
Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink: Managed Service for Apache Flink
Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table of Contents

.. xvii
What is Managed Service for Apache Flink? .. 1

Decide between using Managed Service for Apache Flink or Managed Service for Apache Flink
Studio .. 1
Choose which Apache Flink APIs to use in Managed Service for Apache Flink 3

Choose a Flink API .. 3
Get started with streaming data applications .. 5

How it works .. 6
Program your Apache Flink application .. 6

DataStream API ... 6
Table API ... 7

Create your Managed Service for Apache Flink application .. 7
Create an application ... 8

Build your Managed Service for Apache Flink application code .. 8
Create your Managed Service for Apache Flink application ... 9
Use customer managed keys .. 10
Start your Managed Service for Apache Flink application ... 11
Verify your Managed Service for Apache Flink application ... 11
Enable system rollbacks .. 11

Run an application ... 14
Identify application and job status ... 14
Run batch workloads ... 16

Application resources .. 16
Managed Service for Apache Flink application resources .. 16
Apache Flink application resources ... 17

Pricing ... 18
How it works .. 16
AWS Region availability ... 19
Pricing examples ... 20

Review DataStream API components ... 24
Connectors .. 24
Operators .. 34
Event tracking .. 35

Table API components .. 36

iii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table API connectors ... 36
Table API time attributes .. 38

Use Python .. 38
Program your Python application ... 39
Create your Python application ... 42
Monitor your Python application .. 43

Use runtime properties ... 44
Manage runtime properties using the console ... 44
Manage runtime properties using the CLI ... 45
Access runtime properties in a Managed Service for Apache Flink application 48

Use Apache Flink connectors ... 49
Known issues .. 52

Implement fault tolerance ... 52
Configure checkpointing in Managed Service for Apache Flink .. 53
Review checkpointing API examples ... 54

Manage application backups using snapshots ... 56
Manage automatic snapshot creation .. 57
Restore from a snapshot that contains incompatible state data .. 58
Review snapshot API examples .. 59

Use in-place version upgrades for Apache Flink ... 61
Upgrade applications ... 62
Upgrade to a new version .. 63
Roll back application upgrades .. 69
Best practices ... 70
Known issues .. 70

Implement application scaling .. 72
Configure application parallelism and ParallelismPerKPU ... 72
Allocate Kinesis Processing Units .. 73
Update your application's parallelism .. 74
Use automatic scaling .. 75
maxParallelism considerations ... 78

Add tags to applications .. 78
Add tags when an application is created .. 79
Add or update tags for an existing application .. 80
List tags for an application .. 80
Remove tags from an application ... 80

iv

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use CloudFormation .. 81
Before you begin .. 81
Write a Lambda function .. 81
Create a Lambda role .. 83
Invoke the Lambda function .. 84
Review an extended example .. 84

Use the Apache Flink Dashboard .. 90
Access your application's Apache Flink Dashboard .. 90

Supported and deprecated versions .. 92
Amazon Managed Service for Apache Flink 1.20 .. 99

Supported features .. 100
Components ... 101
Known issues ... 101

Amazon Managed Service for Apache Flink 1.19 .. 102
Supported features .. 102
Changes in Amazon Managed Service for Apache Flink 1.19.1 .. 105
Components ... 106
Known issues ... 107

Amazon Managed Service for Apache Flink 1.18 .. 107
Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 109
Components ... 110
Known issues ... 111

Amazon Managed Service for Apache Flink 1.15 .. 112
Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 113
Components ... 110
Known issues ... 114

Earlier versions ... 115
Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions 116
Building applications with Apache Flink 1.8.2 ... 117
Building applications with Apache Flink 1.6.2 ... 118
Upgrading applications ... 119
Available connectors in Apache Flink 1.6.2 and 1.8.2 .. 119
Getting Started: Flink 1.13.2 ... 120
Getting Started: Flink 1.11.1 ... 146
Getting started: Flink 1.8.2 - deprecating ... 172
Getting started: Flink 1.6.2 - deprecating ... 198

v

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Legacy examples ... 223
Use Studio notebooks with Managed Service for Apache Flink ... 395

Use the correct Studio notebook Runtime version ... 396
Create a Studio notebook .. 397
Perform an interactive analysis of streaming data ... 398

Flink interpreters .. 398
Apache Flink table environment variables .. 399

Deploy as an application with durable state ... 400
Scala/Python criteria ... 402
SQL criteria .. 402

IAM permissions ... 402
Use connectors and dependencies ... 403

Default connectors ... 403
Add dependencies and custom connectors .. 405

User-defined functions ... 406
Considerations with user-defined functions ... 407

Enable checkpointing .. 408
Set the checkpointing interval .. 408
Set the checkpointing type .. 409

Upgrade Studio Runtime .. 409
Upgrade your notebook to a new Studio Runtime ... 409

Work with AWS Glue ... 414
Table properties .. 414

Examples and tutorials for Studio notebooks in Managed Service for Apache Flink 416
Tutorial: Create a Studio notebook in Managed Service for Apache Flink 417
Tutorial: Deploy a Studio notebook as a Managed Service for Apache Flink application with
durable state ... 437
View example queries to analyza data in a Studio notebook ... 440

Troubleshoot Studio notebooks for Managed Service for Apache Flink 453
Stop a stuck application ... 453
Deploy as an application with durable state in a VPC with no internet access 453
Deploy-as-app size and build time reduction .. 454
Cancel jobs ... 456
Restart the Apache Flink interpreter .. 457

Create custom IAM policies for Managed Service for Apache Flink Studio notebooks 457
AWS Glue .. 458

vi

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

CloudWatch Logs .. 458
Kinesis streams .. 459
Amazon MSK clusters .. 462

Tutorial: Get started using the DataStream API in Managed Service for Apache Flink 463
Review application components ... 173
Complete the required prerequisites ... 464
Set up an account .. 465

Sign up for an AWS account .. 121
Create a user with administrative access .. 122
Grant programmatic access .. 467
Next Step .. 468

Set up the AWS CLI ... 469
Next step .. 470

Create an application .. 470
Create dependent resources ... 471
Set up your local development environment ... 472
Download and examine the Apache Flink streaming Java code ... 473
Write sample records to the input stream .. 478
Run your application locally .. 479
Observe input and output data in Kinesis streams ... 482
Stop your application running locally .. 483
Compile and package your application code .. 483
Upload the application code JAR file ... 484
Create and configure the Managed Service for Apache Flink application 484
Next step .. 491

Clean up resources .. 492
Delete your Managed Service for Apache Flink application .. 492
Delete your Kinesis data streams .. 492
Delete your Amazon S3 objects and bucket ... 492
Delete your IAM resources .. 493
Delete your CloudWatch resources ... 493
Explore additional resources for Apache Flink ... 494

Explore additional resources ... 494
Tutorial: Get started using the TableAPI in Managed Service for Apache Flink 495

Review application components ... 495
Complete the required prerequisites ... 496

vii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create an application .. 497
Create dependent resources ... 497
Set up your local development environment ... 498
Download and examine the Apache Flink streaming Java code ... 499
Run your application locally .. 505
Observe the application writing data to an S3 bucket ... 507
Stop your application running locally .. 508
Compile and package your application code .. 508
Upload the application code JAR file ... 509
Create and configure the Managed Service for Apache Flink application 510

Next step ... 516
Clean up resources .. 516

Delete your Managed Service for Apache Flink application .. 516
Delete your Amazon S3 objects and bucket ... 517
Delete your IAM resources .. 517
Delete your CloudWatch resources ... 518
Next step .. 518

Explore additional resources ... 518
Tutorial: Get started using Python in Managed Service for Apache Flink 519

Review application components ... 519
Fulfill the prerequisites ... 520
Create an application .. 522

Create dependent resources ... 522
Set up your local development environment ... 524
Download and examine the Apache Flink streaming Python code .. 525
Manage JAR dependencies ... 528
Write sample records to the input stream .. 530
Run your application locally .. 532
Observe input and output data in Kinesis streams ... 534
Stop your application running locally .. 534
Package your application code .. 534
Upload the application package to an Amazon S3 bucket .. 535
Create and configure the Managed Service for Apache Flink application 535
Next step .. 542

Clean up resources .. 542
Delete your Managed Service for Apache Flink application .. 542

viii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Kinesis data streams .. 543
Delete your Amazon S3 objects and bucket ... 543
Delete your IAM resources .. 544
Delete your CloudWatch resources ... 544

Tutorial: Get started using Scala in Managed Service for Apache Flink 545
Create dependent resources .. 545
Write sample records to the input stream ... 546
Download and examine the application code ... 548
Compile and upload the application code ... 549
Create and run the application (console) ... 550

Create the Application ... 550
Configure the application ... 551
Edit the IAM policy ... 553
Run the application .. 555
Stop the application .. 555

Create and run the application (CLI) ... 555
Create a permissions policy .. 555
Create an IAM policy ... 557
Create the application ... 558
Start the application .. 560
Stop the application .. 390
Add a CloudWatch logging option ... 391
Update environment properties .. 391
Update the application code .. 392

Clean up AWS resources ... 563
Delete your Managed Service for Apache Flink application .. 563
Delete your Kinesis data streams .. 563
Delete your Amazon S3 object and bucket .. 564
Delete your IAM resources .. 564
Delete your CloudWatch resources ... 564

Use Apache Beam with Managed Service for Apache Flink applications 565
Limitations of Apache Flink runner with Managed Service for Apache Flink 565
Apache Beam capabilities with Managed Service for Apache Flink ... 566
Creating an application using Apache Beam ... 566

Create dependent resources ... 567
Write sample records to the input stream .. 567

ix

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Download and examine the application code .. 568
Compile the application code .. 569
Upload the Apache Flink streaming Java code .. 570
Create and run the Managed Service for Apache Flink application ... 570
Clean Up ... 574
Next steps .. 576

Training workshops, labs, and solution implementations .. 577
Managed Service for Apache Flink workshop .. 577
Develop Apache Flink applications locally before deploying to Managed Service for Apache
Flink .. 577
Event detection with Managed Service for Apache Flink Studio ... 578
AWS Streaming Data Solution .. 578
Practice using a Clickstream lab with Apache Flink and Apache Kafka .. 578
Set up custom scaling using Application Auto Scaling .. 579
View a sample Amazon CloudWatch dashboard ... 579
Use templates for AWS Streaming data solution for Amazon MSK .. 579
Explore more Managed Service for Apache Flink solutions on GitHub ... 579

Use practical utilities for Managed Service for Apache Flink ... 581
Snapshot manager ... 581
Benchmarking ... 581

Examples for creating and working with Managed Service for Apache Flink applications 582
Java examples for Managed Service for Apache Flink ... 582
Python examples for Managed Service for Apache Flink .. 586

.. 586
Scala examples for Managed Service for Apache Flink ... 587

Security in Managed Service for Apache Flink .. 589
Data protection .. 590

Data encryption .. 590
Key management in Amazon MSF ... 591

Transparent encryption in Amazon MSF ... 591
Customer managed keys in Amazon MSF ... 591
Using customer managed keys .. 598
Managing CMK using console .. 601
Managing CMK using APIs .. 602

Identity and Access Management for Managed Service for Apache Flink 611
Audience ... 612

x

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Authenticating with identities ... 613
Managing access using policies ... 616
How Amazon Managed Service for Apache Flink works with IAM ... 618
Identity-based policy examples ... 628
Troubleshooting .. 631
Cross-service confused deputy prevention ... 633

Compliance validation for Managed Service for Apache Flink ... 635
FedRAMP .. 636

Resilience and disaster recovery in Managed Service for Apache Flink .. 636
Disaster recovery .. 636
Versioning ... 637

Infrastructure security in Managed Service for Apache Flink ... 637
Security best practices for Managed Service for Apache Flink ... 638

Implement least privilege access .. 638
Use IAM roles to access other Amazon services .. 638
Implement server-side encryption in dependent resources .. 639
Use CloudTrail to monitor API calls ... 639

Logging and monitoring in Amazon Managed Service for Apache Flink 640
Logging in Managed Service for Apache Flink .. 641

Querying Logs with CloudWatch Logs Insights ... 641
Monitoring in Managed Service for Apache Flink ... 641
Set up application logging in Managed Service for Apache Flink ... 643

Set up CloudWatch logging using the console .. 643
Set up CloudWatch logging using the CLI .. 644
Control application monitoring levels .. 649
Apply logging best practices .. 650
Perform logging troubleshooting ... 650
Use CloudWatch Logs Insights .. 651

Analyze logs with CloudWatch Logs Insights .. 651
Run a sample query ... 651
Review example queries .. 652

Metrics and dimensions in Managed Service for Apache Flink .. 655
Application metrics .. 655
Kinesis Data Streams connector metrics ... 683
Amazon MSK connector metrics ... 684
Apache Zeppelin metrics ... 686

xi

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

View CloudWatch metrics ... 687
Set CloudWatch metrics reporting levels .. 688
Use custom metrics with Amazon Managed Service for Apache Flink 689
Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 693

Write custom messages to CloudWatch Logs .. 705
Write to CloudWatch logs using Log4J ... 705
Write to CloudWatch logs using SLF4J .. 706

Log Managed Service for Apache Flink API calls with AWS CloudTrail ... 707
Managed Service for Apache Flink information in CloudTrail ... 708
Understand Managed Service for Apache Flink log file entries .. 709

Tune performance ... 711
Troubleshoot performance issues .. 711

Understand the data path .. 711
Performance troubleshooting solutions .. 712

Use performance best practices ... 714
Manage scaling properly ... 714
Monitor external dependency resource usage ... 716
Run your Apache Flink application locally .. 716

Monitor performance .. 717
Monitor performance using CloudWatch metrics .. 717
Monitor performance using CloudWatch logs and alarms ... 717

Managed Service for Apache Flink and Studio notebook quota .. 718
Manage maintenance tasks for Managed Service for Apache Flink ... 720

Choose a maintenance window .. 722
Identify maintenance instances .. 722

Achieve production readiness for your Managed Service for Apache Flink applications 724
Load-test your applications ... 724
Define Max parallelism ... 724
Set a UUID for all operators ... 725

Best practices ... 726
Minimize the size of the uber JAR ... 726
Fault tolerance: checkpoints and savepoints ... 729
Unsupported connector versions .. 729
Performance and parallelism .. 730
Setting per-operator parallelism .. 730
Logging .. 731

xii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Coding .. 731
Managing credentials .. 732
Reading from sources with few shards/partitions .. 732
Studio notebook refresh interval ... 733
Studio notebook optimum performance .. 733
How watermark strategies and idle shards affect time windows .. 733

Summary .. 735
Example .. 735

Set a UUID for all operators ... 744
Add ServiceResourceTransformer to the Maven shade plugin ... 745

Apache Flink stateful functions .. 746
Apache Flink application template .. 746
Location of the module configuration .. 747

Learn about Apache Flink settings ... 748
Apache Flink configuration .. 748
State backend ... 749
Checkpointing ... 749
Savepointing ... 750
Heap sizes .. 751
Buffer debloating ... 751
Modifiable Flink configuration properties .. 751

Restart strategy .. 751
Checkpoints and state backends ... 752
Checkpointing .. 752
RocksDB native metrics ... 752
RocksDB options ... 753
Advanced state backends options ... 753
Full TaskManager options ... 753
Memory configuration ... 754
RPC / Akka ... 754
Client ... 755
Advanced cluster options .. 755
Filesystem configurations ... 755
Advanced fault tolerance options ... 755
Memory configuration ... 754
Metrics ... 755

xiii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Advanced options for the REST endpoint and client .. 756
Advanced SSL security options .. 756
Advanced scheduling options .. 756
Advanced options for Flink web UI .. 756

View configured Flink properties ... 756
Configure MSF to access resources in an Amazon VPC ... 757

Amazon VPC concepts .. 757
VPC application permissions ... 758

Add a permissions policy for accessing an Amazon VPC ... 758
Establish internet and service access for a VPC-connected Managed Service for Apache Flink
application ... 759

Related information ... 761
Use the Managed Service for Apache Flink VPC API .. 761

Create application .. 761
AddApplicationVpcConfiguration .. 762
DeleteApplicationVpcConfiguration .. 762
Update application ... 763

Example: Use a VPC .. 763
Troubleshoot Managed Service for Apache Flink .. 764

Development troubleshooting .. 764
System rollback best practices .. 765
Hudi configuration best practices ... 766
Apache Flink Flame Graphs .. 766
Credential provider issue with EFO connector 1.15.2 ... 766
Applications with unsupported Kinesis connectors ... 767
Compile error: "Could not resolve dependencies for project" ... 769
Invalid choice: "kinesisanalyticsv2" ... 770
UpdateApplication action isn't reloading application code ... 770
S3 StreamingFileSink FileNotFoundExceptions .. 770
FlinkKafkaConsumer issue with stop with savepoint .. 772
Flink 1.15 Async Sink Deadlock ... 773
Amazon Kinesis data streams source processing out of order during re-sharding 782
Real-time vector embedding blueprints FAQ and troubleshooting ... 783

Runtime troubleshooting ... 795
Troubleshooting tools .. 795
Application issues ... 795

xiv

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Application is restarting .. 800
Throughput is too slow ... 803
Unbounded state growth ... 804
I/O bound operators .. 805
Upstream or source throttling from a Kinesis data stream ... 805
Checkpoints .. 806
Checkpointing is timing out ... 812
Checkpoint failure for Apache Beam ... 814
Backpressure .. 816
Data skew ... 817
State skew .. 817
Integrate with resources in different Regions .. 818

Document history .. 819
API example code .. 824

AddApplicationCloudWatchLoggingOption .. 825
AddApplicationInput .. 825
AddApplicationInputProcessingConfiguration ... 826
AddApplicationOutput .. 827
AddApplicationReferenceDataSource ... 827
AddApplicationVpcConfiguration .. 828
CreateApplication ... 828
CreateApplicationSnapshot .. 830
DeleteApplication ... 830
DeleteApplicationCloudWatchLoggingOption ... 830
DeleteApplicationInputProcessingConfiguration ... 830
DeleteApplicationOutput .. 831
DeleteApplicationReferenceDataSource .. 831
DeleteApplicationSnapshot .. 831
DeleteApplicationVpcConfiguration ... 832
DescribeApplication ... 832
DescribeApplicationSnapshot .. 832
DiscoverInputSchema .. 832
ListApplications .. 833
ListApplicationSnapshots ... 833
StartApplication ... 834
StopApplication .. 834

xv

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

UpdateApplication ... 834
API Reference ... 836
Release versions ... 837

xvi

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon Managed Service for Apache Flink (Amazon MSF) was previously known as Amazon Kinesis
Data Analytics for Apache Flink.

xvii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

What is Amazon Managed Service for Apache Flink?

With Amazon Managed Service for Apache Flink, you can use Java, Scala, Python, or SQL to process
and analyze streaming data. The service enables you to author and run code against streaming
sources and static sources to perform time-series analytics, feed real-time dashboards, and metrics.

You can build applications with the language of your choice in Managed Service for Apache Flink
using open-source libraries based on Apache Flink. Apache Flink is a popular framework and engine
for processing data streams.

Managed Service for Apache Flink provides the underlying infrastructure for your Apache Flink
applications. It handles core capabilities like provisioning compute resources, AZ failover resilience,
parallel computation, automatic scaling, and application backups (implemented as checkpoints and
snapshots). You can use the high-level Flink programming features (such as operators, functions,
sources, and sinks) in the same way that you use them when hosting the Flink infrastructure
yourself.

Decide between using Managed Service for Apache Flink or
Managed Service for Apache Flink Studio

You have two options for running your Flink jobs with Amazon Managed Service for Apache Flink.
With Managed Service for Apache Flink, you build Flink applications in Java, Scala, or Python (and
embedded SQL) using an IDE of your choice and the Apache Flink Datastream or Table APIs. With
Managed Service for Apache Flink Studio, you can interactively query data streams in real time and
easily build and run stream processing applications using standard SQL, Python, and Scala.

You can select which method that best suits your use case. If you are unsure, this section will offer
high level guidance to help you.

Decide between using Managed Service for Apache Flink or Managed Service for Apache Flink Studio 1

https://flink.apache.org/
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Before deciding on whether to use Amazon Managed Service for Apache Flink or Amazon Managed
Service for Apache Flink Studio you should consider your use case.

If you plan to operate a long running application that will undertake workloads such as Streaming
ETL or Continuous Applications, you should consider using Managed Service for Apache Flink. This
is because you are able to create your Flink application using the Flink APIs directly in the IDE of
your choice. Developing locally with your IDE also ensures you can leverage software development
lifecycle (SDLC) common processes and tooling such as code versioning in Git, CI/CD automation,
or unit testing.

If you are interested in ad-hoc data exploration, want to query streaming data interactively, or
create private real-time dashboards, Managed Service for Apache Flink Studio will help you meet
these goals in just a few clicks. Users familiar with SQL can consider deploying a long-running
application from Studio directly.

Decide between using Managed Service for Apache Flink or Managed Service for Apache Flink Studio 2

https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-notebook.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

You can promote your Studio notebook to a long-running application. However, if you want
to integrate with your SDLC tools such as code versioning on Git and CI/CD automation, or
techniques such as unit-testing, we recommend Managed Service for Apache Flink using
the IDE of your choice.

Choose which Apache Flink APIs to use in Managed Service for
Apache Flink

You can build applications using Java, Python, and Scala in Managed Service for Apache Flink using
Apache Flink APIs in an IDE of your choice. You can find guidance on how to build applications
using the Flink Datastream and Table API in the documentation. You can select the language you
create your Flink application in and the APIs you use to best meet the needs of your application
and operations. If you are unsure, this section provides high level guidance to help you.

Choose a Flink API

The Apache Flink APIs have differing levels of abstraction that may effect how you decide to
build your application. They are expressive and flexible and can be used together to build your
application. You do not have to use only one Flink API. You can learn more about the Flink APIs in
the Apache Flink documentation.

Flink offers four levels of API abstraction: Flink SQL, Table API, DataStream API, and Process
Function, which is used in conjunction with the DataStream API. These are all supported in Amazon
Managed Service for Apache Flink. It is advisable to start with a higher level of abstraction where
possible, however some Flink features are only available with the Datastream API where you can
create your application in Java, Python, or Scala. You should consider using the Datastream API if:

• You require fine-grained control over state

• You want to leverage the ability to call an external database or endpoint asynchronously (for
example for inference)

• You want to use custom timers (for example to implement custom windowing or late event
handling)

• You want to be able to modify the flow of your application without resetting the state

Choose which Apache Flink APIs to use in Managed Service for Apache Flink 3

https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/overview/#flinks-apis
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Choosing a language with the DataStream API:

• SQL can be embedded in any Flink application, regardless the programming language
chosen.

• If you are if planning to use the DataStream API, not all connectors are supported in
Python.

• If you need low-latency/high-throughput you should consider Java/Scala regardless the
API.

• If you plan to use Async IO in the Process Functions API you will need to use Java.

The choice of the API can also impact your ability to evolve the application logic without
having to reset the state. This depends on a specific feature, the ability to set UID on
operators, that is only available in the DataStream API for both Java and Python. For more
information, see Set UUIDs For All Operators in the Apache Flink Documentation.

Choose a Flink API 4

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/production_ready/#set-uuids-for-all-operators

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Get started with streaming data applications

You can start by creating a Managed Service for Apache Flink application that continuously reads
and processes streaming data. Then, author your code using your IDE of choice, and test it with live
streaming data. You can also configure destinations where you want Managed Service for Apache
Flink to send the results.

To get started, we recommend that you read the following sections:

• Managed Service for Apache Flink: How it works

• Get started with Amazon Managed Service for Apache Flink (DataStream API)

Altenatively, you can start by creating a Managed Service for Apache Flink Studio notebook
that allows you to interactively query data streams in real time, and easily build and run stream
processing applications using standard SQL, Python, and Scala. With a few clicks in the AWS
Management Console, you can launch a serverless notebook to query data streams and get results
in seconds. To get started, we recommend that you read the following sections:

• Use a Studio notebook with Managed Service for Apache Flink

• Create a Studio notebook

Get started with streaming data applications 5

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink: How it works

Managed Service for Apache Flink is a fully managed Amazon service that lets you use an Apache
Flink application to process streaming data. First, you program your Apache Flink application, and
then you create your Managed Service for Apache Flink application.

Program your Apache Flink application

An Apache Flink application is a Java or Scala application that is created with the Apache Flink
framework. You author and build your Apache Flink application locally.

Applications primarily use either the DataStream API or the Table API. The other Apache Flink
APIs are also available for you to use, but they are less commonly used in building streaming
applications.

The features of the two APIs are as follows:

DataStream API

The Apache Flink DataStream API programming model is based on two components:

• Data stream: The structured representation of a continuous flow of data records.

• Transformation operator: Takes one or more data streams as input, and produces one or more
data streams as output.

Applications created with the DataStream API do the following:

• Read data from a Data Source (such as a Kinesis stream or Amazon MSK topic).

• Apply transformations to the data, such as filtering, aggregation, or enrichment.

• Write the transformed data to a Data Sink.

Applications that use the DataStream API can be written in Java or Scala, and can read from a
Kinesis data stream, a Amazon MSK topic, or a custom source.

Your application processes data by using a connector. Apache Flink uses the following types of
connectors:

• Source: A connector used to read external data.

Program your Apache Flink application 6

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/datastream_api.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Sink: A connector used to write to external locations.

• Operator: A connector used to process data within the application.

A typical application consists of at least one data stream with a source, a data stream with one or
more operators, and at least one data sink.

For more information about using the DataStream API, see Review DataStream API components.

Table API

The Apache Flink Table API programming model is based on the following components:

• Table Environment: An interface to underlying data that you use to create and host one or more
tables.

• Table: An object providing access to a SQL table or view.

• Table Source: Used to read data from an external source, such as an Amazon MSK topic.

• Table Function: A SQL query or API call used to transform data.

• Table Sink: Used to write data to an external location, such as an Amazon S3 bucket.

Applications created with the Table API do the following:

• Create a TableEnvironment by connecting to a Table Source.

• Create a table in the TableEnvironment using either SQL queries or Table API functions.

• Run a query on the table using either Table API or SQL

• Apply transformations on the results of the query using Table Functions or SQL queries.

• Write the query or function results to a Table Sink.

Applications that use the Table API can be written in Java or Scala, and can query data using either
API calls or SQL queries.

For more information about using the Table API, see Review Table API components.

Create your Managed Service for Apache Flink application

Managed Service for Apache Flink is an AWS service that creates an environment for hosting your
Apache Flink application and provides it with the following settings::

Table API 7

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Use runtime properties: Parameters that you can provide to your application. You can change
these parameters without recompiling your application code.

• Implement fault tolerance: How your application recovers from interrupts and restarts.

• Logging and monitoring in Amazon Managed Service for Apache Flink: How your application
logs events to CloudWatch Logs.

• Implement application scaling: How your application provisions computing resources.

You create your Managed Service for Apache Flink application using either the console or the
AWS CLI. To get started creating a Managed Service for Apache Flink application, see Tutorial: Get
started using the DataStream API in Managed Service for Apache Flink.

Create a Managed Service for Apache Flink application

This topic contains information about creating a Managed Service for Apache Flink application.

This topic contains the following sections:

• Build your Managed Service for Apache Flink application code

• Create your Managed Service for Apache Flink application

• Use customer managed keys

• Start your Managed Service for Apache Flink application

• Verify your Managed Service for Apache Flink application

• Enable system rollbacks for your Managed Service for Apache Flink application

Build your Managed Service for Apache Flink application code

This section describes the components that you use to build the application code for your Managed
Service for Apache Flink application.

We recommend that you use the latest supported version of Apache Flink for your application
code. For information about upgrading Managed Service for Apache Flink applications, see Use in-
place version upgrades for Apache Flink.

You build your application code using Apache Maven. An Apache Maven project uses a pom.xml file
to specify the versions of components that it uses.

Create an application 8

https://maven.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Managed Service for Apache Flink supports JAR files up to 512 MB in size. If you use a JAR
file larger than this, your application will fail to start.

Applications can now use the Java API from any Scala version. You must bundle the Scala standard
library of your choice into your Scala applications.

For information about creating a Managed Service for Apache Flink application that uses Apache
Beam, see Use Apache Beam with Managed Service for Apache Flink applications.

Specify your application's Apache Flink version

When using Managed Service for Apache Flink Runtime version 1.1.0 and later, you specify the
version of Apache Flink that your application uses when you compile your application. You provide
the version of Apache Flink with the -Dflink.version parameter. For example, if you are using
Apache Flink 1.19.1, provide the following:

mvn package -Dflink.version=1.19.1

For building applications with earlier versions of Apache Flink, see Earlier versions.

Create your Managed Service for Apache Flink application

After you've built your application code, you do the following to create your Managed Service for
Apache Flink (Amazon MSF) application:

• Upload your Application code: Upload your application code to an Amazon S3 bucket. You
specify the S3 bucket name and object name of your application code when you create your
application. For a tutorial that shows how to upload your application code, see the Tutorial: Get
started using the DataStream API in Managed Service for Apache Flink tutorial.

• Create your Managed Service for Apache Flink application: Use one of the following methods
to create your Amazon MSF application:

Note

Amazon MSF encrypts your application by default using AWS owned keys. You can also
create your new application using AWS KMS customer managed keys (CMKs) to create,

Create your Managed Service for Apache Flink application 9

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

own, and manage your keys yourself. For information about CMKs, see Key management
in Amazon Managed Service for Apache Flink.

• Create your Amazon MSF application using the AWS console: You can create and configure
your application using the AWS console.

When you create your application using the console, your application's dependent resources
(such as CloudWatch Logs streams, IAM roles, and IAM policies) are created for you.

When you create your application using the console, you specify what version of Apache Flink
your application uses by selecting it from the pull-down on the Managed Service for Apache
Flink - Create application page.

For a tutorial about how to use the console to create an application, see the Tutorial: Get
started using the DataStream API in Managed Service for Apache Flink tutorial.

• Create your Amazon MSF application using the AWS CLI: You can create and configure your
application using the AWS CLI.

When you create your application using the CLI, you must also create your application's
dependent resources (such as CloudWatch Logs streams, IAM roles, and IAM policies) manually.

When you create your application using the CLI, you specify what version of Apache Flink your
application uses by using the RuntimeEnvironment parameter of the CreateApplication
action.

Note

You can change the RuntimeEnvironment of an existing application. To learn how, see
Use in-place version upgrades for Apache Flink.

Use customer managed keys

In Amazon MSF, customer managed keys (CMKs) is a feature using which you can encrypt your
application's data with a key that you create, own, and manage on AWS Key Management Service
(AWS KMS). For an Amazon MSF application, this means all data subject to a Flink checkpoint or
snapshot are encrypted with a CMK you define for that application.

Use customer managed keys 10

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To use CMK with your application, you must first create your new application, and then apply a
CMK. For more information about using CMKs, see Key management in Amazon Managed Service
for Apache Flink.

Start your Managed Service for Apache Flink application

After you have built your application code, uploaded it to S3, and created your Managed Service for
Apache Flink application, you then start your application. Starting a Managed Service for Apache
Flink application typically takes several minutes.

Use one of the following methods to start your application:

• Start your Managed Service for Apache Flink application using the AWS console: You can run
your application by choosing Run on your application's page in the AWS console.

• Start your Managed Service for Apache Flink application using the AWS API: You can run your
application using the StartApplication action.

Verify your Managed Service for Apache Flink application

You can verify that your application is working in the following ways:

• Using CloudWatch Logs: You can use CloudWatch Logs and CloudWatch Logs Insights to verify
that your application is running properly. For information about using CloudWatch Logs with
your Managed Service for Apache Flink application, see Logging and monitoring in Amazon
Managed Service for Apache Flink.

• Using CloudWatch Metrics: You can use CloudWatch Metrics to monitor your application's
activity, or activity in the resources your application uses for input or output (such as Kinesis
streams, Firehose streams, or Amazon S3 buckets.) For more information about CloudWatch
metrics, see Working with Metrics in the Amazon CloudWatch User Guide.

• Monitoring Output Locations: If your application writes output to a location (such as an Amazon
S3 bucket or database), you can monitor that location for written data.

Enable system rollbacks for your Managed Service for Apache Flink
application

With system-rollback capability, you can achieve higher availability of your running Apache Flink
application on Amazon Managed Service for Apache Flink. Opting into this configuration enables

Start your Managed Service for Apache Flink application 11

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

the service to automatically revert the application to the previously running version when an action
such as UpdateApplication or autoscaling runs into code or configurations bugs.

Note

To use the system rollback feature, you must opt in by updating your application. Existing
applications will not automatically use system rollback by default.

How it works

When you initiate an application operation, such as an update or scaling action, the Amazon
Managed Service for Apache Flink first attempts to run that operation. If it detects issues that
prevent the operation from succeeding, such as code bugs or insufficient permissions, the service
automatically initiates a RollbackApplication operation.

The rollback attempts to restore the application to the previous version that ran successfully,
along with the associated application state. If the rollback is successful, your application continues
processing data with minimal downtime using the previous version. If the automatic rollback also
fails, Amazon Managed Service for Apache Flink transitions the application to the READY status, so
that you can take further actions, including fixing the error and retrying the operation.

You must opt in to use automatic system rollbacks. You can enable it using the console or API for
all operations on your application from this point forward.

The following example request for the UpdateApplication action enables system rollbacks for
an application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationSystemRollbackConfigurationUpdate": {
 "RollbackEnabledUpdate": "true"
 }
 }
}

Review common scenarios for automatic system rollback

The following scenarios illustrate where automatic system rollbacks are beneficial:

Enable system rollbacks 12

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Application updates: If you update your application with new code that has bugs when
initializing the Flink job through the main method, the automatic rollback allows the previous
working version to be restored. Other update scenarios where system rollbacks are helpful
include:

• If your application is updated to run with a parallelism higher than maxParallelism.

• If your application is updated to run with incorrect subnets for a VPC application that results in
a failure during the Flink job startup.

• Flink version upgrades: When you upgrade to a new Apache Flink version and the upgraded
application encounters a snapshot compatibility issue, system rollback lets you revert to the prior
Flink version automatically.

• AutoScaling: When the application scales up but runs into issues restoring from a savepoint, due
to operator mismatch between the snapshot and the Flink job graph.

Use operation APIs for system rollbacks

To provide better visibility, Amazon Managed Service for Apache Flink has two APIs related to
application operations that can help you track failures and related system rollbacks.

ListApplicationOperations

This API lists all operations performed on the application, including UpdateApplication,
Maintenance, RollbackApplication, and others in reverse chronological order. The following
example request for the ListApplicationOperations action lists the first 10 application
operations for the application:

{
 "ApplicationName": "MyApplication",
 "Limit": 10
}

This following example request for ListApplicationOperations helps filter the list to previous
updates on the application:

{
 "ApplicationName": "MyApplication",
 "operation": "UpdateApplication"
}

Enable system rollbacks 13

https://docs.aws.amazon.com/managed-flink/latest/java/how-scaling.html#how-scaling-auto

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

DescribeApplicationOperation

This API provides detailed information about a specific operation listed by
ListApplicationOperations, including the reason for failure, if applicable. The following
example request for the DescribeApplicationOperation action lists details for a specific
application operation:

{
 "ApplicationName": "MyApplication",
 "OperationId": "xyzoperation"
}

For troubleshooting information, see System rollback best practices.

Run a Managed Service for Apache Flink application

This topic contains information about running a Managed Service for Apache Flink.

When you run your Managed Service for Apache Flink application, the service creates an Apache
Flink job. An Apache Flink job is the execution lifecycle of your Managed Service for Apache Flink
application. The execution of the job, and the resources it uses, are managed by the Job Manager.
The Job Manager separates the execution of the application into tasks. Each task is managed
by a Task Manager. When you monitor your application's performance, you can examine the
performance of each Task Manager, or of the Job Manager as a whole.

For information about Apache Flink jobs, see Jobs and Scheduling in the Apache Flink
Documentation.

Identify application and job status

Both your application and the application's job have a current execution status:

• Application status: Your application has a current status that describes its phase of execution.
Application statuses include the following:

• Steady application statuses: Your application typically stays in these statuses until you make a
status change:

• READY: A new or stopped application is in the READY status until you run it.

• RUNNING: An application that has successfully started is in the RUNNING status.

Run an application 14

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/internals/job_scheduling/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Transient application statuses: An application in these statuses is typically in the process of
transitioning to another status. If an application stays in a transient status for a length of time,
you can stop the application using the StopApplication action with the Force parameter set to
true. These statuses include the following:

• STARTING: Occurs after the StartApplication action. The application is transitioning from
the READY to the RUNNING status.

• STOPPING: Occurs after the StopApplication action. The application is transitioning from
the RUNNING to the READY status.

• DELETING: Occurs after the DeleteApplication action. The application is in the process of
being deleted.

• UPDATING: Occurs after the UpdateApplication action. The application is updating, and will
transition back to the RUNNING or READY status.

• AUTOSCALING: The application has the AutoScalingEnabled property of the
ParallelismConfiguration set to true, and the service is increasing the parallelism of the
application. When the application is in this status, the only valid API action you can use is
the StopApplication action with the Force parameter set to true. For information about
automatic scaling, see Use automatic scaling in Managed Service for Apache Flink.

• FORCE_STOPPING: Occurs after the StopApplication action is called with the Force
parameter set to true. The application is in the process of being force stopped. The
application transitions from the STARTING, UPDATING, STOPPING, or AUTOSCALING status
to the READY status.

• ROLLING_BACK: Occurs after the RollbackApplication action is called. The application is in
the process of being rolled back to a previous version. The application transitions from the
UPDATING or AUTOSCALING status to the RUNNING status.

• MAINTENANCE: Occurs while Managed Service for Apache Flink applies patches to your
application. For more information, see Manage maintenance tasks for Managed Service for
Apache Flink.

You can check your application's status using the console, or by using the DescribeApplication
action.

• Job status: When your application is in the RUNNING status, your job has a status that describes
its current execution phase. A job starts in the CREATED status, and then proceeds to the
RUNNING status when it has started. If error conditions occur, your application enters the
following status:

Identify application and job status 15

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ParallelismConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ParallelismConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_RollbackApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For applications using Apache Flink 1.11 and later, your application enters the RESTARTING
status.

• For applications using Apache Flink 1.8 and prior, your application enters the FAILING status.

The application then proceeds to either the RESTARTING or FAILED status, depending on
whether the job can be restarted.

You can check the job's status by examining your application's CloudWatch log for status
changes.

Run batch workloads

Managed Service for Apache Flink supports running Apache Flink batch workloads. In a batch
job, when an Apache Flink job gets to the FINISHED status, Managed Service for Apache Flink
application status is set to READY. For more information about Flink job statuses, see Jobs and
Scheduling.

Review Managed Service for Apache Flink application resources

This section describes the system resources that your application uses. Understanding how
Managed Service for Apache Flink provisions and uses resources will help you design, create, and
maintain a performant and stable Managed Service for Apache Flink application.

Managed Service for Apache Flink application resources

Managed Service for Apache Flink is an AWS service that creates an environment for hosting your
Apache Flink application. The Managed Service for Apache Flink service provides resources using
units called Kinesis Processing Units (KPUs).

One KPU represents the following system resources:

• One CPU core

• 4 GB of memory, of which one GB is native memory and three GB are heap memory

• 50 GB of disk space

KPUs run applications in distinct execution units called tasks and subtasks. You can think of a
subtask as the equivalent of a thread.

Run batch workloads 16

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The number of KPUs available to an application is equal to the application's Parallelism setting,
divided by the application's ParallelismPerKPU setting.

For more information about application parallelism, see Implement application scaling.

Apache Flink application resources

The Apache Flink environment allocates resources for your application using units called task slots.
When Managed Service for Apache Flink allocates resources for your application, it assigns one or
more Apache Flink task slots to a single KPU. The number of slots assigned to a single KPU is equal
to your application's ParallelismPerKPU setting. For more information about task slots, see Job
Scheduling in the Apache Flink Documentation.

Operator parallelism

You can set the maximum number of subtasks that an operator can use. This value is called
Operator Parallelism. By default, the parallelism of each operator in your application is equal to
the application's parallelism. This means that by default, each operator in your application can use
all of the available subtasks in the application if needed.

You can set the parallelism of the operators in your application using the setParallelism
method. Using this method, you can control the number of subtasks each operator can use at one
time.

For more information about operators, see Operators in the Apache Flink Documentation.

Operator chaining

Normally, each operator uses a separate subtask to execute, but if several operators always execute
in sequence, the runtime can assign them all to the same task. This process is called Operator
Chaining.

Several sequential operators can be chained into a single task if they all operate on the same data.
The following are some of the criteria needed for this to be true:

• The operators do 1-to-1 simple forwarding.

• The operators all have the same operator parallelism.

When your application chains operators into a single subtask, it conserves system resources,
because the service doesn't need to perform network operations and allocate subtasks for each

Apache Flink application resources 17

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/operators/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

operator. To determine if your application is using operator chaining, look at the job graph in the
Managed Service for Apache Flink console. Each vertex in the application represents one or more
operators. The graph shows operators that have been chained as a single vertex.

Per second billing in Managed Service for Apache Flink

Managed Service for Apache Flink is now billed in one-second increments. There is a ten-minute
minimum charge per application. Per-second billing is applicable to applications that are newly
launched or already running. This section describes how Managed Service for Apache Flink meters
and bills you for your usage. To learn more about Managed Service for Apache Flink pricing, see
Amazon Managed Service for Apache Flink Pricing.

How it works

Managed Service for Apache Flink charges you for the duration and number of Kinesis Processing
Units (KPUs) that are billed in one-second increments in the supported AWS Regions. A single
KPU comprises 1vCPU compute and 4 GB of memory. You are charged an hourly rate based on the
number of KPUs used to run your applications.

For example, an application running for 20 minutes and 10 seconds will be charged for 20 minutes
and 10 seconds, multiplied by the resources it used. An application that is running for 5 minutes
will be charged the ten-minute minimum, multiplied by the resources it used.

Managed Service for Apache Flink states usage in hours. For example, 15 minutes corresponds to
0.25 hours.

For Apache Flink applications, you are charged a single additional KPU per application, used for
orchestration. Applications are also charged for running storage and durable backups. Running
application storage is used for stateful processing capabilities in Managed Service for Apache Flink
and is charged per GB/month. Durable backups are optional and provide point-in-time recovery for
applications, charged per GB/month.

In streaming mode, Managed Service for Apache Flink automatically scales the number of KPUs
required by your stream processing application as the demands of memory and compute fluctuate.
You can choose to provision your application with the required number of KPUs.

Pricing 18

https://aws.amazon.com/managed-service-apache-flink/pricing/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS Region availability

Note

At this time, per second billing is not available in the following Regions: AWS GovCloud
(US-East), AWS GovCloud (US-West), China (Beijing), and China (Ningxia).

Per second billing is available in the following AWS Regions:

• US East (N. Virginia) - us-east-1

• US East (Ohio) - us-east-2

• US West (N. California) - us-west-1

• US West (Oregon) - us-west-2

• Africa (Cape Town) - af-south-1

• Asia Pacific (Hong Kong) - ap-east-1

• Asia Pacific (Hyderabad) - ap-south-1

• Asia Pacific (Jakarta) - ap-southeast-3

• Asia Pacific (Melbourne) - ap-southeast-4

• Asia Pacific (Mumbai) - ap-south-1

• Asia Pacific (Osaka) - ap-northeast-3

• Asia Pacific (Seoul) - ap-northeast-2

• Asia Pacific (Singapore) - ap-southeast-1

• Asia Pacific (Sydney) - ap-southeast-2

• Asia Pacific (Tokyo) - ap-northeast-1

• Canada (Central) - ca-central-1

• Canada West (Calgary) - ca-west-1

• Europe (Frankfurt) - eu-central-1

• Europe (Ireland) - eu-west-1

• Europe (London) - eu-west-2

• Europe (Milan) - eu-south-1

• Europe (Paris) - eu-west-3

AWS Region availability 19

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Europe (Spain) - eu-south-2

• Europe (Stockholm) - eu-north-1

• Europe (Zurich) - eu-central-2

• Israel (Tel Aviv) - il-central-1

• Middle East (Bahrain) - me-south-1

• Middle East (UAE) - me-central-1

• South America (São Paulo) - sa-east-1

Pricing examples

You can find pricing examples on the Managed Service for Apache Flink pricing page. For more
information, see Amazon Managed Service for Apache Flink Pricing. Following are further examples
with Cost Usage Report illustrations for each.

A long running, heavy workload

You are a large Video streaming service and you would like to build a real-time video
recommendation based on your users’ interactions. You use an Apache Flink application in
Managed Service for Apache Flink to continuously ingest user interaction events from multiple
Kinesis data streams and to process events in real time before outputting to a downstream system.
User interaction events are transformed using several operators. This includes partitioning data
by event type, enriching data with additional metadata, sorting data by timestamp, and buffering
data for 5 minutes before delivery. The application has many transformation steps that are
compute-intensive and parallelizable. Your Flink application is configured to run with 20 KPUs to
accommodate the workload. Your application uses 1 GB of durable application backup every day.
The monthly Managed Service for Apache Flink charges will be computed as follows:

Monthly charges

The price in the US East (N. Virginia) Region is $0.11 per KPU-hour. Managed Service for Apache
Flink allocates 50 GB of running application storage per KPU and charges $0.10 per GB/month.

• Monthly KPU charges: 24 hours * 30 days * (20 KPUs + 1 additional KPU for streaming
application) * $0.11/hour = $1,584.00

• Monthly running application storage charges: 30 days * 20 KPUs * 50 GB/KPUs * $0.10/GB-
month = $100.00

Pricing examples 20

https://aws.amazon.com/managed-service-apache-flink/pricing/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Monthly durable application storage charges: 30 days * 1 GB * 0.023/GB-month = $0.03

• Total charges: $1,584.00 + $100 + $0.03 = $1,684.03

Cost usage report for Managed Service for Apache Flink on the Billing and Cost Management
console for the month

Kinesis Analytics

• USD 1,684.03 - US East (N. Virginia)

• Amazon Kinesis Analytics CreateSnapshot

• $0.023 per GB-month of durable application backups

• 1 GB-month - USD 0.03

• Amazon Kinesis Analytics StartApplication

• $0.10 per GB-month of running application storage

• 1,000 GB-month - USD 100

• $0.11 per Kinesis Processing Unit-hour for Apache Flink applications

• 15,120 KPU-hour - USD 1,584

A batch workload that runs for ~15 minutes every day

You use an Apache Flink application in Managed Service for Apache Flink to transform log data
in Amazon Simple Storage Service (Amazon S3) in batch mode. The log data is transformed using
several operators. This includes applying a schema to the different log events, partitioning data
by event type, and sorting data by timestamp. The application has many transformation steps,
but none are computationally intensive. This application ingests data at 2,000 records/second for
15 minutes every day in a 30-day month. You do not create any durable application backups. The
monthly Managed Service for Apache Flink charges will be computed as follows:

Monthly charges

The price in the US East (N. Virginia) Region is $0.11 per KPU-hour. Managed Service for Apache
Flink allocates 50 GB of running application storage per KPU and charges $0.10 per GB/month.

• Batch Workload: During the 15 minutes per day, the Managed Service for Apache Flink
application is processing 2,000 records/second, which takes 2KPUs. 30 days/month * 15
minutes/day = 450 minutes/month

Pricing examples 21

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Monthly KPU charges: 450 minutes/month * (2KPUs + 1 additional KPU for streaming
application) * $0.11/hour = $2.48

• Monthly running application storage charges: 450 minutes/month * 2 KPUs * 50 GB/KPUs *
$0.10/GB-month = $0.11

• Total charges: $2.48 + 0.11 = $2.59

Cost usage report for Managed Service for Apache Flink on the Billing and Cost Management
console for the month

Kinesis Analytics

• USD 2.59 - US East (N. Virginia)

• Amazon Kinesis Analytics StartApplication

• $0.10 per GB-month of running application backups

• 1.042 GB-month - USD 0.11

• $0.11 per Kinesis Processing Unit-hour for Apache Flink applications

• 22.5 KPU-Hour - USD 2.48

A test application that stops and starts continuously in the same hour, attracting multiple
minimum charges

You’re a large ecommerce platform that processes millions of transactions every day. You want
to develop real-time fraud detection. You use an Apache Flink application in Managed Service
for Apache Flink to ingest transaction events from Kinesis Data Streams and process events in
real-time with different transformation steps. This includes using a sliding window to aggregate
events, partitioning events by event types, and applying specific detection rules for different event
types. During development, you start and stop your application multiple times to test and debug
behavior. There are occasions when your application only runs for a few minutes. There is an hour
when you’re testing your application with 4 KPUs and your application does not use any durable
application backups:

• At 10:05 AM, you start your application, which runs for 30 minutes before it’s stopped at 10:35
AM.

• At 10:40 AM, you start your application again, which runs for 5 minutes before it’s stopped at
10:45 AM.

Pricing examples 22

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• At 10:50 AM, you start the application again, which runs for 2 minutes before it’s stopped at
10:52 AM.

Managed Service for Apache Flink charges a minimum of 10 minutes of usage each time an
application starts running. The monthly Managed Service for Apache Flink usage for your
application will be computed as follows:

• First time your application starts and stops: 30 minutes of usage

• Second time your application starts and stops: 10 minutes of usage (your application runs for 5
minutes rounded up to the 10 minutes minimum charge)

• Third time your application starts and stops: 10 minutes of usage (your application runs for 2
minutes, rounded up to the 10 minutes minimum charge)

In total, your application would be charged for 50 minutes of usage. If there are no other times in
the month your application is running, the monthly Managed Service for Apache Flink charges will
be computed as follows:

Monthly charges

The price in the US East (N. Virginia) Region is $0.11 per KPU-hour. Managed Service for Apache
Flink allocates 50 GB of running application storage per KPU and charges $0.10 per GB/month.

• Monthly KPU charges: 50 minutes * (4KPUs + 1 additional KPU for streaming application) *
$0.11/hour = $0.46 (rounded to the nearest penny)

• Monthly running application storage charges: 50 minutes * 4 KPUs * 50 GB/KPUs * $0.10/GB-
month = $0.03 (rounded to the nearest penny)

• Total charges: $0.46 + 0.03 = $0.49

Cost usage report for Managed Service for Apache Flink on the Billing and Cost Management
console for the month

Kinesis Analytics

• USD 0.49 - US East (N. Virginia)

• Amazon Kinesis Analytics StartApplication

• $0.10 per GB-month of running application storage

Pricing examples 23

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• 0.232 GB-month - USD 0.03

• $0.11 per Kinesis Processing Unit-hour for Apache Flink applications

• 4.167 KPU-Hour - USD 0.46

Review DataStream API components

Your Apache Flink application uses the Apache Flink DataStream API to transform data in a data
stream.

This section describes the different components that move, transform, and track data:

• Use connectors to move data in Managed Service for Apache Flink with the DataStream
API: These components move data between your application and external data sources and
destinations.

• Transform data using operators in Managed Service for Apache Flink with the DataStream API:
These components transform or group data elements within your application.

• Track events in Managed Service for Apache Flink using the DataStream API: This topic describes
how Managed Service for Apache Flink tracks events when using the DataStream API.

Use connectors to move data in Managed Service for Apache Flink with
the DataStream API

In the Amazon Managed Service for Apache Flink DataStream API, connectors are software
components that move data into and out of a Managed Service for Apache Flink application.
Connectors are flexible integrations that let you read from files and directories. Connectors consist
of complete modules for interacting with Amazon services and third-party systems.

Types of connectors include the following:

• Add streaming data sources: Provide data to your application from a Kinesis data stream, file, or
other data source.

• Write data using sinks: Send data from your application to a Kinesis data stream, Firehose
stream, or other data destination.

• Use Asynchronous I/O: Provides asynchronous access to a data source (such as a database) to
enrich stream events.

Review DataStream API components 24

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Available connectors

The Apache Flink framework contains connectors for accessing data from a variety of sources.
For information about connectors available in the Apache Flink framework, see Connectors in the
Apache Flink documentation.

Warning

If you have applications running on Flink 1.6, 1.8, 1.11 or 1.13 and would like to run in
Middle East (UAE), Asia Pacific (Hyderabad), Israel (Tel Aviv), Europe (Zurich), Middle East
(UAE), Asia Pacific (Melbourne) or Asia Pacific (Jakarta) Regions, you might have to rebuild
your application archive with an updated connector or upgrade to Flink 1.18.
Apache Flink connectors are stored in their own open source repositories. If you're
upgrading to version 1.18 or later, you must update your dependencies. To access the
repository for Apache Flink AWS connectors, see flink-connector-aws.
The former Kinesis source
org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
is discontinued and might be removed with a future release of Flink. Use Kinesis Source
instead.
There is no state compatibility between the FlinkKinesisConsumer and
KinesisStreamsSource. For details, see Migrating existing jobs to new Kinesis Streams
Source in the Apache Flink documentation.
Following are the recommended guidelines:

Connector upgrades

Flink version Connector used Resolution

1.19, 1.20 Kinesis Source When upgrading to
Managed Service for
Apache Flink version
1.19 and 1.20, make sure
that you are using the
most recent Kinesis Data
Streams source connector
. That must be any version
5.0.0 or later. For more
information, see Amazon

Connectors 25

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/connectors/
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://github.com/apache/flink-connector-aws
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#kinesis-streams-source
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#migrating-existing-jobs-to-new-kinesis-streams-source-from-kinesis-consumer
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#migrating-existing-jobs-to-new-kinesis-streams-source-from-kinesis-consumer
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink version Connector used Resolution

Kinesis Data Streams
Connector.

1.19, 1.20 Kinesis Sink When upgrading to
Managed Service for
Apache Flink version
1.19 and 1.20, make sure
that you are using the
most recent Kinesis Data
Streams sink connector.
That must be any version
5.0.0 or later. For more
information, see Kinesis
Streams Sink.

1.19, 1.20 DynamoDB Streams Source When upgrading to
Managed Service for
Apache Flink version 1.19
and 1.20, make sure that
you are using the most
recent DynamoDB Streams
source connector. That
must be any version 5.0.0
or later. For more informati
on, see Amazon DynamoDB
Connector.

Connectors 26

https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#kinesis-streams-sink
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kinesis/#kinesis-streams-sink
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/dynamodb/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink version Connector used Resolution

1.19, 1.20 DynamoDB Sink When upgrading to
Managed Service for
Apache Flink version 1.19
and 1.20, make sure that
you are using the most
recent DynamoDB sink
connector. That must be
any version 5.0.0 or later.
For more information,
see Amazon DynamoDB
Connector.

1.19, 1.20 Amazon SQS Sink When upgrading to
Managed Service for
Apache Flink version 1.19
and 1.20, make sure that
you are using the most
recent Amazon SQS sink
connector. That must be
any version 5.0.0 or later.
For more information, see
Amazon SQS Sink.

1.19, 1.20 Amazon Managed Service
for Prometheus Sink

When upgrading to
Managed Service for
Apache Flink version 1.19
and 1.20, make sure that
you are using the most
recent Amazon Managed
Service for Prometheus
sink connector. That must
be any version 1.0.0 or
later. For more informati
on, see Prometheus Sink.

Connectors 27

https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/sqs/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/prometheus/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add streaming data sources to Managed Service for Apache Flink

Apache Flink provides connectors for reading from files, sockets, collections, and custom sources.
In your application code, you use an Apache Flink source to receive data from a stream. This section
describes the sources that are available for Amazon services.

Use Kinesis data streams

The KinesisStreamsSource provides streaming data to your application from an Amazon
Kinesis data stream.

Create a KinesisStreamsSource

The following code example demonstrates creating a KinesisStreamsSource:

// Configure the KinesisStreamsSource
Configuration sourceConfig = new Configuration();
sourceConfig.set(KinesisSourceConfigOptions.STREAM_INITIAL_POSITION,
 KinesisSourceConfigOptions.InitialPosition.TRIM_HORIZON); // This is optional, by
 default connector will read from LATEST

// Create a new KinesisStreamsSource to read from specified Kinesis Stream.
KinesisStreamsSource<String> kdsSource =
 KinesisStreamsSource.<String>builder()
 .setStreamArn("arn:aws:kinesis:us-east-1:123456789012:stream/test-
stream")
 .setSourceConfig(sourceConfig)
 .setDeserializationSchema(new SimpleStringSchema())

 .setKinesisShardAssigner(ShardAssignerFactory.uniformShardAssigner()) // This is
 optional, by default uniformShardAssigner will be used.
 .build();

For more information about using a KinesisStreamsSource, see Amazon Kinesis Data Streams
Connector in the Apache Flink documentation and our public KinesisConnectors example on
Github.

Create a KinesisStreamsSource that uses an EFO consumer

The KinesisStreamsSource now supports Enhanced Fan-Out (EFO).

Connectors 28

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/datastream_api.html#data-sources
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kinesis/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisConnectors
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisConnectors
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/connectors/datastream/kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

If a Kinesis consumer uses EFO, the Kinesis Data Streams service gives it its own dedicated
bandwidth, rather than having the consumer share the fixed bandwidth of the stream with the
other consumers reading from the stream.

For more information about using EFO with the Kinesis consumer, see FLIP-128: Enhanced Fan Out
for AWS Kinesis Consumers.

You enable the EFO consumer by setting the following parameters on the Kinesis consumer:

• READER_TYPE: Set this parameter to EFO for your application to use an EFO consumer to
access the Kinesis Data Stream data.

• EFO_CONSUMER_NAME: Set this parameter to a string value that is unique among the
consumers of this stream. Re-using a consumer name in the same Kinesis Data Stream will cause
the previous consumer using that name to be terminated.

To configure a KinesisStreamsSource to use EFO, add the following parameters to the
consumer:

sourceConfig.set(KinesisSourceConfigOptions.READER_TYPE,
 KinesisSourceConfigOptions.ReaderType.EFO);
sourceConfig.set(KinesisSourceConfigOptions.EFO_CONSUMER_NAME, "my-flink-efo-
consumer");

For an example of a Managed Service for Apache Flink application that uses an EFO consumer, see
our public Kinesis Connectors example on Github.

Use Amazon MSK

The KafkaSource source provides streaming data to your application from an Amazon MSK topic.

Create a KafkaSource

The following code example demonstrates creating a KafkaSource:

KafkaSource<String> source = KafkaSource.<String>builder()
 .setBootstrapServers(brokers)
 .setTopics("input-topic")
 .setGroupId("my-group")
 .setStartingOffsets(OffsetsInitializer.earliest())
 .setValueOnlyDeserializer(new SimpleStringSchema())
 .build();

Connectors 29

https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers
https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisConnectors

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");

For more information about using a KafkaSource, see MSK Replication.

Write data using sinks in Managed Service for Apache Flink

In your application code, you can use any Apache Flink sink connector to write into external
systems, including AWS services, such as Kinesis Data Streams and DynamoDB.

Apache Flink also provides sinks for files and sockets, and you can implement custom sinks. Among
the several supported sinks, the following are frequently used:

Use Kinesis data streams

Apache Flink provides information about the Kinesis Data Streams Connector in the Apache Flink
documentation.

For an example of an application that uses a Kinesis data stream for input and output, see Tutorial:
Get started using the DataStream API in Managed Service for Apache Flink.

Use Apache Kafka and Amazon Managed Streaming for Apache Kafka (MSK)

The Apache Flink Kafka connector provides extensive support for publishing data to Apache Kafka
and Amazon MSK, including exactly once guarantees. To learn how to write to Kafka, see Kafka
Connectors examples in the Apache Flink documentation.

Use Amazon S3

You can use the Apache Flink StreamingFileSink to write objects to an Amazon S3 bucket.

For an example about how to write objects to S3, see the section called “S3 Sink”.

Use Firehose

The FlinkKinesisFirehoseProducer is a reliable, scalable Apache Flink sink for storing
application output using the Firehose service. This section describes how to set up a Maven project
to create and use a FlinkKinesisFirehoseProducer.

Topics

• Create a FlinkKinesisFirehoseProducer

• FlinkKinesisFirehoseProducer Code Example

Connectors 30

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/kafka/#kafka-sink
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KafkaConnectors
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KafkaConnectors
https://docs.aws.amazon.com/firehose/latest/dev/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a FlinkKinesisFirehoseProducer

The following code example demonstrates creating a FlinkKinesisFirehoseProducer:

Properties outputProperties = new Properties();
outputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);

FlinkKinesisFirehoseProducer<String> sink = new
 FlinkKinesisFirehoseProducer<>(outputStreamName, new SimpleStringSchema(),
 outputProperties);

FlinkKinesisFirehoseProducer Code Example

The following code example demonstrates how to create and configure a
FlinkKinesisFirehoseProducer and send data from an Apache Flink data stream to the
Firehose service.

package com.amazonaws.services.kinesisanalytics;

import
 com.amazonaws.services.kinesisanalytics.flink.connectors.config.ProducerConfigConstants;
import
 com.amazonaws.services.kinesisanalytics.flink.connectors.producer.FlinkKinesisFirehoseProducer;
import com.amazonaws.services.kinesisanalytics.runtime.KinesisAnalyticsRuntime;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisProducer;

import org.apache.flink.streaming.connectors.kinesis.config.ConsumerConfigConstants;

import java.io.IOException;
import java.util.Map;
import java.util.Properties;

public class StreamingJob {

 private static final String region = "us-east-1";
 private static final String inputStreamName = "ExampleInputStream";
 private static final String outputStreamName = "ExampleOutputStream";

Connectors 31

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 private static DataStream<String>
 createSourceFromStaticConfig(StreamExecutionEnvironment env) {
 Properties inputProperties = new Properties();
 inputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);
 inputProperties.setProperty(ConsumerConfigConstants.STREAM_INITIAL_POSITION,
 "LATEST");

 return env.addSource(new FlinkKinesisConsumer<>(inputStreamName, new
 SimpleStringSchema(), inputProperties));
 }

 private static DataStream<String>
 createSourceFromApplicationProperties(StreamExecutionEnvironment env)
 throws IOException {
 Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();
 return env.addSource(new FlinkKinesisConsumer<>(inputStreamName, new
 SimpleStringSchema(),
 applicationProperties.get("ConsumerConfigProperties")));
 }

 private static FlinkKinesisFirehoseProducer<String>
 createFirehoseSinkFromStaticConfig() {
 /*
 * com.amazonaws.services.kinesisanalytics.flink.connectors.config.
 * ProducerConfigConstants
 * lists of all of the properties that firehose sink can be configured with.
 */

 Properties outputProperties = new Properties();
 outputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);

 FlinkKinesisFirehoseProducer<String> sink = new
 FlinkKinesisFirehoseProducer<>(outputStreamName,
 new SimpleStringSchema(), outputProperties);
 ProducerConfigConstants config = new ProducerConfigConstants();
 return sink;
 }

 private static FlinkKinesisFirehoseProducer<String>
 createFirehoseSinkFromApplicationProperties() throws IOException {
 /*
 * com.amazonaws.services.kinesisanalytics.flink.connectors.config.
 * ProducerConfigConstants

Connectors 32

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 * lists of all of the properties that firehose sink can be configured with.
 */

 Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();
 FlinkKinesisFirehoseProducer<String> sink = new
 FlinkKinesisFirehoseProducer<>(outputStreamName,
 new SimpleStringSchema(),
 applicationProperties.get("ProducerConfigProperties"));
 return sink;
 }

 public static void main(String[] args) throws Exception {
 // set up the streaming execution environment
 final StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

 /*
 * if you would like to use runtime configuration properties, uncomment the
 * lines below
 * DataStream<String> input = createSourceFromApplicationProperties(env);
 */

 DataStream<String> input = createSourceFromStaticConfig(env);

 // Kinesis Firehose sink
 input.addSink(createFirehoseSinkFromStaticConfig());

 // If you would like to use runtime configuration properties, uncomment the
 // lines below
 // input.addSink(createFirehoseSinkFromApplicationProperties());

 env.execute("Flink Streaming Java API Skeleton");
 }
}

For a complete tutorial about how to use the Firehose sink, see the section called “Firehose sink”.

Connectors 33

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use Asynchronous I/O in Managed Service for Apache Flink

An Asynchronous I/O operator enriches stream data using an external data source such as a
database. Managed Service for Apache Flink enriches the stream events asynchronously so that
requests can be batched for greater efficiency.

For more information, see Asynchronous I/O in the Apache Flink Documentation.

Transform data using operators in Managed Service for Apache Flink
with the DataStream API

To transform incoming data in a Managed Service for Apache Flink, you use an Apache Flink
operator. An Apache Flink operator transforms one or more data streams into a new data stream.
The new data stream contains modified data from the original data stream. Apache Flink provides
more than 25 pre-built stream processing operators. For more information, see Operators in the
Apache Flink Documentation.

This topic contains the following sections:

• Use transform operators

• Use aggregation operators

Use transform operators

The following is an example of a simple text transformation on one of the fields of a JSON data
stream.

This code creates a transformed data stream. The new data stream has the same data as the
original stream, with the string " Company" appended to the contents of the TICKER field.

DataStream<ObjectNode> output = input.map(
 new MapFunction<ObjectNode, ObjectNode>() {
 @Override
 public ObjectNode map(ObjectNode value) throws Exception {
 return value.put("TICKER", value.get("TICKER").asText() + " Company");
 }
 }
);

Operators 34

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/operators/asyncio/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/operators/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use aggregation operators

The following is an example of an aggregation operator. The code creates an aggregated data
stream. The operator creates a 5-second tumbling window and returns the sum of the PRICE
values for the records in the window with the same TICKER value.

DataStream<ObjectNode> output = input.keyBy(node -> node.get("TICKER").asText())
 .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
 .reduce((node1, node2) -> {
 double priceTotal = node1.get("PRICE").asDouble() +
 node2.get("PRICE").asDouble();
 node1.replace("PRICE", JsonNodeFactory.instance.numberNode(priceTotal));
 return node1;
});

For more code examples, see Examples for creating and working with Managed Service for Apache
Flink applications.

Track events in Managed Service for Apache Flink using the DataStream
API

Managed Service for Apache Flink tracks events using the following timestamps:

• Processing Time: Refers to the system time of the machine that is executing the respective
operation.

• Event Time: Refers to the time that each individual event occurred on its producing device.

• Ingestion Time: Refers to the time that events enter the Managed Service for Apache Flink
service.

You set the time used by the streaming environment using setStreamTimeCharacteristic.

env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

For more information about timestamps, see Generating Watermarks in the Apache Flink
documentation.

Event tracking 35

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/event-time/generating_watermarks/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Review Table API components

Your Apache Flink application uses the Apache Flink Table API to interact with data in a stream
using a relational model. You use the Table API to access data using Table sources, and then use
Table functions to transform and filter table data. You can transform and filter tabular data using
either API functions or SQL commands.

This section contains the following topics:

• Table API connectors: These components move data between your application and external data
sources and destinations.

• Table API time attributes: This topic describes how Managed Service for Apache Flink tracks
events when using the Table API.

Table API connectors

In the Apache Flink programming model, connectors are components that your application uses to
read or write data from external sources, such as other AWS services.

With the Apache Flink Table API, you can use the following types of connectors:

• Table API sources: You use Table API source connectors to create tables within your
TableEnvironment using either API calls or SQL queries.

• Table API sinks: You use SQL commands to write table data to external sources such as an
Amazon MSK topic or an Amazon S3 bucket.

Table API sources

You create a table source from a data stream. The following code creates a table from an Amazon
MSK topic:

//create the table
 final FlinkKafkaConsumer<StockRecord> consumer = new
 FlinkKafkaConsumer<StockRecord>(kafkaTopic, new KafkaEventDeserializationSchema(),
 kafkaProperties);
 consumer.setStartFromEarliest();
 //Obtain stream
 DataStream<StockRecord> events = env.addSource(consumer);

Table API components 36

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/tableapi/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 Table table = streamTableEnvironment.fromDataStream(events);

For more information about table sources, see Table & SQL Connectors in the Apache Flink
Documentation.

Table API sinks

To write table data to a sink, you create the sink in SQL, and then run the SQL-based sink on the
StreamTableEnvironment object.

The following code example demonstrates how to write table data to an Amazon S3 sink:

final String s3Sink = "CREATE TABLE sink_table (" +
 "event_time TIMESTAMP," +
 "ticker STRING," +
 "price DOUBLE," +
 "dt STRING," +
 "hr STRING" +
 ")" +
 " PARTITIONED BY (ticker,dt,hr)" +
 " WITH" +
 "(" +
 " 'connector' = 'filesystem'," +
 " 'path' = '" + s3Path + "'," +
 " 'format' = 'json'" +
 ") ";

 //send to s3
 streamTableEnvironment.executeSql(s3Sink);
 filteredTable.executeInsert("sink_table");

You can use the format parameter to control what format Managed Service for Apache Flink uses
to write the output to the sink. For information about formats, see Supported Connectors in the
Apache Flink Documentation.

User-defined sources and sinks

You can use existing Apache Kafka connectors for sending data to and from other AWS services,
such as Amazon MSK and Amazon S3. For interacting with other data sources and destinations, you
can define your own sources and sinks. For more information, see User-defined Sources and Sinks
in the Apache Flink Documentation.

Table API connectors 37

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sourcessinks/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table API time attributes

Each record in a data stream has several timestamps that define when events related to the record
occurred:

• Event Time: A user-defined timestamp that defines when the event that created the record
occurred.

• Ingestion Time: The time when your application retrieved the record from the data stream.

• Processing Time: The time when your application processed the record.

When the Apache Flink Table API creates windows based on record times, you define which of
these timestamps it uses by using the setStreamTimeCharacteristic method.

For more information about using timestamps with the Table API, see Time Attributes and Timely
Stream Processing in the Apache Flink Documentation.

Use Python with Managed Service for Apache Flink

Note

If you are developing Python Flink application on a new Mac with Apple Silicon chip, you
may encounter some known issues with Python dependencies of PyFlink 1.15. In this case
we recommend running the Python interpreter in Docker. For step-by-step instructions, see
PyFlink 1.15 development on Apple Silicon Mac.

Apache Flink version 1.20 includes support for creating applications using Python version 3.11.
For more information, see Flink Python Docs. You create a Managed Service for Apache Flink
application using Python by doing the following:

• Create your Python application code as a text file with a main method.

• Bundle your application code file and any Python or Java dependencies into a zip file, and upload
it to an Amazon S3 bucket.

• Create your Managed Service for Apache Flink application, specifying your Amazon S3 code
location, application properties, and application settings.

Table API time attributes 38

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/concepts/time_attributes/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/time/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/time/
https://issues.apache.org/jira/browse/FLINK-26981
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/LocalDevelopmentOnAppleSilicon
https://nightlies.apache.org/flink/flink-docs-release-1.20/api/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

At a high level, the Python Table API is a wrapper around the Java Table API. For information about
the Python Table API, see the Table API Tutorial in the Apache Flink Documentation.

Program your Managed Service for Apache Flink Python application

You code your Managed Service for Apache Flink for Python application using the Apache Flink
Python Table API. The Apache Flink engine translates Python Table API statements (running in the
Python VM) into Java Table API statements (running in the Java VM).

You use the Python Table API by doing the following:

• Create a reference to the StreamTableEnvironment.

• Create table objects from your source streaming data by executing queries on the
StreamTableEnvironment reference.

• Execute queries on your table objects to create output tables.

• Write your output tables to your destinations using a StatementSet.

To get started using the Python Table API in Managed Service for Apache Flink, see Get started
with Amazon Managed Service for Apache Flink for Python.

Read and write streaming data

To read and write streaming data, you execute SQL queries on the table environment.

Create a table

The following code example demonstrates a user-defined function that creates a SQL query. The
SQL query creates a table that interacts with a Kinesis stream:

def create_table(table_name, stream_name, region, stream_initpos):
 return """ CREATE TABLE {0} (
 `record_id` VARCHAR(64) NOT NULL,
 `event_time` BIGINT NOT NULL,
 `record_number` BIGINT NOT NULL,
 `num_retries` BIGINT NOT NULL,
 `verified` BOOLEAN NOT NULL
)
 PARTITIONED BY (record_id)
 WITH (
 'connector' = 'kinesis',

Program your Python application 39

https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/python/table_api_tutorial/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 'stream' = '{1}',
 'aws.region' = '{2}',
 'scan.stream.initpos' = '{3}',
 'sink.partitioner-field-delimiter' = ';',
 'sink.producer.collection-max-count' = '100',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
) """.format(table_name, stream_name, region, stream_initpos)

Read streaming data

The following code example demonstrates how to use preceding CreateTableSQL query on a
table environment reference to read data:

 table_env.execute_sql(create_table(input_table, input_stream, input_region,
 stream_initpos))

Write streaming data

The following code example demonstrates how to use the SQL query from the CreateTable
example to create an output table reference, and how to use a StatementSet to interact with the
tables to write data to a destination Kinesis stream:

 table_result = table_env.execute_sql("INSERT INTO {0} SELECT * FROM {1}"
 .format(output_table_name, input_table_name))

Read runtime properties

You can use runtime properties to configure your application without changing your application
code.

You specify application properties for your application the same way as with a Managed Service for
Apache Flink for Java application. You can specify runtime properties in the following ways:

• Using the CreateApplication action.

• Using the UpdateApplication action.

• Configuring your application by using the console.

You retrieve application properties in code by reading a json file called
application_properties.json that the Managed Service for Apache Flink runtime creates.

Program your Python application 40

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The following code example demonstrates reading application properties from the
application_properties.json file:

file_path = '/etc/flink/application_properties.json'
 if os.path.isfile(file_path):
 with open(file_path, 'r') as file:
 contents = file.read()
 properties = json.loads(contents)

The following user-defined function code example demonstrates reading a property group from
the application properties object: retrieves:

def property_map(properties, property_group_id):
 for prop in props:
 if prop["PropertyGroupId"] == property_group_id:
 return prop["PropertyMap"]

The following code example demonstrates reading a property called INPUT_STREAM_KEY from a
property group that the previous example returns:

input_stream = input_property_map[INPUT_STREAM_KEY]

Create your application's code package

Once you have created your Python application, you bundle your code file and dependencies into a
zip file.

Your zip file must contain a python script with a main method, and can optionally contain the
following:

• Additional Python code files

• User-defined Java code in JAR files

• Java libraries in JAR files

Note

Your application zip file must contain all of the dependencies for your application. You can't
reference libraries from other sources for your application.

Program your Python application 41

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create your Managed Service for Apache Flink Python application

Specify your code files

Once you have created your application's code package, you upload it to an Amazon S3 bucket. You
then create your application using either the console or the CreateApplication action.

When you create your application using the CreateApplication action, you specify the
code files and archives in your zip file using a special application property group called
kinesis.analytics.flink.run.options. You can define the following types files:

• python: A text file containing a Python main method.

• jarfile: A Java JAR file containing Java user-defined functions.

• pyFiles: A Python resource file containing resources to be used by the application.

• pyArchives: A zip file containing resource files for the application.

For more information about Apache Flink Python code file types, see Command-Line Interface in
the Apache Flink Documentation.

Note

Managed Service for Apache Flink does not support the pyModule, pyExecutable, or
pyRequirements file types. All of the code, requirements, and dependencies must be in
your zip file. You can't specify dependencies to be installed using pip.

The following example json snippet demonstrates how to specify file locations within your
application's zip file:

"ApplicationConfiguration": {
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "kinesis.analytics.flink.run.options",
 "PropertyMap": {
 "python": "MyApplication/main.py",
 "jarfile": "MyApplication/lib/myJarFile.jar",
 "pyFiles": "MyApplication/lib/myDependentFile.py",

Create your Python application 42

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/deployment/cli/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "pyArchives": "MyApplication/lib/myArchive.zip"
 }
 },

Monitor your Managed Service for Apache Flink Python application

You use your application's CloudWatch log to monitor your Managed Service for Apache Flink
Python application.

Managed Service for Apache Flink logs the following messages for Python applications:

• Messages written to the console using print() in the application's main method.

• Messages sent in user-defined functions using the logging package. The following code
example demonstrates writing to the application log from a user-defined function:

import logging

@udf(input_types=[DataTypes.BIGINT()], result_type=DataTypes.BIGINT())
def doNothingUdf(i):
 logging.info("Got {} in the doNothingUdf".format(str(i)))
 return i

• Error messages thrown by the application.

If the application throws an exception in the main function, it will appear in your application's
logs.

The following example demonstrates a log entry for an exception thrown from Python code:

2021-03-15 16:21:20.000 --------------------------- Python Process Started

2021-03-15 16:21:21.000 Traceback (most recent call last):
2021-03-15 16:21:21.000 " File ""/tmp/flink-
web-6118109b-1cd2-439c-9dcd-218874197fa9/flink-web-upload/4390b233-75cb-4205-
a532-441a2de83db3_code/PythonKinesisSink/PythonUdfUndeclared.py"", line 101, in
 <module>"
2021-03-15 16:21:21.000 main()
2021-03-15 16:21:21.000 " File ""/tmp/flink-
web-6118109b-1cd2-439c-9dcd-218874197fa9/flink-web-upload/4390b233-75cb-4205-
a532-441a2de83db3_code/PythonKinesisSink/PythonUdfUndeclared.py"", line 54, in main"
2021-03-15 16:21:21.000 " table_env.register_function(""doNothingUdf"",
 doNothingUdf)"

Monitor your Python application 43

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2021-03-15 16:21:21.000 NameError: name 'doNothingUdf' is not defined
2021-03-15 16:21:21.000 --------------------------- Python Process Exited

2021-03-15 16:21:21.000 Run python process failed
2021-03-15 16:21:21.000 Error occurred when trying to start the job

Note

Due to performance issues, we recommend that you only use custom log messages during
application development.

Query logs with CloudWatch Insights

The following CloudWatch Insights query searches for logs created by the Python entrypoint while
executing the main function of your application:

fields @timestamp, message
| sort @timestamp asc
| filter logger like /PythonDriver/
| limit 1000

Use runtime properties in Managed Service for Apache Flink

You can use runtime properties to configure your application without recompiling your application
code.

This topic contains the following sections:

• Manage runtime properties using the console

• Manage runtime properties using the CLI

• Access runtime properties in a Managed Service for Apache Flink application

Manage runtime properties using the console

You can add, update, or remove runtime properties from your Managed Service for Apache Flink
application using the AWS Management Console.

Use runtime properties 44

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

If you are using an earlier supported version of Apache Flink and want to upgrade your
existing applications to Apache Flink 1.19.1, you can do so using in-place Apache Flink
version upgrades. With in-place version upgrades, you retain application traceability
against a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags,
Flink configurations, and more. You can use this feature in RUNNING and READY state. For
more information, see Use in-place version upgrades for Apache Flink.

Update Runtime Properties for a Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Choose your Managed Service for Apache Flink application. Choose Application details.

3. On the page for your application, choose Configure.

4. Expand the Properties section.

5. Use the controls in the Properties section to define a property group with key-value pairs. Use
these controls to add, update, or remove property groups and runtime properties.

6. Choose Update.

Manage runtime properties using the CLI

You can add, update, or remove runtime properties using the AWS CLI.

This section includes example requests for API actions for configuring runtime properties for an
application. For information about how to use a JSON file for input for an API action, see Managed
Service for Apache Flink API example code.

Note

Replace the sample account ID (012345678901) in the examples following with your
account ID.

Manage runtime properties using the CLI 45

https://docs.aws.amazon.com/cli

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add runtime properties when creating an application

The following example request for the CreateApplication action adds two runtime property
groups (ProducerConfigProperties and ConsumerConfigProperties) when you create an
application:

{
 "ApplicationName": "MyApplication",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_19",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "java-getting-started-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

Manage runtime properties using the CLI 46

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add and update runtime properties in an existing application

The following example request for the UpdateApplication action adds or updates runtime
properties for an existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 2,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

Note

If you use a key that has no corresponding runtime property in a property group, Managed
Service for Apache Flink adds the key-value pair as a new property. If you use a key for an
existing runtime property in a property group, Managed Service for Apache Flink updates
the property value.

Manage runtime properties using the CLI 47

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Remove runtime properties

The following example request for the UpdateApplication action removes all runtime
properties and property groups from an existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 3,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": []
 }
 }
}

Important

If you omit an existing property group or an existing property key in a property group, that
property group or property is removed.

Access runtime properties in a Managed Service for Apache Flink
application

You retrieve runtime properties in your Java application code using the static
KinesisAnalyticsRuntime.getApplicationProperties() method, which returns a
Map<String, Properties> object.

The following Java code example retrieves runtime properties for your application:

 Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();

You retrieve a property group (as a Java.Util.Properties object) as follows:

Properties consumerProperties = applicationProperties.get("ConsumerConfigProperties");

You typically configure an Apache Flink source or sink by passing in the Properties object
without needing to retrieve the individual properties. The following code example demonstrates

Access runtime properties in a Managed Service for Apache Flink application 48

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

how to create an Flink source by passing in a Properties object retrieved from runtime
properties:

private static FlinkKinesisProducer<String> createSinkFromApplicationProperties()
 throws IOException {
 Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();
 FlinkKinesisProducer<String> sink = new FlinkKinesisProducer<String>(new
 SimpleStringSchema(),
 applicationProperties.get("ProducerConfigProperties"));

 sink.setDefaultStream(outputStreamName);
 sink.setDefaultPartition("0");
 return sink;
}

For code examples, see Examples for creating and working with Managed Service for Apache Flink
applications.

Use Apache Flink connectors with Managed Service for Apache
Flink

Apache Flink connectors are software components that move data into and out of an Amazon
Managed Service for Apache Flink application. Connectors are flexible integrations that let you
read from files and directories. Connectors consist of complete modules for interacting with
Amazon services and third-party systems.

Types of connectors include the following:

• Sources: Provide data to your application from a Kinesis data stream, file, Apache Kafka topic,
file, or other data sources.

• Sinks: Send data from your application to a Kinesis data stream, Firehose stream, Apache Kafka
topic, or other data destinations.

• Asynchronous I/O: Provides asynchronous access to a data source such as a database to enrich
streams.

Use Apache Flink connectors 49

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink connectors are stored in their own source repositories. The version and artifact
for Apache Flink connectors changes depending on the Apache Flink version you are using, and
whether you are using the DataStream, Table, or SQL API.

Amazon Managed Service for Apache Flink supports over 40 pre-built Apache Flink source and
sink connectors. The following table provides a summary of the most popular connectors and their
associated versions. You can also build custom sinks using the Async-sink framework. For more
information, see The Generic Asynchronous Base Sink in the Apache Flink documentation.

To access the repository for Apache Flink AWS connectors, see flink-connector-aws.

Connectors for Flink versions

Connector Flink version
1.15

Flink version
1.18

Flink versions
1.19

Flink versions
1.20

Kinesis Data
Stream - Source
- DataStream
and Table API

flink-connector-
kinesis, 1.15.4

flink-connector-
kinesis, 4.3.0-1.1
8

flink-connector-
kinesis, 5.0.0-1.1
9

flink-connector-
kinesis, 5.0.0-1.2
0

Kinesis Data
Stream - Sink -
DataStream and
Table API

flink-connector-
aws-kinesis-
streams, 1.15.4

flink-connector-
aws-kinesis
-streams,
4.3.0-1.18

flink-connector-
aws-kinesis
-streams,
5.0.0-1.19

flink-connector-
aws-kinesis
-streams,
5.0.0-1.20

Kinesis Data
Streams -
Source/Sink -
SQL

flink-sql-
connector-
kinesis, 1.15.4

flink-sql-
connector-
kinesis, 4.3.0-1.1
8

flink-sql-
connector-
kinesis, 5.0.0-1.1
9

flink-sql-
connector-
kinesis-streams,
5.0.0-1.20

Kafka -
DataStream and
Table API

flink-connector-
kafka, 1.15.4

flink-connector-
kafka, 3.2.0-1.18

flink-connector-
kafka, 3.3.0-1.19

flink-connector-
kafka, 3.3.0-1.20

Kafka - SQL flink-sql-
connector-kafka,
1.15.4

flink-sql-
connector-kafka,
3.2.0-1.18

flink-sql-
connector-kafka,
3.3.0-1.19

flink-sql-
connector-kafka,
3.3.0-1.20

Use Apache Flink connectors 50

https://flink.apache.org/2022/03/16/the-generic-asynchronous-base-sink/
https://github.com/apache/flink-connector-aws

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Connector Flink version
1.15

Flink version
1.18

Flink versions
1.19

Flink versions
1.20

Firehose -
DataStream and
Table API

flink-connector-
aws-kinesis-
firehose, 1.15.4

flink-connector-
aws-firehose,
4.3.0-1.18

flink-connector-
aws-firehose,
5.0.0-1.19

flink-connector-
aws-firehose,
5.0.0-1.20

Firehose - SQL flink-sql-
connector-aws-
kinesis-firehose,
1.15.4

flink-sql-
connector-
aws-firehose,
4.3.0-1.18

flink-sql-
connector-
aws-firehose,
5.0.0-1.19

flink-sql-
connector-
aws-firehose,
5.0.0-1.20

DynamoDB -
DataStream and
Table API

flink-connector-
dynamodb,
3.0.0-1.15

flink-connector-
dynamodb,
4.3.0-1.18

flink-connector-
dynamodb,
5.0.0-1.19

flink-connector-
dynamodb,
5.0.0-1.20

DynamoDB -
SQL

flink-sql-
connector-
dynamodb,
3.0.0-1.15

flink-sql-
connector-
dynamodb,
4.3.0-1.18

flink-sql-
connector-
dynamodb,
5.0.0-1.19

flink-sql-
connector-
dynamodb,
5.0.0-1.20

OpenSearch -
DataStream and
Table API

- flink-connector-
opensearch,
1.2.0-1.18

flink-connector-
opensearch,
1.2.0-1.19

flink-connector-
opensearch,
1.2.0-1.19

OpenSearch -
SQL

- flink-sql-
connector-
opensearch,
1.2.0-1.18

flink-sql-
connector-
opensearch,
1.2.0-1.19

flink-sql-
connector-
opensearch,
1.2.0-1.19

Amazon
Managed Service
for Prometheus
DataStream

- flink-sql-
connector-
opensearch,
1.2.0-1.18

flink-connector-
prometheus,
1.0.0-1.19

flink-connector-
prometheus,
1.0.0-1.20

Use Apache Flink connectors 51

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Connector Flink version
1.15

Flink version
1.18

Flink versions
1.19

Flink versions
1.20

Amazon SQS
DataStream and
Table API

- flink-sql-
connector-
opensearch,
1.2.0-1.18

flink-connector-
sqs, 5.0.0-1.19

flink-connector-
sqs, 5.0.0-1.20

To learn more about connectors in Amazon Managed Service for Apache Flink, see:

• DataStream API connectors

• Table API connectors

Known issues

There is a known open source Apache Flink issue with the Apache Kafka connector in Apache Flink
1.15. This issue is resolved in later versions of Apache Flink.

For more information, see the section called “Known issues”.

Implement fault tolerance in Managed Service for Apache Flink

Checkpointing is the method that is used for implementing fault tolerance in Amazon Managed
Service for Apache Flink. A checkpoint is an up-to-date backup of a running application that is used
to recover immediately from an unexpected application disruption or failover.

For details on checkpointing in Apache Flink applications, see Checkpoints in the Apache Flink
Documentation.

A snapshot is a manually created and managed backup of application state. Snapshots let you
restore your application to a previous state by calling UpdateApplication. For more information,
see Manage application backups using snapshots.

If checkpointing is enabled for your application, then the service provides fault tolerance by
creating and loading backups of application data in the event of unexpected application restarts.
These unexpected application restarts could be caused by unexpected job restarts, instance
failures, etc. This gives the application the same semantics as failure-free execution during these
restarts.

Known issues 52

https://docs.aws.amazon.com/managed-flink/latest/java/how-connectors.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-table-connectors.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/state/checkpoints/
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

If snapshots are enabled for the application, and configured using the application's
ApplicationRestoreConfiguration, then the service provides exactly-once processing semantics
during application updates, or during service-related scaling or maintenance.

Configure checkpointing in Managed Service for Apache Flink

You can configure your application's checkpointing behavior. You can define whether it persists the
checkpointing state, how often it saves its state to checkpoints, and the minimum interval between
the end of one checkpoint operation and the beginning of another.

You configure the following settings using the CreateApplication or UpdateApplication API
operations:

• CheckpointingEnabled — Indicates whether checkpointing is enabled in the application.

• CheckpointInterval — Contains the time in milliseconds between checkpoint (persistence)
operations.

• ConfigurationType — Set this value to DEFAULT to use the default checkpointing behavior.
Set this value to CUSTOM to configure other values.

Note

The default checkpoint behavior is as follows:

• CheckpointingEnabled: true

• CheckpointInterval: 60000

• MinPauseBetweenCheckpoints: 5000
If ConfigurationType is set to DEFAULT, the preceding values will be used, even if they
are set to other values using either using the AWS Command Line Interface, or by setting
the values in the application code.

Note

For Flink 1.15 onward, Managed Service for Apache Flink will use stop-with-
savepoint during Automatic Snapshot Creation, that is, application update, scaling or
stopping.

Configure checkpointing in Managed Service for Apache Flink 53

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ApplicationRestoreConfiguration.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• MinPauseBetweenCheckpoints — The minimum time in milliseconds between the
end of one checkpoint operation and the start of another. Setting this value prevents the
application from checkpointing continuously when a checkpoint operation takes longer than the
CheckpointInterval.

