Note

In order to use the Kinesis connector with versions of Apache Flink prior to 1.11, you
need to download, build, and install Apache Maven. For more information, see the

Getting started: Flink 1.8.2 - deprecating 182

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

section called “Using the Apache Flink Kinesis Streams connector with previous Apache
Flink versions”.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

« Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom. xml file:

mvn package -Dflink.version=1.8.2

« Use your development environment. See your development environment documentation for
details.

(® Note

The provided source code relies on libraries from Java 1.8. Ensure that your project's
Java version is 1.8.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the AWS CLI, you specify your code
content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:
target/aws-kinesis-analytics-java-apps-1.0.jar
Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

Getting started: Flink 1.8.2 - deprecating 183

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To upload the application code

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket.

W

Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

In the Configure options step, keep the settings as they are, and choose Next.
In the Set permissions step, keep the settings as they are, and choose Next.
Choose Create bucket.

In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

© N o U A

In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0. jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.
Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI.

® Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

» Create and run the application (console)

» Create and run the application (AWS CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Getting started: Flink 1.8.2 - deprecating 184

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create the application

1.

Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

On the Managed Service for Apache Flink dashboard, choose Create analytics application.

On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

For Application name, enter MyApplication.

For Description, enter My java test app.

For Runtime, choose Apache Flink.

Leave the version pulldown as Apache Flink 1.8 (Recommended Version).

For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

Choose Create application.

(@ Note

When you create a Managed Service for Apache Flink application using the console,

you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

e Policy: kinesis-analytics-service-MyApplication-us-west-2

» Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1.
2.

3.

Open the IAM console at https://console.aws.amazon.com/iam/.

Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

On the Summary page, choose Edit policy. Choose the JSON tab.

Getting started: Flink 1.8.2 - deprecating 185

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

"Version": "2012-10-17",
"Statement": [

{

"Sid": "ReadCode",

"Effect": "Allow",

"Action": [
"s3:GetObject",
"s3:GetObjectVexrsion"

1,

"Resource": [

"arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-

java-apps-1.0.jar"

1

"Sid": "DescribelLogGroups",

"Effect": "Allow",

"Action": [
"logs:DescribelLogGroups"

]I

"Resource": [
"arn:aws:logs:us-west-2:012345678901:1og-group:*"

"Sid": "DescribelLogStreams",

"Effect": "Allow",

"Action": [
"logs:DescribelLogStreams"

1,

"Resource": [

"arn:aws:logs:us-west-2:012345678901:1o0g-group:/aws/kinesis-

analytics/MyApplication:log-stxeam:*"

},
{

1

Getting started: Flink 1.8.2 - deprecating

186

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Sid": "PutLogEvents",

"Effect": "Allow",

"Action": [
"logs:PutLogEvents"

1,

"Resourxce": [
"arn:aws:logs:us-west-2:012345678901:1og-group:/aws/kinesis-

analytics/MyApplication:log-stream:kinesis-analytics-log-stream"

]
}I
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
}
{
"Sid": "WriteOutputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource'": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

« For Amazon S3 bucket, enter ka-app-code-<username>.
« For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following application properties and values:

Getting started: Flink 1.8.2 - deprecating 187

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Group ID

ProducexrConfigProp
erties

ProducexConfigProp
erties

ProducexConfigProp
erties

Key

flink.inputstream.
initpos

aws.region

AggregationEnabled

Value

LATEST

us-west-2

false

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

(@ Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as

follows:

« Log group: /aws/kinesis-analytics/MyApplication

e Log stream: kinesis-analytics-log-stream

Run the application

1. On the MyApplication page, choose Run. Confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Getting started: Flink 1.8.2 - deprecating

188

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 AWS CLI command
to create and interact with Managed Service for Apache Flink applications.

Create a Permissions Policy

(® Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNSs)
(012345678901) with your account ID.

JSON

"Version": "2012-10-17",
"Statement": [
{

Getting started: Flink 1.8.2 - deprecating 189

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Sid": "Ss3",

"Effect": "Allow",

"Action": [
"s3:GetObject",
"s3:GetObjectVersion"

]I

"Resource": ["arn:aws:s3:::ka-app-code-username",
"arn:aws:s3:::ka-app-code-username/*"

]
}I
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stxeam/
ExampleInputStream"
},
{
"Sid": "WriteOutputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOQutputStxream"
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

(® Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Getting started: Flink 1.8.2 - deprecating 190

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.
To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Inthe navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

(@ Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a Permissions Policy”.

a. On the Summary page, choose the Permissions tab.
b. Choose Attach Policies.

c. Inthe search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

Getting started: Flink 1.8.2 - deprecating 191

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request. json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
"ApplicationName": "test",
"ApplicationDescription": "my java test app",
"RuntimeEnvironment": "FLINK-1_8",
"ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",

"ApplicationConfiguration": {
"ApplicationCodeConfiguration": {
"CodeContent": {
"S3ContentLocation": {

"BucketARN": "arn:aws:s3:::ka-app-code-username",
"FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"
}
1,
"CodeContentType": "ZIPFILE"
1,
"EnvironmentProperties": {
"PropertyGroups": [
{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
1,
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}

Getting started: Flink 1.8.2 - deprecating 192

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.
Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request. json.