Review checkpointing API examples

This section includes example requests for API actions for configuring checkpointing for an
application. For information about how to use a JSON file for input for an API action, see Managed
Service for Apache Flink API example code.

Configure checkpointing for a new application

The following example request for the CreateApplication action configures checkpointing
when you are creating an application:

{
 "ApplicationName": "MyApplication",
 "RuntimeEnvironment":"FLINK-1_19",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "FlinkApplicationConfiguration": {
 "CheckpointConfiguration": {
 "CheckpointingEnabled": "true",
 "CheckpointInterval": 20000,
 "ConfigurationType": "CUSTOM",
 "MinPauseBetweenCheckpoints": 10000
 }
 }
}

Review checkpointing API examples 54

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Disable checkpointing for a new application

The following example request for the CreateApplication action disables checkpointing when
you are creating an application:

{
 "ApplicationName": "MyApplication",
 "RuntimeEnvironment":"FLINK-1_19",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "FlinkApplicationConfiguration": {
 "CheckpointConfiguration": {
 "CheckpointingEnabled": "false"
 }
 }
}

Configure checkpointing for an existing application

The following example request for the UpdateApplication action configures checkpointing for
an existing application:

{
 "ApplicationName": "MyApplication",
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "CheckpointConfigurationUpdate": {
 "CheckpointingEnabledUpdate": true,
 "CheckpointIntervalUpdate": 20000,
 "ConfigurationTypeUpdate": "CUSTOM",
 "MinPauseBetweenCheckpointsUpdate": 10000
 }
 }
 }

Review checkpointing API examples 55

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

Disable checkpointing for an existing application

The following example request for the UpdateApplication action disables checkpointing for an
existing application:

{
 "ApplicationName": "MyApplication",
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "CheckpointConfigurationUpdate": {
 "CheckpointingEnabledUpdate": false,
 "CheckpointIntervalUpdate": 20000,
 "ConfigurationTypeUpdate": "CUSTOM",
 "MinPauseBetweenCheckpointsUpdate": 10000
 }
 }
 }
}

Manage application backups using snapshots

A snapshot is the Managed Service for Apache Flink implementation of an Apache Flink Savepoint.
A snapshot is a user- or service-triggered, created, and managed backup of the application state.
For information about Apache Flink Savepoints, see Savepoints in the Apache Flink Documentation.
Using snapshots, you can restart an application from a particular snapshot of the application state.

Note

We recommend that your application create a snapshot several times a day to restart
properly with correct state data. The correct frequency for your snapshots depends on your
application's business logic. Taking frequent snapshots lets you recover more recent data,
but increases cost and requires more system resources.

In Managed Service for Apache Flink, you manage snapshots using the following API actions:

• CreateApplicationSnapshot

• DeleteApplicationSnapshot

Manage application backups using snapshots 56

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/state/savepoints/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplicationSnapshot.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• DescribeApplicationSnapshot

• ListApplicationSnapshots

For the per-application limit on the number of snapshots, see Managed Service for Apache Flink
and Studio notebook quota. If your application reaches the limit on snapshots, then manually
creating a snapshot fails with a LimitExceededException.

Managed Service for Apache Flink never deletes snapshots. You must manually delete your
snapshots using the DeleteApplicationSnapshot action.

To load a saved snapshot of application state when starting an application, use the
ApplicationRestoreConfiguration parameter of the StartApplication or
UpdateApplication action.

This topic contains the following sections:

• Manage automatic snapshot creation

• Restore from a snapshot that contains incompatible state data

• Review snapshot API examples

Manage automatic snapshot creation

If SnapshotsEnabled is set to true in the ApplicationSnapshotConfiguration for the application,
Managed Service for Apache Flink automatically creates and uses snapshots when the application
is updated, scaled, or stopped to provide exactly-once processing semantics.

Note

Setting ApplicationSnapshotConfiguration::SnapshotsEnabled to false will
lead to data loss during application updates.

Note

Managed Service for Apache Flink triggers intermediate savepoints during snapshot
creation. For Flink version 1.15 or greater, intermediate savepoints no longer commit any
side effects. See Triggering savepoints.

Manage automatic snapshot creation 57

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplicationSnapshot.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ApplicationRestoreConfiguration.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ApplicationSnapshotConfiguration.html
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#triggering-savepoints

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Automatically created snapshots have the following qualities:

• The snapshot is managed by the service, but you can see the snapshot using the
ListApplicationSnapshots action. Automatically created snapshots count against your snapshot
limit.

• If your application exceeds the snapshot limit, manually created snapshots will fail, but the
Managed Service for Apache Flink service will still successfully create snapshots when the
application is updated, scaled, or stopped. You must manually delete snapshots using the
DeleteApplicationSnapshot action before creating more snapshots manually.

Restore from a snapshot that contains incompatible state data

Because snapshots contain information about operators, restoring state data from a snapshot
for an operator that has changed since the previous application version may have unexpected
results. An application will fault if it attempts to restore state data from a snapshot that does not
correspond to the current operator. The faulted application will be stuck in either the STOPPING or
UPDATING state.

To allow an application to restore from a snapshot that contains incompatible state data, set
the AllowNonRestoredState parameter of the FlinkRunConfiguration to true using the
UpdateApplication action.

You will see the following behavior when an application is restored from an obsolete snapshot:

• Operator added: If a new operator is added, the savepoint has no state data for the new
operator. No fault will occur, and it is not necessary to set AllowNonRestoredState.

• Operator deleted: If an existing operator is deleted, the savepoint has state data for the missing
operator. A fault will occur unless AllowNonRestoredState is set to true.

• Operator modified: If compatible changes are made, such as changing a parameter's type to a
compatible type, the application can restore from the obsolete snapshot. For more information
about restoring from snapshots, see Savepoints in the Apache Flink Documentation. An
application that uses Apache Flink version 1.8 or later can possibly be restored from a snapshot
with a different schema. An application that uses Apache Flink version 1.6 cannot be restored.
For two-phase-commit sinks, we recommend using system snapshot (SwS) instead of user-
created snapshot (CreateApplicationSnapshot).

Restore from a snapshot that contains incompatible state data 58

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_FlinkRunConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/state/savepoints/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For Flink, Managed Service for Apache Flink triggers intermediate savepoints during snapshot
creation. For Flink 1.15 onward, intermediate savepoints no longer commit any side effects. See
Triggering Savepoints.

If you need to resume an application that is incompatible with existing savepoint data, we
recommend that you skip restoring from the snapshot by setting the ApplicationRestoreType
parameter of the StartApplication action to SKIP_RESTORE_FROM_SNAPSHOT.

For more information about how Apache Flink deals with incompatible state data, see State
Schema Evolution in the Apache Flink Documentation.

Review snapshot API examples

This section includes example requests for API actions for using snapshots with an application.
For information about how to use a JSON file for input for an API action, see Managed Service for
Apache Flink API example code.

Enable snapshots for an application

The following example request for the UpdateApplication action enables snapshots for an
application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationSnapshotConfigurationUpdate": {
 "SnapshotsEnabledUpdate": "true"
 }
 }
}

Create a snapshot

The following example request for the CreateApplicationSnapshot action creates a snapshot
of the current application state:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MyCustomSnapshot"

Review snapshot API examples 59

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#triggering-savepoints
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/schema_evolution/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/schema_evolution/
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

List snapshots for an application

The following example request for the ListApplicationSnapshots action lists the first 50
snapshots for the current application state:

{
 "ApplicationName": "MyApplication",
 "Limit": 50
}

List details for an application snapshot

The following example request for the DescribeApplicationSnapshot action lists details for a
specific application snapshot:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MyCustomSnapshot"
}

Delete a snapshot

The following example request for the DeleteApplicationSnapshot action deletes a
previously saved snapshot. You can get the SnapshotCreationTimestamp value using either
ListApplicationSnapshots or DeleteApplicationSnapshot:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MyCustomSnapshot",
 "SnapshotCreationTimestamp": 12345678901.0,
}

Restart an application using a named snapshot

The following example request for the StartApplication action starts the application using the
saved state from a specific snapshot:

{
 "ApplicationName": "MyApplication",

Review snapshot API examples 60

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_CUSTOM_SNAPSHOT",
 "SnapshotName": "MyCustomSnapshot"
 }
 }
}

Restart an application using the most recent snapshot

The following example request for the StartApplication action starts the application using the
most recent snapshot:

{
 "ApplicationName": "MyApplication",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

Restart an application using no snapshot

The following example request for the StartApplication action starts the application without
loading application state, even if a snapshot is present:

{
 "ApplicationName": "MyApplication",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "SKIP_RESTORE_FROM_SNAPSHOT"
 }
 }
}

Use in-place version upgrades for Apache Flink

With in-place version upgrades for Apache Flink, you retain application traceability against a single
ARN across Apache Flink versions. This includes snapshots, logs, metrics, tags, Flink configurations,
resource limit increases, VPCs, and more.

Use in-place version upgrades for Apache Flink 61

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can perform in-place version upgrades for Apache Flink to upgrade existing applications to a
new Flink version in Amazon Managed Service for Apache Flink. To perform this task, you can use
the AWS CLI, AWS CloudFormation, AWS SDK, or the AWS Management Console.

Note

You can't use in-place version upgrades for Apache Flink with Amazon Managed Service for
Apache Flink Studio.

This topic contains the following sections:

• Upgrade applications using in-place version upgrades for Apache Flink

• Upgrade your application to a new Apache Flink version

• Roll back application upgrades

• General best practices and recommendations for application upgrades

• Precautions and known issues with application upgrades

Upgrade applications using in-place version upgrades for Apache Flink

Before you begin, we recommend that you watch this video: In-Place Version Upgrades.

To perform in-place version upgrades for Apache Flink, you can use the AWS CLI, AWS
CloudFormation, AWS SDK, or the AWS Management Console. You can use this feature with any
existing applications that you use with Managed Service for Apache Flink in a READY or RUNNING
state. It uses the UpdateApplication API to add the ability to change the Flink runtime.

Before upgrading: Update your Apache Flink application

When you write your Flink applications, you bundle them with their dependencies into an
application JAR and upload the JAR to your Amazon S3 bucket. From there, Amazon Managed
Service for Apache Flink runs the job in the new Flink runtime that you've selected. You might have
to update your applications to achieve compatibility with the Flink runtime you want to upgrade
to. There can be inconsistencies between Flink versions that cause the version upgrade to fail. Most
commonly, this will be with connectors for sources (ingress) or destinations (sinks, egress) and
Scala dependencies. Flink 1.15 and later versions in Managed Service for Apache Flink are Scala-
agnostic, and your JAR must contain the version of Scala you plan to use.

To update your application

Upgrade applications 62

https://www.youtube.com/watch?v=f1qGGdaP2XI

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Read the advice from the Flink community on upgrading applications with state. See
Upgrading Applications and Flink Versions.

2. Read the list of knowing issues and limitations. See Precautions and known issues with
application upgrades.

3. Update your dependencies and test your applications locally. These dependencies typically are:

1. The Flink runtime and API.

2. Connectors recommended for the new Flink runtime. You can find these on Release versions
for the specific runtime you want to update to.

3. Scala – Apache Flink is Scala-agnostic starting with and including Flink 1.15. You must
include the Scala dependencies you want to use in your application JAR.

4. Build a new application JAR on zipfile and upload it to Amazon S3. We recommend that you
use a different name from the previous JAR/zipfile. If you need to roll back, you will use this
information.

5. If you are running stateful applications, we strongly recommend that you take a snapshot of
your current application. This lets you roll back statefully if you encounter issues during or
after the upgrade.

Upgrade your application to a new Apache Flink version

You can upgrade your Flink application by using the UpdateApplication action.

You can call the UpdateApplication API in multiple ways:

• Use the existing Configuration workflow on the AWS Management Console.

• Go to your app page on the AWS Management Console.

• Choose Configure.

• Select the new runtime and the snapshot that you want to start from, also known as restore
configuration. Use the latest setting as the restore configuration to start the app from the
latest snapshot. Point to the new upgraded application JAR/zip on Amazon S3.

• Use the AWS CLI update-application action.

• Use AWS CloudFormation (CFN).

• Update the RuntimeEnvironment field. Previously, AWS CloudFormation deleted the
application and created a new one, causing your snapshots and other app history to be lost.

Upgrade to a new version 63

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://docs.aws.amazon.com/managed-flink/latest/java/release-version-list.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kinesisanalyticsv2/update-application.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisanalyticsv2-application.html#cfn-kinesisanalyticsv2-application-runtimeenvironment

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Now AWS CloudFormation updates your RuntimeEnvironment in place and does not delete
your application.

• Use the AWS SDK.

• Consult the SDK documentation for the programming language of your choice. See
UpdateApplication.

You can perform the upgrade while the application is in RUNNING state or while the application
is stopped in READY state. Amazon Managed Service for Apache Flink validates to verify
the compatibility between the original runtime version and the target runtime version. This
compatibility check runs when you perform UpdateApplication while in RUNNING state or at the
next StartApplication if you upgrade while in READY state.

Upgrade an application in RUNNING state

The following example shows upgrading an app in RUNNING state named UpgradeTest to Flink
1.18 in US East (N. Virginia) using the AWS CLI and starting the upgraded app from the latest
snapshot.

aws --region us-east-1 kinesisanalyticsv2 update-application \
--application-name UpgradeTest --runtime-environment-update "FLINK-1_18" \
--application-configuration-update '{"ApplicationCodeConfigurationUpdate": '\
'{"CodeContentUpdate": {"S3ContentLocationUpdate": '\
'{"FileKeyUpdate": "flink_1_18_app.jar"}}}}' \
 --run-configuration-update '{"ApplicationRestoreConfiguration": '\
 '{"ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"}}' \
 --current-application-version-id ${current_application_version}

• If you enabled service snapshots and want to continue the application from the latest snapshot,
Amazon Managed Service for Apache Flink verifies that the current RUNNING application's
runtime is compatible with the selected target runtime.

• If you have specified a snapshot from which to continue the target runtime, Amazon Managed
Service for Apache Flink verifies that the target runtime is compatible with the specified
snapshot. If the compatibility check fails, your update request is rejected and your application
remains untouched in the RUNNING state.

Upgrade to a new version 64

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• If you choose to start your application without a snapshot, Amazon Managed Service for Apache
Flink doesn't run any compatibility checks.

• If your upgraded application fails or gets stuck in a transitive UPDATING state, follow the
instructions in the Roll back application upgrades section to return to the healthy state.

Process flow for running state applications

Upgrade to a new version 65

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrade to a new version 66

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrade an application in READY state

The following example shows upgrading an app in READY state named UpgradeTest to Flink 1.18
in US East (N. Virginia) using the AWS CLI. There is no specified snapshot to start the app because
the application is not running. You can specify a snapshot when you issue the start application
request.

aws --region us-east-1 kinesisanalyticsv2 update-application \
--application-name UpgradeTest --runtime-environment-update "FLINK-1_18" \
--application-configuration-update '{"ApplicationCodeConfigurationUpdate": '\
'{"CodeContentUpdate": {"S3ContentLocationUpdate": '\
'{"FileKeyUpdate": "flink_1_18_app.jar"}}}}' \
 --current-application-version-id ${current_application_version}

• You can update the runtime of your applications in READY state to any Flink version. Amazon
Managed Service for Apache Flink does not run any checks until you start your application.

• Amazon Managed Service for Apache Flink only runs compatibility checks against the snapshot
you selected to start the app. These are basic compatibility checks following the Flink
Compatibility Table. They only check the Flink version with which the snapshot was taken and
the Flink version you are targeting. If the Flink runtime of the selected snapshot is incompatible
with the app's new runtime, the start request might be rejected.

Process flow for ready state applications

Upgrade to a new version 67

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/#compatibility-table
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/#compatibility-table

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrade to a new version 68

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Roll back application upgrades

If you have issues with your application or find inconsistencies in your application code between
Flink versions, you can roll back using the AWS CLI, AWS CloudFormation, AWS SDK, or the AWS
Management Console. The following examples show what rolling back looks like in different failure
scenarios.

Runtime upgrade succeeded, the application is in RUNNING state, but the job is
failing and continuously restarting

Assume you are trying to upgrade a stateful application named TestApplication from Flink
1.15 to Flink 1.18 in US East (N. Virginia). However, the upgraded Flink 1.18 application is failing to
start or is constantly restarting, even though the application is in RUNNING state. This is a common
failure scenario. To avoid further downtime, we recommend that you roll back your application
immediately to the previous running version (Flink 1.15), and diagnose the issue later.

To roll back the application to the previous running version, use the rollback-application AWS CLI
command or the RollbackApplication API action. This API action rolls back the changes you've
made that resulted in the latest version. Then it restarts your application using the latest successful
snapshot.

We strongly recommend that you take a snapshot with your existing app before you attempt to
upgrade. This will help to avoid data loss or having to reprocess data.

In this failure scenario, AWS CloudFormation will not roll back the application for you. You must
update the CloudFormation template to point to the previous runtime and to the previous code
to force CloudFormation to update the application. Otherwise, CloudFormation assumes that your
application has been updated when it transitions to the RUNNING state.

Rolling back an application that is stuck in UPDATING

If your application gets stuck in the UPDATING or AUTOSCALING state after an upgrade attempt,
Amazon Managed Service for Apache Flink offers the rollback-applications AWS CLI command, or
the RollbackApplications API action that can roll back the application to the version before the
stuck UPDATING or AUTOSCALING state. This API rolls back the changes that you’ve made that
caused the application to get stuck in UPDATING or AUTOSCALING transitive state.

Roll back application upgrades 69

https://docs.aws.amazon.com/cli/latest/reference/kinesisanalyticsv2/rollback-application.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_RollbackApplication.html
https://docs.aws.amazon.com/cli/latest/reference/kinesisanalyticsv2/rollback-application.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_RollbackApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

General best practices and recommendations for application upgrades

• Test the new job/runtime without state on a non-production environment before attempting a
production upgrade.

• Consider testing the stateful upgrade with a non-production application first.

• Make sure that your new job graph has a compatible state with the snapshot you will be using to
start your upgraded application.

• Make sure that the types stored in operator states stay the same. If the type has changed,
Apache Flink can't restore the operator state.

• Make sure that the Operator IDs you set using the uid method remain the same. Apache Flink
has a strong recommendation for assigning unique IDs to operators. For more information, see
Assigning Operator IDs in the Apache Flink documentation.

If you don't assign IDs to your operators, Flink automatically generates them. In that case, they
might depend on the program structure and, if changed, can cause compatibility issues. Flink
uses Operator IDs to match state in snapshot to operator. Changing Operator IDs results in the
application not starting, or state stored in the snapshot being dropped, and the new operator
starting without state.

• Don't change the key used to store the keyed state.

• Don't modify the input type of stateful operators like window or join. This implicitly changes
the type of the internal state of the operator, causing a state incompatibility.

Precautions and known issues with application upgrades

Kafka Commit on checkpointing fails repeatedly after a broker restart

There is a known open source Apache Flink issue with the Apache Kafka connector in Flink version
1.15 caused by a critical open source Kafka Client bug in Kafka Client 2.8.1. For more information,
see Kafka Commit on checkpointing fails repeatedly after a broker restart and KafkaConsumer is
unable to recover connection to group coordinator after commitOffsetAsync exception.

To avoid this issue, we recommend that you use Apache Flink 1.18 or later in Amazon Managed
Service for Apache Flink.

Best practices 70

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#assigning-operator-ids
https://issues.apache.org/jira/browse/FLINK-28060
https://issues.apache.org/jira/browse/KAFKA-13840
https://issues.apache.org/jira/browse/KAFKA-13840

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Known limitations of state compatibility

• If you are using the Table API, Apache Flink doesn't guarantee state compatibility between
Flink versions. For more information, see Stateful Upgrades and Evolution in the Apache Flink
documentation.

• Flink 1.6 states are not compatible with Flink 1.18. The API rejects your request if you try to
upgrade from 1.6 to 1.18 and later with state. You can upgrade to 1.8, 1.11, 1.13 and 1.15 and
take a snapshot, and then upgrade to 1.18 and later. For more information, see Upgrading
Applications and Flink Versions in the Apache Flink documentation.

Known issues with the Flink Kinesis Connector

• If you are using Flink 1.11 or earlier and using the amazon-kinesis-connector-flink
connector for Enhanced-fan-out (EFO) support, you must take extra steps for a stateful upgrade
to Flink 1.13 or later. This is because of the change in the package name of the connector. For
more information, see amazon-kinesis-connector-flink.

The amazon-kinesis-connector-flink connector for Flink 1.11 and earlier uses the
packaging software.amazon.kinesis, whereas the Kinesis connector for Flink 1.13 and later
uses org.apache.flink.streaming.connectors.kinesis. Use this tool to support your
migration: amazon-kinesis-connector-flink-state-migrator.

• If you are using Flink 1.13 or earlier with FlinkKinesisProducer and upgrading to Flink
1.15 or later, for a stateful upgrade you must continue to use FlinkKinesisProducer in
Flink 1.15 or later, instead of the newer KinesisStreamsSink. However, if you already have a
custom uid set on your sink, you should be able to switch to KinesisStreamsSink because
FlinkKinesisProducer doesn't keep state. Flink will treat it as the same operator because a
custom uid is set.

Flink applications written in Scala

• As of Flink 1.15, Apache Flink doesn't include Scala in the runtime. You must include the version
of Scala you want to use and other Scala dependencies in your code JAR/zip when upgrading
to Flink 1.15 or later. For more information, see Amazon Managed Service for Apache Flink for
Apache Flink 1.15.2 release.

Known issues 71

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/concepts/overview/#stateful-upgrades-and-evolution
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://github.com/awslabs/amazon-kinesis-connector-flink
https://github.com/awslabs/amazon-kinesis-connector-flink-state-migrator
https://docs.aws.amazon.com/managed-flink/latest/java/flink-1-15-2.html
https://docs.aws.amazon.com/managed-flink/latest/java/flink-1-15-2.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• If your application uses Scala and you are upgrading it from Flink 1.11 or earlier (Scala 2.11)
to Flink 1.13 (Scala 2.12), make sure that your code uses Scala 2.12. Otherwise, your Flink 1.13
application may fail to find Scala 2.11 classes in the Flink 1.13 runtime.

Things to consider when downgrading Flink application

• Downgrading Flink applications is possible, but limited to cases when the application was
previously running with the older Flink version. For a stateful upgrade Managed Service for
Apache Flink will require using a snapshot taken with matching or earlier version for the
downgrade

• If you are updating your runtime from Flink 1.13 or later to Flink 1.11 or earlier, and if your app
uses the HashMap state backend, your application will continuously fail.

Implement application scaling in Managed Service for Apache
Flink

You can configure the parallel execution of tasks and the allocation of resources for Amazon
Managed Service for Apache Flink to implement scaling. For information about how Apache Flink
schedules parallel instances of tasks, see Parallel Execution in the Apache Flink Documentation.

Topics

• Configure application parallelism and ParallelismPerKPU

• Allocate Kinesis Processing Units

• Update your application's parallelism

• Use automatic scaling in Managed Service for Apache Flink

• maxParallelism considerations

Configure application parallelism and ParallelismPerKPU

You configure the parallel execution for your Managed Service for Apache Flink application
tasks (such as reading from a source or executing an operator) using the following
ParallelismConfiguration properties:

Implement application scaling 72

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/execution/parallel/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ApplicationConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Parallelism — Use this property to set the default Apache Flink application parallelism. All
operators, sources, and sinks execute with this parallelism unless they are overridden in the
application code. The default is 1, and the default maximum is 256.

• ParallelismPerKPU — Use this property to set the number of parallel tasks that can be
scheduled per Kinesis Processing Unit (KPU) of your application. The default is 1, and the
maximum is 8. For applications that have blocking operations (for example, I/O), a higher value
of ParallelismPerKPU leads to full utilization of KPU resources.

Note

The limit for Parallelism is equal to ParallelismPerKPU times the limit for KPUs
(which has a default of 64). The KPUs limit can be increased by requesting a limit increase.
For instructions on how to request a limit increase, see "To request a limit increase" in
Service Quotas.

For information about setting task parallelism for a specific operator, see Setting the Parallelism:
Operator in the Apache Flink Documentation.

Allocate Kinesis Processing Units

Managed Service for Apache Flink provisions capacity as KPUs. A single KPU provides you with 1
vCPU and 4 GB of memory. For every KPU allocated, 50 GB of running application storage is also
provided.

Managed Service for Apache Flink calculates the KPUs that are needed to run your application
using the Parallelism and ParallelismPerKPU properties, as follows:

Allocated KPUs for the application = Parallelism/ParallelismPerKPU

Managed Service for Apache Flink quickly gives your applications resources in response to
spikes in throughput or processing activity. It removes resources from your application gradually
after the activity spike has passed. To disable the automatic allocation of resources, set the
AutoScalingEnabled value to false, as described later in Update your application's parallelism.

The default limit for KPUs for your application is 64. For instructions on how to request an increase
to this limit, see "To request a limit increase" in Service Quotas.

Allocate Kinesis Processing Units 73

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/execution/parallel/#operator-level
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/execution/parallel/#operator-level
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

An additional KPU is charged for orchestrations purposes. For more information, see
Managed Service for Apache Flink pricing.

Update your application's parallelism

This section contains sample requests for API actions that set an application's parallelism. For more
examples and instructions for how to use request blocks with API actions, see Managed Service for
Apache Flink API example code.

The following example request for the CreateApplication action sets parallelism when you are
creating an application:

{
 "ApplicationName": "string",
 "RuntimeEnvironment":"FLINK-1_18",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "CodeContentType":"ZIPFILE"
 },
 "FlinkApplicationConfiguration": {
 "ParallelismConfiguration": {
 "AutoScalingEnabled": "true",
 "ConfigurationType": "CUSTOM",
 "Parallelism": 4,
 "ParallelismPerKPU": 4
 }
 }
 }
}

Update your application's parallelism 74

https://aws.amazon.com/kinesis/data-analytics/pricing/
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The following example request for the UpdateApplication action sets parallelism for an existing
application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "ParallelismConfigurationUpdate": {
 "AutoScalingEnabledUpdate": "true",
 "ConfigurationTypeUpdate": "CUSTOM",
 "ParallelismPerKPUUpdate": 4,
 "ParallelismUpdate": 4
 }
 }
 }
}

The following example request for the UpdateApplication action disables parallelism for an
existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "ParallelismConfigurationUpdate": {
 "AutoScalingEnabledUpdate": "false"
 }
 }
 }
}

Use automatic scaling in Managed Service for Apache Flink

Managed Service for Apache Flink elastically scales your application’s parallelism to accommodate
the data throughput of your source and your operator complexity for most scenarios. Automatic
scaling is enabled by default. Managed Service for Apache Flink monitors the resource (CPU) usage
of your application, and elastically scales your application's parallelism up or down accordingly:

Use automatic scaling 75

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Your application scales up (increases parallelism) if CloudWatch metric maximum
containerCPUUtilization is larger than 75 percent or above for 15 minutes. That means the
ScaleUp action is initiated when there are 15 consecutive datapoints with 1 minute period equal
to or over 75 percent. A ScaleUp action doubles the CurrentParallelism of your application.
ParallelismPerKPU is not modified. As a consequence, the number of allocated KPUs also
doubles.

• Your application scales down (decreases parallelism) when your CPU usage remains below
10 percent for six hours. That means the ScaleDown action is initiated when there are 360
consecutive datapoints with 1 minute period less than 10 percent. A ScaleDown action halves
(rounded up) the parallelism of the application. ParallelismPerKPU is not modified, and the
number of allocated KPUs also halves (rounded up).

Note

Max of containerCPUUtilization over 1 minute period can be referenced to find the
correlation with a datapoint used for Scaling action, but it’s not necessary to reflect the
exact moment when the action is initialized.

Managed Service for Apache Flink will not reduce your application's CurrentParallelism value
to less than your application's Parallelism setting.

When the Managed Service for Apache Flink service is scaling your application, it will be in the
AUTOSCALING status. You can check your current application status using the DescribeApplication
or ListApplications actions. While the service is scaling your application, the only valid API action
you can use is StopApplication with the Force parameter set to true.

You can use the AutoScalingEnabled property (part of FlinkApplicationConfiguration
) to enable or disable auto scaling behavior. Your AWS account is charged for KPUs that Managed
Service for Apache Flink provisions which is a function of your application's parallelism and
parallelismPerKPU settings. An activity spike increases your Managed Service for Apache Flink
costs.

For information about pricing, see Amazon Managed Service for Apache Flink pricing.

Note the following about application scaling:

• Automatic scaling is enabled by default.

Use automatic scaling 76

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_FlinkApplicationConfiguration.html
https://aws.amazon.com/kinesis/data-analytics/pricing/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Scaling doesn't apply to Studio notebooks. However, if you deploy a Studio notebook as an
application with durable state, then scaling will apply to the deployed application.

• Your application has a default limit of 64 KPUs. For more information, see Managed Service for
Apache Flink and Studio notebook quota.

• When autoscaling updates application parallelism, the application experiences downtime. To
avoid this downtime, do the following:

• Disable automatic scaling

• Configure your application's parallelism and parallelismPerKPU with the
UpdateApplication action. For more information about setting your application's parallelism
settings, see the section called “Update your application's parallelism”.

• Periodically monitor your application's resource usage to verify that your application has the
correct parallelism settings for its workload. For information about monitoring allocation
resource usage, see the section called “Metrics and dimensions in Managed Service for Apache
Flink”.

Implement custom autoscaling

If you want finer grained control on autoscaling or use trigger metrics other than
containerCPUUtilization, you can use this example:

• AutoScaling

This examples illustrates how to scale your Managed Service for Apache Flink application using a
different CloudWatch metric from the Apache Flink application, including metrics from Amazon
MSK and Amazon Kinesis Data Streams, used as sources or sink.

For additional information, see Enhanced monitoring and automatic scaling for Apache Flink.

Implement scheduled autoscaling

If your workload follows a predictable profile over time, you might prefer to scale your Apache
Flink application preemptively. This scales your application at a scheduled time, as opposed to
scaling reactively based on a metric. To set up scaling up and down at fixed hours of the day, you
can use this example:

• ScheduledScaling

Use automatic scaling 77

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/infrastructure/AutoScaling
https://aws.amazon.com/blogs/big-data/enhanced-monitoring-and-automatic-scaling-for-apache-flink/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/infrastructure/ScheduledScaling

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

maxParallelism considerations

The maximum parallelism a Flink job can scale is limited by the minimum maxParallelism across
all operators of the job. For example, if you have a simple job with only a source and a sink, and
the source has a maxParallelism of 16 and the sink has 8, the application can't scale beyond
parallelism of 8.

To learn how the default maxParallelism of an operator is calculated and how to override the
default, refer to Setting the Maximum Parallelism in the Apache Flink docummentation.

As a basic rule, be aware that that if you don't define maxParallelism for any operator and
you start your application with parallelism less than or equal to 128, all operators will have a
maxParallelism of 128.

Note

The job's maximum parallelism is the upper limit of parallelism for scaling your application
retaining the state.
If you modify maxParallelism of an existing application, the application won't be able
to restart from a previous snapshot taken with the old maxParallelism. You can only
restart the application without snapshot.
If you plan to scale your application to a parallelism greater that 128, you must explicitly
set the maxParallelism in your application.

• Autoscaling logic will prevent scaling a Flink job to a parallelism that will exceed maximum
parallelism of the job.

• If you use a custom autoscaling or scheduled scaling, configure them so that they don't exceed
the maximum parallelism of the job.

• If you manually scale your application beyond maximum parallelism, the application fails to
start.

Add tags to Managed Service for Apache Flink applications

This section describes how to add key-value metadata tags to Managed Service for Apache Flink
applications. These tags can be used for the following purposes:

maxParallelism considerations 78

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/execution/parallel/#setting-the-maximum-parallelism

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Determining billing for individual Managed Service for Apache Flink applications. For more
information, see Using Cost Allocation Tags in the Billing and Cost Management Guide.

• Controlling access to application resources based on tags. For more information, see Controlling
Access Using Tags in the AWS Identity and Access Management User Guide.

• User-defined purposes. You can define application functionality based on the presence of user
tags.

Note the following information about tagging:

• The maximum number of application tags includes system tags. The maximum number of user-
defined application tags is 50.

• If an action includes a tag list that has duplicate Key values, the service throws an
InvalidArgumentException.

This topic contains the following sections:

• Add tags when an application is created

• Add or update tags for an existing application

• List tags for an application

• Remove tags from an application

Add tags when an application is created

You add tags when creating an application using the tags parameter of the CreateApplication
action.

The following example request shows the Tags node for a CreateApplication request:

"Tags": [
 {
 "Key": "Key1",
 "Value": "Value1"
 },
 {
 "Key": "Key2",
 "Value": "Value2"
 }

Add tags when an application is created 79

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

]

Add or update tags for an existing application

You add tags to an application using the TagResource action. You cannot add tags to an application
using the UpdateApplication action.

To update an existing tag, add a tag with the same key of the existing tag.

The following example request for the TagResource action adds new tags or updates existing
tags:

{
 "ResourceARN": "string",
 "Tags": [
 {
 "Key": "NewTagKey",
 "Value": "NewTagValue"
 },
 {
 "Key": "ExistingKeyOfTagToUpdate",
 "Value": "NewValueForExistingTag"
 }
]
}

List tags for an application

To list existing tags, you use the ListTagsForResource action.

The following example request for the ListTagsForResource action lists tags for an application:

{
 "ResourceARN": "arn:aws:kinesisanalyticsus-west-2:012345678901:application/
MyApplication"
}

Remove tags from an application

To remove tags from an application, you use the UntagResource action.

The following example request for the UntagResource action removess tags from an application:

Add or update tags for an existing application 80

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_TagResource.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListTagsForResource.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UntagResource.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ResourceARN": "arn:aws:kinesisanalyticsus-west-2:012345678901:application/
MyApplication",
 "TagKeys": ["KeyOfFirstTagToRemove", "KeyOfSecondTagToRemove"]
}

Use CloudFormation with Managed Service for Apache Flink

The following exercise shows how to start a Flink application created with AWS CloudFormation
using a Lambda function in the same stack.

Before you begin

Before you begin this exercise, follow the steps on creating a Flink application using AWS
CloudFormation at AWS::KinesisAnalytics::Application.

Write a Lambda function

To start a Flink application after creation or update, we use the kinesisanalyticsv2 start-application
API. The call will be triggered by an AWS CloudFormation event after Flink application creation.
We’ll discuss how to set up the stack to trigger the Lambda function later in this exercise, but first
we focus on the Lambda function declaration and its code. We use Python3.8 runtime in this
example.

StartApplicationLambda:
 Type: AWS::Lambda::Function
 DependsOn: StartApplicationLambdaRole
 Properties:
 Description: Starts an application when invoked.
 Runtime: python3.8
 Role: !GetAtt StartApplicationLambdaRole.Arn
 Handler: index.lambda_handler
 Timeout: 30
 Code:
 ZipFile: |
 import logging
 import cfnresponse
 import boto3

 logger = logging.getLogger()
 logger.setLevel(logging.INFO)

Use CloudFormation 81

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesis-analyticsapplication.html
https://docs.aws.amazon.com/cli/latest/reference/kinesisanalyticsv2/start-application.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 def lambda_handler(event, context):
 logger.info('Incoming CFN event {}'.format(event))

 try:
 application_name = event['ResourceProperties']['ApplicationName']

 # filter out events other than Create or Update,
 # you can also omit Update in order to start an application on Create
 only.
 if event['RequestType'] not in ["Create", "Update"]:
 logger.info('No-op for Application {} because CFN RequestType {} is
 filtered'.format(application_name, event['RequestType']))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

 return

 # use kinesisanalyticsv2 API to start an application.
 client_kda = boto3.client('kinesisanalyticsv2',
 region_name=event['ResourceProperties']['Region'])

 # get application status.
 describe_response =
 client_kda.describe_application(ApplicationName=application_name)
 application_status = describe_response['ApplicationDetail']
['ApplicationStatus']

 # an application can be started from 'READY' status only.
 if application_status != 'READY':
 logger.info('No-op for Application {} because ApplicationStatus {} is
 filtered'.format(application_name, application_status))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

 return

 # create RunConfiguration.
 run_configuration = {
 'ApplicationRestoreConfiguration': {
 'ApplicationRestoreType': 'RESTORE_FROM_LATEST_SNAPSHOT',
 }
 }

 logger.info('RunConfiguration for Application {}:
 {}'.format(application_name, run_configuration))

Write a Lambda function 82

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 # this call doesn't wait for an application to transfer to 'RUNNING'
 state.
 client_kda.start_application(ApplicationName=application_name,
 RunConfiguration=run_configuration)

 logger.info('Started Application: {}'.format(application_name))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})
 except Exception as err:
 logger.error(err)
 cfnresponse.send(event,context, cfnresponse.FAILED, {"Data": str(err)})

In the preceding code, Lambda processes incoming AWS CloudFormation events, filters out
everything besides Create and Update, gets the application state and start it if the state is
READY. To get the application state, you must create the Lambda role, as shown following.

Create a Lambda role

You create a role for Lambda to successfully “talk” to the application and write logs. This role uses
default managed policies, but you might want to narrow it down to using custom policies.

StartApplicationLambdaRole:
 Type: AWS::IAM::Role
 DependsOn: TestFlinkApplication
 Properties:
 Description: A role for lambda to use while interacting with an application.
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - lambda.amazonaws.com
 Action:
 - sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/Amazonmanaged-flinkFullAccess
 - arn:aws:iam::aws:policy/CloudWatchLogsFullAccess
 Path: /

Note that the Lambda resources will be created after creation of the Flink application in the same
stack because they depend on it.

Create a Lambda role 83

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Invoke the Lambda function

Now all that is left is to invoke the Lambda function. You do this by using a custom resource.

StartApplicationLambdaInvoke:
 Description: Invokes StartApplicationLambda to start an application.
 Type: AWS::CloudFormation::CustomResource
 DependsOn: StartApplicationLambda
 Version: "1.0"
 Properties:
 ServiceToken: !GetAtt StartApplicationLambda.Arn
 Region: !Ref AWS::Region
 ApplicationName: !Ref TestFlinkApplication

This is all you need to start your Flink application using Lambda. You are now ready to create your
own stack or use the full example below to see how all those steps work in practice.

Review an extended example

The following example is a slightly extended version of the previous steps with an additional
RunConfiguration adjusting done via template parameters. This is a working stack for you to
try. Be sure to read the accompanying notes:

stack.yaml

Description: 'kinesisanalyticsv2 CloudFormation Test Application'
Parameters:
 ApplicationRestoreType:
 Description: ApplicationRestoreConfiguration option, can
 be SKIP_RESTORE_FROM_SNAPSHOT, RESTORE_FROM_LATEST_SNAPSHOT or
 RESTORE_FROM_CUSTOM_SNAPSHOT.
 Type: String
 Default: SKIP_RESTORE_FROM_SNAPSHOT
 AllowedValues: [SKIP_RESTORE_FROM_SNAPSHOT, RESTORE_FROM_LATEST_SNAPSHOT,
 RESTORE_FROM_CUSTOM_SNAPSHOT]
 SnapshotName:
 Description: ApplicationRestoreConfiguration option, name of a snapshot to restore
 to, used with RESTORE_FROM_CUSTOM_SNAPSHOT ApplicationRestoreType.
 Type: String
 Default: ''
 AllowNonRestoredState:
 Description: FlinkRunConfiguration option, can be true or false.

Invoke the Lambda function 84

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 Default: true
 Type: String
 AllowedValues: [true, false]
 CodeContentBucketArn:
 Description: ARN of a bucket with application code.
 Type: String
 CodeContentFileKey:
 Description: A jar filename with an application code inside a bucket.
 Type: String
Conditions:
 IsSnapshotNameEmpty: !Equals [!Ref SnapshotName, '']
Resources:
 TestServiceExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - kinesisanlaytics.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonKinesisFullAccess
 - arn:aws:iam::aws:policy/AmazonS3FullAccess
 Path: /
 InputKinesisStream:
 Type: AWS::Kinesis::Stream
 Properties:
 ShardCount: 1
 OutputKinesisStream:
 Type: AWS::Kinesis::Stream
 Properties:
 ShardCount: 1
 TestFlinkApplication:
 Type: 'AWS::kinesisanalyticsv2::Application'
 Properties:
 ApplicationName: 'CFNTestFlinkApplication'
 ApplicationDescription: 'Test Flink Application'
 RuntimeEnvironment: 'FLINK-1_18'
 ServiceExecutionRole: !GetAtt TestServiceExecutionRole.Arn
 ApplicationConfiguration:
 EnvironmentProperties:

Review an extended example 85

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 PropertyGroups:
 - PropertyGroupId: 'KinesisStreams'
 PropertyMap:
 INPUT_STREAM_NAME: !Ref InputKinesisStream
 OUTPUT_STREAM_NAME: !Ref OutputKinesisStream
 AWS_REGION: !Ref AWS::Region
 FlinkApplicationConfiguration:
 CheckpointConfiguration:
 ConfigurationType: 'CUSTOM'
 CheckpointingEnabled: True
 CheckpointInterval: 1500
 MinPauseBetweenCheckpoints: 500
 MonitoringConfiguration:
 ConfigurationType: 'CUSTOM'
 MetricsLevel: 'APPLICATION'
 LogLevel: 'INFO'
 ParallelismConfiguration:
 ConfigurationType: 'CUSTOM'
 Parallelism: 1
 ParallelismPerKPU: 1
 AutoScalingEnabled: True
 ApplicationSnapshotConfiguration:
 SnapshotsEnabled: True
 ApplicationCodeConfiguration:
 CodeContent:
 S3ContentLocation:
 BucketARN: !Ref CodeContentBucketArn
 FileKey: !Ref CodeContentFileKey
 CodeContentType: 'ZIPFILE'
 StartApplicationLambdaRole:
 Type: AWS::IAM::Role
 DependsOn: TestFlinkApplication
 Properties:
 Description: A role for lambda to use while interacting with an application.
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - lambda.amazonaws.com
 Action:
 - sts:AssumeRole
 ManagedPolicyArns:

Review an extended example 86

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 - arn:aws:iam::aws:policy/Amazonmanaged-flinkFullAccess
 - arn:aws:iam::aws:policy/CloudWatchLogsFullAccess
 Path: /
 StartApplicationLambda:
 Type: AWS::Lambda::Function
 DependsOn: StartApplicationLambdaRole
 Properties:
 Description: Starts an application when invoked.
 Runtime: python3.8
 Role: !GetAtt StartApplicationLambdaRole.Arn
 Handler: index.lambda_handler
 Timeout: 30
 Code:
 ZipFile: |
 import logging
 import cfnresponse
 import boto3

 logger = logging.getLogger()
 logger.setLevel(logging.INFO)

 def lambda_handler(event, context):
 logger.info('Incoming CFN event {}'.format(event))

 try:
 application_name = event['ResourceProperties']['ApplicationName']

 # filter out events other than Create or Update,
 # you can also omit Update in order to start an application on Create
 only.
 if event['RequestType'] not in ["Create", "Update"]:
 logger.info('No-op for Application {} because CFN RequestType {} is
 filtered'.format(application_name, event['RequestType']))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

 return

 # use kinesisanalyticsv2 API to start an application.
 client_kda = boto3.client('kinesisanalyticsv2',
 region_name=event['ResourceProperties']['Region'])

 # get application status.
 describe_response =
 client_kda.describe_application(ApplicationName=application_name)

Review an extended example 87

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 application_status = describe_response['ApplicationDetail']
['ApplicationStatus']

 # an application can be started from 'READY' status only.
 if application_status != 'READY':
 logger.info('No-op for Application {} because ApplicationStatus {} is
 filtered'.format(application_name, application_status))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

 return

 # create RunConfiguration from passed parameters.
 run_configuration = {
 'FlinkRunConfiguration': {
 'AllowNonRestoredState': event['ResourceProperties']
['AllowNonRestoredState'] == 'true'
 },
 'ApplicationRestoreConfiguration': {
 'ApplicationRestoreType': event['ResourceProperties']
['ApplicationRestoreType'],
 }
 }

 # add SnapshotName to RunConfiguration if specified.
 if event['ResourceProperties']['SnapshotName'] != '':
 run_configuration['ApplicationRestoreConfiguration']['SnapshotName'] =
 event['ResourceProperties']['SnapshotName']

 logger.info('RunConfiguration for Application {}:
 {}'.format(application_name, run_configuration))

 # this call doesn't wait for an application to transfer to 'RUNNING'
 state.
 client_kda.start_application(ApplicationName=application_name,
 RunConfiguration=run_configuration)

 logger.info('Started Application: {}'.format(application_name))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})
 except Exception as err:
 logger.error(err)
 cfnresponse.send(event,context, cfnresponse.FAILED, {"Data": str(err)})
 StartApplicationLambdaInvoke:
 Description: Invokes StartApplicationLambda to start an application.
 Type: AWS::CloudFormation::CustomResource

Review an extended example 88

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 DependsOn: StartApplicationLambda
 Version: "1.0"
 Properties:
 ServiceToken: !GetAtt StartApplicationLambda.Arn
 Region: !Ref AWS::Region
 ApplicationName: !Ref TestFlinkApplication
 ApplicationRestoreType: !Ref ApplicationRestoreType
 SnapshotName: !Ref SnapshotName
 AllowNonRestoredState: !Ref AllowNonRestoredState

Again, you might want to adjust the roles for Lambda as well as an application itself.

Before creating the stack above, don’t forget to specify your parameters.

parameters.json

[
 {
 "ParameterKey": "CodeContentBucketArn",
 "ParameterValue": "YOUR_BUCKET_ARN"
 },
 {
 "ParameterKey": "CodeContentFileKey",
 "ParameterValue": "YOUR_JAR"
 },
 {
 "ParameterKey": "ApplicationRestoreType",
 "ParameterValue": "SKIP_RESTORE_FROM_SNAPSHOT"
 },
 {
 "ParameterKey": "AllowNonRestoredState",
 "ParameterValue": "true"
 }
]

Replace YOUR_BUCKET_ARN and YOUR_JAR with your specific requirements. You can follow this
guide to create an Amazon S3 bucket and an application jar.

Now create the stack (replace YOUR_REGION with a region of your choice, e.g. us-east-1):

aws cloudformation create-stack --region YOUR_REGION --template-body "file://
stack.yaml" --parameters "file://parameters.json" --stack-name "TestManaged Service for
 Apache FlinkStack" --capabilities CAPABILITY_NAMED_IAM

Review an extended example 89

https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can now navigate to https://console.aws.amazon.com/cloudformation and view the progress.
Once created you should see your Flink application in Starting state. It may take a few minutes
until it will start Running.

For more information, see the following:

• Four ways to retrieve any AWS service property using AWS CloudFormation (Part 1 of 3).

• Walkthrough: Looking up Amazon Machine Image IDs.

Use the Apache Flink Dashboard with Managed Service for
Apache Flink

You can use your application's Apache Flink Dashboard to monitor your Managed Service for
Apache Flink application's health. Your application's dashboard shows the following information:

• Resources in use, including Task Managers and Task Slots.

• Information about Jobs, including those that are running, completed, canceled, and failed.

For information about Apache Flink Task Managers, Task Slots, and Jobs, see Apache Flink
Architecture on the Apache Flink website.

Note the following about using the Apache Flink Dashboard with Managed Service for Apache Flink
applications:

• The Apache Flink Dashboard for Managed Service for Apache Flink applications is read-only. You
can't make changes to your Managed Service for Apache Flink application using the Apache Flink
Dashboard.

• The Apache Flink Dashboard is not compatible with Microsoft Internet Explorer.

Access your application's Apache Flink Dashboard

You can access your application's Apache Flink Dashboard either through the Managed Service for
Apache Flink console, or by requesting a secure URL endpoint using the CLI.

Use the Apache Flink Dashboard 90

https://console.aws.amazon.com/cloudformation
https://aws.amazon.com/blogs/mt/four-ways-to-retrieve-any-aws-service-property-using-aws-cloudformation-part-1/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/walkthrough-custom-resources-lambda-lookup-amiids.html
https://flink.apache.org/what-is-flink/flink-architecture/
https://flink.apache.org/what-is-flink/flink-architecture/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Access your application's Apache Flink Dashboard using the Managed Service for
Apache Flink console

To access your application's Apache Flink Dashboard from the console, choose Apache Flink
Dashboard on your application's page.

Note

When you open the dashboard from the Managed Service for Apache Flink console, the
URL that the console generates will be valid for 12 hours.

Access your application's Apache Flink Dashboard using the Managed Service for
Apache Flink CLI

You can use the Managed Service for Apache Flink CLI to generate a URL to access your application
dashboard. The URL that you generate is valid for a specified amount of time.

Note

If you don't access the generated URL within three minutes, it will no longer be valid.

You generate your dashboard URL using the CreateApplicationPresignedUrl action. You specify the
following parameters for the action:

• The application name

• The time in seconds that the URL will be valid

• You specify FLINK_DASHBOARD_URL as the URL type.

Access your application's Apache Flink Dashboard 91

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplicationPresignedUrl.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Supported and deprecated Apache Flink versions

This topic contains information about the supported versions of Apache Flink in Managed Service
for Apache Flink. This topic also lists the supported Apache Flink features in each release.

Note

If you're using a version of Apache Flink that's deprecating, we recommend that you
upgrade your application to the most recent supported Flink version using the Use in-place
version upgrades for Apache Flink feature in Managed Service for Apache Flink.

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Link Note

1.20.0 Supported Supported Amazon
Managed Service
for Apache Flink
1.20

1.19.1 Supported Supported Amazon
Managed Service
for Apache Flink
1.19

1.18.1 Supported Unsupported Amazon
Managed Service
for Apache Flink
1.18

1.15.2 Supported Unsupported Amazon
Managed Service
for Apache Flink
1.15

92

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Link Note

1.13.1 Deprecating Unsupported Getting started:
Flink 1.13.2

The support
for this version
in Amazon
Managed Service
for Apache
Flink will end
on October 16,
2025.

93

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Link Note

1.11.1 Deprecating Unsupported Earlier version
information for
Managed Service
for Apache
Flink (This
version won't be
supported from
February 2025)

We plan to end
support for
Apache Flink
versions 1.6,
1.8, and 1.11
in Amazon
Managed Service
for Apache Flink.

From July 14,
2025, we will
place applicati
ons using these
versions into a
READY state.

From July 28,
2025, you will
not be able to
START applicati
ons using these
versions.

We recommend
that you now
immediately
upgrade your
applications to
Flink version
1.20 using the
in-place version
upgrades

94

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Link Note

feature in
Amazon
Managed Service
for Apache
Flink. For more
information,
see Use in-
place version
upgrades for
Apache Flink.

95

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Link Note

1.8.2 Deprecating Unsupported Earlier version
information for
Managed Service
for Apache
Flink (This
version won't be
supported from
February 2025)

We plan to end
support for
Apache Flink
versions 1.6,
1.8, and 1.11
in Amazon
Managed Service
for Apache Flink.

From July 14,
2025, we will
place applicati
ons using these
versions into a
READY state.

From July 28,
2025, you will
not be able to
START applicati
ons using these
versions.

We recommend
that you now
immediately
upgrade your
applications to
Flink version
1.20 using the
in-place version
upgrades

96

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Link Note

feature in
Amazon
Managed Service
for Apache
Flink. For more
information,
see Use in-
place version
upgrades for
Apache Flink.

97

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Link Note

1.6.2 Deprecating Unsupported Earlier version
information for
Managed Service
for Apache
Flink (This
version won't be
supported from
February 2025)

We plan to end
support for
Apache Flink
versions 1.6,
1.8, and 1.11
in Amazon
Managed Service
for Apache Flink.

From July 14,
2025, we will
place applicati
ons using these
versions into a
READY state.

From July 28,
2025, you will
not be able to
START applicati
ons using these
versions.

We recommend
that you now
immediately
upgrade your
applications to
Flink version
1.20 using the
in-place version
upgrades

98

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink
version

Status - Amazon
Managed
Service for
Apache Flink

Status -
Apache Flink
community

Link Note

feature in
Amazon
Managed Service
for Apache
Flink. For more
information,
see Use in-
place version
upgrades for
Apache Flink.

Topics

• Amazon Managed Service for Apache Flink 1.20

• Amazon Managed Service for Apache Flink 1.19

• Amazon Managed Service for Apache Flink 1.18

• Amazon Managed Service for Apache Flink 1.15

• Earlier version information for Managed Service for Apache Flink

Amazon Managed Service for Apache Flink 1.20

Managed Service for Apache Flink now supports Apache Flink version 1.20.0. This section
introduces you to the key new features and changes introduced with Managed Service for Apache
Flink support of Apache Flink 1.20.0. Apache Flink 1.20 is expected to be the last 1.x release and a
Flink long-term support (LTS) version. For more information, see FLIP-458: Long-Term Support for
the Final Release of Apache Flink 1.x Line.

Note

If you are using an earlier supported version of Apache Flink and want to upgrade
your existing applications to Apache Flink 1.20.0, you can do so using in-place Apache

Amazon Managed Service for Apache Flink 1.20 99

https://cwiki.apache.org/confluence/display/FLINK/FLIP-458%3A+Long-Term+Support+for+the+Final+Release+of+Apache+Flink+1.x+Line
https://cwiki.apache.org/confluence/display/FLINK/FLIP-458%3A+Long-Term+Support+for+the+Final+Release+of+Apache+Flink+1.x+Line

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink version upgrades. For more information, see Use in-place version upgrades for
Apache Flink. With in-place version upgrades, you retain application traceability against
a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags, Flink
configurations, and more.

Supported features

Apache Flink 1.20.0 introduces improvements in the SQL APIs, in the DataStream APIs, and in the
Flink dashboard.

Supported features and related documentation

Supported features Description Apache Flink documentation
reference

Add DISTRIBUTED BY clause Many SQL engines expose the
concepts of Partitioning ,
Bucketing , or Clusterin
g . Flink 1.20 introduces the
concept of Bucketing to
Flink.

FLIP-376: Add DISTRIBUTED
BY clause

DataStream API: Support Full
Partition Proessing

Flink 1.20 introduces built-in
support for aggregations on
non-keyed streams through
the FullPartitionWindo
w API.

FLIP-380: Support Full
Partition Processing on Non-
keyed DataStream

Show data skew score on
Flink Dashboard

The Flink 1.20 dashboard now
shows data skew infrmation.
Each operator on the Flink job
graph UI shows an additional
data skew score.

FLIP-418: Show data skew
score on Flink Dashboard

For the Apache Flink 1.20.0 release documentation, see Apache Flink Documentation v1.20.0. For
Flink 1.20 release notes, see Release notes - Flink 1.20

Supported features 100

https://cwiki.apache.org/confluence/display/FLINK/FLIP-376%3A+Add+DISTRIBUTED+BY+clause
https://cwiki.apache.org/confluence/display/FLINK/FLIP-376%3A+Add+DISTRIBUTED+BY+clause
https://cwiki.apache.org/confluence/display/FLINK/FLIP-380%3A+Support+Full+Partition+Processing+On+Non-keyed+DataStream
https://cwiki.apache.org/confluence/display/FLINK/FLIP-380%3A+Support+Full+Partition+Processing+On+Non-keyed+DataStream
https://cwiki.apache.org/confluence/display/FLINK/FLIP-380%3A+Support+Full+Partition+Processing+On+Non-keyed+DataStream
https://cwiki.apache.org/confluence/display/FLINK/FLIP-418%3A+Show+data+skew+score+on+Flink+Dashboard
https://cwiki.apache.org/confluence/display/FLINK/FLIP-418%3A+Show+data+skew+score+on+Flink+Dashboard
https://nightlies.apache.org/flink/flink-docs-stable/
https://nightlies.apache.org/flink/flink-docs-release-1.20/release-notes/flink-1.20/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Components

Flink 1.20 components

Component Version

Java 11 (recommended)

Python 3.11

Kinesis Data Analytics Flink Runtime (aws-kine
sisanalytics-runtime)

1.2.0

Connectors For information about available connectors,
see Apache Flink connectors.

Apache Beam (Beam applications only) There is no compatible Apache Flink Runner
for Flink 1.20. For more information, see Flink
Version Compatibility.

Known issues

Apache Beam

There is presently no compatible Apache Flink Runner for Flink 1.20 in Apache Beam. For more
information, see Flink Version Compatibility.

Amazon Managed Service for Apache Flink Studio

Amazon Managed Service for Apache Flink Studio uses Apache Zeppelin notebooks to provide a
single-interface development experience for developing, debugging code, and running Apache
Flink stream processing applications. An upgrade is required to Zeppelin's Flink Interpreter to
enable support of Flink 1.20. This work is scheduled with the Zeppelin community. We will update
these notes when that work is complete. You can continue to use Flink 1.15 with Amazon Managed
Service for Apache Flink Studio. For more information, see Creating a Studio notebook.

Backported bug fixes

Amazon Managed Service for Apache Flink backports fixes from the Flink community for critical
issues. Following is a list of bug fixes that we have backported:

Components 101

https://docs.aws.amazon.com/managed-flink/latest/java/how-flink-connectors.html
https://aws.amazon.com/developer/language/python/
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://docs.aws.amazon.com/managed-flink/latest/java/how-zeppelin-creating.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Backported bug fixes

Apache Flink JIRA link Description

FLINK-35886 This fix addresses an issue causing incorrect
accounting of watermark idleness timeouts
when a subtask is backpressured/blocked.

Amazon Managed Service for Apache Flink 1.19

Managed Service for Apache Flink now supports Apache Flink version 1.19.1. This section
introduces you to the key new features and changes introduced with Managed Service for Apache
Flink support of Apache Flink 1.19.1.

Note

If you are using an earlier supported version of Apache Flink and want to upgrade
your existing applications to Apache Flink 1.19.1, you can do so using in-place Apache
Flink version upgrades. For more information, see Use in-place version upgrades for
Apache Flink. With in-place version upgrades, you retain application traceability against
a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags, Flink
configurations, and more.

Supported features

Apache Flink 1.19.1 introduces improvements in the SQL API, such as named parameters, custom
source parallelism, and different state TTLs for various Flink operators.

Supported features and related documentation

Supported features Description Apache Flink documentation
reference

SQL API: Support Configuri
ng Different State TTLs using
SQL Hint

Users can now configure state
TTL on stream regular joins
and group aggregate.

FLIP-373: Configuring
Different State TTLs using
SQL Hint

Amazon Managed Service for Apache Flink 1.19 102

https://issues.apache.org/jira/browse/FLINK-35886
https://cwiki.apache.org/confluence/display/FLINK/FLIP-373%3A+Support+Configuring+Different+State+TTLs+using+SQL+Hint
https://cwiki.apache.org/confluence/display/FLINK/FLIP-373%3A+Support+Configuring+Different+State+TTLs+using+SQL+Hint
https://cwiki.apache.org/confluence/display/FLINK/FLIP-373%3A+Support+Configuring+Different+State+TTLs+using+SQL+Hint

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Supported features Description Apache Flink documentation
reference

SQL API: Support named
parameters for functions and
call procedures

Users can now use named
parameters in functions,
rather than relying on the
order of parameters.

FLIP-378: Support named
parameters for functions and
call procedures

SQL API: Setting parallelism
for SQL sources

Users can now specify
parallelism for SQL sources.

FLIP-367: Support Setting
Parallelism for Table/SQL
Sources

SQL API: Support Session
Window TVF

Users can now use session
window Table-Valued
Functions.

FLINK-24024: Support session
Window TVF

SQL API: Window TVF
Aggregation Supports
Changelog Inputs

Users can now perform
window aggregation on
changelog inputs.

FLINK-20281: Window
aggregation supports
changelog stream input

Support Python 3.11 Flink now supports Python
3.11, which is 10-60% faster
compared to Python 3.10. For
more information, see What's
New in Python 3.11.

FLINK-33030: Add python
3.11 support

Provide metrics for
TwoPhaseCommitting sink

Users can view statistic
s around the status of
committers in two phase
committing sinks.

FLIP-371: Provide initializ
ation context for Committer
creation in TwoPhaseC
ommittingSink

Supported features 103

https://cwiki.apache.org/confluence/display/FLINK/FLIP-387%3A+Support+named+parameters+for+functions+and+call+procedures
https://cwiki.apache.org/confluence/display/FLINK/FLIP-387%3A+Support+named+parameters+for+functions+and+call+procedures
https://cwiki.apache.org/confluence/display/FLINK/FLIP-387%3A+Support+named+parameters+for+functions+and+call+procedures
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=263429150
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=263429150
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=263429150
https://issues.apache.org/jira/browse/FLINK-24024
https://issues.apache.org/jira/browse/FLINK-24024
https://issues.apache.org/jira/browse/FLINK-20281
https://issues.apache.org/jira/browse/FLINK-20281
https://issues.apache.org/jira/browse/FLINK-20281
https://docs.python.org/3/whatsnew/3.11.html#summary-release-highlights
https://docs.python.org/3/whatsnew/3.11.html#summary-release-highlights
https://issues.apache.org/jira/browse/FLINK-33030
https://issues.apache.org/jira/browse/FLINK-33030
https://cwiki.apache.org/confluence/display/FLINK/FLIP-371%3A+Provide+initialization+context+for+Committer+creation+in+TwoPhaseCommittingSink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-371%3A+Provide+initialization+context+for+Committer+creation+in+TwoPhaseCommittingSink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-371%3A+Provide+initialization+context+for+Committer+creation+in+TwoPhaseCommittingSink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-371%3A+Provide+initialization+context+for+Committer+creation+in+TwoPhaseCommittingSink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Supported features Description Apache Flink documentation
reference

Trace Reporters for job restart
and checkpointing

Users can now monitor traces
around checkpoint duration
and recvery trends. In
Amazon Managed Service for
Apache Flink, we enable Slf4j
trace reporters by default, so
users can monitor checkpoin
t and job traces through
application CloudWatch Logs.

FLIP-384: Introduce
TraceReporter and use it to
create checkpointing and
recovery traces

Note

You can opt into the following features by submitting a support case:

Opt-in features and related documentation

Opt-in features Description Apache Flink documentation
reference

Support using larger
checkpointing interval when
source is processing backlog

This is an opt-in feature,
because users must tune the
configuration for their specific
job requirements.

FLIP-309: Support using
larger checkpointing interval
when source is processing
backlog

Redirect System.out and
System.err to Java logs

This is an opt-in feature.
On Amazon Managed
Service for Apache Flink,
the default behavior is to
ignore output from System.ou
t and System.err because best
practice in production is to
use the native Java logger.

FLIP-390: Support System out
and err to be redirected to
LOG or discarded

Supported features 104

https://cwiki.apache.org/confluence/display/FLINK/FLIP-384%3A+Introduce+TraceReporter+and+use+it+to+create+checkpointing+and+recovery+traces
https://cwiki.apache.org/confluence/display/FLINK/FLIP-384%3A+Introduce+TraceReporter+and+use+it+to+create+checkpointing+and+recovery+traces
https://cwiki.apache.org/confluence/display/FLINK/FLIP-384%3A+Introduce+TraceReporter+and+use+it+to+create+checkpointing+and+recovery+traces
https://cwiki.apache.org/confluence/display/FLINK/FLIP-384%3A+Introduce+TraceReporter+and+use+it+to+create+checkpointing+and+recovery+traces
https://console.aws.amazon.com/support/home#/
https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog
https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog
https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog
https://cwiki.apache.org/confluence/display/FLINK/FLIP-309%3A+Support+using+larger+checkpointing+interval+when+source+is+processing+backlog
https://cwiki.apache.org/confluence/display/FLINK/FLIP-390%3A+Support+System+out+and+err+to+be+redirected+to+LOG+or+discarded
https://cwiki.apache.org/confluence/display/FLINK/FLIP-390%3A+Support+System+out+and+err+to+be+redirected+to+LOG+or+discarded
https://cwiki.apache.org/confluence/display/FLINK/FLIP-390%3A+Support+System+out+and+err+to+be+redirected+to+LOG+or+discarded

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For the Apache Flink 1.19.1 release documentation, see Apache Flink Documentation v1.19.1.

Changes in Amazon Managed Service for Apache Flink 1.19.1

Logging Trace Reporter enabled by default

Apache Flink 1.19.1 introduced checkpoint and recovery traces, enabling users to better debug
checkpoint and job recovery issues. In Amazon Managed Service for Apache Flink, these traces
are logged into the CloudWatch log stream, allowing users to break down the time spent on job
initialization, and record the historical size of checkpoints.

Default restart strategy is now exponential-delay

In Apache Flink 1.19.1, there are significant improvements to the exponential-delay restart
strategy. In Amazon Managed Service for Apache Flink from Flink 1.19.1 onwards, Flink jobs use
the exponential-delay restart strategy by default. This means that user jobs will recover quicker
from transient errors, but will not overload external systems if job restarts persist.

Backported bug fixes

Amazon Managed Service for Apache Flink backports fixes from the Flink community for critical
issues. This means that the runtime differs from the Apache Flink 1.19.1 release. Following is a list
of bug fixes that we have backported:

Backported bug fixes

Apache Flink JIRA link Description

FLINK-35531 This fix addresses the performance regression
introduced in 1.17.0 that causes slower writes
to HDFS.

FLINK-35157 This fix addresses the issue of stuck Flink
jobs when sources with watermark alignment
encounter finished subtasks.

FLINK-34252 This fix addresses the issue in watermark
generation that results in an erroneous IDLE
watermark state.

Changes in Amazon Managed Service for Apache Flink 1.19.1 105

https://nightlies.apache.org/flink/flink-docs-stable/
https://issues.apache.org/jira/browse/FLINK-35531
https://issues.apache.org/jira/browse/FLINK-35157
https://issues.apache.org/jira/browse/FLINK-34252

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink JIRA link Description

FLINK-34252 This fix addresses the performance regressio
n during watermark generation by reducing
system calls.

FLINK-33936 This fix addresses the issue with duplicate
records during mini-batch aggregation on
Table API.

FLINK-35498 This fix addresses the issue with argument
name conflicts when defining named
parameters in Table API UDFs.

FLINK-33192 This fix addresses the issue of a state memory
leak in window operators due to improper
timer cleanup.

FLINK-35069 This fix addresses the issue when a Flink job
gets stuck triggering a timer at the end of a
window.

FLINK-35832 This fix addresses the issue when IFNULL
returns incorrect results.

FLINK-35886 This fix addresses the issue when backpress
ured tasks are considered as idle.

Components

Component Version

Java 11 (recommended)

Python 3.11

Kinesis Data Analytics Flink Runtime (aws-kine
sisanalytics-runtime)

1.2.0

Components 106

https://issues.apache.org/jira/browse/FLINK-34252
https://issues.apache.org/jira/browse/FLINK-33936
https://issues.apache.org/jira/browse/FLINK-35498
https://issues.apache.org/jira/browse/FLINK-33192
https://issues.apache.org/jira/browse/FLINK-35069
https://issues.apache.org/jira/browse/FLINK-35832
https://issues.apache.org/jira/browse/FLINK-35886

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Connectors For information about available connectors,
see Apache Flink connectors.

Apache Beam (Beam applications only) From version 2.61.0. For more information,
see Flink Version Compatibility.

Known issues

Amazon Managed Service for Apache Flink Studio

Studio uses Apache Zeppelin notebooks to provide a single-interface development experience
for developing, debugging code, and running Apache Flink stream processing applications. An
upgrade is required to Zeppelin’s Flink Interpreter to enable support of Flink 1.19. This work is
scheduled with the Zeppelin community and we will update these notes when it is complete. You
can continue to use Flink 1.15 with Amazon Managed Service for Apache Flink Studio. For more
information, see Creating a Studio notebook.

Amazon Managed Service for Apache Flink 1.18

Managed Service for Apache Flink now supports Apache Flink version 1.18.1. Learn about the key
new features and changes introduced with Managed Service for Apache Flink support of Apache
Flink 1.18.1.

Note

If you are using an earlier supported version of Apache Flink and want to upgrade your
existing applications to Apache Flink 1.18.1, you can do so using in-place Apache Flink
version upgrades. With in-place version upgrades, you retain application traceability
against a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags,
Flink configurations, and more. You can use this feature in RUNNING and READY state. For
more information, see Use in-place version upgrades for Apache Flink.

Known issues 107

https://docs.aws.amazon.com/managed-flink/latest/java/how-flink-connectors.html
https://aws.amazon.com/developer/language/python/
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://docs.aws.amazon.com/managed-flink/latest/java/how-zeppelin-creating.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Supported features with Apache Flink documentation references

Supported Features Description Apache Flink documentation
reference

Opensearch connector This connector includes a sink
that provides at-least-once
guarantees.

github: Opensearch
Connector

Amazon DynamoDB
connector

This connector includes a sink
that provides at-least-once
guarantees.

Amazon DynamoDB Sink

MongoDB connector This connector includes a
source and sink that provide
at-least-once guarantees.

MongoDB Connector

Decouple Hive with Flink
planner

You can use the Hive dialect
directly without the extra JAR
swapping.

FLINK-26603: Decouple Hive
with Flink planner

Disable WAL in RocksDBWr
iteBatchWrapper by default

This provides faster recovery
times.

FLINK-32326: Disable WAL in
RocksDBWriteBatchWrapper
by default

Improve the watermark
aggregation performance
when enabling the watermark
alignment

Improves the watermark
aggregation performance
when enabling the watermark
alignment, and adds the
related benchmark.

FLINK-32524: Watermark
aggregation performance

Make watermark alignment
ready for production use

Removes risk of large jobs
overloading JobManager

FLINK-32548: Make
watermark alignment ready

Configurable RateLimit
ingStratey for Async Sink

RateLimitingStrategy lets
you configure the decision of
what to scale, when to scale,
and how much to scale.

FLIP-242: Introduce configura
ble RateLimitingStrategy for
Async Sink

Amazon Managed Service for Apache Flink 1.18 108

https://github.com/apache/flink-connector-opensearch/blob/main/docs/content/docs/connectors/datastream/opensearch.md
https://github.com/apache/flink-connector-opensearch/blob/main/docs/content/docs/connectors/datastream/opensearch.md
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/mongodb/
https://issues.apache.org/jira/browse/FLINK-26603
https://issues.apache.org/jira/browse/FLINK-26603
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32420
https://issues.apache.org/jira/browse/FLINK-32420
https://issues.apache.org/jira/browse/FLINK-32548
https://issues.apache.org/jira/browse/FLINK-32548
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Supported Features Description Apache Flink documentation
reference

Bulk fetch table and column
statistics

Improved query performance. FLIP-247: Bulk fetch of table
and column statistics for
given partitions

For the Apache Flink 1.18.1 release documentation, see Apache Flink 1.18.1 Release
Announcement.

Changes in Amazon Managed Service for Apache Flink with Apache
Flink 1.18

Akka replaced with Pekko

Apache Flink replaced Akka with Pekko in Apache Flink 1.18. This change is fully supported in
Managed Service for Apache Flink from Apache Flink 1.18.1 and later. You don't need to modify
your applications as a result of this change. For more information, see FLINK-32468: Replace Akka
by Pekko.

Support PyFlink Runtime execution in Thread Mode

This Apache Flink change introduces a new execution mode for the Pyflink Runtime framework,
Process Mode. Process Mode can now execute Python user-defined functions in the same thread
instead of a separate process.

Backported bug fixes

Amazon Managed Service for Apache Flink backports fixes from the Flink community for critical
issues. This means that the runtime differs from the Apache Flink 1.18.1 release. Following is a list
of bug fixes that we have backported:

Backported bug fixes

Apache Flink JIRA link Description

FLINK-33863 This fix addresses the issue when a state
restore fails for compressed snapshots.

Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 109

https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions
https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions
https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions
https://flink.apache.org/2024/01/19/apache-flink-1.18.1-release-announcement/
https://flink.apache.org/2024/01/19/apache-flink-1.18.1-release-announcement/
https://issues.apache.org/jira/browse/FLINK-32468
https://issues.apache.org/jira/browse/FLINK-32468
https://issues.apache.org/jira/browse/FLINK-33863

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink JIRA link Description

FLINK-34063 This fix addresses the issue when source
operators lose splits when snapshot compressi
on is enabled. Apache Flink offers optional
compression (default: off) for all checkpoin
ts and savepoints. Apache Flink identified a
bug in Flink 1.18.1 where the operator state
couldn't be properly restored when snapshot
compression was enabled. This could result
in either data loss or inability to restore from
checkpoint.

FLINK-35069 This fix addresses the issue when a Flink job
gets stuck triggering a timer at the end of a
window.

FLINK-35097 This fix addresses the pissue of duplicate
records in a Table API Filesystem connector
with the raw format.

FLINK-34379 This fix addresses the issue of an OutOfMemo
ryError when enabling dynamic table filtering.

FLINK-28693 This fix addresses the issue of the Table
API being unable to generate a graph if the
watermark has a columnBy expression.

FLINK-35217 This fix addresses the issue of a corrupted
checkpoint during a specific Flink job failure
mode.

Components

Component Version

Java 11 (recommended)

Components 110

https://issues.apache.org/jira/browse/FLINK-34063
https://issues.apache.org/jira/browse/FLINK-35069
https://issues.apache.org/jira/browse/FLINK-35097
https://issues.apache.org/jira/browse/FLINK-34379
https://issues.apache.org/jira/browse/FLINK-28693
https://issues.apache.org/jira/browse/FLINK-35217

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Scala Since version 1.15, Flink is Scala-agnostic. For
reference, MSF Flink 1.18 has been verified
against Scala 3.3 (LTS).

Managed Service for Apache Flink Flink
Runtime (aws-kinesisanalytics-runtime)

1.2.0

AWS Kinesis Connector (flink-connector-k
inesis)[Source]

4.2.0-1.18

AWS Kinesis Connector (flink-connector-k
inesis)[Sink]

4.2.0-1.18

Apache Beam (Beam applications only) From version 2.57.0. For more information,
see Flink Version Compatibility.

Known issues

Amazon Managed Service for Apache Flink Studio

Studio uses Apache Zeppelin notebooks to provide a single-interface development experience
for developing, debugging code, and running Apache Flink stream processing applications. An
upgrade is required to Zeppelin’s Flink Interpreter to enable support of Flink 1.18. This work is
scheduled with the Zeppelin community and we will update these notes when it is complete. You
can continue to use Flink 1.15 with Amazon Managed Service for Apache Flink Studio. For more
information, see Creating a Studio notebook.

Incorrect watermark idleness when subtask is backpressured

There is a known issue in watermark generation when a subtask is backpressured, which has been
fixed from Flink 1.19 and later. This can show up as a spike in the number of late records when a
Flink job graph is backpressured. We recommend that you upgrade to the latest Flink version to
pull in this fix. For more information, see Incorrect watermark idleness timeout accounting when
subtask is backpressured/blocked.

Known issues 111

https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-aws-kinesis-streams/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-aws-kinesis-streams/4.2.0-1.18
https://aws.amazon.com/developer/language/python/
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://docs.aws.amazon.com/managed-flink/latest/java/how-zeppelin-creating.html
https://issues.apache.org/jira/browse/FLINK-35886
https://issues.apache.org/jira/browse/FLINK-35886

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon Managed Service for Apache Flink 1.15

Managed Service for Apache Flink supports the following new features in Apache 1.15.2:

Feature Description Apache FLIP reference

Async Sink An AWS contributed
framework for building async
destinations that allows
developers to build custom
AWS connectors with less
than half the previous effort.
For more information, see The
Generic Asynchronous Base
Sink.

FLIP-171: Async Sink.

Kinesis Data Firehose Sink AWS has contributed a new
Amazon Kinesis Firehose Sink
using the Async framework.

Amazon Kinesis Data Firehose
Sink.

Stop with Savepoint Stop with Savepoint ensures
a clean stop operation, most
importantly supporting
exactly-once semantics for
customers that rely on them.

FLIP-34: Terminate/Suspend
Job with Savepoint.

Scala Decoupling Users can now leverage the
Java API from any Scala
version, including Scala
3. Customers will need to
bundle the Scala standard
library of their choice in their
Scala applications.

FLIP-28: Long-term goal of
making flink-table Scala-free.

Scala See Scala decoupling above FLIP-28: Long-term goal of
making flink-table Scala-free.

Amazon Managed Service for Apache Flink 1.15 112

https://flink.apache.org/2022/05/06/async-sink-base.html
https://flink.apache.org/2022/05/06/async-sink-base.html
https://flink.apache.org/2022/05/06/async-sink-base.html
https://cwiki.apache.org/confluence/display/FLINK/FLIP-171%3A+Async+Sink
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=103090212
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=103090212
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Feature Description Apache FLIP reference

Unified Connector Metrics Flink has defined standard
metrics for jobs, tasks and
operators. Managed Service
for Apache Flink will continue
to support sink and source
metrics and in 1.15 introduce
numRestarts in parallel
with fullRestarts for
Availability Metrics.

FLIP-33: Standardize
Connector Metrics and
FLIP-179: Expose Standardi
zed Operator Metrics.

Checkpointing finished tasks This feature is enabled by
default in Flink 1.15 and
makes it possible to continue
performing checkpoints even
if parts of the job graph have
finished processing all data,
which might happen if it
contains bounded (batch)
sources.

FLIP-147: Support Checkpoin
ts After Tasks Finished.

Changes in Amazon Managed Service for Apache Flink with Apache
Flink 1.15

Studio notebooks

Managed Service for Apache Flink Studio now supports Apache Flink 1.15. Managed Service for
Apache Flink Studio utilizes Apache Zeppelin notebooks to provide a single-interface development
experience for developing, debugging code, and running Apache Flink stream processing
applications. You can learn more about Managed Service for Apache Flink Studio and how to get
started at Use a Studio notebook with Managed Service for Apache Flink.

EFO connector

Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 113

https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/ops/metrics/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/ops/metrics/
https://cwiki.apache.org/confluence/display/FLINK/FLIP-33%3A+Standardize+Connector+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-33%3A+Standardize+Connector+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-179%3A+Expose+Standardized+Operator+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-179%3A+Expose+Standardized+Operator+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-147%3A+Support+Checkpoints+After+Tasks+Finished
https://cwiki.apache.org/confluence/display/FLINK/FLIP-147%3A+Support+Checkpoints+After+Tasks+Finished

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When upgrading to Managed Service for Apache Flink version 1.15, ensure that you are using the
most recent EFO Connector, that is any version 1.15.3 or newer. For more information as to why,
see FLINK-29324.

Scala Decoupling

Starting with Flink 1.15.2, you will need to bundle the Scala standard library of your choice in your
Scala applications.

Kinesis Data Firehose Sink

When upgrading to Managed Service for Apache Flink version 1.15, ensure that you are using the
most recent Amazon Kinesis Data Firehose Sink.

Kafka Connectors

When upgrading to Amazon Managed Service for Apache Flink for Apache Flink version 1.15,
ensure that you are using the most recent Kafka connector APIs. Apache Flink has deprecated
FlinkKafkaConsumer and FlinkKafkaProducer These APIs for the Kafka sink cannot commit to Kafka
for Flink 1.15. Ensure you are using KafkaSource and KafkaSink.

Components

Component Version

Java 11 (recommended)

Scala 2.12

Managed Service for Apache Flink Flink
Runtime (aws-kinesisanalytics-runtime)

1.2.0

AWS Kinesis Connector (flink-connector-k
inesis)

1.15.4

Apache Beam (Beam applications only) 2.33.0, with Jackson version 2.12.2

Known issues

Kafka Commit on checkpointing fails repeatedly after a broker restart

Components 114

https://issues.apache.org/jira/browse/FLINK-29324
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-consumer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-producer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-source
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-sink
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/1.15.4
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/1.15.4
https://aws.amazon.com/developer/language/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

There is a known open source Apache Flink issue with the Apache Kafka connector in Flink version
1.15 caused by a critical open source Kafka Client bug in Kafka Client 2.8.1. For more information,
see Kafka Commit on checkpointing fails repeatedly after a broker restart and KafkaConsumer is
unable to recover connection to group coordinator after commitOffsetAsync exception.

To avoid this issue, we recommend that you use Apache Flink 1.18 or later in Amazon Managed
Service for Apache Flink.

Earlier version information for Managed Service for Apache
Flink

Note

Apache Flink versions 1.6, 1.8, and 1.11 haven't been supported by the Apache Flink
community for over three years. We issued notice of this change in June 2024 and October
2024 and will now end support for these versions in Amazon Managed Service for Apache
Flink.

• On July 14, 2025, we'll stop your applications and place them into a READY state. You'll
be able to re-start your applications at that time and continue to use your applications as
normal, subject to service limits.

• From July 28, 2025, we'll disable the ability to START your applications. You won't be
able to start or operate your Flink version 1.6 applications from this time.

We recommend that you immediately upgrade any existing applications using Apache Flink
version 1.6, 1.8, or 1.11, to Apache Flink version 1.20. This is the most recent supported
Flink version. You can upgrade your applications using the in-place version upgrades
feature in Amazon Managed Service for Apache Flink. For more information, see Use in-
place version upgrades for Apache Flink.
If you have further questions or concerns, you can contact AWS Support.

Note

Apache Flink version 1.13 has not been supported by the Apache Flink community for over
three years. We now plan to end support for this version in Amazon Managed Service for
Apache Flink on October 16, 2025. After this date, you will no longer be able to create,

Earlier versions 115

https://issues.apache.org/jira/browse/FLINK-28060
https://issues.apache.org/jira/browse/KAFKA-13840
https://issues.apache.org/jira/browse/KAFKA-13840
https://aws.amazon.com/support

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

start, or run applications using Apache Flink version 1.13 in Amazon Managed Service for
Apache Flink.
You can upgrade your applications statefully using the in-place version upgrades feature in
Managed Service for Apache Flink. For more information, see Use in-place version upgrades
for Apache Flink.

Version 1.15.2 is supported by Managed Service for Apache Flink, but is no longer supported by
the Apache Flink community.

This topic contains the following sections:

• Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions

• Building applications with Apache Flink 1.8.2

• Building applications with Apache Flink 1.6.2

• Upgrading applications

• Available connectors in Apache Flink 1.6.2 and 1.8.2

• Getting started: Flink 1.13.2

• Getting started: Flink 1.11.1 - deprecating

• Getting started: Flink 1.8.2 - deprecating

• Getting started: Flink 1.6.2 - deprecating

• Earlier version (legacy) examples for Managed Service for Apache Flink

Using the Apache Flink Kinesis Streams connector with previous
Apache Flink versions

The Apache Flink Kinesis Streams connector was not included in Apache Flink prior to version
1.11. In order for your application to use the Apache Flink Kinesis connector with previous
versions of Apache Flink, you must download, compile, and install the version of Apache Flink that
your application uses. This connector is used to consume data from a Kinesis stream used as an
application source, or to write data to a Kinesis stream used for application output.

Note

Ensure that you are building the connector with KPL version 0.14.0 or higher.

Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions 116

https://mvnrepository.com/artifact/com.amazonaws/amazon-kinesis-producer/0.14.0

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To download and install the Apache Flink version 1.8.2 source code, do the following:

1. Ensure that you have Apache Maven installed, and your JAVA_HOME environment variable
points to a JDK rather than a JRE. You can test your Apache Maven install with the following
command:

mvn -version

2. Download the Apache Flink version 1.8.2 source code:

wget https://archive.apache.org/dist/flink/flink-1.8.2/flink-1.8.2-src.tgz

3. Uncompress the Apache Flink source code:

tar -xvf flink-1.8.2-src.tgz

4. Change to the Apache Flink source code directory:

cd flink-1.8.2

5. Compile and install Apache Flink:

mvn clean install -Pinclude-kinesis -DskipTests

Note

If you are compiling Flink on Microsoft Windows, you need to add the -
Drat.skip=true parameter.

Building applications with Apache Flink 1.8.2

This section contains information about components that you use for building Managed Service for
Apache Flink applications that work with Apache Flink 1.8.2.

Use the following component versions for Managed Service for Apache Flink applications:

Building applications with Apache Flink 1.8.2 117

https://maven.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Java 1.8 (recommended)

Apache Flink 1.8.2

Managed Service for Apache Flink for Flink
Runtime (aws-kinesisanalytics-runtime)

1.0.1

Managed Service for Apache Flink Flink
Connectors (aws-kinesisanalytics-flink)

1.0.1

Apache Maven 3.1

To compile an application using Apache Flink 1.8.2, run Maven with the following parameter:

mvn package -Dflink.version=1.8.2

For an example of a pom.xml file for a Managed Service for Apache Flink application that uses
Apache Flink version 1.8.2, see the Managed Service for Apache Flink 1.8.2 Getting Started
Application.

For information about how to build and use application code for a Managed Service for Apache
Flink application, see Create an application.

Building applications with Apache Flink 1.6.2

This section contains information about components that you use for building Managed Service for
Apache Flink applications that work with Apache Flink 1.6.2.

Use the following component versions for Managed Service for Apache Flink applications:

Component Version

Java 1.8 (recommended)

AWS Java SDK 1.11.379

Apache Flink 1.6.2

Building applications with Apache Flink 1.6.2 118

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_8/pom.xml
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_8/pom.xml

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Managed Service for Apache Flink for Flink
Runtime (aws-kinesisanalytics-runtime)

1.0.1

Managed Service for Apache Flink Flink
Connectors (aws-kinesisanalytics-flink)

1.0.1

Apache Maven 3.1

Apache Beam Not supported with Apache Flink 1.6.2.

Note

When using Managed Service for Apache Flink Runtime version 1.0.1, you specify the
version of Apache Flink in your pom.xml file rather than using the -Dflink.version
parameter when compiling your application code.

For an example of a pom.xml file for a Managed Service for Apache Flink application that uses
Apache Flink version 1.6.2, see the Managed Service for Apache Flink 1.6.2 Getting Started
Application.

For information about how to build and use application code for a Managed Service for Apache
Flink application, see Create an application.

Upgrading applications

To upgrade the Apache Flink version of an Amazon Managed Service for Apache Flink application,
use the in-place Apache Flink version upgrade feature using the AWS CLI, AWS SDK, AWS
CloudFormation, or the AWS Management Console. For more information, see Use in-place version
upgrades for Apache Flink.

You can use this feature with any existing applications you use with Amazon Managed Service for
Apache Flink in READY or RUNNING state.

Available connectors in Apache Flink 1.6.2 and 1.8.2

The Apache Flink framework contains connectors for accessing data from a variety of sources.

Upgrading applications 119

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_6/pom.xml
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_6/pom.xml

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For information about connectors available in the Apache Flink 1.6.2 framework, see Connectors
(1.6.2) in the Apache Flink documentation (1.6.2).

• For information about connectors available in the Apache Flink 1.8.2 framework, see Connectors
(1.8.2) in the Apache Flink documentation (1.8.2).

Getting started: Flink 1.13.2

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
the DataStream API. It describes the available options for creating and testing your applications. It
also provides instructions for installing the necessary tools to complete the tutorials in this guide
and to create your first application.

Topics

• Components of a Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an AWS account and create an administrator user

• Next step

• Step 2: Set up the AWS Command Line Interface (AWS CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up AWS resources

• Step 5: Next steps

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Add streaming data
sources.

Getting Started: Flink 1.13.2 120

https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Write data using sinks.

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 11. Set the JAVA_HOME environment variable to point to
your JDK install location.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Set up an AWS account and create an administrator user.

Step 1: Set up an AWS account and create an administrator user

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

Getting Started: Flink 1.13.2 121

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
https://portal.aws.amazon.com/billing/signup

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

Getting Started: Flink 1.13.2 122

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

Getting Started: Flink 1.13.2 123

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

Getting Started: Flink 1.13.2 124

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Next step

Set up the AWS Command Line Interface (AWS CLI)

Next step

Step 2: Set up the AWS Command Line Interface (AWS CLI)

Step 2: Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with Managed Service for Apache
Flink.

Getting Started: Flink 1.13.2 125

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version

The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Installing the AWS Command Line Interface

• Configuring the AWS CLI

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

Getting Started: Flink 1.13.2 126

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you
configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Next step

Getting Started: Flink 1.13.2 127

https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

Getting Started: Flink 1.13.2 128

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3
 STREAM_NAME = "ExampleInputStream"
 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}
 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")
 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Later in the tutorial, you run the stock.py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/GettingStarted
directory.

Note the following about the application code:

Getting Started: Flink 1.13.2 129

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Use runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Fulfill the
prerequisites for completing the exercises.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package -Dflink.version=1.13.2

• Use your development environment. See your development environment documentation for
details.

Getting Started: Flink 1.13.2 130

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The provided source code relies on libraries from Java 11.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the AWS CLI, you specify your code
content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Getting Started: Flink 1.13.2 131

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI.

Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

• Create and run the application (console)

• Create and run the application (AWS CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the Application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.13.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Getting Started: Flink 1.13.2 132

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-
java-apps-1.0.jar"
]
 },

Getting Started: Flink 1.13.2 133

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",

Getting Started: Flink 1.13.2 134

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

ProducerConfigProp
erties

AggregationEnabled false

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

Getting Started: Flink 1.13.2 135

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 AWS CLI command
to create and interact with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).

Getting Started: Flink 1.13.2 136

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Getting Started: Flink 1.13.2 137

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Getting Started: Flink 1.13.2 138

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"

Getting Started: Flink 1.13.2 139

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the Application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{

Getting Started: Flink 1.13.2 140

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the Application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch Logging Option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up
application logging in Managed Service for Apache Flink”.

Getting Started: Flink 1.13.2 141

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update Environment Properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Getting Started: Flink 1.13.2 142

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the Application Code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Next step

Step 4: Clean up AWS resources

Getting Started: Flink 1.13.2 143

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 4: Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

• Next step

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Getting Started: Flink 1.13.2 144

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Next step

Step 5: Next steps

Step 5: Next steps

Now that you've created and run a basic Managed Service for Apache Flink application, see the
following resources for more advanced Managed Service for Apache Flink solutions.

• The AWS Streaming Data Solution for Amazon Kinesis: The AWS Streaming Data Solution
for Amazon Kinesis automatically configures the AWS services necessary to easily capture,
store, process, and deliver streaming data. The solution provides multiple options for solving
streaming data use cases. The Managed Service for Apache Flink option provides an end-to-end
streaming ETL example demonstrating a real-world application that runs analytical operations
on simulated New York taxi data. The solution sets up all necessary AWS resources such as IAM
roles and policies, a CloudWatch dashboard, and CloudWatch alarms.

Getting Started: Flink 1.13.2 145

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• AWS Streaming Data Solution for Amazon MSK: The AWS Streaming Data Solution for Amazon
MSK provides AWS CloudFormation templates where data flows through producers, streaming
storage, consumers, and destinations.

• Clickstream Lab with Apache Flink and Apache Kafka: An end to end lab for clickstream use
cases using Amazon Managed Streaming for Apache Kafka for streaming storage and Managed
Service for Apache Flink for Apache Flink applications for stream processing.

• Amazon Managed Service for Apache Flink Workshop: In this workshop, you build an end-to-
end streaming architecture to ingest, analyze, and visualize streaming data in near real-time. You
set out to improve the operations of a taxi company in New York City. You analyze the telemetry
data of a taxi fleet in New York City in near real-time to optimize their fleet operations.

• Learn Flink: Hands On Training: Offical introductory Apache Flink training that gets you started
writing scalable streaming ETL, analytics, and event-driven applications.

Note

Be aware that Managed Service for Apache Flink does not support the Apache Flink
version (1.12) used in this training. You can use Flink 1.15.2 in Flink Managed Service for
Apache Flink.

Getting started: Flink 1.11.1 - deprecating

Note

Apache Flink versions 1.6, 1.8, and 1.11 have not been supported by the Apache Flink
community for over three years. We plan to deprecate these versions in Amazon Managed
Service for Apache Flink on November 5, 2024. Starting from this date, you will not
be able to create new applications for these Flink versions. You can continue running
existing applications at this time. You can upgrade your applications statefully using the
in-place version upgrades feature in Amazon Managed Service for Apache Flink For more
information, see Use in-place version upgrades for Apache Flink.

This topic contains a version of the Tutorial: Get started using the DataStream API in Managed
Service for Apache Flink tutorial that uses Apache Flink 1.11.1.

Getting Started: Flink 1.11.1 146

https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html
https://catalog.workshops.aws/managed-flink
https://ci.apache.org/projects/flink/flink-docs-master/learn-flink/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
the DataStream API. It describes the available options for creating and testing your applications. It
also provides instructions for installing the necessary tools to complete the tutorials in this guide
and to create your first application.

Topics

• Components of a Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an AWS account and create an administrator user

• Step 2: Set up the AWS Command Line Interface (AWS CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up AWS resources

• Step 5: Next steps

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

An Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Add streaming data
sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Write data using sinks.

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for

Getting Started: Flink 1.11.1 147

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 11. Set the JAVA_HOME environment variable to point to
your JDK install location.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Set up an AWS account and create an administrator user.

Step 1: Set up an AWS account and create an administrator user

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Getting Started: Flink 1.11.1 148

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/earlier-gs-1_11-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Getting Started: Flink 1.11.1 149

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in

Getting Started: Flink 1.11.1 150

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Next step

Set up the AWS Command Line Interface (AWS CLI)

Step 2: Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with Managed Service for Apache
Flink.

Getting Started: Flink 1.11.1 151

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version

The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Installing the AWS Command Line Interface

• Configuring the AWS CLI

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

Getting Started: Flink 1.11.1 152

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-earlier-gs-1_11.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you
configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Next step

Getting Started: Flink 1.11.1 153

https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

Getting Started: Flink 1.11.1 154

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://aws.amazon.com/sdk-for-python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

2. Later in the tutorial, you run the stock.py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

Getting Started: Flink 1.11.1 155

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/GettingStarted
directory.

Note the following about the application code:

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Use runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Fulfill the
prerequisites for completing the exercises.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

Getting Started: Flink 1.11.1 156

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package -Dflink.version=1.11.3

• Use your development environment. See your development environment documentation for
details.

Note

The provided source code relies on libraries from Java 11. Ensure that your project's
Java version is 11.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the AWS CLI, you specify your code
content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

Getting Started: Flink 1.11.1 157

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI.

Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

• Create and run the application (console)

• Create and run the application (AWS CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

Getting Started: Flink 1.11.1 158

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.11 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",

Getting Started: Flink 1.11.1 159

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-
java-apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",

Getting Started: Flink 1.11.1 160

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, for Group ID, enter ProducerConfigProperties.

5. Enter the following application properties and values:

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

ProducerConfigProp
erties

AggregationEnabled false

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

Getting Started: Flink 1.11.1 161

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

7. For CloudWatch logging, select the Enable check box.

8. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application. a Managed Service for Apache Flink uses the kinesisanalyticsv2 AWS CLI
command to create and interact with Managed Service for Apache Flink applications.

Getting Started: Flink 1.11.1 162

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a Permissions Policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"

Getting Started: Flink 1.11.1 163

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Create an IAM Role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Getting Started: Flink 1.11.1 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a Permissions Policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

Getting Started: Flink 1.11.1 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_11",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

Getting Started: Flink 1.11.1 166

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

Getting Started: Flink 1.11.1 167

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up
application logging in Managed Service for Apache Flink”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }

Getting Started: Flink 1.11.1 168

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",

Getting Started: Flink 1.11.1 169

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Next step

Step 4: Clean up AWS resources

Step 4: Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete rour IAM resources

• Delete your CloudWatch resources

• Next step

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Getting Started: Flink 1.11.1 170

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete rour IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Next step

Step 5: Next steps

Step 5: Next steps

Now that you've created and run a basic Managed Service for Apache Flink application, see the
following resources for more advanced Managed Service for Apache Flink solutions.

Getting Started: Flink 1.11.1 171

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• The AWS Streaming Data Solution for Amazon Kinesis: The AWS Streaming Data Solution
for Amazon Kinesis automatically configures the AWS services necessary to easily capture,
store, process, and deliver streaming data. The solution provides multiple options for solving
streaming data use cases. The Managed Service for Apache Flink option provides an end-to-end
streaming ETL example demonstrating a real-world application that runs analytical operations
on simulated New York taxi data. The solution sets up all necessary AWS resources such as IAM
roles and policies, a CloudWatch dashboard, and CloudWatch alarms.

• AWS Streaming Data Solution for Amazon MSK: The AWS Streaming Data Solution for Amazon
MSK provides AWS CloudFormation templates where data flows through producers, streaming
storage, consumers, and destinations.

• Clickstream Lab with Apache Flink and Apache Kafka: An end to end lab for clickstream use
cases using Amazon Managed Streaming for Apache Kafka for streaming storage and Managed
Service for Apache Flink for Apache Flink applications for stream processing.

• Amazon Managed Service for Apache Flink Workshop: In this workshop, you build an end-to-
end streaming architecture to ingest, analyze, and visualize streaming data in near real-time. You
set out to improve the operations of a taxi company in New York City. You analyze the telemetry
data of a taxi fleet in New York City in near real-time to optimize their fleet operations.

• Learn Flink: Hands On Training: Offical introductory Apache Flink training that gets you started
writing scalable streaming ETL, analytics, and event-driven applications.

Note

Be aware that Managed Service for Apache Flink does not support the Apache Flink
version (1.12) used in this training. You can use Flink 1.15.2 in Flink Managed Service for
Apache Flink.

• Apache Flink Code Examples: A GitHub repository of a wide variety of Apache Flink application
examples.

Getting started: Flink 1.8.2 - deprecating

Note

Apache Flink versions 1.6, 1.8, and 1.11 have not been supported by the Apache Flink
community for over three years. We plan to deprecate these versions in Amazon Managed
Service for Apache Flink on November 5, 2024. Starting from this date, you will not

Getting started: Flink 1.8.2 - deprecating 172

https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html
https://catalog.workshops.aws/managed-flink
https://ci.apache.org/projects/flink/flink-docs-master/learn-flink/
https://github.com/apache/flink/tree/master/flink-examples/flink-examples-streaming/src/main/java/org/apache/flink/streaming/examples

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

be able to create new applications for these Flink versions. You can continue running
existing applications at this time. You can upgrade your applications statefully using the
in-place version upgrades feature in Amazon Managed Service for Apache Flink For more
information, see Use in-place version upgrades for Apache Flink.

This topic contains a version of the Tutorial: Get started using the DataStream API in Managed
Service for Apache Flink tutorial that uses Apache Flink 1.8.2.

Topics

• Components of Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an AWS account and create an administrator user

• Step 2: Set up the AWS Command Line Interface (AWS CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up AWS resources

Components of Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

An Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Add streaming data
sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Write data using sinks.

Getting started: Flink 1.8.2 - deprecating 173

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 8. Set the JAVA_HOME environment variable to point to your
JDK install location.

• To use the Apache Flink Kinesis connector in this tutorial, you must download and install Apache
Flink. For details, see Using the Apache Flink Kinesis Streams connector with previous Apache
Flink versions.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an AWS account and create an administrator user.

Step 1: Set up an AWS account and create an administrator user

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

Getting started: Flink 1.8.2 - deprecating 174

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
https://portal.aws.amazon.com/billing/signup

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Getting started: Flink 1.8.2 - deprecating 175

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

Getting started: Flink 1.8.2 - deprecating 176

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 2: Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with Managed Service for Apache
Flink.

Getting started: Flink 1.8.2 - deprecating 177

https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version

The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Installing the AWS Command Line Interface

• Configuring the AWS CLI

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

Getting started: Flink 1.8.2 - deprecating 178

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For a list of available Regions, see Regions and Endpoints in the Amazon Web Services General
Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region.
To use a different AWS Region, change the Region in the code and commands for this
tutorial to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you
configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Next step

Getting started: Flink 1.8.2 - deprecating 179

https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

Getting started: Flink 1.8.2 - deprecating 180

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

2. Later in the tutorial, you run the stock.py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

Getting started: Flink 1.8.2 - deprecating 181

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/
GettingStarted_1_8 directory.

Note the following about the application code:

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Use runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

Note

In order to use the Kinesis connector with versions of Apache Flink prior to 1.11, you
need to download, build, and install Apache Maven. For more information, see the

Getting started: Flink 1.8.2 - deprecating 182

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

section called “Using the Apache Flink Kinesis Streams connector with previous Apache
Flink versions”.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package -Dflink.version=1.8.2

• Use your development environment. See your development environment documentation for
details.

Note

The provided source code relies on libraries from Java 1.8. Ensure that your project's
Java version is 1.8.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the AWS CLI, you specify your code
content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

Getting started: Flink 1.8.2 - deprecating 183

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To upload the application code

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI.

Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

• Create and run the application (console)

• Create and run the application (AWS CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Getting started: Flink 1.8.2 - deprecating 184

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink 1.8 (Recommended Version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

Getting started: Flink 1.8.2 - deprecating 185

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-
java-apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {

Getting started: Flink 1.8.2 - deprecating 186

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following application properties and values:

Getting started: Flink 1.8.2 - deprecating 187

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

ProducerConfigProp
erties

AggregationEnabled false

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

1. On the MyApplication page, choose Run. Confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Getting started: Flink 1.8.2 - deprecating 188

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 AWS CLI command
to create and interact with Managed Service for Apache Flink applications.

Create a Permissions Policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {

Getting started: Flink 1.8.2 - deprecating 189

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Getting started: Flink 1.8.2 - deprecating 190

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a Permissions Policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

Getting started: Flink 1.8.2 - deprecating 191

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_8",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }

Getting started: Flink 1.8.2 - deprecating 192

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
]
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

Getting started: Flink 1.8.2 - deprecating 193

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up
application logging in Managed Service for Apache Flink”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",

Getting started: Flink 1.8.2 - deprecating 194

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications

Getting started: Flink 1.8.2 - deprecating 195

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Next step

Step 4: Clean up AWS resources

Step 4: Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

Getting started: Flink 1.8.2 - deprecating 196

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Choose Configure.

4. In the Snapshots section, choose Disable and then choose Update.

5. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Getting started: Flink 1.8.2 - deprecating 197

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Getting started: Flink 1.6.2 - deprecating

Note

Apache Flink versions 1.6, 1.8, and 1.11 have not been supported by the Apache Flink
community for over three years. We plan to deprecate these versions in Amazon Managed
Service for Apache Flink on November 5, 2024. Starting from this date, you will not
be able to create new applications for these Flink versions. You can continue running
existing applications at this time. You can upgrade your applications statefully using the
in-place version upgrades feature in Amazon Managed Service for Apache Flink For more
information, see Use in-place version upgrades for Apache Flink.

This topic contains a version of the Tutorial: Get started using the DataStream API in Managed
Service for Apache Flink tutorial that uses Apache Flink 1.6.2.

Topics

• Components of a Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an AWS account and create an administrator user

• Step 2: Set up the AWS Command Line Interface (AWS CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up AWS resources

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

a Managed Service for Apache Flink has the following components:

Getting started: Flink 1.6.2 - deprecating 198

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Add streaming data
sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Write data using sinks.

After you create, compile, and package your application, you upload the code package to an
Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 8. Set the JAVA_HOME environment variable to point to your
JDK install location.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git Client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an AWS account and create an administrator user.

Getting started: Flink 1.6.2 - deprecating 199

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 1: Set up an AWS account and create an administrator user

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Getting started: Flink 1.6.2 - deprecating 200

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Getting started: Flink 1.6.2 - deprecating 201

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in

Getting started: Flink 1.6.2 - deprecating 202

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 2: Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with a Managed Service for Apache
Flink.

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version

The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

Getting started: Flink 1.6.2 - deprecating 203

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Installing the AWS Command Line Interface

• Configuring the AWS CLI

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you
configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Getting started: Flink 1.6.2 - deprecating 204

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \

Getting started: Flink 1.6.2 - deprecating 205

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

Getting started: Flink 1.6.2 - deprecating 206

https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

2. Later in the tutorial, you run the stock.py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/
GettingStarted_1_6 directory.

Note the following about the application code:

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the a Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

Getting started: Flink 1.6.2 - deprecating 207

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information about runtime properties, see Use runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

Note

In order to use the Kinesis connector with versions of Apache Flink prior to 1.11, you
need to download the source code for the connector and build it as described in the
Apache Flink documentation.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package

Note

The -Dflink.version parameter is not required for Managed Service for Apache
Flink Runtime version 1.0.1; it is only required for version 1.1.0 and later. For more
information, see the section called “Specify your application's Apache Flink version”.

• Use your development environment. See your development environment documentation for
details.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the AWS CLI, you specify your code
content type (JAR or ZIP).

Getting started: Flink 1.6.2 - deprecating 208

https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/kinesis.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. In the Set permissions step, keep the settings as they are. Choose Next.

10. In the Set properties step, keep the settings as they are. Choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI.

Getting started: Flink 1.6.2 - deprecating 209

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

• Create and run the application (console)

• Create and run the application (AWS CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.8.2 or 1.6.2.

• Change the version pulldown to Apache Flink 1.6.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Getting started: Flink 1.6.2 - deprecating 210

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/java-getting-
started-1.0.jar"
]
 },

Getting started: Flink 1.6.2 - deprecating 211

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",

Getting started: Flink 1.6.2 - deprecating 212

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter java-getting-started-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following application properties and values:

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

ProducerConfigProp
erties

AggregationEnabled false

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

Getting started: Flink 1.6.2 - deprecating 213

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

1. On the MyApplication page, choose Run. Confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 AWS CLI command
to create and interact with Managed Service for Apache Flink applications.

Create a permissions policy

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket

Getting started: Flink 1.6.2 - deprecating 214

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Getting started: Flink 1.6.2 - deprecating 215

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data

Getting started: Flink 1.6.2 - deprecating 216

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_6",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "java-getting-started-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [

Getting started: Flink 1.6.2 - deprecating 217

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }

Getting started: Flink 1.6.2 - deprecating 218

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up
application logging in Managed Service for Apache Flink”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

Getting started: Flink 1.6.2 - deprecating 219

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

Getting started: Flink 1.6.2 - deprecating 220

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "java-getting-started-1.0.jar"
 }
 }
 }
 }
}

Step 4: Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Getting started: Flink 1.6.2 - deprecating 221

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. Choose Configure.

4. In the Snapshots section, choose Disable and then choose Update.

5. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Getting started: Flink 1.6.2 - deprecating 222

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Earlier version (legacy) examples for Managed Service for Apache Flink

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

This section provides examples of creating and working with applications in Managed Service for
Apache Flink. They include example code and step-by-step instructions to help you create Managed
Service for Apache Flink applications and test your results.

Before you explore these examples, we recommend that you first review the following:

• How it works

• Tutorial: Get started using the DataStream API in Managed Service for Apache Flink

Note

These examples assume that you are using the US West (Oregon) Region (us-west-2). If
you are using a different Region, update your application code, commands, and IAM roles
appropriately.

Topics

• DataStream API examples

• Python examples

• Scala examples

Legacy examples 223

https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

DataStream API examples

The following examples demonstrate how to create applications using the Apache Flink
DataStream API.

Topics

• Example: Tumbling window

• Example: Sliding window

• Example: Writing to an Amazon S3 bucket

• Tutorial: Using a Managed Service for Apache Flink application to replicate data from one topic
in an MSK cluster to another in a VPC

• Example: Use an EFO consumer with a Kinesis data stream

• Example: Writing to Firehose

• Example: Read from a Kinesis stream in a different account

• Tutorial: Using a custom truststore with Amazon MSK

Example: Tumbling window

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

In this exercise, you create a Managed Service for Apache Flink application that aggregates
data using a tumbling window. Aggregration is enabled by default in Flink. To disable it, use the
following:

sink.producer.aggregation-enabled' = 'false'

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using the DataStream API in Managed Service for Apache Flink exercise.

Legacy examples 224

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

Legacy examples 225

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

Legacy examples 226

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/TumblingWindow
directory.

The application code is located in the TumblingWindowStreamingJob.java file. Note the
following about the application code:

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Add the following import statement:

import
 org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows; //
flink 1.13 onward

• The application uses the timeWindow operator to find the count of values for each stock symbol
over a 5-second tumbling window. The following code creates the operator and sends the
aggregated data to a new Kinesis Data Streams sink:

input.flatMap(new Tokenizer()) // Tokenizer for generating words
 .keyBy(0) // Logically partition the stream for each word

 .window(TumblingProcessingTimeWindows.of(Time.seconds(5))) //
Flink 1.13 onward
 .sum(1) // Sum the number of words per partition
 .map(value -> value.f0 + "," + value.f1.toString() + "\n")
 .addSink(createSinkFromStaticConfig());

Compile the application code

To compile the application, do the following:

Legacy examples 227

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install Java and Maven if you haven't already. For more information, see Complete the required
prerequisites in the Tutorial: Get started using the DataStream API in Managed Service for
Apache Flink tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

Legacy examples 228

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

Legacy examples 229

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/aws-kinesis-analytics-
java-apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]

Legacy examples 230

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

5. For CloudWatch logging, select the Enable check box.

6. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Legacy examples 231

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

1. On the MyApplication page, choose Run. Leave the Run without snapshot option selected,
and confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Tumbling Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

Legacy examples 232

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Legacy examples 233

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example: Sliding window

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using the DataStream API in Managed Service for Apache Flink exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream).

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

Legacy examples 234

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

Legacy examples 235

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/SlidingWindow
directory.

The application code is located in the SlidingWindowStreamingJobWithParallelism.java
file. Note the following about the application code:

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• The application uses the timeWindow operator to find the minimum value for each stock symbol
over a 10-second window that slides by 5 seconds. The following code creates the operator and
sends the aggregated data to a new Kinesis Data Streams sink:

• Add the following import statement:

Legacy examples 236

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

import
 org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows; //
flink 1.13 onward

• The application uses the timeWindow operator to find the count of values for each stock symbol
over a 5-second tumbling window. The following code creates the operator and sends the
aggregated data to a new Kinesis Data Streams sink:

input.flatMap(new Tokenizer()) // Tokenizer for generating words
 .keyBy(0) // Logically partition the stream for each word

 .window(TumblingProcessingTimeWindows.of(Time.seconds(5))) //Flink 1.13 onward
 .sum(1) // Sum the number of words per partition
 .map(value -> value.f0 + "," + value.f1.toString() + "\n")
 .addSink(createSinkFromStaticConfig());

Compile the application code

To compile the application, do the following:

1. Install Java and Maven if you haven't already. For more information, see Complete the required
prerequisites in the Tutorial: Get started using the DataStream API in Managed Service for
Apache Flink tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Legacy examples 237

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket that you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and then choose
Upload.

2. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your

Legacy examples 238

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/aws-kinesis-analytics-
java-apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",

Legacy examples 239

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

Legacy examples 240

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

5. For CloudWatch logging, select the Enable check box.

6. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Configure the application parallelism

This application example uses parallel execution of tasks. The following application code sets the
parallelism of the min operator:

.setParallelism(3) // Set parallelism for the min operator

The application parallelism can't be greater than the provisioned parallelism, which has a default of
1. To increase your application's parallelism, use the following AWS CLI action:

aws kinesisanalyticsv2 update-application
 --application-name MyApplication
 --current-application-version-id <VersionId>

Legacy examples 241

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 --application-configuration-update "{\"FlinkApplicationConfigurationUpdate
\": { \"ParallelismConfigurationUpdate\": {\"ParallelismUpdate\": 5,
 \"ConfigurationTypeUpdate\": \"CUSTOM\" }}}"

You can retrieve the current application version ID using the DescribeApplication or
ListApplications actions.

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Sliding Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

Legacy examples 242

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html
https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Writing to an Amazon S3 bucket

In this exercise, you create a Managed Service for Apache Flink that has a Kinesis data stream
as a source and an Amazon S3 bucket as a sink. Using the sink, you can verify the output of the
application in the Amazon S3 console.

Legacy examples 243

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using the DataStream API in Managed Service for Apache Flink exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Modify the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Verify the application output

• Optional: Customize the source and sink

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

• A Kinesis data stream (ExampleInputStream).

• An Amazon S3 bucket to store the application's code and output (ka-app-code-<username>)

Note

Managed Service for Apache Flink cannot write data to Amazon S3 with server-side
encryption enabled on Managed Service for Apache Flink.

You can create the Kinesis stream and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

Legacy examples 244

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>. Create two folders (code and data) in the Amazon S3 bucket.

The application creates the following CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/MyApplication.

• A log stream called kinesis-analytics-log-stream.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):

Legacy examples 245

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/S3Sink directory.

The application code is located in the S3StreamingSinkJob.java file. Note the following about
the application code:

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• You need to add the following import statement:

Legacy examples 246

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

import
 org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;

• The application uses an Apache Flink S3 sink to write to Amazon S3.

The sink reads messages in a tumbling window, encodes messages into S3 bucket objects, and
sends the encoded objects to the S3 sink. The following code encodes objects for sending to
Amazon S3:

input.map(value -> { // Parse the JSON
 JsonNode jsonNode = jsonParser.readValue(value, JsonNode.class);
 return new Tuple2<>(jsonNode.get("ticker").toString(), 1);
 }).returns(Types.TUPLE(Types.STRING, Types.INT))
 .keyBy(v -> v.f0) // Logically partition the stream for each word
 .window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
 .sum(1) // Count the appearances by ticker per partition
 .map(value -> value.f0 + " count: " + value.f1.toString() + "\n")
 .addSink(createS3SinkFromStaticConfig());

Note

The application uses a Flink StreamingFileSink object to write to Amazon S3. For more
information about the StreamingFileSink, see StreamingFileSink in the Apache Flink
documentation.

Modify the application code

In this section, you modify the application code to write output to your Amazon S3 bucket.

Update the following line with your user name to specify the application's output location:

private static final String s3SinkPath = "s3a://ka-app-code-<username>/data";

Compile the application code

To compile the application, do the following:

Legacy examples 247

https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html
https://nightlies.apache.org/flink/flink-docs-release-1.13/
https://nightlies.apache.org/flink/flink-docs-release-1.13/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install Java and Maven if you haven't already. For more information, see Complete the required
prerequisites in the Tutorial: Get started using the DataStream API in Managed Service for
Apache Flink tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Note

The provided source code relies on libraries from Java 11.

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, navigate to the code
folder, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

Legacy examples 248

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application.
Your application uses this role and policy to access its dependent resources. These IAM
resources are named using your application name and Region as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

6. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

7. Choose Create application.

Note

When you create a Managed Service for Apache Flink using the console, you have the
option of having an IAM role and policy created for your application. Your application uses
this role and policy to access its dependent resources. These IAM resources are named using
your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Legacy examples 249

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data stream.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID. Replace <username> with your user name.

{
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:Abort*",
 "s3:DeleteObject*",
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-<username>",
 "arn:aws:s3:::ka-app-code-<username>/*"
]
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:*"
]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [

Legacy examples 250

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:%LOG_GROUP_PLACEHOLDER
%:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:%LOG_GROUP_PLACEHOLDER
%:log-stream:%LOG_STREAM_PLACEHOLDER%"
]
 }
 ,
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },

]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter code/aws-kinesis-analytics-java-
apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

Legacy examples 251

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

5. For CloudWatch logging, select the Enable check box.

6. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

1. On the MyApplication page, choose Run. Leave the Run without snapshot option selected,
and confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Verify the application output

In the Amazon S3 console, open the data folder in your S3 bucket.

After a few minutes, objects containing aggregated data from the application will appear.

Note

Aggregration is enabled by default in Flink. To disable it, use the following:

sink.producer.aggregation-enabled' = 'false'

Legacy examples 252

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Optional: Customize the source and sink

In this section, you customize settings on the source and sink objects.

Note

After changing the code sections described in the sections following, do the following to
reload the application code:

• Repeat the steps in the the section called “Compile the application code” section to
compile the updated application code.

• Repeat the steps in the the section called “Upload the Apache Flink streaming Java code”
section to upload the updated application code.

• On the application's page in the console, choose Configure and then choose Update to
reload the updated application code into your application.

This section contains the following sections:

• Configure data partitioning

• Configure read frequency

• Configure write buffering

Configure data partitioning

In this section, you configure the names of the folders that the streaming file sink creates in the S3
bucket. You do this by adding a bucket assigner to the streaming file sink.

To customize the folder names created in the S3 bucket, do the following:

1. Add the following import statements to the beginning of the S3StreamingSinkJob.java
file:

import
 org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;
import
 org.apache.flink.streaming.api.functions.sink.filesystem.bucketassigners.DateTimeBucketAssigner;

2. Update the createS3SinkFromStaticConfig() method in the code to look like the
following:

Legacy examples 253

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

private static StreamingFileSink<String> createS3SinkFromStaticConfig() {

 final StreamingFileSink<String> sink = StreamingFileSink
 .forRowFormat(new Path(s3SinkPath), new
 SimpleStringEncoder<String>("UTF-8"))
 .withBucketAssigner(new DateTimeBucketAssigner("yyyy-MM-dd--HH"))
 .withRollingPolicy(DefaultRollingPolicy.create().build())
 .build();
 return sink;
}

The preceding code example uses the DateTimeBucketAssigner with a custom date format to
create folders in the S3 bucket. The DateTimeBucketAssigner uses the current system time
to create bucket names. If you want to create a custom bucket assigner to further customize the
created folder names, you can create a class that implements BucketAssigner. You implement your
custom logic by using the getBucketId method.

A custom implementation of BucketAssigner can use the Context parameter to obtain more
information about a record in order to determine its destination folder.

Configure read frequency

In this section, you configure the frequency of reads on the source stream.

The Kinesis Streams consumer reads from the source stream five times per second by default.
This frequency will cause issues if there is more than one client reading from the stream, or if
the application needs to retry reading a record. You can avoid these issues by setting the read
frequency of the consumer.

To set the read frequency of the Kinesis consumer, you set the
SHARD_GETRECORDS_INTERVAL_MILLIS setting.

The following code example sets the SHARD_GETRECORDS_INTERVAL_MILLIS setting to one
second:

kinesisConsumerConfig.setProperty(ConsumerConfigConstants.SHARD_GETRECORDS_INTERVAL_MILLIS,
 "1000");

Legacy examples 254

https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/streaming/api/functions/sink/filesystem/BucketAssigner.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/streaming/api/functions/sink/filesystem/BucketAssigner.Context.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Configure write buffering

In this section, you configure the write frequency and other settings of the sink.

By default, the application writes to the destination bucket every minute. You can change this
interval and other settings by configuring the DefaultRollingPolicy object.

Note

The Apache Flink streaming file sink writes to its output bucket every time the application
creates a checkpoint. The application creates a checkpoint every minute by default. To
increase the write interval of the S3 sink, you must also increase the checkpoint interval.

To configure the DefaultRollingPolicy object, do the following:

1. Increase the application's CheckpointInterval setting. The following input for the
UpdateApplication action sets the checkpoint interval to 10 minutes:

{
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "CheckpointConfigurationUpdate": {
 "ConfigurationTypeUpdate" : "CUSTOM",
 "CheckpointIntervalUpdate": 600000
 }
 }
 },
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 5
}

To use the preceding code, specify the current application version. You can retrieve the
application version by using the ListApplications action.

2. Add the following import statement to the beginning of the S3StreamingSinkJob.java
file:

import java.util.concurrent.TimeUnit;

Legacy examples 255

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Update the createS3SinkFromStaticConfig method in the S3StreamingSinkJob.java
file to look like the following:

private static StreamingFileSink<String> createS3SinkFromStaticConfig() {

 final StreamingFileSink<String> sink = StreamingFileSink
 .forRowFormat(new Path(s3SinkPath), new
 SimpleStringEncoder<String>("UTF-8"))
 .withBucketAssigner(new DateTimeBucketAssigner("yyyy-MM-dd--HH"))
 .withRollingPolicy(
 DefaultRollingPolicy.create()
 .withRolloverInterval(TimeUnit.MINUTES.toMillis(8))
 .withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
 .withMaxPartSize(1024 * 1024 * 1024)
 .build())
 .build();
 return sink;
 }

The preceding code example sets the frequency of writes to the Amazon S3 bucket to 8
minutes.

For more information about configuring the Apache Flink streaming file sink, see Row-encoded
Formats in the Apache Flink documentation.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources that you created in the Amazon S3
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data stream

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Legacy examples 256

https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html#row-encoded-formats
https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html#row-encoded-formats
https://nightlies.apache.org/flink/flink-docs-release-1.13/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. On the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data stream

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. On the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Delete your Amazon S3 objects and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. On the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Legacy examples 257

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Tutorial: Using a Managed Service for Apache Flink application to replicate data from one topic
in an MSK cluster to another in a VPC

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

The following tutorial demonstrates how to create an Amazon VPC with an Amazon MSK cluster
and two topics, and how to create a Managed Service for Apache Flink application that reads from
one Amazon MSK topic and writes to another.

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using the DataStream API in Managed Service for Apache Flink exercise.

This tutorial contains the following sections:

• Create an Amazon VPC with an Amazon MSK cluster

• Create the application code

• Upload the Apache Flink streaming Java code

• Create the application

• Configure the application

• Run the application

• Test the application

Create an Amazon VPC with an Amazon MSK cluster

To create a sample VPC and Amazon MSK cluster to access from a Managed Service for Apache
Flink application, follow the Getting Started Using Amazon MSK tutorial.

Legacy examples 258

https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When completing the tutorial, note the following:

• In Step 3: Create a Topic, repeat the kafka-topics.sh --create command to create a
destination topic named AWSKafkaTutorialTopicDestination:

bin/kafka-topics.sh --create --zookeeper ZooKeeperConnectionString --replication-
factor 3 --partitions 1 --topic AWSKafkaTutorialTopicDestination

• Record the bootstrap server list for your cluster. You can get the list of bootstrap servers with the
following command (replace ClusterArn with the ARN of your MSK cluster):

aws kafka get-bootstrap-brokers --region us-west-2 --cluster-arn ClusterArn
{...
 "BootstrapBrokerStringTls": "b-2.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-1.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-3.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094"
}

• When following the steps in the tutorials, be sure to use your selected AWS Region in your code,
commands, and console entries.

Create the application code

In this section, you'll download and compile the application JAR file. We recommend using Java 11.

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. The application code is located in the amazon-kinesis-data-analytics-java-
examples/KafkaConnectors/KafkaGettingStartedJob.java file. You can examine the
code to familiarize yourself with the structure of Managed Service for Apache Flink application
code.

Legacy examples 259

https://docs.aws.amazon.com/msk/latest/developerguide/create-topic.html
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Use either the command-line Maven tool or your preferred development environment to
create the JAR file. To compile the JAR file using the command-line Maven tool, enter the
following:

mvn package -Dflink.version=1.15.3

If the build is successful, the following file is created:

target/KafkaGettingStartedJob-1.0.jar

Note

The provided source code relies on libraries from Java 11. If you are using a
development environment,

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Tutorial: Get started using the DataStream API in Managed Service for Apache Flink tutorial.

Note

If you deleted the Amazon S3 bucket from the Getting Started tutorial, follow the the
section called “Upload the application code JAR file” step again.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the
KafkaGettingStartedJob-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink..

Legacy examples 260

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink version 1.15.2.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter KafkaGettingStartedJob-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

Note

When you specify application resources using the console (such as CloudWatch Logs
or an Amazon VPC), the console modifies your application execution role to grant
permission to access those resources.

Legacy examples 261

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Under Properties, choose Add Group. Enter the following properties:

Group ID Key Value

KafkaSource topic AWSKafkaTutorialTopic

KafkaSource bootstrap.servers The bootstrap server
list you saved
previously

KafkaSource security.protocol SSL

KafkaSource ssl.truststore.location /usr/lib/jvm/java-11-
amazon-corretto/lib/secu
rity/cacerts

KafkaSource ssl.truststore.password changeit

Note

The ssl.truststore.password for the default certificate is "changeit"; you do not need to
change this value if you are using the default certificate.

Choose Add Group again. Enter the following properties:

Group ID Key Value

KafkaSink topic AWSKafkaTutorialTo
picDestination

KafkaSink bootstrap.servers The bootstrap server
list you saved
previously

KafkaSink security.protocol SSL

Legacy examples 262

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

KafkaSink ssl.truststore.location /usr/lib/jvm/java-11-
amazon-corretto/lib/secu
rity/cacerts

KafkaSink ssl.truststore.password changeit

KafkaSink transaction.timeout.ms 1000

The application code reads the above application properties to configure the source and sink
used to interact with your VPC and Amazon MSK cluster. For more information about using
properties, see Use runtime properties.

5. Under Snapshots, choose Disable. This will make it easier to update the application without
loading invalid application state data.

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

7. For CloudWatch logging, choose the Enable check box.

8. In the Virtual Private Cloud (VPC) section, choose the VPC to associate with your application.
Choose the subnets and security group associated with your VPC that you want the application
to use to access VPC resources.

9. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application.

Legacy examples 263

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Test the application

In this section, you write records to the source topic. The application reads records from the source
topic and writes them to the destination topic. You verify the application is working by writing
records to the source topic and reading records from the destination topic.

To write and read records from the topics, follow the steps in Step 6: Produce and Consume Data in
the Getting Started Using Amazon MSK tutorial.

To read from the destination topic, use the destination topic name instead of the source topic in
your second connection to the cluster:

bin/kafka-console-consumer.sh --bootstrap-server BootstrapBrokerString --
consumer.config client.properties --topic AWSKafkaTutorialTopicDestination --from-
beginning

If no records appear in the destination topic, see the Cannot access resources in a VPC section in
the Troubleshoot Managed Service for Apache Flink topic.

Example: Use an EFO consumer with a Kinesis data stream

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

In this exercise, you create a Managed Service for Apache Flink application that reads from a
Kinesis data stream using an Enhanced Fan-Out (EFO) consumer. If a Kinesis consumer uses EFO,
the Kinesis Data Streams service gives it its own dedicated bandwidth, rather than having the
consumer share the fixed bandwidth of the stream with the other consumers reading from the
stream.

For more information about using EFO with the Kinesis consumer, see FLIP-128: Enhanced Fan Out
for Kinesis Consumers.

Legacy examples 264

https://docs.aws.amazon.com/msk/latest/developerguide/produce-consume.html
https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/streams/latest/dev/enhanced-consumers.html
https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers
https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application you create in this example uses AWS Kinesis connector (flink-connector-kinesis)
1.15.3.

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using the DataStream API in Managed Service for Apache Flink exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Legacy examples 265

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

Legacy examples 266

https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/EfoConsumer
directory.

The application code is located in the EfoApplication.java file. Note the following about the
application code:

• You enable the EFO consumer by setting the following parameters on the Kinesis consumer:

• RECORD_PUBLISHER_TYPE: Set this parameter to EFO for your application to use an EFO
consumer to access the Kinesis Data Stream data.

• EFO_CONSUMER_NAME: Set this parameter to a string value that is unique among the
consumers of this stream. Re-using a consumer name in the same Kinesis Data Stream will
cause the previous consumer using that name to be terminated.

• The following code example demonstrates how to assign values to the consumer configuration
properties to use an EFO consumer to read from the source stream:

consumerConfig.putIfAbsent(RECORD_PUBLISHER_TYPE, "EFO");
consumerConfig.putIfAbsent(EFO_CONSUMER_NAME, "basic-efo-flink-app");

Compile the application code

To compile the application, do the following:

Legacy examples 267

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install Java and Maven if you haven't already. For more information, see Complete the required
prerequisites in the Tutorial: Get started using the DataStream API in Managed Service for
Apache Flink tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

Legacy examples 268

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

Legacy examples 269

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

These permissions grant the application the ability to access the EFO consumer.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/aws-kinesis-analytics-
java-apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",

Legacy examples 270

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "AllStreams",
 "Effect": "Allow",
 "Action": [
 "kinesis:ListShards",
 "kinesis:ListStreamConsumers",
 "kinesis:DescribeStreamSummary"
],
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/*"
 },
 {
 "Sid": "Stream",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:RegisterStreamConsumer",
 "kinesis:DeregisterStreamConsumer"
],
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 },
 {
 "Sid": "Consumer",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStreamConsumer",
 "kinesis:SubscribeToShard"
],
 "Resource": [

Legacy examples 271

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream/consumer/my-efo-flink-app",
 "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream/consumer/my-efo-flink-app:*"
]
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Create Group.

5. Enter the following application properties and values:

Group ID Key Value

ConsumerConfigProp
erties

flink.stream.recor
dpublisher

EFO

ConsumerConfigProp
erties

flink.stream.efo.c
onsumername

basic-efo-flink-app

ConsumerConfigProp
erties

INPUT_STREAM ExampleInputStream

ConsumerConfigProp
erties

flink.inputstream.
initpos

LATEST

ConsumerConfigProp
erties

AWS_REGION us-west-2

Legacy examples 272

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. Under Properties, choose Create Group.

7. Enter the following application properties and values:

Group ID Key Value

ProducerConfigProp
erties

OUTPUT_STREAM ExampleOutputStream

ProducerConfigProp
erties

AWS_REGION us-west-2

ProducerConfigProp
erties

AggregationEnabled false

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, select the Enable check box.

10. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Legacy examples 273

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can also check the Kinesis Data Streams console, in the data stream's Enhanced fan-out tab,
for the name of your consumer (basic-efo-flink-app).

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the efo Window tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete Your Amazon S3 Object and Bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete Your Amazon S3 Object and Bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Legacy examples 274

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Writing to Firehose

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

In this exercise, you create a Managed Service for Apache Flink application that has a Kinesis data
stream as a source and a Firehose stream as a sink. Using the sink, you can verify the output of the
application in an Amazon S3 bucket.

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using the DataStream API in Managed Service for Apache Flink exercise.

Legacy examples 275

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This section contains the following steps:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

• A Kinesis data stream (ExampleInputStream)

• A Firehose stream that the application writes output to (ExampleDeliveryStream).

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis stream, Amazon S3 buckets, and Firehose stream using the console. For
instructions for creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream.

• Creating an Amazon Kinesis Data Firehose Delivery Stream in the Amazon Data Firehose
Developer Guide. Name your Firehose stream ExampleDeliveryStream. When you create the
Firehose stream, also create the Firehose stream's S3 destination and IAM role.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Legacy examples 276

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

This section requires the AWS SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Legacy examples 277

https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/FirehoseSink
directory.

The application code is located in the FirehoseSinkStreamingJob.java file. Note the
following about the application code:

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• The application uses a Firehose sink to write data to a Firehose stream. The following snippet
creates the Firehose sink:

private static KinesisFirehoseSink<String> createFirehoseSinkFromStaticConfig() {
 Properties sinkProperties = new Properties();
 sinkProperties.setProperty(AWS_REGION, region);

 return KinesisFirehoseSink.<String>builder()
 .setFirehoseClientProperties(sinkProperties)
 .setSerializationSchema(new SimpleStringSchema())
 .setDeliveryStreamName(outputDeliveryStreamName)
 .build();
 }

Compile the application code

To compile the application, do the following:

Legacy examples 278

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install Java and Maven if you haven't already. For more information, see Complete the required
prerequisites in the Tutorial: Get started using the DataStream API in Managed Service for
Apache Flink tutorial.

2. In order to use the Kinesis connector for the following application, you need to download,
build, and install Apache Maven. For more information, see the section called “Using the
Apache Flink Kinesis Streams connector with previous Apache Flink versions”.

3. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket that you created in the
Create dependent resources section.

To upload the application code

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. In the console, choose the ka-app-code-<username> bucket, and then choose Upload.

3. In the Select files step, choose Add files. Navigate to the java-getting-started-1.0.jar
file that you created in the previous step.

4. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI.

Legacy examples 279

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

• Create and run the application (console)

• Create and run the application (AWS CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Legacy examples 280

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create the application using the console, you have the option of having an IAM
role and policy created for your application. The application uses this role and policy to
access its dependent resources. These IAM resources are named using your application
name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data stream and Firehose stream.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace all the
instances of the sample account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/java-getting-
started-1.0.jar"
]
 },

Legacy examples 281

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteDeliveryStream",
 "Effect": "Allow",
 "Action": "firehose:*",

Legacy examples 282

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": "arn:aws:firehose:us-
west-2:012345678901:deliverystream/ExampleDeliveryStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter java-getting-started-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

5. For CloudWatch logging, select the Enable check box.

6. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Legacy examples 283

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Note

To update the application's code on the console, you must either change the object name
of the JAR, use a different S3 bucket, or use the AWS CLI as described in the the section
called “Update the application code” section. If the file name or the bucket does not
change, the application code is not reloaded when you choose Update on the Configure
page.

Create and run the application (AWS CLI)

In this section, you use the AWS CLI to create and run the Managed Service for Apache Flink
application.

Create a permissions policy

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you will use to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

JSON

{

Legacy examples 284

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteDeliveryStream",
 "Effect": "Allow",
 "Action": "firehose:*",
 "Resource": "arn:aws:firehose:us-west-2:012345678901:deliverystream/
ExampleDeliveryStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the AWS SDK for Java. Managed Service for
Apache Flink automatically sets the credentials required by the SDK to those of the service
execution IAM role that is associated with your application. No additional steps are needed.

Legacy examples 285

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream if it doesn't have permissions. You
grant these permissions via an IAM role. Each IAM role has two policies attached. The trust policy
grants Managed Service for Apache Flink permission to assume the role. The permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose AWS Service. Under Choose the service that
will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

Legacy examples 286

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application will use to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
with the suffix that you chose in the the section called “Create dependent resources” section
(ka-app-code-<username>.) Replace the sample account ID (012345678901) in the service
execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "java-getting-started-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 }
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

Legacy examples 287

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"

Legacy examples 288

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Set up
application logging in Managed Service for Apache Flink”.

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication AWS CLI action.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
you chose in the the section called “Create dependent resources” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "java-getting-started-1.0.jar"
 }
 }
 }

Legacy examples 289

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
}

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data stream

• Delete your Firehose stream

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. Choose Configure.

4. In the Snapshots section, choose Disable and then choose Update.

5. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data stream

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Delete your Firehose stream

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

Legacy examples 290

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the Firehose panel, choose ExampleDeliveryStream.

3. In the ExampleDeliveryStream page, choose Delete Firehose stream and then confirm the
deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

4. If you created an Amazon S3 bucket for your Firehose stream's destination, delete that bucket
too.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. If you created a new policy for your Firehose stream, delete that policy too.

7. In the navigation bar, choose Roles.

8. Choose the kinesis-analytics-MyApplication-us-west-2 role.

9. Choose Delete role and then confirm the deletion.

10. If you created a new role for your Firehose stream, delete that role too.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Legacy examples 291

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example: Read from a Kinesis stream in a different account

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

This example demonstrates how to create an Managed Service for Apache Flink application that
reads data from a Kinesis stream in a different account. In this example, you will use one account
for the source Kinesis stream, and a second account for the Managed Service for Apache Flink
application and sink Kinesis stream.

This topic contains the following sections:

• Prerequisites

• Setup

• Create source Kinesis stream

• Create and update IAM roles and policies

• Update the Python script

• Update the Java application

• Build, upload, and run the application

Prerequisites

• In this tutorial, you modify the Getting Started example to read data from a Kinesis stream in
a different account. Complete the Tutorial: Get started using the DataStream API in Managed
Service for Apache Flink tutorial before proceeding.

• You need two AWS accounts to complete this tutorial: one for the source stream, and one for the
application and the sink stream. Use the AWS account you used for the Getting Started tutorial
for the application and sink stream. Use a different AWS account for the source stream.

Setup

You will access your two AWS accounts by using named profiles. Modify your AWS credentials and
configuration files to include two profiles that contain the region and connection information for
your two accounts.

Legacy examples 292

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The following example credential file contains two named profiles, ka-source-stream-
account-profile and ka-sink-stream-account-profile. Use the account you used for the
Getting Started tutorial for the sink stream account.

[ka-source-stream-account-profile]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

[ka-sink-stream-account-profile]
aws_access_key_id=AKIAI44QH8DHBEXAMPLE
aws_secret_access_key=je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY

The following example configuration file contains the same named profiles with region and output
format information.

[profile ka-source-stream-account-profile]
region=us-west-2
output=json

[profile ka-sink-stream-account-profile]
region=us-west-2
output=json

Note

This tutorial does not use the ka-sink-stream-account-profile. It is included as an
example of how to access two different AWS accounts using profiles.

For more information on using named profiles with the AWS CLI, see Named Profiles in the AWS
Command Line Interface documentation.

Create source Kinesis stream

In this section, you will create the Kinesis stream in the source account.

Enter the following command to create the Kinesis stream that the application will use for input.
Note that the --profile parameter specifies which account profile to use.

$ aws kinesis create-stream \
--stream-name SourceAccountExampleInputStream \

Legacy examples 293

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

--shard-count 1 \
--profile ka-source-stream-account-profile

Create and update IAM roles and policies

To allow object access across AWS accounts, you create an IAM role and policy in the source
account. Then, you modify the IAM policy in the sink account. For information about creating IAM
roles and policies, see the following topics in the AWS Identity and Access Management User Guide:

• Creating IAM Roles

• Creating IAM Policies

Sink account roles and policies

1. Edit the kinesis-analytics-service-MyApplication-us-west-2 policy from the
Getting Started tutorial. This policy allows the role in the source account to be assumed in
order to read the source stream.

Note

When you use the console to create your application, the console creates a policy
called kinesis-analytics-service-<application name>-<application
region>, and a role called kinesisanalytics-<application
name>-<application region>.

Add the highlighted section below to the policy. Replace the sample account ID
(SOURCE01234567) with the ID of the account you will use for the source stream.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRoleInSourceAccount",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",

Legacy examples 294

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": "arn:aws:iam::123456789012:role/KA-Source-Stream-
Role"
 },
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-
java-apps-1.0.jar"
]
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:*"
]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [

Legacy examples 295

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 }
]
}

2. Open the kinesis-analytics-MyApplication-us-west-2 role, and make a note of its
Amazon Resource Name (ARN). You will need it in the next section. The role ARN looks like the
following.

arn:aws:iam::SINK012345678:role/service-role/kinesis-analytics-MyApplication-us-
west-2

Source account roles and policies

1. Create a policy in the source account called KA-Source-Stream-Policy. Use the following
JSON for the policy. Replace the sample account number with the account number of the
source account.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:ListShards"
],
 "Resource": "arn:aws:kinesis:us-west-2:111122223333:stream/
SourceAccountExampleInputStream"
 }
]
}

Legacy examples 296

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Create a role in the source account called MF-Source-Stream-Role. Do the following to
create the role using the Managed Flink use case:

1. In the IAM Management Console, choose Create Role.

2. On the Create Role page, choose AWS Service. In the service list, choose Kinesis.

3. In the Select your use case section, choose Managed Service for Apache Flink.

4. Choose Next: Permissions.

5. Add the KA-Source-Stream-Policy permissions policy you created in the previous step.
Choose Next:Tags.

6. Choose Next: Review.

7. Name the role KA-Source-Stream-Role. Your application will use this role to access the
source stream.

3. Add the kinesis-analytics-MyApplication-us-west-2 ARN from the sink account to
the trust relationship of the KA-Source-Stream-Role role in the source account:

1. Open the KA-Source-Stream-Role in the IAM console.

2. Choose the Trust Relationships tab.

3. Choose Edit trust relationship.

4. Use the following code for the trust relationship. Replace the sample account ID
(SINK012345678) with your sink account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/service-role/
kinesis-analytics-MyApplication-us-west-2"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Legacy examples 297

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the Python script

In this section, you update the Python script that generates sample data to use the source account
profile.

Update the stock.py script with the following highlighted changes.

import json
import boto3
import random
import datetime
import os

os.environ['AWS_PROFILE'] ='ka-source-stream-account-profile'
os.environ['AWS_DEFAULT_REGION'] = 'us-west-2'

kinesis = boto3.client('kinesis')
def getReferrer():
 data = {}
 now = datetime.datetime.now()
 str_now = now.isoformat()
 data['event_time'] = str_now
 data['ticker'] = random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV'])
 price = random.random() * 100
 data['price'] = round(price, 2)
 return data

while True:
 data = json.dumps(getReferrer())
 print(data)
 kinesis.put_record(
 StreamName="SourceAccountExampleInputStream",
 Data=data,
 PartitionKey="partitionkey")

Update the Java application

In this section, you update the Java application code to assume the source account role when
reading from the source stream.

Make the following changes to the BasicStreamingJob.java file. Replace the example source
account number (SOURCE01234567) with your source account number.

Legacy examples 298

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

package com.amazonaws.services.managed-flink;

import com.amazonaws.services.managed-flink.runtime.KinesisAnalyticsRuntime;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisProducer;
import org.apache.flink.streaming.connectors.kinesis.config.ConsumerConfigConstants;
import org.apache.flink.streaming.connectors.kinesis.config.AWSConfigConstants;

import java.io.IOException;
import java.util.Map;
import java.util.Properties;

 /**
 * A basic Managed Service for Apache Flink for Java application with Kinesis data
 streams
 * as source and sink.
 */
public class BasicStreamingJob {
 private static final String region = "us-west-2";
 private static final String inputStreamName = "SourceAccountExampleInputStream";
 private static final String outputStreamName = ExampleOutputStream;
 private static final String roleArn = "arn:aws:iam::SOURCE01234567:role/KA-Source-
Stream-Role";
 private static final String roleSessionName = "ksassumedrolesession";

 private static DataStream<String>
 createSourceFromStaticConfig(StreamExecutionEnvironment env) {
 Properties inputProperties = new Properties();
 inputProperties.setProperty(AWSConfigConstants.AWS_CREDENTIALS_PROVIDER,
 "ASSUME_ROLE");
 inputProperties.setProperty(AWSConfigConstants.AWS_ROLE_ARN, roleArn);
 inputProperties.setProperty(AWSConfigConstants.AWS_ROLE_SESSION_NAME,
 roleSessionName);
 inputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);
 inputProperties.setProperty(ConsumerConfigConstants.STREAM_INITIAL_POSITION,
 "LATEST");

 return env.addSource(new FlinkKinesisConsumer<>(inputStreamName, new
 SimpleStringSchema(), inputProperties));
 }

Legacy examples 299

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 private static KinesisStreamsSink<String> createSinkFromStaticConfig() {
 Properties outputProperties = new Properties();
 outputProperties.setProperty(AWSConfigConstants.AWS_REGION, region);

 return KinesisStreamsSink.<String>builder()
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema())
 .setStreamName(outputProperties.getProperty("OUTPUT_STREAM",
 "ExampleOutputStream"))
 .setPartitionKeyGenerator(element ->
 String.valueOf(element.hashCode()))
 .build();
 }

 public static void main(String[] args) throws Exception {
 // set up the streaming execution environment
 final StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

 DataStream<String> input = createSourceFromStaticConfig(env);

 input.addSink(createSinkFromStaticConfig());

 env.execute("Flink Streaming Java API Skeleton");
 }
}

Build, upload, and run the application

Do the following to update and run the application:

1. Build the application again by running the following command in the directory with the
pom.xml file.

mvn package -Dflink.version=1.15.3

2. Delete the previous JAR file from your Amazon Simple Storage Service (Amazon S3) bucket,
and then upload the new aws-kinesis-analytics-java-apps-1.0.jar file to the S3
bucket.

3. In the application's page in the Managed Service for Apache Flink console, choose Configure,
Update to reload the application JAR file.

Legacy examples 300

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Run the stock.py script to send data to the source stream.

python stock.py

The application now reads data from the Kinesis stream in the other account.

You can verify that the application is working by checking the PutRecords.Bytes metric of
the ExampleOutputStream stream. If there is activity in the output stream, the application is
functioning properly.

Tutorial: Using a custom truststore with Amazon MSK

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

Current data source APIs

If you are using the current data source APIs, your application can leverage the Amazon MSK Config
Providers utility described here. This allows your KafkaSource function to access your keystore and
truststore for mutual TLS in Amazon S3.

...
// define names of config providers:
builder.setProperty("config.providers", "secretsmanager,s3import");

// provide implementation classes for each provider:
builder.setProperty("config.providers.secretsmanager.class",
 "com.amazonaws.kafka.config.providers.SecretsManagerConfigProvider");
builder.setProperty("config.providers.s3import.class",
 "com.amazonaws.kafka.config.providers.S3ImportConfigProvider");

String region = appProperties.get(Helpers.S3_BUCKET_REGION_KEY).toString();
String keystoreS3Bucket = appProperties.get(Helpers.KEYSTORE_S3_BUCKET_KEY).toString();
String keystoreS3Path = appProperties.get(Helpers.KEYSTORE_S3_PATH_KEY).toString();
String truststoreS3Bucket =
 appProperties.get(Helpers.TRUSTSTORE_S3_BUCKET_KEY).toString();
String truststoreS3Path = appProperties.get(Helpers.TRUSTSTORE_S3_PATH_KEY).toString();

Legacy examples 301

https://github.com/aws-samples/msk-config-providers

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

String keystorePassSecret =
 appProperties.get(Helpers.KEYSTORE_PASS_SECRET_KEY).toString();
String keystorePassSecretField =
 appProperties.get(Helpers.KEYSTORE_PASS_SECRET_FIELD_KEY).toString();

// region, etc..
builder.setProperty("config.providers.s3import.param.region", region);

// properties
builder.setProperty("ssl.truststore.location", "${s3import:" + region + ":" +
 truststoreS3Bucket + "/" + truststoreS3Path + "}");
builder.setProperty("ssl.keystore.type", "PKCS12");
builder.setProperty("ssl.keystore.location", "${s3import:" + region + ":" +
 keystoreS3Bucket + "/" + keystoreS3Path + "}");
builder.setProperty("ssl.keystore.password", "${secretsmanager:" + keystorePassSecret +
 ":" + keystorePassSecretField + "}");
builder.setProperty("ssl.key.password", "${secretsmanager:" + keystorePassSecret + ":"
 + keystorePassSecretField + "}");
...

More details and a walkthrough can be found here.

Legacy SourceFunction APIs

If you are using the legacy SourceFunction APIs, your application will use custom serialization and
deserialization schemas that override the open method to load the custom truststore. This makes
the truststore available to the application after the application restarts or replaces threads.

The custom truststore is retrieved and stored using the following code:

public static void initializeKafkaTruststore() {
 ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
 URL inputUrl = classLoader.getResource("kafka.client.truststore.jks");
 File dest = new File("/tmp/kafka.client.truststore.jks");

 try {
 FileUtils.copyURLToFile(inputUrl, dest);
 } catch (Exception ex) {
 throw new FlinkRuntimeException("Failed to initialize Kakfa truststore", ex);
 }
}

Legacy examples 302

https://github.com/aws-samples/amazon-kinesisanalytics-examples/tree/master/CustomKeystoreWithConfigProviders

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Apache Flink requires the truststore to be in JKS format.

Note

To set up the required prerequisites for this exercise, first complete the Tutorial: Get started
using the DataStream API in Managed Service for Apache Flink exercise.

The following tutorial demonstrates how to securely connect (encryption in transit) to a Kafka
Cluster that uses server certificates issued by a custom, private or even self-hosted Certificate
Authority (CA).

For connecting any Kafka Client securely over TLS to a Kafka Cluster, the Kafka Client (like the
example Flink application) must trust the complete chain of trust presented by the Kafka Cluster's
server certificates (from the Issuing CA up to the Root-Level CA). As an example for a custom
truststore, we will use an Amazon MSK cluster with Mutual TLS (MTLS) Authentication enabled.
This implies that the MSK cluster nodes use server certificates that are issued by an AWS Certificate
Manager Private Certificate Authority (ACM Private CA) that is private to your account and Region
and therefore not trusted by the default truststore of the Java Virtual Machine (JVM) executing the
Flink application.

Note

• A keystore is used to store private key and identity certificates an application should
present to both server or client for verification.

• A truststore is used to store certificates from Certified Authorities (CA) that verify the
certificate presented by the server in an SSL connection.

You can also use the technique in this tutorial for interactions between a Managed Service for
Apache Flink application and other Apache Kafka sources, such as:

• A custom Apache Kafka cluster hosted in AWS (Amazon EC2 or Amazon EKS)

• A Confluent Kafka cluster hosted in AWS

Legacy examples 303

https://en.wikipedia.org/wiki/Java_KeyStore
https://aws.amazon.com/ec2/
https://aws.amazon.com/eks/
https://www.confluent.io

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• An on-premises Kafka cluster accessed through AWS Direct Connect or VPN

This tutorial contains the following sections:

• Create a VPC with an Amazon MSK cluster

• Create a custom truststore and apply it to your cluster

• Create the application code

• Upload the Apache Flink streaming Java code

• Create the application

• Configure the application

• Run the application

• Test the application

Create a VPC with an Amazon MSK cluster

To create a sample VPC and Amazon MSK cluster to access from a Managed Service for Apache
Flink application, follow the Getting Started Using Amazon MSK tutorial.

When completing the tutorial, also do the following:

• In Step 3: Create a Topic, repeat the kafka-topics.sh --create command to create a
destination topic named AWSKafkaTutorialTopicDestination:

bin/kafka-topics.sh --create --bootstrap-server ZooKeeperConnectionString --
replication-factor 3 --partitions 1 --topic AWSKafkaTutorialTopicDestination

Note

If the kafka-topics.sh command returns a ZooKeeperClientTimeoutException,
verify that the Kafka cluster's security group has an inbound rule to allow all traffic from
the client instance's private IP address.

• Record the bootstrap server list for your cluster. You can get the list of bootstrap servers with the
following command (replace ClusterArn with the ARN of your MSK cluster):

aws kafka get-bootstrap-brokers --region us-west-2 --cluster-arn ClusterArn
{...

Legacy examples 304

https://aws.amazon.com/directconnect/
https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-topic.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "BootstrapBrokerStringTls": "b-2.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-1.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-3.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094"
}

• When following the steps in this tutorial and the prerequisite tutorials, be sure to use your
selected AWS Region in your code, commands, and console entries.

Create a custom truststore and apply it to your cluster

In this section, you create a custom certificate authority (CA), use it to generate a custom
truststore, and apply it to your MSK cluster.

To create and apply your custom truststore, follow the Client Authentication tutorial in the Amazon
Managed Streaming for Apache Kafka Developer Guide.

Create the application code

In this section, you download and compile the application JAR file.

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. The application code is located in the amazon-kinesis-data-analytics-java-
examples/CustomKeystore. You can examine the code to familiarize yourself with the
structure of Managed Service for Apache Flink code.

4. Use either the command line Maven tool or your preferred development environment to create
the JAR file. To compile the JAR file using the command line Maven tool, enter the following:

mvn package -Dflink.version=1.15.3

If the build is successful, the following file is created:

target/flink-app-1.0-SNAPSHOT.jar

Legacy examples 305

https://docs.aws.amazon.com/msk/latest/developerguide/msk-authentication.html
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The provided source code relies on libraries from Java 11.

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket that you created in the
Tutorial: Get started using the DataStream API in Managed Service for Apache Flink tutorial.

Note

If you deleted the Amazon S3 bucket from the Getting Started tutorial, follow the the
section called “Upload the application code JAR file” step again.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the flink-app-1.0-SNAPSHOT.jar
file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink version 1.15.2.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Legacy examples 306

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink using the console, you have the
option of having an IAM role and policy created for your application. Your application uses
this role and policy to access its dependent resources. These IAM resources are named using
your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter flink-app-1.0-SNAPSHOT.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

Note

When you specify application resources using the console (such as logs or a VPC), the
console modifies your application execution role to grant permission to access those
resources.

4. Under Properties, choose Add Group. Enter the following properties:

Group ID Key Value

KafkaSource topic AWSKafkaTutorialTopic

KafkaSource bootstrap.servers The bootstrap server
list you saved
previously

Legacy examples 307

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

KafkaSource security.protocol SSL

KafkaSource ssl.truststore.location /usr/lib/jvm/java-11-
amazon-corretto/lib/secu
rity/cacerts

KafkaSource ssl.truststore.password changeit

Note

The ssl.truststore.password for the default certificate is "changeit"—you don't need to
change this value if you're using the default certificate.

Choose Add Group again. Enter the following properties:

Group ID Key Value

KafkaSink topic AWSKafkaTutorialTo
picDestination

KafkaSink bootstrap.servers The bootstrap server
list you saved
previously

KafkaSink security.protocol SSL

KafkaSink ssl.truststore.location /usr/lib/jvm/java-11-
amazon-corretto/lib/secu
rity/cacerts

KafkaSink ssl.truststore.password changeit

KafkaSink transaction.timeout.ms 1000

Legacy examples 308

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application code reads the above application properties to configure the source and sink
used to interact with your VPC and Amazon MSK cluster. For more information about using
properties, see Use runtime properties.

5. Under Snapshots, choose Disable. This will make it easier to update the application without
loading invalid application state data.

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

7. For CloudWatch logging, choose the Enable check box.

8. In the Virtual Private Cloud (VPC) section, choose the VPC to associate with your application.
Choose the subnets and security group associated with your VPC that you want the application
to use to access VPC resources.

9. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application.

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Test the application

In this section, you write records to the source topic. The application reads records from the source
topic and writes them to the destination topic. You verify that the application is working by writing
records to the source topic and reading records from the destination topic.

To write and read records from the topics, follow the steps in Step 6: Produce and Consume Data in
the Getting Started Using Amazon MSK tutorial.

Legacy examples 309

https://docs.aws.amazon.com/msk/latest/developerguide/produce-consume.html
https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To read from the destination topic, use the destination topic name instead of the source topic in
your second connection to the cluster:

bin/kafka-console-consumer.sh --bootstrap-server BootstrapBrokerString --
consumer.config client.properties --topic AWSKafkaTutorialTopicDestination --from-
beginning

If no records appear in the destination topic, see the Cannot access resources in a VPC section in
the Troubleshoot Managed Service for Apache Flink topic.

Python examples

The following examples demonstrate how to create applications using Python with the Apache
Flink Table API.

Topics

• Example: Creating a tumbling window in Python

• Example: Creating a sliding window in Python

• Example: Send streaming data to Amazon S3 in Python

Example: Creating a tumbling window in Python

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

In this exercise, you create a Python Managed Service for Apache Flink application that aggregates
data using a tumbling window.

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using Python in Managed Service for Apache Flink exercise.

This topic contains the following sections:

Legacy examples 310

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compress and upload the Apache Flink streaming Python code

• Create and run the Managed Service for Apache Flink application

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

Legacy examples 311

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The Python script in this section uses the AWS CLI. You must configure your AWS CLI to
use your account credentials and default region. To configure your AWS CLI, enter the
following:

aws configure

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

Legacy examples 312

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/python/
TumblingWindow directory.

The application code is located in the tumbling-windows.py file. Note the following about the
application code:

• The application uses a Kinesis table source to read from the source stream. The following snippet
calls the create_table function to create the Kinesis table source:

table_env.execute_sql(
 create_input_table(input_table_name, input_stream, input_region,
 stream_initpos)
)

The create_table function uses a SQL command to create a table that is backed by the
streaming source:

def create_input_table(table_name, stream_name, region, stream_initpos):
 return """ CREATE TABLE {0} (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time TIMESTAMP(3),
 WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
)

Legacy examples 313

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 PARTITIONED BY (ticker)
 WITH (
 'connector' = 'kinesis',
 'stream' = '{1}',
 'aws.region' = '{2}',
 'scan.stream.initpos' = '{3}',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
) """.format(table_name, stream_name, region, stream_initpos)

• The application uses the Tumble operator to aggregate records within a specified tumbling
window, and return the aggregated records as a table object:

tumbling_window_table = (
 input_table.window(
 Tumble.over("10.seconds").on("event_time").alias("ten_second_window")
)
 .group_by("ticker, ten_second_window")
 .select("ticker, price.min as price, to_string(ten_second_window.end) as
 event_time")

• The application uses the Kinesis Flink connector, from the flink-sql-connector-
kinesis-1.15.2.jar .

Compress and upload the Apache Flink streaming Python code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. Use your preferred compression application to compress the tumbling-windows.py and
flink-sql-connector-kinesis-1.15.2.jar files. Name the archive myapp.zip.

2. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

3. In the Select files step, choose Add files. Navigate to the myapp.zip file that you created in
the previous step.

4. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Legacy examples 314

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2
https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

Legacy examples 315

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter myapp.zip.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Group ID Key Value

consumer.config.0 input.stream.name ExampleInputStream

consumer.config.0 aws.region us-west-2

consumer.config.0 scan.stream.initpos LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Group ID Key Value

producer.config.0 output.stream.name ExampleOutputStream

producer.config.0 aws.region us-west-2

producer.config.0 shard.count 1

8. Under Properties, choose Add group again. For Group ID, enter
kinesis.analytics.flink.run.options. This special property group tells your
application where to find its code resources. For more information, see Specify your code files.

9. Enter the following:

Legacy examples 316

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

kinesis.analytics.
flink.run.options

python tumbling-windows.py

kinesis.analytics.
flink.run.options

jarfile flink-sql-connecto
r-kinesis-1.15.2.j
ar

10. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

11. For CloudWatch logging, select the Enable check box.

12. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

Legacy examples 317

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/myapp.zip"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },

Legacy examples 318

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Tumbling Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Legacy examples 319

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Legacy examples 320

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Creating a sliding window in Python

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using Python in Managed Service for Apache Flink exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compress and upload the Apache Flink streaming Python code

• Create and run the Managed Service for Apache Flink application

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

Legacy examples 321

https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

Note

The Python script in this section uses the AWS CLI. You must configure your AWS CLI to
use your account credentials and default region. To configure your AWS CLI, enter the
following:

aws configure

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

Legacy examples 322

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/>amazon-kinesis-data-analytics-java-
examples

3. Navigate to the amazon-kinesis-data-analytics-java-examples/python/
SlidingWindow directory.

Legacy examples 323

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application code is located in the sliding-windows.py file. Note the following about the
application code:

• The application uses a Kinesis table source to read from the source stream. The following snippet
calls the create_input_table function to create the Kinesis table source:

table_env.execute_sql(
 create_input_table(input_table_name, input_stream, input_region,
 stream_initpos)
)

The create_input_table function uses a SQL command to create a table that is backed by
the streaming source:

def create_input_table(table_name, stream_name, region, stream_initpos):
 return """ CREATE TABLE {0} (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time TIMESTAMP(3),
 WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
)
 PARTITIONED BY (ticker)
 WITH (
 'connector' = 'kinesis',
 'stream' = '{1}',
 'aws.region' = '{2}',
 'scan.stream.initpos' = '{3}',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
) """.format(table_name, stream_name, region, stream_initpos)
 }

• The application uses the Slide operator to aggregate records within a specified sliding window,
and return the aggregated records as a table object:

sliding_window_table = (
 input_table
 .window(
 Slide.over("10.seconds")
 .every("5.seconds")
 .on("event_time")
 .alias("ten_second_window")

Legacy examples 324

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

)
 .group_by("ticker, ten_second_window")
 .select("ticker, price.min as price, to_string(ten_second_window.end) as
 event_time")
)

• The application uses the Kinesis Flink connector, from the flink-sql-connector-kinesis-1.15.2.jar
file.

Compress and upload the Apache Flink streaming Python code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

This section describes how to package your Python application.

1. Use your preferred compression application to compress the sliding-windows.py and
flink-sql-connector-kinesis-1.15.2.jar files. Name the archive myapp.zip.

2. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

3. In the Select files step, choose Add files. Navigate to the myapp.zip file that you created in
the previous step.

4. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Legacy examples 325

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter myapp.zip.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following application properties and values:

Group ID Key Value

consumer.config.0 input.stream.name ExampleInputStream

Legacy examples 326

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

consumer.config.0 aws.region us-west-2

consumer.config.0 scan.stream.initpos LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following application properties and values:

Group ID Key Value

producer.config.0 output.stream.name ExampleOutputStream

producer.config.0 aws.region us-west-2

producer.config.0 shard.count 1

8. Under Properties, choose Add group again. For Group ID, enter
kinesis.analytics.flink.run.options. This special property group tells your
application where to find its code resources. For more information, see Specify your code files.

9. Enter the following application properties and values:

Group ID Key Value

kinesis.analytics.
flink.run.options

python sliding-windows.py

kinesis.analytics.
flink.run.options

jarfile flink-sql-connecto
r-kinesis_1.15.2.j
ar

10. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

11. For CloudWatch logging, select the Enable check box.

12. Choose Update.

Legacy examples 327

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/myapp.zip"

Legacy examples 328

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Legacy examples 329

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Sliding Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Legacy examples 330

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Send streaming data to Amazon S3 in Python

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

In this exercise, you create a Python Managed Service for Apache Flink application that streams
data to an Amazon Simple Storage Service sink.

Legacy examples 331

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using Python in Managed Service for Apache Flink exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compress and upload the Apache Flink streaming Python code

• Create and run the Managed Service for Apache Flink application

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• A Kinesis data stream (ExampleInputStream)

• An Amazon S3 bucket to store the application's code and output (ka-app-code-<username>)

Note

Managed Service for Apache Flink cannot write data to Amazon S3 with server-side
encryption enabled on Managed Service for Apache Flink.

You can create the Kinesis stream and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Legacy examples 332

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

Note

The Python script in this section uses the AWS CLI. You must configure your AWS CLI to
use your account credentials and default region. To configure your AWS CLI, enter the
following:

aws configure

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()

Legacy examples 333

https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/python/S3Sink
directory.

The application code is located in the streaming-file-sink.py file. Note the following about
the application code:

• The application uses a Kinesis table source to read from the source stream. The following snippet
calls the create_source_table function to create the Kinesis table source:

table_env.execute_sql(
 create_source_table(input_table_name, input_stream, input_region,
 stream_initpos)
)

Legacy examples 334

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The create_source_table function uses a SQL command to create a table that is backed by
the streaming source

import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

• The application uses the filesystem connector to send records to an Amazon S3 bucket:

def create_sink_table(table_name, bucket_name):
 return """ CREATE TABLE {0} (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time VARCHAR(64)
)
 PARTITIONED BY (ticker)
 WITH (
 'connector'='filesystem',

Legacy examples 335

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 'path'='s3a://{1}/',
 'format'='json',
 'sink.partition-commit.policy.kind'='success-file',
 'sink.partition-commit.delay' = '1 min'
) """.format(table_name, bucket_name)

• The application uses the Kinesis Flink connector, from the flink-sql-connector-kinesis-1.15.2.jar
file.

Compress and upload the Apache Flink streaming Python code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. Use your preferred compression application to compress the streaming-file-sink.py and
flink-sql-connector-kinesis-1.15.2.jar files. Name the archive myapp.zip.

2. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

3. In the Select files step, choose Add files. Navigate to the myapp.zip file that you created in
the previous step.

4. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Legacy examples 336

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2
https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter myapp.zip.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following application properties and values:

Group ID Key Value

consumer.config.0 input.stream.name ExampleInputStream

Legacy examples 337

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

consumer.config.0 aws.region us-west-2

consumer.config.0 scan.stream.initpos LATEST

Choose Save.

6. Under Properties, choose Add group again. For Group ID, enter
kinesis.analytics.flink.run.options. This special property group tells your
application where to find its code resources. For more information, see Specify your code files.

7. Enter the following application properties and values:

Group ID Key Value

kinesis.analytics.
flink.run.options

python streaming-file-sin
k.py

kinesis.analytics.
flink.run.options

jarfile S3Sink/lib/flink-s
ql-connector-kines
is-1.15.2.jar

8. Under Properties, choose Add group again. For Group ID, enter sink.config.0. This special
property group tells your application where to find its code resources. For more information,
see Specify your code files.

9. Enter the following application properties and values: (replace bucket-name with the actual
name of your Amazon S3 bucket.)

Group ID Key Value

sink.config.0 output.bucket.name bucket-name

10. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

11. For CloudWatch logging, select the Enable check box.

12. Choose Update.

Legacy examples 338

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/myapp.zip"

Legacy examples 339

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteObjects",
 "Effect": "Allow",
 "Action": [
 "s3:Abort*",
 "s3:DeleteObject*",
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*",
 "s3:ListBucket",
 "s3:PutObject"

Legacy examples 340

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

],
 "Resource": [
 "arn:aws:s3:::ka-app-code-<username>",
 "arn:aws:s3:::ka-app-code-<username>/*"
]
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Sliding Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data stream

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Legacy examples 341

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Kinesis data stream

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Delete your Amazon S3 objects and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Scala examples

The following examples demonstrate how to create applications using Scala with Apache Flink.

Legacy examples 342

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Topics

• Example: Creating a tumbling window in Scala

• Example: Creating a sliding window in Scala

• Example: Send streaming data to Amazon S3 in Scala

Example: Creating a tumbling window in Scala

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

Note

Starting from version 1.15 Flink is Scala free. Applications can now use the Java API from
any Scala version. Flink still uses Scala in a few key components internally but doesn't
expose Scala into the user code classloader. Because of that, users need to add Scala
dependencies into their jar-archives.
For more information about Scala changes in Flink 1.15, see Scala Free in One Fifteen.

In this exercise, you will create a simple streaming application which uses Scala 3.2.0 and Flink's
Java DataStream API. The application reads data from Kinesis stream, aggregates it using sliding
windows and writes results to output Kinesis stream.

Note

To set up required prerequisites for this exercise, first complete the Getting Started (Scala)
exercise.

This topic contains the following sections:

• Download and examine the application code

• Compile and upload the application code

• Create and run the application (console)

Legacy examples 343

https://flink.apache.org/2022/02/22/scala-free.html
https://docs.aws.amazon.com/managed-flink/latest/java/examples-gs-scala.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create and run the application (CLI)

• Update the application code

• Clean up AWS resources

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/scala/
TumblingWindow directory.

Note the following about the application code:

• A build.sbt file contains information about the application's configuration and dependencies,
including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.scala file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

private def createSource: FlinkKinesisConsumer[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val inputProperties = applicationProperties.get("ConsumerConfigProperties")

 new FlinkKinesisConsumer[String](inputProperties.getProperty(streamNameKey,
 defaultInputStreamName),
 new SimpleStringSchema, inputProperties)
}

The application also uses a Kinesis sink to write into the result stream. The following snippet
creates the Kinesis sink:

Legacy examples 344

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

private def createSink: KinesisStreamsSink[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val outputProperties = applicationProperties.get("ProducerConfigProperties")

 KinesisStreamsSink.builder[String]
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema)
 .setStreamName(outputProperties.getProperty(streamNameKey,
 defaultOutputStreamName))
 .setPartitionKeyGenerator((element: String) => String.valueOf(element.hashCode))
 .build
}

• The application uses the window operator to find the count of values for each stock symbol
over a 5-seconds tumbling window. The following code creates the operator and sends the
aggregated data to a new Kinesis Data Streams sink:

environment.addSource(createSource)
 .map { value =>
 val jsonNode = jsonParser.readValue(value, classOf[JsonNode])
 new Tuple2[String, Int](jsonNode.get("ticker").toString, 1)
 }
 .returns(Types.TUPLE(Types.STRING, Types.INT))
 .keyBy(v => v.f0) // Logically partition the stream for each ticker
 .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
 .sum(1) // Sum the number of tickers per partition
 .map { value => value.f0 + "," + value.f1.toString + "\n" }
 .sinkTo(createSink)

• The application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using dynamic application properties.
Runtime application's properties are read to configure the connectors. For more information
about runtime properties, see Runtime Properties.

Compile and upload the application code

In this section, you compile and upload your application code to an Amazon S3 bucket.

Legacy examples 345

https://docs.aws.amazon.com/managed-flink/latest/java/how-properties.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Compile the Application Code

Use the SBT build tool to build the Scala code for the application. To install SBT, see Install sbt with
cs setup. You also need to install the Java Development Kit (JDK). See Prerequisites for Completing
the Exercises.

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code with SBT:

sbt assembly

2. If the application compiles successfully, the following file is created:

target/scala-3.2.0/tumbling-window-scala-1.0.jar

Upload the Apache Flink Streaming Scala Code

In this section, you create an Amazon S3 bucket and upload your application code.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In Configure options, keep the settings as they are, and choose Next.

5. In Set permissions, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. Choose the ka-app-code-<username> bucket, and then choose Upload.

8. In the Select files step, choose Add files. Navigate to the tumbling-window-
scala-1.0.jar file that you created in the previous step.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Legacy examples 346

https://www.scala-sbt.org/
https://www.scala-sbt.org/download.html
https://www.scala-sbt.org/download.html
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My Scala test app.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

Legacy examples 347

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Path to Amazon S3 object, enter tumbling-window-scala-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Group ID Key Value

ConsumerConfigProp
erties

input.stream.name ExampleInputStream

ConsumerConfigProp
erties

aws.region us-west-2

ConsumerConfigProp
erties

flink.stream.initp
os

LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

output.stream.name ExampleOutputStream

ProducerConfigProp
erties

aws.region us-west-2

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, choose the Enable check box.

10. Choose Update.

Legacy examples 348

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/tumbling-window-
scala-1.0.jar"
]

Legacy examples 349

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",

Legacy examples 350

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Create and run the application (CLI)

In this section, you use the AWS Command Line Interface to create and run the Managed Service
for Apache Flink application. Use the kinesisanalyticsv2 AWS CLI command to create and interact
with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on the
sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID. The MF-stream-rw-role service execution role should
be tailored to the customer-specfic role.

Legacy examples 351

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "tumbling_window",
 "ApplicationDescription": "Scala tumbling window application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "tumbling-window-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Legacy examples 352

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then Create Role.

3. Under Select type of trusted identity, choose AWS Service

4. Under Choose the service that will use this role, choose Kinesis.

5. Under Select your use case, choose Managed Service for Apache Flink.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

8. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role

9. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, Create a
Permissions Policy.

Legacy examples 353

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the application

Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account ID
(012345678901) in the service execution role with your account ID. The ServiceExecutionRole
should include the IAM user role you created in the previous section.

"ApplicationName": "tumbling_window",
 "ApplicationDescription": "Scala getting started application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "tumbling-window-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {

Legacy examples 354

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Execute the CreateApplication with the following request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "tumbling_window",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }

Legacy examples 355

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "tumbling_window"
}

2. Execute the StopApplication action with the preceding request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see Setting Up Application
Logging.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for the
application without recompiling the application code. In this example, you change the Region of
the source and destination streams.

Legacy examples 356

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs.html
https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "tumbling_window",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication CLI action.

Legacy examples 357

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the Create dependent resources section.

{
 "ApplicationName": "tumbling_window",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "tumbling-window-scala-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the tumbling Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

Legacy examples 358

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

Legacy examples 359

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Creating a sliding window in Scala

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

Note

Starting from version 1.15 Flink is Scala free. Applications can now use the Java API from
any Scala version. Flink still uses Scala in a few key components internally but doesn't
expose Scala into the user code classloader. Because of that, users need to add Scala
dependencies into their jar-archives.
For more information about Scala changes in Flink 1.15, see Scala Free in One Fifteen.

In this exercise, you will create a simple streaming application which uses Scala 3.2.0 and Flink's
Java DataStream API. The application reads data from Kinesis stream, aggregates it using sliding
windows and writes results to output Kinesis stream.

Note

To set up required prerequisites for this exercise, first complete the Getting Started (Scala)
exercise.

Legacy examples 360

https://console.aws.amazon.com/cloudwatch/
https://flink.apache.org/2022/02/22/scala-free.html
https://docs.aws.amazon.com/managed-flink/latest/java/examples-gs-scala.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This topic contains the following sections:

• Download and examine the application code

• Compile and upload the application code

• Create and run the application (console)

• Create and run the application (CLI)

• Update the application code

• Clean up AWS resources

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/scala/
SlidingWindow directory.

Note the following about the application code:

• A build.sbt file contains information about the application's configuration and dependencies,
including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.scala file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

private def createSource: FlinkKinesisConsumer[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val inputProperties = applicationProperties.get("ConsumerConfigProperties")

 new FlinkKinesisConsumer[String](inputProperties.getProperty(streamNameKey,
 defaultInputStreamName),
 new SimpleStringSchema, inputProperties)

Legacy examples 361

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

The application also uses a Kinesis sink to write into the result stream. The following snippet
creates the Kinesis sink:

private def createSink: KinesisStreamsSink[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val outputProperties = applicationProperties.get("ProducerConfigProperties")

 KinesisStreamsSink.builder[String]
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema)
 .setStreamName(outputProperties.getProperty(streamNameKey,
 defaultOutputStreamName))
 .setPartitionKeyGenerator((element: String) => String.valueOf(element.hashCode))
 .build
}

• The application uses the window operator to find the count of values for each stock symbol
over a 10-seconds window that slides by 5 seconds. The following code creates the operator and
sends the aggregated data to a new Kinesis Data Streams sink:

environment.addSource(createSource)
 .map { value =>
 val jsonNode = jsonParser.readValue(value, classOf[JsonNode])
 new Tuple2[String, Double](jsonNode.get("ticker").toString,
 jsonNode.get("price").asDouble)
 }
 .returns(Types.TUPLE(Types.STRING, Types.DOUBLE))
 .keyBy(v => v.f0) // Logically partition the stream for each word
 .window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5)))
 .min(1) // Calculate minimum price per ticker over the window
 .map { value => value.f0 + String.format(",%.2f", value.f1) + "\n" }
 .sinkTo(createSink)

• The application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using dynamic application properties.
Runtime application's properties are read to configure the connectors. For more information
about runtime properties, see Runtime Properties.

Legacy examples 362

https://docs.aws.amazon.com/managed-flink/latest/java/how-properties.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Compile and upload the application code

In this section, you compile and upload your application code to an Amazon S3 bucket.

Compile the Application Code

Use the SBT build tool to build the Scala code for the application. To install SBT, see Install sbt with
cs setup. You also need to install the Java Development Kit (JDK). See Prerequisites for Completing
the Exercises.

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code with SBT:

sbt assembly

2. If the application compiles successfully, the following file is created:

target/scala-3.2.0/sliding-window-scala-1.0.jar

Upload the Apache Flink Streaming Scala Code

In this section, you create an Amazon S3 bucket and upload your application code.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In Configure options, keep the settings as they are, and choose Next.

5. In Set permissions, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. Choose the ka-app-code-<username> bucket, and then choose Upload.

8. In the Select files step, choose Add files. Navigate to the sliding-window-scala-1.0.jar
file that you created in the previous step.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Legacy examples 363

https://www.scala-sbt.org/
https://www.scala-sbt.org/download.html
https://www.scala-sbt.org/download.html
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My Scala test app.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

Legacy examples 364

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter sliding-window-scala-1.0.jar..

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Group ID Key Value

ConsumerConfigProp
erties

input.stream.name ExampleInputStream

ConsumerConfigProp
erties

aws.region us-west-2

ConsumerConfigProp
erties

flink.stream.initp
os

LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

output.stream.name ExampleOutputStream

ProducerConfigProp
erties

aws.region us-west-2

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, choose the Enable check box.

10. Choose Update.

Legacy examples 365

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/sliding-window-
scala-1.0.jar"
]

Legacy examples 366

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",

Legacy examples 367

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Create and run the application (CLI)

In this section, you use the AWS Command Line Interface to create and run the Managed Service
for Apache Flink application. Use the kinesisanalyticsv2 AWS CLI command to create and interact
with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on the
sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{

Legacy examples 368

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationName": "sliding_window",
 "ApplicationDescription": "Scala sliding window application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "sliding-window-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Legacy examples 369

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then Create Role.

3. Under Select type of trusted identity, choose AWS Service

4. Under Choose the service that will use this role, choose Kinesis.

5. Under Select your use case, choose Managed Service for Apache Flink.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

8. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role

9. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, Create a
Permissions Policy.

Legacy examples 370

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the application

Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account ID
(012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "sliding_window",
 "ApplicationDescription": "Scala sliding_window application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "sliding-window-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {

Legacy examples 371

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Execute the CreateApplication with the following request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "sliding_window",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }

Legacy examples 372

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "sliding_window"
}

2. Execute the StopApplication action with the preceding request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see Setting Up Application
Logging.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for the
application without recompiling the application code. In this example, you change the Region of
the source and destination streams.

Legacy examples 373

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs.html
https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "sliding_window",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication CLI action.

Legacy examples 374

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the Create dependent resources section.

{
 "ApplicationName": "sliding_window",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the sliding Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

Legacy examples 375

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

Legacy examples 376

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Send streaming data to Amazon S3 in Scala

Note

For current examples, see Examples for creating and working with Managed Service for
Apache Flink applications.

Note

Starting from version 1.15 Flink is Scala free. Applications can now use the Java API from
any Scala version. Flink still uses Scala in a few key components internally but doesn't
expose Scala into the user code classloader. Because of that, users need to add Scala
dependencies into their jar-archives.
For more information about Scala changes in Flink 1.15, see Scala Free in One Fifteen.

In this exercise, you will create a simple streaming application which uses Scala 3.2.0 and Flink's
Java DataStream API. The application reads data from Kinesis stream, aggregates it using sliding
windows and writes results to S3.

Legacy examples 377

https://console.aws.amazon.com/cloudwatch/
https://flink.apache.org/2022/02/22/scala-free.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To set up required prerequisites for this exercise, first complete the Getting Started (Scala)
exercise. You only need to create an additional folder data/ in the Amazon S3 bucket ka-
app-code-<username>.

This topic contains the following sections:

• Download and examine the application code

• Compile and upload the application code

• Create and run the application (console)

• Create and run the application (CLI)

• Update the application code

• Clean up AWS resources

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/scala/S3Sink
directory.

Note the following about the application code:

• A build.sbt file contains information about the application's configuration and dependencies,
including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.scala file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

Legacy examples 378

https://docs.aws.amazon.com/managed-flink/latest/java/examples-gs-scala.html
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

private def createSource: FlinkKinesisConsumer[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val inputProperties = applicationProperties.get("ConsumerConfigProperties")

 new FlinkKinesisConsumer[String](inputProperties.getProperty(streamNameKey,
 defaultInputStreamName),
 new SimpleStringSchema, inputProperties)
}

The application also uses a StreamingFileSink to write to an Amazon S3 bucket:`

def createSink: StreamingFileSink[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val s3SinkPath =
 applicationProperties.get("ProducerConfigProperties").getProperty("s3.sink.path")

 StreamingFileSink
 .forRowFormat(new Path(s3SinkPath), new SimpleStringEncoder[String]("UTF-8"))
 .build()
}

• The application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using dynamic application properties.
Runtime application's properties are read to configure the connectors. For more information
about runtime properties, see Runtime Properties.

Compile and upload the application code

In this section, you compile and upload your application code to an Amazon S3 bucket.

Compile the Application Code

Use the SBT build tool to build the Scala code for the application. To install SBT, see Install sbt with
cs setup. You also need to install the Java Development Kit (JDK). See Prerequisites for Completing
the Exercises.