{
"ApplicationName": "test",
"RunConfiguration": {
"ApplicationRestoreConfiguration": {
"ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
}
}
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

Getting started: Flink 1.8.2 - deprecating 193

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To stop the application

1. Save the following JSON code to a file named stop_request. json.

"ApplicationName": "test"

}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.
Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up
application logging in Managed Service for Apache Flink”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for

the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {

"EnvironmentPropertyUpdates": {
"PropertyGroups": [

{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",

Getting started: Flink 1.8.2 - deprecating 194

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"AggregationEnabled" : "false"
}
1,
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json
Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

(® Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications

Getting started: Flink 1.8.2 - deprecating 195

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
"ApplicationName": "test",
"CurrentApplicationVersionId": I,
"ApplicationConfigurationUpdate": {
"ApplicationCodeConfigurationUpdate": {
"CodeContentUpdate": {
"S3ContentLocationUpdate": {
"BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
"FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",
"ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
}
}
}
}
}
Next step

Step 4: Clean up AWS resources

Step 4: Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

» Delete your Managed Service for Apache Flink application

Delete your Kinesis data streams

Delete your Amazon S3 object and bucket

Delete your IAM resources

Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Inthe Managed Service for Apache Flink panel, choose MyApplication.

Getting started: Flink 1.8.2 - deprecating 196

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Choose Configure.
4. In the Snapshots section, choose Disable and then choose Update.

5. Inthe application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Inthe Kinesis Data Streams panel, choose ExamplelnputStream.

3. In the ExamplelnputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

Open the IAM console at https://console.aws.amazon.com/iam/.

In the navigation bar, choose Policies.

In the filter control, enter kinesis.

Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.
Choose Policy Actions and then choose Delete.

In the navigation bar, choose Roles.

Choose the kinesis-analytics-MyApplication-us-west-2 role.

© N O U B W DN =

Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Getting started: Flink 1.8.2 - deprecating 197

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the navigation bar, choose Logs.
3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.
Getting started: Flink 1.6.2 - deprecating

(® Note

Apache Flink versions 1.6, 1.8, and 1.11 have not been supported by the Apache Flink
community for over three years. We plan to deprecate these versions in Amazon Managed
Service for Apache Flink on November 5, 2024. Starting from this date, you will not

be able to create new applications for these Flink versions. You can continue running
existing applications at this time. You can upgrade your applications statefully using the
in-place version upgrades feature in Amazon Managed Service for Apache Flink For more
information, see Use in-place version upgrades for Apache Flink.

This topic contains a version of the Tutorial: Get started using the DataStream APl in Managed
Service for Apache Flink tutorial that uses Apache Flink 1.6.2.

Topics

« Components of a Managed Service for Apache Flink application

» Prerequisites for completing the exercises

o Step 1: Set up an AWS account and create an administrator user

o Step 2: Set up the AWS Command Line Interface (AWS CLI)

» Step 3: Create and run a Managed Service for Apache Flink application

» Step 4: Clean up AWS resources

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

a Managed Service for Apache Flink has the following components:

Getting started: Flink 1.6.2 - deprecating 198

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

» Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Add streaming data

sources.

« Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

« Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Write data using sinks.

After you create, compile, and package your application, you upload the code package to an
Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

« Java Development Kit (JDK) version 8. Set the JAVA_HOME environment variable to point to your
JDK install location.

« We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ

Idea) to develop and compile your application.
« Git Client. Install the Git client if you haven't already.

« Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven

installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an AWS account and create an administrator user.

Getting started: Flink 1.6.2 - deprecating 199

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 1: Set up an AWS account and create an administrator user
Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Getting started: Flink 1.6.2 - deprecating 200

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

« Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In 1AM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Getting started: Flink 1.6.2 - deprecating 201

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

Workforce identity

(Users managed in IAM
Identity Center)

IAM

IAM

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

(Not recommended)

Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

By

Following the instructions for
the interface that you want to
use.

e For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

e For AWS SDKs, tools, and
AWS APIs, see |IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS

Command Line Interface
User Guide.

« For AWS SDKs and tools,
see Authenticate using

long-term credentials in

Getting started: Flink 1.6.2 - deprecating

202

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs To By
programmatic access?

the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 2: Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with a Managed Service for Apache
Flink.

(® Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

(@ Note

If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version

The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

Getting started: Flink 1.6.2 - deprecating 203

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To set up the AWS CLI

1.

3.

Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

« Installing the AWS Command Line Interface

« Configuring the AWS CLI

Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]

aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

(® Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you
configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Getting started: Flink 1.6.2 - deprecating 204

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

« Create two Amazon Kinesis data streams

» Write sample records to the input stream

« Download and examine the Apache Flink streaming Java code

o Compile the application code

» Upload the Apache Flink streaming Java code

» Create and run the Managed Service for Apache Flink application

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStreamand ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis

Data Streams Developer Guide.
To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \

--region us-west-2 \

--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \

Getting started: Flink 1.6.2 - deprecating 205

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

(® Note
This section requires the AWS SDK for Python (Boto).

1. Create a file named stock. py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
return {
"EVENT_TIME": datetime.datetime.now().isoformat(),
"TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
"PRICE": round(random.random() * 100, 2),

def generate(stream_name, kinesis_client):
while True:
data = get_data()
print(data)
kinesis_client.put_record(
StreamName=stream_name, Data=json.dumps(data),
PartitionKey="partitionkey"

)

Getting started: Flink 1.6.2 - deprecating 206

https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

if __name__ == "__main__":
generate(STREAM_NAME, boto3.client("kinesis"))

2. Laterin the tutorial, you run the stock. py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/
GettingStarted_1_6 directory.

Note the following about the application code:

A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the a Managed Service for Apache Flink libraries.

 The BasicStreamingJob. java file contains the main method that defines the application's
functionality.

» The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
new SimpleStringSchema(), inputProperties));

« Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

» The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

Getting started: Flink 1.6.2 - deprecating 207

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information about runtime properties, see Use runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

(@ Note

In order to use the Kinesis connector with versions of Apache Flink prior to 1.11, you
need to download the source code for the connector and build it as described in the
Apache Flink documentation.

To compile the application code

1.