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code with SBT:

Legacy examples 379

https://docs.aws.amazon.com/managed-flink/latest/java/how-properties.html
https://www.scala-sbt.org/
https://www.scala-sbt.org/download.html
https://www.scala-sbt.org/download.html
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#setting-up-prerequisites

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

sbt assembly

2. If the application compiles successfully, the following file is created:

target/scala-3.2.0/s3-sink-scala-1.0.jar

Upload the Apache Flink Streaming Scala Code

In this section, you create an Amazon S3 bucket and upload your application code.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In Configure options, keep the settings as they are, and choose Next.

5. In Set permissions, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. Choose the ka-app-code-<username> bucket, and then choose Upload.

8. In the Select files step, choose Add files. Navigate to the s3-sink-scala-1.0.jar file that
you created in the previous step.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

Legacy examples 380

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter s3-sink-scala-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Legacy examples 381

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ConsumerConfigProp
erties

input.stream.name ExampleInputStream

ConsumerConfigProp
erties

aws.region us-west-2

ConsumerConfigProp
erties

flink.stream.initp
os

LATEST

Choose Save.

6. Under Properties, choose Add group.

7. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

s3.sink.path s3a://ka-app-code-
<user-name> /data

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, choose the Enable check box.

10. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Legacy examples 382

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:Abort*",
 "s3:DeleteObject*",
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-<username>",
 "arn:aws:s3:::ka-app-code-<username>/*"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],

Legacy examples 383

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Legacy examples 384

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Create and run the application (CLI)

In this section, you use the AWS Command Line Interface to create and run the Managed Service
for Apache Flink application. Use the kinesisanalyticsv2 AWS CLI command to create and interact
with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on the
sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],

Legacy examples 385

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": [
 "arn:aws:s3:::ka-app-code-username/getting-started-scala-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-
west-2:123456789012:stream/ExampleInputStream"
 },
 {

Legacy examples 386

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-
west-2:123456789012:stream/ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then Create Role.

3. Under Select type of trusted identity, choose AWS Service

4. Under Choose the service that will use this role, choose Kinesis.

5. Under Select your use case, choose Managed Service for Apache Flink.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

8. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role

Legacy examples 387

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

9. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, Create a
Permissions Policy.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the application

Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account ID
(012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "s3_sink",
 "ApplicationDescription": "Scala tumbling window application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",

Legacy examples 388

https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "FileKey": "s3-sink-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "s3.sink.path" : "s3a://ka-app-code-<username>/data"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Execute the CreateApplication with the following request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

Legacy examples 389

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To start the application

1. Save the following JSON code to a file named start_request.json.

{{
 "ApplicationName": "s3_sink",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "s3_sink"
}

2. Execute the StopApplication action with the preceding request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Legacy examples 390

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see Setting Up Application
Logging.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for the
application without recompiling the application code. In this example, you change the Region of
the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "s3_sink",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "s3.sink.path" : "s3a://ka-app-code-<username>/data"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

Legacy examples 391

https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs.html
https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the Create dependent resources section.

{
 "ApplicationName": "s3_sink",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "s3-sink-scala-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }

Legacy examples 392

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Tumbling Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Legacy examples 393

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Legacy examples 394

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use a Studio notebook with Managed Service for Apache
Flink

Studio notebooks for Managed Service for Apache Flink allows you to interactively query data
streams in real time, and easily build and run stream processing applications using standard SQL,
Python, and Scala. With a few clicks in the AWS Management console, you can launch a serverless
notebook to query data streams and get results in seconds.

A notebook is a web-based development environment. With notebooks, you get a simple
interactive development experience combined with the advanced capabilities provided by Apache
Flink. Studio notebooks uses notebooks powered by Apache Zeppelin, and uses Apache Flink as
the stream processing engine. Studio notebooks seamlessly combines these technologies to make
advanced analytics on data streams accessible to developers of all skill sets.

Apache Zeppelin provides your Studio notebooks with a complete suite of analytics tools, including
the following:

• Data Visualization

• Exporting data to files

• Controlling the output format for easier analysis

To get started using Managed Service for Apache Flink and Apache Zeppelin, see Tutorial: Create
a Studio notebook in Managed Service for Apache Flink. For more information about Apache
Zeppelin, see the Apache Zeppelin documentation.

With a notebook, you model queries using the Apache Flink Table API & SQL in SQL, Python, or
Scala, or DataStream API in Scala. With a few clicks, you can then promote the Studio notebook
to a continuously-running, non-interactive, Managed Service for Apache Flink stream-processing
application for your production workloads.

This topic contains the following sections:

• Use the correct Studio notebook Runtime version

• Create a Studio notebook

• Perform an interactive analysis of streaming data

• Deploy as an application with durable state

395

https://zeppelin.apache.org/
https://flink.apache.org/
http://zeppelin.apache.org
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Review IAM permissions for Studio notebooks

• Use connectors and dependencies

• Implement user-defined functions

• Enable checkpointing

• Upgrade Studio Runtime

• Work with AWS Glue

• Examples and tutorials for Studio notebooks in Managed Service for Apache Flink

• Troubleshoot Studio notebooks for Managed Service for Apache Flink

• Create custom IAM policies for Managed Service for Apache Flink Studio notebooks

Use the correct Studio notebook Runtime version

With Amazon Managed Service for Apache Flink Studio, you can query data streams in real time
and build and run stream processing applications using standard SQL, Python, and Scala in an
interactive notebook. Studio notebooks are powered by Apache Zeppelin and use Apache Flink as
the stream processing engine.

Note

We will deprecate Studio Runtime with Apache Flink version 1.11 on November 5,
2024. Starting from this date, you will not be able to run new notebooks or create new
applications using this version. We recommend that you upgrade to the latest runtime
(Apache Flink 1.15 and Apache Zeppelin 0.10) before that time. For guidance on how to
upgrade your notebook, see Upgrade Studio Runtime.

Studio Runtime

Apache Flink version Apache Zeppelin
version

Python version

1.15 0.1 3.8 Recommended

1.13 0.9 3.8 Supported until
October 16, 2024

Use the correct Studio notebook Runtime version 396

https://zeppelin.apache.org/
https://flink.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink version Apache Zeppelin
version

Python version

1.11 0.9 3.7 Deprecating on
February 24, 2025

Create a Studio notebook

A Studio notebook contains queries or programs written in SQL, Python, or Scala that runs on
streaming data and returns analytic results. You create your application using either the console or
the CLI, and provide queries for analyzing the data from your data source.

Your application has the following components:

• A data source, such as an Amazon MSK cluster, a Kinesis data stream, or an Amazon S3 bucket.

• An AWS Glue database. This database contains tables, which store your data source and
destination schemas and endpoints. For more information, see Work with AWS Glue.

• Your application code. Your code implements your analytics query or program.

• Your application settings and runtime properties. For information about application settings
and runtime properties, see the following topics in the Developer Guide for Apache Flink
Applications:

• Application Parallelism and Scaling: You use your application's Parallelism setting to control
the number of queries that your application can execute simultaneously. Your queries can also
take advantage of increased parallelism if they have multiple paths of execution, such as in the
following circumstances:

• When processing multiple shards of a Kinesis data stream

• When partitioning data using the KeyBy operator.

• When using multiple window operators

For more information about application scaling, see Application Scaling in Managed Service
for Apache Flink for Apache Flink.

• Logging and Monitoring: For information about application logging and monitoring, see
Logging and Monitoring in Amazon Managed Service for Apache Flink for Apache Flink.

• Your application uses checkpoints and savepoints for fault tolerance. Checkpoints and
savepoints are not enabled by default for Studio notebooks.

Create a Studio notebook 397

https://docs.aws.amazon.com/managed-flink/latest/java/what-is.html
https://docs.aws.amazon.com/managed-flink/latest/java/what-is.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-scaling.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-scaling.html
https://docs.aws.amazon.com/managed-flink/latest/java/monitoring-overview.html
https://docs.aws.amazon.com/managed-flink/latest/java/monitoring-overview.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can create your Studio notebook using either the AWS Management Console or the AWS CLI.

When creating the application from the console, you have the following options:

• In the Amazon MSK console choose your cluster, then choose Process data in real time.

• In the Kinesis Data Streams console choose your data stream, then on the Applications tab
choose Process data in real time.

• In the Managed Service for Apache Flink console choose the Studio tab, then choose Create
Studio notebook.

For a tutorial, see Event Detection with Managed Service for Apache Flink.

For an example of a more advanced Studio notebook solution, see Apache Flink on Amazon
Managed Service for Apache Flink Studio.

Perform an interactive analysis of streaming data

You use a serverless notebook powered by Apache Zeppelin to interact with your streaming data.
Your notebook can have multiple notes, and each note can have one or more paragraphs where
you can write your code.

The following example SQL query shows how to retrieve data from a data source:

%flink.ssql(type=update)
select * from stock;

For more examples of Flink Streaming SQL queries, see Examples and tutorials for Studio
notebooks in Managed Service for Apache Flink following, and Queries in the Apache Flink
documentation.

You can use Flink SQL queries in the Studio notebook to query streaming data. You may also
use Python (Table API) and Scala (Table and Datastream APIs) to write programs to query your
streaming data interactively. You can view the results of your queries or programs, update them in
seconds, and re-run them to view updated results.

Flink interpreters

You specify which language Managed Service for Apache Flink uses to run your application by using
an interpreter. You can use the following interpreters with Managed Service for Apache Flink:

Perform an interactive analysis of streaming data 398

https://catalog.us-east-1.prod.workshops.aws/workshops/2b03e299-c30f-4144-b452-483356cc5267/en-US
https://streaming-analytics.workshop.aws/flink-on-kda-studio/
https://streaming-analytics.workshop.aws/flink-on-kda-studio/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/sql/queries/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Name Class Description

%flink FlinkInterpreter Creates ExecutionEnvironme
nt/StreamExecution
Environment/BatchTableEnvir
onment/StreamTable
Environment and provides a
Scala environment

%flink.pyflink PyFlinkInterpreter Provides a python environme
nt

%flink.ipyflink IPyFlinkInterpreter Provides an ipython
environment

%flink.ssql FlinkStreamSqlInterpreter Provides a stream sql
environment

%flink.bsql FlinkBatchSqlInterpreter Provides a batch sql
environment

For more information about Flink interpreters, see Flink interpreter for Apache Zeppelin.

If you are using %flink.pyflink or %flink.ipyflink as your interpreters, you will need to use
the ZeppelinContext to visualize the results within the notebook.

For more PyFlink specific examples, see Query your data streams interactively using Managed
Service for Apache Flink Studio and Python.

Apache Flink table environment variables

Apache Zeppelin provides access to table environment resources using environment variables.

You access Scala table environment resources with the following variables:

Variable Resource

senv StreamExecutionEnvironment

Apache Flink table environment variables 399

https://zeppelin.apache.org/docs/0.9.0/interpreter/flink.html
https://aws.amazon.com/blogs/big-data/query-your-data-streams-interactively-using-kinesis-data-analytics-studio-and-python/
https://aws.amazon.com/blogs/big-data/query-your-data-streams-interactively-using-kinesis-data-analytics-studio-and-python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Variable Resource

stenv StreamTableEnvironment for blink
planner

You access Python table environment resources with the following variables:

Variable Resource

s_env StreamExecutionEnvironment

st_env StreamTableEnvironment for blink
planner

For more information about using table environments, see Concepts and Common API in the
Apache Flink documentation.

Deploy as an application with durable state

You can build your code and export it to Amazon S3. You can promote the code that you wrote
in your note to a continuously running stream processing application. There are two modes of
running an Apache Flink application on Managed Service for Apache Flink: With a Studio notebook,
you have the ability to develop your code interactively, view results of your code in real time,
and visualize it within your note. After you deploy a note to run in streaming mode, Managed
Service for Apache Flink creates an application for you that runs continuously, reads data from
your sources, writes to your destinations, maintains long-running application state, and autoscales
automatically based on the throughput of your source streams.

Note

The S3 bucket to which you export your application code must be in the same Region as
your Studio notebook.

You can only deploy a note from your Studio notebook if it meets the following criteria:

Deploy as an application with durable state 400

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/common/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Paragraphs must be ordered sequentially. When you deploy your application, all paragraphs
within a note will be executed sequentially (left-to-right, top-to-bottom) as they appear in your
note. You can check this order by choosing Run All Paragraphs in your note.

• Your code is a combination of Python and SQL or Scala and SQL. We do not support Python and
Scala together at this time for deploy-as-application.

• Your note should have only the following interpreters: %flink, %flink.ssql,
%flink.pyflink, %flink.ipyflink, %md.

• The use of the Zeppelin context object z is not supported. Methods that return nothing will do
nothing except log a warning. Other methods will raise Python exceptions or fail to compile in
Scala.

• A note must result in a single Apache Flink job.

• Notes with dynamic forms are unsupported for deploying as an application.

• %md (Markdown) paragraphs will be skipped in deploying as an application, as these are
expected to contain human-readable documentation that is unsuitable for running as part of the
resulting application.

• Paragraphs disabled for running within Zeppelin will be skipped in deploying as an application.
Even if a disabled paragraph uses an incompatible interpreter, for example, %flink.ipyflink
in a note with %flink and %flink.ssql interpreters, it will be skipped while deploying the
note as an application, and will not result in an error.

• There must be at least one paragraph present with source code (Flink SQL, PyFlink or Flink Scala)
that is enabled for running for the application deployment to succeed.

• Setting parallelism in the interpreter directive within a paragraph (e.g.
%flink.ssql(parallelism=32)) will be ignored in applications deployed from a note.
Instead, you can update the deployed application through the AWS Management Console,
AWS Command Line Interface or AWS API to change the Parallelism and/or ParallelismPerKPU
settings according to the level of parallelism your application requires, or you can enable
autoscaling for your deployed application.

• If you are deploying as an application with durable state your VPC must have internet access. If
your VPC does not have internet access, see Deploy as an application with durable state in a VPC
with no internet access.

Deploy as an application with durable state 401

https://zeppelin.apache.org/docs/0.9.0/usage/other_features/zeppelin_context.html
https://zeppelin.apache.org/docs/0.9.0/usage/dynamic_form/intro.html
https://zeppelin.apache.org/docs/0.9.0/interpreter/markdown.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Scala/Python criteria

• In your Scala or Python code, use the Blink planner (senv, stenv for Scala; s_env, st_env
for Python) and not the older "Flink" planner (stenv_2 for Scala, st_env_2 for Python). The
Apache Flink project recommends the use of the Blink planner for production use cases, and this
is the default planner in Zeppelin and in Flink.

• Your Python paragraphs must not use shell invocations/assignments using ! or IPython magic
commands like %timeit or %conda in notes meant to be deployed as applications.

• You can't use Scala case classes as parameters of functions passed to higher-order dataflow
operators like map and filter. For information about Scala case classes, see CASE CLASSES in
the Scala documentation.

SQL criteria

• Simple SELECT statements are not permitted, as there’s nowhere equivalent to a paragraph’s
output section where the data can be delivered.

• In any given paragraph, DDL statements (USE, CREATE, ALTER, DROP, SET, RESET) must precede
DML (INSERT) statements. This is because DML statements in a paragraph must be submitted
together as a single Flink job.

• There should be at most one paragraph that has DML statements in it. This is because, for the
deploy-as-application feature, we only support submitting a single job to Flink.

For more information and an example, see Translate, redact and analyze streaming data using
SQL functions with Amazon Managed Service for Apache Flink, Amazon Translate, and Amazon
Comprehend.

Review IAM permissions for Studio notebooks

Managed Service for Apache Flink creates an IAM role for you when you create a Studio notebook
through the AWS Management Console. It also associates with that role a policy that allows the
following access:

Service Access

CloudWatch Logs List

Scala/Python criteria 402

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/#dependency-structure
https://ipython.readthedocs.io/en/stable/interactive/python-ipython-diff.html#shell-assignment
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://docs.scala-lang.org/overviews/scala-book/case-classes.html
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesisanalytics-MyApplicatioamazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesisanalytics-MyApplicatioamazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesisanalytics-MyApplicatioamazon-translate-and-amazon-comprehend/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Service Access

Amazon EC2 List

AWS Glue Read, Write

Managed Service for Apache Flink Read

Managed Service for Apache Flink V2 Read

Amazon S3 Read, Write

Use connectors and dependencies

Connectors enable you to read and write data across various technologies. Managed Service for
Apache Flink bundles three default connectors with your Studio notebook. You can also use custom
connectors. For more information about connectors, see Table & SQL Connectors in the Apache
Flink documentation.

Default connectors

If you use the AWS Management Console to create your Studio notebook, Managed Service for
Apache Flink includes the following custom connectors by default: flink-sql-connector-
kinesis, flink-connector-kafka_2.12 and aws-msk-iam-auth. To create a Studio
notebook through the console without these custom connectors, choose the Create with custom
settings option. Then, when you get to the Configurations page, clear the checkboxes next to the
two connectors.

If you use the CreateApplication API to create your Studio notebook, the flink-sql-connector-
flink and flink-connector-kafka connectors aren't included by default. To add them, specify
them as a MavenReference in the CustomArtifactsConfiguration data type as shown in the
following examples.

The aws-msk-iam-auth connector is the connector to use with Amazon MSK that includes the
feature to automatically authenticate with IAM.

Use connectors and dependencies 403

https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/connectors/table/overview/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The connector versions shown in the following example are the only versions that we
support.

For the Kinesis connector:

"CustomArtifactsConfiguration": [{
"ArtifactType": "DEPENDENCY_JAR",
 "MavenReference": {
"GroupId": "org.apache.flink",

 "ArtifactId": "flink-sql-connector-kinesis",
 "Version": "1.15.4"

 }
}]

For authenticating with AWS MSK through AWS IAM:

"CustomArtifactsConfiguration": [{
"ArtifactType": "DEPENDENCY_JAR",
 "MavenReference": {
"GroupId": "software.amazon.msk",
 "ArtifactId": "aws-msk-iam-auth",
 "Version": "1.1.6"
 }
}]

For the Apache Kafka connector:

"CustomArtifactsConfiguration": [{
"ArtifactType": "DEPENDENCY_JAR",
 "MavenReference": {
"GroupId": "org.apache.flink",

 "ArtifactId": "flink-connector-kafka",
 "Version": "1.15.4"

 }
}]

Default connectors 404

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To add these connectors to an existing notebook, use the UpdateApplication API operation and
specify them as a MavenReference in the CustomArtifactsConfigurationUpdate data type.

Note

You can set failOnError to true for the flink-sql-connector-kinesis connector in
the table API.

Add dependencies and custom connectors

To use the AWS Management Console to add a dependency or a custom connector to your Studio
notebook, follow these steps:

1. Upload your custom connector's file to Amazon S3.

2. In the AWS Management Console, choose the Custom create option for creating your Studio
notebook.

3. Follow the Studio notebook creation workflow until you get to the Configurations step.

4. In the Custom connectors section, choose Add custom connector.

5. Specify the Amazon S3 location of the dependency or the custom connector.

6. Choose Save changes.

To add a dependency JAR or a custom connector when you create a new Studio notebook using
the CreateApplication API, specify the Amazon S3 location of the dependency JAR or the custom
connector in the CustomArtifactsConfiguration data type. To add a dependency or a
custom connector to an existing Studio notebook, invoke the UpdateApplication API operation
and specify the Amazon S3 location of the dependency JAR or the custom connector in the
CustomArtifactsConfigurationUpdate data type.

Note

When you include a dependency or a custom connector, you must also include all its
transitive dependencies that aren't bundled within it.

Add dependencies and custom connectors 405

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Implement user-defined functions

User-defined functions (UDFs) are extension points that allow you to call frequently-used logic or
custom logic that can't be expressed otherwise in queries. You can use Python or a JVM language
like Java or Scala to implement your UDFs in paragraphs inside your Studio notebook. You can also
add to your Studio notebook external JAR files that contain UDFs implemented in a JVM language.

When implementing JARs that register abstract classes that subclass UserDefinedFunction
(or your own abstract classes), use provided scope in Apache Maven, compileOnly dependency
declarations in Gradle, provided scope in SBT, or an equivalent directive in your UDF project build
configuration. This allows the UDF source code to compile against the Flink APIs, but the Flink
API classes are not themselves included in the build artifacts. Refer to this pom from the UDF jar
example which adheres to such prerequisite on a Maven project.

Note

For an example setup, see Translate, redact and analyze streaming data using SQL
functions with Amazon Managed Service for Apache Flink, Amazon Translate, and Amazon
Comprehend on the AWS Machine Learning Blog.

To use the console to add UDF JAR files to your Studio notebook, follow these steps:

1. Upload your UDF JAR file to Amazon S3.

2. In the AWS Management Console, choose the Custom create option for creating your Studio
notebook.

3. Follow the Studio notebook creation workflow until you get to the Configurations step.

4. In the User-defined functions section, choose Add user-defined function.

5. Specify the Amazon S3 location of the JAR file or the ZIP file that has the implementation of
your UDF.

6. Choose Save changes.

To add a UDF JAR when you create a new Studio notebook using the CreateApplication API, specify
the JAR location in the CustomArtifactConfiguration data type. To add a UDF JAR to an
existing Studio notebook, invoke the UpdateApplication API operation and specify the JAR location

User-defined functions 406

https://github.com/aws-samples/kinesis-udfs-textanalytics/blob/ec27108faa48f1a4c5d173ed3a2ef4565b58b5b5/kinesis-udfs-textanalytics-linear/pom.xml#L47
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

in the CustomArtifactsConfigurationUpdate data type. Alternatively, you can use the AWS
Management Console to add UDF JAR files to you Studio notebook.

Considerations with user-defined functions

• Managed Service for Apache Flink Studio uses the Apache Zeppelin terminology wherein a
notebook is a Zeppelin instance that can contain multiple notes. Each note can then contain
multiple paragraphs. With Managed Service for Apache Flink Studio the interpreter process is
shared across all the notes in the notebook. So if you perform an explicit function registration
using createTemporarySystemFunction in one note, the same can be referenced as-is in another
note of same notebook.

The Deploy as application operation however works on an individual note and not all notes in
the notebook. When you perform deploy as application, only active note's contents are used to
generate the application. Any explicit function registration performed in other notebooks are
not part of the generated application dependencies. Additionally, during Deploy as application
option an implicit function registration occurs by converting the main class name of JAR to a
lowercase string.

For example, if TextAnalyticsUDF is the main class for UDF JAR, then an implicit registration
will result in function name textanalyticsudf. So if an explicit function registration in note
1 of Studio occurs like the following, then all other notes in that notebook (say note 2) can refer
the function by name myNewFuncNameForClass because of the shared interpreter:

stenv.createTemporarySystemFunction("myNewFuncNameForClass", new
TextAnalyticsUDF())

However during deploy as application operation on note 2, this explicit registration will not be
included in the dependencies and hence the deployed application will not perform as expected.
Because of the implicit registration, by default all references to this function is expected to be
with textanalyticsudf and not myNewFuncNameForClass.

If there is a need for custom function name registration then note 2 itself is expected to contain
another paragraph to perform another explicit registration as follows:

%flink(parallelism=l)
import com.amazonaws.kinesis.udf.textanalytics.TextAnalyticsUDF
re-register the JAR for UDF with custom name
stenv.createTemporarySystemFunction("myNewFuncNameForClass", new TextAnalyticsUDF())

Considerations with user-defined functions 407

https://zeppelin.apache.org/docs/0.9.0/quickstart/explore_ui.html
https://nightlies.apache.org/flink/flink-docs-master/api/java/org/apache/flink/table/api/TableEnvironment.html#createTemporarySystemFunction-java.lang.String-java.lang.Class-

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

%flink. ssql(type=update, parallelism=1)
INSERT INTO
 table2
SELECT
 myNewFuncNameForClass(column_name)
FROM
 table1
;

• If your UDF JAR includes Flink SDKs, then configure your Java project so that the UDF source
code can compile against the Flink SDKs, but the Flink SDK classes are not themselves included
in the build artifact, for example the JAR.

You can use provided scope in Apache Maven, compileOnly dependency declarations in
Gradle, provided scope in SBT, or equivalent directive in their UDF project build configuration.
You can refer to this pom from the UDF jar example, which adheres to such a prerequisite on
a maven project. For a complete step-by-step tutorial, see this Translate, redact and analyze
streaming data using SQL functions with Amazon Managed Service for Apache Flink, Amazon
Translate, and Amazon Comprehend.

Enable checkpointing

You enable checkpointing by using environment settings. For information about checkpointing, see
Fault Tolerance in the Managed Service for Apache Flink Developer Guide.

Set the checkpointing interval

The following Scala code example sets your application's checkpoint interval to one minute:

// start a checkpoint every 1 minute
stenv.enableCheckpointing(60000)

The following Python code example sets your application's checkpoint interval to one minute:

st_env.get_config().get_configuration().set_string(
 "execution.checkpointing.interval", "1min"
)

Enable checkpointing 408

https://github.com/aws-samples/kinesis-udfs-textanalytics/blob/ec27108faa48f1a4c5d173ed3a2ef4565b58b5b5/kinesis-udfs-textanalytics-linear/pom.xml#L47
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://docs.aws.amazon.com/managed-flink/latest/java/how-fault.html
https://docs.aws.amazon.com/managed-flink/latest/java/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Set the checkpointing type

The following Scala code example sets your application's checkpoint mode to EXACTLY_ONCE (the
default):

// set mode to exactly-once (this is the default)
stenv.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)

The following Python code example sets your application's checkpoint mode to EXACTLY_ONCE
(the default):

st_env.get_config().get_configuration().set_string(
 "execution.checkpointing.mode", "EXACTLY_ONCE"
)

Upgrade Studio Runtime

This section contains information about how to upgrade your Studio notebook Runtime. We
recommend that you always upgrade to the latest supported Studio Runtime.

Upgrade your notebook to a new Studio Runtime

Depending on how you use Studio, the steps to upgrade your Runtime differ. Select the option that
fits your use case.

SQL queries or Python code with no external dependencies

If you are using SQL or Python without any external dependencies, use the following Runtime
upgrade process. We recommend that you upgrade to the latest Runtime version. The upgrade
process is the same, reardless of the Runtime version you are upgrading from.

1. Create a new Studio notebook using the latest Runtime.

2. Copy and paste the code of every note from the old notebook to the new notebook.

3. In the new notebook, adjust the code to make it compatible with any Apache Flink feature that
has changed from the previous version.

• Run the new notebook. Open the notebook and run it note by note, in sequence, and test if it
works.

Set the checkpointing type 409

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Make any required changes to the code.

• Stop the new notebook.

4. If you had deployed the old notebook as application:

• Deploy the new notebook as a separate, new application.

• Stop the old application.

• Run the new application without snapshot.

5. Stop the old notebook if it's running. Start the new notebook, as required, for interactive use.

Process flow for upgrading without external dependencies

Upgrade your notebook to a new Studio Runtime 410

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrade your notebook to a new Studio Runtime 411

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

SQL queries or Python code with external dependencies

Follow this process if you are using SQL or Python and using external dependencies such as
connectors or custom artifacts, like user-defined functions implemented in Python or Java. We
recommend that you upgrade to the latest Runtime. The process is the same, regardless of the
Runtime version that you are upgrading from.

1. Create a new Studio notebook using the latest Runtime.

2. Copy and paste the code of every note from the old notebook to the new notebook.

3. Update the external dependencies and custom artifacts.

• Look for new connectors compatible with the Apache Flink version of the new Runtime. Refer
to Table & SQL Connectors in the Apache Flink documentation to find the correct connectors
for the Flink version.

• Update the code of user-defined functions to match changes in the Apache Flink API, and any
Python or JAR dependencies used by the user-defined functions. Re-package your updated
custom artifact.

• Add these new connectors and artifacts to the new notebook.

4. In the new notebook, adjust the code to make it compatible with any Apache Flink feature that
has changed from the previous version.

• Run the new notebook. Open the notebook and run it note by note, in sequence, and test if it
works.

• Make any required changes to the code.

• Stop the new notebook.

5. If you had deployed the old notebook as application:

• Deploy the new notebook as a separate, new application.

• Stop the old application.

• Run the new application without snapshot.

6. Stop the old notebook if it's running. Start the new notebook, as required, for interactive use.

Process flow for upgrading with external dependencies

Upgrade your notebook to a new Studio Runtime 412

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/connectors/table/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrade your notebook to a new Studio Runtime 413

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Work with AWS Glue

Your Studio notebook stores and gets information about its data sources and sinks from AWS Glue.
When you create your Studio notebook, you specify the AWS Glue database that contains your
connection information. When you access your data sources and sinks, you specify AWS Glue tables
contained in the database. Your AWS Glue tables provide access to the AWS Glue connections that
define the locations, schemas, and parameters of your data sources and destinations.

Studio notebooks use table properties to store application-specific data. For more information, see
Table properties.

For an example of how to set up a AWS Glue connection, database, and table for use with Studio
notebooks, see Create an AWS Glue database in the Tutorial: Create a Studio notebook in Managed
Service for Apache Flink tutorial.

Table properties

In addition to data fields, your AWS Glue tables provide other information to your Studio notebook
using table properties. Managed Service for Apache Flink uses the following AWS Glue table
properties:

• Define Apache Flink time values: These properties define how Managed Service for Apache Flink
emits Apache Flink internal data processing time values.

• Use Flink connector and format properties: These properties provide information about your
data streams.

To add a property to an AWS Glue table, do the following:

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. From the list of tables, choose the table that your application uses to store its data connection
information. Choose Action, Edit table details.

3. Under Table Properties, enter managed-flink.proctime for key and user_action_time
for Value.

Work with AWS Glue 414

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Define Apache Flink time values

Apache Flink provides time values that describe when stream processing events occured, such as
Processing Time and Event Time. To include these values in your application output, you define
properties on your AWS Glue table that tell the Managed Service for Apache Flink runtime to emit
these values into the specified fields.

The keys and values you use in your table properties are as follows:

Timestamp Type Key Value

Processing Time managed-flink.proctime The column name that AWS
Glue will use to expose the
value. This column name
does not correspond to an
existing table column.

managed-flink.rowtime The column name that AWS
Glue will use to expose the
value. This column name
corresponds to an existing
table column.

Event Time

managed-flink.wate
rmark.column_na
me .milliseconds

The watermark interval in
milliseconds

Use Flink connector and format properties

You provide information about your data sources to your application's Flink connectors using AWS
Glue table properties. Some examples of the properties that Managed Service for Apache Flink
uses for connectors are as follows:

Connector Type Key Value

Kafka format The format used to deseriali
ze and serialize Kafka
messages, e.g. json or csv.

Table properties 415

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#processing-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#processing-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#event-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#processing-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#event-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/connectors/kafka.html#connector-options

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Connector Type Key Value

scan.startup.mode The startup mode for
the Kafka consumer, e.g.
earliest-offset or
timestamp .

format The format used to deseriali
ze and serialize Kinesis data
stream records, e.g. json or
csv.

Kinesis

aws.region The AWS region where the
stream is defined.

format The format used to deseriali
ze and serialize files, e.g.
json or csv.

S3 (Filesystem)

path The Amazon S3 path, e.g.
s3://mybucket/ .

For more information about other connectors besides Kinesis and Apache Kafka, see your
connector's documentation.

Examples and tutorials for Studio notebooks in Managed
Service for Apache Flink

Topics

• Tutorial: Create a Studio notebook in Managed Service for Apache Flink

• Tutorial: Deploy a Studio notebook as a Managed Service for Apache Flink application with
durable state

• View example queries to analyza data in a Studio notebook

Examples and tutorials for Studio notebooks in Managed Service for Apache Flink 416

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/kinesis.html#connector-options
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/filesystem.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Tutorial: Create a Studio notebook in Managed Service for Apache Flink

The following tutorial demonstrates how to create a Studio notebook that reads data from a
Kinesis data stream or an Amazon MSK cluster.

This tutorial contains the following sections:

• Complete the prerequisites

• Create an AWS Glue database

• Next steps: Create a Studio notebook with Kinesis Data Streams or Amazon MSK

• Create a Studio notebook with Kinesis Data Streams

• Create a Studio notebook with Amazon MSK

• Clean up your application and dependent resources

Complete the prerequisites

Make sure that your AWS CLI is version 2 or later. To install the latest AWS CLI, see Installing,
updating, and uninstalling the AWS CLI version 2.

Create an AWS Glue database

Your Studio notebook uses an AWS Glue database for metadata about your Amazon MSK data
source.

Create an AWS Glue Database

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. Choose Add database. In the Add database window, enter default for Database name.
Choose Create.

Next steps: Create a Studio notebook with Kinesis Data Streams or Amazon MSK

With this tutorial, you can create a Studio notebook that uses either Kinesis Data Streams or
Amazon MSK:

• Create a Studio notebook with Kinesis Data Streams : With Kinesis Data Streams, you quickly
create an application that uses a Kinesis data stream as a source. You only need to create a
Kinesis data stream as a dependent resource.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 417

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://console.aws.amazon.com/glue/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create a Studio notebook with Amazon MSK : With Amazon MSK, you create an application that
uses a Amazon MSK cluster as a source. You need to create an Amazon VPC, an Amazon EC2
client instance, and an Amazon MSK cluster as dependent resources.

Create a Studio notebook with Kinesis Data Streams

This tutorial describes how to create a Studio notebook that uses a Kinesis data stream as a source.

This tutorial contains the following sections:

• Complete the prerequisites

• Create an AWS Glue table

• Create a Studio notebook with Kinesis Data Streams

• Send data to your Kinesis data stream

• Test your Studio notebook

Complete the prerequisites

Before you create a Studio notebook, create a Kinesis data stream (ExampleInputStream). Your
application uses this stream for the application source.

You can create this stream using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide. Name the stream ExampleInputStream and set the Number of
open shards to 1.

To create the stream (ExampleInputStream) using the AWS CLI, use the following Amazon
Kinesis create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-east-1 \
--profile adminuser

Create an AWS Glue table

Your Studio notebook uses an AWS Glue database for metadata about your Kinesis Data Streams
data source.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 418

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

You can either manually create the database first or you can let Managed Service for
Apache Flink create it for you when you create the notebook. Similarly, you can either
manually create the table as described in this section, or you can use the create table
connector code for Managed Service for Apache Flink in your notebook within Apache
Zeppelin to create your table via a DDL statement. You can then check in AWS Glue to make
sure the table was correctly created.

Create a Table

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. If you don't already have a AWS Glue database, choose Databases from the left navigation
bar. Choose Add Database. In the Add database window, enter default for Database name.
Choose Create.

3. In the left navigation bar, choose Tables. In the Tables page, choose Add tables, Add table
manually.

4. In the Set up your table's properties page, enter stock for the Table name. Make sure you
select the database you created previously. Choose Next.

5. In the Add a data store page, choose Kinesis. For the Stream name, enter
ExampleInputStream. For Kinesis source URL, choose enter https://kinesis.us-
east-1.amazonaws.com. If you copy and paste the Kinesis source URL, be sure to delete any
leading or trailing spaces. Choose Next.

6. In the Classification page, choose JSON. Choose Next.

7. In the Define a Schema page, choose Add Column to add a column. Add columns with the
following properties:

Column name Data type

ticker string

price double

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 419

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Choose Next.

8. On the next page, verify your settings, and choose Finish.

9. Choose your newly created table from the list of tables.

10. Choose Edit table and add a property with the key managed-flink.proctime and the value
proctime.

11. Choose Apply.

Create a Studio notebook with Kinesis Data Streams

Now that you have created the resources your application uses, you create your Studio notebook.

To create your application, you can use either the AWS Management Console or the AWS CLI.

• Create a Studio notebook using the AWS Management Console

• Create a Studio notebook using the AWS CLI

Create a Studio notebook using the AWS Management Console

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
managed-flink/home?region=us-east-1#/applications/dashboard.

2. In the Managed Service for Apache Flink applications page, choose the Studio tab. Choose
Create Studio notebook.

Note

You can also create a Studio notebook from the Amazon MSK or Kinesis Data Streams
consoles by selecting your input Amazon MSK cluster or Kinesis data stream, and
choosing Process data in real time.

3. In the Create Studio notebook page, provide the following information:

• Enter MyNotebook for the name of the notebook.

• Choose default for AWS Glue database.

Choose Create Studio notebook.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 420

https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. In the MyNotebook page, choose Run. Wait for the Status to show Running. Charges apply
when the notebook is running.

Create a Studio notebook using the AWS CLI

To create your Studio notebook using the AWS CLI, do the following:

1. Verify your account ID. You need this value to create your application.

2. Create the role arn:aws:iam::AccountID:role/ZeppelinRole and add the following
permissions to the auto-created role by console.

"kinesis:GetShardIterator",

"kinesis:GetRecords",

"kinesis:ListShards"

3. Create a file called create.json with the following contents. Replace the placeholder values
with your information.

{
 "ApplicationName": "MyNotebook",
 "RuntimeEnvironment": "ZEPPELIN-FLINK-3_0",
 "ApplicationMode": "INTERACTIVE",
 "ServiceExecutionRole": "arn:aws:iam::AccountID:role/ZeppelinRole",
 "ApplicationConfiguration": {
 "ApplicationSnapshotConfiguration": {
 "SnapshotsEnabled": false
 },
 "ZeppelinApplicationConfiguration": {
 "CatalogConfiguration": {
 "GlueDataCatalogConfiguration": {
 "DatabaseARN": "arn:aws:glue:us-east-1:AccountID:database/
default"
 }
 }
 }
 }
}

4. Run the following command to create your application:

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 421

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 create-application --cli-input-json file://create.json

5. When the command completes, you see output that shows the details for your new Studio
notebook. The following is an example of the output.

{
 "ApplicationDetail": {
 "ApplicationARN": "arn:aws:kinesisanalyticsus-
east-1:012345678901:application/MyNotebook",
 "ApplicationName": "MyNotebook",
 "RuntimeEnvironment": "ZEPPELIN-FLINK-3_0",
 "ApplicationMode": "INTERACTIVE",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/ZeppelinRole",
...

6. Run the following command to start your application. Replace the sample value with your
account ID.

aws kinesisanalyticsv2 start-application --application-arn
 arn:aws:kinesisanalyticsus-east-1:012345678901:application/MyNotebook\

Send data to your Kinesis data stream

To send test data to your Kinesis data stream, do the following:

1. Open the Kinesis Data Generator.

2. Choose Create a Cognito User with CloudFormation.

3. The AWS CloudFormation console opens with the Kinesis Data Generator template. Choose
Next.

4. In the Specify stack details page, enter a username and password for your Cognito user.
Choose Next.

5. In the Configure stack options page, choose Next.

6. In the Review Kinesis-Data-Generator-Cognito-User page, choose the I acknowledge that
AWS CloudFormation might create IAM resources. checkbox. Choose Create Stack.

7. Wait for the AWS CloudFormation stack to finish being created. After the stack is complete,
open the Kinesis-Data-Generator-Cognito-User stack in the AWS CloudFormation console,

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 422

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

and choose the Outputs tab. Open the URL listed for the KinesisDataGeneratorUrl output
value.

8. In the Amazon Kinesis Data Generator page, log in with the credentials you created in step 4.

9. On the next page, provide the following values:

Region us-east-1

Stream/Firehose stream ExampleInputStream

Records per second 1

For Record Template, paste the following code:

{
 "ticker": "{{random.arrayElement(
 ["AMZN","MSFT","GOOG"]
)}}",
 "price": {{random.number(
 {
 "min":10,
 "max":150
 }
)}}
}

10. Choose Send data.

11. The generator will send data to your Kinesis data stream.

Leave the generator running while you complete the next section.

Test your Studio notebook

In this section, you use your Studio notebook to query data from your Kinesis data stream.

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
managed-flink/home?region=us-east-1#/applications/dashboard.

2. On the Managed Service for Apache Flink applications page, choose the Studio notebook
tab. Choose MyNotebook.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 423

https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. In the MyNotebook page, choose Open in Apache Zeppelin.

The Apache Zeppelin interface opens in a new tab.

4. In the Welcome to Zeppelin! page, choose Zeppelin Note.

5. In the Zeppelin Note page, enter the following query into a new note:

%flink.ssql(type=update)
select * from stock

Choose the run icon.

After a short time, the note displays data from the Kinesis data stream.

To open the Apache Flink Dashboard for your application to view operational aspects, choose
FLINK JOB. For more information about the Flink Dashboard, see Apache Flink Dashboard in the
Managed Service for Apache Flink Developer Guide.

For more examples of Flink Streaming SQL queries, see Queries in the Apache Flink documentation.

Create a Studio notebook with Amazon MSK

This tutorial describes how to create a Studio notebook that uses an Amazon MSK cluster as a
source.

This tutorial contains the following sections:

• Set up an Amazon MSK cluster

• Add a NAT gateway to your VPC

• Create an AWS Glue connection and table

• Create a Studio notebook with Amazon MSK

• Send data to your Amazon MSK cluster

• Test your Studio notebook

Set up an Amazon MSK cluster

For this tutorial, you need an Amazon MSK cluster that allows plaintext access. If you don't have
an Amazon MSK cluster set up already, follow the Getting Started Using Amazon MSK tutorial to
create an Amazon VPC, an Amazon MSK cluster, a topic, and an Amazon EC2 client instance.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 424

https://docs.aws.amazon.com/managed-flink/latest/java/how-dashboard.html
https://docs.aws.amazon.com/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When following the tutorial, do the following:

• In Step 3: Create an Amazon MSK Cluster, on step 4, change the ClientBroker value from TLS
to PLAINTEXT.

Add a NAT gateway to your VPC

If you created an Amazon MSK cluster by following the Getting Started Using Amazon MSK
tutorial, or if your existing Amazon VPC does not already have a NAT gateway for its private
subnets, you must add a NAT Gateway to your Amazon VPC. The following diagram shows the
architecture.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 425

https://docs.aws.amazon.com/msk/latest/developerguide/create-cluster.html
https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To create a NAT gateway for your Amazon VPC, do the following:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose NAT Gateways from the left navigation bar.

3. On the NAT Gateways page, choose Create NAT Gateway.

4. On the Create NAT Gateway page, provide the following values:

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 426

https://console.aws.amazon.com/vpc/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Name - optional ZeppelinGateway

Subnet AWSKafkaTutorialSubnet1

Elastic IP allocation ID Choose an available Elastic IP. If there are no
Elastic IPs available, choose Allocate Elastic
IP, and then choose the Elasic IP that the
console creates.

Choose Create NAT Gateway.

5. On the left navigation bar, choose Route Tables.

6. Choose Create Route Table.

7. On the Create route table page, provide the following information:

• Name tag: ZeppelinRouteTable

• VPC: Choose your VPC (e.g. AWSKafkaTutorialVPC).

Choose Create.

8. In the list of route tables, choose ZeppelinRouteTable. Choose the Routes tab, and choose
Edit routes.

9. In the Edit Routes page, choose Add route.

10. In the For Destination, enter 0.0.0.0/0. For Target, choose NAT Gateway,
ZeppelinGateway. Choose Save Routes. Choose Close.

11. On the Route Tables page, with ZeppelinRouteTable selected, choose the Subnet associations
tab. Choose Edit subnet associations.

12. In the Edit subnet associations page, choose AWSKafkaTutorialSubnet2 and
AWSKafkaTutorialSubnet3. Choose Save.

Create an AWS Glue connection and table

Your Studio notebook uses an AWS Glue database for metadata about your Amazon MSK data
source. In this section, you create an AWS Glue connection that describes how to access your

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 427

https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon MSK cluster, and an AWS Glue table that describes how to present the data in your data
source to clients such as your Studio notebook.

Create a Connection

1. Sign in to the AWS Management Console and open the AWS Glue console at https://
console.aws.amazon.com/glue/.

2. If you don't already have a AWS Glue database, choose Databases from the left navigation
bar. Choose Add Database. In the Add database window, enter default for Database name.
Choose Create.

3. Choose Connections from the left navigation bar. Choose Add Connection.

4. In the Add Connection window, provide the following values:

• For Connection name, enter ZeppelinConnection.

• For Connection type, choose Kafka.

• For Kafka bootstrap server URLs, provide the bootstrap broker string for your cluster. You
can get the bootstrap brokers from either the MSK console, or by entering the following CLI
command:

aws kafka get-bootstrap-brokers --region us-east-1 --cluster-arn ClusterArn

• Uncheck the Require SSL connection checkbox.

Choose Next.

5. In the VPC page, provide the following values:

• For VPC, choose the name of your VPC (e.g. AWSKafkaTutorialVPC.)

• For Subnet, choose AWSKafkaTutorialSubnet2.

• For Security groups, choose all available groups.

Choose Next.

6. In the Connection properties / Connection access page, choose Finish.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 428

https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/glue/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a Table

Note

You can either manually create the table as described in the following steps, or you can use
the create table connector code for Managed Service for Apache Flink in your notebook
within Apache Zeppelin to create your table via a DDL statement. You can then check in
AWS Glue to make sure the table was correctly created.

1. In the left navigation bar, choose Tables. In the Tables page, choose Add tables, Add table
manually.

2. In the Set up your table's properties page, enter stock for the Table name. Make sure you
select the database you created previously. Choose Next.

3. In the Add a data store page, choose Kafka. For the Topic name, enter your topic name (e.g.
AWSKafkaTutorialTopic). For Connection, choose ZeppelinConnection.

4. In the Classification page, choose JSON. Choose Next.

5. In the Define a Schema page, choose Add Column to add a column. Add columns with the
following properties:

Column name Data type

ticker string

price double

Choose Next.

6. On the next page, verify your settings, and choose Finish.

7. Choose your newly created table from the list of tables.

8. Choose Edit table and add the following properties:

• key: managed-flink.proctime, value: proctime

• key: flink.properties.group.id, value: test-consumer-group

• key: flink.properties.auto.offset.reset, value: latest

• key: classification, value: json

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 429

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Without these key/value pairs, the Flink notebook runs into an error.

9. Choose Apply.

Create a Studio notebook with Amazon MSK

Now that you have created the resources your application uses, you create your Studio notebook.

You can create your application using either the AWS Management Console or the AWS CLI.

• Create a Studio notebook using the AWS Management Console

• Create a Studio notebook using the AWS CLI

Note

You can also create a Studio notebook from the Amazon MSK console by choosing an
existing cluster, then choosing Process data in real time.

Create a Studio notebook using the AWS Management Console

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
managed-flink/home?region=us-east-1#/applications/dashboard.

2. In the Managed Service for Apache Flink applications page, choose the Studio tab. Choose
Create Studio notebook.

Note

To create a Studio notebook from the Amazon MSK or Kinesis Data Streams consoles,
select your input Amazon MSK cluster or Kinesis data stream, then choose Process
data in real time.

3. In the Create Studio notebook page, provide the following information:

• Enter MyNotebook for Studio notebook Name.

• Choose default for AWS Glue database.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 430

https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Choose Create Studio notebook.

4. In the MyNotebook page, choose the Configuration tab. In the Networking section, choose
Edit.

5. In the Edit networking for MyNotebook page, choose VPC configuration based on Amazon
MSK cluster. Choose your Amazon MSK cluster for Amazon MSK Cluster. Choose Save
changes.

6. In the MyNotebook page, choose Run. Wait for the Status to show Running.

Create a Studio notebook using the AWS CLI

To create your Studio notebook by using the AWS CLI, do the following:

1. Verify that you have the following information. You need these values to create your
application.

• Your account ID.

• The subnet IDs and security group ID for the Amazon VPC that contains your Amazon MSK
cluster.

2. Create a file called create.json with the following contents. Replace the placeholder values
with your information.

{
 "ApplicationName": "MyNotebook",
 "RuntimeEnvironment": "ZEPPELIN-FLINK-3_0",
 "ApplicationMode": "INTERACTIVE",
 "ServiceExecutionRole": "arn:aws:iam::AccountID:role/ZeppelinRole",
 "ApplicationConfiguration": {
 "ApplicationSnapshotConfiguration": {
 "SnapshotsEnabled": false
 },
 "VpcConfigurations": [
 {
 "SubnetIds": [
 "SubnetID 1",
 "SubnetID 2",
 "SubnetID 3"
],
 "SecurityGroupIds": [

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 431

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "VPC Security Group ID"
]
 }
],
 "ZeppelinApplicationConfiguration": {
 "CatalogConfiguration": {
 "GlueDataCatalogConfiguration": {
 "DatabaseARN": "arn:aws:glue:us-east-1:AccountID:database/
default"
 }
 }
 }
 }
}

3. Run the following command to create your application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create.json

4. When the command completes, you should see output similar to the following, showing the
details for your new Studio notebook:

{
 "ApplicationDetail": {
 "ApplicationARN": "arn:aws:kinesisanalyticsus-
east-1:012345678901:application/MyNotebook",
 "ApplicationName": "MyNotebook",
 "RuntimeEnvironment": "ZEPPELIN-FLINK-3_0",
 "ApplicationMode": "INTERACTIVE",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/ZeppelinRole",
...

5. Run the following command to start your application. Replace the sample value with your
account ID.

aws kinesisanalyticsv2 start-application --application-arn
 arn:aws:kinesisanalyticsus-east-1:012345678901:application/MyNotebook\

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 432

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Send data to your Amazon MSK cluster

In this section, you run a Python script in your Amazon EC2 client to send data to your Amazon
MSK data source.

1. Connect to your Amazon EC2 client.

2. Run the following commands to install Python version 3, Pip, and the Kafka for Python
package, and confirm the actions:

sudo yum install python37
curl -O https://bootstrap.pypa.io/get-pip.py
python3 get-pip.py --user
pip install kafka-python

3. Configure the AWS CLI on your client machine by entering the following command:

aws configure

Provide your account credentials, and us-east-1 for the region.

4. Create a file called stock.py with the following contents. Replace the sample value with your
Amazon MSK cluster's Bootstrap Brokers string, and update the topic name if your topic is not
AWSKafkaTutorialTopic:

from kafka import KafkaProducer
import json
import random
from datetime import datetime

BROKERS = "<<Bootstrap Broker List>>"
producer = KafkaProducer(
 bootstrap_servers=BROKERS,
 value_serializer=lambda v: json.dumps(v).encode('utf-8'),
 retry_backoff_ms=500,
 request_timeout_ms=20000,
 security_protocol='PLAINTEXT')

def getStock():
 data = {}
 now = datetime.now()
 str_now = now.strftime("%Y-%m-%d %H:%M:%S")

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 433

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 data['event_time'] = str_now
 data['ticker'] = random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV'])
 price = random.random() * 100
 data['price'] = round(price, 2)
 return data

while True:
 data =getStock()
 # print(data)
 try:
 future = producer.send("AWSKafkaTutorialTopic", value=data)
 producer.flush()
 record_metadata = future.get(timeout=10)
 print("sent event to Kafka! topic {} partition {} offset
 {}".format(record_metadata.topic, record_metadata.partition,
 record_metadata.offset))
 except Exception as e:
 print(e.with_traceback())

5. Run the script with the following command:

$ python3 stock.py

6. Leave the script running while you complete the following section.

Test your Studio notebook

In this section, you use your Studio notebook to query data from your Amazon MSK cluster.

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
managed-flink/home?region=us-east-1#/applications/dashboard.

2. On the Managed Service for Apache Flink applications page, choose the Studio notebook
tab. Choose MyNotebook.

3. In the MyNotebook page, choose Open in Apache Zeppelin.

The Apache Zeppelin interface opens in a new tab.

4. In the Welcome to Zeppelin! page, choose Zeppelin new note.

5. In the Zeppelin Note page, enter the following query into a new note:

%flink.ssql(type=update)

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 434

https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

select * from stock

Choose the run icon.

The application displays data from the Amazon MSK cluster.

To open the Apache Flink Dashboard for your application to view operational aspects, choose
FLINK JOB. For more information about the Flink Dashboard, see Apache Flink Dashboard in the
Managed Service for Apache Flink Developer Guide.

For more examples of Flink Streaming SQL queries, see Queries in the Apache Flink documentation.

Clean up your application and dependent resources

Delete your Studio notebook

1. Open the Managed Service for Apache Flink console.

2. Choose MyNotebook.

3. Choose Actions, then Delete.

Delete your AWS Glue database and connection

1. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

2. Choose Databases from the left navigation bar. Check the checkbox next to Default to select
it. Choose Action, Delete Database. Confirm your selection.

3. Choose Connections from the left navigation bar. Check the checkbox next to
ZeppelinConnection to select it. Choose Action, Delete Connection. Confirm your selection.

Delete your IAM role and policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles from the left navigation bar.

3. Use the search bar to search for the ZeppelinRole role.

4. Choose the ZeppelinRole role. Choose Delete Role. Confirm the deletion.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 435

https://docs.aws.amazon.com/managed-flink/latest/java/how-dashboard.html
https://docs.aws.amazon.com/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://console.aws.amazon.com/glue/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your CloudWatch log group

The console creates a CloudWatch Logs group and log stream for you when you create your
application using the console. You do not have a log group and stream if you created your
application using the AWS CLI.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Log groups from the left navigation bar.

3. Choose the /AWS/KinesisAnalytics/MyNotebook log group.

4. Choose Actions, Delete log group(s). Confirm the deletion.

Clean up Kinesis Data Streams resources

To delete your Kinesis stream, open the Kinesis Data Streams console, select your Kinesis stream,
and choose Actions, Delete.

Clean up MSK resources

Follow the steps in this section if you created an Amazon MSK cluster for this tutorial. This section
has directions for cleaning up your Amazon EC2 client instance, Amazon VPC, and Amazon MSK
cluster.

Delete your Amazon MSK cluster

Follow these steps if you created an Amazon MSK cluster for this tutorial.

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/home?region=us-
east-1#/home/.

2. Choose AWSKafkaTutorialCluster. Choose Delete. Enter delete in the window that appears,
and confirm your selection.

Terminate your client instance

Follow these steps if you created an Amazon EC2 client instance for this tutorial.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Instances from the left navigation bar.

3. Choose the checkbox next to ZeppelinClient to select it.

Tutorial: Create a Studio notebook in Managed Service for Apache Flink 436

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/ec2/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Choose Instance State, Terminate Instance.

Delete your Amazon VPC

Follow these steps if you created an Amazon VPC for this tutorial.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Network Interfaces from the left navigation bar.

3. Enter your VPC ID in the search bar and press enter to search.

4. Select the checkbox in the table header to select all the displayed network interfaces.

5. Choose Actions, Detach. In the window that appears, choose Enable under Force detachment.
Choose Detach, and wait for all of the network interfaces to reach the Available status.

6. Select the checkbox in the table header to select all the displayed network interfaces again.

7. Choose Actions, Delete. Confirm the action.

8. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

9. Select AWSKafkaTutorialVPC. Choose Actions, Delete VPC. Enter delete and confirm the
deletion.

Tutorial: Deploy a Studio notebook as a Managed Service for Apache
Flink application with durable state

The following tutorial demonstrates how to deploy a Studio notebook as a Managed Service for
Apache Flink application with durable state.

This tutorial contains the following sections:

• Complete prerequisites

• Deploy an application with durable state using the AWS Management Console

• Deploy an application with durable state using the AWS CLI

Complete prerequisites

Create a new Studio notebook by following the Tutorial: Create a Studio notebook in Managed
Service for Apache Flink, using either Kinesis Data Streams or Amazon MSK. Name the Studio
notebook ExampleTestDeploy.

Tutorial: Deploy a Studio notebook as a Managed Service for Apache Flink application with durable
state

437

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/vpc/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Deploy an application with durable state using the AWS Management Console

1. Add an S3 bucket location where you want the packaged code to be stored under Application
code location - optional in the console. This enables the steps to deploy and run your
application directly from the notebook.

2. Add required permissions to the application role to enable the role you are using to read and
write to an Amazon S3 bucket, and to launch a Managed Service for Apache Flink application:

• AmazonS3FullAccess

• Amazonmanaged-flinkFullAccess

• Access to your sources, destinations, and VPCs as applicable. For more information, see
Review IAM permissions for Studio notebooks.

3. Use the following sample code:

%flink.ssql(type=update)
CREATE TABLE exampleoutput (
 'ticket' VARCHAR,
 'price' DOUBLE
)
WITH (
 'connector' = 'kinesis',
 'stream' = 'ExampleOutputStream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json'
);

INSERT INTO exampleoutput SELECT ticker, price FROM exampleinputstream

4. With this feature launch, you will see a new dropdown on the right top corner of each note in
your notebook with the name of the notebook. You can do the following:

• View the Studio notebook settings in the AWS Management Console.

• Build your Zeppelin Note and export it to Amazon S3. At this point, provide a name for
your application and choose Build and Export. You will get a notification when the export
completes.

• If you need to, you can view and run any additional tests on the executable in Amazon S3.

• Once the build is complete, you will be able to deploy your code as a Kinesis streaming
application with durable state and autoscaling.

Tutorial: Deploy a Studio notebook as a Managed Service for Apache Flink application with durable
state

438

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Use the dropdown and choose Deploy Zeppelin Note as Kinesis streaming application.
Review the application name and choose Deploy via AWS Console.

• This will lead you to the AWS Management Console page for creating a Managed Service
for Apache Flink application. Note that application name, parallelism, code location, default
Glue DB, VPC (if applicable) and IAM roles have been pre-populated. Validate that the IAM
roles have the required permissions to your sources and destinations. Snapshots are enabled
by default for durable application state management.

• Choose create application.

• You can choose configure and modify any settings, and choose Run to start your streaming
application.

Deploy an application with durable state using the AWS CLI

To deploy an application using the AWS CLI, you must update your AWS CLI to use the service
model provided with your Beta 2 information. For information about how to use the updated
service model, see Complete the prerequisites.

The following example code creates a new Studio notebook:

aws kinesisanalyticsv2 create-application \
 --application-name <app-name> \
 --runtime-environment ZEPPELIN-FLINK-3_0 \
 --application-mode INTERACTIVE \
 --service-execution-role <iam-role>
 --application-configuration '{
 "ZeppelinApplicationConfiguration": {
 "CatalogConfiguration": {
 "GlueDataCatalogConfiguration": {
 "DatabaseARN": "arn:aws:glue:us-east-1:<account>:database/<glue-database-
name>"
 }
 }
 },
 "FlinkApplicationConfiguration": {
 "ParallelismConfiguration": {
 "ConfigurationType": "CUSTOM",
 "Parallelism": 4,
 "ParallelismPerKPU": 4
 }
 },

Tutorial: Deploy a Studio notebook as a Managed Service for Apache Flink application with durable
state

439

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "DeployAsApplicationConfiguration": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::<s3bucket>",
 "BasePath": "/something/"
 }
 },
 "VpcConfigurations": [
 {
 "SecurityGroupIds": [
 "<security-group>"
],
 "SubnetIds": [
 "<subnet-1>",
 "<subnet-2>"
]
 }
]
 }' \
 --region us-east-1

The following code example starts a Studio notebook:

aws kinesisanalyticsv2 start-application \
 --application-name <app-name> \
 --region us-east-1 \
 --no-verify-ssl

The following code returns the URL for an application's Apache Zeppelin notebook page:

aws kinesisanalyticsv2 create-application-presigned-url \
 --application-name <app-name> \
 --url-type ZEPPELIN_UI_URL \

 --region us-east-1 \
 --no-verify-ssl

View example queries to analyza data in a Studio notebook

The following example queries demonstrate how to analyze data using window queries in a
Studio notebook.

• Create tables with Amazon MSK/Apache Kafka

View example queries to analyza data in a Studio notebook 440

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create tables with Kinesis

• Query a tumbling window

• Query a sliding window

• Use interactive SQL

• Use the BlackHole SQL connector

• Use Scala to generate sample data

• Use interactive Scala

• Use interactive Python

• Use a combination of interactive Python, SQL, and Scala

• Use a cross-account Kinesis data stream

For information about Apache Flink SQL query settings, see Flink on Zeppelin Notebooks for
Interactive Data Analysis.

To view your application in the Apache Flink dashboard, choose FLINK JOB in your application's
Zeppelin Note page.

For more information about window queries, see Windows in the Apache Flink documentation.

For more examples of Apache Flink Streaming SQL queries, see Queries in the Apache Flink
documentation.

Create tables with Amazon MSK/Apache Kafka

You can use the Amazon MSK Flink connector with Managed Service for Apache Flink Studio to
authenticate your connection with Plaintext, SSL, or IAM authentication. Create your tables using
the specific properties per your requirements.

-- Plaintext connection

CREATE TABLE your_table (
 `column1` STRING,
 `column2` BIGINT
) WITH (
 'connector' = 'kafka',
 'topic' = 'your_topic',
 'properties.bootstrap.servers' = '<bootstrap servers>',

View example queries to analyza data in a Studio notebook 441

https://flink.apache.org/ecosystem/2020/06/23/flink-on-zeppelin-part2.html
https://flink.apache.org/ecosystem/2020/06/23/flink-on-zeppelin-part2.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/stream/operators/windows.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 'scan.startup.mode' = 'earliest-offset',
 'format' = 'json'
);

-- SSL connection

CREATE TABLE your_table (
 `column1` STRING,
 `column2` BIGINT
) WITH (
 'connector' = 'kafka',
 'topic' = 'your_topic',
 'properties.bootstrap.servers' = '<bootstrap servers>',
 'properties.security.protocol' = 'SSL',
 'properties.ssl.truststore.location' = '/usr/lib/jvm/java-11-amazon-corretto/lib/
security/cacerts',
 'properties.ssl.truststore.password' = 'changeit',
 'properties.group.id' = 'myGroup',
 'scan.startup.mode' = 'earliest-offset',
 'format' = 'json'
);

-- IAM connection (or for MSK Serverless)

CREATE TABLE your_table (
 `column1` STRING,
 `column2` BIGINT
) WITH (
 'connector' = 'kafka',
 'topic' = 'your_topic',
 'properties.bootstrap.servers' = '<bootstrap servers>',
 'properties.security.protocol' = 'SASL_SSL',
 'properties.sasl.mechanism' = 'AWS_MSK_IAM',
 'properties.sasl.jaas.config' = 'software.amazon.msk.auth.iam.IAMLoginModule
 required;',
 'properties.sasl.client.callback.handler.class' =
 'software.amazon.msk.auth.iam.IAMClientCallbackHandler',
 'properties.group.id' = 'myGroup',
 'scan.startup.mode' = 'earliest-offset',
 'format' = 'json'
);

You can combine these with other properties at Apache Kafka SQL Connector.

View example queries to analyza data in a Studio notebook 442

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/connectors/table/kafka/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create tables with Kinesis

In the following example, you create a table using Kinesis:

CREATE TABLE KinesisTable (
 `column1` BIGINT,
 `column2` BIGINT,
 `column3` BIGINT,
 `column4` STRING,
 `ts` TIMESTAMP(3)
)
PARTITIONED BY (column1, column2)
WITH (
 'connector' = 'kinesis',
 'stream' = 'test_stream',
 'aws.region' = '<region>',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'csv'
);

For more information on other properties you can use, see Amazon Kinesis Data Streams SQL
Connector.

Query a tumbling window

The following Flink Streaming SQL query selects the highest price in each five-second tumbling
window from the ZeppelinTopic table:

%flink.ssql(type=update)
SELECT TUMBLE_END(event_time, INTERVAL '5' SECOND) as winend, MAX(price) as
 five_second_high, ticker
FROM ZeppelinTopic
GROUP BY ticker, TUMBLE(event_time, INTERVAL '5' SECOND)

Query a sliding window

The following Apache Flink Streaming SQL query selects the highest price in each five-second
sliding window from the ZeppelinTopic table:

%flink.ssql(type=update)

View example queries to analyza data in a Studio notebook 443

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/connectors/table/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/connectors/table/kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

SELECT HOP_END(event_time, INTERVAL '3' SECOND, INTERVAL '5' SECOND) AS winend,
 MAX(price) AS sliding_five_second_max
FROM ZeppelinTopic//or your table name in AWS Glue
GROUP BY HOP(event_time, INTERVAL '3' SECOND, INTERVAL '5' SECOND)

Use interactive SQL

This example prints the max of event time and processing time and the sum of values from the
key-values table. Ensure that you have the sample data generation script from the the section
called “Use Scala to generate sample data” running. To try other SQL queries such as filtering and
joins in your Studio notebook, see the Apache Flink documentation: Queries in the Apache Flink
documentation.

%flink.ssql(type=single, parallelism=4, refreshInterval=1000, template=<h1>{2}</h1>
 records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>)

-- An interactive query prints how many records from the `key-value-stream` we have
 seen so far, along with the current processing and event time.
SELECT
 MAX(`et`) as `et`,
 MAX(`pt`) as `pt`,
 SUM(`value`) as `sum`
FROM
 `key-values`

%flink.ssql(type=update, parallelism=4, refreshInterval=1000)

-- An interactive tumbling window query that displays the number of records observed
 per (event time) second.
-- Browse through the chart views to see different visualizations of the streaming
 result.
SELECT
 TUMBLE_START(`et`, INTERVAL '1' SECONDS) as `window`,
 `key`,
 SUM(`value`) as `sum`
FROM
 `key-values`
GROUP BY
 TUMBLE(`et`, INTERVAL '1' SECONDS),
 `key`;

View example queries to analyza data in a Studio notebook 444

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use the BlackHole SQL connector

The BlackHole SQL connector doesn't require that you create a Kinesis data stream or an Amazon
MSK cluster to test your queries. For information about the BlackHole SQL connector, see
BlackHole SQL Connector in the Apache Flink documentation. In this example, the default catalog
is an in-memory catalog.

%flink.ssql

CREATE TABLE default_catalog.default_database.blackhole_table (
 `key` BIGINT,
 `value` BIGINT,
 `et` TIMESTAMP(3)
) WITH (
 'connector' = 'blackhole'
)

%flink.ssql(parallelism=1)

INSERT INTO `test-target`
SELECT
 `key`,
 `value`,
 `et`
FROM
 `test-source`
WHERE
 `key` > 3

%flink.ssql(parallelism=2)

INSERT INTO `default_catalog`.`default_database`.`blackhole_table`
SELECT
 `key`,
 `value`,
 `et`
FROM
 `test-target`
WHERE
 `key` > 7

View example queries to analyza data in a Studio notebook 445

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/connectors/blackhole.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use Scala to generate sample data

This example uses Scala to generate sample data. You can use this sample data to test various
queries. Use the create table statement to create the key-values table.

import org.apache.flink.streaming.api.functions.source.datagen.DataGeneratorSource
import org.apache.flink.streaming.api.functions.source.datagen.RandomGenerator
import org.apache.flink.streaming.api.scala.DataStream

import java.sql.Timestamp

// ad-hoc convenience methods to be defined on Table
implicit class TableOps[T](table: DataStream[T]) {
 def asView(name: String): DataStream[T] = {
 if (stenv.listTemporaryViews.contains(name)) {
 stenv.dropTemporaryView("`" + name + "`")
 }
 stenv.createTemporaryView("`" + name + "`", table)
 return table;
 }
}

%flink(parallelism=4)
val stream = senv
 .addSource(new DataGeneratorSource(RandomGenerator.intGenerator(1, 10), 1000))
 .map(key => (key, 1, new Timestamp(System.currentTimeMillis)))
 .asView("key-values-data-generator")

%flink.ssql(parallelism=4)
-- no need to define the paragraph type with explicit parallelism (such as
 "%flink.ssql(parallelism=2)")
-- in this case the INSERT query will inherit the parallelism of the of the above
 paragraph
INSERT INTO `key-values`
SELECT
 `_1` as `key`,
 `_2` as `value`,
 `_3` as `et`
FROM
 `key-values-data-generator`

View example queries to analyza data in a Studio notebook 446

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use interactive Scala

This is the Scala translation of the the section called “Use interactive SQL”. For more Scala
examples, see Table API in the Apache Flink documentation.

%flink
import org.apache.flink.api.scala._
import org.apache.flink.table.api._
import org.apache.flink.table.api.bridge.scala._

// ad-hoc convenience methods to be defined on Table
implicit class TableOps(table: Table) {
 def asView(name: String): Table = {
 if (stenv.listTemporaryViews.contains(name)) {
 stenv.dropTemporaryView(name)
 }
 stenv.createTemporaryView(name, table)
 return table;
 }
}

%flink(parallelism=4)

// A view that computes many records from the `key-values` we have seen so far, along
 with the current processing and event time.
val query01 = stenv
 .from("`key-values`")
 .select(
 $"et".max().as("et"),
 $"pt".max().as("pt"),
 $"value".sum().as("sum")
).asView("query01")

%flink.ssql(type=single, parallelism=16, refreshInterval=1000, template=<h1>{2}</h1>
 records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>)

-- An interactive query prints the query01 output.
SELECT * FROM query01

%flink(parallelism=4)

View example queries to analyza data in a Studio notebook 447

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/tableApi.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

// An tumbling window view that displays the number of records observed per (event
 time) second.
val query02 = stenv
 .from("`key-values`")
 .window(Tumble over 1.seconds on $"et" as $"w")
 .groupBy($"w", $"key")
 .select(
 $"w".start.as("window"),
 $"key",
 $"value".sum().as("sum")
).asView("query02")

%flink.ssql(type=update, parallelism=4, refreshInterval=1000)

-- An interactive query prints the query02 output.
-- Browse through the chart views to see different visualizations of the streaming
 result.
SELECT * FROM `query02`

Use interactive Python

This is the Python translation of the the section called “Use interactive SQL”. For more Python
examples, see Table API in the Apache Flink documentation.

%flink.pyflink
from pyflink.table.table import Table

def as_view(table, name):
 if (name in st_env.list_temporary_views()):
 st_env.drop_temporary_view(name)
 st_env.create_temporary_view(name, table)
 return table

Table.as_view = as_view

%flink.pyflink(parallelism=16)

A view that computes many records from the `key-values` we have seen so far, along
 with the current processing and event time
st_env \
 .from_path("`keyvalues`") \

View example queries to analyza data in a Studio notebook 448

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/tableApi.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 .select(", ".join([
 "max(et) as et",
 "max(pt) as pt",
 "sum(value) as sum"
])) \
 .as_view("query01")

%flink.ssql(type=single, parallelism=16, refreshInterval=1000, template=<h1>{2}</h1>
 records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>)

-- An interactive query prints the query01 output.
SELECT * FROM query01

%flink.pyflink(parallelism=16)

A view that computes many records from the `key-values` we have seen so far, along
 with the current processing and event time
st_env \
 .from_path("`key-values`") \
 .window(Tumble.over("1.seconds").on("et").alias("w")) \
 .group_by("w, key") \
 .select(", ".join([
 "w.start as window",
 "key",
 "sum(value) as sum"
])) \
 .as_view("query02")

%flink.ssql(type=update, parallelism=16, refreshInterval=1000)

-- An interactive query prints the query02 output.
-- Browse through the chart views to see different visualizations of the streaming
 result.
SELECT * FROM `query02`

Use a combination of interactive Python, SQL, and Scala

You can use any combination of SQL, Python, and Scala in your notebook for interactive analysis.
In a Studio notebook that you plan to deploy as an application with durable state, you can use a
combination of SQL and Scala. This example shows you the sections that are ignored and those
that get deployed in the application with durable state.

View example queries to analyza data in a Studio notebook 449

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

%flink.ssql
CREATE TABLE `default_catalog`.`default_database`.`my-test-source` (
 `key` BIGINT NOT NULL,
 `value` BIGINT NOT NULL,
 `et` TIMESTAMP(3) NOT NULL,
 `pt` AS PROCTIME(),
 WATERMARK FOR `et` AS `et` - INTERVAL '5' SECOND
)
WITH (
 'connector' = 'kinesis',
 'stream' = 'kda-notebook-example-test-source-stream',
 'aws.region' = 'eu-west-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
)

%flink.ssql
CREATE TABLE `default_catalog`.`default_database`.`my-test-target` (
 `key` BIGINT NOT NULL,
 `value` BIGINT NOT NULL,
 `et` TIMESTAMP(3) NOT NULL,
 `pt` AS PROCTIME(),
 WATERMARK FOR `et` AS `et` - INTERVAL '5' SECOND
)
WITH (
 'connector' = 'kinesis',
 'stream' = 'kda-notebook-example-test-target-stream',
 'aws.region' = 'eu-west-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
)

%flink()

// ad-hoc convenience methods to be defined on Table
implicit class TableOps(table: Table) {
 def asView(name: String): Table = {
 if (stenv.listTemporaryViews.contains(name)) {
 stenv.dropTemporaryView(name)
 }

View example queries to analyza data in a Studio notebook 450

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 stenv.createTemporaryView(name, table)
 return table;
 }
}

%flink(parallelism=1)
val table = stenv
 .from("`default_catalog`.`default_database`.`my-test-source`")
 .select($"key", $"value", $"et")
 .filter($"key" > 10)
 .asView("query01")

%flink.ssql(parallelism=1)

-- forward data
INSERT INTO `default_catalog`.`default_database`.`my-test-target`
SELECT * FROM `query01`

%flink.ssql(type=update, parallelism=1, refreshInterval=1000)

-- forward data to local stream (ignored when deployed as application)
SELECT * FROM `query01`

%flink

// tell me the meaning of life (ignored when deployed as application!)
print("42!")

Use a cross-account Kinesis data stream

To use a Kinesis data stream that's in an account other than the account that has
your Studio notebook, create a service execution role in the account where your
Studio notebook is running and a role trust policy in the account that has the data
stream. Use aws.credentials.provider, aws.credentials.role.arn, and
aws.credentials.role.sessionName in the Kinesis connector in your create table DDL
statement to create a table against the data stream.

Use the following service execution role for the Studio notebook account.

{

View example queries to analyza data in a Studio notebook 451

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "AllowNotebookToAssumeRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole"
 "Resource": "*"
}

Use the AmazonKinesisFullAccess policy and the following role trust policy for the data
stream account.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {}
 }
]
}

Use the following paragraph for the create table statement.

%flink.ssql
CREATE TABLE test1 (
name VARCHAR,
age BIGINT
) WITH (
'connector' = 'kinesis',
'stream' = 'stream-assume-role-test',
'aws.region' = 'us-east-1',
'aws.credentials.provider' = 'ASSUME_ROLE',
'aws.credentials.role.arn' = 'arn:aws:iam::<accountID>:role/stream-assume-role-test-
role',
'aws.credentials.role.sessionName' = 'stream-assume-role-test-session',
'scan.stream.initpos' = 'TRIM_HORIZON',
'format' = 'json'

View example queries to analyza data in a Studio notebook 452

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

)

Troubleshoot Studio notebooks for Managed Service for
Apache Flink

This section contains troubleshooting information for Studio notebooks.

Stop a stuck application

To stop an application that is stuck in a transient state, call the StopApplication action with the
Force parameter set to true. For more information, see Running Applications in the Managed
Service for Apache Flink Developer Guide.

Deploy as an application with durable state in a VPC with no internet
access

The Managed Service for Apache Flink Studio deploy-as-application function does not support VPC
applications without internet access. We recommend that you build your application in Studio, and
then use Managed Service for Apache Flink to manually create a Flink application and select the zip
file you built in your Notebook.

The following steps outline this approach:

1. Build and export your Studio application to Amazon S3. This should be a zip file.

2. Create a Managed Service for Apache Flink application manually with code path referencing
the zip file location in Amazon S3. In addition, you will need to configure the application with
the following env variables (2 groupID, 3 var in total):

3. kinesis.analytics.flink.run.options

a. python: source/note.py

b. jarfile: lib/PythonApplicationDependencies.jar

4. managed.deploy_as_app.options

• DatabaseARN: <glue database ARN (Amazon Resource Name)>

5. You may need to give permissions to the Managed Service for Apache Flink Studio and
Managed Service for Apache Flink IAM roles for the services your application uses. You can use
the same IAM role for both apps.

Troubleshoot Studio notebooks for Managed Service for Apache Flink 453

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-running-apps.html
https://docs.aws.amazon.com/managed-flink/latest/java/
https://docs.aws.amazon.com/managed-flink/latest/java/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Deploy-as-app size and build time reduction

Studio deploy-as-app for Python applications packages everything available in the Python
environment because we cannot determine which libraries you need. This may result in a larger-
than necessary deploy-as-app size. The following procedure demonstrates how to reduce the size
of the deploy-as-app Python application size by uninstalling dependencies.

If you’re building a Python application with deploy-as-app feature from Studio, you might consider
removing pre-installed Python packages from the system if your applications are not depending
on. This will not only help to reduce the final artifact size to avoid breaching the service limit for
application size, but also improve the build time of applications with the deploy-as-app feature.

You can execute following command to list out all installed Python packages with their respective
installed size and selectively remove packages with significant size.

%flink.pyflink

!pip list --format freeze | awk -F = {'print $1'} | xargs pip show | grep -E
 'Location:|Name:' | cut -d ' ' -f 2 | paste -d ' ' - - | awk '{gsub("-","_",$1); print
 $2 "/" tolower($1)}' | xargs du -sh 2> /dev/null | sort -hr

Note

apache-beam is required by Flink Python to operate. You should never remove this
package and its dependencies.

Following is the list of pre-install Python packages in Studio V2 which can be considered for
removal:

scipy
statsmodels
plotnine
seaborn
llvmlite
bokeh
pandas
matplotlib
botocore
boto3

Deploy-as-app size and build time reduction 454

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

numba

To remove a Python package from Zeppelin notebook:

1. Check if your application depends on the package, or any of its consuming packages, before
removing it. You can identify dependants of a package using pipdeptree.

2. Executing following command to remove a package:

%flink.pyflink
!pip uninstall -y <package-to-remove>

3. If you need to retrieve a package which you removed by mistake, executing the following
command:

%flink.pyflink
!pip install <package-to-install>

Example Example: Remove scipy package before deploying your Python application with
deploy-as-app feature.

1. Use pipdeptree to discover all scipy consumers and verify if you can safely remove scipy.

• Install the tool through notebook:

%flink.pyflink
!pip install pipdeptree

• Get reversed dependency tree of scipy by running:

%flink.pyflink
!pip -r -p scipy

You should see output similar to the following (condensed for brevity):

...
--
scipy==1.8.0
plotnine==0.5.1 [requires: scipy>=1.0.0]
seaborn==0.9.0 [requires: scipy>=0.14.0]

Deploy-as-app size and build time reduction 455

https://pypi.org/project/pipdeptree/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

statsmodels==0.12.2 [requires: scipy>=1.1]
 ### plotnine==0.5.1 [requires: statsmodels>=0.8.0]

2. Carefully inspect the usage of seaborn, statsmodels and plotnine in your applications. If
your applications do not depend on any of scipy, seaborn, statemodels, or plotnine, you
can remove all of these packages, or only ones which your applications don’t need.

3. Remove the package by running:

!pip uninstall -y scipy plotnine seaborn statemodels

Cancel jobs

This section shows you how to cancel Apache Flink jobs that you can't get to from Apache Zeppelin.
If you want to cancel such a job, go to the Apache Flink dashboard, copy the job ID, then use it in
one of the following examples.

To cancel a single job:

%flink.pyflink
import requests

requests.patch("https://zeppelin-flink:8082/jobs/[job_id]", verify=False)

To cancel all running jobs:

%flink.pyflink
import requests

r = requests.get("https://zeppelin-flink:8082/jobs", verify=False)
jobs = r.json()['jobs']

for job in jobs:
 if (job["status"] == "RUNNING"):
 print(requests.patch("https://zeppelin-flink:8082/jobs/{}".format(job["id"]),
 verify=False))

To cancel all jobs:

%flink.pyflink

Cancel jobs 456

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

import requests

r = requests.get("https://zeppelin-flink:8082/jobs", verify=False)
jobs = r.json()['jobs']

for job in jobs:
 requests.patch("https://zeppelin-flink:8082/jobs/{}".format(job["id"]),
 verify=False)

Restart the Apache Flink interpreter

To restart the Apache Flink interpreter within your Studio notebook

1. Choose Configuration near the top right corner of the screen.

2. Choose Interpreter.

3. Choose restart and then OK.

Create custom IAM policies for Managed Service for Apache
Flink Studio notebooks

You normally use managed IAM policies to allow your application to access dependent resources.
If you need finer control over your application's permissions, you can use a custom IAM policy. This
section contains examples of custom IAM policies.

Note

In the following policy examples, replace the placeholder text with your application's
values.

This topic contains the following sections:

• AWS Glue

• CloudWatch Logs

• Kinesis streams

• Amazon MSK clusters

Restart the Apache Flink interpreter 457

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS Glue

The following example policy grants permissions to access a AWS Glue database.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GlueTable",
 "Effect": "Allow",
 "Action": [
 "glue:GetConnection",
 "glue:GetTable",
 "glue:GetTables",
 "glue:GetDatabase",
 "glue:CreateTable",
 "glue:UpdateTable"
],
 "Resource": [
 "arn:aws:glue:us-east-1:123456789012:connection/*",
 "arn:aws:glue:us-east-1:123456789012:table/<database-name>/*",
 "arn:aws:glue:us-east-1:123456789012:database/<database-name>",
 "arn:aws:glue:us-east-1:123456789012:database/hive",
 "arn:aws:glue:us-east-1:123456789012:catalog"
]
 },
 {
 "Sid": "GlueDatabase",
 "Effect": "Allow",
 "Action": "glue:GetDatabases",
 "Resource": "*"
 }
]
}

CloudWatch Logs

The following policy grants permissions to access CloudWatch Logs:

AWS Glue 458

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:<region>:<accountId>:log-group:*"
]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "<logGroupArn>:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "<logStreamArn>"
]
 }

Note

If you create your application using the console, the console adds the necessary policies to
access CloudWatch Logs to your application role.

Kinesis streams

Your application can use a Kinesis Stream for a source or a destination. Your application needs read
permissions to read from a source stream, and write permissions to write to a destination stream.

Kinesis streams 459

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The following policy grants permissions to read from a Kinesis Stream used as a source:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KinesisShardDiscovery",
 "Effect": "Allow",
 "Action": "kinesis:ListShards",
 "Resource": "*"
 },
 {
 "Sid": "KinesisShardConsumption",
 "Effect": "Allow",
 "Action": [
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:DescribeStream",
 "kinesis:DescribeStreamSummary",
 "kinesis:RegisterStreamConsumer",
 "kinesis:DeregisterStreamConsumer"
],
 "Resource": "arn:aws:kinesis:us-east-1:123456789012:stream/<stream-
name>"
 },
 {
 "Sid": "KinesisEfoConsumer",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStreamConsumer",
 "kinesis:SubscribeToShard"
],
 "Resource": "arn:aws:kinesis:us-east-1:123456789012:stream/<stream-
name>/consumer/*"
 }
]
}

The following policy grants permissions to write to a Kinesis Stream used as a destination:

Kinesis streams 460

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KinesisStreamSink",
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord",
 "kinesis:PutRecords",
 "kinesis:DescribeStreamSummary",
 "kinesis:DescribeStream"
],
 "Resource": "arn:aws:kinesis:us-east-1:123456789012:stream/<stream-
name>"
 }
]
}

If your application accesses an encypted Kinesis stream, you must grant additional permissions to
access the stream and the stream's encryption key.

The following policy grants permissions to access an encrypted source stream and the stream's
encryption key:

{
 "Sid": "ReadEncryptedKinesisStreamSource",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "<inputStreamKeyArn>"
]
 }
 ,

The following policy grants permissions to access an encrypted destination stream and the stream's
encryption key:

Kinesis streams 461

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Sid": "WriteEncryptedKinesisStreamSink",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": [
 "<outputStreamKeyArn>"
]
 }

Amazon MSK clusters

To grant access to an Amazon MSK cluster, you grant access to the cluster's VPC. For policy
examples for accessing an Amazon VPC, see VPC Application Permissions.

Amazon MSK clusters 462

https://docs.aws.amazon.com/managed-flink/latest/java/vpc-permissions.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Get started with Amazon Managed Service for Apache
Flink (DataStream API)

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
implementing an application in Java using the DataStream API. It describes the available options
for creating and testing your applications. It also provides instructions for installing the necessary
tools to complete the tutorials in this guide and to create your first application.

Topics

• Review the components of the Managed Service for Apache Flink application

• Fulfill the prerequisites for completing the exercises

• Set up an AWS account and create an administrator user

• Set up the AWS Command Line Interface (AWS CLI)

• Create and run a Managed Service for Apache Flink application

• Clean up AWS resources

• Explore additional resources

Review the components of the Managed Service for Apache
Flink application

Note

Amazon Managed Service for Apache Flink supports all Apache Flink APIs and potentially
all JVM languages. For more information, see Flink's APIs.
Depending on the API you choose, the structure of the application and the implementation
is slightly different. This Getting Started tutorial covers the implementation of the
applications using the DataStream API in Java.

To process data, your Managed Service for Apache Flink application uses a Java application that
processes input and produces output using the Apache Flink runtime.

A typical Managed Service for Apache Flink application has the following components:

Review application components 463

https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/concepts/overview/#flinks-apis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Runtime properties: You can use runtime properties to pass configuration parameters to your
application to change them without modifying and republishing the code.

• Sources: The application consumes data from one or more sources. A source uses a connector to
read data from an external system, such as a Kinesis data stream, or a Kafka bucket. For more
information, see Add streaming data sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see Operators.

• Sinks: The application sends data to external sources through sinks. A sink uses a connectorv
to send data to a Kinesis data stream, a Kafka topic, Amazon S3, or a relational database. You
can also use a special connector to print the output for development purposes only. For more
information, see Write data using sinks.

Your application requires some external dependencies, such as the Flink connectors that your
application uses, or potentially a Java library. To run in Amazon Managed Service for Apache Flink,
the application must be packaged along with dependencies in a fat-jar and uploaded to an Amazon
S3 bucket. You then create a Managed Service for Apache Flink application. You pass the location
of the code package, along with any other runtime configuration parameter.

This tutorial demonstrates how to use Apache Maven to package the application, and how to run
the application locally in the IDE of your choice.

Fulfill the prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Git client. Install the Git client, if you haven't already.

• Java Development Kit (JDK) version 11 . Install a Java JDK 11 and set the JAVA_HOME
environment variable to point to your JDK install location. If you don't have a JDK 11, you can
use Amazon Coretto 11 or any other standard JDK of your choice.

• To verify that you have the JDK installed correctly, run the following command. The output will
be different if you are using a JDK other than Amazon Corretto. Make sure that the version is
11.x.

$ java --version

openjdk 11.0.23 2024-04-16 LTS

Complete the required prerequisites 464

https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/table/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/table/overview/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.oracle.com/java/technologies/downloads/#java11
https://docs.aws.amazon.com/corretto/latest/corretto-11-ug/what-is-corretto-11.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

OpenJDK Runtime Environment Corretto-11.0.23.9.1 (build 11.0.23+9-LTS)
OpenJDK 64-Bit Server VM Corretto-11.0.23.9.1 (build 11.0.23+9-LTS, mixed mode)

• Apache Maven. Install Apache Maven if you haven't already. To learn how to install it, see
Installing Apache Maven.

• To test your Apache Maven installation, enter the following:

$ mvn -version

• IDE for local development. We recommend that you use a development environment such as
Eclipse Java Neon or IntelliJ IDEA to develop and compile your application.

• To test your Apache Maven installation, enter the following:

$ mvn -version

To get started, go to Set up an AWS account and create an administrator user.

Set up an AWS account and create an administrator user

Before you use Managed Service for Apache Flink for the first time, complete the following tasks:

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Set up an account 465

https://maven.apache.org/
https://maven.apache.org/install.html
https://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create a user with administrative access 466

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in

Grant programmatic access 467

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Next Step

Set up the AWS Command Line Interface (AWS CLI)

Next Step 468

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Set up the AWS Command Line Interface (AWS CLI)

In this step, you download and configure the AWS CLI to use with Managed Service for Apache
Flink.

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the AWS CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide. To check the version of the AWS CLI, run the
following command:

aws --version

The exercises in this tutorial require the following AWS CLI version or later:

aws-cli/1.16.63

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Installing the AWS Command Line Interface

• Configuring the AWS CLI

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile
when executing the AWS CLI commands. For more information about named profiles, see
Named Profiles in the AWS Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID

Set up the AWS CLI 469

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The example code and commands in this tutorial use the us-east-1 US East (N. Virginia)
Region. To use a different Region, change the Region in the code and commands for
this tutorial to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an AWS account and the AWS CLI, you can try the next exercise, in which you
configure a sample application and test the end-to-end setup.

Next step

Create and run a Managed Service for Apache Flink application

Create and run a Managed Service for Apache Flink application

In this step, you create a Managed Service for Apache Flink application with Kinesis data streams as
a source and a sink.

This section contains the following steps:

• Create dependent resources

• Set up your local development environment

• Download and examine the Apache Flink streaming Java code

• Write sample records to the input stream

• Run your application locally

• Observe input and output data in Kinesis streams

• Stop your application running locally

Next step 470

https://docs.aws.amazon.com/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Compile and package your application code

• Upload the application code JAR file

• Create and configure the Managed Service for Apache Flink application

• Next step

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams for input and output

• An Amazon S3 bucket to store the application's code

Note

This tutorial assumes that you are deploying your application in the us-east-1 US East (N.
Virginia) Region. If you use another Region, adapt all steps accordingly.

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS
CLI command. For console instructions, see Creating and Updating Data Streams in the Amazon
Kinesis Data Streams Developer Guide. To create the streams using the AWS CLI, use the following
commands, adjusting to the Region you use for your application.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command:

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \

Create dependent resources 471

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

--region us-east-1 \

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream:

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-east-1 \

Create an Amazon S3 bucket for the application code

You can create the Amazon S3 bucket using the console. To learn how to create an Amazon S3
bucket using the console, see Creating a bucket in the Amazon S3 User Guide. Name the Amazon
S3 bucket using a globally unique name, for example by appending your login name.

Note

Make sure that you create the bucket in the Region you use for this tutorial (us-east-1).

Other resources

When you create your application, Managed Service for Apache Flink automatically creates the
following Amazon CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/<my-application>

• A log stream called kinesis-analytics-log-stream

Set up your local development environment

For development and debugging, you can run the Apache Flink application on your machine
directly from your IDE of choice. Any Apache Flink dependencies are handled like regular Java
dependencies using Apache Maven.

Set up your local development environment 472

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

On your development machine, you must have Java JDK 11, Maven, and Git installed. We
recommend that you use a development environment such as Eclipse Java Neon or IntelliJ
IDEA. To verify that you meet all prerequisites, see Fulfill the prerequisites for completing
the exercises. You do not need to install an Apache Flink cluster on your machine.

Authenticate your AWS session

The application uses Kinesis data streams to publish data. When running locally, you must have
a valid AWS authenticated session with permissions to write to the Kinesis data stream. Use the
following steps to authenticate your session:

1. If you don't have the AWS CLI and a named profile with valid credential configured, see Set up
the AWS Command Line Interface (AWS CLI).

2. Verify that your AWS CLI is correctly configured and your users have permissions to write to the
Kinesis data stream by publishing the following test record:

$ aws kinesis put-record --stream-name ExampleOutputStream --data TEST --partition-
key TEST

3. If your IDE has a plugin to integrate with AWS, you can use it to pass the credentials to the
application running in the IDE. For more information, see AWS Toolkit for IntelliJ IDEA and AWS
Toolkit for Eclipse.

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-managed-service-for-apache-flink-
examples.git

2. Navigate to the amazon-managed-service-for-apache-flink-examples/tree/main/
java/GettingStarted directory.

Download and examine the Apache Flink streaming Java code 473

https://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://aws.amazon.com/intellij/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Review application components

The application is entirely implemented in the
com.amazonaws.services.msf.BasicStreamingJob class. The main() method defines the
data flow to process the streaming data and to run it.

Note

For an optimized developer experience, the application is designed to run without any code
changes both on Amazon Managed Service for Apache Flink and locally, for development in
your IDE.

• To read the runtime configuration so it will work when running in Amazon Managed Service for
Apache Flink and in your IDE, the application automatically detects if it's running standalone
locally in the IDE. In that case, the application loads the runtime configuration differently:

1. When the application detects that it's running in standalone mode in your IDE, form the
application_properties.json file included in the resources folder of the project. The
content of the file follows.

2. When the application runs in Amazon Managed Service for Apache Flink, the default behavior
loads the application configuration from the runtime properties you will define in the Amazon
Managed Service for Apache Flink application. See Create and configure the Managed Service
for Apache Flink application.

private static Map<String, Properties>
 loadApplicationProperties(StreamExecutionEnvironment env) throws IOException {
 if (env instanceof LocalStreamEnvironment) {
 LOGGER.info("Loading application properties from '{}'",
 LOCAL_APPLICATION_PROPERTIES_RESOURCE);
 return KinesisAnalyticsRuntime.getApplicationProperties(
 BasicStreamingJob.class.getClassLoader()

 .getResource(LOCAL_APPLICATION_PROPERTIES_RESOURCE).getPath());
 } else {
 LOGGER.info("Loading application properties from Amazon Managed Service for
 Apache Flink");
 return KinesisAnalyticsRuntime.getApplicationProperties();
 }
}

Download and examine the Apache Flink streaming Java code 474

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• The main() method defines the application data flow and runs it.

• Initializes the default streaming environments. In this example, we show how to create
both the StreamExecutionEnvironment to be used with the DataSteam API and the
StreamTableEnvironment to be used with SQL and the Table API. The two environment
objects are two separate references to the same runtime environment, to use different APIs.

StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

• Load the application configuration parameters. This will automatically load them from the
correct place, depending on where the application is running:

Map<String, Properties> applicationParameters = loadApplicationProperties(env);

• The application defines a source using the Kinesis Consumer connector to read
data from the input stream. The configuration of the input stream is defined in the
PropertyGroupId=InputStream0. The name and Region of the stream are in the properties
named stream.name and aws.region respectively. For simplicity, this source reads the
records as a string.

private static FlinkKinesisConsumer<String> createSource(Properties
 inputProperties) {
 String inputStreamName = inputProperties.getProperty("stream.name");
 return new FlinkKinesisConsumer<>(inputStreamName, new SimpleStringSchema(),
 inputProperties);
}
...

public static void main(String[] args) throws Exception {
 ...
 SourceFunction<String> source =
 createSource(applicationParameters.get("InputStream0"));
 DataStream<String> input = env.addSource(source, "Kinesis Source");
 ...
}

• The application then defines a sink using the Kinesis Streams Sink connector to
send data to the output stream. Output stream name and Region are defined in the
PropertyGroupId=OutputStream0, similar to the input stream. The sink is connected

Download and examine the Apache Flink streaming Java code 475

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/datastream/kinesis/#kinesis-consumer
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/datastream/kinesis/#kinesis-streams-sink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

directly to the internal DataStream that is getting data from the source. In a real application,
you have some transformation between source and sink.

private static KinesisStreamsSink<String> createSink(Properties outputProperties) {
 String outputStreamName = outputProperties.getProperty("stream.name");
 return KinesisStreamsSink.<String>builder()
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema())
 .setStreamName(outputStreamName)
 .setPartitionKeyGenerator(element ->
 String.valueOf(element.hashCode()))
 .build();
}
...
public static void main(String[] args) throws Exception {
 ...
 Sink<String> sink = createSink(applicationParameters.get("OutputStream0"));
 input.sinkTo(sink);
 ...
}

• Finally, you run the data flow that you just defined. This must be the last instruction of the
main() method, after you defined all the operators the data flow requires:

env.execute("Flink streaming Java API skeleton");

Use the pom.xml file

The pom.xml file defines all dependencies required by the application and sets up the Maven Shade
plugin to build the fat-jar that contains all dependencies required by Flink.

• Some dependencies have provided scope. These dependencies are automatically available
when the application runs in Amazon Managed Service for Apache Flink. They are required to
compile the application, or to run the application locally in your IDE. For more information, see
Run your application locally. Make sure that you are using the same Flink version as the runtime
you will use in Amazon Managed Service for Apache Flink.

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-clients</artifactId>

Download and examine the Apache Flink streaming Java code 476

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-streaming-java</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>

• You must add additional Apache Flink dependencies to the pom with the default scope, such
as the Kinesis connector used by this application. For more information, see Use Apache Flink
connectors. You can also add any additional Java dependencies required by your application.

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kinesis</artifactId>
 <version>${aws.connector.version}</version>
</dependency>

• The Maven Java Compiler plugin makes sure that the code is compiled against Java 11, the JDK
version currently supported by Apache Flink.

• The Maven Shade plugin packages the fat-jar, excluding some libraries that are provided
by the runtime. It also specifies two transformers: ServicesResourceTransformer and
ManifestResourceTransformer. The latter configures the class containing the main method
to start the application. If you rename the main class, don't forget to update this transformer.

• <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 ...
 <transformer
 implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
 <mainClass>com.amazonaws.services.msf.BasicStreamingJob</mainClass>
 </transformer>
 ...
</plugin>

Download and examine the Apache Flink streaming Java code 477

https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Write sample records to the input stream

In this section, you will send sample records to the stream for the application to process. You have
two options for generating sample data, either using a Python script or the Kinesis Data Generator.

Generate sample data using a Python script

You can use a Python script to send sample records to the stream.

Note

To run this Python script, you must use Python 3.x and have the AWS SDK for Python
(Boto) library installed.

To start sending test data to the Kinesis input stream:

1. Download the data generator stock.py Python script from the Data generator GitHub
repository.

2. Run the stock.py script:

$ python stock.py

Keep the script running while you complete the rest of the tutorial. You can now run your Apache
Flink application.

Generate sample data using Kinesis Data Generator

Alternatively to using the Python script, you can use Kinesis Data Generator, also available in a
hosted version, to send random sample data to the stream. Kinesis Data Generator runs in your
browser, and you don't need to install anything on your machine.

To set up and run Kinesis Data Generator:

1. Follow the instructions in the Kinesis Data Generator documentation to set up access to the tool.
You will run an AWS CloudFormation template that sets up a user and password.

2. Access Kinesis Data Generator through the URL generated by the CloudFormation template. You
can find the URL in the Output tab after the CloudFormation template is completed.

Write sample records to the input stream 478

https://github.com/awslabs/amazon-kinesis-data-generator
https://aws.amazon.com/developer/language/python/
https://aws.amazon.com/developer/language/python/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/data-generator
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/data-generator
https://github.com/awslabs/amazon-kinesis-data-generator
https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Configure the data generator:

• Region: Select the Region that you are using for this tutorial: us-east-1

• Stream/delivery stream: Select the input stream that the application will use:
ExampleInputStream

• Records per second: 100

• Record template: Copy and paste the following template:

{
 "event_time" : "{{date.now("YYYY-MM-DDTkk:mm:ss.SSSSS")}},
 "ticker" : "{{random.arrayElement(
 ["AAPL", "AMZN", "MSFT", "INTC", "TBV"]
)}}",
 "price" : {{random.number(100)}}
}

4. Test the template: Choose Test template and verify that the generated record is similar to the
following:

{ "event_time" : "2024-06-12T15:08:32.04800, "ticker" : "INTC", "price" : 7 }

5. Start the data generator: Choose Select Send Data.

Kinesis Data Generator is now sending data to the ExampleInputStream.

Run your application locally

You can run and debug your Flink application locally in your IDE.

Note

Before you continue, verify that the input and output streams are available. See Create two
Amazon Kinesis data streams. Also, verify that you have permission to read and write from
both streams. See Authenticate your AWS session.
Setting up the local development environment requires Java 11 JDK, Apache Maven, and
and IDE for Java development. Verify you meet the required prerequisites. See Fulfill the
prerequisites for completing the exercises.

Run your application locally 479

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Import the Java project into your IDE

To start working on the application in your IDE, you must import it as a Java project.

The repository you cloned contains multiple examples. Each example is a separate project. For this
tutorial, import the content in the ./java/GettingStarted subdirectory into your IDE.

Insert the code as an existing Java project using Maven.

Note

The exact process to import a new Java project varies depending on the IDE you are using.

Check the local application configuration

When running locally, the application uses the configuration in the
application_properties.json file in the resources folder of the project under ./src/main/
resources. You can edit this file to use different Kinesis stream names or Regions.

[
 {
 "PropertyGroupId": "InputStream0",
 "PropertyMap": {
 "stream.name": "ExampleInputStream",
 "flink.stream.initpos": "LATEST",
 "aws.region": "us-east-1"
 }
 },
 {
 "PropertyGroupId": "OutputStream0",
 "PropertyMap": {
 "stream.name": "ExampleOutputStream",
 "aws.region": "us-east-1"
 }
 }
]

Set up your IDE run configuration

You can run and debug the Flink application from your IDE directly by running the main class
com.amazonaws.services.msf.BasicStreamingJob, as you would run any Java application.

Run your application locally 480

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Before running the application, you must set up the Run configuration. The setup depends on the
IDE you are using. For example, see Run/debug configurations in the IntelliJ IDEA documentation.
In particular, you must set up the following:

1. Add the provided dependencies to the classpath. This is required to make sure that the
dependencies with provided scope are passed to the application when running locally. Without
this set up, the application displays a class not found error immediately.

2. Pass the AWS credentials to access the Kinesis streams to the application. The fastest way
is to use AWS Toolkit for IntelliJ IDEA. Using this IDE plugin in the Run configuration, you can
select a specific AWS profile. AWS authentication happens using this profile. You don't need to
pass AWS credentials directly.

3. Verify that the IDE runs the application using JDK 11.

Run the application in your IDE

After you set up the Run configuration for the BasicStreamingJob, you can run or debug it like a
regular Java application.

Note

You can't run the fat-jar generated by Maven directly with java -jar ... from the
command line. This jar does not contain the Flink core dependencies required to run the
application standalone.

When the application starts successfully, it logs some information about the standalone minicluster
and the initialization of the connectors. This is followed by a number of INFO and some WARN logs
that Flink normally emits when the application starts.

13:43:31,405 INFO com.amazonaws.services.msf.BasicStreamingJob [] -
 Loading application properties from 'flink-application-properties-dev.json'
13:43:31,549 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Flink Kinesis Consumer is going to read the following streams:
 ExampleInputStream,
13:43:31,676 INFO org.apache.flink.runtime.taskexecutor.TaskExecutorResourceUtils []
 - The configuration option taskmanager.cpu.cores required for local execution is not
 set, setting it to the maximal possible value.

Run your application locally 481

https://www.jetbrains.com/help/idea/run-debug-configuration.html
https://aws.amazon.com/intellij/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

13:43:31,676 INFO org.apache.flink.runtime.taskexecutor.TaskExecutorResourceUtils
 [] - The configuration option taskmanager.memory.task.heap.size required for local
 execution is not set, setting it to the maximal possible value.
13:43:31,676 INFO org.apache.flink.runtime.taskexecutor.TaskExecutorResourceUtils []
 - The configuration option taskmanager.memory.task.off-heap.size required for local
 execution is not set, setting it to the maximal possible value.
13:43:31,676 INFO org.apache.flink.runtime.taskexecutor.TaskExecutorResourceUtils []
 - The configuration option taskmanager.memory.network.min required for local execution
 is not set, setting it to its default value 64 mb.
13:43:31,676 INFO org.apache.flink.runtime.taskexecutor.TaskExecutorResourceUtils []
 - The configuration option taskmanager.memory.network.max required for local execution
 is not set, setting it to its default value 64 mb.
13:43:31,676 INFO org.apache.flink.runtime.taskexecutor.TaskExecutorResourceUtils [] -
 The configuration option taskmanager.memory.managed.size required for local execution
 is not set, setting it to its default value 128 mb.
13:43:31,677 INFO org.apache.flink.runtime.minicluster.MiniCluster [] -
 Starting Flink Mini Cluster
....

After the initialization is complete, the application doesn't emit any further log entries. While data
is flowing, no log is emitted.

To verify if the application is correctly processing data, you can inspect the input and output
Kinesis streams, as described in the following section.

Note

Not emitting logs about flowing data is the normal behavior for a Flink application.
Emitting logs on every record might be convenient for debugging, but can add considerable
overhead when running in production.

Observe input and output data in Kinesis streams

You can observe records sent to the input stream by the (generating sample Python) or the Kinesis
Data Generator (link) by using the Data Viewer in the Amazon Kinesis console.

To observe records

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

Observe input and output data in Kinesis streams 482

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Verify that the Region is the same where you are running this tutorial, which is us-east-1 US
East (N. Virginia) by default. Change the Region if it does not match.

3. Choose Data Streams.

4. Select the stream that you want to observe, either ExampleInputStream or
ExampleOutputStream.

5. Choose the Data viewer tab.

6. Choose any Shard, keep Latest as Starting position, and then choose Get records. You might
see a "No record found for this request" error. If so, choose Retry getting records. The newest
records published to the stream display.

7. Choose the value in the Data column to inspect the content of the record in JSON format.

Stop your application running locally

Stop the application running in your IDE. The IDE usually provides a "stop" option. The exact
location and method depends on the IDE you're using.

Compile and package your application code

In this section, you use Apache Maven to compile the Java code and package it into a JAR file. You
can compile and package your code using the Maven command line tool or your IDE.

To compile and package using the Maven command line:

Move to the directory containing the Java GettingStarted project and run the following command:

$ mvn package

To compile and package using your IDE:

Run mvn package from your IDE Maven integration.

In both cases, the following JAR file is created: target/amazon-msf-java-stream-
app-1.0.jar.

Note

Running a "build project" from your IDE might not create the JAR file.

Stop your application running locally 483

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upload the application code JAR file

In this section, you upload the JAR file you created in the previous section to the Amazon Simple
Storage Service (Amazon S3) bucket you created at the beginning of this tutorial. If you have not
completed this step, see (link).

To upload the application code JAR file

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the bucket you previously created for the application code.

3. Choose Upload.

4. Choose Add files.

5. Navigate to the JAR file generated in the previous step: target/amazon-msf-java-
stream-app-1.0.jar.

6. Choose Upload without changing any other settings.

Warning

Make sure that you select the correct JAR file in <repo-dir>/java/GettingStarted/
target/amazon-msf-java-stream-app-1.0.jar.
The target directory also contains other JAR files that you don't need to upload.

Create and configure the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the AWS CLI. For this tutorial, you will use the console.

Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you create these resources separately.

Topics

Upload the application code JAR file 484

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create the application

• Edit the IAM policy

• Configure the application

• Run the application

• Observe the metrics of the running application

• Observe output data in Kinesis streams

• Stop the application

Create the application

To create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Verify that the correct Region is selected: us-east-1 US East (N. Virginia)

3. Open the menu on the right and choose Apache Flink applications and then Create
streaming application. Alternatively, choose Create streaming application in the Get started
container of the initial page.

4. On the Create streaming application page:

• Choose a method to set up the stream processing application: choose Create from
scratch.

• Apache Flink configuration, Application Flink version: choose Apache Flink 1.20.

5. Configure your application

• Application name: enter MyApplication.

• Description: enter My java test app.

• Access to application resources: choose Create / update IAM role kinesis-analytics-
MyApplication-us-east-1 with required policies.

6. Configure your Template for application settings

• Templates: choose Development.

7. Choose Create streaming application at the bottom of the page.

Create and configure the Managed Service for Apache Flink application 485

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-east-1

• Role: kinesisanalytics-MyApplication-us-east-1

Amazon Managed Service for Apache Flink was formerly known as Kinesis Data Analytics.
The name of the resources that are automatically created is prefixeed with kinesis-
analytics- for backward compatibility.

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

To edit the policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-east-1
policy that the console created for you in the previous section.

3. Choose Edit and then choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",

Create and configure the Managed Service for Apache Flink application 486

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::my-bucket/kinesis-analytics-placeholder-s3-
object"
]
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-east-1:012345678901:log-group:*"
]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-east-1:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-east-1:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",

Create and configure the Managed Service for Apache Flink application 487

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": "arn:aws:kinesis:us-east-1:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-east-1:012345678901:stream/
ExampleOutputStream"
 }
]
}

5. Choose Next at the bottom of the page and then choose Save changes.

Configure the application

Edit the application configuration to set the application code artifact.

To edit the configuration

1. On the MyApplication page, choose Configure.

2. In the Application code location section:

• For Amazon S3 bucket, select the bucket you previously created for the application code.
Choose Browse and select the correct bucket, and then select Choose. Do not click on the
bucket name.

• For Path to Amazon S3 object, enter amazon-msf-java-stream-app-1.0.jar.

3. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-east-1 with required policies.

4. In the Runtime properties section, add the following properties.

5. Choose Add new item and add each of the following parameters:

Group ID Key Value

InputStream0 stream.name ExampleInputStream

InputStream0 aws.region us-east-1

Create and configure the Managed Service for Apache Flink application 488

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

OutputStream0 stream.name ExampleOutputStream

OutputStream0 aws.region us-east-1

6. Do not modify any of the other sections.

7. Choose Save changes.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

The application is now configured and ready to run.

To run the application

1. On the console for Amazon Managed Service for Apache Flink, choose My Application and
choose Run.

2. On the next page, the Application restore configuration page, choose Run with latest
snapshot and then choose Run.

The Status in Application details transitions from Ready to Starting and then to Running
when the application has started.

When the application is in the Running status, you can now open the Flink dashboard.

To open the dashboard

1. Choose Open Apache Flink dashboard. The dashboard opens on a new page.

Create and configure the Managed Service for Apache Flink application 489

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the Runing jobs list, choose the single job that you can see.

Note

If you set the Runtime properties or edited the IAM policies incorrectly, the application
status might turn into Running, but the Flink dashboard shows that the job is
continuously restarting. This is a common failure scenario if the application is
misconfigured or lacks permissions to access the external resources.
When this happens, check the Exceptions tab in the Flink dashboard to see the cause
of the problem.

Observe the metrics of the running application

On the MyApplication page, in the Amazon CloudWatch metrics section, you can see some of the
fundamental metrics from the running application.

To view the metrics

1. Next to the Refresh button, select 10 seconds from the dropdown list.

2. When the application is running and healthy, you can see the uptime metric continuously
increasing.

3. The fullrestarts metric should be zero. If it is increasing, the configuration might have issues.
To investigate the issue, review the Exceptions tab on the Flink dashboard.

4. The Number of failed checkpoints metric should be zero in a healthy application.

Note

This dashboard displays a fixed set of metrics with a granularity of 5 minutes. You can
create a custom application dashboard with any metrics in the CloudWatch dashboard.

Observe output data in Kinesis streams

Make sure you are still publishing data to the input, either using the Python script or the Kinesis
Data Generator.

Create and configure the Managed Service for Apache Flink application 490

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can now observe the output of the application running on Managed Service for Apache Flink
by using the Data Viewer in the https://console.aws.amazon.com/kinesis/, similarly to what you
already did earlier.

To view the output

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Verify that the Region is the same as the one you are using to run this tutorial. By default, it is
us-east-1US East (N. Virginia). Change the Region if necessary.

3. Choose Data Streams.

4. Select the stream that you want to observe. For this tutorial, use ExampleOutputStream.

5. Choose the Data viewer tab.

6. Select any Shard, keep Latest as Starting position, and then choose Get records. You might
see a "no record found for this request" error. If so, choose Retry getting records. The newest
records published to the stream display.

7. Select the value in the Data column to inspect the content of the record in JSON format.

Stop the application

To stop the applicatio, go to the console page of the Managed Service for Apache Flink application
named MyApplication.

To stop the application

1. From the Action dropdown list, choose Stop.

2. The Status in Application details transitions from Running to Stopping, and then to Ready
when the application is completely stopped.

Note

Don't forget to also stop sending data to the input stream from the Python script or
the Kinesis Data Generator.

Next step

Clean up AWS resources

Next step 491

https://console.aws.amazon.com/kinesis/
https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in this Getting Started
(DataStream API) tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

• Explore additional resources for Apache Flink

Delete your Managed Service for Apache Flink application

Use the following procedure to delete the application.

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. From the Actions dropdown list, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink..

2. Choose Data streams.

3. Select the two streams that you created, ExampleInputStream and
ExampleOutputStream.

4. From the Actions dropdown list, choose Delete, and then confirm the deletion.

Delete your Amazon S3 objects and bucket

Use the following procedures to delete your Amazon S3 objects and bucket.

Clean up resources 492

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To delete the object from the S3 bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Select the S3 bucket that you created for the application artifact.

3. Select the application artifact you uploaded, named amazon-msf-java-stream-
app-1.0.jar.

4. Choose Delete and confirm the deletion.

To delete the S3 bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Select the bucket that you created for the artifacts.

3. Choose Delete and confirm the deletion.

Note

The S3 bucket must be empty to delete it.

Delete your IAM resources

To delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-east-1 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-east-1 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Delete your IAM resources 493

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Explore additional resources for Apache Flink

Explore additional resources

Explore additional resources

Now that you've created and run a basic Managed Service for Apache Flink application, see the
following resources for more advanced Managed Service for Apache Flink solutions.

• Amazon Managed Service for Apache Flink Workshop: In this workshop, you build an end-to-
end streaming architecture to ingest, analyze, and visualize streaming data in near real-time. You
set out to improve the operations of a taxi company in New York City. You analyze the telemetry
data of a taxi fleet in New York City in near real-time to optimize their fleet operations.

• Examples for creating and working with Managed Service for Apache Flink applications: This
section of this Developer Guide provides examples of creating and working with applications in
Managed Service for Apache Flink. They include example code and step-by-step instructions to
help you create Managed Service for Apache Flink applications and test your results.

• Learn Flink: Hands On Training: Offical introductory Apache Flink training that gets you started
writing scalable streaming ETL, analytics, and event-driven applications.

Explore additional resources for Apache Flink 494

https://catalog.workshops.aws/managed-flink
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/learn-flink/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Get started with Amazon Managed Service for Apache
Flink (Table API)

This section introduces you to the fundamental concepts of Managed Service for Apache Flink
and implementing an application in Java using the Table API and SQL. It demonstrates how to
switch between different APIs within the same application, and it describes the available options
for creating and testing your applications. It also provides instructions for installing the necessary
tools to complete the tutorials in this guide and to create your first application.

Topics

• Review the components of the Managed Service for Apache Flink application

• Complete the required prerequisites

• Create and run a Managed Service for Apache Flink application

• Next step

• Clean up AWS resources

• Explore additional resources

Review the components of the Managed Service for Apache
Flink application

Note

Managed Service for Apache Flink supports all Apache Flink APIs and potentially all JVM
languages. Depending on the API you choose, the structure of the application and the
implementation is slightly different. This tutorial covers the implementation of applications
using the Table API and SQL, and the integration with the DataStream API, implemented in
Java.

To process data, your Managed Service for Apache Flink application uses a Java application that
processes input and produces output using the Apache Flink runtime.

A typical Apache Flink application has the following components:

Review application components 495

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/overview/#flinks-apis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Runtime properties: You can use runtime properties to pass configuration parameters to your
application without modifying and republishing the code.

• Sources: The application consumes data from one or more sources. A source uses a connector
to read data from and external system, such as a Kinesis data stream or an Amazon MSK topic.
For development or testing, you can also have sources random[ly generate test data. For more
information, see Add streaming data sources to Managed Service for Apache Flink. With SQL or
Table API, sources are defined as source tables.

• Transformations: The application processes data through one or more transformations that can
filter, enrich, or aggregate data. When using SQL or Table API, transformations are defined as
queries over tables or views.

• Sinks: The application sends data to external systems through sinks. A sink uses a connector
to send data to an external system, such as a Kinesis data stream, an Amazon MSK topic, an
Amazon S3 bucket, or a relational database. You can also use a special connector to print the
output for development purposes only. When using SQL or Table API, sinks are defined as sink
tables where you will insert results. For more information, see Write data using sinks in Managed
Service for Apache Flink.

Your application requires some external dependencies, such as Flink connectors your application
uses, or potentially a Java library. To run in Amazon Managed Service for Apache Flink, you must
package the application along with dependencies in a fat-JAR and upload it to an Amazon S3
bucket. You then create a Managed Service for Apache Flink application. You pass the code package
location, along with other runtime configuration parameters. This tutorial demonstrates how to
use Apache Maven to package the application and how to run the application locally in the IDE of
your choice.

Complete the required prerequisites

Before starting this tutorial, complete the first two steps of the Get started with Amazon Managed
Service for Apache Flink (DataStream API):

• Fulfill the prerequisites for completing the exercises

• Set up the AWS Command Line Interface (AWS CLI)

To get started, see Create an application.

Complete the required prerequisites 496

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with Kinesis data
streams as a source and sink.

This section contains the following steps.

• Create dependent resources

• Set up your local development environment

• Download and examine the Apache Flink streaming Java code

• Run your application locally

• Observe the application writing data to an S3 bucket

• Stop your application running locally

• Compile and package your application code

• Upload the application code JAR file

• Create and configure the Managed Service for Apache Flink application

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

• An Amazon S3 bucket to store the application's code and to write the application output.

Note

This tutorial assumes that you are deploying your application in the us-east-1 Region. If
you use another Region, you must adapt all steps accordingly.

Create an Amazon S3 bucket

You can create the Amazon S3 bucket using the console. For instructions for creating this resource,
see the following topics:

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name.

Create an application 497

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Make sure that you create the bucket in the Region you use for this tutorial. The default
for the tutorial is us-east-1.

Other resources

When you create your application, Managed Service for Apache Flink creates the following Amazon
CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/<my-application>.

• A log stream called kinesis-analytics-log-stream.

Set up your local development environment

For development and debugging, you can run the Apache Flink application on your machine,
directly from your IDE of choice. Any Apache Flink dependencies are handled as normal Java
dependencies using Maven.

Note

On your development machine, you must have Java JDK 11, Maven, and Git installed. We
recommend that you use a development environment such as Eclipse Java Neon or IntelliJ
IDEA. To verify that you meet all prerequisites, see Fulfill the prerequisites for completing
the exercises. You do not need to install an Apache Flink cluster on your machine.

Authenticate your AWS session

The application uses Kinesis data streams to publish data. When running locally, you must have
a valid AWS authenticated session with permissions to write to the Kinesis data stream. Use the
following steps to authenticate your session:

1. If you don't have the AWS CLI and a named profile with valid credential configured, see Set up
the AWS Command Line Interface (AWS CLI).

Set up your local development environment 498

https://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. If your IDE has a plugin to integrate with AWS, you can use it to pass the credentials to the
application running in the IDE. For more information, see AWS Toolkit for IntelliJ IDEA and AWS
Toolkit for compiling the application or running Eclipse.

Download and examine the Apache Flink streaming Java code

The application code for this example is available from GitHub.

To download the Java application code

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-managed-service-for-apache-flink-
examples.git

2. Navigate to the ./java/GettingStartedTable directory.

Review application components

The application is entirely implemented in the
com.amazonaws.services.msf.BasicTableJob class. The main() method defines sources,
transformations, and sinks. The execution is initiated by an execution statement at the end of this
method.

Note

For an optimal developer experience, the application is designed to run without any code
changes both on Amazon Managed Service for Apache Flink and locally, for development in
your IDE.

• To read the runtime configuration so that it will work when running in Amazon Managed Service
for Apache Flink and in your IDE, the application automatically detects if it's running standalone
locally in the IDE. In that case, the application loads the runtime configuration differently:

1. When the application detects that it's running in standalone mode in your IDE, form the
application_properties.json file included in the resources folder of the project. The
content of the file follows.

Download and examine the Apache Flink streaming Java code 499

https://aws.amazon.com/intellij/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. When the application runs in Amazon Managed Service for Apache Flink, the default behavior
loads the application configuration from the runtime properties you will define in the Amazon
Managed Service for Apache Flink application. See Create and configure the Managed Service
for Apache Flink application.

private static Map<String, Properties>
 loadApplicationProperties(StreamExecutionEnvironment env) throws IOException {
 if (env instanceof LocalStreamEnvironment) {
 LOGGER.info("Loading application properties from '{}'",
 LOCAL_APPLICATION_PROPERTIES_RESOURCE);
 return KinesisAnalyticsRuntime.getApplicationProperties(
 BasicStreamingJob.class.getClassLoader()

 .getResource(LOCAL_APPLICATION_PROPERTIES_RESOURCE).getPath());
 } else {
 LOGGER.info("Loading application properties from Amazon Managed Service for
 Apache Flink");
 return KinesisAnalyticsRuntime.getApplicationProperties();
 }
}

• The main() method defines the application data flow and runs it.

• Initializes the default streaming environments. In this example, we show how to create
both the StreamExecutionEnvironment to use with the DataStream API, and the
StreamTableEnvironment to use with SQL and the Table API. The two environment objects
are two separate references to the same runtime environment, to use different APIs.

StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env,
 EnvironmentSettings.newInstance().build());

• Load the application configuration parameters. This will automatically load them from the
correct place, depending on where the application is running:

Map<String, Properties> applicationParameters = loadApplicationProperties(env);

• The FileSystem sink connector that the application uses to write results to Amazon S3 output
files when Flink completes a checkpoint. You must enable checkpoints to write files to the

Download and examine the Apache Flink streaming Java code 500

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/filesystem/#streaming-sink
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/stateful-stream-processing/#checkpointing

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

destination. When the application is running in Amazon Managed Service for Apache Flink, the
application configuration controls the checkpoint and enables it by default. Conversely, when
running locally, checkpoints are disabled by default. The application detects that it runs locally
and configures checkpointing every 5,000 ms.

 if (env instanceof LocalStreamEnvironment) {
 env.enableCheckpointing(5000);
 }

• This application does not receive data from an actual external source. It generates random
data to process through the DataGen connector. This connector is available for DataStream
API, SQL, and Table API. To demonstrate the integration between APIs, the application uses
the DataStram API version because it provides more flexibility. Each record is generated by a
generator function called StockPriceGeneratorFunction in this case, where you can put
custom logic.

DataGeneratorSource<StockPrice> source = new DataGeneratorSource<>(
 new StockPriceGeneratorFunction(),
 Long.MAX_VALUE,
 RateLimiterStrategy.perSecond(recordPerSecond),
 TypeInformation.of(StockPrice.class));

• In the DataStream API, records can have custom classes. Classes must follow specific rules so
that Flink can use them as record. For more information, see Supported Data Types. In this
example, the StockPrice class is a POJO.

• The source is then attached to the execution environment, generating a DataStream of
StockPrice. This application doesn't use event-time semantics and doesn't generate
a watermark. Run the DataGenerator source with a parallelism of 1, independent of the
parallelism of the rest of the application.

DataStream<StockPrice> stockPrices = env.fromSource(
 source,
 WatermarkStrategy.noWatermarks(),
 "data-generator"
).setParallelism(1);

• What follows in the data processing flow is defined using the Table API and SQL. To do so, we
convert the DataStream of StockPrices into a table. The schema of the table is automatically
inferred from the StockPrice class.

Download and examine the Apache Flink streaming Java code 501

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/datagen/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/types_serialization/#supported-data-types
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/types_serialization/#pojos
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/time/#notions-of-time-event-time-and-processing-time

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table stockPricesTable = tableEnv.fromDataStream(stockPrices);

• The following snippet of code shows how to define a view and a query using the programmatic
Table API:

Table filteredStockPricesTable = stockPricesTable.
 select(
 $("eventTime").as("event_time"),
 $("ticker"),
 $("price"),
 dateFormat($("eventTime"), "yyyy-MM-dd").as("dt"),
 dateFormat($("eventTime"), "HH").as("hr")
).where($("price").isGreater(50));

tableEnv.createTemporaryView("filtered_stock_prices", filteredStockPricesTable);

• A sink table is defined to write the results to an Amazon S3 bucket as JSON files. To illustrate
the difference with defining a view programmatically, with the Table API the sink table is
defined using SQL.

tableEnv.executeSql("CREATE TABLE s3_sink (" +
 "eventTime TIMESTAMP(3)," +
 "ticker STRING," +
 "price DOUBLE," +
 "dt STRING," +
 "hr STRING" +
 ") PARTITIONED BY (dt, hr) WITH (" +
 "'connector' = 'filesystem'," +
 "'fmat' = 'json'," +
 "'path' = 's3a://" + s3Path + "'" +
 ")");

• The last step of the is an executeInsert() that inserts the filtered stock prices view into the
sink table. This method initiates the execution of the data flow we have defined so far.

filteredStockPricesTable.executeInsert("s3_sink");

Download and examine the Apache Flink streaming Java code 502

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use the pom.xml file

The pom.xml file defines all dependencies required by the application and sets up the Maven Shade
plugin to build the fat-jar that contains all dependencies required by Flink.

• Some dependencies have provided scope. These dependencies are automatically available
when the application runs in Amazon Managed Service for Apache Flink. They are required
for application or to the application locally in your IDE. For more information, see (update to
TableAPI) Run your application locally. Make sure that you are using the same Flink version as
the runtime you will use in Amazon Managed Service for Apache Flink. To use the TableAPI and
SQL, you must include the flink-table-planner-loader and flink-table-runtime-
dependencies, both with provided scope.

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-streaming-java</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-clients</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-table-planner-loader</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-table-runtime</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>

• You must add additional Apache Flink dependencies to the pom with the default scope. For
example, the DataGen connector, the FileSystem SQL connector, and the JSON format.

Download and examine the Apache Flink streaming Java code 503

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/datagen/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/filesystem/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/formats/json/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-datagen</artifactId>
 <version>${flink.version}</version>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-files</artifactId>
 <version>${flink.version}</version>
</dependency>
<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-json</artifactId>
 <version>${flink.version}</version>
</dependency>

• To write to Amazon S3 when running locally, the S3 Hadoop File System is also included wit
provided scope.

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-s3-fs-hadoop</artifactId>
 <version>${flink.version}</version>
 <scope>provided</scope>
</dependency>

• The Maven Java Compiler plugin makes sure that the code is compiled against Java 11, the JDK
version currently supported by Apache Flink.

• The Maven Shade plugin packages the fat-jar, excluding some libraries that are provided
by the runtime. It also specifies two transformers: ServicesResourceTransformer and
ManifestResourceTransformer. The latter configures the class containing the main method
to start the application. If you rename the main class, don't forget update this transformer.

• <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 ...
 <transformer
 implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
 <mainClass>com.amazonaws.services.msf.BasicStreamingJob</mainClass>

Download and examine the Apache Flink streaming Java code 504

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 </transformer>
 ...
</plugin>

Run your application locally

You can run and debug your Flink application locally in your IDE.

Note

Before you continue, verify that the input and output streams are available. See Create two
Amazon Kinesis data streams. Also, verify that you have permission to read and write from
both streams. See Authenticate your AWS session.
Setting up the local development environment requires Java 11 JDK, Apache Maven, and
an IDE for Java development. Verify you meet the required prerequisites. See Fulfill the
prerequisites for completing the exercises.

Import the Java project into your IDE

To start working on the application in your IDE, you must import it as a Java project.

The repository you cloned contains multiple examples. Each example is a separate project. For this
tutorial, import the content in the ./jave/GettingStartedTable subdirectory into your IDE .

Insert the code as an existing Java project using Maven.

Note

The exact process to import a new Java project varies depending on the IDE you are using.

Modify the local application configuration

When running locally, the application uses the configuration in the
application_properties.json file in the resources folder of the project under ./src/main/
resources. For this tutorial application, the configuration parameters are the name of the bucket
and the path where the data will be written.

Run your application locally 505

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Edit the configuration and modify the name of the Amazon S3 bucket to match the bucket that
you created at the beginning of this tutorial.

[
 {
 "PropertyGroupId": "bucket",
 "PropertyMap": {
 "name": "<bucket-name>",
 "path": "output"
 }
 }
]

Note

The configuration property name must contain only the bucket name, for example my-
bucket-name. Don't include any prefix such as s3:// or a trailing slash.
If you modify the path, omit any leading or trailing slashes.

Set up your IDE run configuration

You can run and debug the Flink application from your IDE directly by running the main class
com.amazonaws.services.msf.BasicTableJob, as you would run any Java application.
Before running the application, you must set up the Run configuration. The setup depends
on the IDE that you are using. For example, see Run/debug configurations in the IntelliJ IDEA
documentation. In particular, you must set up the following:

1. Add the provided dependencies to the classpath. This is required to make sure that the
dependencies with provided scope are passed to the application when running locally. Without
this set up, the application displays a class not found error immediately.

2. Pass the AWS credentials to access the Kinesis streams to the application. The fastest way
is to use AWS Toolkit for IntelliJ IDEA. Using this IDE plugin in the Run configuration, you can
select a specific AWS profile. AWS authentication happens using this profile. You don't need to
pass AWS credentials directly.

3. Verify that the IDE runs the application using JDK 11.

Run your application locally 506

https://www.jetbrains.com/help/idea/run-debug-configuration.html
https://aws.amazon.com/intellij/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Run the application in your IDE

After you set up the Run configuration for the BasicTableJob, you can run or debug it like a
regular Java application.

Note

You can't run the fat-jar generated by Maven directly with java -jar ... from the
command line. This jar does not contain the Flink core dependencies required to run the
application standalone.

When the application starts successfully, it logs some information about the standalone minicluster
and the initialization of the connectors. This is followed by a number of INFO and some WARN logs
that Flink normally emits when the application starts.

21:28:34,982 INFO com.amazonaws.services.msf.BasicTableJob
 [] - Loading application properties from 'flink-application-properties-
dev.json'
21:28:35,149 INFO com.amazonaws.services.msf.BasicTableJob
[] - s3Path is ExampleBucket/my-output-bucket
...

After the initialization is complete, the application doesn't emit any further log entries. While data
is flowing, no log is emitted.

To verify if the application is correctly processing data, you can inspect the content of the output
bucket, as described in the following section.

Note

Not emitting logs about flowing data is the normal behavior for a Flink application.
Emitting logs on every record might be convenient for debugging, but can add considerable
overhead when running in production.

Observe the application writing data to an S3 bucket

This example application generates random data internally and writes this data to the destination
S3 bucket you configured. Unless you modified the default configuration path, the data will be

Observe the application writing data to an S3 bucket 507

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

written to the output path followed by data and hour partitioning, in the format ./output/
<yyyy-MM-dd>/<HH>.

The FileSystem sink connector creates new files on the Flink checkpoint. When running locally, the
application runs a checkpoint every 5 seconds (5,000 milliseconds), as specified in the code.

 if (env instanceof LocalStreamEnvironment) {
 env.enableCheckpointing(5000);
 }

To browse the S3 bucket and observe the file written by the application

1. 1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the bucket you previously created.

3. Navigate to the output path, and then to the date and hour folders that correspond to the
current time in the UTC time zone.

4. Periodically refresh to observe new files appearing every 5 seconds.

5. Select and download one file to observe the content.

Note

By default, the files have no extensions. The content is formatted as JSON. You can
open the files with any text editor to inspect the content.

Stop your application running locally

Stop the application running in your IDE. The IDE usually provides a "stop" option. The exact
location and method depends on the IDE.

Compile and package your application code

In this section, you use Apache Maven to compile the Java code and package it into a JAR file. You
can compile and package your code using the Maven command line tool or your IDE.

To compile and package using the Maven command line

Move to the directory that contains the Jave GettingStarted project and run the following
command:

Stop your application running locally 508

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/filesystem/#streaming-sink
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

$ mvn package

To compile and package using your IDE

Run mvn package from your IDE Maven integration.

In both cases, the JAR file target/amazon-msf-java-table-app-1.0.jar is created.

Note

Running a build project from your IDE might not create the JAR file.

Upload the application code JAR file

In this section, you upload the JAR file you created in the previous section to the Amazon S3 bucket
you created at the beginning of this tutorial. If you have done it yet, complete Create an Amazon
S3 bucket.

To upload the application code

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the bucket you previously created for the application code.

3. Choose Upload field.

4. Choose Add files.

5. Navigate to the JAR file generated in the previous section: target/amazon-msf-java-
table-app-1.0.jar.

6. Choose Upload without changing any other settings.

Warning

Make sure that you select the correct JAR file in <repo-dir>/java/
GettingStarted/target/amazon/msf-java-table-app-1.0.jar.
The target directory also contains other JAR files that you don't need to upload.

Upload the application code JAR file 509

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and configure the Managed Service for Apache Flink application

You can create and configure a Managed Service for Apache Flink application using either the
console or the AWS CLI. For this tutorial, you will use the console.

Note

When you create the application using the console, your AWS Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the AWS CLI, you must create these resources separately.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Verify that the correct Region is selected: US East (N. Virginia) us-east-1.

3. On the right menu, choose Apache Flink applications and then choose Create streaming
application. Alternatively, choose Create streaming application in the Get started section of
the initial page.

4. On the Create streaming application page, complete the following:

• For Choose a method to set up the stream processing application, choose Create from
scratch.

• For Apache Flink configuration, Application Flink version, choose Apache Flink 1.19.

• In the Application configuration section, complete the following:

• For Application name, enter MyApplication.

• For Description, enter My Java Table API test app.

• For Access to application resources, choose Create / update IAM role kinesis-analytics-
MyApplication-us-east-1 with required policies.

• In Template for application settings, complete the following:

• For Templates, choose Develoment.

5. Choose Create streaming application.

Create and configure the Managed Service for Apache Flink application 510

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-east-1

• Role: kinesisanalytics-MyApplication-us-east-1

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-east-1
policy that the console created for you in the previous section.

3. Choose Edit and then choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account ID (012345678901) with your account ID and <bucket-name> with the name of the
S3 bucket that you created.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [

Create and configure the Managed Service for Apache Flink application 511

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:s3:::amzn-s3-demo-bucket/kinesis-analytics-
placeholder-s3-object"
]
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:*"
]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "WriteOutputBucket",
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket2"
]
 }

Create and configure the Managed Service for Apache Flink application 512

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

]
}

5. Choose Next and then choose Save changes.

Configure the application

Edit the application to set the application code artifact.

To configure the application

1. On the MyApplication page, choose Configure.

2. In the Aplication code location section, choose Configure.

• For Amazon S3 bucket, select the bucket you previously created for the application code.
Choose Browse and select the correct bucket, and then choose Choose. Don't click on the
bucket name.

• For Path to Amazon S3 object, enter amazon-msf-java-table-app-1.0.jar.

3. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-east-1.

4. In the Runtime properties section, add the following properties.

5. Choose Add new item and add each of the following parameters:

Group ID Key Value

bucket name your-bucket-name

bucket path output

6. Don't modify any other setting.

7. Choose Save changes.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

Create and configure the Managed Service for Apache Flink application 513

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

The application is now configured and ready to run.

To run the application

1. Return to the console page in Amazon Managed Service for Apache Flink and choose
MyApplication.

2. Choose Run to start the application.

3. On the Application restore configuration, choose Run with latest snapshot.

4. Choose Run.

5. The Status in Application details transitions from Ready to Starting and then to Running
after the application has started.

When the application is in Running status, you can open the Flink dashboard.

To open the dashboard and view the job

1. Choose Open Apache Flink dashbard. The dashboard opens in a new page.

2. In the Running Jobs list, choose the single job you can see.

Note

If you set the runtime properties or edited the IAM policies incorrectly, the application
status might change to Running, but the Flink dashboard shows the job continuously
restarting. This is a common failure scenario when the application is misconfigured or
lacks the permissions to access the external resources.
When this happens, check the Exceptions tab in the Flink dashboard to investigate the
cause of the problem.

Create and configure the Managed Service for Apache Flink application 514

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Observe the metrics of the running application

On the MyApplication page, in the Amazon CloudWatch metrics section, you can see some of the
fundamental metrics from the running application.

To view the metrics

1. Next to the Refresh button, select 10 seconds from the dropdown list.

2. When the application is running and healthy, you can see the uptime metric continuously
increasing.

3. The fullrestarts metric should be zero. If it is increasing, the configuration might have issues.
Review the Exceptions tab on the Flink dashboard to investigate the issue.

4. The Number of failed checkpoints metric should be zero in a healthy application.

Note

This dashboard displays a fixed set of metrics with a granularity of 5 minutes. You can
create a custom application dashboard with any metrics in the CloudWatch dashboard.

Observe the application writing data to the destination bucket

You can now observe the application running in Amazon Managed Service for Apache Flink writing
files to Amazon S3.

To observe the files, follow the same process you used to check the files being written when the
application was running locally. See Observe the application writing data to an S3 bucket.

Remember that the application writes new files on the Flink checkpoint. When running on Amazon
Managed Service for Apache Flink, checkpoints are enabled by default and run every 60 seconds.
The application creates new files approximately every 1 minute.

Stop the application

To stop the applicatio, go to the console page of the Managed Service for Apache Flink application
named MyApplication.

To stop the application

1. From the Action dropdown list, choose Stop.

Create and configure the Managed Service for Apache Flink application 515

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. The Status in Application details transitions from Running to Stopping, and then to Ready
when the application is completely stopped.

Note

Don't forget to also stop sending data to the input stream from the Python script or
the Kinesis Data Generator.

Next step

Clean up AWS resources

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
(Table API) tutorial.

This topic contains the following sections.

• Delete your Managed Service for Apache Flink application

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

• Next step

Delete your Managed Service for Apache Flink application

Use the following procedure to delete the application.

To delete the application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. From the Actions dropdown list, choose Delete and then confirm the deletion.

Next step 516

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Amazon S3 objects and bucket

Use the following procedure to delete your S3 objects and bucket.

To delete the application object from the S3 bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Select the S3 bucket that you created.

3. Select the application artifact that you uploaded named amazon-msf-java-table-
app-1.0.jar, choose Delete, and then confirm the deletion.

To delete all output files written by the application

1. Choose the output folder.

2. Choose Delete.

3. Confirm that you want to permanently delete the content.

To delete the S3 bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Select the S3 bucket you created.

3. Choose Delete and confirm the deletion.

Delete your IAM resources

Use the following procedure to delete your IAM resources.

To delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-east-1 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

Delete your Amazon S3 objects and bucket 517

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

7. Choose the kinesis-analytics-MyApplication-us-east-1 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

Use the following procedure to delete your CloudWatch resources.

To delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Next step

Explore additional resources

Explore additional resources

Now that you've created and run a Managed Service for Apache Flink application that uses the
Table API, see Explore additional resources in the Get started with Amazon Managed Service for
Apache Flink (DataStream API).

Delete your CloudWatch resources 518

https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Get started with Amazon Managed Service for Apache
Flink for Python

This section introduces you to the fundamental concepts of a Managed Service for Apache Flink
using Python and the Table API. It describes the available options for creating and testing your
applications. It also provides instructions for installing the necessary tools to complete the tutorials
in this guide and to create your first application.

Topics

• Review the components of a Managed Service for Apache Flink application

• Fulfill the prerequisites

• Create and run a Managed Service for Apache Flink for Python application

• Clean up AWS resources

Review the components of a Managed Service for Apache Flink
application

Note

Amazon Managed Service for Apache Flink supports all Apache Flink APIs. Depending
on the API you choose, the structure of the application is slightly different. One popular
approach when developing an Apache Flink application in Python is to define the
application flow using SQL embedded in Python code. This is the approach that we follow
in the following Gettgin Started tutorial.

To process data, your Managed Service for Apache Flink application uses a Python script to define
the data flow that processes input and produces output using the Apache Flink runtime.

A typical Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Sources: The application consumes data from one or more sources. A source uses a connector to
read data from an external system such as a Kinesis data stream, or an Amazon MSK topic. You

Review application components 519

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/overview/#flinks-apis
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

can also use special connectors to generate data from within the application. When you use SQL,
the application defines sources as source tables.

• Transformations: The application processes data by using one or more transformations that can
filter, enrich, or aggregate data. When you use SQL, the application defines transformations as
SQL queries.

• Sinks: The application sends data to external sources through sinks. A sink uses a connector to
send data to an external system such as a Kinesis data stream, an Amazon MSK topic, an Amazon
S3 bucket, or a relational database. You can also use a special connector to print the output
for development purposes. When you use SQL, the application defines sinks as sink tables into
which you insert results. For more information, see Write data using sinks in Managed Service for
Apache Flink.

Your Python application might also require external dependencies, such as additional Python
libraries or any Flink connector your application uses. When you package your application, you
must include every dependency that your application requires. This tutorial demonstrates how to
include connector dependencies and how to package the application for deployment on Amazon
Managed Service for Apache Flink.

Fulfill the prerequisites

To complete this tutorial, you must have the following:

• Python 3.11, preferably using a standalone environment like VirtualEnv (venv), Conda, or
Miniconda.

• Git client - install the Git client if you have not already.

• Java Development Kit (JDK) version 11 - install a Java JDK 11 and set the JAVA_HOME
environment variable to point to your install location. If you don't have a JDK 11, you can use
Amazon Corretto or any standard JDK of our choice.

• To verify that you have the JDK correctly installed, run the following command. The output
will be different if you are using a JDK other than Amazon Corretto 11. Make sure that the
version is 11.x.

$ java --version

openjdk 11.0.23 2024-04-16 LTS
OpenJDK Runtime Environment Corretto-11.0.23.9.1 (build 11.0.23+9-LTS)

Fulfill the prerequisites 520

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/overview/
https://docs.python.org/3.11/library/venv.html
https://docs.conda.io/en/latest/
https://docs.anaconda.com/miniconda/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.oracle.com/java/technologies/downloads/#java11
https://docs.aws.amazon.com/corretto

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

OpenJDK 64-Bit Server VM Corretto-11.0.23.9.1 (build 11.0.23+9-LTS, mixed mode)

• Apache Maven - install Apache Maven if you have not done so already. For more information, see
Installing Apache Maven.

• To test your Apache Maven installation, use the following command:

$ mvn -version

Note

Although your application is written in Python, Apache Flink runs in the Java Virtual
Machine (JVM). It distributes most of the dependencies, such as the Kinesis connector, as
JAR files. To manage these dependencies and to package the application in a ZIP file, use
Apache Maven. This tutorial explains how to do so.

Warning

We recommend that you use Python 3.11 for local development. This is the same Python
version used by Amazon Managed Service for Apache Flink with the Flink runtime 1.19.
Installing the Python Flink library 1.19 on Python 3.12 might fail.
If you have another Python version installed by default on your machine, we recommend
that you create a standalone environment such as VirtualEnv using Python 3.11.

IDE for local development

We recommend that you use a development environment such as PyCharm or Visual Studio Code
to develop and compile your application.

Then, complete the first two steps of the Get started with Amazon Managed Service for Apache
Flink (DataStream API):

• Set up an AWS account and create an administrator user

• Set up the AWS Command Line Interface (AWS CLI)

Fulfill the prerequisites 521

https://maven.apache.org/
https://maven.apache.org/install.html
https://maven.apache.org/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To get started, see Create an application.

Create and run a Managed Service for Apache Flink for Python
application

In this section, you create a Managed Service for Apache Flink application for Python application
with a Kinesis stream as a source and a sink.

This section contains the following steps.

• Create dependent resources

• Set up your local development environment

• Download and examine the Apache Flink streaming Python code

• Manage JAR dependencies

• Write sample records to the input stream

• Run your application locally

• Observe input and output data in Kinesis streams

• Stop your application running locally

• Package your application code

• Upload the application package to an Amazon S3 bucket

• Create and configure the Managed Service for Apache Flink application

• Next step

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

• Two Kinesis streams for input and output.

• An Amazon S3 bucket to store the application's code.

Create an application 522

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

This tutorial assumes that you are deploying your application in the us-east-1 Region. If you
use another Region, you must adapt all steps accordingly.

Create two Kinesis streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream) in the same Region
you will use to deploy your application (us-east-1 in this example). Your application uses these
streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following AWS CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (AWS CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream AWS CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-east-1

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-east-1

Create an Amazon S3 bucket

You can create the Amazon S3 bucket using the console. For instructions for creating this resource,
see the following topics:

Create dependent resources 523

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name, for example by appending your login name.

Note

Make sure that you create the S3 bucket in the Region you use for this tutorial (us-
east-1).

Other resources

When you create your application, Managed Service for Apache Flink creates the following Amazon
CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/<my-application>.

• A log stream called kinesis-analytics-log-stream.

Set up your local development environment

For development and debugging, you can run the Python Flink application on your machine. You
can start the application from the command line with python main.py or in a Python IDE of your
choice.

Note

On your development machine, you must have Python 3.10 or 3.11, Java 11, Apache
Maven, and Git installed. We recommend that you use an IDE such as PyCharm or Visual
Studio Code. To verify that you meet all prerequisites, see Fulfill the prerequisites for
completing the exercises before you proceed.

Install the PyFlink library

To develop your application and run it locally, you must install the Flink Python library.

1. Create a standalone Python environment using VirtualEnv, Conda, or any similar Python tool.

Set up your local development environment 524

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://code.visualstudio.com/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Install the PyFlink library in that environment. Use the same Apache Flink runtime version that
you will use in Amazon Managed Service for Apache Flink. Currently, the recommended runtime
is 1.19.1.

$ pip install apache-flink==1.19.1

3. Make sure that the environment is active when you run your application. If you run the
application in the IDE, make sure that the IDE is using the environment as runtime. The process
depends on the IDE that you are using.

Note

You only need to install the PyFlink library. You do not need to install an Apache Flink
cluster on your machine.

Authenticate your AWS session

The application uses Kinesis data streams to publish data. When running locally, you must have
a valid AWS authenticated session with permissions to write to the Kinesis data stream. Use the
following steps to authenticate your session:

1. If you don't have the AWS CLI and a named profile with valid credential configured, see Set up
the AWS Command Line Interface (AWS CLI).

2. Verify that your AWS CLI is correctly configured and your users have permissions to write to the
Kinesis data stream by publishing the following test record:

$ aws kinesis put-record --stream-name ExampleOutputStream --data TEST --partition-
key TEST

3. If your IDE has a plugin to integrate with AWS, you can use it to pass the credentials to the
application running in the IDE. For more information, see AWS Toolkit for PyCharm, AWS Toolkit
for Visual Studio Code, and AWS Toolkit for IntelliJ IDEA.

Download and examine the Apache Flink streaming Python code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

Download and examine the Apache Flink streaming Python code 525

https://aws.amazon.com/pycharm/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/intellij/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-managed-service-for-apache-flink-
examples.git

2. Navigate to the ./python/GettingStarted directory.

Review application components

The application code is located in main.py. We use SQL embedded in Python to define the flow of
the application.

Note

For an optimized developer experience, the application is designed to run without any code
changes both on Amazon Managed Service for Apache Flink and locally, for development
on your machine. The application uses the environment variable IS_LOCAL = true to
detect when it is running locally. You must set the environment variable IS_LOCAL =
true either on your shell or in the run configuration of your IDE.

• The application sets up the execution environment and reads the runtime configuration. To
work both on Amazon Managed Service for Apache Flink and locally, the application checks the
IS_LOCAL variable.

• The following is the default behavior when the application runs in Amazon Managed Service
for Apache Flink:

1. Load dependencies packaged with the application. For more information, see (link)

2. Load the configuration from the Runtime properties you define in the Amazon Managed
Service for Apache Flink application. For more information, see (link)

• When the application detects IS_LOCAL = true when you run your application locally:

1. Loads external dependencies from the project.

2. Loads the configuration from the application_properties.json file included in the
project.

...
APPLICATION_PROPERTIES_FILE_PATH = "/etc/flink/application_properties.json"
...

Download and examine the Apache Flink streaming Python code 526

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

is_local = (
 True if os.environ.get("IS_LOCAL") else False
)
...
if is_local:
 APPLICATION_PROPERTIES_FILE_PATH = "application_properties.json"
 CURRENT_DIR = os.path.dirname(os.path.realpath(__file__))
 table_env.get_config().get_configuration().set_string(
 "pipeline.jars",
 "file:///" + CURRENT_DIR + "/target/pyflink-dependencies.jar",
)

• The application defines a source table with a CREATE TABLE statement, using the Kinesis
Connector. This table reads data from the input Kinesis stream. The application takes the name
of the stream, the Region, and initial position from the runtime configuration.

table_env.execute_sql(f"""
 CREATE TABLE prices (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time TIMESTAMP(3),
 WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
)
 PARTITIONED BY (ticker)
 WITH (
 'connector' = 'kinesis',
 'stream' = '{input_stream_name}',
 'aws.region' = '{input_stream_region}',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
) """)

• The application also defines a sink table using the Kinesis Connector in this example. This tale
sends data to the output Kinesis stream.

table_env.execute_sql(f"""
 CREATE TABLE output (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time TIMESTAMP(3)
)
 PARTITIONED BY (ticker)
 WITH (

Download and examine the Apache Flink streaming Python code 527

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 'connector' = 'kinesis',
 'stream' = '{output_stream_name}',
 'aws.region' = '{output_stream_region}',
 'sink.partitioner-field-delimiter' = ';',
 'sink.batch.max-size' = '100',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
)""")

• Finally, the application executes a SQL that INSERT INTO... the sink table from the source
table. In a more complex application, you likely have additional steps transforming data before
writing to the sink.

table_result = table_env.execute_sql("""INSERT INTO output
 SELECT ticker, price, event_time FROM prices""")

• You must add another step at the end of the main() function to run the application locally:

if is_local:
 table_result.wait()

Without this statement, the application terminates immediately when you run it locally. You
must not execute this statement when you run your application in Amazon Managed Service for
Apache Flink.

Manage JAR dependencies

A PyFlink application usually requires one or more connectors. The application in this tutorial
uses the Kinesis Connector. Because Apache Flink runs in the Java JVM, connectors are distributed
as JAR files, regardless if you implement your application in Python. You must package these
dependencies with the application when you deploy it on Amazon Managed Service for Apache
Flink.

In this example, we show how to use Apache Maven to fetch the dependencies and package the
application to run on Managed Service for Apache Flink.

Note

There are alternative ways to fetch and package dependencies. This example demonstrates
a method that works correctly with one or more connectors. It also lets you run the

Manage JAR dependencies 528

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

application locally, for development, and on Managed Service for Apache Flink without
code changes.

Use the pom.xml file

Apache Maven uses the pom.xml file to control dependencies and application packaging.

Any JAR dependencies are specified in the pom.xml file in the <dependencies>...</
dependencies> block.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 ...
 <dependencies>
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kinesis</artifactId>
 <version>4.3.0-1.19</version>
 </dependency>
 </dependencies>
 ...

To find the correct artifact and version of connector to use, see Use Apache Flink connectors with
Managed Service for Apache Flink. Make sure that you refer to the version of Apache Flink you are
using. For this example, we use the Kinesis connector. For Apache Flink 1.19, the connector version
is 4.3.0-1.19.

Note

If you are using Apache Flink 1.19, there is no connector version released specifically for
this version. Use the connectors released for 1.18.

Download and package dependencies

Use Maven to download the dependencies defined in the pom.xml file and package them for the
Python Flink application.

Manage JAR dependencies 529

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Navigate to the directory that contains the Python Getting Started project called python/
GettingStarted.

2. Run the following command:

$ mvn package

Maven creates a new file called ./target/pyflink-dependencies.jar. When you are
developing locally on your machine, the Python application looks for this file.

Note

If you forget to run this command, when you try to run your application, it will fail with the
error: Could not find any factory for identifier "kinesis.

Write sample records to the input stream

In this section, you will send sample records to the stream for the application to process. You have
two options for generating sample data, either using a Python script or the Kinesis Data Generator.

Generate sample data using a Python script

You can use a Python script to send sample records to the stream.

Note

To run this Python script, you must use Python 3.x and have the AWS SDK for Python
(Boto) library installed.

To start sending test data to the Kinesis input stream:

1. Download the data generator stock.py Python script from the Data generator GitHub
repository.

2. Run the stock.py script:

$ python stock.py

Write sample records to the input stream 530

https://github.com/awslabs/amazon-kinesis-data-generator
https://aws.amazon.com/developer/language/python/
https://aws.amazon.com/developer/language/python/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/data-generator
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/data-generator

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Keep the script running while you complete the rest of the tutorial. You can now run your Apache
Flink application.

Generate sample data using Kinesis Data Generator

Alternatively to using the Python script, you can use Kinesis Data Generator, also available in a
hosted version, to send random sample data to the stream. Kinesis Data Generator runs in your
browser, and you don't need to install anything on your machine.

To set up and run Kinesis Data Generator:

1. Follow the instructions in the Kinesis Data Generator documentation to set up access to the tool.
You will run an AWS CloudFormation template that sets up a user and password.

2. Access Kinesis Data Generator through the URL generated by the CloudFormation template. You
can find the URL in the Output tab after the CloudFormation template is completed.

3. Configure the data generator:

• Region: Select the Region that you are using for this tutorial: us-east-1

• Stream/delivery stream: Select the input stream that the application will use:
ExampleInputStream

• Records per second: 100

• Record template: Copy and paste the following template:

{
 "event_time" : "{{date.now("YYYY-MM-DDTkk:mm:ss.SSSSS")}},
 "ticker" : "{{random.arrayElement(
 ["AAPL", "AMZN", "MSFT", "INTC", "TBV"]
)}}",
 "price" : {{random.number(100)}}
}

4. Test the template: Choose Test template and verify that the generated record is similar to the
following:

{ "event_time" : "2024-06-12T15:08:32.04800, "ticker" : "INTC", "price" : 7 }

5. Start the data generator: Choose Select Send Data.

Kinesis Data Generator is now sending data to the ExampleInputStream.

Write sample records to the input stream 531

https://github.com/awslabs/amazon-kinesis-data-generator
https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Run your application locally

You can test the application locally, running from the command line with python main.py or
from your IDE.

To run your application locally, you must have the correct version of the PyFlink library installed as
described in the previous section. For more information, see (link)

Note

Before you continue, verify that the input and output streams are available. See Create two
Amazon Kinesis data streams. Also, verify that you have permission to read and write from
both streams. See Authenticate your AWS session.

Import the Python project into your IDE

To start working on the application in your IDE, you must import it as a Python project.

The repository you cloned contains multiple examples. Each example is a separate project. For this
tutorial, import the content in the ./python/GettingStarted subdirectory into your IDE.

Import the code as an existing Python project.

Note

The exact process to import a new Python project varies depending on the IDE you are
using.

Check the local application configuration

When running locally, the application uses the configuration in the
application_properties.json file in the resources folder of the project under ./src/main/
resources. You can edit this file to use different Kinesis stream names or Regions.

[
 {
 "PropertyGroupId": "InputStream0",
 "PropertyMap": {
 "stream.name": "ExampleInputStream",

Run your application locally 532

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "flink.stream.initpos": "LATEST",
 "aws.region": "us-east-1"
 }
 },
 {
 "PropertyGroupId": "OutputStream0",
 "PropertyMap": {
 "stream.name": "ExampleOutputStream",
 "aws.region": "us-east-1"
 }
 }
]

Run your Python application locally

You can run your application locally, either from the command line as a regular Python script, or
from the IDE.

To run your application from the command line

1. Make sure that the standalone Python environment such as Conda or VirtualEnv where you
installed the Python Flink library is currently active.

2. Make sure that you ran mvn package at least one time.

3. Set the IS_LOCAL = true environment variable:

$ export IS_LOCAL=true

4. Run the application as a regular Python script.

$python main.py

To run the application from within the IDE

1. Configure your IDE to run the main.py script with the following configuration:

1. Use the standalone Python environment such as Conda or VirtualEnv where you installed
the PyFlink library.

2. Use the AWS credentials to access the input and output Kinesis data streams.

3. Set IS_LOCAL = true.

Run your application locally 533

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. The exact process to set the run configuration depends on your IDE and varies.

3. When you have set up your IDE, run the Python script and use the tooling provided by your IDE
while the application is running.

Inspect application logs locally

When running locally, the application does not show any log in the console, aside from a few lines
printed and displayed when the application starts. PyFlink writes logs to a file in the directory
where the Python Flink library is installed. The application prints the location of the logs when it
starts. You can also run the following command to find the logs:

$ python -c "import pyflink;import
 os;print(os.path.dirname(os.path.abspath(pyflink.__file__))+'/log')"

1. List the files in the logging directory. You usually find a single .log file.

2. Tail the file while the application is running: tail -f <log-path>/<log-file>.log.

Observe input and output data in Kinesis streams

You can observe records sent to the input stream by the (generating sample Python) or the Kinesis
Data Generator (link) by using the Data Viewer in the Amazon Kinesis console.

To observe records:

Stop your application running locally

Stop the application running in your IDE. The IDE usually provides a "stop" option. The exact
location and method depends on the IDE.

Package your application code

In this section, you use Apache Maven to package the application code and all required
dependencies in a .zip file.

Run the Maven package command again:

$ mvn package

Observe input and output data in Kinesis streams 534

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This command generates the file target/managed-flink-pyflink-getting-
started-1.0.0.zip.

Upload the application package to an Amazon S3 bucket

In this section, you upload the .zip file you created in the previous section to the Amazon Simple
Storage Service (Amazon S3) bucket you created at the beginning of this tutorial. If you have not
completed this step, see (link).

To upload the application code JAR file

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the bucket you previously created for the application code.

3. Choose Upload.

4. Choose Add files.

5. Navigate to the .zip file generated in the previous step: target/managed-flink-pyflink-
getting-started-1.0.0.zip.

6. Choose Upload without changing any other settings.

Create and configure the Managed Service for Apache Flink application

You can create and configure a Managed Service for Apache Flink application using either the
console or the AWS CLI. For this tutorial, we will use the console.

Create the application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Verify that the correct Region is selected: US East (N. Virginia)us-east-1.

3. Open the right-side menu and choose Apache Flink applications and then Create streaming
application. Alternatively, choose Create streaming application from the Get started section
of the initial page.

4. On the Create streaming applications page:

• For Chose a method to set up the stream processing application, choose Create from
scratch.

Upload the application package to an Amazon S3 bucket 535

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Apache Flink configuration, Application Flink version, choose Apache Flink 1.19.

• For Application configuration:

• For Application name, enter MyApplication.

• For Description, enter My Python test app.

• In Access to application resources, choose Create / update IAM role kinesis-analytics-
MyApplication-us-east-1 with required policies.

• For Template for applications settings:

• For Templates, choose Development.

• Choose Create streaming application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Amazon Managed Service for Apache Flink was formerly known as Kinesis Data Analytics.
The name of the resources that are generated automatically is prefixed with kinesis-
analytics for backward compatibility.

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-east-1
policy that the console created for you in the previous section.

3. Choose Edit and then choose the JSON tab.

Create and configure the Managed Service for Apache Flink application 536

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::my-bucket/kinesis-analytics-placeholder-s3-
object"
]
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-east-1:012345678901:log-group:*"
]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-east-1:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {

Create and configure the Managed Service for Apache Flink application 537

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-east-1:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-east-1:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-east-1:012345678901:stream/
ExampleOutputStream"
 }
]
}

5. Choose Next and then choose Save changes.

Configure the application

Edit the application configuration to set the application code artifact.

To configure the application

1. On the MyApplication page, choose Configure.

2. In the Application code location section:

• For Amazon S3 bucket, select the bucket you previously created for the application code.
Choose Browse and select the correct bucket, then choose Choose. Don't select on the
bucket name.

Create and configure the Managed Service for Apache Flink application 538

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Path to Amazon S3 object, enter managed-flink-pyflink-getting-
started-1.0.0.zip.

3. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-east-1 with required policies.

4. Move to Runtime properties and keep the default values for all other settings.

5. Choose Add new item and add each of the following parameters:

Group ID Key Value

InputStream0 stream.name ExampleInputStream

InputStream0 flink.stream.initp
os

LATEST

InputStream0 aws.region us-east-1

OutputStream0 stream.name ExampleOutputStream

OutputStream0 aws.region us-east-1

kinesis.analytics.
flink.run.options

python main.py

kinesis.analytics.
flink.run.options

jarfile lib/pyflink-depend
encies.jar

6. Do not modify any of the other sections and choose Save changes.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Create and configure the Managed Service for Apache Flink application 539

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Run the application

The application is now configured and ready to run.

To run the application

1. On the console for Amazon Managed Service for Apache Flink, choose My Application and
choose Run.

2. On the next page, the Application restore configuration page, choose Run with latest
snapshot and then choose Run.

The Status in Application details transitions from Ready to Starting and then to Running
when the application has started.

When the application is in the Running status, you can now open the Flink dashboard.

To open the dashboard

1. Choose Open Apache Flink dashboard. The dashboard opens on a new page.

2. In the Runing jobs list, choose the single job that you can see.

Note

If you set the Runtime properties or edited the IAM policies incorrectly, the application
status might turn into Running, but the Flink dashboard shows that the job is
continuously restarting. This is a common failure scenario if the application is
misconfigured or lacks permissions to access the external resources.
When this happens, check the Exceptions tab in the Flink dashboard to see the cause
of the problem.

Observe the metrics of the running application

On the MyApplication page, in the Amazon CloudWatch metrics section, you can see some of the
fundamental metrics from the running application.

To view the metrics

1. Next to the Refresh button, select 10 seconds from the dropdown list.

Create and configure the Managed Service for Apache Flink application 540

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. When the application is running and healthy, you can see the uptime metric continuously
increasing.

3. The fullrestarts metric should be zero. If it is increasing, the configuration might have issues.
To investigate the issue, review the Exceptions tab on the Flink dashboard.

4. The Number of failed checkpoints metric should be zero in a healthy application.

Note

This dashboard displays a fixed set of metrics with a granularity of 5 minutes. You can
create a custom application dashboard with any metrics in the CloudWatch dashboard.

Observe output data in Kinesis streams

Make sure you are still publishing data to the input, either using the Python script or the Kinesis
Data Generator.

You can now observe the output of the application running on Managed Service for Apache Flink
by using the Data Viewer in the https://console.aws.amazon.com/kinesis/, similarly to what you
already did earlier.

To view the output

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Verify that the Region is the same as the one you are using to run this tutorial. By default, it is
us-east-1US East (N. Virginia). Change the Region if necessary.

3. Choose Data Streams.

4. Select the stream that you want to observe. For this tutorial, use ExampleOutputStream.

5. Choose the Data viewer tab.

6. Select any Shard, keep Latest as Starting position, and then choose Get records. You might
see a "no record found for this request" error. If so, choose Retry getting records. The newest
records published to the stream display.

7. Select the value in the Data column to inspect the content of the record in JSON format.

Create and configure the Managed Service for Apache Flink application 541

https://console.aws.amazon.com/kinesis/
https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Stop the application

To stop the applicatio, go to the console page of the Managed Service for Apache Flink application
named MyApplication.

To stop the application

1. From the Action dropdown list, choose Stop.

2. The Status in Application details transitions from Running to Stopping, and then to Ready
when the application is completely stopped.

Note

Don't forget to also stop sending data to the input stream from the Python script or
the Kinesis Data Generator.

Next step

Clean up AWS resources

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Getting Started
(Python) tutorial.

This topic contains the following sections.

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

Use the following procedure to delete the application.

Next step 542

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To delete the application

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. From the Actions dropdown list, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. Choose Data streams.

3. Select the two streams that you created, ExampleInputStream and
ExampleOutputStream.

4. From the Actions dropdown list, choose Delete, and then confirm the deletion.

Delete your Amazon S3 objects and bucket

Use the following procedure to delete your S3 objects and bucket.

To delete the object from the S3 bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Select the S3 bucket that you created for the application artifact.

3. Select the application artifact you uploaded, named amazon-msf-java-stream-
app-1.0.jar.

4. Choose Delete and confirm the deletion.

To delete the S3 bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Select the bucket that you created for the artifacts.

3. Choose Delete and confirm the deletion.

Delete your Kinesis data streams 543

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The S3 bucket must be empty to delete it.

Delete your IAM resources

Use the following procedure to delete your IAM resources.

To delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-east-1 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-east-1 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

Use the following procedure to delete your CloudWatch resources.

To delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Delete your IAM resources 544

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Get started (Scala)

Note

Starting from version 1.15, Flink is Scala free. Applications can now use the Java API
from any Scala version. Flink still uses Scala in a few key components internally, but
doesn't expose Scala into the user code classloader. Because of that, you must add Scala
dependencies into your JAR-archives.
For more information about Scala changes in Flink 1.15, see Scala Free in One Fifteen.

In this exercise, you create a Managed Service for Apache Flink application for Scala with a Kinesis
stream as a source and a sink.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile and upload the application code

• Create and run the application (console)

• Create and run the application (CLI)

• Clean up AWS resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis streams for input and output.

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

Create dependent resources 545

https://flink.apache.org/2022/02/22/scala-free.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

To create the data streams (AWS CLI)

• To create the first stream (ExampleInputStream), use the following Amazon Kinesis create-
stream AWS CLI command.

aws kinesis create-stream \
 --stream-name ExampleInputStream \
 --shard-count 1 \
 --region us-west-2 \
 --profile adminuser

• To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

aws kinesis create-stream \
 --stream-name ExampleOutputStream \
 --shard-count 1 \
 --region us-west-2 \
 --profile adminuser

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Other resources

When you create your application, Managed Service for Apache Flink creates the following Amazon
CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/MyApplication

• A log stream called kinesis-analytics-log-stream

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Write sample records to the input stream 546

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

This section requires the AWS SDK for Python (Boto).

Note

The Python script in this section uses the AWS CLI. You must configure your AWS CLI to
use your account credentials and default region. To configure your AWS CLI, enter the
following:

aws configure

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

Write sample records to the input stream 547

https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/scala/
GettingStarted directory.

Note the following about the application code:

• A build.sbt file contains information about the application's configuration and dependencies,
including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.scala file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

private def createSource: FlinkKinesisConsumer[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val inputProperties = applicationProperties.get("ConsumerConfigProperties")

 new FlinkKinesisConsumer[String](inputProperties.getProperty(streamNameKey,
 defaultInputStreamName),
 new SimpleStringSchema, inputProperties)

Download and examine the application code 548

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

The application also uses a Kinesis sink to write into the result stream. The following snippet
creates the Kinesis sink:

private def createSink: KinesisStreamsSink[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val outputProperties = applicationProperties.get("ProducerConfigProperties")

 KinesisStreamsSink.builder[String]
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema)
 .setStreamName(outputProperties.getProperty(streamNameKey,
 defaultOutputStreamName))
 .setPartitionKeyGenerator((element: String) => String.valueOf(element.hashCode))
 .build
}

• The application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using dynamic application properties.
Runtime application's properties are read to configure the connectors. For more information
about runtime properties, see Runtime Properties.

Compile and upload the application code

In this section, you compile and upload your application code to the Amazon S3 bucket you created
in the Create dependent resources section.

Compile the Application Code

In this section, you use the SBT build tool to build the Scala code for the application. To install
SBT, see Install sbt with cs setup. You also need to install the Java Development Kit (JDK). See
Prerequisites for Completing the Exercises.

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code with SBT:

sbt assembly

Compile and upload the application code 549

https://docs.aws.amazon.com/managed-flink/latest/java/how-properties.html
https://www.scala-sbt.org/
https://www.scala-sbt.org/download.html
https://docs.aws.amazon.com/managed-flink/latest/java/getting-started.html#setting-up-prerequisites

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. If the application compiles successfully, the following file is created:

target/scala-3.2.0/getting-started-scala-1.0.jar

Upload the Apache Flink Streaming Scala Code

In this section, you create an Amazon S3 bucket and upload your application code.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In Configure options, keep the settings as they are, and choose Next.

5. In Set permissions, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. Choose the ka-app-code-<username> bucket, and then choose Upload.

8. In the Select files step, choose Add files. Navigate to the getting-started-
scala-1.0.jar file that you created in the previous step.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the Application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

Create and run the application (console) 550

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Application name, enter MyApplication.

• For Description, enter My scala test app.

• For Runtime, choose Apache Flink.

• Keep the version as Apache Flink version 1.19.1.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter getting-started-scala-1.0.jar..

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Configure the application 551

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ConsumerConfigProp
erties

input.stream.name ExampleInputStream

ConsumerConfigProp
erties

aws.region us-west-2

ConsumerConfigProp
erties

flink.stream.initp
os

LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

output.stream.name ExampleOutputStream

ProducerConfigProp
erties

aws.region us-west-2

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, choose the Enable check box.

10. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

Configure the application 552

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Log stream: kinesis-analytics-log-stream

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/getting-started-
scala-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [

Edit the IAM policy 553

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Edit the IAM policy 554

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Create and run the application (CLI)

In this section, you use the AWS Command Line Interface to create and run the Managed Service
for Apache Flink application. Use the kinesisanalyticsv2 AWS CLI command to create and interact
with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on the
sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [

Run the application 555

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/getting-started-scala-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:123456789012:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {

Create a permissions policy 556

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:123456789012:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:123456789012:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Create an IAM policy

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then Create Role.

3. Under Select type of trusted identity, choose AWS Service

4. Under Choose the service that will use this role, choose Kinesis.

5. Under Select your use case, choose Managed Service for Apache Flink.

6. Choose Next: Permissions.

Create an IAM policy 557

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

7. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

8. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role

9. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, Create a
Permissions Policy.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the application

Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account ID
(012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "getting_started",

Create the application 558

https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.aws.amazon.com/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationDescription": "Scala getting started application",
 "RuntimeEnvironment": "FLINK-1_19",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "getting-started-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Execute the CreateApplication with the following request to create the application:

Create the application 559

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 create-application --cli-input-json file://create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "getting_started",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "s3_sink"
}

Start the application 560

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Execute the StopApplication action with the preceding request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the AWS CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see Setting Up Application
Logging.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for the
application without recompiling the application code. In this example, you change the Region of
the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{
 "ApplicationName": "getting_started",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"

Add a CloudWatch logging option 561

https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs.html
https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 }
]
 }
 }

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the AWS CLI, delete your previous code package from your Amazon S3 bucket, upload the
new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the Create dependent resources section.

{{
 "ApplicationName": "getting_started",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {

Update the application code 562

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-<username>",
 "FileKeyUpdate": "getting-started-scala-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Tumbling Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Clean up AWS resources 563

https://console.aws.amazon.com/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Delete your Amazon S3 object and bucket 564

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use Apache Beam with Managed Service for Apache Flink
applications

Note

There is no compatible Apache Flink Runner for Flink 1.20. For more information, see
Flink Version Compatibility in the Apache Beam Documentation.>

You can use the Apache Beam framework with your Managed Service for Apache Flink application
to process streaming data. Managed Service for Apache Flink applications that use Apache Beam
use Apache Flink runner to execute Beam pipelines.

For a tutorial about how to use Apache Beam in a Managed Service for Apache Flink application,
see Use CloudFormation.

This topic contains the following sections:

• Limitations of Apache Flink runner with Managed Service for Apache Flink

• Apache Beam capabilities with Managed Service for Apache Flink

• Create an application using Apache Beam

Limitations of Apache Flink runner with Managed Service for
Apache Flink

Note the following about using the Apache Flink runner with Managed Service for Apache Flink:

• Apache Beam metrics are not viewable in the Managed Service for Apache Flink console.

• Apache Beam is only supported with Managed Service for Apache Flink applications that use
Apache Flink version 1.8 and above. Apache Beam is not supported with Managed Service for
Apache Flink applications that use Apache Flink version 1.6.

Limitations of Apache Flink runner with Managed Service for Apache Flink 565

https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://beam.apache.org/
https://beam.apache.org/documentation/runners/flink/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Beam capabilities with Managed Service for Apache
Flink

Managed Service for Apache Flink supports the same Apache Beam capabilties as the Apache Flink
runner. For information about what features are supported with the Apache Flink runner, see the
Beam Compatibility Matrix.

We recommend that you test your Apache Flink application in the Managed Service for Apache
Flink service to verify that we support all the features that your application needs.

Create an application using Apache Beam

In this exercise, you create a Managed Service for Apache Flink application that transforms data
using Apache Beam. Apache Beam is a programming model for processing streaming data. For
information about using Apache Beam with Managed Service for Apache Flink, see Use Apache
Beam with Managed Service for Apache Flink applications.

Note

To set up required prerequisites for this exercise, first complete the Tutorial: Get started
using the DataStream API in Managed Service for Apache Flink exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up AWS resources

• Next steps

Apache Beam capabilities with Managed Service for Apache Flink 566

https://beam.apache.org/documentation/runners/capability-matrix/
https://beam.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write random strings to the stream for the application to
process.

Note

This section requires the AWS SDK for Python (Boto).

1. Create a file named ping.py with the following contents:

import json
import boto3
import random

kinesis = boto3.client('kinesis')

while True:
 data = random.choice(['ping', 'telnet', 'ftp', 'tracert', 'netstat'])
 print(data)
 kinesis.put_record(

Create dependent resources 567

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://aws.amazon.com/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 StreamName="ExampleInputStream",
 Data=data,
 PartitionKey="partitionkey")

2. Run the ping.py script:

$ python ping.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/Beam directory.

The application code is located in the BasicBeamStreamingJob.java file. Note the following
about the application code:

• The application uses the Apache Beam ParDo to process incoming records by invoking a custom
transform function called PingPongFn.

The code to invoke the PingPongFn function is as follows:

.apply("Pong transform",
 ParDo.of(new PingPongFn())

• Managed Service for Apache Flink applications that use Apache Beam require the following
components. If you don't include these components and versions in your pom.xml, your
application loads the incorrect versions from the environment dependencies, and since the
versions do not match, your application crashes at runtime.

<jackson.version>2.10.2</jackson.version>

Download and examine the application code 568

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://beam.apache.org/releases/javadoc/2.0.0/org/apache/beam/sdk/transforms/ParDo.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

...
<dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-jaxb-annotations</artifactId>
 <version>2.10.2</version>
</dependency>

• The PingPongFn transform function passes the input data into the output stream, unless the
input data is ping, in which case it emits the string pong\n to the output stream.

The code of the transform function is as follows:

 private static class PingPongFn extends DoFn<KinesisRecord, byte[]> {
 private static final Logger LOG = LoggerFactory.getLogger(PingPongFn.class);

 @ProcessElement
 public void processElement(ProcessContext c) {
 String content = new String(c.element().getDataAsBytes(),
 StandardCharsets.UTF_8);
 if (content.trim().equalsIgnoreCase("ping")) {
 LOG.info("Ponged!");
 c.output("pong\n".getBytes(StandardCharsets.UTF_8));
 } else {
 LOG.info("No action for: " + content);
 c.output(c.element().getDataAsBytes());
 }
 }
}

Compile the application code

To compile the application, do the following:

1. Install Java and Maven if you haven't already. For more information, see Complete the required
prerequisites in the Tutorial: Get started using the DataStream API in Managed Service for
Apache Flink tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.2 -Dflink.version.minor=1.8

Compile the application code 569

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/basic-beam-app-1.0.jar).

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the basic-beam-app-1.0.jar file
that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the Application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Apache Beam is not presently compatible with Apache Flink version 1.19 or later.

Upload the Apache Flink streaming Java code 570

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Select Apache Flink version 1.15 from the version pulldown.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesis-analytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",

Create and run the Managed Service for Apache Flink application 571

https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/basic-beam-app-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",

Create and run the Managed Service for Apache Flink application 572

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter basic-beam-app-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following:

Group ID Key Value

BeamApplicationPro
perties

InputStreamName ExampleInputStream

BeamApplicationPro
perties

OutputStreamName ExampleOutputStream

BeamApplicationPro
perties

AwsRegion us-west-2

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

Create and run the Managed Service for Apache Flink application 573

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up AWS resources

This section includes procedures for cleaning up AWS resources created in the Tumbling Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Clean Up 574

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Clean Up 575

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Next steps

Now that you've created and run a basic Managed Service for Apache Flink application that
transforms data using Apache Beam, see the following application for an example of a more
advanced Managed Service for Apache Flink solution.

• Beam on Managed Service for Apache Flink Streaming Workshop: In this workshop, we explore
an end to end example that combines batch and streaming aspects in one uniform Apache Beam
pipeline.

Next steps 576

https://streaming-analytics.workshop.aws/beam-on-kda/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Training workshops, labs, and solution implementations

The following end-to-end examples demonstrate advanced Managed Service for Apache Flink
solutions.

Topics

• Deploy, operate, and scale applications with Amazon Managed Service for Apache Flink

• Develop Apache Flink applications locally before deploying to Managed Service for Apache Flink

• Use event detection with Managed Service for Apache Flink Studio

• Use the AWS Streaming data solution for Amazon Kinesis

• Practice using a Clickstream lab with Apache Flink and Apache Kafka

• Set up custom scaling using Application Auto Scaling

• View a sample Amazon CloudWatch dashboard

• Use templates for AWS Streaming data solution for Amazon MSK

• Explore more Managed Service for Apache Flink solutions on GitHub

Deploy, operate, and scale applications with Amazon Managed
Service for Apache Flink

This workshop covers the development an Apache Flink application in Java, how to run and debug
in your IDE, and how to package, deploy and run on Amazon Managed Service for Apache Flink.
You will also learn how to scale, monitor, and troubleshoot your application.

Amazon Managed Service for Apache Flink workshop.

Develop Apache Flink applications locally before deploying to
Managed Service for Apache Flink

This workshop demonstrates the basics of getting up and started developing Apache Flink
applications locally with the long-term goal of deploying to Managed Service for Apache Flink for
Apache Flink.

Starters Guide to Local Development with Apache Flink

Managed Service for Apache Flink workshop 577

https://catalog.workshops.aws/managed-flink/en-US
https://catalog.us-east-1.prod.workshops.aws/workshops/429cec9e-3222-4943-82f7-1f45c45ed99a/en-US

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use event detection with Managed Service for Apache Flink
Studio

This workshop describes event detection with Managed Service for Apache Flink Studio and
deploying it as a Managed Service for Apache Flink application

Event Detection with Managed Service for Apache Flink for Apache Flink

Use the AWS Streaming data solution for Amazon Kinesis

The AWS Streaming Data Solution for Amazon Kinesis automatically configures the AWS services
necessary to capture, store, process, and deliver streaming data. The solution provides multiple
options for solving streaming data use cases. The Managed Service for Apache Flink option
provides an end-to-end streaming ETL example demonstrating a real-world application that runs
analytical operations on simulated New York taxi data.

Each solution includes the following components:

• An AWS CloudFormation package to deploy the complete example.

• A CloudWatch dashboard for displaying application metrics.

• CloudWatch alarms on the most relevant application metrics.

• All necessary IAM roles and policies.

Streaming Data Solution for Amazon Kinesis

Practice using a Clickstream lab with Apache Flink and Apache
Kafka

An end to end lab for clickstream use cases using Amazon Managed Streaming for Apache Kafka
for streaming storage and Managed Service for Apache Flink for Apache Flink applications for
stream processing.

Clickstream Lab

Event detection with Managed Service for Apache Flink Studio 578

https://catalog.us-east-1.prod.workshops.aws/workshops/2b03e299-c30f-4144-b452-483356cc5267/en-US
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Set up custom scaling using Application Auto Scaling

Two samples that show you how to automatically scale your Managed Service for Apache Flink
applications using Application Auto Scaling. This lets you set up custom scaling policies and custom
scaling attributes.

• Managed Service for Apache Flink App Autoscaling

• Scheduled Scaling

For more information on you can perform custom scaling, see Enable metric-based and scheduled
scaling for Amazon Managed Service for Apache Flink.