To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

» Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom. xml file:

mvn package

(® Note

The -Dflink.version parameter is not required for Managed Service for Apache
Flink Runtime version 1.0.1; it is only required for version 1.1.0 and later. For more
information, see the section called “Specify your application's Apache Flink version”.

» Use your development environment. See your development environment documentation for
details.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the AWS CLI, you specify your code
content type (JAR or ZIP).

Getting started: Flink 1.6.2 - deprecating 208

https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/kinesis.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:
target/aws-kinesis-analytics-java-apps-1.0.jar
Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket.

W

Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

In the Configure options step, keep the settings as they are, and choose Next.
In the Set permissions step, keep the settings as they are, and choose Next.
Choose Create bucket.

In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

© N o v b

In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0. jar file that you created in the previous step. Choose Next.

9. In the Set permissions step, keep the settings as they are. Choose Next.
10. In the Set properties step, keep the settings as they are. Choose Upload.
Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI.

Getting started: Flink 1.6.2 - deprecating 209

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

» Create and run the application (console)

» Create and run the application (AWS CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1.

Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

On the Managed Service for Apache Flink dashboard, choose Create analytics application.

On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

For Application name, enter MyApplication.

For Description, enter M\y java test app.

For Runtime, choose Apache Flink.

(@ Note
Managed Service for Apache Flink uses Apache Flink version 1.8.2 or 1.6.2.

Change the version pulldown to Apache Flink 1.6.

For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

Choose Create application.

Getting started: Flink 1.6.2 - deprecating 210

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

When you create a Managed Service for Apache Flink application using the console,

you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

» Policy: kinesis-analytics-service-MyApplication-us-west-2

* Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy
Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

"Version": "2012-10-17",
"Statement": [
{
"Sid": "ReadCode",
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:GetObjectVexrsion"
1,
"Resource": [
"arn:aws:s3:::ka-app-code-username/java-getting-
started-1.0.jar"
]
}I

Getting started: Flink 1.6.2 - deprecating 211

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
"Sid": "DescribelLogGroups",
"Effect": "Allow",
"Action": [
"logs:DescribelLogGroups"
]I
"Resouxce": [
"arn:aws:logs:us-west-2:012345678901:1og-group:*"
]
}I
{

"Sid": "DescribelLogStreams",

"Effect": "Allow",

"Action": [
"logs:DescribelLogStreams"

]I

"Resource": [
"arn:aws:logs:us-west-2:012345678901:10g-group:/aws/kinesis-

analytics/MyApplication:log-stxeam:*"

]

},

{
"Sid": "PutLogEvents",
"Effect": "Allow",
"Action": [

"logs:PutLogEvents"

1,

"Resource": [
"arn:aws:logs:us-west-2:012345678901:1og-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
}I
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
}

{
"Sid": "WriteOutputStream",

"Effect": "Allow",
"Action": "kinesis:*",

Getting started: Flink 1.6.2 - deprecating 212

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"

}
1

Configure the application

1. On the MyApplication page, choose Configure.
2. On the Configure application page, provide the Code location:

« For Amazon S3 bucket, enter ka-app-code-<username>.
» For Path to Amazon S3 object, enter java-getting-started-1.0. jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following application properties and values:

Group ID Key Value
ProducerConfigProp flink.inputstream. LATEST
erties initpos

ProducerConfigProp aws.region us-west-2
erties

ProducerConfigProp AggregationEnabled false
erties

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.
6. For CloudWatch logging, select the Enable check box.
7. Choose Update.

(® Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

Getting started: Flink 1.6.2 - deprecating 213

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

e Log group: /aws/kinesis-analytics/MyApplication

» Logstream: kinesis-analytics-log-stream

Run the application

1. On the MyApplication page, choose Run. Confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Stop the application
On the MyApplication page, choose Stop. Confirm the action.
Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 AWS CLI command
to create and interact with Managed Service for Apache Flink applications.

Create a permissions policy

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket

Getting started: Flink 1.6.2 - deprecating 214

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

to store the application code. Replace the account ID in the Amazon Resource Names (ARNSs)
(012345678901) with your account ID.

JSON

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "s3",
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:GetObjectVexrsion"
]I
"Resource": ["arn:aws:s3:::ka-app-code-username",
"arn:aws:s3:::ka-app-code-username/*"
]
}I
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stxeam/
ExampleInputStream"
}I
{
"Sid": "WriteOutputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStxeam"
}
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your

First Customer Managed Policy in the IAM User Guide.

Getting started: Flink 1.6.2 - deprecating 215

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an 1AM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.
To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. Onthe Create role page, enter MF-stream-xw-role for the Role name. Choose Create role.
Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust

and permissions policies for the role.

6. Attach the permissions policy to the role.

(@ Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data

Getting started: Flink 1.6.2 - deprecating 216

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. Inthe search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request. json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
"ApplicationName": "test",
"ApplicationDescription": "my java test app",
"RuntimeEnvironment": "FLINK-1_6",
"ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",

"ApplicationConfiguration": {
"ApplicationCodeConfiguration": {
"CodeContent": {
"S3ContentLocation": {
"BucketARN": "arn:aws:s3:::ka-app-code-username",
"FileKey": "java-getting-started-1.0.jar"

}
},
"CodeContentType": "ZIPFILE"
},
"EnvironmentProperties": {

"PropertyGroups": [

Getting started: Flink 1.6.2 - deprecating 217

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
I
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.
Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request. json.

"ApplicationName": "test",

"RunConfiguration": {
"ApplicationRestoreConfiguration": {
"ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
}

Getting started: Flink 1.6.2 - deprecating 218

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request. json.