View a sample Amazon CloudWatch dashboard

A sample CloudWatch dashboard for monitoring Managed Service for Apache Flink applications.
The sample dashboard also includes a demo application to help with demonstrating the
functionality of the dashboard.

Managed Service for Apache Flink Metrics Dashboard

Use templates for AWS Streaming data solution for Amazon
MSK

The AWS Streaming Data Solution for Amazon MSK provides AWS CloudFormation templates
where data flows through producers, streaming storage, consumers, and destinations.

AWS Streaming Data Solution for Amazon MSK

Explore more Managed Service for Apache Flink solutions on
GitHub

The following end-to-end examples demonstrate advanced Managed Service for Apache Flink
solutions and are available on GitHub:

• Amazon Managed Service for Apache Flink Flink – Benchmarking Utility

• Snapshot Manager – Amazon Managed Service for Apache Flink for Apache Flink

Set up custom scaling using Application Auto Scaling 579

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/infrastructure/AutoScaling
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/infrastructure/ScheduledScaling
https://aws.amazon.com/blogs/big-data/enable-metric-based-and-scheduled-scaling-for-amazon-managed-service-for-apache-flink/
https://aws.amazon.com/blogs/big-data/enable-metric-based-and-scheduled-scaling-for-amazon-managed-service-for-apache-flink/
https://github.com/aws-samples/kda-metrics-dashboard/tree/main/demo-apps
https://github.com/aws-samples/kda-metrics-dashboard
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://github.com/aws-samples/amazon-kinesis-data-analytics-flink-benchmarking-utility
https://github.com/aws-samples/amazon-kinesis-data-analytics-snapshot-manager-for-flink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Streaming ETL with Apache Flink and Amazon Managed Service for Apache Flink

• Real-time sentiment analysis on customer feedback

Explore more Managed Service for Apache Flink solutions on GitHub 580

https://github.com/aws-samples/amazon-kinesisanalytics-MyApplicatiostreaming-etl
https://github.com/aws-samples/real-time-sentiment-flinksql-kdastudio

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use practical utilities for Managed Service for Apache
Flink

The following utilities can make using the Managed Service for Apache Flink service easier to use:

Topics

• Snapshot manager

• Benchmarking

Snapshot manager

It's a best practice for Flink Applications to regularly initiate savepoints/snapshots to allow for
more seamless failure recovery. Snapshot manager automates this task and offers the following
benefits:

• takes a new snapshot of a running Managed Service for Apache Flink for Apache Flink
Application

• gets a count of application snapshots

• checks if the count is more than the required number of snapshots

• deletes older snapshots that are older than the required number

For an example, see Snapshot manager.

Benchmarking

Managed Service for Apache Flink Flink Benchmarking Utility helps with capacity planning,
integration testing, and benchmarking of Managed Service for Apache Flink for Apache Flink
applications.

For an example, see Benchmarking

Snapshot manager 581

https://github.com/aws-samples/amazon-kinesis-data-analytics-snapshot-manager-for-flink
https://github.com/aws-samples/amazon-kinesis-data-analytics-flink-benchmarking-utility

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Examples for creating and working with Managed
Service for Apache Flink applications

This section provides examples of creating and working with applications in Managed Service for
Apache Flink. They include example code and step-by-step instructions to help you create Managed
Service for Apache Flink applications and test your results.

Before you explore these examples, we recommend that you first review the following:

• How it works

• Tutorial: Get started using the DataStream API in Managed Service for Apache Flink

Note

These examples assume that you are using the US East (N. Virginia) Region (us-east-1). If
you are using a different Region, update your application code, commands, and IAM roles
appropriately.

Topics

• Java examples for Managed Service for Apache Flink

• Python examples for Managed Service for Apache Flink

• Scala examples for Managed Service for Apache Flink

Java examples for Managed Service for Apache Flink

The following examples demonstrate how to create applications written in Java.

Note

Most of the examples are designed to run both locally, on your development machine and
your IDE of choice, and on Amazon Managed Service for Apache Flink. They demonstrate
the mechanisms that you can use to pass application parameters, and how to set the
dependency correctly to run the application in both environments with no changes.

Java examples for Managed Service for Apache Flink 582

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Improve serialization performance defining custom TypeInfo

This example illustrates how to define custom TypeInfo on your record or state object to prevent
serialization falling back to the less efficient Kryo serialization. This is required, for example, when
your objects contain a List or Map. For more information, see Data Types & Serialization in the
Apache Flink documentation. The example also shows how to test whether the serialization of your
object falls back to the less efficient Kryo serialization.

Code example: CustomTypeInfo

Get started with the DataStream API

This example shows a simple application, reading from a Kinesis data stream and writing to
another Kinesis data stream, using the DataStream API. The example demonstrates how to set
up the file with the correct dependencies, build the uber-JAR, and then parse the configuration
parameters, so you can run the application both locally, in your IDE, and on Amazon Managed
Service for Apache Flink.

Code example: GettingStarted

Get started with the Table API and SQL

This example shows a simple application using the Table API and SQL. It demonstrates how to
integrate the DataStream API with the Table API or SQL in the same Java application. It also
demonstrates how to use the DataGen connector to generate random test data from within the
Flink application itself, not requiring an external data generator.

Complete example: GettingStartedTable

Use S3Sink (DataStream API)

This example demonstrates how to use the DataStream API's FileSink to write JSON files to an
S3 bucket.

Code example: S3Sink

Use a Kinesis source, standard or EFO consumers, and sink (DataStream API)

This example demonstrates how to configure a source consuming from a Kinesis data stream,
either using the standard consumer or EFO, and how to set up a sink to the Kinesis data stream.

Java examples for Managed Service for Apache Flink 583

https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/dev/datastream/fault-tolerance/serialization/types_serialization/#data-types--serialization
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/Serialization/CustomTypeInfo
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/GettingStarted
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/GettingStartedTable
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/S3Sink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Code example: KinesisConnectors

Use an Amazon Data Firehose sink (DataStream API)

This example shows how to send data to Amazon Data Firehose (formerly known as Kinesis Data
Firehose).

Code example: KinesisFirehoseSink

Use the Prometheus sink connector

This example demonstrates the use of the Prometheus sink connector to write time-series data to
Prometheus.

Code example: PrometheusSink

Use windowing aggregations (DataStream API)

This example demonstrates four types of the windowing aggregation in the DataStream API.

1. Sliding Window based on processing time

2. Sliding Window based on event time

3. Tumbling Window based on processing time

4. Tumbling Window based on event time

Code example: Windowing

Use custom metrics

This example shows how to add custom metrics to your Flink application and send them to
CloudWatch metrics.

Code example: CustomMetrics

Use Kafka Configuration Providers to fetch custom keystore and truststore for
mTLS at runtime

This example illustrates how you can use Kafka Configuration Providers to set up a custom keystore
and truststore with certificates for mTLS authentication for the Kafka connector. This technique

Java examples for Managed Service for Apache Flink 584

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisConnectors
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisFirehoseSink
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/prometheus/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/PrometheusSink
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/Windowing
https://github.com/dzikosc/amazon-managed-service-for-apache-flink-examples/tree/main/java/CustomMetrics

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

lets you load the required custom certificates from Amazon S3 and the secrets from AWS Secrets
Manager when the application starts.

Code example: Kafka-mTLS-Keystore-ConfigProviders

Use Kafka Configuration Providers to fetch secrets for SASL/SCRAM
authentication at runtime

This example illustrates how you can use Kafka Configuration Providers to fetch credentials from
AWS Secrets Manager and download the truststore from Amazon S3 to set up SASL/SCRAM
authentication on a Kafka connector. This technique lets you load the required custom certificates
from Amazon S3 and the secrets from AWS Secrets Manager when the application starts.

Code example: Kafka-SASL_SSL-ConfigProviders

Use Kafka Configuration Providers to fetch custom keystore and truststore for
mTLS at runtime with Table API/SQL

This example illustrates how you can use Kafka Configuration Providers in Table API /SQL to set up
a custom keystore and truststore with certificates for mTLS authentication for the Kafka connector.
This technique lets you load the required custom certificates from Amazon S3 and the secrets from
AWS Secrets Manager when the application starts.

Code example: Kafka-mTLS-Keystore-Sql-ConfigProviders

Use Side Outputs to split a stream

This example illustrates how to leverage Side Outputs in Apache Flink for splitting a stream on
specified attributes. This pattern is particularly useful when trying to implement the concept of
Dead Letter Queues (DLQ) in streaming applications.

Code example: SideOutputs

Use Async I/O to call an external endpoint

This example illustrates how to use Apache Flink Async I/O to call an external endpoint in a non-
blocking way, with retries on recoverable errors.

Code example: AsyncIO

Java examples for Managed Service for Apache Flink 585

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KafkaConfigProviders/Kafka-mTLS-Keystore-ConfigProviders
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KafkaConfigProviders/Kafka-SASL_SSL-ConfigProviders
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KafkaConfigProviders/Kafka-mTLS-Keystore-Sql-ConfigProviders
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/side_output/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/SideOutputs
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/dev/datastream/operators/asyncio/
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/AsyncIO

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Python examples for Managed Service for Apache Flink

The following examples demonstrate how to create applications written in Python.

Note

Most of the examples are designed to run both locally, on your development machine and
your IDE of choice, and on Amazon Managed Service for Apache Flink. They demonstrate
the simple mechanism that you can use to pass application parameters, and how to set the
dependency correctly to run the application in both environments with no changes.

Project dependencies

Most PyFlink examples require one or more dependencies as JAR files, for example for Flink
connectors. These dependencies must then be packaged with the application when deployed on
Amazon Managed Service for Apache Flink.

The following examples already include the tooling that lets you run the application locally
for development and testing, and to package the required dependencies correctly. This tooling
requires using Java JDK11 and Apache Maven. Refer to the README contained in each example for
the specific instructions.

Examples

Get started with PyFlink

This example demonstrates the basic structure of a PyFlink application using SQL embedded in
Python code. This project also provides a skeleton for any PyFlink application that includes JAR
dependencies such as connectors. The README section provides detailed guidance about how to
run your Python application locally for development. The example also shows how to include a
single JAR dependency, the Kinesis SQL connector in this example, in your PyFlink application.

Code example: GettingStarted

Add Python dependencies

This example shows how to add Python dependencies to your PyFlink application in the most
general way. This method works for simple dependencies, like Boto3, or complex dependencies
containing C libraries such as PyArrow.

Python examples for Managed Service for Apache Flink 586

https://github.com/dzikosc/amazon-managed-service-for-apache-flink-examples/tree/main/python/GettingStarted

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Code example: PythonDependencies

Use windowing aggregations (DataStream API)

This example demonstrates four types of the windowing aggregation in SQL embedded in a
Python application.

1. Sliding Window based on processing time

2. Sliding Window based on event time

3. Tumbling Window based on processing time

4. Tumbling Window based on event time

Code example: Windowing

Use an S3 sink

This example shows how to write your output to Amazon S3 as JSON files, using SQL embedded
in a Python application. You must enable checkpointing for the S3 sink to write and rotate files to
Amazon S3.

Code example: S3Sink

Use a User Defined Function (UDF)

This example demonstrates how to define a User Defined Function, implement it in Python, and
use it in SQL code that runs in a Python application.

Code example: UDF

Use an Amazon Data Firehose sink

This example demonstrates how to send data to Amazon Data Firehose using SQL.

Code example: FirehoseSink

Scala examples for Managed Service for Apache Flink

The following examples demonstrate how to create applications using Scala with Apache Flink.

Scala examples for Managed Service for Apache Flink 587

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/PythonDependencies
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/Windowing
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/S3Sink
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/UDF
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/FirehoseSink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Set up a multi-step application

This example shows how to set up a Flink application in Scala. It demonstrates how to configure
the SBT project to include dependencies and build the uber-JAR.

Code example: GettingStarted

Scala examples for Managed Service for Apache Flink 588

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/scala/GettingStarted

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Security in Amazon Managed Service for Apache Flink

Cloud security at AWS is the highest priority. As an AWS customer, you will benefit from a data
center and network architecture built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of
the AWS compliance programs. To learn about the compliance programs that apply to Managed
Service for Apache Flink, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Managed Service for Apache Flink. The following topics show you how to configure Managed
Service for Apache Flink to meet your security and compliance objectives. You'll also learn how
to use other Amazon services that can help you to monitor and secure your Managed Service for
Apache Flink resources.

Topics

• Data protection in Amazon Managed Service for Apache Flink

• Key management in Amazon Managed Service for Apache Flink

• Identity and Access Management for Amazon Managed Service for Apache Flink

• Compliance validation for Amazon Managed Service for Apache Flink

• Resilience in Amazon Managed Service for Apache Flink

• Infrastructure security in Managed Service for Apache Flink

• Security best practices for Managed Service for Apache Flink

589

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Data protection in Amazon Managed Service for Apache Flink

You can protect your data using tools that are provided by AWS. Amazon MSF can work with
services that support encrypting data, including Firehose, and Amazon S3.

Data encryption in Managed Service for Apache Flink

Encryption at rest

Note the following about encrypting data at rest with Amazon MSF:

• You can encrypt data on the incoming Kinesis data stream using StartStreamEncryption. For
more information, see What Is Server-Side Encryption for Kinesis Data Streams?.

• Output data can be encrypted at rest using Firehose to store data in an encrypted Amazon
S3 bucket. You can specify the encryption key that your Amazon S3 bucket uses. For more
information, see Protecting Data Using Server-Side Encryption with KMS–Managed Keys (SSE-
KMS).

• Amazon MSF can read from any streaming source, and write to any streaming or database
destination. Ensure that your sources and destinations encrypt all data in transit and data at rest.

• Your application's code is encrypted at rest.

• Durable application storage is encrypted at rest.

• Running application storage is encrypted at rest.

Encryption in transit

Amazon MSF encrypts all data in transit. Encryption in transit is enabled for all Amazon MSF
applications and cannot be disabled.

Amazon MSF encrypts data in transit in the following scenarios:

• Data in transit from Kinesis Data Streams to Amazon MSF.

• Data in transit between internal components within Amazon MSF.

• Data in transit between Amazon MSF and Firehose.

Data protection 590

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_StartStreamEncryption.html
https://docs.aws.amazon.com/streams/latest/dev/what-is-sse.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Key management

In Amazon MSF, you can use either service managed or your own customer managed keys to
encrypt data. For more information, see Key management in Amazon Managed Service for Apache
Flink.

Key management in Amazon Managed Service for Apache Flink

In Amazon MSF, you can choose to use either AWS managed keys or your own customer managed
keys (CMKs) to encrypt data. CMKs in AWS Key Management Service (AWS KMS) are encryption
keys that you create, own, and manage yourself.

On this page

• Transparent encryption in Amazon MSF

• Customer managed keys in Amazon MSF

• Using customer managed keys in Amazon MSF

• Managing CMK using AWS Management Console

• Managing CMK using APIs

Transparent encryption in Amazon MSF

By default, Amazon MSF uses AWS owned keys (AOKs) to encrypt your data in ephemeral (running
application storage) and durable (durable application storage) storage. This means all data subject
to a Flink checkpoint or snapshot will be encrypted by default. AOKs are the default encryption
method in Amazon MSF and no additional set up is required. To encrypt data in transit, Amazon
MSF uses TLS and HTTP+SSL by default and requires no additional set up or configuration.

Customer managed keys in Amazon MSF

In Amazon MSF, CMK is a feature where you can encrypt your application's data with a key that you
create, own, and manage on AWS KMS.

In this section

• What is encrypted with CMKs?

• What isn't encrypted with CMKs?

• Supported KMS key types

Key management in Amazon MSF 591

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-mgn-key
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-mgn-key

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• KMS key permissions

• KMS encryption context and constraints

• Key rotation policy

• Least-privileged key policy statements

• Example AWS CloudTrail log entries

What is encrypted with CMKs?

In an Amazon MSF application, data subject to a Flink checkpoint or snapshot will be encrypted
with a CMK you define for that application. Consquently, your CMK will encrypt data stored in
either running application storage or durable application storage. The following sections describe
the procedure to set up CMKs for your Amazon MSF applications.

Key rotation policy

Amazon MSF doesn't manage the key rotation policy for your CMKs. You're responsible
for your own key rotation. This is because you create and maintain CMKs. For information
about how to use your key rotation policy with CMK in Amazon MSF, see Key rotation
policy.

What isn't encrypted with CMKs?

Sources and sinks

Encryption of data sources and sinks isn't managed by Amazon MSF. It's managed by your source or
sink configuration or application connector configuration.

Retroactive application of encryption

CMK in Amazon MSF doesn't provide support to retroactively apply CMKs to an existing historic
snapshot.

Log encryption

Currently, Amazon MSF doesn't support log encryption using KMS CMK for logs generated by your
application code jar. You'll need to make sure logs don't contain data that require CMK encryption.

Encryption of data in transit

Customer managed keys in Amazon MSF 592

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can't use CMK to encrypt data in transit. By default, Amazon MSF encrypts all data in transit
using TLS or HTTP and SSL.

Supported KMS key types

CMK in Amazon MSF supports symmetric keys.

KMS key permissions

CMK in Amazon MSF requires permission to perform the following KMS actions. These permissions
are necessary to validate access, create CMK encrypted running application storage, and store CMK
encrypted application state in durable application storage.

• kms:DescribeKey

Grants permission to resolve a KMS key alias to the key ARN.

• kms:Decrypt

Grants permission to accesses durable application state and provision running application
storage.

• kms:GenerateDataKey

Grants permission to store durable application state.

• kms:GenerateDataKeyWithoutPlaintext

Grants permission to provision running application storage.

• kms:CreateGrant

Grants permission to access running application storage.

KMS encryption context and constraints

CMK in Amazon MSF provides encryption context when accessing keys to read or write encrypted
data, that is, kms:EncryptionContext:aws:kinesisanalytics:arn. In addition to
encryption context, source contexts aws:SourceArn and aws:SourceAccount are provided when
reading or writing durable application storage.

When creating grant to provision encrypted running application storage, Amazon MSF CMK creates
grants with constraint type EncryptionContextSubset ensuring that only Decrypt operation is
allowed through "kms:GrantOperations": "Decrypt".

Customer managed keys in Amazon MSF 593

https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-choose-key-spec.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/kms/latest/developerguide/create-grant-overview.html#grant-constraints
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Key rotation policy

Amazon MSF doesn't manage the key rotation policy for your CMKs. You're responsible for your
own key rotation because you create and maintain CMKs.

In KMS you use either automatic or manual key rotation to create new cryptographic material for
your CMKs. For information about how to rotate your keys, see Rotate AWS KMS keys in the AWS
Key Management Service Developer Guide.

When you rotate keys for CMKs in Amazon MSF, you must make sure that the operator (API caller)
has permissions for both the previous and new key.

Note

An application can start from a snapshot which was encrypted with AOK after it's
configured to use CMK. An application can also start from a snapshot which was encrypted
with an older CMK. To start an application from a snapshot, the operator (API caller) must
have permissions for both the old and new key.

In Amazon MSF, we recommend that you stop and restart your applications using CMK encryption.
This ensures the new rotation master key is applied to all data in running application storage and
durable application storage. If you don't stop and restart your application, the new key material
will only be applied to durable application storage. Running application storage will continue to be
encrypted using the previous rotation key material.

If you're changing the AWS KMS key ARN used for CMK you should use UpdateApplication in
Amazon MSF. This will ensure your Flink application will restart as part of UpdateApplication
applying the CMK changes.

Note

When you provide an alias or alias ARN, Amazon MSF resolves the alias to key ARN and
stores the key ARN as the configured key for the application.

Least-privileged key policy statements

For information about key policy statements, see Create a KMS key policy and Application lifecycle
operator (API caller) permissions .

Customer managed keys in Amazon MSF 594

https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example AWS CloudTrail log entries

When Amazon MSF uses CMKs in AWS KMS, AWS CloudTrail automatically logs all AWS KMS API
calls and related details. These logs contain information, such as AWS service making the request,
KMS key ARN, API actions performed, and timestamps excluding the encrypted data. These logs
provide essential audit trails for compliance, security monitoring, and troubleshooting by showing
which services accessed your keys and when.

Example 1: AWS KMS Decrypt API call using an assumed role in Amazon MSF

The following CloudTrail log shows Amazon MSF performing a test kms:Decrypt operation on a
CMK. Amazon MSF makes this request using an Operator role while using the CreateApplication
API. The following log includes essential details, such as the target KMS key ARN, associated
Amazon MSF application (MyCmkApplication), and timestamp of the operation.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "REDACTED",
 "arn": "arn:aws:sts::123456789012:assumed-role/Operator/CmkTestingSession",
 "accountId": "123456789012",
 "accessKeyId": "REDACTED",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "REDACTED",
 "arn": "arn:aws:iam::123456789012:role/Operator",
 "accountId": "123456789012",
 "userName": "Operator"
 },
 "attributes": {
 "creationDate": "2025-08-07T13:29:28Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "kinesisanalytics.amazonaws.com"
 },
 "eventTime": "2025-08-07T13:45:45Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-1",

Customer managed keys in Amazon MSF 595

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "sourceIPAddress": "kinesisanalytics.amazonaws.com",
 "userAgent": "kinesisanalytics.amazonaws.com",
 "errorCode": "DryRunOperationException",
 "errorMessage": "The request would have succeeded, but the DryRun option is set.",
 "requestParameters": {
 "encryptionContext": {
 "aws:kinesisanalytics:arn": "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication"
 },
 "keyId": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "dryRun": true
 },
 "responseElements": null,
 "additionalEventData": {
 "keyMaterialId": "REDACTED"
 },
 "requestID": "56764d19-1eb1-48f1-8044-594aa7dd05c4",
 "eventID": "1371b402-f1dc-4c47-8f3a-1004e4803c5a",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Example 2: AWS KMS Decrypt API call in Amazon MSF with direct service authentication

The following CloudTrail log shows Amazon MSF performing a test kms:Decrypt operation on
a CMK. Amazon MSF makes this request through direct AWS service-to-service authentication
instead of assuming a role. The following log includes essential details, such as the target KMS
key ARN, associated Amazon MSF application (MyCmkApplication), and a shared event ID of the
operation.

Customer managed keys in Amazon MSF 596

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "kinesisanalytics.amazonaws.com"
 },
 "eventTime": "2025-08-07T13:45:45Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "kinesisanalytics.amazonaws.com",
 "userAgent": "kinesisanalytics.amazonaws.com",
 "errorCode": "DryRunOperationException",
 "errorMessage": "The request would have succeeded, but the DryRun option is set.",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "encryptionContext": {
 "aws:kinesisanalytics:arn": "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication"
 },
 "dryRun": true
 },
 "responseElements": null,
 "additionalEventData": {
 "keyMaterialId": "REDACTED"
 },
 "requestID": "5fe45ada-7519-4608-be2f-5a9b8ddd62b2",
 "eventID": "6206b08f-ce04-3011-9ec2-55951d357b2c",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "Application-account-ID",
 "sharedEventID": "acbe4a39-ced9-4f53-9f3c-21ef7e89dc37",

Customer managed keys in Amazon MSF 597

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "eventCategory": "Management"
}

Using customer managed keys in Amazon MSF

You need to consider the following factors when establishing, managing, and operating Amazon
MSF applications subject to a CMK policy.

Customer managed key

This is the key policy and key material. You'll need to create a key which is used to encrypt your
application state in running application storage and durable application storage.

Application lifecycle operator (API caller)

This is the Operator IAM user or role. The Operator can be a human or an automation, such as
a CI/CD pipeline that will create, deploy, and run the Amazon MSF application. The application
lifecycle Operator can either be an IAM role or user.

Note

It's possible that the key administrator and operator are the same person. In this case, we
recommend that you always use separate roles or users.

Application

This is the Amazon MSF application you create. The application execution (IAM) role requires no
changes to use CMK. For more information about IAM in Amazon MSF, see Identity and Access
Management for Amazon Managed Service for Apache Flink.

Dependencies between policies

There are interdependencies between the key policy assigned to the CMK, and the IAM
policy defining the permissions of the application lifecycle operator. You might want to
create them in the following order:

• Create the Operator IAM user or role without IAM policy defining permissions for CMK.
The Operator creates the application with AOK.

Using customer managed keys 598

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-material

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create the key administrator with permissions to manage KMS keys. The key
administrator creates the CMK. The key policy references to the Operator and
administrator role ARNs, and to the application ARN. For more information, see Create a
KMS key policy.

• Create an IAM policy for the Operator allowing to manage CMK for the application. For
more information, see Application lifecycle operator (API caller) permissions . Attach the
new IAM policy to the Operator. The Operator updates the application enabling CMK. For
more information, see Update an existing application to use CMK.

If the application doesn’t exist, create the application without CMK.

The following illustration shows how CMK is implemented in Amazon MSF.

Using customer managed keys 599

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Customer managed key (CMK): Comprises key policy and key material.

2. Key administrator: The KeyAdmin IAM user or role.

3. Application lifecycle operator (API caller): The operator IAM user or role.

4. Application: Has an execution (IAM) role attached.

Using customer managed keys 600

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managing CMK using AWS Management Console

This topic describes how to create and update your KMS CMKs using the AWS Management
Console. To follow the procedures described in this topic, you must have permission to manage
the KMS key and the Amazon MSF application. The procedures in this topic use a permissive key
policy, which is for demonstration and testing purposes only. We don't recommend using such a
permissive key policy for production workloads. For production workloads, you can use the console,
but in real-life scenarios, roles, permissions, and workflows are isolated.

Before you start, create a KMS key. For information about creating a KMS key, see Create a KMS key
in the AWS Key Management Service Developer Guide.

Create and assign KMS keys

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Streaming applications page, choose Create streaming application.

3. For Apache Flink version, make sure that you choose Apache Flink 1.20.

4. For Encryption, choose Use customer managed key.

5. If you don't have a KMS key, choose Create an AWS KMS key, and create a KMS key. For
information about how to create the key, see Using the AWS KMS console in the AWS Key
Management Service Developer Guide.

6. If you don't have a KMS key, choose Create an AWS KMS key, and create a KMS key. For
information about how to create the key using console, see Create a symmetric encryption
KMS key.

7. Choose the key in the selector you want to use. Remember only the key with Enabled status is
allowed.

Update an existing application to use CMK

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Streaming applications page, choose an application with Flink version 1.20.

3. Choose Configure.

4. For Encryption, choose Use customer managed key.

Managing CMK using console 601

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-symmetric-cmk.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-symmetric-cmk.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-symmetric-cmk.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

5. If you don't have a KMS key, choose Create an AWS KMS key, and create a KMS key. For
information about how to create the key using console, see Create a symmetric encryption
KMS key.

6. Choose the key in the selector you want to use. Remember only the key with Enabled status is
allowed.

Switch from CMK to an AWS owned key

1. Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

2. On the Streaming applications page, choose an application with Flink version 1.20.

3. Choose Configure.

4. For Encryption, choose Use AWS owned key.

Managing CMK using APIs

This topic describes how to create, and update your KMS CMKs using Amazon MSF APIs. To follow
the procedures described in this topic, you must have permission to manage the KMS key and the
Amazon MSF application. The procedures in this topic use a permissive key policy, which is for
demonstration and testing purposes only. We don't recommend using such a permissive key policy
for production workloads. In real-life scenarios for production workloads, roles, permissions, and
workflows are isolated.

On this page

• Create and assign KMS keys

• Update an existing application to use CMK

• Revert from CMK to AWS owned key

Create and assign KMS keys

Before you start, create a KMS key. For information about creating a KMS key, see Create a KMS key
in the AWS Key Management Service Developer Guide.

In this section

• Create a KMS key policy

Managing CMK using APIs 602

https://docs.aws.amazon.com/kms/latest/developerguide/create-symmetric-cmk.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-symmetric-cmk.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Application lifecycle operator (API caller) permissions

Create a KMS key policy

To use CMK in Amazon MSF, you must add the following service
principals to your key policy: kinesisanalytics.amazonaws.com and
infrastructure.kinesisanalytics.amazonaws.com. Amazon MSF uses these service
principals for validation and resource access. If you don't include these service principals, Amazon
MSF rejects the request.

The following KMS key policy enables Amazon MSF to use a CMK for the application,
MyCmkApplication. This policy grants necessary permissions to both the Operator
role and Amazon MSF service principals, kinesisanalytics.amazonaws.com and
infrastructure.kinesisanalytics.amazonaws.com, to perform the following operations:

• Describe the CMK

• Encrypt the application data

• Decrypt the application data

• Create grants for the key

The following example uses IAM roles. You can create the key policy for the KMS key using the
following example as template, but make sure to do the following:

• Replace arn:aws:iam::123456789012:role/Operator with the Operator role. You must
create the Operator role or user before creating the key policy. Failing to do this will cause the
failure of your request.

• Replace arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication with your application's ARN.

• Replace kinesisanalytics.us-east-1.amazonaws.com with a service value for the
corresponding Region.

• Replace 123456789012 with your account idKey policy for CMK.

• Add additional policy statements to allow key administrators to administer the KMS key. Failing
to do this will cause loss of access to manage the key.

The following key policy statements are large because they are intended to be explicit and show
the conditions that each action requires.

Managing CMK using APIs 603

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-default.html#key-policy-default-allow-administrators

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Version": "2012-10-17",
 "Id": "MyMsfCmkApplicationKeyPolicy",
 "Statement": [
 {
 "Sid": "AllowOperatorToDescribeKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/Operator"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "kinesisanalytics.us-east-1.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AllowOperatorToConfigureAppToUseKeyForApplicationState",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/Operator"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication",
 "kms:ViaService": "kinesisanalytics.us-east-1.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AllowOperatorToConfigureAppToCreateGrantForRunningState",
 "Effect": "Allow",
 "Principal": {

Managing CMK using APIs 604

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "AWS": "arn:aws:iam::123456789012:role/Operator"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication",
 "kms:ViaService": "kinesisanalytics.us-east-1.amazonaws.com",
 "kms:GrantConstraintType": "EncryptionContextSubset"
 },
 "ForAllValues:StringEquals": {
 "kms:GrantOperations": "Decrypt"
 }
 }
 },
 {
 "Sid": "AllowMSFServiceToDescribeKey",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "kinesisanalytics.amazonaws.com",
 "infrastructure.kinesisanalytics.amazonaws.com"
]
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceArn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication",
 "aws:SourceAccount": "123456789012"
 }
 }
 },
 {
 "Sid": "AllowMSFServiceToGenerateDataKeyForDurableState",
 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanalytics.amazonaws.com"
 },
 "Action": [

Managing CMK using APIs 605

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceArn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication",
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication",
 "aws:SourceAccount": "123456789012"
 }
 }
 },
 {
 "Sid": "AllowMSFServiceToDecryptForDurableState",
 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanalytics.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication"
 }
 }
 },
 {
 "Sid": "AllowMSFServiceToUseKeyForRunningState",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "infrastructure.kinesisanalytics.amazonaws.com"
]
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKeyWithoutPlaintext"

Managing CMK using APIs 606

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication"
 }
 }
 },
 {
 "Sid": "AllowMSFServiceToCreateGrantForRunningState",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "infrastructure.kinesisanalytics.amazonaws.com"
]
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication",
 "kms:GrantConstraintType": "EncryptionContextSubset"
 },
 "ForAllValues:StringEquals": {
 "kms:GrantOperations": "Decrypt"
 }
 }
 }
]
}

Application lifecycle operator (API caller) permissions

The following IAM policy ensures that the application lifecycle operator has the necessary
permissions to assign a KMS key to the application, MyCmkApplication.

{
 "Version": "2012-10-17",
 "Statement": [

Managing CMK using APIs 607

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "AllowMSFAPICalls",
 "Effect": "Allow",
 "Action": "kinesisanalytics:*",
 "Resource": "*"
 },
 {
 "Sid": "AllowPassingServiceExecutionRole",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::123456789012:role/MyCmkApplicationRole"
 },
 {
 "Sid": "AllowDescribeKey",
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "kinesisanalytics.us-east-1.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AllowMyCmkApplicationKeyOperationsForDurableState",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "kinesisanalytics.us-east-1.amazonaws.com",
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication"
 }

Managing CMK using APIs 608

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 },
 {
 "Sid": "AllowMyCmkApplicationKeyOperationsForRunningState",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "kinesisanalytics.us-east-1.amazonaws.com",
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication"
 }
 }
 },
 {
 "Sid": "AllowMyCmkApplicationCreateGrantForRunningState",
 "Effect": "Allow",
 "Action": "kms:CreateGrant",
 "Resource": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Condition": {
 "ForAllValues:StringEquals": {
 "kms:GrantOperations": "Decrypt"
 },
 "StringEquals": {
 "kms:ViaService": "kinesisanalytics.us-east-1.amazonaws.com",
 "kms:EncryptionContext:aws:kinesisanalytics:arn":
 "arn:aws:kinesisanalytics:us-
east-1:123456789012:application/MyCmkApplication",
 "kms:GrantConstraintType": "EncryptionContextSubset"
 }
 }
 }
]
}

Managing CMK using APIs 609

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update an existing application to use CMK

In Amazon MSF, you can apply a CMK policy to an existing application that uses AWS owned keys
(AOKs).

By default, Amazon MSF uses AOKs to encrypt all your data in ephemeral (running application
storage) and durable (durable application storage) storage. This means all data subject to a Flink
checkpoint or snapshot are encrypted using AOKs by default. When you replace the AOK with a
CMK, new checkpoints and snapshots are encrypted with CMK. However, historic snapshots will
remain encrypted with the AOK.

To update an existing application to use CMK

1. Create a JSON file with the following configuration.

Make sure that you replace the value of CurrentApplicationVersionId to the current
version number of the application. You can get the current version number of your application,
using DescribeApplication.

In this JSON configuration, remember to replace the sample values with the actual values.

{
 "ApplicationName": "MyCmkApplication",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationEncryptionConfigurationUpdate": {
 "KeyTypeUpdate": "CUSTOMER_MANAGED_KEY",
 "KeyIdUpdate": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
 }
}

2. Save this file. For example, save it with the name enable-cmk.json.

3. Run the update-application AWS CLI command as shown in the following example. In this
command, provide the JSON configuration file you created in the previous steps as the file
argument.

aws kinesisanalyticsv2 update-application \
 --cli-input-json file://enable-cmk.json

Managing CMK using APIs 610

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.aws.amazon.com/cli/latest/reference/kinesisanalyticsv2/update-application.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The preceding configuration is accepted to update the application for using CMK only if the
following conditions are met:

• API caller has a policy statement that allows access to the key.

• Key policy has a policy statement that allows API caller access to the key.

• Key policy has a policy statement that allows the Amazon MSF service principal, for example,
kinesisanalytics.amazonaws.com access to the key.

Revert from CMK to AWS owned key

To revert from CMK to an AOK

1. Create a JSON file with the following configuration.

In this JSON configuration, remember to replace the sample values with the actual values.

{
 "ApplicationName": "MyCmkApplication",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationEncryptionConfigurationUpdate": {
 "KeyTypeUpdate": "AWS_OWNED_KEY"
 }
 }
}

2. Save this file. For example, save it with the name disable-cmk.json.

3. Run the update-application AWS CLI command as shown in the following example. In this
command, provide the JSON configuration file you created in the previous steps as the file
argument.

aws kinesisanalyticsv2 update-application \
 --cli-input-json file://disable-cmk.json

Identity and Access Management for Amazon Managed Service
for Apache Flink

Identity and Access Management for Managed Service for Apache Flink 611

https://docs.aws.amazon.com/cli/latest/reference/kinesisanalyticsv2/update-application.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Managed Service for Apache Flink resources. IAM is an
AWS service that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Managed Service for Apache Flink works with IAM

• Identity-based policy examples for Amazon Managed Service for Apache Flink

• Troubleshooting Amazon Managed Service for Apache Flink identity and access

• Cross-service confused deputy prevention

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Managed Service for Apache Flink.

Service user – If you use the Managed Service for Apache Flink service to do your job, then
your administrator provides you with the credentials and permissions that you need. As you use
more Managed Service for Apache Flink features to do your work, you might need additional
permissions. Understanding how access is managed can help you request the right permissions
from your administrator. If you cannot access a feature in Managed Service for Apache Flink, see
Troubleshooting Amazon Managed Service for Apache Flink identity and access.

Service administrator – If you're in charge of Managed Service for Apache Flink resources at
your company, you probably have full access to Managed Service for Apache Flink. It's your job
to determine which Managed Service for Apache Flink features and resources your service users
should access. You must then submit requests to your IAM administrator to change the permissions
of your service users. Review the information on this page to understand the basic concepts of IAM.
To learn more about how your company can use IAM with Managed Service for Apache Flink, see
How Amazon Managed Service for Apache Flink works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Managed Service for Apache Flink. To view example

Audience 612

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink identity-based policies that you can use in IAM, see Identity-
based policy examples for Amazon Managed Service for Apache Flink.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 613

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a

Authenticating with identities 614

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

Authenticating with identities 615

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can

Managing access using policies 616

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the

Managing access using policies 617

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Managed Service for Apache Flink works with IAM

In Amazon MSF, you use IAM in the following different contexts:

• Application permissions: Control access by the application to external resources, such as Amazon
S3, Amazon Kinesis Data Streams, or Amazon DynamoDB, that use IAM authentication.

How Amazon Managed Service for Apache Flink works with IAM 618

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Application management and lifecycle control permissions: Control use of Amazon MSF API
actions, such as CreateApplication, StartApplication, and UpdateApplication, which control the
application lifecycle. For a complete list of all Amazon MSF API actions that you can specify
in the Action element of an IAM policy statement, see Actions defined by Amazon Kinesis
Analytics V2 in the Service Authorization Reference.

Topics

• Application permissions

• Application management and lifecycle control permissions

• Identity-based policies for Managed Service for Apache Flink

• Resource-based policies within Managed Service for Apache Flink

• Access control lists (ACLs) in Managed Service for Apache Flink

• Service roles for Managed Service for Apache Flink

• Service-linked roles for Managed Service for Apache Flink

Application permissions

You control IAM permissions of an Amazon MSF application with the IAM role assigned to the
application, as part of the application configuration. This IAM role determines application’s
permissions to access other services, such as Amazon S3, Kinesis Data Streams, or DynamoDB,
which use IAM for authorization.

Warning

Changing the permissions for a service role might break Amazon MSF functionality. Make
sure you don't remove permissions for the application to download the application code
from the Amazon S3 bucket, and send logs to Amazon CloudWatch.

Assigning permissions to the application using resource-based policies isn't supported. You can't
specify an Amazon MSF application as principal in a policy attached to the resource to be accessed.

Topics

• Permissions to access the application code and application logs

• Cross-service confused deputy prevention

How Amazon Managed Service for Apache Flink works with IAM 619

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisanalyticsv2.html#amazonkinesisanalyticsv2-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisanalyticsv2.html#amazonkinesisanalyticsv2-actions-as-permissions

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Permissions to access the application code and application logs

Amazon MSF also uses the application IAM role to access the application code uploaded in an
Amazon S3 bucket, and to write the application logs to Amazon CloudWatch Logs.

When you create or update the application using the AWS Management Console, choose Create /
update IAM role <role-name> with required policies in the Application configuration, Amazon
MSF automatically creates and modifies the IAM role assigning the required permissions to Amazon
S3 and CloudWatch Logs.

If you create the IAM role manually or if you create and manage the application using automation
tools, you must add the following permissions to the application IAM role.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket/path-to-application-code"
]
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:*"
]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",

How Amazon Managed Service for Apache Flink works with IAM 620

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:/aws/kinesis-
analytics/application-name:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:/aws/kinesis-
analytics/application-name:log-stream:kinesis-analytics-log-stream"
]
 }
]
}

Cross-service confused deputy prevention

When an Amazon MSF application calls a different AWS service, you can provide more granular
access permissions. For example, if an IAM role is reused across multiple applications, an
application may get access to a resource it should not be have access to. This is known as the
confused deputy problem. For information about how the accessed resource can restrict access to a
specific Amazon MSF application, see Cross-service confused deputy prevention.

Application management and lifecycle control permissions

Actions to manage the application and its lifecycle, such as CreateApplication, StartApplication,
and UpdateApplication, are controlled through identity-based policies associated to the resource
performing the action, such as an IAM user, IAM group, or a resource such as AWS Lambda calling
the Amazon MSF API.

How Amazon Managed Service for Apache Flink works with IAM 621

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The API and SDK controlling Amazon MSF application lifecycle is called Amazon Kinesis
Analytics V2, for backward compatibility reasons.

Assigning permissions for application lifecycle actions using resource-based policies attached to
the Amazon MSF application isn't supported. The application IAM role isn't used to control access
to the application lifecycle actions. You should not add application lifecycle permissions to the
application role.

The following table lists the IAM features you can use with Amazon MSF application lifecycle
actions.

IAM feature Managed Service for Apache Flink support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Cross-service principal permissions Yes

Service roles No

Service-linked roles No

• For a high-level view of how Managed Service for Apache Flink and other AWS services work with
most IAM features, see AWS services that work with IAM in the IAM User Guide.

How Amazon Managed Service for Apache Flink works with IAM 622

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For information about the service-specific resources, actions, and condition context keys that you
can use in IAM permission policies, see Actions, resources, and condition keys for Amazon Kinesis
Analytics V2 in the Service Authorization Reference.

Topics

• Application lifecycle policy actions

• Application lifecycle policy resources

• Application lifecycle policy condition keys

• Attribute-based access control (ABAC) with Managed Service for Apache Flink

• Using temporary credentials

• Cross-service principal permissions

Application lifecycle policy actions

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon MSF use the kinesisanalytics prefix before the action. Amazon MSF
APIs and SDKs use the Amazon Kinesis Analytics V2 prefix.

To specify multiple actions in a single statement, separate them with commas. The following
example shows the syntax for specifying Amazon MSF policy actions.

"Action" : [
 "kinesisanalytics:action1",
 "kinesisanalytics:action2"
]

How Amazon Managed Service for Apache Flink works with IAM 623

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisanalyticsv2.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisanalyticsv2.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can also specify multiple actions using wildcards (*). For example, to specify all actions that
begin with the word Describe, include the following action.

"Action": "kinesisanalytics:Describe*"

To see a complete list of all Amazon MSF API actions that you can specify in the Action element
of an IAM policy statement, see Actions defined by Amazon Kinesis Analytics V2.

To view examples of Amazon MSF identity-based policies, see Identity-based policy examples.

Application lifecycle policy resources

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

Permissions for Amazon MSF application lifecycle actions are defined for each application. The
Resource JSON element in an IAM policy defines the Amazon MSF application to which the
permissions apply.

You can assign permission to a single application by specifying the application ARN, or a group of
application by using wildcards. The following example shows the syntax of the Resource element.

"Resouce" : "arn:partition:kinesisanalytics:Region:account:application/application-name

You can also assign permissions to control a subset of applications using wildcards. For example,
you can assign permissions to control all applications whose name starts with a specific prefix.

How Amazon Managed Service for Apache Flink works with IAM 624

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonkinesisanalyticsv2.html#amazonkinesisanalyticsv2-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Resouce" : "arn:partition:kinesisanalytics:Region:account:application/application-
name-prefix*

Application lifecycle policy condition keys

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

You can use condition keys to control permissions to Amazon MSF application lifecycle actions.
To see a list of Managed Service for Apache Flink condition keys, see Condition Keys for Amazon
Managed Service for Apache Flink in the Service Authorization Reference. To learn with which
actions and resources you can use a condition key, see Actions Defined by Amazon Managed
Service for Apache Flink.

Attribute-based access control (ABAC) with Managed Service for Apache Flink

Supports ABAC (tags in policies): Yes

Using condition keys, you can implement attribute-based access control (ABAC), which is an
authorization strategy that defines permissions based on attributes. In AWS, these attributes are
called tags. You can attach tags to IAM entities (users or roles) and to many AWS resources. Tagging

How Amazon Managed Service for Apache Flink works with IAM 625

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-actions-as-permissions

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

entities and resources is the first step of ABAC. Then, you design ABAC policies to allow operations
when the principal's tag matches the tag on the resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. If a service supports all three condition keys for every resource type, then the value
is Yes for the service. If a service supports all three condition keys for only some resource types,
then the value is Partial.

• For more information about ABAC, see Define permissions based on attributes with ABAC
authorization.

• To view a tutorial with the steps for setting up ABAC, see IAM tutorial: Define permissions to
access AWS resources based on tags.

Using temporary credentials

Supports temporary credentials: Yes

Amazon MSF application lifecycle actions support temporary credentials.

You're using temporary credentials if you sign in to the AWS Management Console using any
method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console).

You can manually create temporary credentials using the AWS CLI or AWS API. You can then
use those temporary credentials to access AWS. We recommend that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions

Supports forward access sessions (FAS): Yes

Amazon MSF application lifecycle actions support cross-service principal permissions.

How Amazon Managed Service for Apache Flink works with IAM 626

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When you use an IAM user or role to perform actions in AWS, you're considered a principal. When
you use some services, you might perform an action that then initiates another action in a different
service. Forward access sessions (FAS) uses the permissions of the principal calling an AWS service,
combined with the requesting AWS service to make requests to downstream services. FAS requests
are only made when a service receives a request that requires interactions with other AWS services
or resources to complete. In this case, you must have permissions to perform both actions. For
policy details when making FAS requests, see Forward access sessions.

Identity-based policies for Managed Service for Apache Flink

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Managed Service for Apache Flink

To view examples of Managed Service for Apache Flink identity-based policies, see Identity-based
policy examples for Amazon Managed Service for Apache Flink.

Resource-based policies within Managed Service for Apache Flink

Amazon Managed Service for Apache Flink currently does not support resource-based access
control.

Access control lists (ACLs) in Managed Service for Apache Flink

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

How Amazon Managed Service for Apache Flink works with IAM 627

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Service roles for Managed Service for Apache Flink

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Managed Service for Apache Flink
functionality. Edit service roles only when Managed Service for Apache Flink provides
guidance to do so.

Service-linked roles for Managed Service for Apache Flink

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Managed Service for
Apache Flink

By default, users and roles don't have permission to create or modify Managed Service for Apache
Flink resources. They also can't perform tasks by using the AWS Management Console, AWS
Command Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

Identity-based policy examples 628

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For details about actions and resource types defined by Managed Service for Apache Flink,
including the format of the ARNs for each of the resource types, see Actions, Resources, and
Condition Keys for Amazon Managed Service for Apache Flink in the Service Authorization
Reference.

Topics

• Policy best practices

• Using the Managed Service for Apache Flink console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Managed Service
for Apache Flink resources in your account. These actions can incur costs for your AWS account.
When you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and

Identity-based policy examples 629

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskinesisanalytics.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskinesisanalytics.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Managed Service for Apache Flink console

To access the Amazon Managed Service for Apache Flink console, you must have a minimum set of
permissions. These permissions must allow you to list and view details about the Managed Service
for Apache Flink resources in your AWS account. If you create an identity-based policy that is more
restrictive than the minimum required permissions, the console won't function as intended for
entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the Managed Service for Apache Flink console, also
attach the Managed Service for Apache Flink ConsoleAccess or ReadOnly AWS managed policy
to the entities. For more information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [

Identity-based policy examples 630

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting Amazon Managed Service for Apache Flink identity
and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Managed Service for Apache Flink and IAM.

Topics

• I am not authorized to perform an action in Managed Service for Apache Flink

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Managed Service for Apache
Flink resources

Troubleshooting 631

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

I am not authorized to perform an action in Managed Service for Apache Flink

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson user tries to use the console to view
details about a fictional my-example-widget resource but does not have the fictional Kinesis
Analytics:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: Kinesis
 Analytics:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the Kinesis Analytics:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Managed Service for Apache Flink.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Managed Service for Apache Flink. However, the action requires the service
to have permissions that are granted by a service role. Mary does not have permissions to pass the
role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting 632

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

I want to allow people outside of my AWS account to access my Managed Service
for Apache Flink resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Managed Service for Apache Flink supports these features, see How Amazon
Managed Service for Apache Flink works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Cross-service confused deputy prevention

In AWS, cross-service impersonation can occur when one service (the calling service) calls another
service (the called service). The calling service can be manipulated to act on another customer's
resources even though it shouldn't have the proper permissions, resulting in the confused deputy
problem.

To prevent confused deputies, AWS provides tools that help you protect your data for all services
using service principals that have been given access to resources in your account. This section
focuses on cross-service confused deputy prevention specific to Managed Service for Apache Flink
however, you can learn more about this topic at The confused deputy problem section of the IAM
User Guide.

In the context of Managed Service for Apache Flink, we recommend using the aws:SourceArn and
aws:SourceAccount global condition context keys in your role trust policy to limit access to the role
to only those requests that are generated by expected resources.

Cross-service confused deputy prevention 633

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use aws:SourceArn if you want only one resource to be associated with the cross-service access.
Use aws:SourceAccount if you want to allow any resource in that account to be associated with
the cross-service use.

The value of aws:SourceArn must be the ARN of the resource used by
Managed Service for Apache Flink, which is specified with the following format:
arn:aws:kinesisanalytics:region:account:resource.

The recommended approach to the confused deputy problem is to use the aws:SourceArn global
condition context key with the full resource ARN.

If you don't know the full ARN of the resource or if you are specifying multiple resources, use
the aws:SourceArn key with wildcard characters (*) for the unknown portions of the ARN. For
example: arn:aws:kinesisanalytics::111122223333:*.

Policies of roles that you provide to Managed Service for Apache Flink as well as trust policies of
roles generated for you can make use of these keys.

In order to protect against the confused deputy problem, carry out the following steps:

To protect against the confused deputy problem

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles and then choose the role you want to modify.

3. Choose Edit trust policy.

4. On the Edit trust policy page, replace the default JSON policy with a policy that uses one or
both of the aws:SourceArn and aws:SourceAccount global condition context keys. See
the following example policy:

5. Choose Update policy.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",

Cross-service confused deputy prevention 634

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Principal":{
 "Service":"kinesisanalytics.amazonaws.com"
 },
 "Action":"sts:AssumeRole",
 "Condition":{
 "StringEquals":{
 "aws:SourceAccount":"Account ID"
 },
 "ArnEquals":{
 "aws:SourceArn":"arn:aws:kinesisanalytics:us-
east-1:123456789012:application/my-app"
 }
 }
 }
]
}

Compliance validation for Amazon Managed Service for Apache
Flink

Third-party auditors assess the security and compliance of Amazon Managed Service for Apache
Flink as part of multiple AWS compliance programs. These include SOC, PCI, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see . For general information,
see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Managed Service for Apache Flink is determined
by the sensitivity of your data, your company's compliance objectives, and applicable laws
and regulations. If your use of Managed Service for Apache Flink is subject to compliance with
standards such as HIPAA or PCI, AWS provides resources to help:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance on Amazon Web Services. This whitepaper
describes how companies can use AWS to create HIPAA-compliant applications.

Compliance validation for Managed Service for Apache Flink 635

https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

FedRAMP

The AWS FedRAMP Compliance program includes Managed Service for Apache Flink as a FedRAMP-
authorized service. If you are a federal or commercial customer, you can use the service to process
and store sensitive workloads in the AWS GovCloud (US) Region’s authorization boundary with data
up to the high impact level, as well as US East (N. Virginia), US East (Ohio), US West (N. California),
US West (Oregon) Regions with data up to a moderate level.

You can request access to the AWS FedRAMP Security Packages through the FedRAMP PMO, your
AWS Sales Account Manager, or you can download them through AWS Artifact at AWS Artifact.

For more information, see FedRAMP.

Resilience in Amazon Managed Service for Apache Flink

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, a Managed Service for Apache Flink offers several
features to help support your data resiliency and backup needs.

Disaster recovery

Managed Service for Apache Flink runs in a serverless mode, and takes care of host degradations,
Availability Zone availability, and other infrastructure related issues by performing automatic

FedRAMP 636

https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/artifact/
https://aws.amazon.com/compliance/fedramp/
https://aws.amazon.com/about-aws/global-infrastructure/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

migration. Managed Service for Apache Flink achieves this through multiple, redundant
mechanisms. Each Managed Service for Apache Flink application runs in a single-tenant Apache
Flink cluster. The Apache Flink cluster is run with the JobMananger in high availability mode
using Zookeeper across multiple availability zones. Managed Service for Apache Flink deploys
Apache Flink using Amazon EKS. Multiple Kubernetes pods are used in Amazon EKS for each AWS
region across availability zones. In the event of a failure, Managed Service for Apache Flink first
tries to recover the application within the running Apache Flink cluster using your application’s
checkpoints, if available.

Managed Service for Apache Flink backs up application state using Checkpoints and Snapshots:

• Checkpoints are backups of application state that Managed Service for Apache Flink
automatically creates periodically and uses to restore from faults.

• Snapshots are backups of application state that you create and restore from manually.

For more information about checkpoints and snapshots, see Implement fault tolerance.

Versioning

Stored versions of application state are versioned as follows:

• Checkpoints are versioned automatically by the service. If the service uses a checkpoint to restart
the application, the latest checkpoint will be used.

• Savepoints are versioned using the SnapshotName parameter of the CreateApplicationSnapshot
action.

Managed Service for Apache Flink encrypts data stored in checkpoints and savepoints.

Infrastructure security in Managed Service for Apache Flink

As a managed service, Managed Service for Apache Flink is protected by the AWS global network
security procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access Managed Service for Apache Flink through the network.
All API calls to Managed Service for Apache Flink are secured via Transport Layer Security (TLS)
and authenticated via IAM. Clients must support TLS 1.2 or later. Clients must also support cipher

Versioning 637

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplicationSnapshot.html
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these
modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Security best practices for Managed Service for Apache Flink

Amazon Managed Service for Apache Flink provides a number of security features to consider as
you develop and implement your own security policies. The following best practices are general
guidelines and don’t represent a complete security solution. Because these best practices might not
be appropriate or sufficient for your environment, treat them as helpful considerations rather than
prescriptions.

Implement least privilege access

When granting permissions, you decide who is getting what permissions to which Managed Service
for Apache Flink resources. You enable specific actions that you want to allow on those resources.
Therefore you should grant only the permissions that are required to perform a task. Implementing
least privilege access is fundamental in reducing security risk and the impact that could result from
errors or malicious intent.

Use IAM roles to access other Amazon services

Your Managed Service for Apache Flink application must have valid credentials to access resources
in other services, such as Kinesis data streams, Firehose streams, or Amazon S3 buckets. You should
not store AWS credentials directly in the application or in an Amazon S3 bucket. These are long-
term credentials that are not automatically rotated and could have a significant business impact if
they are compromised.

Instead, you should use an IAM role to manage temporary credentials for your application to access
other resources. When you use a role, you don't have to use long-term credentials to access other
resources.

For more information, see the following topics in the IAM User Guide:

• IAM Roles

Security best practices for Managed Service for Apache Flink 638

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Common Scenarios for Roles: Users, Applications, and Services

Implement server-side encryption in dependent resources

Data at rest and data in transit is encrypted in Managed Service for Apache Flink, and this
encryption cannot be disabled. You should implement server-side encryption in your dependent
resources, such as Kinesis data streams, Firehose streams, and Amazon S3 buckets. For more
information on implementing server-side encryption in dependent resources, see Data protection .

Use CloudTrail to monitor API calls

Managed Service for Apache Flink is integrated with AWS CloudTrail, a service that provides a
record of actions taken by a user, role, or an Amazon service in Managed Service for Apache Flink.

Using the information collected by CloudTrail, you can determine the request that was made to
Managed Service for Apache Flink, the IP address from which the request was made, who made the
request, when it was made, and additional details.

For more information, see the section called “Log Managed Service for Apache Flink API calls with
AWS CloudTrail”.

Implement server-side encryption in dependent resources 639

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Logging and monitoring in Amazon Managed Service for
Apache Flink

Monitoring is an important part of maintaining the reliability, availability, and performance of
Managed Service for Apache Flink applications. You should collect monitoring data from all of the
parts of your AWS solution so that you can more easily debug a multipoint failure if one occurs.

Before you start monitoring Managed Service for Apache Flink, you should create a monitoring
plan that includes answers to the following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Managed Service for Apache Flink performance
in your environment. You do this by measuring performance at various times and under different
load conditions. As you monitor Managed Service for Apache Flink, you can store historical
monitoring data. You can then compare it with current performance data, identify normal
performance patterns and performance anomalies, and devise methods to address issues.

Topics

• Logging in Managed Service for Apache Flink

• Monitoring in Managed Service for Apache Flink

• Set up application logging in Managed Service for Apache Flink

• Analyze logs with CloudWatch Logs Insights

• Metrics and dimensions in Managed Service for Apache Flink

• Write custom messages to CloudWatch Logs

• Log Managed Service for Apache Flink API calls with AWS CloudTrail

640

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Logging in Managed Service for Apache Flink

Logging is important for production applications to understand errors and failures. However,
the logging subsystem needs to collect and forward log entries to CloudWatch Logs While
some logging is fine and desirable, extensive logging can overload the service and cause the
Flink application to fall behind. Logging exceptions and warnings is certainly a good idea. But
you cannot generate a log message for each and every message that is processed by the Flink
application. Flink is optimized for high throughout and low latency, the logging subsystem is not.
In case it is really required to generate log output for every processed message, use an additional
DataStream inside the Flink application and a proper sink to send the data to Amazon S3 or
CloudWatch. Do not use the Java logging system for this purpose. Moreover, Managed Service
for Apache Flink’ Debug Monitoring Log Level setting generates a large amount of traffic,
which can create backpressure. You should only use it while actively investigating issues with the
application.

Query logs with CloudWatch Logs Insights

CloudWatch Logs Insights is a powerful service to query log at scale. Customers should leverage
its capabilities to quickly search through logs to identify and mitigate errors during operational
events.

The following query looks for exceptions in all task manager logs and orders them according to the
time they occurred.

fields @timestamp, @message
| filter isPresent(throwableInformation.0) or isPresent(throwableInformation) or
 @message like /(Error|Exception)/
| sort @timestamp desc

For other useful queries, see Example Queries.

Monitoring in Managed Service for Apache Flink

When running streaming applications in production, you set out to execute the application
continuously and indefinitely. It is crucial to implement monitoring and proper alarming of all
components not only the Flink application. Otherwise you risk to miss emerging problems early
on and only realize an operational event once it is fully unravelling and much harder to mitigate.
General things to monitor include:

Logging in Managed Service for Apache Flink 641

https://docs.aws.amazon.com/managed-flink/latest/java/cloudwatch-logs-reading.html#cloudwatch-logs-reading-examples

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Is the source ingesting data?

• Is data read from the source (from the perspective of the source)?

• Is the Flink application receiving data?

• Is the Flink application able to keep up or is it falling behind?

• Is the Flink application persisting data into the sink (from the application perspective)?

• Is the sink receiving data?

More specific metrics should then be considered for the Flink application. This CloudWatch
dashboard provides a good starting point. For more information on what metrics to monitor for
production applications, see Use CloudWatch Alarms with Amazon Managed Service for Apache
Flink. These metrics include:

• records_lag_max and millisbehindLatest – If the application is consuming from Kinesis or Kafka,
these metrics indicate if the application is falling behind and needs to be scaled in order to
keep up with the current load. This is a good generic metric that is easy to track for all kinds of
applications. But it can only be used for reactive scaling, i.e., when the application has already
fallen behind.

• cpuUtilization and heapMemoryUtilization – These metrics give a good indication of the
overall resource utilization of the application and can be used for proactive scaling unless the
application is I/O bound.

• downtime – A downtime greater than zero indicates that the application has failed. If the value
is larger than 0, the application is not processing any data.

• lastCheckpointSize and lastCheckpointDuration – These metrics monitor how much data is
stored in state and how long it takes to take a checkpoint. If checkpoints grow or take long,
the application is continuously spending time on checkpointing and has less cycles for actual
processing. At some points, checkpoints may grow too large or take so long that they fail. In
addition to monitoring absolute values, customers should also considering monitoring the
change rate with RATE(lastCheckpointSize) and RATE(lastCheckpointDuration).

• numberOfFailedCheckpoints – This metric counts the number of failed checkpoints since
the application started. Depending on the application, it can be tolerable if checkpoints fail
occasionally. But if checkpoints are regularly failing, the application is likely unhealthy and needs
further attention. We recommend monitoring RATE(numberOfFailedCheckpoints) to alarm
on the gradient and not on absolute values.

Monitoring in Managed Service for Apache Flink 642

https://github.com/aws-samples/kda-metrics-dashboard
https://github.com/aws-samples/kda-metrics-dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Set up application logging in Managed Service for Apache Flink

By adding an Amazon CloudWatch logging option to your Managed Service for Apache Flink
application, you can monitor for application events or configuration problems.

This topic describes how to configure your application to write application events to a CloudWatch
Logs stream. A CloudWatch logging option is a collection of application settings and permissions
that your application uses to configure the way it writes application events to CloudWatch Logs.
You can add and configure a CloudWatch logging option using either the AWS Management
Console or the AWS Command Line Interface (AWS CLI).

Note the following about adding a CloudWatch logging option to your application:

• When you add a CloudWatch logging option using the console, Managed Service for Apache
Flink creates the CloudWatch log group and log stream for you and adds the permissions your
application needs to write to the log stream.

• When you add a CloudWatch logging option using the API, you must also create the application's
log group and log stream, and add the permissions your application needs to write to the log
stream.

Set up CloudWatch logging using the console

When you enable CloudWatch logging for your application in the console, a CloudWatch log group
and log stream is created for you. Also, your application's permissions policy is updated with
permissions to write to the stream.

Managed Service for Apache Flink creates a log group named using the following convention,
where ApplicationName is your application's name.

/aws/kinesis-analytics/ApplicationName

Managed Service for Apache Flink creates a log stream in the new log group with the following
name.

kinesis-analytics-log-stream

Set up application logging in Managed Service for Apache Flink 643

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You set the application monitoring metrics level and monitoring log level using the Monitoring log
level section of the Configure application page. For information about application log levels, see
the section called “Control application monitoring levels”.

Set up CloudWatch logging using the CLI

To add a CloudWatch logging option using the AWS CLI, you complete the following:

• Create a CloudWatch log group and log stream.

• Add a logging option when you create an application by using the CreateApplication
action, or add a logging option to an existing application using the
AddApplicationCloudWatchLoggingOption action.

• Add permissions to your application's policy to write to the logs.

Create a CloudWatch log group and log stream

You create a CloudWatch log group and stream using either the CloudWatch Logs console or the
API. For information about creating a CloudWatch log group and log stream, see Working with Log
Groups and Log Streams.

Work with application CloudWatch logging options

Use the following API actions to add a CloudWatch log option to a new or existing application or
change a log option for an existing application. For information about how to use a JSON file for
input for an API action, see Managed Service for Apache Flink API example code.

Add a CloudWatch log option when creating an application

The following example demonstrates how to use the CreateApplication action to add
a CloudWatch log option when you create an application. In the example, replace Amazon
Resource Name (ARN) of the CloudWatch Log stream to add to the new
application with your own information. For more information about the action, see
CreateApplication.

{
 "ApplicationName": "test",
 "ApplicationDescription": "test-application-description",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::123456789123:role/myrole",

Set up CloudWatch logging using the CLI 644

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationCloudWatchLoggingOption.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation":{
 "BucketARN": "arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey": "myflink.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 }
 },
 "CloudWatchLoggingOptions": [{
 "LogStreamARN": "<Amazon Resource Name (ARN) of the CloudWatch log stream to add
 to the new application>"
 }]
}

Add a CloudWatch log option to an existing application

The following example demonstrates how to use the
AddApplicationCloudWatchLoggingOption action to add a CloudWatch
log option to an existing application. In the example, replace each user input
placeholder with your own information. For more information about the action, see
AddApplicationCloudWatchLoggingOption.

{
 "ApplicationName": "<Name of the application to add the log option to>",
 "CloudWatchLoggingOption": {
 "LogStreamARN": "<ARN of the log stream to add to the application>"
 },
 "CurrentApplicationVersionId": <Version of the application to add the log to>
}

Update an existing CloudWatch log option

The following example demonstrates how to use the UpdateApplication action to modify an
existing CloudWatch log option. In the example, replace each user input placeholder with
your own information. For more information about the action, see UpdateApplication.

{

Set up CloudWatch logging using the CLI 645

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationCloudWatchLoggingOption.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationName": "<Name of the application to update the log option for>",
 "CloudWatchLoggingOptionUpdates": [
 {
 "CloudWatchLoggingOptionId": "<ID of the logging option to modify>",
 "LogStreamARNUpdate": "<ARN of the new log stream to use>"
 }
],
 "CurrentApplicationVersionId": <ID of the application version to modify>
}

Delete a CloudWatch log option from an application

The following example demonstrates how to use the
DeleteApplicationCloudWatchLoggingOption action to delete an existing CloudWatch log
option. In the example, replace each user input placeholder with your own information. For
more information about the action, see DeleteApplicationCloudWatchLoggingOption.

{
 "ApplicationName": "<Name of application to delete log option from>",
 "CloudWatchLoggingOptionId": "<ID of the application log option to delete>",
 "CurrentApplicationVersionId": <Version of the application to delete the log option
 from>
}

Set the application logging level

To set the level of application logging, use the MonitoringConfiguration parameter of the
CreateApplication action or the MonitoringConfigurationUpdate parameter of the
UpdateApplication action.

For information about application log levels, see the section called “Control application monitoring
levels”.

Set the application logging level when creating an application

The following example request for the CreateApplication action sets the application log level
to INFO.

Set up CloudWatch logging using the CLI 646

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationCloudWatchLoggingOption.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_MonitoringConfiguration.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_MonitoringConfigurationUpdate.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "MyApplication",
 "ApplicationDescription": "My Application Description",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "CodeContentType":"ZIPFILE"
 },
 "FlinkApplicationConfiguration":
 "MonitoringConfiguration": {
 "ConfigurationType": "CUSTOM",
 "LogLevel": "INFO"
 }
 },
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::123456789123:role/myrole"
}

Update the application logging level

The following example request for the UpdateApplication action sets the application log level
to INFO.

{
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "MonitoringConfigurationUpdate": {
 "ConfigurationTypeUpdate": "CUSTOM",
 "LogLevelUpdate": "INFO"
 }
 }
 }
}

Set up CloudWatch logging using the CLI 647

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add permissions to write to the CloudWatch log stream

Managed Service for Apache Flink needs permissions to write misconfiguration errors to
CloudWatch. You can add these permissions to the AWS Identity and Access Management (IAM)
role that Managed Service for Apache Flink assumes.

For more information about using an IAM role for Managed Service for Apache Flink, see Identity
and Access Management for Amazon Managed Service for Apache Flink.

Trust policy

To grant Managed Service for Apache Flink permissions to assume an IAM role, you can attach the
following trust policy to the service execution role.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanalytics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Permissions policy

To grant permissions to an application to write log events to CloudWatch from a Managed Service
for Apache Flink resource, you can use the following IAM permissions policy. Provide the correct
Amazon Resource Names (ARNs) for your log group and stream.

JSON

{
 "Version": "2012-10-17",

Set up CloudWatch logging using the CLI 648

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Statement": [
 {
 "Sid": "Stmt0123456789000",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:my-log-group:log-
stream:my-log-stream*",
 "arn:aws:logs:us-east-1:123456789012:log-group:my-log-group:*",
 "arn:aws:logs:us-east-1:123456789012:log-group:*"
]
 }
]
}

Control application monitoring levels

You control the generation of application log messages using the application's Monitoring Metrics
Level and Monitoring Log Level.

The application's monitoring metrics level controls the granularity of log messages. Monitoring
metrics levels are defined as follows:

• Application: Metrics are scoped to the entire application.

• Task: Metrics are scoped to each task. For information about tasks, see the section called
“Implement application scaling”.

• Operator: Metrics are scoped to each operator. For information about operators, see the section
called “Operators”.

• Parallelism: Metrics are scoped to application parallelism. You can only set this metrics level
using the MonitoringConfigurationUpdate parameter of the UpdateApplication API. You cannot
set this metrics level using the console. For information about parallelism, see the section called
“Implement application scaling”.

The application's monitoring log level controls the verbosity of the application's log. Monitoring log
levels are defined as follows:

Control application monitoring levels 649

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_MonitoringConfigurationUpdate.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Error: Potential catastrophic events of the application.

• Warn: Potentially harmful situations of the application.

• Info: Informational and transient failure events of the application. We recommend that you use
this logging level.

• Debug: Fine-grained informational events that are most useful to debug an application. Note:
Only use this level for temporary debugging purposes.

Apply logging best practices

We recommend that your application use the Info logging level. We recommend this level to
ensure that you see Apache Flink errors, which are logged at the Info level rather than the Error
level.

We recommend that you use the Debug level only temporarily while investigating application
issues. Switch back to the Info level when the issue is resolved. Using the Debug logging level will
significantly affect your application's performance.

Excessive logging can also significantly impact application performance. We recommend that
you do not write a log entry for every record processed, for example. Excessive logging can cause
severe bottlenecks in data processing and can lead to back pressure in reading data from the
sources.

Perform logging troubleshooting

If application logs are not being written to the log stream, verify the following:

• Verify that your application's IAM role and policies are correct. Your application's policy needs the
following permissions to access your log stream:

• logs:PutLogEvents

• logs:DescribeLogGroups

• logs:DescribeLogStreams

For more information, see the section called “Add permissions to write to the CloudWatch log
stream”.

• Verify that your application is running. To check your application's status, view your application's
page in the console, or use the DescribeApplication or ListApplications actions.

Apply logging best practices 650

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ListApplications.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Monitor CloudWatch metrics such as downtime to diagnose other application issues. For
information about reading CloudWatch metrics, see Metrics and dimensions in Managed Service
for Apache Flink.

Use CloudWatch Logs Insights

After you have enabled CloudWatch logging in your application, you can use CloudWatch Logs
Insights to analyze your application logs. For more information, see the section called “Analyze logs
with CloudWatch Logs Insights”.

Analyze logs with CloudWatch Logs Insights

After you've added a CloudWatch logging option to your application as described in the previous
section, you can use CloudWatch Logs Insights to query your log streams for specific events or
errors.

CloudWatch Logs Insights enables you to interactively search and analyze your log data in
CloudWatch Logs.

For information on getting started with CloudWatch Logs Insights, see Analyze Log Data with
CloudWatch Logs Insights.

Run a sample query

This section describes how to run a sample CloudWatch Logs Insights query.

Prerequisites

• Existing log groups and log streams set up in CloudWatch Logs.

• Existing logs stored in CloudWatch Logs.

If you use services such as AWS CloudTrail, Amazon Route 53, or Amazon VPC, you've probably
already set up logs from those services to go to CloudWatch Logs. For more information about
sending logs to CloudWatch Logs, see Getting Started with CloudWatch Logs.

Queries in CloudWatch Logs Insights return either a set of fields from log events, or the result of a
mathematical aggregation or other operation performed on log events. This section demonstrates
a query that returns a list of log events.

Use CloudWatch Logs Insights 651

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_GettingStarted.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To run a CloudWatch Logs Insights sample query

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Insights.

3. The query editor near the top of the screen contains a default query that returns the 20 most
recent log events. Above the query editor, select a log group to query.

When you select a log group, CloudWatch Logs Insights automatically detects fields in the data
in the log group and displays them in Discovered fields in the right pane. It also displays a bar
graph of log events in this log group over time. This bar graph shows the distribution of events
in the log group that matches your query and time range, not just the events displayed in the
table.

4. Choose Run query.

The results of the query appear. In this example, the results are the most recent 20 log events
of any type.

5. To see all of the fields for one of the returned log events, choose the arrow to the left of that
log event.

For more information about how to run and modify CloudWatch Logs Insights queries, see Run and
Modify a Sample Query.

Review example queries

This section contains CloudWatch Logs Insights example queries for analyzing Managed Service for
Apache Flink application logs. These queries search for several example error conditions, and serve
as templates for writing queries that find other error conditions.

Note

Replace the Region (us-west-2), Account ID (012345678901) and application name
(YourApplication) in the following query examples with your application's Region and
your Account ID.

This topic contains the following sections:

Review example queries 652

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_RunSampleQuery.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_RunSampleQuery.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Analyze operations: Distribution of tasks

• Analyze operations: Change in parallelism

• Analyze errors: Access denied

• Analyze errors: Source or sink not found

• Analyze errors: Application task-related failures

Analyze operations: Distribution of tasks

The following CloudWatch Logs Insights query returns the number of tasks the Apache Flink Job
Manager distributes between Task Managers. You need to set the query's time frame to match
one job run so that the query doesn't return tasks from previous jobs. For more information about
Parallelism, see Implement application scaling.

fields @timestamp, message
| filter message like /Deploying/
| parse message " to flink-taskmanager-*" as @tmid
| stats count(*) by @tmid
| sort @timestamp desc
| limit 2000

The following CloudWatch Logs Insights query returns the subtasks assigned to each Task Manager.
The total number of subtasks is the sum of every task's parallelism. Task parallelism is derived
from operator parallelism, and is the same as the application's parallelism by default, unless you
change it in code by specifying setParallelism. For more information about setting operator
parallelism, see Setting the Parallelism: Operator Level in the Apache Flink documentation.

fields @timestamp, @tmid, @subtask
| filter message like /Deploying/
| parse message "Deploying * to flink-taskmanager-*" as @subtask, @tmid
| sort @timestamp desc
| limit 2000

For more information about task scheduling, see Jobs and Scheduling in the Apache Flink
documentation.

Review example queries 653

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/parallel.html#operator-level
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/internals/job_scheduling.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Analyze operations: Change in parallelism

The following CloudWatch Logs Insights query returns changes to an application's parallelism (for
example, due to automatic scaling). This query also returns manual changes to the application's
parallelism. For more information about automatic scaling, see the section called “Use automatic
scaling”.

fields @timestamp, @parallelism
| filter message like /property: parallelism.default, /
| parse message "default, *" as @parallelism
| sort @timestamp asc

Analyze errors: Access denied

The following CloudWatch Logs Insights query returns Access Denied logs.

fields @timestamp, @message, @messageType
| filter applicationARN like /arn:aws:kinesisanalyticsus-
west-2:012345678901:application\/YourApplication/
| filter @message like /AccessDenied/
| sort @timestamp desc

Analyze errors: Source or sink not found

The following CloudWatch Logs Insights query returns ResourceNotFound logs.
ResourceNotFound logs result if a Kinesis source or sink is not found.

fields @timestamp,@message
| filter applicationARN like /arn:aws:kinesisanalyticsus-
west-2:012345678901:application\/YourApplication/
| filter @message like /ResourceNotFoundException/
| sort @timestamp desc

Analyze errors: Application task-related failures

The following CloudWatch Logs Insights query returns an application's task-related failure logs.
These logs result if an application's status switches from RUNNING to RESTARTING.

fields @timestamp,@message
| filter applicationARN like /arn:aws:kinesisanalyticsus-
west-2:012345678901:application\/YourApplication/

Review example queries 654

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

| filter @message like /switched from RUNNING to RESTARTING/
| sort @timestamp desc

For applications using Apache Flink version 1.8.2 and prior, task-related failures will result in the
application status switching from RUNNING to FAILED instead. When using Apache Flink 1.8.2 and
prior, use the following query to search for application task-related failures:

fields @timestamp,@message
| filter applicationARN like /arn:aws:kinesisanalyticsus-
west-2:012345678901:application\/YourApplication/
| filter @message like /switched from RUNNING to FAILED/
| sort @timestamp desc

Metrics and dimensions in Managed Service for Apache Flink

When your Managed Service for Apache Flink processes a data source, Managed Service for Apache
Flink reports the following metrics and dimensions to Amazon CloudWatch.

Application metrics

Metric Unit Description Level Usage Notes

backPress
uredTimeM
sPerSecon
d*

Milliseconds The time (in
milliseconds)
this task or
operator is
back pressured
per second.

Task, Operator,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

These metrics
can be useful
in identifying
bottlenecks in
an application.

Metrics and dimensions in Managed Service for Apache Flink 655

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

busyTimeM
sPerSecon
d*

Milliseconds The time (in
milliseconds)
this task or
operator is
busy (neither
idle nor back
pressured)
per second.
Can be NaN,
if the value
could not be
calculated.

Task, Operator,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

These metrics
can be useful
in identifying
bottlenecks in
an application.

cpuUtiliz
ation

Percentage Overall
percentage of
CPU utilizati
on across task
managers. For
example, if
there are five
task managers,
Managed
Service for
Apache Flink
publishes five
samples of
this metric
per reporting
interval.

Application You can use
this metric
to monitor
minimum,
average, and
maximum CPU
utilization in
your applicati
on. The
CPUUtiliz
ation
metric only
accounts for
CPU usage of
the TaskManag
er JVM process
running inside
the container.

Application metrics 656

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

container
CPUUtiliz
ation

Percentage Overall
percentage of
CPU utilizati
on across
task manager
containers in
Flink applicati
on cluster. For
example, if
there are five
task managers,
correspon
dingly there
are five
TaskManag
er containers
and Managed
Service for
Apache Flink
publishes 2 *
five samples
of this metric
per 1 minute
reporting
interval.

Application It is calculated
per container
as:

Total CPU time
(in seconds)
consumed
by container
* 100 /
Container CPU
limit (in CPUs/
seconds)

The
CPUUtiliz
ation
metric only
accounts for
CPU usage of
the TaskManag
er JVM process
running inside
the container
. There
are other
component
s running
outside the
JVM within
the same
container. The
container
CPUUtiliz
ation metric
gives you a

Application metrics 657

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

more complete
picture,
including all
processes in
terms of CPU
exhaustion at
the container
and failures
resulting from
that.

Application metrics 658

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

container
MemoryUti
lization

Percentage Overall
percentage
of memory
utilization
across task
manager
containers in
Flink applicati
on cluster. For
example, if
there are five
task managers,
correspon
dingly there
are five
TaskManag
er containers
and Managed
Service for
Apache Flink
publishes 2 *
five samples
of this metric
per 1 minute
reporting
interval.

Application It is calculated
per container
as:

Container
memory usage
(bytes) * 100 /
Container
memory limit
as per pod
deployment
spec (in bytes)

The
HeapMemor
yUtilizat
ion and
ManagedMe
moryUtilz
ations
metrics only
account
for specific
memory
metrics like
Heap Memory
Usage of
TaskManag
er JVM or
Managed
Memory
(memory
usage outside
JVM for native
processes like

Application metrics 659

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

RocksDB State
Backend). The
container
MemoryUti
lization
metric gives
you a more
complete
picture by
including
the working
set memory,
which is
a better
tracker of
total memory
exhaustio
n. Upon its
exhaustion,
it will result
in Out of
Memory
Error for the
TaskManager
pod.

Application metrics 660

https://flink.apache.org/2021/01/18/rocksdb.html#:~:text=Conclusion-,The%20RocksDB%20state%20backend%20(i.e.%2C%20RocksDBStateBackend)%20is%20one%20of,with%20exactly%2Donce%20processing%20guarantees.
https://flink.apache.org/2021/01/18/rocksdb.html#:~:text=Conclusion-,The%20RocksDB%20state%20backend%20(i.e.%2C%20RocksDBStateBackend)%20is%20one%20of,with%20exactly%2Donce%20processing%20guarantees.

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

container
DiskUtili
zation

Percentage Overall
percentage of
disk utilizati
on across
task manager
containers in
Flink applicati
on cluster. For
example, if
there are five
task managers,
correspon
dingly there
are five
TaskManag
er containers
and Managed
Service for
Apache Flink
publishes 2 *
five samples
of this metric
per 1 minute
reporting
interval.

Application It is calculated
per container
as:

Disk usage in
bytes * 100 /
Disk Limit for
container in
bytes

For container
s, it represent
s utilization of
the filesystem
on which root
volume of the
container is set
up.

Application metrics 661

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

currentIn
putWaterm
ark

Milliseconds The last
watermark
this applicati
on/operator/
task/thread
has received

Application,
Operator, Task,
Parallelism

This record is
only emitted
for dimension
s with two
inputs. This is
the minimum
value of the
last received
watermarks.

currentOu
tputWater
mark

Milliseconds The last
watermark
this applicati
on/operator/
task/thread
has emitted

Application,
Operator, Task,
Parallelism

Application metrics 662

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

downtime Milliseconds For jobs
currently in
a failing/r
ecovering
situation, the
time elapsed
during this
outage.

Application This metric
measures the
time elapsed
while a job
is failing or
recovering.
This metric
returns 0 for
running jobs
and -1 for
completed
jobs. If this
metric is not
0 or -1, this
indicates that
the Apache
Flink job for
the application
failed to run.

Application metrics 663

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

fullResta
rts

Count The total
number of
times this
job has fully
restarted
since it was
submitted.
This metric
does not
measure
fine-grained
restarts.

Application You can use
this metric
to evaluate
general
applicati
on health.
Restarts
can occur
during internal
maintenance
by Managed
Service for
Apache Flink.
Restarts higher
than normal
can indicate a
problem with
the applicati
on.

Application metrics 664

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

heapMemor
yUtilizat
ion

Percentage Overall heap
memory
utilization
across task
managers. For
example, if
there are five
task managers,
Managed
Service for
Apache Flink
publishes five
samples of
this metric
per reporting
interval.

Application You can use
this metric
to monitor
minimum,
average, and
maximum
heap memory
utilization in
your applicati
on. The
HeapMemor
yUtilizat
ion only
accounts
for specific
memory
metrics like
Heap Memory
Usage of
TaskManager
JVM.

Application metrics 665

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

idleTimeM
sPerSecon
d*

Milliseconds The time (in
milliseconds)
this task or
operator is idle
(has no data
to process) per
second. Idle
time excludes
back pressured
time, so if the
task is back
pressured it is
not idle.

Task, Operator,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

These metrics
can be useful
in identifying
bottlenecks in
an application.

lastCheck
pointSize

Bytes The total size
of the last
checkpoint

Application You can use
this metric
to determine
running
applicati
on storage
utilization.

If this metric
is increasing
in value, this
may indicate
that there is
an issue with
your applicati
on, such as a
memory leak
or bottleneck.

Application metrics 666

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

lastCheck
pointDura
tion

Milliseconds The time
it took to
complete the
last checkpoint

Application This metric
measures the
time it took to
complete the
most recent
checkpoint.
If this metric
is increasing
in value, this
may indicate
that there is
an issue with
your applicati
on, such as a
memory leak
or bottlenec
k. In some
cases, you
can troublesh
oot this issue
by disabling
checkpointing.

Application metrics 667

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

managedMe
moryUsed*

Bytes The amount
of managed
memory
currently used.

Application,
Operator, Task,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

This relates
to memory
managed by
Flink outside
the Java heap.
It is used for
the RocksDB
state backend,
and is also
available to
applications.

Application metrics 668

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

managedMe
moryTotal
*

Bytes The total
amount of
managed
memory.

Application,
Operator, Task,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

This relates
to memory
managed by
Flink outside
the Java heap.
It is used for
the RocksDB
state backend,
and is also
available
to applicati
ons. The
ManagedMe
moryUtilz
ations
metric only
accounts
for specific
memory
metrics like
Managed
Memory
(memory
usage outside
JVM for native
processes like

Application metrics 669

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

RocksDB State
Backend)

managedMe
moryUtili
zation*

Percentage Derived by
managedMe
moryUsed/
managedMe
moryTotal

Application,
Operator, Task,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

This relates
to memory
managed by
Flink outside
the Java heap.
It is used for
the RocksDB
state backend,
and is also
available to
applications.

Application metrics 670

https://flink.apache.org/2021/01/18/rocksdb.html#:~:text=Conclusion-,The%20RocksDB%20state%20backend%20(i.e.%2C%20RocksDBStateBackend)%20is%20one%20of,with%20exactly%2Donce%20processing%20guarantees.
https://flink.apache.org/2021/01/18/rocksdb.html#:~:text=Conclusion-,The%20RocksDB%20state%20backend%20(i.e.%2C%20RocksDBStateBackend)%20is%20one%20of,with%20exactly%2Donce%20processing%20guarantees.

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numberOfF
ailedChec
kpoints

Count The number
of times
checkpointing
has failed.

Application You can use
this metric
to monitor
application
health and
progress.
 Checkpoints
may fail due
to application
problems, such
as throughput
or permissions
issues.

Application metrics 671

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numRecord
sIn*

Count The total
number of
records this
application,
operator,
or task has
received.

Application,
Operator, Task,
Parallelism

*To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 672

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The metric's
Level specifies
whether
this metric
measures the
total number
of records the
entire applicati
on, a specific
operator, or a
specific task
has received.

Application metrics 673

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numRecord
sInPerSec
ond*

Count/Second The total
number of
records this
application,
operator
or task has
received per
second.

Application,
Operator, Task,
Parallelism

*To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 674

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The metric's
Level specifies
whether
this metric
measures the
total number
of records the
entire applicati
on, a specific
operator, or a
specific task
has received
per second.

Application metrics 675

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numRecord
sOut*

Count The total
number of
records this
application,
operator
or task has
emitted.

Application,
Operator, Task,
Parallelism

*To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 676

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The metric's
Level specifies
whether
this metric
measures the
total number
of records the
entire applicati
on, a specific
operator, or a
specific task
has emitted.

Application metrics 677

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numLateRe
cordsDrop
ped*

Count Application,
Operator, Task,
Parallelism

 *To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 678

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The number
of records
this operator
or task has
dropped due
to arriving
late.

Application metrics 679

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numRecord
sOutPerSe
cond*

Count/Second The total
number of
records this
application,
operator
or task has
emitted per
second.

Application,
Operator, Task,
Parallelism

*To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 680

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The metric's
Level specifies
whether
this metric
measures the
total number
of records the
entire applicati
on, a specific
operator, or a
specific task
has emitted
per second.

oldGenera
tionGCCou
nt

Count The total
number of
old garbage
collection
operation
s that have
occurred
across all task
managers.

Application

Application metrics 681

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

oldGenera
tionGCTim
e

Milliseconds The total
time spent
performing
old garbage
collection
operations.

Application You can use
this metric
to monitor
sum, average,
and maximum
garbage
collection
time.

threadsCo
unt

Count The total
number of
live threads
used by the
application.

Application This metric
measures
the number
of threads
used by the
application
code. This is
not the same
as application
parallelism.

uptime Milliseconds The time that
the job has
been running
without
interruption.

Application You can use
this metric to
determine if a
job is running
successfully.
This metric
returns -1 for
completed
jobs.

Application metrics 682

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

KPUs* Count The total
number of
KPUs used by
the applicati
on.

Application *This metric
receives one
sample per
billing period
(one hour).
To visualize
the number
of KPUs over
time, use MAX
or AVG over
a period of at
least one (1)
hour.

The KPU count
includes the
orchestra
tion KPU.
For more
information,
see Managed
Service for
Apache Flink
Pricing.

Kinesis Data Streams connector metrics

AWS emits all records for Kinesis Data Streams in addition to the following:

Metric Unit Description Level Usage Notes

millisbeh
indLatest

Milliseconds The number of
milliseconds
the consumer

Application
(for Stream),

• A value of
0 indicates
that record

Kinesis Data Streams connector metrics 683

https://aws.amazon.com/managed-service-apache-flink/pricing/
https://aws.amazon.com/managed-service-apache-flink/pricing/
https://aws.amazon.com/managed-service-apache-flink/pricing/
https://aws.amazon.com/managed-service-apache-flink/pricing/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

is behind the
head of the
stream, indicatin
g how far behind
current time the
consumer is.

Parallelism (for
ShardId)

processing
is caught up,
and there
are no new
records to
process at
this moment.
A particula
r shard's
metric can be
specified by
stream name
and shard id.

• A value of -1
indicates that
the service
has not yet
reported a
value for the
metric.

bytesRequ
estedPerF
etch

Bytes The bytes
requested in a
single call to
getRecords .

Application
(for Stream),
Parallelism (for
ShardId)

Amazon MSK connector metrics

AWS emits all records for Amazon MSK in addition to the following:

Metric Unit Description Level Usage Notes

currentof
fsets

N/A The consumer'
s current read

Application (for
Topic), Paralleli

Amazon MSK connector metrics 684

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

offset, for
each partition
. A particula
r partition's
metric can be
specified by
topic name and
partition id.

sm (for Partition
Id)

commitsFa
iled

N/A The total
number of offset
commit failures
to Kafka, if
offset committin
g and checkpoin
ting are enabled.

Application,
Operator, Task,
Parallelism

Committing
offsets back to
Kafka is only a
means to expose
consumer
progress, so a
commit failure
does not affect
the integrity of
Flink's checkpoin
ted partition
offsets.

commitsSu
cceeded

N/A The total
number of
successful offset
commits to
Kafka, if offset
committing and
checkpointing
are enabled.

Application,
Operator, Task,
Parallelism

Amazon MSK connector metrics 685

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

committed
offsets

N/A The last
successfully
committed
offsets to
Kafka, for
each partition
. A particula
r partition's
metric can be
specified by
topic name and
partition id.

Application (for
Topic), Paralleli
sm (for Partition
Id)

records_l
ag_max

Count The maximum
lag in terms
of number of
records for any
partition in this
window

Application,
Operator, Task,
Parallelism

bytes_con
sumed_rate

Bytes The average
number of bytes
consumed per
second for a
topic

Application,
Operator, Task,
Parallelism

Apache Zeppelin metrics

For Studio notebooks, AWS emits the following metrics at the application level:
KPUs, cpuUtilization, heapMemoryUtilization, oldGenerationGCTime,
oldGenerationGCCount, and threadCount. In addition, it emits the metrics shown in the
following table, also at the application level.