"ApplicationName": "test"

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.
Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up

application logging in Managed Service for Apache Flink”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for

the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

Getting started: Flink 1.6.2 - deprecating 219

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {

"EnvironmentPropertyUpdates": {
"PropertyGroups": [

{
"PropertyGroupId": "ProducerConfigProperties",
"PropertyMap" : {
"flink.stream.initpos" : "LATEST",
"aws.region" : "us-west-2",
"AggregationEnabled" : "false"
}
.
{
"PropertyGroupId": "ConsumerConfigProperties",
"PropertyMap" : {
"aws.region" : "us-west-2"
}
}

2. Execute the UpdateApplication action with the preceding request to update environment

properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json
Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

Getting started: Flink 1.6.2 - deprecating 220

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionlId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
"ApplicationName": "test",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {
"ApplicationCodeConfigurationUpdate": {
"CodeContentUpdate": {
"S3ContentLocationUpdate": {
"BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
"FileKeyUpdate": "java-getting-started-1.0.jar"
}
}
}
}
}

Step 4: Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

» Delete your Managed Service for Apache Flink application

» Delete your Kinesis data streams

» Delete your Amazon S3 object and bucket

» Delete your IAM resources

» Delete your CloudWatch resources

Getting started: Flink 1.6.2 - deprecating 221

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Managed Service for Apache Flink application

Open the Kinesis console at https://console.aws.amazon.com/kinesis.

In the Managed Service for Apache Flink panel, choose MyApplication.
Choose Configure.

In the Snapshots section, choose Disable and then choose Update.

ik W=

In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Kinesis Data Streams panel, choose ExamplelnputStream.

3. In the ExamplelnputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

Open the IAM console at https://console.aws.amazon.com/iam/.

In the navigation bar, choose Policies.

In the filter control, enter kinesis.

Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.
Choose Policy Actions and then choose Delete.

In the navigation bar, choose Roles.

Choose the kinesis-analytics-MyApplication-us-west-2 role.

© N O Uk~ WD =

Choose Delete role and then confirm the deletion.

Getting started: Flink 1.6.2 - deprecating 222

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.
3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.
Earlier version (legacy) examples for Managed Service for Apache Flink

® Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

This section provides examples of creating and working with applications in Managed Service for
Apache Flink. They include example code and step-by-step instructions to help you create Managed
Service for Apache Flink applications and test your results.

Before you explore these examples, we recommend that you first review the following:

+« How it works

» Tutorial: Get started using the DataStream API in Managed Service for Apache Flink

(® Note

These examples assume that you are using the US West (Oregon) Region (us-west-2). If
you are using a different Region, update your application code, commands, and IAM roles
appropriately.

Topics

« DataStream APl examples

o Python examples

o Scala examples

Legacy examples 223

https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

DataStream API examples

The following examples demonstrate how to create applications using the Apache Flink
DataStream API.

Topics

» Example: Tumbling window

« Example: Sliding window

« Example: Writing to an Amazon S3 bucket

» Tutorial: Using a Managed Service for Apache Flink application to replicate data from one topic

in an MSK cluster to another in a VPC

o Example: Use an EFO consumer with a Kinesis data stream

« Example: Writing to Firehose

» Example: Read from a Kinesis stream in a different account

 Tutorial: Using a custom truststore with Amazon MSK

Example: Tumbling window

(® Note

For current examples, see Examples for creating and working with Managed Service for

Apache Flink applications.

In this exercise, you create a Managed Service for Apache Flink application that aggregates
data using a tumbling window. Aggregration is enabled by default in Flink. To disable it, use the
following:

sink.producer.aggregation-enabled' = 'false'

(® Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started

using the DataStream API in Managed Service for Apache Flink exercise.

Legacy examples 224

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This topic contains the following sections:

» Create dependent resources

» Write sample records to the input stream

» Download and examine the application code

o Compile the application code

» Upload the Apache Flink streaming Java code

» Create and run the Managed Service for Apache Flink application

o Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

« Two Kinesis data streams (ExampleInputStreamand ExampleQutputStream)

« An Amazon S3 bucket to store the application's code (ka-app-code-<username>)
You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

» Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream and ExampleOQutputStream.

« How Do | Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the

Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

(® Note
This section requires the AWS SDK for Python (Boto).

Legacy examples 225

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Create a file named stock. py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
return {
'event_time': datetime.datetime.now().isoformat(),
'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
'price': round(random.random() * 100, 2)}

def generate(stream_name, kinesis_client):
while True:

data = get_data()

print(data)

kinesis_client.put_record(
StreamName=stream_name,
Data=json.dumps(data),
PartitionKey="partitionkey")

if __name__ == '_main__"':
generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2"))

2. Runthe stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

Legacy examples 226

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/TumblingWindow
directory.

The application code is located in the TumblingWindowStreamingJob. java file. Note the
following about the application code:

» The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
new SimpleStringSchema(), inputProperties));

« Add the following import statement:

import
org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows; //
flink 1.13 onward

« The application uses the timeWindow operator to find the count of values for each stock symbol
over a 5-second tumbling window. The following code creates the operator and sends the
aggregated data to a new Kinesis Data Streams sink:

input.flatMap(new Tokenizer()) // Tokenizer for generating words
.keyBy(@) // Logically partition the stream for each word

.window(TumblingProcessingTimeWindows.of(Time.seconds(5))) //
Flink 1.13 onward

.sum(1) // Sum the number of words per partition

.map(value -> value.f@ + "," + value.fl.toString() + "\n")

.addSink(createSinkFromStaticConfig());

Compile the application code

To compile the application, do the following:

Legacy examples 227

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install Java and Maven if you haven't already. For more information, see Complete the required
prerequisites in the Tutorial: Get started using the DataStream APl in Managed Service for

Apache Flink tutorial.
2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

® Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. Inthe Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.
Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.
Create the application

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Onthe Managed Service for Apache Flink dashboard, choose Create analytics application.

3. Onthe Managed Service for Apache Flink - Create application page, provide the application
details as follows:

Legacy examples 228

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

» For Application name, enter MyApplication.

« For Runtime, choose Apache Flink.

(® Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

» Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

Choose Create application.

(® Note

When you create a Managed Service for Apache Flink application using the console,

you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

» Policy: kinesis-analytics-service-MyApplication-us-west-2

» Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1.
2.

Open the IAM console at https://console.aws.amazon.com/iam/.

Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

On the Summary page, choose Edit policy. Choose the JSON tab.

Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

Legacy examples 229

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

JSON

"Version": "2012-10-17",
"Statement": [

{

"Sid": "ReadCode",

"Effect": "Allow",

"Action": [
"s3:GetObject",
"logs:DescribelogGroups",
"s3:GetObjectVersion"

]I

"Resouxce": [
"arn:aws:logs:us-west-2:012345678901:1o0g-group:*",
"arn:aws:s3:::ka-app-code-<username>/aws-kinesis-analytics-

java-apps-1.0.jar"

3,
{

]

"Sid": "DescribelLogStreams",
"Effect": "Allow",

"Action": "logs:DescribelLogStreams",

"Resource": "arn:aws:logs:us-west-2:012345678901:1og-group:/aws/

kinesis-analytics/MyApplication:log-stxeam:*"

},
{

"Sid": "PutLogEvents",

"Effect": "Allow",

"Action": "logs:PutLogEvents",

"Resource": "arn:aws:logs:us-west-2:012345678901:1o0g-group:/aws/

kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"

3,
{

"Sid": "ListCloudwatchLogGroups",

"Effect": "Allow",

"Action": [
"logs:DescribelLogGroups"

]I

"Resourxce": [
"arn:aws:logs:us-west-2:012345678901:1og-group:*"

Legacy examples

230

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

},
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource'": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
}I
{
"Sid": "WriteOutputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
}

Configure the application

1. On the MyApplication page, choose Configure.
2. On the Configure application page, provide the Code location:

« For Amazon S3 bucket, enter ka-app-code-<username>.
« For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.
5. For CloudWatch logging, select the Enable check box.
6. Choose Update.

(@ Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

» Log group: /aws/kinesis-analytics/MyApplication

e Logstream: kinesis-analytics-log-stream

Legacy examples 231

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

1. On the MyApplication page, choose Run. Leave the Run without snapshot option selected,
and confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.
You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Tumbling Window
tutorial.

This topic contains the following sections:

« Delete your Managed Service for Apache Flink application

» Delete your Kinesis data streams

» Delete your Amazon S3 object and bucket

o Delete your IAM resources

o Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. inthe Managed Service for Apache Flink panel, choose MyApplication.

3. Inthe application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

Legacy examples 232

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the Kinesis Data Streams panel, choose ExamplelnputStream.

3. In the ExamplelnputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.
5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

In the navigation bar, choose Logs.

Choose the /aws/kinesis-analytics/MyApplication log group.

P WD

Choose Delete Log Group and then confirm the deletion.

Legacy examples 233

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example: Sliding window

(@ Note

For current examples, see Examples for creating and working with Managed Service for

Apache Flink applications.

(® Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started

using the DataStream APl in Managed Service for Apache Flink exercise.

This topic contains the following sections:

» Create dependent resources

» Write sample records to the input stream

» Download and examine the application code

« Compile the application code

» Upload the Apache Flink streaming Java code

» Create and run the Managed Service for Apache Flink application

» Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

» Two Kinesis data streams (ExampleInputStreamand ExampleOutputStream).

« An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

« Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name

your data streams ExampleInputStream and ExampleOutputStream.

Legacy examples 234

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

o How Do | Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the

Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

(@ Note
This section requires the AWS SDK for Python (Boto).

1. Create a file named stock. py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
return {
"EVENT_TIME": datetime.datetime.now().isoformat(),
"TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
"PRICE": round(random.random() * 100, 2),

def generate(stream_name, kinesis_client):
while True:
data = get_data()
print(data)
kinesis_client.put_record(
StreamName=stream_name, Data=json.dumps(data),
PartitionKey="partitionkey"

)

Legacy examples 235

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

if __name__ == "__main__":
generate(STREAM_NAME, boto3.client("kinesis"))

2. Runthe stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:
1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/SlidingWindow
directory.

The application code is located in the S1idingWindowStreamingJobWithParallelism. java
file. Note the following about the application code:

» The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
new SimpleStringSchema(), inputProperties));

« The application uses the timeWindow operator to find the minimum value for each stock symbol
over a 10-second window that slides by 5 seconds. The following code creates the operator and
sends the aggregated data to a new Kinesis Data Streams sink:

« Add the following import statement:

Legacy examples 236

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

import
org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows; //

flink 1.13 onward

« The application uses the timeWindow operator to find the count of values for each stock symbol
over a 5-second tumbling window. The following code creates the operator and sends the
aggregated data to a new Kinesis Data Streams sink:

input.flatMap(new Tokenizer()) // Tokenizer for generating words
.keyBy(@) // Logically partition the stream for each word

.window(TumblingProcessingTimeWindows.of (Time.seconds(5))) //Flink 1.13 onward
.sum(1l) // Sum the number of words per partition
.map(value -> value.f@ + "," + value.fl.toString() + "\n")

.addSink(createSinkFromStaticConfig());

Compile the application code

To compile the application, do the following:

1. Install Java and Maven if you haven't already. For more information, see Complete the required
prerequisites in the Tutorial: Get started using the DataStream APl in Managed Service for
Apache Flink tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

(® Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-

java-apps-1.0.jar).

Legacy examples 237

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket that you created in the
Create dependent resources section.