Apache Zeppelin metrics 686

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Prometheus name

zeppelinC
puUtilization

Percentage Overall percentage
of CPU utilization in
the Apache Zeppelin
server.

process_c
pu_usage

zeppelinH
eapMemory
Utilization

Percentage Overall percentag
e of heap memory
utilization for the
Apache Zeppelin
server.

jvm_memor
y_used_bytes

zeppelinT
hreadCount

Count The total number of
live threads used by
the Apache Zeppelin
server.

jvm_threa
ds_live_t
hreads

zeppelinW
aitingJobs

Count The number of
queued Apache
Zeppelin jobs waiting
for a thread.

jetty_thr
eads_jobs

zeppelinS
erverUptime

Seconds The total time that
the server has been
up and running.

process_u
ptime_seconds

View CloudWatch metrics

You can view CloudWatch metrics for your application using the Amazon CloudWatch console or
the AWS CLI.

To view metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

View CloudWatch metrics 687

https://console.aws.amazon.com/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. In the CloudWatch Metrics by Category pane for Managed Service for Apache Flink, choose a
metrics category.

4. In the upper pane, scroll to view the full list of metrics.

To view metrics using the AWS CLI

• At a command prompt, use the following command.

aws cloudwatch list-metrics --namespace "AWS/KinesisAnalytics" --region region

Set CloudWatch metrics reporting levels

You can control the level of application metrics that your application creates. Managed Service for
Apache Flink supports the following metrics levels:

• Application: The application only reports the highest level of metrics for each application.
Managed Service for Apache Flink metrics are published at the Application level by default.

• Task: The application reports task-specific metric dimensions for metrics defined with the Task
metric reporting level, such as number of records in and out of the application per second.

• Operator: The application reports operator-specific metric dimensions for metrics defined with
the Operator metric reporting level, such as metrics for each filter or map operation.

• Parallelism: The application reports Task and Operator level metrics for each execution
thread. This reporting level is not recommended for applications with a Parallelism setting above
64 due to excessive costs.

Note

You should only use this metric level for troubleshooting because of the amount of
metric data that the service generates. You can only set this metric level using the CLI.
This metric level is not available in the console.

The default level is Application. The application reports metrics at the current level and all higher
levels. For example, if the reporting level is set to Operator, the application reports Application,
Task, and Operator metrics.

Set CloudWatch metrics reporting levels 688

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You set the CloudWatch metrics reporting level using the MonitoringConfiguration parameter
of the CreateApplication action, or the MonitoringConfigurationUpdate parameter of
the UpdateApplication action. The following example request for the UpdateApplication
action sets the CloudWatch metrics reporting level to Task:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "MonitoringConfigurationUpdate": {
 "ConfigurationTypeUpdate": "CUSTOM",
 "MetricsLevelUpdate": "TASK"
 }
 }
 }
}

You can also configure the logging level using the LogLevel parameter of the
CreateApplication action or the LogLevelUpdate parameter of the UpdateApplication
action. You can use the following log levels:

• ERROR: Logs potentially recoverable error events.

• WARN: Logs warning events that might lead to an error.

• INFO: Logs informational events.

• DEBUG: Logs general debugging events.

For more information about Log4j logging levels, see Custom Log Levels in the Apache Log4j
documentation.

Use custom metrics with Amazon Managed Service for Apache Flink

Managed Service for Apache Flink exposes 19 metrics to CloudWatch, including metrics for
resource usage and throughput. In addition, you can create your own metrics to track application-
specific data, such as processing events or accessing external resources.

This topic contains the following sections:

• How it works

Use custom metrics with Amazon Managed Service for Apache Flink 689

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://logging.apache.org/log4j/2.x/manual/customloglevels.html
https://logging.apache.org/log4j/2.x/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• View examples for creating a mapping class

• View custom metrics

How it works

Custom metrics in Managed Service for Apache Flink use the Apache Flink metric system. Apache
Flink metrics have the following attributes:

• Type: A metric's type describes how it measures and reports data. Available Apache Flink metric
types include Count, Gauge, Histogram, and Meter. For more information about Apache Flink
metric types, see Metric Types.

Note

AWS CloudWatch Metrics does not support the Histogram Apache Flink metric type.
CloudWatch can only display Apache Flink metrics of the Count, Gauge, and Meter types.

• Scope: A metric's scope consists of its identifier and a set of key-value pairs that indicate how the
metric will be reported to CloudWatch. A metric's identifier consists of the following:

• A system scope, which indicates the level at which the metric is reported (e.g. Operator).

• A user scope, that defines attributes such as user variables or the metric group names.
These attributes are defined using MetricGroup.addGroup(key, value) or
MetricGroup.addGroup(name).

For more information about metric scope, see Scope.

For more information about Apache Flink metrics, see Metrics in the Apache Flink documentation.

To create a custom metric in your Managed Service for Apache Flink, you can access the
Apache Flink metric system from any user function that extends RichFunction by calling
GetMetricGroup. This method returns a MetricGroup object you can use to create and register
custom metrics. Managed Service for Apache Flink reports all metrics created with the group
key KinesisAnalytics to CloudWatch. Custom metrics that you define have the following
characteristics:

• Your custom metric has a metric name and a group name. These names must consist of
alphanumeric characters according to Prometheus naming rules.

Use custom metrics with Amazon Managed Service for Apache Flink 690

https://nightlies.apache.org/flink/flink-docs-release-1.15/monitoring/metrics.html#metric-types
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/metrics/MetricGroup.html#addGroup-java.lang.String-java.lang.String-
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/metrics/MetricGroup.html#addGroup-java.lang.String-
https://nightlies.apache.org/flink/flink-docs-release-1.15/monitoring/metrics.html#scope
https://nightlies.apache.org/flink/flink-docs-release-1.15/monitoring/metrics.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/api/common/functions/RuntimeContext.html#getMetricGroup--
https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/metrics/MetricGroup.html
https://prometheus.io/docs/instrumenting/writing_exporters/#naming

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Attributes that you define in user scope (except for the KinesisAnalytics metric group) are
published as CloudWatch dimensions.

• Custom metrics are published at the Application level by default.

• Dimensions (Task/ Operator/ Parallelism) are added to the metric based on the application's
monitoring level. You set the application's monitoring level using the MonitoringConfiguration
parameter of the CreateApplication action, or the or MonitoringConfigurationUpdate parameter
of the UpdateApplication action.

View examples for creating a mapping class

The following code examples demonstrate how to create a mapping class that creates and
increments a custom metric, and how to implement the mapping class in your application by
adding it to a DataStream object.

Record count custom metric

The following code example demonstrates how to create a mapping class that creates a metric that
counts records in a data stream (the same functionality as the numRecordsIn metric):

 private static class NoOpMapperFunction extends RichMapFunction<String, String> {
 private transient int valueToExpose = 0;
 private final String customMetricName;

 public NoOpMapperFunction(final String customMetricName) {
 this.customMetricName = customMetricName;
 }

 @Override
 public void open(Configuration config) {
 getRuntimeContext().getMetricGroup()
 .addGroup("KinesisAnalytics")
 .addGroup("Program", "RecordCountApplication")
 .addGroup("NoOpMapperFunction")
 .gauge(customMetricName, (Gauge<Integer>) () -> valueToExpose);
 }

 @Override
 public String map(String value) throws Exception {
 valueToExpose++;
 return value;
 }

Use custom metrics with Amazon Managed Service for Apache Flink 691

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_MonitoringConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_MonitoringConfigurationUpdate.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }

In the preceding example, the valueToExpose variable is incremented for each record that the
application processes.

After defining your mapping class, you then create an in-application stream that implements the
map:

DataStream<String> noopMapperFunctionAfterFilter =
 kinesisProcessed.map(new NoOpMapperFunction("FilteredRecords"));

For the complete code for this application, see Record Count Custom Metric Application.

Word count custom metric

The following code example demonstrates how to create a mapping class that creates a metric that
counts words in a data stream:

private static final class Tokenizer extends RichFlatMapFunction<String, Tuple2<String,
 Integer>> {

 private transient Counter counter;

 @Override
 public void open(Configuration config) {
 this.counter = getRuntimeContext().getMetricGroup()
 .addGroup("KinesisAnalytics")
 .addGroup("Service", "WordCountApplication")
 .addGroup("Tokenizer")
 .counter("TotalWords");
 }

 @Override
 public void flatMap(String value, Collector<Tuple2<String, Integer>>out) {
 // normalize and split the line
 String[] tokens = value.toLowerCase().split("\\W+");

 // emit the pairs
 for (String token : tokens) {
 if (token.length() > 0) {
 counter.inc();
 out.collect(new Tuple2<>(token, 1));
 }

Use custom metrics with Amazon Managed Service for Apache Flink 692

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/CustomMetrics/RecordCount

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 }
 }

In the preceding example, the counter variable is incremented for each word that the application
processes.

After defining your mapping class, you then create an in-application stream that implements the
map:

// Split up the lines in pairs (2-tuples) containing: (word,1), and
// group by the tuple field "0" and sum up tuple field "1"
DataStream<Tuple2<String, Integer>> wordCountStream = input.flatMap(new
 Tokenizer()).keyBy(0).sum(1);

// Serialize the tuple to string format, and publish the output to kinesis sink
wordCountStream.map(tuple -> tuple.toString()).addSink(createSinkFromStaticConfig());

For the complete code for this application, see Word Count Custom Metric Application.

View custom metrics

Custom metrics for your application appear in the CloudWatch Metrics console in the AWS/
KinesisAnalytics dashboard, under the Application metric group.

Use CloudWatch Alarms with Amazon Managed Service for Apache
Flink

Using Amazon CloudWatch metric alarms, you watch a CloudWatch metric over a time period
that you specify. The alarm performs one or more actions based on the value of the metric or
expression relative to a threshold over a number of time periods. An example of an action is
sending a notification to an Amazon Simple Notification Service (Amazon SNS) topic.

For more information about CloudWatch alarms, see Using Amazon CloudWatch Alarms.

Review recommended alarms

This section contains the recommended alarms for monitoring Managed Service for Apache Flink
applications.

The table describes the recommended alarms and has the following columns:

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 693

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/CustomMetrics/WordCount
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Metric Expression: The metric or metric expression to test against the threshold.

• Statistic: The statistic used to check the metric—for example, Average.

• Threshold: Using this alarm requires you to determine a threshold that defines the limit of
expected application performance. You need to determine this threshold by monitoring your
application under normal conditions.

• Description: Causes that might trigger this alarm, and possible solutions for the condition.

Metric Expression Statistic Threshold Description

downtime > 0 Average 0 A downtime greater
than zero indicates
that the applicati
on has failed. If the
value is larger than
0, the application is
not processing any
data. Recommend
ed for all applicati
ons. The Downtime
metric measures
the duration of an
outage. A downtime
greater than zero
indicates that the
application has failed.
For troubleshooting,
see Application is
restarting.

RATE (numberOf
FailedChe
ckpoints) > 0

Average 0 This metric counts
the number of failed
checkpoints since the
application started.
Depending on the
application, it can be
tolerable if checkpoin

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 694

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

ts fail occasionally.
But if checkpoints are
regularly failing, the
application is likely
unhealthy and needs
further attention
. We recommend
monitoring
RATE(numberOfFaile
dCheckpoints)
to alarm on the
gradient and not
on absolute values.
Recommended for
all applications.
Use this metric to
monitor application
health and checkpoin
ting progress.
The application
saves state data to
checkpoints when it's
healthy. Checkpoin
ting can fail due
to timeouts if the
application isn't
making progress in
processing the input
data. For troublesh
ooting, see Checkpoin
ting is timing out.

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 695

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

Operator.
numRecord
sOutPerSecond <
threshold

Average The minimum
number of records
emitted from the
application during
normal conditions.

Recommended for all
applications. Falling
below this threshold
can indicate that
the application isn't
making expected
progress on the
input data. For
troubleshooting, see
Throughput is too
slow.

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 696

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

records_l
ag_max|mi
llisbehin
dLatest >
threshold

Maximum The maximum
expected latency
during normal
conditions.

If the application
is consuming from
Kinesis or Kafka,
these metrics indicate
if the application is
falling behind and
needs to be scaled
in order to keep up
with the current
load. This is a good
generic metric that
is easy to track for
all kinds of applicati
ons. But it can only
be used for reactive
scaling, i.e., when
the application has
already fallen behind.
Recommended for
all applications. Use
the records_l
ag_max metric
for a Kafka source,
or the millisbeh
indLatest for
a Kinesis stream
source. Rising above
this threshold can
indicate that the
application isn't
making expected
progress on the
input data. For
troubleshooting, see

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 697

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

Throughput is too
slow.

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 698

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

lastCheck
pointDuration >
threshold

Maximum The maximum
expected checkpoin
t duration during
normal conditions.

Monitors how much
data is stored in state
and how long it takes
to take a checkpoin
t. If checkpoints
grow or take long,
the application
is continuously
spending time on
checkpointing and
has less cycles for
actual processin
g. At some points,
checkpoints may
grow too large or
take so long that they
fail. In addition to
monitoring absolute
values, customers
should also consideri
ng monitoring
the change rate
with RATE(last
Checkpoin
tSize) and
RATE(last
Checkpoin
tDuration) .
If the lastCheck
pointDura
tion continuou
sly increases, rising
above this threshold
can indicate that

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 699

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

the application isn't
making expected
progress on the input
data, or that there
are problems with
application health
such as backpressure.
For troubleshooting,
see Unbounded state
growth.

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 700

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

lastCheck
pointSize >
threshold

Maximum The maximum
expected checkpoin
t size during normal
conditions.

Monitors how much
data is stored in state
and how long it takes
to take a checkpoin
t. If checkpoints
grow or take long,
the application
is continuously
spending time on
checkpointing and
has less cycles for
actual processin
g. At some points,
checkpoints may
grow too large or
take so long that they
fail. In addition to
monitoring absolute
values, customers
should also consideri
ng monitoring
the change rate
with RATE(last
Checkpoin
tSize) and
RATE(last
Checkpoin
tDuration) .
If the lastCheck
pointSize

 continuously
increases, rising
above this threshold
can indicate that

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 701

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

the application is
accumulating state
data. If the state data
becomes too large,
the application can
run out of memory
when recovering
from a checkpoint,
or recovering from
a checkpoint might
take too long. For
troubleshooting, see
Unbounded state
growth.

heapMemor
yUtilization >
threshold

Maximum This gives a good
indication of the
overall resource
utilization of the
application and can
be used for proactive
scaling unless the
application is I/O
bound. The maximum
expected heapMemor
yUtilization
size during normal
conditions, with a
recommended value
of 90 percent.

You can use this
metric to monitor the
maximum memory
utilization of task
managers across the
application. If the
application reaches
this threshold, you
need to provision
more resources
. You do this by
enabling automatic
scaling or increasin
g the application
parallelism. For more
information about
increasing resources
, see Implement
application scaling.

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 702

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

cpuUtilization >
threshold

Maximum This gives a good
indication of the
overall resource
utilization of the
application and can
be used for proactive
scaling unless the
application is I/O
bound. The maximum
expected cpuUtiliz
ation size during
normal conditions,
with a recommended
value of 80 percent.

You can use this
metric to monitor
the maximum CPU
utilization of task
managers across the
application. If the
application reaches
this threshold, you
need to provision
more resources
You do this by
enabling automatic
scaling or increasin
g the application
parallelism. For more
information about
increasing resources
, see Implement
application scaling.

threadsCount >
threshold

Maximum The maximum
expected threadsCo
unt size during
normal conditions.

You can use this
metric to watch for
thread leaks in task
managers across the
application. If this
metric reaches this
threshold, check your
application code for
threads being created
without being closed.

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 703

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

(oldGarba
geCollect
ionTime *
100)/60_000
over 1 min
period') >
threshold

Maximum The maximum
expected oldGarbag
eCollecti
onTime duration.
We recommend
setting a threshold
such that typical
garbage collection
time is 60 percent
of the specified
threshold, but the
correct threshold for
your application will
vary.

If this metric is
continually increasin
g, this can indicate
that there is a
memory leak in task
managers across the
application.

RATE(oldG
arbageCol
lectionCount)
> threshold

Maximum The maximum
expected oldGarbag
eCollecti
onCount under
normal conditions.
The correct threshold
for your application
will vary.

If this metric is
continually increasin
g, this can indicate
that there is a
memory leak in task
managers across the
application.

Use CloudWatch Alarms with Amazon Managed Service for Apache Flink 704

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

Operator.
currentOu
tputWatermark
- Operator.
currentIn
putWatermark >
threshold

Minimum The minimum
expected watermark
increment under
normal conditions.
The correct threshold
for your application
will vary.

If this metric is
continually increasin
g, this can indicate
that either the
application is
processing increasin
gly older events, or
that an upstream
subtask has not sent
a watermark in an
increasingly long
time.

Write custom messages to CloudWatch Logs

You can write custom messages to your Managed Service for Apache Flink application's
CloudWatch log. You do this by using the Apache log4j library or the Simple Logging Facade
for Java (SLF4J) library.

Topics

• Write to CloudWatch logs using Log4J

• Write to CloudWatch logs using SLF4J

Write to CloudWatch logs using Log4J

1. Add the following dependencies to your application's pom.xml file:

<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.6.1</version>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>

Write custom messages to CloudWatch Logs 705

https://logging.apache.org/log4j/
https://www.slf4j.org/
https://www.slf4j.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <version>2.6.1</version>
</dependency>

2. Include the object from the library:

import org.apache.logging.log4j.Logger;

3. Instantiate the Logger object, passing in your application class:

private static final Logger log =
 LogManager.getLogger.getLogger(YourApplicationClass.class);

4. Write to the log using log.info. A large number of messages are written to the application
log. To make your custom messages easier to filter, use the INFO application log level.

log.info("This message will be written to the application's CloudWatch log");

The application writes a record to the log with a message similar to the following:

{
 "locationInformation": "com.amazonaws.services.managed-
flink.StreamingJob.main(StreamingJob.java:95)",
 "logger": "com.amazonaws.services.managed-flink.StreamingJob",
 "message": "This message will be written to the application's CloudWatch log",
 "threadName": "Flink-DispatcherRestEndpoint-thread-2",
 "applicationARN": "arn:aws:kinesisanalyticsus-east-1:123456789012:application/test",
 "applicationVersionId": "1", "messageSchemaVersion": "1",
 "messageType": "INFO"
}

Write to CloudWatch logs using SLF4J

1. Add the following dependency to your application's pom.xml file:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.7</version>
 <scope>runtime</scope>
</dependency>

Write to CloudWatch logs using SLF4J 706

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Include the objects from the library:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

3. Instantiate the Logger object, passing in your application class:

private static final Logger log =
 LoggerFactory.getLogger(YourApplicationClass.class);

4. Write to the log using log.info. A large number of messages are written to the application
log. To make your custom messages easier to filter, use the INFO application log level.

log.info("This message will be written to the application's CloudWatch log");

The application writes a record to the log with a message similar to the following:

{
 "locationInformation": "com.amazonaws.services.managed-
flink.StreamingJob.main(StreamingJob.java:95)",
 "logger": "com.amazonaws.services.managed-flink.StreamingJob",
 "message": "This message will be written to the application's CloudWatch log",
 "threadName": "Flink-DispatcherRestEndpoint-thread-2",
 "applicationARN": "arn:aws:kinesisanalyticsus-east-1:123456789012:application/test",
 "applicationVersionId": "1", "messageSchemaVersion": "1",
 "messageType": "INFO"
}

Log Managed Service for Apache Flink API calls with AWS
CloudTrail

Managed Service for Apache Flink is integrated with AWS CloudTrail, a service that provides a
record of actions taken by a user, role, or an AWS service in Managed Service for Apache Flink.
CloudTrail captures all API calls for Managed Service for Apache Flink as events. The calls captured
include calls from the Managed Service for Apache Flink console and code calls to the Managed
Service for Apache Flink API operations. If you create a trail, you can enable continuous delivery of
CloudTrail events to an Amazon S3 bucket, including events for Managed Service for Apache Flink.
If you don't configure a trail, you can still view the most recent events in the CloudTrail console in

Log Managed Service for Apache Flink API calls with AWS CloudTrail 707

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Event history. Using the information collected by CloudTrail, you can determine the request that
was made to Managed Service for Apache Flink, the IP address from which the request was made,
who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Managed Service for Apache Flink information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Managed Service for Apache Flink, that activity is recorded in a CloudTrail event along with other
AWS service events in Event history. You can view, search, and download recent events in your
AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Managed Service for
Apache Flink, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket.
By default, when you create a trail in the console, the trail applies to all AWS Regions. The trail logs
events from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket
that you specify. Additionally, you can configure other AWS services to further analyze and act
upon the event data collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Managed Service for Apache Flink actions are logged by CloudTrail and are documented in the
Managed Service for Apache Flink API reference. For example, calls to the CreateApplication
and UpdateApplication actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

Managed Service for Apache Flink information in CloudTrail 708

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information, see the CloudTrail userIdentity Element.

Understand Managed Service for Apache Flink log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
AddApplicationCloudWatchLoggingOption and DescribeApplication actions.

{
 "Records": [
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2019-03-07T01:19:47Z",
 "eventSource": "kinesisanlaytics.amazonaws.com",
 "eventName": "AddApplicationCloudWatchLoggingOption",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "applicationName": "cloudtrail-test",
 "currentApplicationVersionId": 1,
 "cloudWatchLoggingOption": {
 "logStreamARN": "arn:aws:logs:us-east-1:012345678910:log-
group:cloudtrail-test:log-stream:flink-cloudwatch"
 }
 },
 "responseElements": {
 "cloudWatchLoggingOptionDescriptions": [
 {
 "cloudWatchLoggingOptionId": "2.1",

Understand Managed Service for Apache Flink log file entries 709

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "logStreamARN": "arn:aws:logs:us-east-1:012345678910:log-
group:cloudtrail-test:log-stream:flink-cloudwatch"
 }
],
 "applicationVersionId": 2,
 "applicationARN": "arn:aws:kinesisanalyticsus-
east-1:012345678910:application/cloudtrail-test"
 },
 "requestID": "18dfb315-4077-11e9-afd3-67f7af21e34f",
 "eventID": "d3c9e467-db1d-4cab-a628-c21258385124",
 "eventType": "AwsApiCall",
 "apiVersion": "2018-05-23",
 "recipientAccountId": "012345678910"
 },
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2019-03-12T02:40:48Z",
 "eventSource": "kinesisanlaytics.amazonaws.com",
 "eventName": "DescribeApplication",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "applicationName": "sample-app"
 },
 "responseElements": null,
 "requestID": "3e82dc3e-4470-11e9-9d01-e789c4e9a3ca",
 "eventID": "90ffe8e4-9e47-48c9-84e1-4f2d427d98a5",
 "eventType": "AwsApiCall",
 "apiVersion": "2018-05-23",
 "recipientAccountId": "012345678910"
 }
]
}

Understand Managed Service for Apache Flink log file entries 710

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Tune performance in Amazon Managed Service for
Apache Flink

This topic describes techniques to monitor and improve the performance of your Managed Service
for Apache Flink application.

Topics

• Troubleshoot performance issues

• Use performance best practices

• Monitor performance

Troubleshoot performance issues

This section contains a list of symptoms that you can check to diagnose and fix performance issues.

If your data source is a Kinesis stream, performance issues typically present as a high or increasing
millisbehindLatest metric. For other sources, you can check a similar metric that represents
lag in reading from the source.

Understand the data path

When investigating a performance issue with your application, consider the entire path that your
data takes. The following application components may become performance bottlenecks and
create backpressure if they are not properly designed or provisioned:

• Data sources and destinations: Ensure that the external resources your application interacts
with are properly provisioned for the throughput your application will experience.

• State data: Ensure that your application doesn't interact with the state store too frequently.

You can optimize the serializer your application is using. The default Kryo serializer can handle
any serializable type, but you can use a more performant serializer if your application only
stores data in POJO types. For information about Apache Flink serializers, see Data Types &
Serialization in the Apache Flink documentation.

• Operators: Ensure that the business logic implemented by your operators isn't too complicated,
or that you aren't creating or using resources with every record processed. Also ensure that your
application isn't creating sliding or tumbling windows too frequently.

Troubleshoot performance issues 711

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/fault-tolerance/serialization/types_serialization/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/fault-tolerance/serialization/types_serialization/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Performance troubleshooting solutions

This section contains potential solutions to performance issues.

Topics

• CloudWatch monitoring levels

• Application CPU metric

• Application parallelism

• Application logging

• Operator parallelism

• Application logic

• Application memory

CloudWatch monitoring levels

Verify that the CloudWatch Monitoring Levels are not set to too verbose a setting.

The Debug Monitoring Log Level setting generates a large amount of traffic, which can create
backpressure. You should only use it while actively investigating issues with the application.

If your application has a high Parallelism setting, using the Parallelism Monitoring Metrics
Level will similarly generate a large amount of traffic that can lead to backpressure. Only use this
metrics level when Parallelism for your application is low, or while investigating issues with the
application.

For more information, see Control application monitoring levels.

Application CPU metric

Check the application's CPU metric. If this metric is above 75 percent, you can allow the application
to allocate more resources for itself by enabling auto scaling.

If auto scaling is enabled, the application allocates more resources if CPU usage is over 75 percent
for 15 minutes. For more information about scaling, see the Manage scaling properly section
following, and the Implement application scaling.

Performance troubleshooting solutions 712

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

An application will only scale automatically in response to CPU usage. The application will
not auto scale in response to other system metrics, such as heapMemoryUtilization.
If your application has a high level of usage for other metrics, increase your application's
parallelism manually.

Application parallelism

Increase the application's parallelism. You update the application's parallelism using the
ParallelismConfigurationUpdate parameter of the UpdateApplication action.

The maximum KPUs for an application is 64 by default, and can be increased by requesting a limit
increase.

It is important to also assign parallelism to each operator based on its workload, rather than just
increasing application parallelism alone. See Operator parallelism following.

Application logging

Check if the application is logging an entry for every record being processed. Writing a log
entry for each record during times when the application has high throughput will cause severe
bottlenecks in data processing. To check for this condition, query your logs for log entries that your
application writes with every record it processes. For more information about reading application
logs, see the section called “Analyze logs with CloudWatch Logs Insights”.

Operator parallelism

Verify that your application's workload is distributed evenly among worker processes.

For information about tuning the workload of your application's operators, see Operator scaling.

Application logic

Examine your application logic for inefficient or non-performant operations, such as accessing an
external dependency (such as a database or a web service), accessing application state, etc. An
external dependency can also hinder performance if it is not performant or not reliably accessible,
which may lead to the external dependency returing HTTP 500 errors.

Performance troubleshooting solutions 713

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

If your application uses an external dependency to enrich or otherwise process incoming data,
consider using asynchronous IO instead. For more information, see Async I/O in the Apache Flink
documentation.

Application memory

Check your application for resource leaks. If your application is not properly disposing of
threads or memory, you might see the millisbehindLatest, CheckpointSize, and
CheckpointDurationmetric spiking or gradually increasing. This condition may also lead to task
manager or job manager failures.

Use performance best practices

This section describes special considerations for designing an application for performance.

Manage scaling properly

This section contains information about managing application-level and operator-level scaling.

This section contains the following topics:

• Manage application scaling properly

• Manage operator scaling properly

Manage application scaling properly

You can use autoscaling to handle unexpected spikes in application activity. Your application's KPUs
will increase automatically if the following criteria are met:

• Autoscaling is enabled for the application.

• CPU usage remains above 75 percent for 15 minutes.

If autoscaling is enabled, but CPU usage does not remain at this threshold, the application will not
scale up KPUs. If you experience a spike in CPU usage that does not meet this threshold, or a spike
in a different usage metric such as heapMemoryUtilization, increase scaling manually to allow
your application to handle activity spikes.

Use performance best practices 714

https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/asyncio.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

If the application has automatically added more resources through auto scaling, the
application will release the new resources after a period of inactivity. Downscaling
resources will temporarily affect performance.

For more information about scaling, see Implement application scaling.

Manage operator scaling properly

You can improve your application's performance by verifying that your application's workload is
distributed evenly among worker processes, and that the operators in your application have the
system resources they need to be stable and performant.

You can set the parallelism for each operator in your application's code using the parallelism
setting. If you don't set the parallelism for an operator, it will use the application-level parallelism
setting. Operators that use the application-level parallelism setting can potentially use all of the
system resources available for the application, making the application unstable.

To best determine the parallelism for each operator, consider the operator's relative resource
requirements compared to the other operators in the application. Set operators that are more
resource-intensive to a higher operator parallelism setting than less resource-intensive operators.

The total operator parallelism for the application is the sum of the parallelism for all the operators
in the application. You tune the total operator parallelism for your application by determining the
best ratio between it and the total task slots available for your application. A typical stable ratio of
total operator parallelism to task slots is 4:1, that is, the application has one task slot available for
every four operator subtasks available. An application with more resource intensive operators may
need a ratio of 3:1 or 2:1, while an application with less resource-intensive operators may be stable
with a ratio of 10:1.

You can set the ratio for the operator using Use runtime properties, so you can tune the operator's
parallelism without compiling and uploading your application code.

The following code example demonstrates how to set operator parallelism as a tunable ratio of the
current application parallelism:

Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();

Manage scaling properly 715

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

operatorParallelism =
 StreamExecutionEnvironment.getParallelism() /
 Integer.getInteger(

 applicationProperties.get("OperatorProperties").getProperty("MyOperatorParallelismRatio")
);

For information about subtasks, task slots, and other application resources, see Review Managed
Service for Apache Flink application resources.

To control the distribution of workload across your application's worker processes, use the
Parallelism setting and the KeyBy partition method. For more information, see the following
topics in the Apache Flink documentation:

• Parallel Execution

• DataStream Transformations

Monitor external dependency resource usage

If there is a performance bottleneck in a destination (such as Kinesis Streams, Firehose, DynamoDB
or OpenSearch Service), your application will experience backpressure. Verify that your external
dependencies are properly provisioned for your application throughput.

Note

Failures in other services can cause failures in your application. If you are seeing failures in
your application, check the CloudWatch logs for your destination services for failures.

Run your Apache Flink application locally

To troubleshoot memory issues, you can run your application in a local Flink installation. This will
give you access to debugging tools such as the stack trace and heap dumps that are not available
when running your application in Managed Service for Apache Flink.

For information about creating a local Flink installation, see Standalone in the Apache Flink
Documentation.

Monitor external dependency resource usage 716

https://ci.apache.org/projects/flink/flink-docs-release-1.8/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/parallel.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/#datastream-transformations
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/resource-providers/standalone/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Monitor performance

This section describes tools for monitoring an application's performance.

Monitor performance using CloudWatch metrics

You monitor your application's resource usage, throughput, checkpointing, and downtime using
CloudWatch metrics. For information about using CloudWatch metrics with your Managed Service
for Apache Flink application, see Metrics and dimensions in Managed Service for Apache Flink.

Monitor performance using CloudWatch logs and alarms

You monitor error conditions that could potentially cause performance issues using CloudWatch
Logs.

Error conditions appear in log entries as Apache Flink job status changes from the RUNNING status
to the FAILED status.

You use CloudWatch alarms to create notifications for performance issues, such as resource use or
checkpoint metrics above a safe threshold, or unexpected application status changes.

For information about creating CloudWatch alarms for a Managed Service for Apache Flink
application, see Use CloudWatch Alarms with Amazon Managed Service for Apache Flink.

Monitor performance 717

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink and Studio notebook
quota

Note

Apache Flink versions 1.6, 1.8, and 1.11 have not been supported by the Apache Flink
community for over three years. We now plan to end support for these versions in Amazon
Managed Service for Apache Flink. From November 5, 2024, you will not be able to create
new applications for these Flink versions. You can continue running existing applications at
this time.
For all Regions with exception of the China Regions and the AWS GovCloud (US) Regions,
from February 5, 2025, you will no longer be able to create, start, or run applications using
these versions of Apache Flink in Amazon Managed Service for Apache Flink.
For the China Regions and the AWS GovCloud (US) Regions, from March 19, 2025, you will
no longer be able to create, start, or run applications using these versions of Apache Flink
in Amazon Managed Service for Apache Flink.
You can upgrade your applications statefully using the in-place version upgrades feature in
Managed Service for Apache Flink. For more information, see Use in-place version upgrades
for Apache Flink.

When working with Amazon Managed Service for Apache Flink, note the following quota:

• You can create up to 100 Managed Service for Apache Flink applications per Region in your
account. You can create a case to request additional applications via the service quota increase
form. For more information, see the AWS Support Center.

For a list of Regions that support Managed Service for Apache Flink, see Managed Service for
Apache Flink Regions and Endpoints.

• The number of Kinesis processing units (KPU) is limited to 64 by default. For instructions on how
to request an increase to this quota, see To request a quota increase in Service Quotas. Make
sure you specify the application prefix to which the new KPU limit needs to be applied.

718

https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/general/latest/gr/rande.html#ka_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#ka_region
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

With Managed Service for Apache Flink, your AWS account is charged for allocated resources,
rather than resources that your application uses. You are charged an hourly rate based on the
maximum number of KPUs that are used to run your stream-processing application. A single KPU
provides you with 1 vCPU and 4 GiB of memory. For each KPU, the service also provisions 50 GiB
of running application storage.

• You can create up to 1,000 Managed Service for Apache Flink snapshots per application. For
more information, see Manage application backups using snapshots.

• You can assign up to 50 tags per application.

• The maximum size for an application JAR file is 512 MiB. If you exceed this quota, your
application will fail to start.

For Studio notebooks, the following quotas apply. To request higher quotas, create a support case.

• websocketMessageSize = 5 MiB

• noteSize = 5 MiB

• noteCount = 1000

• Max cumulative UDF size = 100 MiB

• Max cumulative dependency jar size = 300 MiB

719

https://console.aws.amazon.com/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Manage maintenance tasks for Managed Service for
Apache Flink

Managed Service for Apache Flink patches your applications periodically with operating-system
and container-image security updates to maintain compliance and meet AWS security goals. A
maintenance window for a Managed Service for Apache Flink application is a time window of 8
hours during which Managed Service for Apache Flink performs application maintenance activities
on an application. The maintenance might begin on different days for different AWS Regions as
scheduled by the service team. Consult the table in the following section for maintenance time
windows.

As part of the maintenance procedure, your Managed Service for Apache Flink application will
be restarted. This causes a downtime of 10 to 30 seconds during the application's maintenance
window. The actual downtime duration depends on the application state, size, and snapshot/
checkpoint recency. For information on how to minimize the impact of this downtime, see
the section called “Fault tolerance: checkpoints and savepoints”. You can find out if Managed
Service for Apache Flink has performed a maintenance action on your application using the
ListApplicationOperations API. For more information, see Identify when maintenance has
ocurred on your application.

Maintenance time windows in AWS Regions

AWS Region Maintenance time window

AWS GovCloud (US-West) 06:00–14:00 UTC

AWS GovCloud (US-East) 03:00–11:00 UTC

US East (N. Virginia) 03:00–11:00 UTC

US East (Ohio) 03:00–11:00 UTC

US West (N. California) 06:00–14:00 UTC

US West (Oregon) 06:00–14:00 UTC

Asia Pacific (Hong Kong) 13:00–21:00 UTC

Asia Pacific (Mumbai) 16:30–00:30 UTC

720

https://docs.aws.amazon.com/managed-flink/latest/java/maintenance.html#maintenance-identify-ids
https://docs.aws.amazon.com/managed-flink/latest/java/maintenance.html#maintenance-identify-ids

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS Region Maintenance time window

Asia Pacific (Hyderabad) 16:30–00:30 UTC

Asia Pacific (Seoul) 13:00–21:00 UTC

Asia Pacific (Singapore) 14:00–22:00 UTC

Asia Pacific (Sydney) 12:00–20:00 UTC

Asia Pacific (Jakarta) 15:00–23:00 UTC

Asia Pacific (Tokyo) 13:00–21:00 UTC

Canada (Central) 03:00–11:00 UTC

China (Beijing) 13:00–21:00 UTC

China (Ningxia) 13:00–21:00 UTC

Europe (Frankfurt) 06:00–14:00 UTC

Europe (Zurich) 20:00–04:00 UTC

Europe (Ireland) 22:00–06:00 UTC

Europe (London) 22:00–06:00 UTC

Europe (Stockholm) 23:00–07:00 UTC

Europe (Milan) 21:00–05:00 UTC

Europe (Spain) 21:00–05:00 UTC

Africa (Cape Town) 20:00–04:00 UTC

Europe (Ireland) 22:00–06:00 UTC

Europe (London) 23:00–07:00 UTC

Europe (Paris) 23:00–07:00 UTC

721

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AWS Region Maintenance time window

Europe (Stockholm) 23:00–07:00 UTC

Middle East (Bahrain) 13:00–21:00 UTC

Middle East (UAE) 18:00–02:00 UTC

South America (São Paulo) 19:00–03:00 UTC

Israel (Tel Aviv) 20:00–04:00 UTC

Choose a maintenance window

Managed Service for Apache Flink notifies you about upcoming planned maintenance
events through email and AWS Health notifications. In Managed Service for Apache
Flink, you can change the time of the day during which maintenance begins by using the
UpdateApplicationMaintenanceConfiguration API and updating your maintenance
window configuration. For more information, see UpdateApplicationMaintenanceConfiguration.
Managed Service for Apache Flink uses the updated maintenance configuration the next time
it schedules maintenance for the application. If you invoke this operation after the service has
already scheduled maintenance, the service applies the configuration update the next time it
schedules maintenance for the application.

Note

To provide the highest possible security posture, Managed Service for Apache Flink does
not support any exception to opt out of maintenance, pause maintenance, or perform
maintenance on specific days.

Identify when maintenance has occurred on your application

You can find if Managed Service for Apache Flink has performed a maintenance action on your
application by using the ListApplicationOperations API.

The following is an example request for ListApplicationOperations that can help you filter
the list for maintenance on the application:

Choose a maintenance window 722

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplicationMaintenanceConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "MyApplication",
 "operation": "ApplicationMaintenance"
}

Identify maintenance instances 723

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Achieve production readiness for your Managed Service
for Apache Flink applications

This is a collection of important aspects of running production applications on Managed Service
for Apache Flink. It's not an exhaustive list, but rather the bare minimum of what you should pay
attention to before putting an application into production.

Load-test your applications

Some problems with applications only manifest under heavy load. We have seen cases where
applications seemed healthy, yet an operational event substantially amplified the load on the
application. This can happen completely independent of the application itself. If the data source
or the data sink is unavailable for a couple of hours, the Flink application cannot make progress.
When that issue is fixed, there is a backlog of unprocessed data that has accumulated, which can
completely exhaust the available resources. The load can then amplify bugs or performance issues
that had not emerged before.

It is therefore essential that you run proper load tests for production applications. Questions that
should be answered during those load tests include:

• Is the application stable under sustained high load?

• Can the application still take a savepoint under peak load?

• How long does it take to process a backlog of 1 hour? And how long for 24 hours (depending on
the max retention of the data in the stream)?

• Does the throughput of the application increase when the application is scaled?

When consuming from a data stream, these scenarios can be simulated by producing into the
stream for some time. Then start the application and have it consume data from the beginning of
time. For example, use a start position of TRIM_HORIZON in the case of a Kinesis data stream.

Define Max parallelism

The max parallelism defines the maximum parallelism a stateful application can scale to. This is
defined when the state is first created and there is no way of scaling the operator beyond this
maximum without discarding the state.

Load-test your applications 724

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Max parallelism is set when the state is first created.

By default, Max parallelism is set to:

• 128, if parallelism <= 128

• MIN(nextPowerOfTwo(parallelism + (parallelism / 2)), 2^15): if parallelism >
128

If you are planning to scale your application > 128 parallelism, you should explicitly define the Max
parallelism.

You can define Max parallelism at level of application, with env.setMaxParallelism(x)
or single operator. Unless differently specified, all operators inherit the Max parallelism of the
application.

For more information, see Setting the Maximum Parallelism in the Apache Flink Documentation.

Set a UUID for all operators

A UUID is used in the operation in which Flink maps a savepoint back to an individual operator.
Setting a specific UUID for each operator gives a stable mapping for the savepoint process to
restore.

.map(...).uid("my-map-function")

For more information, see Production Readiness Checklist.

Set a UUID for all operators 725

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/execution/parallel/#setting-the-maximum-parallelism
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/production_ready/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Maintain best practices for Managed Service for Apache
Flink applications

This section contains information and recommendations for developing a stable, performant
Managed Service for Apache Flink applications.

Topics

• Minimize the size of the uber JAR

• Fault tolerance: checkpoints and savepoints

• Unsupported connector versions

• Performance and parallelism

• Setting per-operator parallelism

• Logging

• Coding

• Managing credentials

• Reading from sources with few shards/partitions

• Studio notebook refresh interval

• Studio notebook optimum performance

• How watermark strategies and idle shards affect time windows

• Set a UUID for all operators

• Add ServiceResourceTransformer to the Maven shade plugin

Minimize the size of the uber JAR

Java/Scala application must be packaged in an uber (super/fat) JAR and include all the additional
required dependencies that are not already provided by the runtime. However, the size of the uber
JAR affects the application start and restart times and may cause the JAR to exceed the limit of 512
MB.

To optimize the deployment time, your uber JAR should not include the following:

• Any dependencies provided by the runtime as illustrated in the following example. They should
have provided scope in the POM file or compileOnly in your Gradle configuration.

Minimize the size of the uber JAR 726

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Any dependencies used for testing only, for example JUnit or Mockito. They should have test
scope in the POM file or testImplementation in your Gradle configuration.

• Any dependencies not actually used by your application.

• Any static data or metadata required by your application. Static data should be loaded by the
application at runtime, for example from a datastore or from Amazon S3.

• See this POM example file for details on the preceding configuration settings.

Provided dependencies

The Managed Service for Apache Flink runtime provides a number of dependencies. These
dependencies should not be included in the fat JAR and must have provided scope in the
POM file or be explicitly excluded in the maven-shade-plugin configuration. Any of these
dependencies included in the fat JAR is ignored at runtime, but increases the size of the JAR adding
overhead during the deployment.

Dependencies provided by the runtime, in runtime versions 1.18, 1.19, and 1.20:

• org.apache.flink:flink-core

• org.apache.flink:flink-java

• org.apache.flink:flink-streaming-java

• org.apache.flink:flink-scala_2.12

• org.apache.flink:flink-table-runtime

• org.apache.flink:flink-table-planner-loader

• org.apache.flink:flink-json

• org.apache.flink:flink-connector-base

• org.apache.flink:flink-connector-files

• org.apache.flink:flink-clients

• org.apache.flink:flink-runtime-web

• org.apache.flink:flink-metrics-code

• org.apache.flink:flink-table-api-java

• org.apache.flink:flink-table-api-bridge-base

• org.apache.flink:flink-table-api-java-bridge

• org.apache.logging.log4j:log4j-slf4j-impl

Minimize the size of the uber JAR 727

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/main/java/GettingStarted/pom.xml

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• org.apache.logging.log4j:log4j-api

• org.apache.logging.log4j:log4j-core

• org.apache.logging.log4j:log4j-1.2-api

Additionally, the runtime provides the library that is used to fetch application runtime properties in
Managed Service for Apache Flink, com.amazonaws:aws-kinesisanalytics-runtime:1.2.0.

All dependencies provided by the runtime must use the following recommendations to not include
them in the uber JAR:

• In Maven (pom.xml) and SBT (build.sbt), use provided scope.

• In Gradle (build.gradle), use compileOnly configuration.

Any provided dependency accidentally included in the uber JAR will be ignored at runtime because
of Apache Flink's parent-first class loading. For more information, see parent-first-patterns in the
Apache Flink documentation.

Connectors

Most of the connectors, except the FileSystem connector, that are not included in the runtime must
be included in the POM file with the default scope (compile).

Other recommendations

As a rule, your Apache Flink uber JAR provided to Managed Service for Apache Flink should contain
the minimum code required to run the application. Including dependencies that include the source
classes, test datasets, or bootstrapping state should not be included in this jar. If static resources
need to be pulled in at runtime, separate this concern into a resource such as Amazon S3. Examples
of this include state bootstraps or an inference model.

Take some time to consider your deep dependency tree and remove non-runtime dependencies.

Although Managed Service for Apache Flink supports 512MB jar sizes, this should be seen as
the exception to the rule. Apache Flink currently supports ~104MB jar sizes through its default
configuration, and that should be the maximum target size of a jar needed.

Minimize the size of the uber JAR 728

https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/config/#classloader-parent-first-patterns-default

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Fault tolerance: checkpoints and savepoints

Use checkpoints and savepoints to implement fault tolerance in your Managed Service for Apache
Flink application. Keep the following in mind when developing and maintaining your application:

• We recommend that you keep checkpointing enabled for your application. Checkpointing
provides fault tolerance for your application during scheduled maintenance, and also for
unexpected failures due to service issues, application dependency failures, and other issues. For
information about scheduled maintenance, see Manage maintenance tasks for Managed Service
for Apache Flink.

• Set ApplicationSnapshotConfiguration::SnapshotsEnabled to false during application
development or troubleshooting. A snapshot is created during every application stop,
which may cause issues if the application is in an unhealthy state or isn't performant. Set
SnapshotsEnabled to true after the application is in production and is stable.

Note

We recommend that you set your application to create a snapshot several times a day
to restart properly with correct state data. The correct frequency for your snapshots
depends on your application's business logic. Taking frequent snapshots lets you recover
more recent data, but increases cost and requires more system resources.

For information about monitoring application downtime, see Metrics and dimensions in Managed
Service for Apache Flink.

For more information about implementing fault tolerance, see Implement fault tolerance.

Unsupported connector versions

From Apache Flink version 1.15 or later, Managed Service for Apache Flink automatically prevents
applications from starting or updating if they are using unsupported Kinesis connector versions
bundled into application JARs. When upgrading to Managed Service for Apache Flink version 1.15
or later, make sure that you are using the most recent Kinesis connector. This is any version equal
to or newer than version 1.15.2. All other versions are not supported by Managed Service for
Apache Flink because they might cause consistency issues or failures with the Stop with Savepoint

Fault tolerance: checkpoints and savepoints 729

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ApplicationSnapshotConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

feature, preventing clean stop/update operations. To learn more about connector compatibility in
Amazon Managed Service for Apache Flink versions, see Apache Flink connectors.

Performance and parallelism

Your application can scale to meet any throughput level by tuning your application parallelism, and
avoiding performance pitfalls. Keep the following in mind when developing and maintaining your
application:

• Verify that all of your application sources and sinks are sufficiently provisioned and are not
being throttled. If the sources and sinks are other AWS services, monitor those services using
CloudWatch.

• For applications with very high parallelism, check if the high levels of parallelism are applied to
all operators in the application. By default, Apache Flink applies the same application parallelism
for all operators in the application graph. This can lead to either provisioning issues on sources
or sinks, or bottlenecks in operator data processing. You can change the parallelism of each
operator in code with setParallelism.

• Understand the meaning of the parallelism settings for the operators in your application. If you
change the parallelism for an operator, you may not be able to restore the application from
a snapshot created when the operator had a parallelism that is incompatible with the current
settings. For more information about setting operator parallelism, see Set maximum parallelism
for operators explicitly.

For more information about implementing scaling, see Implement application scaling.

Setting per-operator parallelism

By default, all operators have the parallelism set at application level. You can override the
parallelism of a single operator using the DataStream API using .setParallelism(x). You can
set an operator parallelism to any parallelism equal or lower than the application parallelism.

If possible, define the operator parallelism as a function of the application parallelism. This way,
the operator parallelism will vary with the application parallelism. If you are using autoscaling, for
example, all operators will vary their parallelism in the same proportion:

int appParallelism = env.getParallelism();
...

Performance and parallelism 730

https://docs.aws.amazon.com/managed-flink/latest/java/how-flink-connectors.html
https://docs.aws.amazon.com/cloudwatch/?id=docs_gateway
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/parallel.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/production_ready.html#set-maximum-parallelism-for-operators-explicitly
https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/production_ready.html#set-maximum-parallelism-for-operators-explicitly

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

...ops.setParalleism(appParallelism/2);

In some cases, you may want to set the operator parallelism to a constant. For example, setting
the parallelism of a Kinesis Stream source to the number of shards. In these cases, consider passing
the operator parallelism as application configuration parameter to change it without changing the
code, for example to reshard the source stream.

Logging

You can monitor your application's performance and error conditions using CloudWatch Logs. Keep
the following in mind when configuring logging for your application:

• Enable CloudWatch logging for the application so that any runtime issues can be debugged.

• Do not create a log entry for every record being processed in the application. This causes severe
bottlenecks during processing and might lead to backpressure in the processing of data.

• Create CloudWatch alarms to notify you when your application is not running properly. For more
information, see Use CloudWatch Alarms with Amazon Managed Service for Apache Flink

For more information about implementing logging, see ???.

Coding

You can make your application performant and stable by using recommended programming
practices. Keep the following in mind when writing application code:

• Do not use system.exit() in your application code, in either your application's main method
or in user-defined functions. If you want to shut down your application from within code, throw
an exception derived from Exception or RuntimeException, containing a message about
what went wrong with the application.

Note the following about how the service handles this exception:

• If the exception is thrown from your application's main method, the service will wrap it in a
ProgramInvocationException when the application transitions to the RUNNING status,
and the job manager will fail to submit the job.

• If the exception is thrown from a user-defined function, the job manager will fail the job and
restart it, and details of the exception will be written to the exception log.

Logging 731

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Consider shading your application JAR file and its included dependencies. Shading is
recommended when there are potential conflicts in package names between your application
and the Apache Flink runtime. If a conflict occurs, your application logs may contain an exception
of type java.util.concurrent.ExecutionException. For more information about shading
your application JAR file, see Apache Maven Shade Plugin.

Managing credentials

You should not bake any long-term credentials into production (or any other) applications.
Long-term credentials are likely checked into a version control system and can easily get lost.
Instead, you can associate a role to the Managed Service for Apache Flink application and grant
permissions to that role. The running Flink application can then select temporary credentials with
the respective permissions from the environment. In case authentication is needed for a service
that is not natively integrated with IAM, for example, a database that requires a username and
password for authentication, you should consider storing secrets in AWS Secrets Manager.

Many AWS native services support authentication:

• Kinesis Data Streams – ProcessTaxiStream.java

• Amazon MSK – https://github.com/aws/aws-msk-iam-auth/#using-the-amazon-msk-library-for-
iam-authentication

• Amazon Elasticsearch Service – AmazonElasticsearchSink.java

• Amazon S3 – works out of the box on Managed Service for Apache Flink

Reading from sources with few shards/partitions

When reading from Apache Kafka or a Kinesis Data Stream, there may be a mismatch between the
parallelism of the stream (the number of partitions for Kafka and the number of shards for Kinesis)
and the parallelism of the application. With a naive design, the parallelism of an application cannot
scale beyond the parallelism of a stream: Each subtask of a source operator can only read from 1
or more shards/partitions. That means for a stream with only 2 shards and an application with a
parallelism of 8, that only two subtasks are actually consuming from the stream and 6 subtasks
remain idle. This can substantially limit the throughput of the application, in particular if the
deserialization is expensive and carried out by the source (which is the default).

Managing credentials 732

https://maven.apache.org/plugins/maven-shade-plugin/
https://aws.amazon.com/secrets-manager/
hhttps://github.com/aws-samples/amazon-kinesis-data-analytics-taxi-consumer/blob/master/src/main/java/com/amazonaws/samples/kaja/taxi/consumer/ProcessTaxiStream.java#L90
https://github.com/aws/aws-msk-iam-auth/#using-the-amazon-msk-library-for-iam-authentication
https://github.com/aws/aws-msk-iam-auth/#using-the-amazon-msk-library-for-iam-authentication
https://github.com/aws-samples/amazon-kinesis-data-analytics-taxi-consumer/blob/master/src/main/java/com/amazonaws/samples/kaja/taxi/consumer/operators/AmazonElasticsearchSink.java

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To mitigate this effect, you can either scale the stream. But that may not always be desirable or
possible. Alternatively, you can restructure the source so that it does not do any serialization and
just passes on the byte[]. You can then rebalance the data to distribute it evenly across all tasks
and then deserialize the data there. In this way, you can leverage all subtasks for the deserialization
and this potentially expensive operation is no longer bound by the number of shards/partitions of
the stream.

Studio notebook refresh interval

If you change the paragraph result refresh interval, set it to a value that is at least 1000
milliseconds.

Studio notebook optimum performance

We tested with the following statement and got the optimal performance when events-per-
second multiplied by number-of-keys was under 25,000,000. This was for events-per-
second under 150,000.

SELECT key, sum(value) FROM key-values GROUP BY key

How watermark strategies and idle shards affect time windows

When reading events from Apache Kafka and Kinesis Data Streams, the source can set the event
time based on attributes of the stream. In case of Kinesis, the event time equals the approximate
arrival time of events. But setting event time at the source for events is not sufficient for a
Flink application to use event time. The source must also generate watermarks that propagate
information about event time from the source to all other operators. The Flink documentation has
a good overview of how that process works.

By default, the timestamp of an event read from Kinesis is set to the approximate arrival time
determined by Kinesis. An additional prerequisite for event time to work in the application is a
watermark strategy.

WatermarkStrategy<String> s = WatermarkStrategy
 .<String>forMonotonousTimestamps()
 .withIdleness(Duration.ofSeconds(...));

Studio notebook refresh interval 733

https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/time/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The watermark strategy is then applied to a DataStream with the
assignTimestampsAndWatermarks method. There are some useful built-in strategies:

• forMonotonousTimestamps() will just use the event time (approximate arrival time) and
periodically emit the maximum value as a watermark (for each specific subtask)

• forBoundedOutOfOrderness(Duration.ofSeconds(...)) similar to the previous strategy,
but will use the event time – duration for watermark generation.

From the Flink documentation:

Each parallel subtask of a source function usually generates its watermarks independently. These
watermarks define the event time at that particular parallel source.

As the watermarks flow through the streaming program, they advance the event time at the
operators where they arrive. Whenever an operator advances its event time, it generates a new
watermark downstream for its successor operators.

Some operators consume multiple input streams; a union, for example, or operators following a
keyBy(…) or partition(…) function. Such an operator’s current event time is the minimum of its input
streams' event times. As its input streams update their event times, so does the operator.

That means, if a source subtask is consuming from an idle shard, downstream operators do
not receive new watermarks from that subtask and hence processing stalls for all downstream
operators that use time windows. To avoid this, customers can add the withIdleness option to
the watermark strategy. With that option, an operator excludes the watermarks from idle upstream
subtasks when computing the event time of the operator. The idle subtask therefore no longer
blocks the advancement of event time in downstream operators.

Depending on the shard assigner you use, some workers might not be assigned any Kinesis
shards. In that case, these workers will manifest the idle source behavior even if all Kinesis shards
continuously deliver event data. You can mitigate this risk by using uniformShardAssigner with
the source operator. This makes sure that all source subtasks have shards to process as long as the
number of workers is less or equal to the number of active shards.

However, the idleness option with the build-in watermark strategies will not advance the event
time if no subtask is reading any event, that is there are no events in the stream. This becomes
particularly visible for test cases where a finite set of events is read from the stream. As event time
does not advance after the last event has been read, the last window (containing the last event)
will not close.

How watermark strategies and idle shards affect time windows 734

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/time/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Summary

• The withIdleness setting will not generate new watermarks in case a shard is idle. It will
exclude the last watermark sent by idle subtasks from the min watermark calculation in
downstream operators.

• With the build-in watermark strategies, the last open window will not close (unless new events
that advance the watermark will be sent, but that creates a new window that then remains
open).

• Even when the time is set by the Kinesis stream, late arriving events can still happen if one
shard is consumed faster than others (for example during app initialization or when using
TRIM_HORIZON where all existing shards are consumed in parallel ignoring their parent/child
relationship).

• The withIdleness settings of the watermark strategy seem interrupt the Kinesis source-
specific settings for idle shards
(ConsumerConfigConstants.SHARD_IDLE_INTERVAL_MILLIS.

Example

The following application is reading from a stream and creating session windows based on event
time.

Properties consumerConfig = new Properties();
consumerConfig.put(AWSConfigConstants.AWS_REGION, "eu-west-1");
consumerConfig.put(ConsumerConfigConstants.STREAM_INITIAL_POSITION, "TRIM_HORIZON");

FlinkKinesisConsumer<String> consumer = new FlinkKinesisConsumer<>("...", new
 SimpleStringSchema(), consumerConfig);

WatermarkStrategy<String> s = WatermarkStrategy
 .<String>forMonotonousTimestamps()
 .withIdleness(Duration.ofSeconds(15));

env.addSource(consumer)
 .assignTimestampsAndWatermarks(s)
 .map(new MapFunction<String, Long>() {
 @Override
 public Long map(String s) throws Exception {
 return Long.parseLong(s);
 }

Summary 735

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 })
 .keyBy(l -> 0l)
 .window(EventTimeSessionWindows.withGap(Time.seconds(10)))
 .process(new ProcessWindowFunction<Long, Object, Long, TimeWindow>() {
 @Override
 public void process(Long aLong, ProcessWindowFunction<Long, Object, Long,
 TimeWindow>.Context context, Iterable<Long>iterable, Collector<Object> collector)
 throws Exception {
 long count = StreamSupport.stream(iterable.spliterator(), false).count();
 long timestamp = context.currentWatermark();

 System.out.print("XXXXXXXXXXXXXX Window with " + count + " events");
 System.out.println("; Watermark: " + timestamp + ", " +
 Instant.ofEpochMilli(timestamp));

 for (Long l : iterable) {
 System.out.println(l);
 }
 }
 });

In the following example, 8 events are written to a 16 shard stream (the first 2 and the last event
happen to land in the same shard).

$ aws kinesis put-record --stream-name hp-16 --partition-key 1 --data MQ==
$ aws kinesis put-record --stream-name hp-16 --partition-key 2 --data Mg==
$ aws kinesis put-record --stream-name hp-16 --partition-key 3 --data Mw==
$ date

{
 "ShardId": "shardId-000000000012",
 "SequenceNumber": "49627894338614655560500811028721934184977530127978070210"
}
{
 "ShardId": "shardId-000000000012",
 "SequenceNumber": "49627894338614655560500811028795678659974022576354623682"
}
{
 "ShardId": "shardId-000000000014",
 "SequenceNumber": "49627894338659257050897872275134360684221592378842022114"
}
Wed Mar 23 11:19:57 CET 2022

Example 736

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

$ sleep 10
$ aws kinesis put-record --stream-name hp-16 --partition-key 4 --data NA==
$ aws kinesis put-record --stream-name hp-16 --partition-key 5 --data NQ==
$ date

{
 "ShardId": "shardId-000000000010",
 "SequenceNumber": "49627894338570054070103749783042116732419934393936642210"
}
{
 "ShardId": "shardId-000000000014",
 "SequenceNumber": "49627894338659257050897872275659034489934342334017700066"
}
Wed Mar 23 11:20:10 CET 2022

$ sleep 10
$ aws kinesis put-record --stream-name hp-16 --partition-key 6 --data Ng==
$ date

{
 "ShardId": "shardId-000000000001",
 "SequenceNumber": "49627894338369347363316974173886988345467035365375213586"
}
Wed Mar 23 11:20:22 CET 2022

$ sleep 10
$ aws kinesis put-record --stream-name hp-16 --partition-key 7 --data Nw==
$ date

{
 "ShardId": "shardId-000000000008",
 "SequenceNumber": "49627894338525452579706688535878947299195189349725503618"
}
Wed Mar 23 11:20:34 CET 2022

$ sleep 60
$ aws kinesis put-record --stream-name hp-16 --partition-key 8 --data OA==
$ date

{
 "ShardId": "shardId-000000000012",
 "SequenceNumber": "49627894338614655560500811029600823255837371928900796610"
}

Example 737

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Wed Mar 23 11:21:27 CET 2022

This input should result in 5 session windows: event 1,2,3; event 4,5; event 6; event 7; event 8.
However, the program only yields the first 4 windows.

11:59:21,529 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 5 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000006,HashKeyRange: {StartingHashKey:
 127605887595351923798765477786913079296,EndingHashKey:
 148873535527910577765226390751398592511},SequenceNumberRange: {StartingSequenceNumber:
 49627894338480851089309627289524549239292625588395704418,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,530 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 5 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000006,HashKeyRange: {StartingHashKey:
 127605887595351923798765477786913079296,EndingHashKey:
 148873535527910577765226390751398592511},SequenceNumberRange: {StartingSequenceNumber:
 49627894338480851089309627289524549239292625588395704418,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,530 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 6 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000007,HashKeyRange: {StartingHashKey:
 148873535527910577765226390751398592512,EndingHashKey:
 170141183460469231731687303715884105727},SequenceNumberRange: {StartingSequenceNumber:
 49627894338503151834508157912666084957565273949901684850,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,530 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 6 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000010,HashKeyRange: {StartingHashKey:
 212676479325586539664609129644855132160,EndingHashKey:
 233944127258145193631070042609340645375},SequenceNumberRange: {StartingSequenceNumber:
 49627894338570054070103749782090692112383219034419626146,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,530 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 6 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000007,HashKeyRange: {StartingHashKey:
 148873535527910577765226390751398592512,EndingHashKey:
 170141183460469231731687303715884105727},SequenceNumberRange: {StartingSequenceNumber:
 49627894338503151834508157912666084957565273949901684850,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0

Example 738

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

11:59:21,531 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 4 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000005,HashKeyRange: {StartingHashKey:
 106338239662793269832304564822427566080,EndingHashKey:
 127605887595351923798765477786913079295},SequenceNumberRange: {StartingSequenceNumber:
 49627894338458550344111096666383013521019977226889723986,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 4 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000005,HashKeyRange: {StartingHashKey:
 106338239662793269832304564822427566080,EndingHashKey:
 127605887595351923798765477786913079295},SequenceNumberRange: {StartingSequenceNumber:
 49627894338458550344111096666383013521019977226889723986,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 3 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000004,HashKeyRange: {StartingHashKey:
 85070591730234615865843651857942052864,EndingHashKey:
 106338239662793269832304564822427566079},SequenceNumberRange: {StartingSequenceNumber:
 49627894338436249598912566043241477802747328865383743554,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 2 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000003,HashKeyRange: {StartingHashKey:
 63802943797675961899382738893456539648,EndingHashKey:
 85070591730234615865843651857942052863},SequenceNumberRange: {StartingSequenceNumber:
 49627894338413948853714035420099942084474680503877763122,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 3 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000015,HashKeyRange: {StartingHashKey:
 319014718988379809496913694467282698240,EndingHashKey:
 340282366920938463463374607431768211455},SequenceNumberRange: {StartingSequenceNumber:
 49627894338681557796096402897798370703746460841949528306,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 2 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000014,HashKeyRange: {StartingHashKey:
 297747071055821155530452781502797185024,EndingHashKey:
 319014718988379809496913694467282698239},SequenceNumberRange: {StartingSequenceNumber:
 49627894338659257050897872274656834985473812480443547874,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM

Example 739

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

11:59:21,532 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 3 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000004,HashKeyRange: {StartingHashKey:
 85070591730234615865843651857942052864,EndingHashKey:
 106338239662793269832304564822427566079},SequenceNumberRange: {StartingSequenceNumber:
 49627894338436249598912566043241477802747328865383743554,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,532 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 2 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000003,HashKeyRange: {StartingHashKey:
 63802943797675961899382738893456539648,EndingHashKey:
 85070591730234615865843651857942052863},SequenceNumberRange: {StartingSequenceNumber:
 49627894338413948853714035420099942084474680503877763122,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 0 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000001,HashKeyRange: {StartingHashKey:
 21267647932558653966460912964485513216,EndingHashKey:
 42535295865117307932921825928971026431},SequenceNumberRange: {StartingSequenceNumber:
 49627894338369347363316974173816870647929383780865802258,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 0 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000009,HashKeyRange: {StartingHashKey:
 191408831393027885698148216680369618944,EndingHashKey:
 212676479325586539664609129644855132159},SequenceNumberRange: {StartingSequenceNumber:
 49627894338547753324905219158949156394110570672913645714,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 7 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000000,HashKeyRange: {StartingHashKey: 0,EndingHashKey:
 21267647932558653966460912964485513215},SequenceNumberRange: {StartingSequenceNumber:
 49627894338347046618118443550675334929656735419359821826,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,533 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 0 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000012,HashKeyRange: {StartingHashKey:
 255211775190703847597530955573826158592,EndingHashKey:
 276479423123262501563991868538311671807},SequenceNumberRange: {StartingSequenceNumber:
 49627894338614655560500811028373763548928515757431587010,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM

Example 740

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

11:59:21,533 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 7 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000008,HashKeyRange: {StartingHashKey:
 170141183460469231731687303715884105728,EndingHashKey:
 191408831393027885698148216680369618943},SequenceNumberRange: {StartingSequenceNumber:
 49627894338525452579706688535807620675837922311407665282,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,533 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 0 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000001,HashKeyRange: {StartingHashKey:
 21267647932558653966460912964485513216,EndingHashKey:
 42535295865117307932921825928971026431},SequenceNumberRange: {StartingSequenceNumber:
 49627894338369347363316974173816870647929383780865802258,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,533 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 7 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000011,HashKeyRange: {StartingHashKey:
 233944127258145193631070042609340645376,EndingHashKey:
 255211775190703847597530955573826158591},SequenceNumberRange: {StartingSequenceNumber:
 49627894338592354815302280405232227830655867395925606578,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,533 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 7 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000000,HashKeyRange: {StartingHashKey: 0,EndingHashKey:
 21267647932558653966460912964485513215},SequenceNumberRange: {StartingSequenceNumber:
 49627894338347046618118443550675334929656735419359821826,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,568 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 1 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000002,HashKeyRange: {StartingHashKey:
 42535295865117307932921825928971026432,EndingHashKey:
 63802943797675961899382738893456539647},SequenceNumberRange: {StartingSequenceNumber:
 49627894338391648108515504796958406366202032142371782690,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,568 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 1 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000013,HashKeyRange: {StartingHashKey:
 276479423123262501563991868538311671808,EndingHashKey:
 297747071055821155530452781502797185023},SequenceNumberRange: {StartingSequenceNumber:
 49627894338636956305699341651515299267201164118937567442,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM

Example 741

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

11:59:21,568 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 1 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000002,HashKeyRange: {StartingHashKey:
 42535295865117307932921825928971026432,EndingHashKey:
 63802943797675961899382738893456539647},SequenceNumberRange: {StartingSequenceNumber:
 49627894338391648108515504796958406366202032142371782690,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:23,209 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 0 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000009,HashKeyRange: {StartingHashKey:
 191408831393027885698148216680369618944,EndingHashKey:
 212676479325586539664609129644855132159},SequenceNumberRange: {StartingSequenceNumber:
 49627894338547753324905219158949156394110570672913645714,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:23,244 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 6 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000010,HashKeyRange: {StartingHashKey:
 212676479325586539664609129644855132160,EndingHashKey:
 233944127258145193631070042609340645375},SequenceNumberRange: {StartingSequenceNumber:
 49627894338570054070103749782090692112383219034419626146,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
event: 6; timestamp: 1648030822428, 2022-03-23T10:20:22.428Z
11:59:23,377 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 3 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000015,HashKeyRange: {StartingHashKey:
 319014718988379809496913694467282698240,EndingHashKey:
 340282366920938463463374607431768211455},SequenceNumberRange: {StartingSequenceNumber:
 49627894338681557796096402897798370703746460841949528306,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:23,405 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 2 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000014,HashKeyRange: {StartingHashKey:
 297747071055821155530452781502797185024,EndingHashKey:
 319014718988379809496913694467282698239},SequenceNumberRange: {StartingSequenceNumber:
 49627894338659257050897872274656834985473812480443547874,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:23,581 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 7 will start consuming seeded shard StreamShardHandle{streamName='hp-16',

Example 742

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 shard='{ShardId: shardId-000000000008,HashKeyRange: {StartingHashKey:
 170141183460469231731687303715884105728,EndingHashKey:
 191408831393027885698148216680369618943},SequenceNumberRange: {StartingSequenceNumber:
 49627894338525452579706688535807620675837922311407665282,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:23,586 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 1 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000013,HashKeyRange: {StartingHashKey:
 276479423123262501563991868538311671808,EndingHashKey:
 297747071055821155530452781502797185023},SequenceNumberRange: {StartingSequenceNumber:
 49627894338636956305699341651515299267201164118937567442,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:24,790 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 0 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000012,HashKeyRange: {StartingHashKey:
 255211775190703847597530955573826158592,EndingHashKey:
 276479423123262501563991868538311671807},SequenceNumberRange: {StartingSequenceNumber:
 49627894338614655560500811028373763548928515757431587010,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 2
event: 4; timestamp: 1648030809282, 2022-03-23T10:20:09.282Z
event: 3; timestamp: 1648030797697, 2022-03-23T10:19:57.697Z
event: 5; timestamp: 1648030810871, 2022-03-23T10:20:10.871Z
11:59:24,907 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 7 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000011,HashKeyRange: {StartingHashKey:
 233944127258145193631070042609340645376,EndingHashKey:
 255211775190703847597530955573826158591},SequenceNumberRange: {StartingSequenceNumber:
 49627894338592354815302280405232227830655867395925606578,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 2
event: 7; timestamp: 1648030834105, 2022-03-23T10:20:34.105Z
event: 1; timestamp: 1648030794441, 2022-03-23T10:19:54.441Z
event: 2; timestamp: 1648030796122, 2022-03-23T10:19:56.122Z
event: 8; timestamp: 1648030887171, 2022-03-23T10:21:27.171Z
XXXXXXXXXXXXXX Window with 3 events; Watermark: 1648030809281, 2022-03-23T10:20:09.281Z
3
1
2
XXXXXXXXXXXXXX Window with 2 events; Watermark: 1648030834104, 2022-03-23T10:20:34.104Z
4
5
XXXXXXXXXXXXXX Window with 1 events; Watermark: 1648030834104, 2022-03-23T10:20:34.104Z

Example 743

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6
XXXXXXXXXXXXXX Window with 1 events; Watermark: 1648030887170, 2022-03-23T10:21:27.170Z
7

The output is only showing 4 windows (missing the last window containing event 8). This is due
to event time and the watermark strategy. The last window cannot close because the pre-built
watermark strategies the time never advances beyond the time of the last event that has been read
from the stream. But for the window to close, time needs to advance more than 10 seconds after
the last event. In this case, the last watermark is 2022-03-23T10:21:27.170Z, but for the session
window to close, a watermark 10s and 1ms later is required.

If the withIdleness option is removed from the watermark strategy, no session window will ever
close, because the “global watermark” of the window operator cannot advance.

When the Flink application starts (or if there is data skew), some shards might be consumed faster
than others. This can cause some watermarks to be emitted too early from a subtask (the subtask
might emit the watermark based on the content of one shard without having consumed from the
other shards it’s subscribed to). Ways to mitigate are different watermarking strategies that add a
safety buffer (forBoundedOutOfOrderness(Duration.ofSeconds(30)) or explicitly allow
late arriving events (allowedLateness(Time.minutes(5)).

Set a UUID for all operators

When Managed Service for Apache Flink starts a Flink job for an application with a snapshot, the
Flink job can fail to start due to certain issues. One of them is operator ID mismatch. Flink expects
explicit, consistent operator IDs for Flink job graph operators. If not set explicitly, Flink generates
an ID for the operators. This is because Flink uses these operator IDs to uniquely identify the
operators in a job graph and uses them to store the state of each operator in a savepoint.

The operator ID mismatch issue happens when Flink does not find a 1:1 mapping between the
operator IDs of a job graph and the operator IDs defined in a savepoint. This happens when explicit
consistent operator IDs are not set and Flink generates operator IDs that may not be consistent
with every job graph creation. The likelihood of applications running into this issue is high during
maintenance runs. To avoid this, we recommend customers set UUID for all operators in the Flink
code. For more information, see the topic Set a UUID for all operators under Production readiness.

Set a UUID for all operators 744

https://docs.aws.amazon.com/managed-flink/latest/java/production-readiness.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add ServiceResourceTransformer to the Maven shade plugin

Flink uses Java’s Service Provider Interfaces (SPI) to load components such as connectors and
formats. Multiple Flink dependencies using SPI may cause clashes in the uber-jar and unexpected
application behaviors. We recommend that you add the ServiceResourceTransformer of the Maven
shade plugin, defined in the pom.xml.

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <executions>
 <execution>
 <id>shade</id>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers combine.children="append">
 <!-- The service transformer is needed to merge META-
INF/services files -->
 <transformer
 implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
 <!-- ... -->
 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>

Add ServiceResourceTransformer to the Maven shade plugin 745

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/table/overview/#transform-table-connectorformat-resources
https://maven.apache.org/plugins/maven-shade-plugin/examples/resource-transformers.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink stateful functions

Stateful Functions is an API that simplifies building distributed stateful applications. It’s based on
functions with persistent state that can interact dynamically with strong consistency guarantees.

A Stateful Functions application is basically just an Apache Flink Application and hence can be
deployed to Managed Service for Apache Flink. However, there are a couple of differences between
packaging Stateful Functions for a Kubernetes cluster and for Managed Service for Apache
Flink. The most important aspect of a Stateful Functions application is the module configuration
contains all necessary runtime information to configure the Stateful Functions runtime. This
configuration is usually packaged into a Stateful Functions specific container and deployed on
Kubernetes. But that is not possible with Managed Service for Apache Flink.

Following is an adaptation of the StateFun Python example for Managed Service for Apache Flink:

Apache Flink application template

Instead of using a customer container for the Stateful Functions runtime, customers can compile
a Flink application jar that just invokes the Stateful Functions runtime and contains the required
dependencies. For Flink 1.13, the required dependencies look similar to this:

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>statefun-flink-distribution</artifactId>
 <version>3.1.0</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 <exclusion>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 </exclusion>
 </exclusions>
</dependency>

And the main method of the Flink application to invoke the Stateful Function runtime looks like
this:

Apache Flink application template 746

https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://nightlies.apache.org/flink/flink-statefun-docs-master/docs/deployment/module/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

public static void main(String[] args) throws Exception {
 final StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

 StatefulFunctionsConfig stateFunConfig = StatefulFunctionsConfig.fromEnvironment(env);

 stateFunConfig.setProvider((StatefulFunctionsUniverseProvider) (classLoader,
 statefulFunctionsConfig) -> {
 Modules modules = Modules.loadFromClassPath();
 return modules.createStatefulFunctionsUniverse(stateFunConfig);
 });

 StatefulFunctionsJob.main(env, stateFunConfig);
}

Note that these components are generic and independent of the logic that is implemented in the
Stateful Function.

Location of the module configuration

The Stateful Functions module configuration needs to be included in the class path to be
discoverable for the Stateful Functions runtime. It's best to include it in the resources folder of the
Flink application and package it into the jar file.

Similar to a common Apache Flink application, you can then use maven to create an uber jar file
and deploy that on Managed Service for Apache Flink.

Location of the module configuration 747

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink settings

Managed Service for Apache Flink is an implementation of the Apache Flink framework. Managed
Service for Apache Flink uses the default values described in this section. Some of these values
can be set by the Managed Service for Apache Flink applications in code, and others cannot be
changed.

Use the links in this section to learn more about Apache flink settings and which ones are
modifiable.

This topic contains the following sections:

• Apache Flink configuration

• State backend

• Checkpointing

• Savepointing

• Heap sizes

• Buffer debloating

• Modifiable Flink configuration properties

• View configured Flink properties

Apache Flink configuration

Managed Service for Apache Flink provides a default Flink configuration consisting of Apache
Flink-recommended values for most properties and a few based on common application profiles.
For more information about Flink configuration, see Configuration. Service-provided default
configuration works for most applications. However, to tweak Flink configuration properties
to improve performance for certain applications with high parallelism, high memory and state
usage, or enable new debugging features in Apache Flink, you can change certain properties by
requesting a support case. For more information, see AWS Support Center. You can check the
current configuration for your application using the Apache Flink Dashboard.

Apache Flink configuration 748

https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/config/
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/managed-flink/latest/java/how-dashboard.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

State backend

Managed Service for Apache Flink stores transient data in a state backend. Managed Service
for Apache Flink uses the RocksDBStateBackend. Calling setStateBackend to set a different
backend has no effect.

We enable the following features on the state backend:

• Incremental state backend snapshots

• Asynchronous state backend snapshots

• Local recovery of checkpoints

For more information about state backends, see State Backends in the Apache Flink
Documentation.

Checkpointing

Managed Service for Apache Flink uses a default checkpoint configuration with the following
values. Some of these values can be changed using CheckpointConfiguration. You must set
CheckpointConfiguration.ConfigurationType to CUSTOM for Managed Service for Apache
Flink to use modified checkpointing values.

Setting Can be modified? How Default Value

CheckpointingEnabl
ed

Modifiable Create Application

Update Application

AWS CloudFormation

True

CheckpointInterval Modifiable Create Application

Update Application

AWS CloudFormation

60000

MinPauseB
etweenCheckpoints

Modifiable Create Application 5000

State backend 749

https://nightlies.apache.org/flink/flink-docs-release-1.19/ops/state/state_backends.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CheckpointConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Setting Can be modified? How Default Value

Update Application

AWS CloudFormation

Unaligned checkpoin
ts

Modifiable Support case False

Number of Concurren
t Checkpoints

Not Modifiable N/A 1

Checkpointing Mode Not Modifiable N/A Exactly Once

Checkpoint Retention
Policy

Not Modifiable N/A On Failure

Checkpoint Timeout Not Modifiable N/A 60 minutes

Max Checkpoints
Retained

Not Modifiable N/A 1

Checkpoint and
Savepoint Location

Not Modifiable N/A We store durable
checkpoint and
savepoint data to a
service-owned S3
bucket.

Savepointing

By default, when restoring from a savepoint, the resume operation will try to map all state of the
savepoint back to the program you are restoring with. If you dropped an operator, by default,
restoring from a savepoint that has data that corresponds to the missing operator will fail. You
can allow the operation to succeed by setting the AllowNonRestoredState parameter of the
application's FlinkRunConfiguration to true. This will allow the resume operation to skip state that
cannot be mapped to the new program.

For more information, see Allowing Non-Restored State in the Apache Flink documentation.

Savepointing 750

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_FlinkRunConfiguration.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/state/savepoints.html#allowing-non-restored-state
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Heap sizes

Managed Service for Apache Flink allocates each KPU 3 GiB of JVM heap, and reserves 1 GiB for
native code allocations. For information about increasing your application capacity, see the section
called “Implement application scaling”.

For more information about JVM heap sizes, see Configuration in the Apache Flink documentation.

Buffer debloating

Buffer debloating can help applications with high backpressure. If your application experiences
failed checkpoints/savepoints, enabling this feature could be useful. To do this, request a support
case.

For more information, see The Buffer Debloating Mechanism in the Apache Flink documentation.

Modifiable Flink configuration properties

Following are Flink configuration settings that you can modify using a support case. You can
modify more than one property at a time, and for multiple applications at the same time by
specifying the application prefix. If there are other Flink configuration properties outside this list
you want to modify, specify the exact property in your case.

Restart strategy

From Flink 1.19 and later, we use the exponential-delay restart strategy by default. All
previous versions use the fixed-delay restart strategy by default.

restart-strategy:

restart-strategy.fixed-delay.delay:

restart-strategy.exponential-delay.backoff-muliplier:

restart-strategy.exponential-delay.initial-backoff:

restart-strategy.exponential-delay.jitter-factor:

restart-strategy.exponential-delay.reset-backoff-threshold:

Heap sizes 751

https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/config.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/deployment/memory/network_mem_tuning/#the-buffer-debloating-mechanism
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://console.aws.amazon.com/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Checkpoints and state backends

state.backend:

state.backend.fs.memory-threshold:

state.backend.incremental:

Checkpointing

execution.checkpointing.unaligned:

execution.checkpointing.interval-during-backlog:

RocksDB native metrics

RocksDB Native Metrics are not shipped to CloudWatch. Once enabled, these metrics can be
accessed either from the Flink dashboard or the Flink REST API with custom tooling.

Managed Service for Apache Flink enables customers to access the latest Flink REST API (or the
supported version you are using) in read-only mode using the CreateApplicationPresignedUrl API.
This API is used by Flink’s own dashboard, but it can also be used by custom monitoring tools.

state.backend.rocksdb.metrics.actual-delayed-write-rate:

state.backend.rocksdb.metrics.background-errors:

state.backend.rocksdb.metrics.block-cache-capacity:

state.backend.rocksdb.metrics.block-cache-pinned-usage:

state.backend.rocksdb.metrics.block-cache-usage:

state.backend.rocksdb.metrics.column-family-as-variable:

state.backend.rocksdb.metrics.compaction-pending:

state.backend.rocksdb.metrics.cur-size-active-mem-table:

state.backend.rocksdb.metrics.cur-size-all-mem-tables:

state.backend.rocksdb.metrics.estimate-live-data-size:

state.backend.rocksdb.metrics.estimate-num-keys:

Checkpoints and state backends 752

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/rest_api/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplicationPresignedUrl.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

state.backend.rocksdb.metrics.estimate-pending-compaction-bytes:

state.backend.rocksdb.metrics.estimate-table-readers-mem:

state.backend.rocksdb.metrics.is-write-stopped:

state.backend.rocksdb.metrics.mem-table-flush-pending:

state.backend.rocksdb.metrics.num-deletes-active-mem-table:

state.backend.rocksdb.metrics.num-deletes-imm-mem-tables:

state.backend.rocksdb.metrics.num-entries-active-mem-table:

state.backend.rocksdb.metrics.num-entries-imm-mem-tables:

state.backend.rocksdb.metrics.num-immutable-mem-table:

state.backend.rocksdb.metrics.num-live-versions:

state.backend.rocksdb.metrics.num-running-compactions:

state.backend.rocksdb.metrics.num-running-flushes:

state.backend.rocksdb.metrics.num-snapshots:

state.backend.rocksdb.metrics.size-all-mem-tables:

RocksDB options

state.backend.rocksdb.compaction.style:

state.backend.rocksdb.memory.partitioned-index-filters:

state.backend.rocksdb.thread.num:

Advanced state backends options

state.storage.fs.memory-threshold:

Full TaskManager options

task.cancellation.timeout:

RocksDB options 753

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

taskmanager.jvm-exit-on-oom:

taskmanager.numberOfTaskSlots:

taskmanager.slot.timeout:

taskmanager.network.memory.fraction:

taskmanager.network.memory.max:

taskmanager.network.request-backoff.initial:

taskmanager.network.request-backoff.max:

taskmanager.network.memory.buffer-debloat.enabled:

taskmanager.network.memory.buffer-debloat.period:

taskmanager.network.memory.buffer-debloat.samples:

taskmanager.network.memory.buffer-debloat.threshold-percentages:

Memory configuration

taskmanager.memory.jvm-metaspace.size:

taskmanager.memory.jvm-overhead.fraction:

taskmanager.memory.jvm-overhead.max:

taskmanager.memory.managed.consumer-weights:

taskmanager.memory.managed.fraction:

taskmanager.memory.network.fraction:

taskmanager.memory.network.max:

taskmanager.memory.segment-size:

taskmanager.memory.task.off-heap.size:

RPC / Akka

akka.ask.timeout:

Memory configuration 754

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

akka.client.timeout:

akka.framesize:

akka.lookup.timeout:

akka.tcp.timeout:

Client

client.timeout:

Advanced cluster options

cluster.intercept-user-system-exit:

cluster.processes.halt-on-fatal-error:

Filesystem configurations

fs.s3.connection.maximum:

fs.s3a.connection.maximum:

fs.s3a.threads.max:

s3.upload.max.concurrent.uploads:

Advanced fault tolerance options

heartbeat.timeout:

jobmanager.execution.failover-strategy:

Memory configuration

jobmanager.memory.heap.size:

Metrics

metrics.latency.interval:

Client 755

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Advanced options for the REST endpoint and client

rest.flamegraph.enabled:

rest.server.numThreads:

Advanced SSL security options

security.ssl.internal.handshake-timeout:

Advanced scheduling options

slot.request.timeout:

Advanced options for Flink web UI

web.timeout:

View configured Flink properties

You can view Apache Flink properties you have configured yourself or requested to be modified
through a support case via the Apache Flink Dashboard and following these steps:

1. Go to the Flink Dashboard

2. Choose Job Manager in the left-hand side navigation pane.

3. Choose Configuration to view the list of Flink properties.

Advanced options for the REST endpoint and client 756

https://support.console.aws.amazon.com/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Configure Managed Service for Apache Flink to access
resources in an Amazon VPC

You can configure a Managed Service for Apache Flink application to connect to private subnets
in a virtual private cloud (VPC) in your account. Use Amazon Virtual Private Cloud (Amazon VPC)
to create a private network for resources such as databases, cache instances, or internal services.
Connect your application to the VPC to access private resources during execution.

This topic contains the following sections:

• Amazon VPC concepts

• VPC application permissions

• Internet and service access for a VPC-connected Managed Service for Apache Flink application

• Use the Managed Service for Apache Flink VPC API

• Example: Use a VPC to access data in an Amazon MSK cluster

Amazon VPC concepts

Amazon VPC is the networking layer for Amazon EC2. If you're new to Amazon EC2, see What is
Amazon EC2? in the Amazon EC2 User Guide for Linux Instances to get a brief overview.

The following are the key concepts for VPCs:

• A virtual private cloud (VPC) is a virtual network dedicated to your AWS account.

• A subnet is a range of IP addresses in your VPC.

• A route table contains a set of rules, called routes, that are used to determine where network
traffic is directed.

• An internet gateway is a horizontally scaled, redundant, and highly available VPC component
that allows communication between instances in your VPC and the internet. It therefore imposes
no availability risks or bandwidth constraints on your network traffic.

• A VPC endpoint enables you to privately connect your VPC to supported AWS services and VPC
endpoint services powered by PrivateLink without requiring an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC do not require public
IP addresses to communicate with resources in the service. Traffic between your VPC and the
other service does not leave the Amazon network.

Amazon VPC concepts 757

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information about the Amazon VPC service, see the Amazon Virtual Private Cloud User
Guide.

Managed Service for Apache Flink creates elastic network interfaces in one of the subnets
provided in your VPC configuration for the application. The number of elastic network interfaces
created in your VPC subnets may vary, depending on the parallelism and parallelism per KPU of the
application. For more information about application scaling, see Implement application scaling.

Note

VPC configurations are not supported for SQL applications.

Note

The Managed Service for Apache Flink service manages the checkpoint and snapshot state
for applications that have a VPC configuration.

VPC application permissions

This section describes the permission policies your application will need to work with your VPC.
For more information about using permissions policies, see Identity and Access Management for
Amazon Managed Service for Apache Flink.

The following permissions policy grants your application the necessary permissions to interact with
a VPC. To use this permission policy, add it to your application's execution role.

Add a permissions policy for accessing an Amazon VPC

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VPCReadOnlyPermissions",
 "Effect": "Allow",

VPC application permissions 758

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": [
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeDhcpOptions"
],
 "Resource": "*"
 },
 {
 "Sid": "ENIReadWritePermissions",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterface"
],
 "Resource": "*"
 }

]
}

Note

When you specify application resources using the console (such as CloudWatch Logs or an
Amazon VPC), the console modifies your application execution role to grant permission to
access those resources. You only need to manually modify your application's execution role
if you create your application without using the console.

Internet and service access for a VPC-connected Managed
Service for Apache Flink application

By default, when you connect a Managed Service for Apache Flink application to a VPC in your
account, it does not have access to the internet unless the VPC provides access. If the application
needs internet access, the following need to be true:

Establish internet and service access for a VPC-connected Managed Service for Apache Flink application 759

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• The Managed Service for Apache Flink application should only be configured with private
subnets.

• The VPC must contain a NAT gateway or instance in a public subnet.

• A route must exist for outbound traffic from the private subnets to the NAT gateway in a public
subnet.

Note

Several services offer VPC endpoints. You can use VPC endpoints to connect to Amazon
services from within a VPC without internet access.

Whether a subnet is public or private depends on its route table. Every route table has a default
route, which determines the next hop for packets that have a public destination.

• For a Private subnet: The default route points to a NAT gateway (nat-...) or NAT instance (eni-...).

• For a Public subnet: The default route points to an internet gateway (igw-...).

Once you configure your VPC with a public subnet (with a NAT) and one or more private subnets,
do the following to identify your private and public subnets:

• In the VPC console, from the navigation pane, choose Subnets.

• Select a subnet, and then choose the Route Table tab. Verify the default route:

• Public subnet: Destination: 0.0.0.0/0, Target: igw-…

• Private subnet: Destination: 0.0.0.0/0, Target: nat-… or eni-…

To associate the Managed Service for Apache Flink application with private subnets:

• Sign in to the AWS Management Console, and open the Amazon MSF console at https://
console.aws.amazon.com/flink.

• On the Managed Service for Apache Flink applications page, choose your application, and
choose Application details.

• On the page for your application, choose Configure.