1. Inthe Amazon S3 console, choose the ka-app-code-<username> bucket, and then choose
Upload.

2. Inthe Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0. jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.
Create and run the Managed Service for Apache Flink application
Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Onthe Managed Service for Apache Flink dashboard, choose Create analytics application.

3. Onthe Managed Service for Apache Flink - Create application page, provide the application
details as follows:
« For Application name, enter MyApplication.
« For Runtime, choose Apache Flink.
» Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

(® Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your

Legacy examples 238

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

application uses this role and policy to access its dependent resources. These 1AM resources
are named using your application name and Region as follows:

e Policy: kinesis-analytics-service-MyApplication-us-west-2

» Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy
Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

"Version": "2012-10-17",
"Statement": [
{

"Sid": "ReadCode",

"Effect": "Allow",

"Action": [

"s3:GetObject",
"logs:DescribelogGroups",
"s3:GetObjectVexrsion"

1,

"Resource": [
"arn:aws:logs:us-west-2:012345678901:1o0g-group:*",
"arn:aws:s3:::ka-app-code-<username>/aws-kinesis-analytics-

java-apps-1.0.jar"

1

"Sid": "DescribelLogStreams",
"Effect": "Allow",

Legacy examples 239

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Action": "logs:DescribelLogStreams",
"Resource": "arn:aws:logs:us-west-2:012345678901:1o0g-group:/aws/
kinesis-analytics/MyApplication:log-stxeam:*"
}I
{
"Sid": "PutLogEvents",
"Effect": "Allow",
"Action": "logs:PutLogEvents",
"Resource": "arn:aws:logs:us-west-2:012345678901:1og-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"

},
{
"Sid": "ListCloudwatchLogGroups",
"Effect": "Allow",
"Action": [
"logs:DescribelLogGroups"
1,
"Resource": [
"arn:aws:logs:us-west-2:012345678901:1og-group:*"
]
},
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource'": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
}I
{
"Sid": "WriteOutputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

Legacy examples 240

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

« For Amazon S3 bucket, enter ka-app-code-<username>.
« For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.
5. For CloudWatch logging, select the Enable check box.
6. Choose Update.

(® Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

« Log group: /aws/kinesis-analytics/MyApplication

e Logstream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Configure the application parallelism

This application example uses parallel execution of tasks. The following application code sets the
parallelism of the min operator:

.setParallelism(3) // Set parallelism for the min operator

The application parallelism can't be greater than the provisioned parallelism, which has a default of
1. To increase your application's parallelism, use the following AWS CLI action:

aws kinesisanalyticsv2 update-application
--application-name MyApplication
--current-application-version-id <VersionId>

Legacy examples 241

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

--application-configuration-update "{\"FlinkApplicationConfigurationUpdate
\": { \"ParallelismConfigurationUpdate\": {\"ParallelismUpdate\": 5,
\"ConfigurationTypeUpdate\": \"CUSTOM\" }}}"

You can retrieve the current application version ID using the DescribeApplication or
ListApplications actions.

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Sliding Window
tutorial.

This topic contains the following sections:

» Delete your Managed Service for Apache Flink application

o Delete your Kinesis data streams

» Delete your Amazon S3 object and bucket

o Delete your IAM resources

» Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Inthe Managed Service for Apache Flink panel, choose MyApplication.

3. Inthe application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Inthe Kinesis Data Streams panel, choose ExamplelnputStream.

Legacy examples 242

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html
https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. In the ExamplelnputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

Open the IAM console at https://console.aws.amazon.com/iam/.

In the navigation bar, choose Policies.
In the filter control, enter kinesis.

Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

In the navigation bar, choose Roles.

1
2
3
4
5. Choose Policy Actions and then choose Delete.
6
7. Choose the kinesis-analytics-MyApplication-us-west-2 role.
8

Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

In the navigation bar, choose Logs.

Choose the /aws/kinesis-analytics/MyApplication log group.

P NN =

Choose Delete Log Group and then confirm the deletion.

Example: Writing to an Amazon S3 bucket

In this exercise, you create a Managed Service for Apache Flink that has a Kinesis data stream
as a source and an Amazon S3 bucket as a sink. Using the sink, you can verify the output of the
application in the Amazon S3 console.

Legacy examples 243

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

® Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started

using the DataStream APl in Managed Service for Apache Flink exercise.

This topic contains the following sections:

o Create dependent resources

o Write sample records to the input stream

» Download and examine the application code

» Modify the application code

« Compile the application code

» Upload the Apache Flink streaming Java code

» Create and run the Managed Service for Apache Flink application

» Verify the application output

» Optional: Customize the source and sink

« Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

« A Kinesis data stream (ExampleInputStream).

« An Amazon S3 bucket to store the application's code and output (ka-app-code-<username>)

(® Note

Managed Service for Apache Flink cannot write data to Amazon S3 with server-side
encryption enabled on Managed Service for Apache Flink.

You can create the Kinesis stream and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

Legacy examples 244

Managed Service for Apache Flink

Managed Service for Apache Flink Developer Guide

» Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name

your data stream ExampleInputStream.

« How Do | Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the

Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-

code-<username>. Create two folders (code and data) in the Amazon S3 bucket.

The application creates the following CloudWatch resources if they don't already exist:

« Alog group called /AWS/KinesisAnalytics-java/MyApplication.

* Alog stream called kinesis-analytics-log-stream.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to

process.

(@ Note

This section requires the AWS SDK for Python (Boto).

1. Create a file named stock. py with the following contents:

import
import
import
import

STREAM_

datetime
json
random
boto3

NAME = "ExampleInputStream"

def get_data():
return {

'event_time': datetime.datetime.now().isoformat(),

"ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC',

'price': round(random.random() * 100, 2)}

def generate(stream_name, kinesis_client):

'TBV']),

Legacy examples

245

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

while True:
data = get_data()
print(data)
kinesis_client.put_record(
StreamName=stream_name,
Data=json.dumps(data),
PartitionKey="partitionkey")

if __name__ == '__main__"':
generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2"'))

2. Runthe stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.
2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git
3. Navigate to the amazon-kinesis-data-analytics-java-examples/S3Sink directory.
The application code is located in the S3StreamingSinkJob. java file. Note the following about
the application code:

» The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
new SimpleStringSchema(), inputProperties));

» You need to add the following import statement:

Legacy examples 246

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

import
org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;

« The application uses an Apache Flink S3 sink to write to Amazon S3.

The sink reads messages in a tumbling window, encodes messages into S3 bucket objects, and
sends the encoded objects to the S3 sink. The following code encodes objects for sending to
Amazon S3:

input.map(value -> { // Parse the JSON
JsonNode jsonNode = jsonParser.readValue(value, JsonNode.class);
return new Tuple2<>(jsonNode.get("ticker").toString(), 1);
}).returns(Types.TUPLE(Types.STRING, Types.INT))
.keyBy(v -> v.f0) // Logically partition the stream for each word
.window(TumblingProcessingTimeWindows.of (Time.minutes(1)))
.sum(1) // Count the appearances by ticker per partition
.map(value -> value.f@® + " count: " + value.fl.toString() + "\n")
.addSink(createS3SinkFromStaticConfig());

® Note

The application uses a Flink StreamingFileSink object to write to Amazon S3. For more
information about the StreamingFileSink, see StreamingFileSink in the Apache Flink
documentation.

Modify the application code
In this section, you modify the application code to write output to your Amazon S3 bucket.

Update the following line with your user name to specify the application's output location:

private static final String s3SinkPath = "s3a://ka-app-code-<username>/data";

Compile the application code

To compile the application, do the following:

Legacy examples 247

https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html
https://nightlies.apache.org/flink/flink-docs-release-1.13/
https://nightlies.apache.org/flink/flink-docs-release-1.13/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install Java and Maven if you haven't already. For more information, see Complete the required

prerequisites in the Tutorial: Get started using the DataStream APl in Managed Service for

Apache Flink tutorial.
2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

(® Note

The provided source code relies on libraries from Java 11.

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, navigate to the code
folder, and choose Upload.

2. Inthe Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0. jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.
Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.
Create the application

1. Signin to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Onthe Managed Service for Apache Flink dashboard, choose Create analytics application.

Legacy examples 248

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3.

6.

7.

On the Managed Service for Apache Flink - Create application page, provide the application

details as follows:

» For Application name, enter MyApplication.

« For Runtime, choose Apache Flink.

» Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

For Access permissions, choose Create / update IAM role kinesis-analytics-

MyApplication-us-west-2.

Choose Create application.

(® Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application.
Your application uses this role and policy to access its dependent resources. These IAM
resources are named using your application name and Region as follows:
» For Application name, enter MyApplication.
» For Runtime, choose Apache Flink.
» Leave the version as Apache Flink version 1.15.2 (Recommended version).

For Access permissions, choose Create / update IAM role kinesis-analytics-

MyApplication-us-west-2.

Choose Create application.

(® Note

When you create a Managed Service for Apache Flink using the console, you have the
option of having an IAM role and policy created for your application. Your application uses
this role and policy to access its dependent resources. These IAM resources are named using
your application name and Region as follows:

e Policy: kinesis-analytics-service-MyApplication-us-west-2

* Role: kinesisanalytics-MyApplication-us-west-2

Legacy examples 249

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Edit the IAM policy
Edit the IAM policy to add permissions to access the Kinesis data stream.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID. Replace <username> with your user name.

"Sid": "S3",
"Effect": "Allow",
"Action": [
"s3:Abort*",
"s3:DeleteObject*",
"s3:GetObject*",
"s3:GetBucket*",
"s3:List*",
"s3:ListBucket",
"s3:PutObject"
1,
"Resource": [
"arn:aws:s3:::ka-app-code-<username>",
"arn:aws:s3:::ka-app-code-<username>/*"

]
I
{
"Sid": "ListCloudwatchLogGroups",
"Effect": "Allow",
"Action": [
"logs:DescribelLogGroups"”
1,
"Resource": [
"arn:aws:logs:region:account-id:log-group:*"
]
I
{

"Sid": "ListCloudwatchLogStreams",
"Effect": "Allow",
"Action": [

Legacy examples 250

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"logs:DescribelLogStreams"
1,
"Resource": [
"arn:aws:logs:region:account-id:log-group:%L0OG_GROUP_PLACEHOLDER
%:log-stream:*"
]
1,
{
"Sid": "PutCloudwatchLogs",
"Effect": "Allow",
"Action": [
"logs:PutLogEvents"
1,
"Resource": [
"arn:aws:logs:region:account-id:log-group:%L0OG_GROUP_PLACEHOLDER
%:log-stream:%LOG_STREAM_PLACEHOLDERS"

]
}
{
"Sid": "ReadInputStream",
"Effect": "Allow",
"Action": "kinesis:*",
"Resource'": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
o

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

« For Amazon S3 bucket, enter ka-app-code-<username>.

« For Path to Amazon S3 object, enter code/aws-kinesis-analytics-java-
apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

Legacy examples 251

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.
5. For CloudWatch logging, select the Enable check box.
6. Choose Update.

® Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

e Log group: /aws/kinesis-analytics/MyApplication

e Logstream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

1. On the MyApplication page, choose Run. Leave the Run without snapshot option selected,
and confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Verify the application output
In the Amazon S3 console, open the data folder in your S3 bucket.

After a few minutes, objects containing aggregated data from the application will appear.

(@ Note
Aggregration is enabled by default in Flink. To disable it, use the following:

sink.producer.aggregation-enabled' = 'false'

Legacy examples 252

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Optional: Customize the source and sink

In this section, you customize settings on the source and sink objects.

® Note

After changing the code sections described in the sections following, do the following to
reload the application code:

» Repeat the steps in the the section called “Compile the application code” section to
compile the updated application code.

» Repeat the steps in the the section called “Upload the Apache Flink streaming Java code”
section to upload the updated application code.

« On the application's page in the console, choose Configure and then choose Update to
reload the updated application code into your application.

This section contains the following sections:

» Configure data partitioning

» Configure read frequency

» Configure write buffering

Configure data partitioning

In this section, you configure the names of the folders that the streaming file sink creates in the S3
bucket. You do this by adding a bucket assigner to the streaming file sink.

To customize the folder names created in the S3 bucket, do the following:

1. Add the following import statements to the beginning of the S3StreamingSinkJob. java
file:

import
org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPol

import
org.apache.flink.streaming.api.functions.sink.filesystem.bucketassigners.DateTimeBucketAss

2. Update the createS3SinkFromStaticConfig() method in the code to look like the
following:

Legacy examples 253

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

private static StreamingFileSink<String> createS3SinkFromStaticConfig() {

final StreamingFileSink<String> sink = StreamingFileSink
.forRowFormat(new Path(s3SinkPath), new
SimpleStringEncoder<String>("UTF-8"))
.withBucketAssigner(new DateTimeBucketAssigner("yyyy-MM-dd--HH"))
.withRollingPolicy(DefaultRollingPolicy.create().build())
.build();
return sink;

The preceding code example uses the DateTimeBucketAssigner with a custom date format to
create folders in the S3 bucket. The DateTimeBucketAssigner uses the current system time

to create bucket names. If you want to create a custom bucket assigner to further customize the
created folder names, you can create a class that implements BucketAssigner. You implement your
custom logic by using the getBucketId method.

A custom implementation of BucketAssigner can use the Context parameter to obtain more
information about a record in order to determine its destination folder.

Configure read frequency
In this section, you configure the frequency of reads on the source stream.

The Kinesis Streams consumer reads from the source stream five times per second by default.
This frequency will cause issues if there is more than one client reading from the stream, or if
the application needs to retry reading a record. You can avoid these issues by setting the read
frequency of the consumer.

To set the read frequency of the Kinesis consumer, you set the
SHARD_GETRECORDS_INTERVAL_MILLIS setting.

The following code example sets the SHARD_GETRECORDS_INTERVAL_MILLIS setting to one
second:

kinesisConsumerConfig.setProperty(ConsumerConfigConstants.SHARD_GETRECORDS_INTERVAL_MILLIS,
||1®®®||) g

Legacy examples 254

https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/streaming/api/functions/sink/filesystem/BucketAssigner.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/streaming/api/functions/sink/filesystem/BucketAssigner.Context.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Configure write buffering
In this section, you configure the write frequency and other settings of the sink.

By default, the application writes to the destination bucket every minute. You can change this
interval and other settings by configuring the DefaultRollingPolicy object.

(@ Note

The Apache Flink streaming file sink writes to its output bucket every time the application
creates a checkpoint. The application creates a checkpoint every minute by default. To
increase the write interval of the S3 sink, you must also increase the checkpoint interval.

To configure the DefaultRollingPolicy object, do the following:

1. Increase the application's CheckpointInterval setting. The following input for the
UpdateApplication action sets the checkpoint interval to 10 minutes:

"ApplicationConfigurationUpdate": {
"FlinkApplicationConfigurationUpdate": {
"CheckpointConfigurationUpdate": {
"ConfigurationTypeUpdate" : "CUSTOM",

"CheckpointIntervalUpdate": 600000

1,
"ApplicationName": "MyApplication",
"CurrentApplicationVersionId": 5

To use the preceding code, specify the current application version. You can retrieve the
application version by using the ListApplications action.

2. Add the following import statement to the beginning of the S3StreamingSinkJob. java
file:

import java.util.concurrent.TimeUnit;

Legacy examples 255

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Update the createS3SinkFromStaticConfig method in the S3StreamingSinkJob. java

file to look like the following:

private static StreamingFileSink<String> createS3SinkFromStaticConfig() {

final StreamingFileSink<String> sink = StreamingFileSink
.forRowFormat(new Path(s3SinkPath), new
SimpleStringEncoder<String>("UTF-8"))
.withBucketAssigner(new DateTimeBucketAssigner("yyyy-MM-dd--HH"))
.withRollingPolicy(

DefaultRollingPolicy.create()
.withRolloverInterval(TimeUnit.MINUTES.toMillis(8))
.withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
.withMaxPartSize(1024 * 1024 * 1024)

.build())
.build();
return sink;

The preceding code example sets the frequency of writes to the Amazon S3 bucket to 8
minutes.

For more information about configuring the Apache Flink streaming file sink, see Row-encoded

Formats in the Apache Flink documentation.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources that you created in the Amazon S3

tutorial.

This topic contains the following sections:

» Delete your Managed Service for Apache Flink application

Delete your Kinesis data stream

Delete your Amazon S3 objects and bucket

Delete your IAM resources

Delete your CloudWatch resources

Legacy examples

256

https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html#row-encoded-formats
https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html#row-encoded-formats
https://nightlies.apache.org/flink/flink-docs-release-1.13/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. On the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data stream

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExamplelnputStream.

3. On the ExamplelnputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Delete your Amazon S3 objects and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.
5. Choose Policy Actions and then choose Delete.

6. On the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Legacy examples 257

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the navigation bar, choose Logs.
3. Choose the faws/kinesis-analytics/MyApplication