Establish internet and service access for a VPC-connected Managed Service for Apache Flink application 760

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• In the VPC Connectivity section, choose the VPC to associate with your application. Choose the
subnets and security group associated with your VPC that you want the application to use to
access VPC resources.

• Choose Update.

Related information

Creating a VPC with Public and Private Subnets

NAT gateway basics

Use the Managed Service for Apache Flink VPC API

Use the following Managed Service for Apache Flink API operations to manage VPCs for your
application. For information on using the Managed Service for Apache Flink API, see API example
code.

Create application

Use the CreateApplication action to add a VPC configuration to your application during creation.

The following example request code for the CreateApplication action includes a VPC
configuration when the application is created:

{
 "ApplicationName":"MyApplication",
 "ApplicationDescription":"My-Application-Description",
 "RuntimeEnvironment":"FLINK-1_15",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "CodeContentType":"ZIPFILE"
 },

Related information 761

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-basics
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "FlinkApplicationConfiguration":{
 "ParallelismConfiguration":{
 "ConfigurationType":"CUSTOM",
 "Parallelism":2,
 "ParallelismPerKPU":1,
 "AutoScalingEnabled":true
 }
 },
 "VpcConfigurations": [
 {
 "SecurityGroupIds": ["sg-0123456789abcdef0"],
 "SubnetIds": ["subnet-0123456789abcdef0"]
 }
]
 }
}

AddApplicationVpcConfiguration

Use the AddApplicationVpcConfiguration action to add a VPC configuration to your application
after it has been created.

The following example request code for the AddApplicationVpcConfiguration action adds a
VPC configuration to an existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9,
 "VpcConfiguration": {
 "SecurityGroupIds": ["sg-0123456789abcdef0"],
 "SubnetIds": ["subnet-0123456789abcdef0"]
 }
}

DeleteApplicationVpcConfiguration

Use the DeleteApplicationVpcConfiguration action to remove a VPC configuration from your
application.

The following example request code for the AddApplicationVpcConfiguration action
removes an existing VPC configuration from an application:

AddApplicationVpcConfiguration 762

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_AddApplicationVpcConfiguration.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplicationVpcConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9,
 "VpcConfigurationId": "1.1"
}

Update application

Use the UpdateApplication action to update all of an application's VPC configurations at once.

The following example request code for the UpdateApplication action updates all of the VPC
configurations for an application:

{
 "ApplicationConfigurationUpdate": {
 "VpcConfigurationUpdates": [
 {
 "SecurityGroupIdUpdates": ["sg-0123456789abcdef0"],
 "SubnetIdUpdates": ["subnet-0123456789abcdef0"],
 "VpcConfigurationId": "2.1"
 }
]
 },
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9
}

Example: Use a VPC to access data in an Amazon MSK cluster

For a complete tutorial about how to access data from an Amazon MSK Cluster in a VPC, see MSK
Replication.

Update application 763

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Troubleshoot Managed Service for Apache Flink

The following topics can help you troubleshoot problems that you might encounter with Amazon
Managed Service for Apache Flink.

Choose the appropriate topic to review solutions.

Topics

• Development troubleshooting

• Runtime troubleshooting

Development troubleshooting

This section contains information about diagnosing and fixing development issues with your
Managed Service for Apache Flink application.

Topics

• System rollback best practices

• Hudi configuration best practices

• Apache Flink Flame Graphs

• Credential provider issue with EFO connector 1.15.2

• Applications with unsupported Kinesis connectors

• Compile error: "Could not resolve dependencies for project"

• Invalid choice: "kinesisanalyticsv2"

• UpdateApplication action isn't reloading application code

• S3 StreamingFileSink FileNotFoundExceptions

• FlinkKafkaConsumer issue with stop with savepoint

• Flink 1.15 Async Sink Deadlock

• Amazon Kinesis data streams source processing out of order during re-sharding

• Real-time vector embedding blueprints FAQ and troubleshooting

Development troubleshooting 764

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

System rollback best practices

With automatic system rollback and operations visibility capabilities in Amazon Managed Service
for Apache Flink, you can identify and resolve issues with your applications.

System rollbacks

If your application update or scaling operation fails due to a customer error, such as a code bug or
permission issue, Amazon Managed Service for Apache Flink automatically attempts to roll back to
the previous running version if you have opted in to this functionality. For more information, see
Enable system rollbacks for your Managed Service for Apache Flink application. If this autorollback
fails or you have not opted in or opted out, your application will be placed into the READY state. To
update your application, complete the following steps:

Manual rollback

If the application is not progressing and is in a transient state for long, or if the application
successfully transitioned to Running, but you see downstream issues like processing
errors in a successfully updated Flink application, you can manually roll it back using the
RollbackApplication API.

1. Call RollbackApplication - this will revert to the previous running version and restore the
previous state.

2. Monitor the rollback operation using the DescribeApplicationOperation API.

3. If rollback fails, use the previous system rollback steps.

Operations visibility

The ListApplicationOperations API shows the history of all customer and system operations
on your application.

1. Get the operationId of the failed operation from the list.

2. Call DescribeApplicationOperation and check the status and statusDescription.

3. If an operation failed, the description points to a potential error to investigate.

Common error code bugs: Use the rollback capabilities to revert to the last working version.
Resolve bugs and retry the update.

System rollback best practices 765

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Permission issues: Use the DescribeApplicationOperation to see the required permissions.
Update application permissions and retry.

Amazon Managed Service for Apache Flink service issues: Check the AWS Health Dashboard or
open a support case.

Hudi configuration best practices

To run Hudi connectors on Managed Service for Apache Flink we recommend the following
configuration changes.

Disable hoodie.embed.timeline.server

Hudi connector on Flink sets up an embedded timeline (TM) server on the Flink jobmanager (JM)
to cache metadata to improve performance when job parallelism is high. We recommend that you
disable this embedded server on Managed Service for Apache Flink because we disable non-Flink
communication between JM and TM.

If this server is enabled, Hudi writes will first attempt to connect to the embedded server on JM,
and then fall back to reading metadata from Amazon S3. This means that Hudi incurs a connection
timeout that delays Hudi writes and causes a performance impact on Managed Service for Apache
Flink.

Apache Flink Flame Graphs

Flame Graphs are enabled by default on applications in Managed Service for Apache Flink versions
that support it. Flame Graphs may affect application performance if you keep the graph open, as
mentioned in Flink documentation.

If you want to disable Flame Graphs for your application, create a case to request it to be disabled
for your application ARN. For more information, see the AWS Support Center.

Credential provider issue with EFO connector 1.15.2

There is a known issue with Kinesis Data Streams EFO connector versions up to 1.15.2 where
the FlinkKinesisConsumer is not respecting Credential Provider configuration. Valid
configurations are being disregarded due to the issue, which results in the AUTO credential provider
being used. This can cause a problem using cross-account access to Kinesis using EFO connector.

To resolve this error please use EFO connector version 1.15.3 or higher.

Hudi configuration best practices 766

https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/ops/debugging/flame_graphs/
https://console.aws.amazon.com/support/home#/
https://issues.apache.org/jira/browse/FLINK-29205

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Applications with unsupported Kinesis connectors

Managed Service for Apache Flink for Apache Flink version 1.15 or later will automatically reject
applications from starting or updating if they are using unsupported Kinesis Connector versions
(pre-version 1.15.2) bundled into application JARs or archives (ZIP).

Rejection error

You will see the following error when submitting create / update application calls through:

An error occurred (InvalidArgumentException) when calling the CreateApplication
 operation: An unsupported Kinesis connector version has been detected in the
 application. Please update flink-connector-kinesis to any version equal to or newer
 than 1.15.2.
For more information refer to connector fix: https://issues.apache.org/jira/browse/
FLINK-23528

Steps to remediate

• Update the application’s dependency on flink-connector-kinesis. If you are using Maven
as your project’s build tool, follow Update a Maven dependency . If you are using Gradle, follow
Update a Gradle dependency .

• Repackage the application.

• Upload to an Amazon S3 bucket.

• Resubmit the create / update application request with the revised application just uploaded to
the Amazon S3 bucket.

• If you continue to see the same error message, re-check your application dependencies. If the
problem persists please create a support ticket.

Update a Maven dependency

1. Open the project’s pom.xml.

2. Find the project’s dependencies. They look like:

<project>

 ...

Applications with unsupported Kinesis connectors 767

https://docs.aws.amazon.com/managed-flink/latest/java/flink-1-15-2.html
https://docs.aws.amazon.com/managed-flink/latest/java/flink-1-15-2.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <dependencies>

 ...

 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kinesis</artifactId>
 </dependency>

 ...

 </dependencies>

 ...

</project>

3. Update flink-connector-kinesis to a version that is equal to or newer than 1.15.2. For
instance:

<project>

 ...

 <dependencies>

 ...

 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kinesis</artifactId>
 <version>1.15.2</version>
 </dependency>

 ...

 </dependencies>

 ...

</project>

Applications with unsupported Kinesis connectors 768

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update a Gradle dependency

1. Open the project’s build.gradle (or build.gradle.kts for Kotlin applications).

2. Find the project’s dependencies. They look like:

...

dependencies {

 ...

 implementation("org.apache.flink:flink-connector-kinesis")

 ...

}

...

3. Update flink-connector-kinesis to a version that is equal to or newer than 1.15.2. For
instance:

...

dependencies {

 ...

 implementation("org.apache.flink:flink-connector-kinesis:1.15.2")

 ...

}

...

Compile error: "Could not resolve dependencies for project"

In order to compile the Managed Service for Apache Flink sample applications, you must first
download and compile the Apache Flink Kinesis connector and add it to your local Maven

Compile error: "Could not resolve dependencies for project" 769

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

repository. If the connector hasn't been added to your repository, a compile error similar to the
following appears:

Could not resolve dependencies for project your project name: Failure to
 find org.apache.flink:flink-connector-kinesis_2.11:jar:1.8.2 in https://
repo.maven.apache.org/maven2 was cached in the local repository, resolution will not be
 reattempted until the update interval of central has elapsed or updates are forced

To resolve this error, you must download the Apache Flink source code (version 1.8.2 from https://
flink.apache.org/downloads.html) for the connector. For instructions about how to download,
compile, and install the Apache Flink source code, see the section called “Using the Apache Flink
Kinesis Streams connector with previous Apache Flink versions”.

Invalid choice: "kinesisanalyticsv2"

To use v2 of the Managed Service for Apache Flink API, you need the latest version of the AWS
Command Line Interface (AWS CLI).

For information about upgrading the AWS CLI, see Installing the AWS Command Line Interface in
the AWS Command Line Interface User Guide.

UpdateApplication action isn't reloading application code

The UpdateApplication action will not reload application code with the same file name if no S3
object version is specified. To reload application code with the same file name, enable versioning
on your S3 bucket, and specify the new object version using the ObjectVersionUpdate
parameter. For more information about enabling object versioning in an S3 bucket, see Enabling or
Disabling Versioning.

S3 StreamingFileSink FileNotFoundExceptions

Managed Service for Apache Flink applications can run into In-progress part file
FileNotFoundException when starting from snapshots if an In-progress part file referred to
by its savepoint is missing. When this failure mode occurs, the Managed Service for Apache Flink
application’s operator state is usually non-recoverable and must be restarted without snapshot
using SKIP_RESTORE_FROM_SNAPSHOT. See following example stacktrace:

java.io.FileNotFoundException: No such file or directory: s3://amzn-s3-demo-bucket/
pathj/INSERT/2023/4/19/7/_part-2-1234_tmp_12345678-1234-1234-1234-123456789012

Invalid choice: "kinesisanalyticsv2" 770

https://flink.apache.org/downloads.html
https://flink.apache.org/downloads.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 at
 org.apache.hadoop.fs.s3a.S3AFileSystem.s3GetFileStatus(S3AFileSystem.java:2231)
 at
 org.apache.hadoop.fs.s3a.S3AFileSystem.innerGetFileStatus(S3AFileSystem.java:2149)
 at
 org.apache.hadoop.fs.s3a.S3AFileSystem.getFileStatus(S3AFileSystem.java:2088)
 at org.apache.hadoop.fs.s3a.S3AFileSystem.open(S3AFileSystem.java:699)
 at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:950)
 at
 org.apache.flink.fs.s3hadoop.HadoopS3AccessHelper.getObject(HadoopS3AccessHelper.java:98)
 at
 org.apache.flink.fs.s3.common.writer.S3RecoverableMultipartUploadFactory.recoverInProgressPart(S3RecoverableMultipartUploadFactory.java:97)
...

Flink StreamingFileSink writes records to filesystems supported by the File Systems. Given that
the incoming streams can be unbounded, data is organized into part files of finite size with new
files added as data is written. Part lifecycle and rollover policy determine the timing, size and the
naming of the part files.

During checkpointing and savepointing (snapshotting), all Pending files are renamed and
committed. However, In-progress part files are not committed but renamed and their reference is
kept within checkpoint or savepoint metadata to be used when restoring jobs. These In-progress
part files will eventually rollover to Pending, renamed and committed by a subsequent checkpoint
or savepoint.

Following are the root causes and mitigation for missing In-progress part file:

• Stale snapshot used to start the Managed Service for Apache Flink application – only the
latest system snapshot taken when an application is stopped or updated can be used to start a
Managed Service for Apache Flink application with Amazon S3 StreamingFileSink. To avoid this
class of failure, use the latest system snapshot.

• This happens for example when you pick a snapshot created using CreateSnapshot instead
of a system-triggered Snapshot during stop or update. The older snapshot’s savepoint keeps
an out-of-date reference to In-progress part file that has been renamed and committed by
subsequent checkpoint or savepoint.

• This can also happen when a system triggered snapshot from non-latest Stop/Update
event is picked. An example is an application with system snapshot disabled but has
RESTORE_FROM_LATEST_SNAPSHOT configured. Generally, Managed Service for Apache Flink

S3 StreamingFileSink FileNotFoundExceptions 771

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/deployment/filesystems/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

applications with Amazon S3 StreamingFileSink should always have system snapshot enabled
and RESTORE_FROM_LATEST_SNAPSHOT configured.

• In-progress part file removed – As the In-progress part file is located in an S3 bucket, it can be
removed by other components or actors which have access to the bucket.

• This can happen when you have stopped your app for too long and the In-progress part file
referred to by your app’s savepoint has been removed by S3 bucket MultiPartUpload lifecycle
policy. To avoid this class of failure, make sure that your S3 Bucket MPU lifecycle policy covers
a sufficiently large period for your use case.

• This can also happen when the In-progress part file has been removed manually or by another
one of your system’s components. To avoid this class of failure, please make sure that In-
progress part files are not removed by other actors or components.

• Race condition where an automated checkpoint is triggered after savepoint – This affects
Managed Service for Apache Flink versions up to and including 1.13. This issue is fixed in
Managed Service for Apache Flink version 1.15. Migrate your application to the latest version
of Managed Service for Apache Flink to prevent recurrence. We also suggest migrating from
StreamingFileSink to FileSink.

• When applications are stopped or updated, Managed Service for Apache Flink triggers a
savepoint and stops the application in two steps. If an automated checkpoint triggers between
the two steps, the savepoint will be unusable as its In-progress part file would be renamed and
potentially committed.

FlinkKafkaConsumer issue with stop with savepoint

When using the legacy FlinkKafkaConsumer there is a possibility your application may get stuck in
UPDATING, STOPPING or SCALING, if you have system snapshots enabled. There is no published fix
available for this issue, therefore we recommend you upgrade to the new KafkaSource to mitigate
this issue.

If you are using the FlinkKafkaConsumer with snapshots enabled, there is a possibility when
the Flink job processes a stop with savepoint API request, the FlinkKafkaConsumer can fail
with a runtime error reporting a ClosedException. Under these conditions the Flink application
becomes stuck, manifesting as Failed Checkpoints.

FlinkKafkaConsumer issue with stop with savepoint 772

https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/filesystem/#file-sink
https://issues.apache.org/jira/browse/FLINK-28758
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-source

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink 1.15 Async Sink Deadlock

There is a known issue with AWS connectors for Apache Flink implementing AsyncSink interface.
This affects applications using Flink 1.15 with the following connectors:

• For Java applications:

• KinesisStreamsSink – org.apache.flink:flink-connector-kinesis

• KinesisStreamsSink – org.apache.flink:flink-connector-aws-kinesis-streams

• KinesisFirehoseSink – org.apache.flink:flink-connector-aws-kinesis-firehose

• DynamoDbSink – org.apache.flink:flink-connector-dynamodb

• Flink SQL/TableAPI/Python applications:

• kinesis – org.apache.flink:flink-sql-connector-kinesis

• kinesis – org.apache.flink:flink-sql-connector-aws-kinesis-streams

• firehose – org.apache.flink:flink-sql-connector-aws-kinesis-firehose

• dynamodb – org.apache.flink:flink-sql-connector-dynamodb

Affected applications will experience the following symptoms:

• Flink job is in RUNNING state, but not processing data;

• There are no job restarts;

• Checkpoints are timing out.

The issue is caused by a bug in AWS SDK resulting in it not surfacing certain errors to the caller
when using the async HTTP client. This results in the sink waiting indefinitely for an “in-flight
request” to complete during a checkpoint flush operation.

This issue had been fixed in AWS SDK starting from version 2.20.144.

Following are instructions on how to update affected connectors to use the new version of AWS
SDK in your applications:

Topics

• Update Java applications

• Update Python applications

Flink 1.15 Async Sink Deadlock 773

https://issues.apache.org/jira/browse/FLINK-32230
https://github.com/aws/aws-sdk-java-v2/issues/4354

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update Java applications

Follow the procedures below to update Java applications:

flink-connector-kinesis

If the application uses flink-connector-kinesis:

Kinesis connector uses shading to package some dependencies, including the AWS SDK, into the
connector jar. To update the AWS SDK version, use the following procedure to replace these shaded
classes:

Maven

1. Add Kinesis connector and required AWS SDK modules as project dependencies.

2. Configure maven-shade-plugin:

a. Add filter to exclude shaded AWS SDK classes when copying content of the Kinesis
connector jar.

b. Add relocation rule to move updated AWS SDK classes to package, expected by Kinesis
connector.

pom.xml

<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kinesis</artifactId>
 <version>1.15.4</version>
 </dependency>

 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>kinesis</artifactId>
 <version>2.20.144</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>

Flink 1.15 Async Sink Deadlock 774

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <artifactId>netty-nio-client</artifactId>
 <version>2.20.144</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sts</artifactId>
 <version>2.20.144</version>
 </dependency>
 ...
 </dependencies>
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.1.1</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 ...
 <filters>
 ...
 <filter>
 <artifact>org.apache.flink:flink-connector-
kinesis</artifact>
 <excludes>
 <exclude>org/apache/flink/kinesis/
shaded/software/amazon/awssdk/**</exclude>
 <exclude>org/apache/flink/kinesis/
shaded/org/reactivestreams/**</exclude>
 <exclude>org/apache/flink/kinesis/
shaded/io/netty/**</exclude>
 <exclude>org/apache/flink/kinesis/
shaded/com/typesafe/netty/**</exclude>
 </excludes>
 </filter>
 ...

Flink 1.15 Async Sink Deadlock 775

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 </filters>
 <relocations>
 ...
 <relocation>
 <pattern>software.amazon.awssdk</pattern>

 <shadedPattern>org.apache.flink.kinesis.shaded.software.amazon.awssdk</
shadedPattern>
 </relocation>
 <relocation>
 <pattern>org.reactivestreams</pattern>

 <shadedPattern>org.apache.flink.kinesis.shaded.org.reactivestreams</
shadedPattern>
 </relocation>
 <relocation>
 <pattern>io.netty</pattern>

 <shadedPattern>org.apache.flink.kinesis.shaded.io.netty</shadedPattern>
 </relocation>
 <relocation>
 <pattern>com.typesafe.netty</pattern>

 <shadedPattern>org.apache.flink.kinesis.shaded.com.typesafe.netty</
shadedPattern>
 </relocation>
 ...
 </relocations>
 ...
 </configuration>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 ...
 </build>
</project>

Gradle

1. Add Kinesis connector and required AWS SDK modules as project dependencies.

Flink 1.15 Async Sink Deadlock 776

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Adjust shadowJar configuration:

a. Exclude shaded AWS SDK classes when copying content of the Kinesis connector jar.

b. Relocate updated AWS SDK classes to a package expected by Kinesis connector.

build.gradle

...
dependencies {
 ...
 flinkShadowJar("org.apache.flink:flink-connector-kinesis:1.15.4")

 flinkShadowJar("software.amazon.awssdk:kinesis:2.20.144")
 flinkShadowJar("software.amazon.awssdk:sts:2.20.144")
 flinkShadowJar("software.amazon.awssdk:netty-nio-client:2.20.144")
 ...
}
...
shadowJar {
 configurations = [project.configurations.flinkShadowJar]

 exclude("software/amazon/kinesis/shaded/software/amazon/awssdk/**/*")
 exclude("org/apache/flink/kinesis/shaded/org/reactivestreams/**/*.class")
 exclude("org/apache/flink/kinesis/shaded/io/netty/**/*.class")
 exclude("org/apache/flink/kinesis/shaded/com/typesafe/netty/**/*.class")

 relocate("software.amazon.awssdk",
 "org.apache.flink.kinesis.shaded.software.amazon.awssdk")
 relocate("org.reactivestreams",
 "org.apache.flink.kinesis.shaded.org.reactivestreams")
 relocate("io.netty", "org.apache.flink.kinesis.shaded.io.netty")
 relocate("com.typesafe.netty",
 "org.apache.flink.kinesis.shaded.com.typesafe.netty")
}
...

Other affected connectors

If the application uses another affected connector:

Flink 1.15 Async Sink Deadlock 777

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

In order to update the AWS SDK version, the SDK version should be enforced in the project build
configuration.

Maven

Add AWS SDK bill of materials (BOM) to the dependency management section of the pom.xml
file to enforce SDK version for the project.

pom.xml

<project>
 ...
 <dependencyManagement>
 <dependencies>
 ...
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>bom</artifactId>
 <version>2.20.144</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 ...
 </dependencies>
 </dependencyManagement>
 ...
</project>

Gradle

Add platform dependency on the AWS SDK bill of materials (BOM) to enforce SDK version for
the project. This requires Gradle 5.0 or newer:

build.gradle

...
dependencies {
 ...
 flinkShadowJar(platform("software.amazon.awssdk:bom:2.20.144"))
 ...
}
...

Flink 1.15 Async Sink Deadlock 778

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update Python applications

Python applications can use connectors in 2 different ways: packaging connectors and other Java
dependencies as part of single uber-jar, or use connector jar directly. To fix applications affected by
Async Sink deadlock:

• If the application uses an uber jar, follow the instructions for Update Java applications .

• To rebuild connector jars from source, use the following steps:

Building connectors from source:

Prerequisites, similar to Flink build requirements:

• Java 11

• Maven 3.2.5

flink-sql-connector-kinesis

1. Download source code for Flink 1.15.4:

wget https://archive.apache.org/dist/flink/flink-1.15.4/flink-1.15.4-src.tgz

2. Uncompress source code:

tar -xvf flink-1.15.4-src.tgz

3. Navigate to kinesis connector directory

cd flink-1.15.4/flink-connectors/flink-connector-kinesis/

4. Compile and install connector jar, specifying required AWS SDK version. To speed up build use
-DskipTests to skip test execution and -Dfast to skip additional source code checks:

mvn clean install -DskipTests -Dfast -Daws.sdkv2.version=2.20.144

5. Navigate to kinesis connector directory

cd ../flink-sql-connector-kinesis

Flink 1.15 Async Sink Deadlock 779

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/flinkdev/building/#build-flink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. Compile and install sql connector jar:

mvn clean install -DskipTests -Dfast

7. Resulting jar will be available at:

target/flink-sql-connector-kinesis-1.15.4.jar

flink-sql-connector-aws-kinesis-streams

1. Download source code for Flink 1.15.4:

wget https://archive.apache.org/dist/flink/flink-1.15.4/flink-1.15.4-src.tgz

2. Uncompress source code:

tar -xvf flink-1.15.4-src.tgz

3. Navigate to kinesis connector directory

cd flink-1.15.4/flink-connectors/flink-connector-aws-kinesis-streams/

4. Compile and install connector jar, specifying required AWS SDK version. To speed up build use
-DskipTests to skip test execution and -Dfast to skip additional source code checks:

mvn clean install -DskipTests -Dfast -Daws.sdk.version=2.20.144

5. Navigate to kinesis connector directory

cd ../flink-sql-connector-aws-kinesis-streams

6. Compile and install sql connector jar:

mvn clean install -DskipTests -Dfast

7. Resulting jar will be available at:

target/flink-sql-connector-aws-kinesis-streams-1.15.4.jar

Flink 1.15 Async Sink Deadlock 780

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

flink-sql-connector-aws-kinesis-firehose

1. Download source code for Flink 1.15.4:

wget https://archive.apache.org/dist/flink/flink-1.15.4/flink-1.15.4-src.tgz

2. Uncompress source code:

tar -xvf flink-1.15.4-src.tgz

3. Navigate to connector directory

cd flink-1.15.4/flink-connectors/flink-connector-aws-kinesis-firehose/

4. Compile and install connector jar, specifying required AWS SDK version. To speed up build use
-DskipTests to skip test execution and -Dfast to skip additional source code checks:

mvn clean install -DskipTests -Dfast -Daws.sdk.version=2.20.144

5. Navigate to sql connector directory

cd ../flink-sql-connector-aws-kinesis-firehose

6. Compile and install sql connector jar:

mvn clean install -DskipTests -Dfast

7. Resulting jar will be available at:

target/flink-sql-connector-aws-kinesis-firehose-1.15.4.jar

flink-sql-connector-dynamodb

1. Download source code for Flink 1.15.4:

wget https://archive.apache.org/dist/flink/flink-connector-aws-3.0.0/flink-
connector-aws-3.0.0-src.tgz

2. Uncompress source code:

Flink 1.15 Async Sink Deadlock 781

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

tar -xvf flink-connector-aws-3.0.0-src.tgz

3. Navigate to connector directory

cd flink-connector-aws-3.0.0

4. Compile and install connector jar, specifying required AWS SDK version. To speed up build use
-DskipTests to skip test execution and -Dfast to skip additional source code checks:

mvn clean install -DskipTests -Dfast -Dflink.version=1.15.4 -
Daws.sdk.version=2.20.144

5. Resulting jar will be available at:

flink-sql-connector-dynamodb/target/flink-sql-connector-dynamodb-3.0.0.jar

Amazon Kinesis data streams source processing out of order during re-
sharding

The current FlinkKinesisConsumer implementation doesn’t provide strong ordering guarantees
between Kinesis shards. This may lead to out-of-order processing during re-sharding of
Kinesis Stream, in particular for Flink applications that experience processing lag. Under some
circumstances, for example windows operators based on event times, events might get discarded
because of the resulting lateness.

Amazon Kinesis data streams source processing out of order during re-sharding 782

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This is a known problem in Open Source Flink. Until connector fix is made available, ensure your
Flink applications are not falling behind Kinesis Data Streams during re-partitioning. By ensuring
that the processing delay is tolerated by your Flink apps, you can minimize the impact of out-of-
order processing and risk of data loss.

Real-time vector embedding blueprints FAQ and troubleshooting

Review the following FAQ and troubleshooting sections to troubleshoot real-time vector
embedding blueprint issues. For more information about real-time vector embedding blueprints,
see Real-time vector embedding blueprints.

For general Managed Service for Apache Flink application troubleshooting, see https://
docs.aws.amazon.com/managed-flink/latest/java/troubleshooting-runtime.html.

Topics

• Real-time vector embedding blueprints - FAQ

• Real-time vector embedding blueprints - troubleshooting

Real-time vector embedding blueprints FAQ and troubleshooting 783

https://issues.apache.org/jira/browse/FLINK-6349
https://docs.aws.amazon.com/msk/latest/developerguide/ai-vector-embedding-integration-learn-more.html
https://docs.aws.amazon.com/managed-flink/latest/java/troubleshooting-runtime.html
https://docs.aws.amazon.com/managed-flink/latest/java/troubleshooting-runtime.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Real-time vector embedding blueprints - FAQ

Review the following FAQ about real-time vector embedding blueprints. For more information
about real-time vector embedding blueprints, see Real-time vector embedding blueprints.

FAQ

• What AWS resources does this blueprint create?

• What are my actions after the AWS CloudFormation stack deployment is complete?

• What should be the structure of the data in the source Amazon MSK topic(s)?

• Can I specify parts of a message to embed?

• Can I read data from multiple Amazon MSK topics?

• Can I use regex to configure Amazon MSK topic names?

• What is the maximum size of a message that can be read from an Amazon MSK topic?

• What type of OpenSearch is supported?

• Why do I need to use a vector search collection, vector index, and add a vector field in my
OpenSearch Serverless colelction?

• What should I set as the dimension for my vector field?

• What does the output look like in the configured OpenSearch index?

• Can I specify metadata fields to add to the document stored in the OpenSearch index?

• Should I expect duplicate entries in the OpenSearch index?

• Can I send data to multiple OpenSearch indices?

• Can I deploy multiple real-time vector embedding applications in a single AWS account?

• Can multiple real-time vector embedding applications use the same data source or sink?

• Does the application support cross-account connectivity?

• Does the application support cross-Region connectivity?

• Can my Amazon MSK cluster and OpenSearch collection be in different VPCs or subnets?

• What embedding models are supported by the application?

• Can I fine-tune the performance of my application based on my workload?

• What Amazon MSK authentication types are supported?

• What is sink.os.bulkFlushIntervalMillis and how do I set it?

Real-time vector embedding blueprints FAQ and troubleshooting 784

https://docs.aws.amazon.com/msk/latest/developerguide/ai-vector-embedding-integration-learn-more.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• When I deploy my Managed Service for Apache Flink application, from what point in the Amazon
MSK topic will it begin reading messages?

• How do I use source.msk.starting.offset?

• What chunking strategies are supported?

• How do I read records in my vector datastore?

• Where can I find new updates to the source code?

• Can I make a change to the AWS CloudFormation template and update the Managed Service for
Apache Flink application?

• Will AWS monitor and maintain the application on my behalf?

• Does this application move my data outside my AWS account?

What AWS resources does this blueprint create?

To find resources deployed in your account, navigate to AWS CloudFormation console and identify
the stack name that starts with the name you provided for your Managed Service for Apache Flink
application. Choose the Resources tab to check the resources that were created as part of the
stack. The following are the key resources that the stack creates:

• Real-time vector embedding Managed Service for Apache Flink application

• Amazon S3 bucket for holding the source code for the real-time vector embedding application

• CloudWatch log group and log stream for storing logs

• Lambda functions for fetching and creating resources

• IAM roles and policies for Lambdas, Managed Service for Apache Flink application, and accessing
Amazon Bedrock and Amazon OpenSearch Service

• Data access policy for Amazon OpenSearch Service

• VPC endpoints for accessing Amazon Bedrock and Amazon OpenSearch Service

What are my actions after the AWS CloudFormation stack deployment is complete?

After the AWS CloudFormation stack deployment is complete, access the Managed Service for
Apache Flink console and find your blueprint Managed Service for Apache Flink application. Choose
the Configure tab and confirm that all runtime properties are setup correctly. They may overflow
to the next page. When you are confident of the settings, choose Run. The application will start
ingesting messages from your topic.

Real-time vector embedding blueprints FAQ and troubleshooting 785

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To check for new releases, see https://github.com/awslabs/real-time-vectorization-of-streaming-
data/releases.

What should be the structure of the data in the source Amazon MSK topic(s)?

We currently support structured and unstructured source data.

• Unstructured data is denoted by STRING in source.msk.data.type. The data is read as is
from the incoming message.

• We currently support structured JSON data, denoted by JSON in source.msk.data.type.
The data must always be in JSON format. If the application receives a malformed JSON, the
application will fail.

• When using JSON as source data type, make sure that every message in all source topics is a
valid JSON. If you subscribe to one or more topics that do not contain JSON objects with this
setting, the application will fail. If one or more topics have a mix of structured and unstructured
data, we recommended that you configure source data as unstructured in the Managed Service
for Apache Flink application.

Can I specify parts of a message to embed?

• For unstructured input data where source.msk.data.type is STRING, the application will
always embed the entire message and store the entire message in the configured OpenSearch
index.

• For structured input data where source.msk.data.type is JSON, you can configure
embed.input.config.json.fieldsToEmbed to specify which field in the JSON object
should be selected for embedding. This only works for top-level JSON fields and does not work
with nested JSONs and with messages containing a JSON array. Use .* to embed the entire JSON.

Can I read data from multiple Amazon MSK topics?

Yes, you can read data from multiple Amazon MSK topics with this application. Data from all topics
must be of the same type (either STRING or JSON) or it might cause the application to fail. Data
from all topics is always stored in a single OpenSearch index.

Can I use regex to configure Amazon MSK topic names?

source.msk.topic.names does not support a list of regex. We support either a comma
separated list of topic names or .* regex to include all topics.

Real-time vector embedding blueprints FAQ and troubleshooting 786

https://github.com/awslabs/real-time-vectorization-of-streaming-data/releases
https://github.com/awslabs/real-time-vectorization-of-streaming-data/releases

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

What is the maximum size of a message that can be read from an Amazon MSK topic?

The maximum size of a message that can be processed is limited by the Amazon Bedrock
InvokeModel body limit that is currently set to 25,000,000. For more information, see InvokeModel.

What type of OpenSearch is supported?

We support both OpenSearch domains and collections. If you are using an OpenSearch collection,
make sure to use a vector collection and create a vector index to use for this application. This will
let you use the OpenSearch vector database capabilities for querying your data. To learn more,
seeAmazon OpenSearch Service’s vector database capabilities explained.

Why do I need to use a vector search collection, vector index, and add a vector field in my
OpenSearch Serverless colelction?

The vector search collection type in OpenSearch Serverless provides a similarity search capability
that is scalable and high performing. It streamlines building modern machine learning (ML)
augmented search experiences and generative artificial intelligence (AI) applications. For more
information, see Working with vector search collections.

What should I set as the dimension for my vector field?

Set the dimension of the vector field based on the embedding model that you want to use. Refer
to the following table, and confirm these values from the respective documentation.

Vector field dimensions

Amazon Bedrock vector embedding model
name

Output dimension support offered by the
model

Amazon Titan Text Embeddings V1 1,536

Amazon Titan Text Embeddings V2 1,024 (default), 384, 256

Amazon Titan Multimodal Embeddings G1 1,024 (default), 384, 256

Cohere Embed English 1,024

Cohere Embed Multilingual 1,024

Real-time vector embedding blueprints FAQ and troubleshooting 787

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html#API_runtime_InvokeModel_RequestBody
https://aws.amazon.com/blogs/big-data/amazon-opensearch-services-vector-database-capabilities-explained/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-vector-search.html?icmpid=docs_console_unmapped

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

What does the output look like in the configured OpenSearch index?

Every document in the OpenSearch index contains following fields:

• original_data: The data that was used to generate embeddings. For STRING type, it is the entire
message. For JSON object, it is the JSON object that was used for embeddings. It could be the
entire JSON in the message or specified fields in the JSON. For example, if name was selected to
be embedded from incoming messages, the output would look as follows:

"original_data": "{\"name\":\"John Doe\"}"

• embedded_data: A vector float array of embeddings generated by Amazon Bedrock

• date: UTC timestamp at which the document was stored in OpenSearch

Can I specify metadata fields to add to the document stored in the OpenSearch index?

No, currently, we do not support adding additional fields to the final document stored in the
OpenSearch index.

Should I expect duplicate entries in the OpenSearch index?

Depending on how you configured your application, you might see duplicate messages in the index.
One common reason is application restart. The application is configured by default to start reading
from the earliest message in the source topic. When you change the configuraiton, the application
restarts, and processes all messages in the topic again. To avoid re-processing, see How do I use
source.msk.starting.offset? and correctly set the starting offset for your application.

Can I send data to multiple OpenSearch indices?

No, the application supports storing data to a single OpenSearch index. To setup vectorization
output to multiple indices, you must deploy separate Managed Service for Apache Flink
applications.

Can I deploy multiple real-time vector embedding applications in a single AWS account?

Yes, you can deploy multiple real-time vector embedding Managed Service for Apache Flink
applications in a single AWS account if every application has a unique name.

Real-time vector embedding blueprints FAQ and troubleshooting 788

https://quip-amazon.com/0b6ZAIBsnSVq#temp:C:bPV2d49853149e54000ac324cc04
https://quip-amazon.com/0b6ZAIBsnSVq#temp:C:bPV2d49853149e54000ac324cc04

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Can multiple real-time vector embedding applications use the same data source or sink?

Yes, you can create multiple real-time vector embedding Managed Service for Apache Flink
applications that read data from the same topic(s) or store data in the same index.

Does the application support cross-account connectivity?

No, for the application to run successfully, the Amazon MSK cluster and the OpenSearch collection
must be in the same AWS account where you are trying to setup your Managed Service for Apache
Flink application.

Does the application support cross-Region connectivity?

No, the application only allows you to deploy an Managed Service for Apache Flink application with
an Amazon MSK cluster and an OpenSearch collection in the same Region of the Managed Service
for Apache Flink application.

Can my Amazon MSK cluster and OpenSearch collection be in different VPCs or subnets?

Yes, we support Amazon MSK cluster and OpenSearch collection in different VPCs and subnets as
long as they are in the same AWS account. See (General MSF troubleshooting) to make sure your
setup is correct.

What embedding models are supported by the application?

Currently, the application supports all models that are supported by Bedrock. These include:

• Amazon Titan Embeddings G1 - Text

• Amazon Titan Text Embeddings V2

• Amazon Titan Multimodal Embeddings G1

• Cohere Embed English

• Cohere Embed Multilingual

Can I fine-tune the performance of my application based on my workload?

Yes. The throughput of the application depends on a number of factors, all of which can be
controlled by the customers:

1. AWS MSF KPUs: The application is deployed with default parallelism factor 2 and parallelism
per KPU 1, with automatic scaling turned on. However, we recommend that you configure

Real-time vector embedding blueprints FAQ and troubleshooting 789

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

scaling for the Managed Service for Apache Flink application according to your workloads. For
more information, see Review Managed Service for Apache Flink application resources.

2. Amazon Bedrock: Based on the selected Amazon Bedrock on-demand model, different quotas
might apply. Review service quotas in Bedrock to see the workload that the service will be able
to handle. For more information, see Quotas for Amazon Bedrock.

3. Amazon OpenSearch Service: Additionally, in some situations, you might notice that
OpenSearch is the bottleneck in your pipeline. For scaling information, see OpenSearch scaling
Sizing Amazon OpenSearch Service domains.

What Amazon MSK authentication types are supported?

We only support the IAM MSK authentication type.

What is sink.os.bulkFlushIntervalMillis and how do I set it?

When sending data to Amazon OpenSearch Service, the bulk flush interval is the interval at which
the bulk request is run, regardless of the number of actions or the size of the request. The default
value is set to 1 millisecond.

While setting a flush interval can help to make sure that data is indexed timely, it can also lead to
increased overhead if set too low. Consider your use case and the importance of timely indexing
when choosing a flush interval.

When I deploy my Managed Service for Apache Flink application, from what point in the
Amazon MSK topic will it begin reading messages?

The application will start reading messages from the Amazon MSK topic at the offset specified by
the source.msk.starting.offset configuration set in the application’s runtime configuration.
If source.msk.starting.offset is not explicitly set, the default behavior of the application is
to start reading from the earliest available message in the topic.

How do I use source.msk.starting.offset?

Explicitly set source.msk.starting.offset to one of the following values, based on desired
behavior:

• EARLIEST: The default setting, which reads from oldest offset in the partition. This is a good
choice especially if:

Real-time vector embedding blueprints FAQ and troubleshooting 790

https://docs.aws.amazon.com/managed-flink/latest/java/how-resources.html
https://docs.aws.amazon.com/bedrock/latest/userguide/quotas.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/sizing-domains.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• You have newly created Amazon MSK topics and consumer applications.

• You need to replay data, so you can build or reconstruct state. This is relevant when
implementing the event sourcing pattern or when initializing a new service that requires a
complete view of the data history.

• LATEST: The Managed Service for Apache Flink application will read messages from the end of
the partition. We recommend this option if you only care about new messages being produced
and don't need to process historical data. In this setting, the consumer will ignore the existing
messages and only read new messages published by the upstream producer.

• COMMITTED: The Managed Service for Apache Flink application will start consuming messages
from the committed offset of the consuming group. If the committed offset doesn't exist, the
EARLIEST reset strategy will be used.

What chunking strategies are supported?

We are using the langchain library to chunk inputs. Chunking is only applied if the length of
the input is greater than the chosen maxSegmentSizeInChars. We support the following five
chunking types:

• SPLIT_BY_CHARACTER: Will fit as many characters as it can into each chunk where each chunk
length is no greater than maxSegmentSizeInChars. Doesn’t care about whitespace, so it can cut
off words.

• SPLIT_BY_WORD: Will find whitespace characters to chunk by. No words are cut off.

• SPLIT_BY_SENTENCE: Sentence boundaries are detected using the Apache OpenNLP library
with the English sentence model.

• SPLIT_BY_LINE: Will find new line characters to chunk by.

• SPLIT_BY_PARAGRAPH: Will find consecutive new line characters to chunk by.

The splitting strategies fall back according to the preceding order, where the larger chunking
strategies like SPLIT_BY_PARAGRAPH fall back to SPLIT_BY_CHARACTER. For example, when
using SPLIT_BY_LINE, if a line is too long then the line will be sub-chunked by sentence, where
each chunk will fit in as many sentences as it can. If there are any sentences that are too long, then
it will be chunked at the word-level. If a word is too long, then it will be split by character.

How do I read records in my vector datastore?

1. When source.msk.data.type is STRING

Real-time vector embedding blueprints FAQ and troubleshooting 791

https://js.langchain.com/v0.1/docs/get_started/introduction/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• original_data: The entire original string from the Amazon MSK message.

• embedded_data: Embedding vector created from chunk_data if it is not empty (chunking
applied) or created from original_data if no chunking was applied.

• chunk_data: Only present when the original data was chunked. Contains the chunk of the
original message that was used to create the embedding in embedded_data.

2. When source.msk.data.type is JSON

• original_data: The entire original JSON from the Amazon MSK message after JSON key
filtering is applied.

• embedded_data: Embedding vector created from chunk_data if it is not empty (chunking
applied) or created from original_data if no chunking was applied.

• chunk_key: Only present when the original data was chunked. Contains the JSON key that the
chunk is from in original_data. For example, it can look like jsonKey1.nestedJsonKeyA
for nested keys or metadata in the example of original_data.

• chunk_data: Only present when the original data was chunked. Contains the chunk of the
original message that was used to create the embedding in embedded_data.

Yes, you can read data from multiple Amazon MSK topics with this application. Data from all topics
must be of the same type (either STRING or JSON) or it might cause the application to fail. Data
from all topics is always stored in a single OpenSearch index.

Where can I find new updates to the source code?

Go to https://github.com/awslabs/real-time-vectorization-of-streaming-data/releases to check for
new releases.

Can I make a change to the AWS CloudFormation template and update the Managed Service for
Apache Flink application?

No, making a change to the AWS CloudFormation template does not update the Managed Service
for Apache Flink application. Any new change in AWS CloudFormation implies a new stack needs to
be deployed.

Will AWS monitor and maintain the application on my behalf?

No, AWS will not monitor, scale, update or patch this application on your behalf.

Real-time vector embedding blueprints FAQ and troubleshooting 792

https://github.com/awslabs/real-time-vectorization-of-streaming-data/releases

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Does this application move my data outside my AWS account?

All data read and stored by the Managed Service for Apache Flink application stays within your
AWS account and never leaves your account.

Real-time vector embedding blueprints - troubleshooting

Review the following troubleshooting topics about real-time vector embedding blueprints. For
more information about real-time vector embedding blueprints, see Real-time vector embedding
blueprints.

Troubleshooting topics

• My CloudFormation stack deployment has failed or rolled back. What can I do to fix it?

• I don't want my application to start reading messages from the beginning of the Amazon MSK
topics. What do I do?

• How do I know if there is an issue with my Managed Service for Apache Flink application and
how can I debug it?

• What are the key metrics that I should be monitoring for my Managed Service for Apache Flink
application?

My CloudFormation stack deployment has failed or rolled back. What can I do to fix it?

• Go to your CFN stack and find the reason for the stack failure. It could be related to missing
permissions, AWS resource name collisions, among other causes. Fix the root cause of the
deployment failure. For more information, see the CloudWatch troubleshooting guide.

• [Optional] There can only be one VPC endpoint per service per VPC. If you deployed multiple
real-time vector embedding blueprints to write to the Amazon OpenSearch Service collections
in the same VPC, they might be sharing VPC endpoints. These might either already be present
in your account for the VPC, or the first real-time vector embedding blueprint stack will create
VPC endpoints for Amazon Bedrock and Amazon OpenSearch Service that will be used by all
other stacks deployed in your account. If a stack fails, check if that stack created VPC endpoints
for Amazon Bedrock and Amazon OpenSearch Service and delete them if they are not used
anywhere else in your account. For steps for deleting VPC endpoints, see How do I safely delete
my application? (delete).

• There might be other services or applications in your account using the VPC endpoint. Deleting it
might create network disruption for other services. Be careful in deleting these endpoints.

Real-time vector embedding blueprints FAQ and troubleshooting 793

https://docs.aws.amazon.com/msk/latest/developerguide/ai-vector-embedding-integration-learn-more.html
https://docs.aws.amazon.com/msk/latest/developerguide/ai-vector-embedding-integration-learn-more.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html#basic-ts-guide
https://quip-amazon.com/0b6ZAIBsnSVq#temp:C:bPV8fc43821a8e74a11836825b86
https://quip-amazon.com/0b6ZAIBsnSVq#temp:C:bPV8fc43821a8e74a11836825b86

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

I don't want my application to start reading messages from the beginning of the Amazon MSK
topics. What do I do?

You must explicitly set source.msk.starting.offset to one of the following values,
depending on the desired behavior:

• Earliest offset: The oldest offset in the partition.

• Latest offset: Consumers will read messages from the end of the partition.

• Committed offset: Read from the last message the consumer processed within a partition.

How do I know if there is an issue with my Managed Service for Apache Flink application and
how can I debug it?

Use the Managed Service for Apache Flink troubleshooting guide to debug Managed Service for
Apache Flink related issues with your application.

What are the key metrics that I should be monitoring for my Managed Service for Apache Flink
application?

• All metrics available for a regular Managed Service for Apache Flink application can help you
monitor your application. For more information, see Metrics and dimensions in Managed Service
for Apache Flink.

• To monitor Amazon Bedrock metrics, see Amazon CloudWatch metrics for Amazon Bedrock.

• We have added two new metrics for monitoring performance of generating embeddings. Find
them under the EmbeddingGeneration operation name in CloudWatch. The two metrics are:

• BedrockTitanEmbeddingTokenCount: Number of tokens present in a single request to
Amazon Bedrock.

• BedrockEmbeddingGenerationLatencyMs: Reports the time taken to send and receive a
response from Amazon Bedrock for generating embeddings, in milliseconds.

• For Amazon OpenSearch Service serverless collections, you can use metrics such as
IngestionDataRate, IngestionDocumentErrors and others. For more information, see
Monitoring OpenSearch Serverless with Amazon CloudWatch.

• For OpenSearch provisioned metrics, see Monitoring OpenSearch cluster metrics with Amazon
CloudWatch.

Real-time vector embedding blueprints FAQ and troubleshooting 794

https://docs.aws.amazon.com/managed-flink/latest/java/troubleshooting-runtime.html
https://docs.aws.amazon.com/managed-flink/latest/java/metrics-dimensions.html
https://docs.aws.amazon.com/managed-flink/latest/java/metrics-dimensions.html
https://docs.aws.amazon.com/bedrock/latest/userguide/monitoring.html#runtime-cloudwatch-metrics
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/managedomains-cloudwatchmetrics.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/managedomains-cloudwatchmetrics.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Runtime troubleshooting

This section contains information about diagnosing and fixing runtime issues with your Managed
Service for Apache Flink application.

Topics

• Troubleshooting tools

• Application issues

• Application is restarting

• Throughput is too slow

• Unbounded state growth

• I/O bound operators

• Upstream or source throttling from a Kinesis data stream

• Checkpoints

• Checkpointing is timing out

• Checkpoint failure for Apache Beam application

• Backpressure

• Data skew

• State skew

• Integrate with resources in different Regions

Troubleshooting tools

The primary tool for detecting application issues is CloudWatch alarms. Using CloudWatch alarms,
you can set thresholds for CloudWatch metrics that indicate error or bottleneck conditions in your
application. For information about recommended CloudWatch alarms, see Use CloudWatch Alarms
with Amazon Managed Service for Apache Flink.

Application issues

This section contains solutions for error conditions that you may encounter with your Managed
Service for Apache Flink application.

Runtime troubleshooting 795

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Topics

• Application is stuck in a transient status

• Snapshot creation fails

• Cannot access resources in a VPC

• Data is lost when writing to an Amazon S3 bucket

• Application is in the RUNNING status but isn't processing data

• Snapshot, application update, or application stop error:
InvalidApplicationConfigurationException

• java.nio.file.NoSuchFileException: /usr/local/openjdk-8/lib/security/cacerts

Application is stuck in a transient status

If your application stays in a transient status (STARTING, UPDATING, STOPPING, or AUTOSCALING),
you can stop your application by using the StopApplication action with the Force parameter set to
true. You can't force stop an application in the DELETING status. Alternatively, if the application
is in the UPDATING or AUTOSCALING status, you can roll it back to the previous running version.
When you roll back an application, it loads state data from the last successful snapshot. If the
application has no snapshots, Managed Service for Apache Flink rejects the rollback request. For
more information about rolling back an application, see RollbackApplication action.

Note

Force-stopping your application may lead to data loss or duplication. To prevent data loss
or duplicate processing of data during application restarts, we recommend you to take
frequent snapshots of your application.

Causes for stuck applications include the following:

• Application state is too large: Having an application state that is too large or too persistent
can cause the application to become stuck during a checkpoint or snapshot operation. Check
your application's lastCheckpointDuration and lastCheckpointSize metrics for steadily
increasing values or abnormally high values.

• Application code is too large: Verify that your application JAR file is smaller than 512 MB. JAR
files larger than 512 MB are not supported.

Application issues 796

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_RollbackApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Application snapshot creation fails: Managed Service for Apache Flink takes a snapshot of the
application during an UpdateApplication or StopApplication request. The service then
uses this snapshot state and restores the application using the updated application configuration
to provide exactly-once processing semantics.If automatic snapshot creation fails, see Snapshot
creation fails following.

• Restoring from a snapshot fails: If you remove or change an operator in an application update
and attempt to restore from a snapshot, the restore will fail by default if the snapshot contains
state data for the missing operator. In addition, the application will be stuck in either the
STOPPED or UPDATING status. To change this behavior and allow the restore to succeed, change
the AllowNonRestoredState parameter of the application's FlinkRunConfiguration to true. This
will allow the resume operation to skip state data that cannot be mapped to the new program.

• Application initialization taking longer: Managed Service for Apache Flink uses an internal
timeout of 5 minutes (soft setting) while waiting for a Flink job to start. If your job is failing to
start within this timeout, you will see a CloudWatch log as follows:

Flink job did not start within a total timeout of 5 minutes for application: %s under
 account: %s

If you encounter the above error, it means that your operations defined under Flink job’s main
method are taking more than 5 minutes, causing the Flink job creation to time out on the
Managed Service for Apache Flink end. We suggest you check the Flink JobManager logs as well
as your application code to see if this delay in the main method is expected. If not, you need to
take steps to address the issue so it completes in under 5 minutes.

You can check your application status using either the ListApplications or the
DescribeApplication actions.

Snapshot creation fails

The Managed Service for Apache Flink service can't take a snapshot under the following
circumstances:

• The application exceeded the snapshot limit. The limit for snapshots is 1,000. For more
information, see Manage application backups using snapshots.

• The application doesn't have permissions to access its source or sink.

• The application code isn't functioning properly.

Application issues 797

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_FlinkRunConfiguration.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ListApplications.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• The application is experiencing other configuration issues.

If you get an exception while taking a snapshot during an application update or while
stopping the application, set the SnapshotsEnabled property of your application's
ApplicationSnapshotConfiguration to false and retry the request.

Snapshots can fail if your application's operators are not properly provisioned. For information
about tuning operator performance, see Operator scaling.

After the application returns to a healthy state, we recommend that you set the application's
SnapshotsEnabled property to true.

Cannot access resources in a VPC

If your application uses a VPC running on Amazon VPC, do the following to verify that your
application has access to its resources:

• Check your CloudWatch logs for the following error. This error indicates that your application
cannot access resources in your VPC:

org.apache.kafka.common.errors.TimeoutException: Failed to update metadata after
 60000 ms.

If you see this error, verify that your route tables are set up correctly, and that your connectors
have the correct connection settings.

For information about setting up and analyzing CloudWatch logs, see Logging and monitoring in
Amazon Managed Service for Apache Flink.

Data is lost when writing to an Amazon S3 bucket

Some data loss might occur when writing output to an Amazon S3 bucket using Apache Flink
version 1.6.2. We recommend using the latest supported version of Apache Flink when using
Amazon S3 for output directly. To write to an Amazon S3 bucket using Apache Flink 1.6.2, we
recommend using Firehose. For more information about using Firehose with Managed Service for
Apache Flink, see Firehose sink.

Application issues 798

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ApplicationSnapshotConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Application is in the RUNNING status but isn't processing data

You can check your application status by using either the ListApplications or the
DescribeApplication actions. If your application enters the RUNNING status but isn't writing
data to your sink, you can troubleshoot the issue by adding an Amazon CloudWatch log stream to
your application. For more information, see Work with application CloudWatch logging options.
The log stream contains messages that you can use to troubleshoot application issues.

Snapshot, application update, or application stop error:
InvalidApplicationConfigurationException

An error similar to the following might occur during a snapshot operation, or during an operation
that creates a snapshot, such as updating or stopping an application:

An error occurred (InvalidApplicationConfigurationException) when calling the
 UpdateApplication operation:

Failed to take snapshot for the application xxxx at this moment. The application is
 currently experiencing downtime.
Please check the application's CloudWatch metrics or CloudWatch logs for any possible
 errors and retry the request.
You can also retry the request after disabling the snapshots in the Managed Service for
 Apache Flink console or by updating
the ApplicationSnapshotConfiguration through the AWS SDK

This error occurs when the application is unable to create a snapshot.

If you encounter this error during a snapshot operation or an operation that creates a snapshot, do
the following:

• Disable snapshots for your application. You can do this either in the Managed Service for Apache
Flink console, or by using the SnapshotsEnabledUpdate parameter of the UpdateApplication
action.

• Investigate why snapshots cannot be created. For more information, see Application is stuck in a
transient status.

• Reenable snapshots when the application returns to a healthy state.

Application issues 799

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ListApplications.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplication.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

java.nio.file.NoSuchFileException: /usr/local/openjdk-8/lib/security/cacerts

The location of the SSL truststore was updated in a previous deployment. Use the following value
for the ssl.truststore.location parameter instead:

/usr/lib/jvm/java-11-amazon-corretto/lib/security/cacerts

Application is restarting

If your application is not healthy, its Apache Flink job continually fails and restarts. This section
describes symptoms and troubleshooting steps for this condition.

Symptoms

This condition can have the following symptoms:

• The FullRestarts metric is not zero. This metric represents the number of times the
application's job has restarted since you started the application.

• The Downtime metric is not zero. This metric represents the number of milliseconds that the
application is in the FAILING or RESTARTING status.

• The application log contains status changes to RESTARTING or FAILED. You can query your
application log for these status changes using the following CloudWatch Logs Insights query:
Analyze errors: Application task-related failures.

Causes and solutions

The following conditions may cause your application to become unstable and repeatedly restart:

• Operator is throwing an exception: If any exception in an operator in your application is
unhandled, the application fails over (by interpreting that the failure cannot be handled by
operator). The application restarts from the latest checkpoint to maintain "exactly-once"
processing semantics. As a result, Downtime is not zero during these restart periods. In order to
prevent this from happening, we recommend that you handle any retryable exceptions in the
application code.

You can investigate the causes of this condition by querying your application logs for changes
from your application's state from RUNNING to FAILED. For more information, see the section
called “Analyze errors: Application task-related failures”.

Application is restarting 800

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Kinesis data streams are not properly provisioned: If a source or sink for
your application is a Kinesis data stream, check the metrics for the stream for
ReadProvisionedThroughputExceeded or WriteProvisionedThroughputExceeded
errors.

If you see these errors, you can increase the available throughput for the Kinesis stream by
increasing the stream's number of shards. For more information, see How do I change the
number of open shards in Kinesis Data Streams?.

• Other sources or sinks are not properly provisioned or available: Verify that your application is
correctly provisioning sources and sinks. Check that any sources or sinks used in the application
(such as other AWS services, or external sources or destinations) are well provisioned, are not
experiencing read or write throttling, or are periodically unavailable.

If you are experiencing throughput-related issues with your dependent services, either increase
resources available to those services, or investigate the cause of any errors or unavailability.

• Operators are not properly provisioned: If the workload on the threads for one of the operators
in your application is not correctly distributed, the operator can become overloaded and the
application can crash. For information about tuning operator parallelism, see Manage operator
scaling properly.

• Application fails with DaemonException: This error appears in your application log if you are
using a version of Apache Flink prior to 1.11. You may need to upgrade to a later version of
Apache Flink so that a KPL version of 0.14 or later is used.

• Application fails with TimeoutException, FlinkException, or RemoteTransportException:
These errors may appear in your application log if your task managers are crashing. If your
application is overloaded, your task managers can experience CPU or memory resource pressure,
causing them to fail.

These errors may look like the following:

• java.util.concurrent.TimeoutException: The heartbeat of JobManager with
id xxx timed out

• org.apache.flink.util.FlinkException: The assigned slot xxx was removed

• org.apache.flink.runtime.io.network.netty.exception.RemoteTransportException:
Connection unexpectedly closed by remote task manager

To troubleshoot this condition, check the following:

• Check your CloudWatch metrics for unusual spikes in CPU or memory usage.
Application is restarting 801

https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html
https://aws.amazon.com/premiumsupport/knowledge-center/kinesis-data-streams-open-shards/
https://aws.amazon.com/premiumsupport/knowledge-center/kinesis-data-streams-open-shards/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Check your application for throughput issues. For more information, see Troubleshoot
performance issues.

• Examine your application log for unhandled exceptions that your application code is raising.

• Application fails with JaxbAnnotationModule Not Found error: This error occurs if your
application uses Apache Beam, but doesn't have the correct dependencies or dependency
versions. Managed Service for Apache Flink applications that use Apache Beam must use the
following versions of dependencies:

<jackson.version>2.10.2</jackson.version>
...
<dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-jaxb-annotations</artifactId>
 <version>2.10.2</version>
</dependency>

If you do not provide the correct version of jackson-module-jaxb-annotations as an
explicit dependency, your application loads it from the environment dependencies, and since the
versions do not match, the application crashes at runtime.

For more information about using Apache Beam with Managed Service for Apache Flink, see Use
CloudFormation.

• Application fails with java.io.IOException: Insufficient number of network buffers

This happens when an application does not have enough memory allocated for network buffers.
Network buffers facilitate communication between subtasks. They are used to store records
before transmission over a network, and to store incoming data before dissecting it into records
and handing them to subtasks. The number of network buffers required scales directly with the
parallelism and complexity of your job graph. There are a number of approaches to mitigate this
issue:

• You can configure a lower parallelismPerKpu so that there is more memory allocated per-
subtask and network buffers. Note that lowering parallelismPerKpu will increase KPU and
therefore cost. To avoid this, you can keep the same amount of KPU by lowering parallelism by
the same factor.

• You can simplify your job graph by reducing the number of operators or chaining them so that
fewer buffers are needed.

Application is restarting 802

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Otherwise, you can reach out to https://aws.amazon.com/premiumsupport/ for custom
network buffer configuration.

Throughput is too slow

If your application is not processing incoming streaming data quickly enough, it will perform
poorly and become unstable. This section describes symptoms and troubleshooting steps for this
condition.

Symptoms

This condition can have the following symptoms:

• If the data source for your application is a Kinesis stream, the stream's millisbehindLatest
metric continually increases.

• If the data source for your application is an Amazon MSK cluster, the cluster's consumer lag
metrics continually increase. For more information, see Consumer-Lag Monitoring in the
Amazon MSK Developer Guide.

• If the data source for your application is a different service or source, check any available
consumer lag metrics or data available.

Causes and solutions

There can be many causes for slow application throughput. If your application is not keeping up
with input, check the following:

• If throughput lag is spiking and then tapering off, check if the application is restarting. Your
application will stop processing input while it restarts, causing lag to spike. For information
about application failures, see Application is restarting.

• If throughput lag is consistent, check to see if your application is optimized for performance. For
information on optimizing your application's performance, see Troubleshoot performance issues.

• If throughput lag is not spiking but continuously increasing, and your application is optimized
for performance, you must increase your application resources. For information on increasing
application resources, see Implement application scaling.

• If your application reads from a Kafka cluster in a different Region and FlinkKafkaConsumer
or KafkaSource are mostly idle (high idleTimeMsPerSecond or low CPUUtilization)

Throughput is too slow 803

https://docs.aws.amazon.com/msk/latest/developerguide/consumer-lag.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

despite high consumer lag, you can increase the value for receive.buffer.byte, such as
2097152. For more information, see the high latency environment section in Custom MSK
configurations.

For troubleshooting steps for slow throughput or consumer lag increasing in the application
source, see Troubleshoot performance issues.

Unbounded state growth

If your application is not properly disposing of outdated state information, it will continually
accumulate and lead to application performance or stability issues. This section describes
symptoms and troubleshooting steps for this condition.

Symptoms

This condition can have the following symptoms:

• The lastCheckpointDuration metric is gradually increasing or spiking.

• The lastCheckpointSize metric is gradually increasing or spiking.

Causes and solutions

The following conditions may cause your application to accumulate state data:

• Your application is retaining state data longer than it is needed.

• Your application uses window queries with too long a duration.

• You did not set TTL for your state data. For more information, see State Time-To-Live (TTL) in
the Apache Flink Documentation.

• You are running an application that depends on Apache Beam version 2.25.0 or newer. You can
opt out of the new version of the read transform by extending your BeamApplicationProperties
with the key experiments and value use_deprecated_read. For more information, see the
Apache Beam Documentation.

Sometimes applications are facing ever growing state size growth, which is not sustainable in the
long term (a Flink application runs indefinitely, after all). Sometimes, this can be traced back to
applications storing data in state and not aging out old information properly. But sometimes there
are just unreasonable expectations on what Flink can deliver. Applications can use aggregations

Unbounded state growth 804

https://docs.aws.amazon.com/msk/latest/developerguide/msk-configuration-properties.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-configuration-properties.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/fault-tolerance/state/#state-time-to-live-ttl
https://docs.aws.amazon.com/managed-flink/latest/java/examples-beam.html#examples-beam-configure
https://beam.apache.org/blog/beam-2.25.0/#highlights

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

over large time windows spanning days or even weeks. Unless AggregateFunctions are used, which
allow incremental aggregations, Flink needs to keep the events of the entire window in state.

Moreover, when using process functions to implement custom operators, the application needs to
remove data from state that is no longer required for the business logic. In that case, state time-
to-live can be used to automatically age out data based on processing time. Managed Service for
Apache Flink is using incremental checkpoints and thus state ttl is based on RocksDB compaction.
You can only observe an actual reduction in state size (indicated by checkpoint size) after a
compaction operation occurs. In particular for checkpoint sizes below 200 MB, it's unlikely that
you observe any checkpoint size reduction as a result of state expiring. However, savepoints are
based on a clean copy of the state that does not contain old data, so you can trigger a snapshot in
Managed Service for Apache Flink to force the removal of outdated state.

For debugging purposes, it can make sense to disable incremental checkpoints to verify more
quickly that the checkpoint size actually decreases or stabilizes (and avoid the effect of compaction
in RocksBS). This requires a ticket to the service team, though.

I/O bound operators

It's best to avoid dependencies to external systems on the data path. It's often much more
performant to keep a reference data set in state rather than querying an external system to enrich
individual events. However, sometimes there are dependencies that cannot be easily moved to
state, e.g., if you want to enrich events with a machine learning model that is hosted on Amazon
Sagemaker.

Operators that are interfacing with external systems over the network can become a bottleneck
and cause backpressure. It is highly recommended to use AsyncIO to implement the functionality,
to reduce the wait time for individual calls and avoid the entire application slowing down.

Moreover, for applications with I/O bound operators it can also make sense to increase the
ParallelismPerKPU setting of the Managed Service for Apache Flink application. This configuration
describes the number of parallel subtasks an application can perform per Kinesis Processing Unit
(KPU). By increasing the value from the default of 1 to, say, 4, the application leverages the same
resources (and has the same cost) but can scale to 4 times the parallelism. This works well for I/O
bound applications, but it causes additional overhead for applications that are not I/O bound.

Upstream or source throttling from a Kinesis data stream

Symptom: The application is encountering LimitExceededExceptions from their upstream
source Kinesis data stream.

I/O bound operators 805

https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/windows/#aggregatefunction
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/fault-tolerance/state/#state-time-to-live-ttl
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/fault-tolerance/state/#state-time-to-live-ttl
https://github.com/facebook/rocksdb/wiki/Compaction
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/asyncio/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ParallelismConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Potential Cause: The default setting for the Apache Flink library Kinesis connector is set to read
from the Kinesis data stream source with a very aggressive default setting for the maximum
number of records fetched per GetRecords call. Apache Flink is configured by default to fetch
10,000 records per GetRecords call (this call is made by default every 200 ms), although the limit
per shard is only 1,000 records.

This default behavior can lead to throttling when attempting to consume from the Kinesis data
stream, which will affect the applications performance and stability.

You can confirm this by checking the CloudWatch ReadProvisionedThroughputExceeded
metric and seeing prolonged or sustained periods where this metric is greater than zero.

You can also see this in CloudWatch logs for your Amazon Managed Service for Apache Flink
application by observing continued LimitExceededException errors.

Resolution: You can do one of two things to resolve this scenario:

• Lower the default limit for the number of records fetched per GetRecords call

• Enable Adaptive Reads in your Amazon Managed Service for Apache Flink application. For more
information on the Adaptive Reads feature, see SHARD_USE_ADAPTIVE_READS

Checkpoints

Checkpoints are Flink’s mechanism to ensure that the state of an application is fault tolerant. The
mechanism allows Flink to recover the state of operators if the job fails and gives the application
the same semantics as failure-free execution. With Managed Service for Apache Flink, the state of
an application is stored in RocksDB, an embedded key/value store that keeps its working state on
disk. When a checkpoint is taken the state is also uploaded to Amazon S3 so even if the disk is lost
then the checkpoint can be used to restore the applications state.

For more information, see How does State Snapshotting Work?.

Checkpointing stages

For a checkpointing operator subtask in Flink there are 5 main stages:

• Waiting [Start Delay] – Flink uses checkpoint barriers that get inserted into the stream so time in
this stage is the time the operator waits for the checkpoint barrier to reach it.

• Alignment [Alignment Duration] – In this stage the subtask has reached one barrier but it’s
waiting for barriers from other input streams.

Checkpoints 806

https://nightlies.apache.org/flink/flink-docs-release-1.10/api/java/org/apache/flink/streaming/connectors/kinesis/config/ConsumerConfigConstants.html#SHARD_USE_ADAPTIVE_READS
https://nightlies.apache.org/flink/flink-docs-master/docs/learn-flink/fault_tolerance/#how-does-state-snapshotting-work

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Sync checkpointing [Sync Duration] – This stage is when the subtask actually snapshots the
state of the operator and blocks all other activity on the subtask.

• Async checkpointing [Async Duration] – The majority of this stage is the subtask uploading the
state to Amazon S3. During this stage, the subtask is no longer blocked and can process records.

• Acknowledging – This is usually a short stage and is simply the subtask sending an
acknowledgement to the JobManager and also performing any commit messages (e.g. with
Kafka sinks).

Each of these stages (apart from Acknowledging) maps to a duration metric for checkpoints that is
available from the Flink WebUI, which can help isolate the cause of the long checkpoint.

To see an exact definition of each of the metrics available on checkpoints, go to History Tab.

Investigating

When investigating long checkpoint duration, the most important thing to determine is the
bottleneck for the checkpoint, i.e., what operator and subtask is taking the longest to checkpoint
and which stage of that subtask is taking an extended period of time. This can be determined
using the Flink WebUI under the jobs checkpoint task. Flink’s Web interface provides data and
information that helps to investigate checkpointing issues. For a full breakdown, see Monitoring
Checkpointing.

The first thing to look at is the End to End Duration of each operator in the Job graph to
determine which operator is taking long to checkpoint and warrants further investigation. Per the
Flink documentation, the definition of the duration is:

The duration from the trigger timestamp until the latest acknowledgement (or n/a if no
acknowledgement received yet). This end to end duration for a complete checkpoint is determined by
the last subtask that acknowledges the checkpoint. This time is usually larger than single subtasks
need to actually checkpoint the state.

The other durations for the checkpoint also gives more fine-grained information as to where the
time is being spent.

If the Sync Duration is high then this indicates something is happening during the snapshotting.
During this stage snapshotState() is called for classes that implement the snapshotState
interface; this can be user code so thread-dumps can be useful for investigating this.

Checkpoints 807

https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/ops/monitoring/checkpoint_monitoring/#history-tab
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/ops/monitoring/checkpoint_monitoring/
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/ops/monitoring/checkpoint_monitoring/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

A long Async Duration would suggest that a lot of time is being spent on uploading the state
to Amazon S3. This can occur if the state is large or if there is a lot of state files that are being
uploaded. If this is the case it is worth investigating how state is being used by the application
and ensuring that the Flink native data structures are being used where possible (Using Keyed
State). Managed Service for Apache Flink configures Flink in such a way as to minimize the number
of Amazon S3 calls to ensure this doesn’t get too long. Following is an example of an operator's
checkpointing statistics. It shows that the Async Duration is relatively long compared to the
preceding operator checkpointing statistics.

The Start Delay being high would show that the majority of the time is being spent on waiting for
the checkpoint barrier to reach the operator. This indicates that the application is taking a while
to process records, meaning the barrier is flowing through the job graph slowly. This is usually the
case if the Job is backpressured or if an operator(s) is constantly busy. Following is an example of a
JobGraph where the second KeyedProcess operator is busy.

Checkpoints 808

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/state/#using-keyed-state
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/state/#using-keyed-state

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can investigate what is taking so long by either using Flink Flame Graphs or TaskManager
thread dumps. Once the bottle-neck has been identified, it can be investigated further using either
Flame-graphs or thread-dumps.

Thread dumps

Thread dumps are another debugging tool that is at a slightly lower level than flame graphs. A
thread dump outputs the execution state of all threads at a point in time. Flink takes a JVM thread
dump, which is an execution state of all threads within the Flink process. The state of a thread is
presented by a stack trace of the thread as well as some additional information. Flame graphs are
actually built using multiple stack traces taken in quick succession. The graph is a visualisation
made from these traces that makes it easy to identify the common code paths.

"KeyedProcess (1/3)#0" prio=5 Id=1423 RUNNABLE
 at app//scala.collection.immutable.Range.foreachmVcsp(Range.scala:154)
 at $line33.$read$$iw$$iw$ExpensiveFunction.processElement(<console>>19)
 at $line33.$read$$iw$$iw$ExpensiveFunction.processElement(<console>:14)
 at app//
org.apache.flink.streaming.api.operators.KeyedProcessOperator.processElement(KeyedProcessOperator.java:83)
 at app//org.apache.flink.streaming.runtime.tasks.OneInputStreamTask
$StreamTaskNetworkOutput.emitRecord(OneInputStreamTask.java:205)
 at app//
org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.processElement(AbstractStreamTaskNetworkInput.java:134)
 at app//
org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.emitNext(AbstractStreamTaskNetworkInput.java:105)
 at app//
org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:66)
 ...

Above is a snippet of a thread dump taken from the Flink UI for a single thread. The first line
contains some general information about this thread including:

• The thread name KeyedProcess (1/3)#0

• Priority of the thread prio=5

• A unique thread Id Id=1423

• Thread state RUNNABLE

The name of a thread usually gives information as to the general purpose of the thread. Operator
threads can be identified by their name since operator threads have the same name as the

Checkpoints 809

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

operator, as well as an indication of which subtask it is related to, e.g., the KeyedProcess (1/3)#0
thread is from the KeyedProcess operator and is from the 1st (out of 3) subtask.

Threads can be in one of a few states:

• NEW – The thread has been created but has not yet been processed

• RUNNABLE – The thread is execution on the CPU

• BLOCKED – The thread is waiting for another thread to release it’s lock

• WAITING – The thread is waiting by using a wait(), join(), or park() method

• TIMED_WAITING – The thread is waiting by using a sleep, wait, join or park method, but with a
maximum wait time.

Note

In Flink 1.13, the maximum depth of a single stacktrace in the thread dump is limited to 8.

Note

Thread dumps should be the last resort for debugging performance issues in a Flink
application as they can be challenging to read, require multiple samples to be taken and
manually analysed. If at all possible it is preferable to use flame graphs.

Thread dumps in Flink

In Flink, a thread dump can be taken by choosing the Task Managers option on the left navigation
bar of the Flink UI, selecting a specific task manager, and then navigating to the Thread Dump
tab. The thread dump can be downloaded, copied to your favorite text editor (or thread dump
analyzer), or analyzed directly inside the text view in the Flink Web UI (however, this last option can
be a bit clunky.

To determine which Task Manager to take a thread dump of the TaskManagers tab can be used
when a particular operator is chosen. This shows that the operator is running on different subtasks
of an operator and can run on different Task Managers.

Checkpoints 810

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The dump will be comprised of multiple stack traces. However when investigating the dump the
ones related to an operator are the most important. These can easily be found since operator
threads have the same name as the operator, as well as an indication of which subtask it is related
to. For example the following stack trace is from the KeyedProcess operator and is the first subtask.

"KeyedProcess (1/3)#0" prio=5 Id=595 RUNNABLE
 at app//scala.collection.immutable.Range.foreachmVcsp(Range.scala:155)
 at $line360.$read$$iw$$iw$ExpensiveFunction.processElement(<console>:19)
 at $line360.$read$$iw$$iw$ExpensiveFunction.processElement(<console>:14)
 at app//
org.apache.flink.streaming.api.operators.KeyedProcessOperator.processElement(KeyedProcessOperator.java:83)
 at app//org.apache.flink.streaming.runtime.tasks.OneInputStreamTask
$StreamTaskNetworkOutput.emitRecord(OneInputStreamTask.java:205)
 at app//
org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.processElement(AbstractStreamTaskNetworkInput.java:134)
 at app//
org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.emitNext(AbstractStreamTaskNetworkInput.java:105)
 at app//
org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:66)
 ...

This can become confusing if there are multiple operators with the same name but we can name
operators to get around this. For example:

....

.process(new ExpensiveFunction).name("Expensive function")

Checkpoints 811

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flame graphs

Flame graphs are a useful debugging tool that visualize the stack traces of the targeted code,
which allows the most frequent code paths to be identified. They are created by sampling stack
traces a number of times. The x-axis of a flame graph shows the different stack profiles, while
the y-axis shows the stack depth, and calls in the stack trace. A single rectangle in a flame graph
represents on stack frame, and the width of a frame shows how frequently it appears in the stacks.
For more details about flame graphs and how to use them, see Flame Graphs.

In Flink, the flame graph for an operator can be accessed via the Web UI by selecting an operator
and then choosing the FlameGraph tab. Once enough samples have been collected the flamegraph
will be displayed. Following is the FlameGraph for the ProcessFunction that was taking a lot of
time to checkpoint.

This is a very simple flame graph and shows that all the CPU time is being spent within a foreach
look within the processElement of the ExpensiveFunction operator. You also get the line number
to help determine where in the code execution is taking place.

Checkpointing is timing out

If your application is not optimized or properly provisioned, checkpoints can fail. This section
describes symptoms and troubleshooting steps for this condition.

Symptoms

If checkpoints fail for your application, the numberOfFailedCheckpoints will be greater than
zero.

Checkpointing is timing out 812

https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/ops/debugging/flame_graphs/
https://www.brendangregg.com/flamegraphs.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Checkpoints can fail due to either direct failures, such as application errors, or due to transient
failures, such as running out of application resources. Check your application logs and metrics for
the following symptoms:

• Errors in your code.

• Errors accessing your application's dependent services.

• Errors serializing data. If the default serializer can't serialize your application data, the
application will fail. For information about using a custom serializer in your application, see Data
Types and Serialization in the Apache Flink Documentation.

• Out of Memory errors.

• Spikes or steady increases in the following metrics:

• heapMemoryUtilization

• oldGenerationGCTime

• oldGenerationGCCount

• lastCheckpointSize

• lastCheckpointDuration

For more information about monitoring checkpoints, see Monitoring Checkpointing in the Apache
Flink Documentation.

Causes and solutions

Your application log error messages show the cause for direct failures. Transient failures can have
the following causes:

• Your application has insufficient KPU provisioning. For information about increasing application
provisioning, see Implement application scaling.

• Your application state size is too large. You can monitor your application state size using the
lastCheckpointSize metric.

• Your application's state data is unequally distributed between keys. If your application uses the
KeyBy operator, ensure that your incoming data is being divided equally between keys. If most
of the data is being assigned to a single key, this creates a bottleneck that causes failures.

• Your application is experiencing memory or garbage collection backpressure. Monitor
your application's heapMemoryUtilization, oldGenerationGCTime, and
oldGenerationGCCount for spikes or steadily increasing values.

Checkpointing is timing out 813

https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/types_serialization/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/fault-tolerance/serialization/types_serialization/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/monitoring/checkpoint_monitoring/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Checkpoint failure for Apache Beam application

If your Beam application is configured with shutdownSourcesAfterIdleMs set to 0ms, checkpoints
can fail to trigger because tasks are in "FINISHED" state. This section describes symptoms and
resolution for this condition.

Symptom

Go to your Managed Service for Apache Flink application CloudWatch logs and check if the
following log message has been logged. The following log message indicates that checkpoint
failed to trigger as some tasks has been finished.

 {
 "locationInformation":
 "org.apache.flink.runtime.checkpoint.CheckpointCoordinator.onTriggerFailure(CheckpointCoordinator.java:888)",
 "logger": "org.apache.flink.runtime.checkpoint.CheckpointCoordinator",
 "message": "Failed to trigger checkpoint for job your job ID since some
 tasks of job your job ID has been finished, abort the checkpoint Failure reason: Not
 all required tasks are currently running.",
 "threadName": "Checkpoint Timer",
 "applicationARN": your application ARN,
 "applicationVersionId": "5",
 "messageSchemaVersion": "1",
 "messageType": "INFO"
 }

This can also be found on Flink dashboard where some tasks have entered "FINISHED" state, and
checkpointing is not possible anymore.

Checkpoint failure for Apache Beam 814

https://beam.apache.org/documentation/runners/flink/#:~:text=shutdownSourcesAfterIdleMs

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Cause

shutdownSourcesAfterIdleMs is a Beam config variable that shuts down sources which have been
idle for the configured time of milliseconds. Once a source has been shut down, checkpointing is
not possible anymore. This could lead to checkpoint failure.

One of the causes for tasks entering "FINISHED" state is when shutdownSourcesAfterIdleMs is set
to 0ms, which means that tasks that are idle will be shutdown immediately.

Solution

To prevent tasks from entering "FINISHED" state immediately, set shutdownSourcesAfterIdleMs to
Long.MAX_VALUE. This can be done in two ways:

• Option 1: If your beam configuration is set in your Managed Service for Apache Flink application
configuration page, then you can add a new key value pair to set shutdpwnSourcesAfteridleMs as
follows:

• Option 2: If your beam configuration is set in your JAR file, then you can set
shutdownSourcesAfterIdleMs as follows:

 FlinkPipelineOptions options =
 PipelineOptionsFactory.create().as(FlinkPipelineOptions.class); // Initialize Beam
 Options object

 options.setShutdownSourcesAfterIdleMs(Long.MAX_VALUE); // set
 shutdownSourcesAfterIdleMs to Long.MAX_VALUE
 options.setRunner(FlinkRunner.class);

 Pipeline p = Pipeline.create(options); // attach specified
 options to Beam pipeline

Checkpoint failure for Apache Beam 815

https://issues.apache.org/jira/browse/FLINK-2491

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Backpressure

Flink uses backpressure to adapt the processing speed of individual operators.

The operator can struggle to keep up processing the message volume it receives for many reasons.
The operation may require more CPU resources than the operator has available, The operator may
wait for I/O operations to complete. If an operator cannot process events fast enough, it build
backpressure in the upstream operators feeding into the slow operator. This causes the upstream
operators to slow down, which can further propagate the backpressure to the source and cause
the source to adapt to the overall throughput of the application by slowing down as well. You
can find a deeper description of backpressure and how it works at How Apache Flink™ handles
backpressure.

Knowing which operators in an applications are slow gives you crucial information to understand
the root cause of performance problems in the application. Backpressure information is exposed
through the Flink Dashboard. To identify the slow operator, look for the operator with a high
backpressure value that is closest to a sink (operator B in the following example). The operator
causing the slowness is then one of the downstream operators (operator C in the example). B could
process events faster, but is backpressured as it cannot forward the output to the actual slow
operator C.

A (backpressured 93%) -> B (backpressured 85%) -> C (backpressured 11%) -> D
 (backpressured 0%)

Once you have identified the slow operator, try to understand why it's slow. There could be a
myriad of reasons and sometimes it's not obvious what's wrong and can require days of debugging
and profiling to resolve. Following are some obvious and more common reasons, some of which are
further explained below:

• The operator is doing slow I/O, e.g., network calls (consider using AsyncIO instead).

• There is a skew in the data and one operator is receiving more events than others (verify by
looking at the number of messages in/out of individual subtasks (i.e., instances of the same
operator) in the Flink dashboard.

• It's a resource intensive operation (if there is no data skew consider scaling out for CPU/memory
bound work or increasing ParallelismPerKPU for I/O bound work)

• Extensive logging in the operator (reduce the logging to a minimum for production application
or consider sending debug output to a data stream instead).

Backpressure 816

https://www.ververica.com/blog/how-flink-handles-backpressure
https://www.ververica.com/blog/how-flink-handles-backpressure
https://nightlies.apache.org/flink/flink-docs-stable/docs/ops/monitoring/back_pressure/
https://nightlies.apache.org/flink/flink-docs-stable/docs/ops/monitoring/back_pressure/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Testing throughput with the Discarding Sink

The Discarding Sink simply disregards all events it receives while still executing the application (an
application without any sink fails to execute). This is very useful for throughput testing, profiling,
and to verify if the application is scaling properly. It's also a very pragmatic sanity check to verify if
the sinks are causing back pressure or the application (but just checking the backpressure metrics is
often easier and more straightforward).

By replacing all sinks of an application with a discarding sink and creating a mock source that
generates data that r esembles production data, you can measure the maximum throughput of the
application for a certain parallelism setting. You can then also increase the parallelism to verify
that the application scales properly and does not have a bottleneck that only emerges at higher
throughput (e.g., because of data skew).

Data skew

A Flink application is executed on a cluster in a distributed fashion. To scale out to multiple nodes,
Flink uses the concept of keyed streams, which essentially means that the events of a stream
are partitioned according to a specific key, e.g., customer id, and Flink can then process different
partitions on different nodes. Many of the Flink operators are then evaluated based on these
partitions, e.g., Keyed Windows, Process Functions and Async I/O.

Choosing a partition key often depends on the business logic. At the same time, many of the best
practices for, e.g., DynamoDB and Spark, equally apply to Flink, including:

• ensuring a high cardinality of partition keys

• avoiding skew in the event volume between partitions

You can identify skew in the partitions by comparing the records received/sent of subtasks
(i.e., instances of the same operator) in the Flink dashboard. In addition, Managed Service for
Apache Flink monitoring can be configured to expose metrics for numRecordsIn/Out and
numRecordsInPerSecond/OutPerSecond on a subtask level as well.

State skew

For stateful operators, i.e., operators that maintain state for their business logic such as windows,
data skew always leads to state skew. Some subtasks receive more events than others because
of the skew in the data and hence are also persisting more data in state. However, even for an

Data skew 817

https://nightlies.apache.org/flink/flink-docs-stable/api/java/org/apache/flink/streaming/api/functions/sink/DiscardingSink.html
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/windows/
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/process_function/
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/asyncio/
https://aws.amazon.com/dynamodb/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

application that has evenly balanced partitions, there can be a skew in how much data is persisted
in state. For instance, for session windows, some users and sessions respectively may be much
longer than others. If the longer sessions happen to be part of the same partition, it can lead to an
imbalance of the state size kept by different subtasks of the same operator.

State skew not only increases more memory and disk resources required by individual subtasks,
it can also decrease the overall performance of the application. When an application is taking a
checkpoint or savepoint, the operator state is persisted to Amazon S3, to protect the state against
node or cluster failure. During this process (especially with exactly once semantics that are enabled
by default on Managed Service for Apache Flink), the processing stalls from an external perspective
until the checkpoint/savepoint has completed. If there is data skew, the time to complete the
operation can be bound by a single subtask that has accumulated a particularly high amount of
state. In extreme cases, taking checkpoints/savepoints can fail because of a single subtask not
being able to persist state.

So similar to data skew, state skew can substantially slow down an application.

To identify state skew, you can leverage the Flink dashboard. Find a recent checkpoint or savepoint
and compare the amount of data that has been stored for individual subtasks in the details.

Integrate with resources in different Regions

You can enable using StreamingFileSink to write to an Amazon S3 bucket in a different Region
from your Managed Service for Apache Flink application via a setting required for cross Region
replication in the Flink configuration. To do this, file a support ticket at AWS Support Center.

Integrate with resources in different Regions 818

https://console.aws.amazon.com/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Document history for Amazon Managed Service for
Apache Flink

The following table describes the important changes to the documentation since the last release of
Managed Service for Apache Flink.

Change Description Date

Support for AWS KMS
customer managed keys

Amazon Managed Service for
Apache Flink (Amazon MSF)
now supports using AWS
KMS customer managed keys
(CMKs) to encrypt application
data at rest. This is available
for new or existing applicati
ons running Apache Flink
1.20. For more informati
on, see Key management in
Amazon Managed Service for
Apache Flink.

August 20, 2025

Support for Apache Flink
version 1.15.2

Managed Service for Apache
Flink now supports applicati
ons that use Apache Flink
version 1.15.2. Create Kinesis
Data Analytics applications
using the Apache Flink Table
API. For more information,
see Create an application.

November 22, 2022

Support for Apache Flink
version 1.13.2

Managed Service for Apache
Flink now supports applicati
ons that use Apache Flink
version 1.13.2. Create Kinesis
Data Analytics applications
using the Apache Flink Table

October 13, 2021

819

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

API. For more information,
see Getting Started: Flink
1.13.2.

Support for Python Managed Service for Apache
Flink now supports applicati
ons that use Python with the
Apache Flink Table API & SQL.
For more information, see Use
Python.

March 25, 2021

Support for Apache Flink
1.11.1

Managed Service for Apache
Flink now supports applicati
ons that use Apache Flink
1.11.1. Create Kinesis Data
Analytics applications using
the Apache Flink Table API.
For more information, see
Create an application.

November 19, 2020

Apache Flink Dashboard Use the Apache Flink
Dashboard to monitor
application health and
performance. For more
information, see Use the
Apache Flink Dashboard.

November 19, 2020

EFO Consumer Create applications that use
an Enhanced Fan-Out (EFO)
consumer to read from a
Kinesis Data Stream. For
more information, see EFO
Consumer.

October 6, 2020

820

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

Apache Beam Create applications that use
Apache Beam to process
streaming data. For more
information, see Use
CloudFormation.

September 15, 2020

Performance How to troubleshoot applicati
on performance issues, and
how to create a performan
t application. For more
information, see ???.

July 21, 2020

Custom Keystore How to access an Amazon
MSK cluster that uses
a custom keystore for
encryption in transit. For
more information, see
Custom Truststore.

June 10, 2020

CloudWatch Alarms Recommendations for
creating CloudWatch alarms
with Managed Service for
Apache Flink. For more
information, see ???.

June 5, 2020

New CloudWatch Metrics Managed Service for Apache
Flink now emits 22 metrics to
Amazon CloudWatch Metrics.
For more information, see ???.

May 12, 2020

Custom CloudWatch Metrics Define application-specific
metrics and emit them to
Amazon CloudWatch Metrics.
For more information, see ???.

May 12, 2020

821

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

Example: Read From a Kinesis
Stream in a Different Account

Learn how to access a Kinesis
stream in a different AWS
account in your Managed
Service for Apache Flink
application. For more
information, see Cross-Acc
ount.

March 30, 2020

Support for Apache Flink
1.8.2

Managed Service for Apache
Flink now supports applicati
ons that use Apache Flink
1.8.2. Use the Flink Streaming
FileSink connector to write
output directly to S3. For
more information, see Create
an application.

December 17, 2019

Managed Service for Apache
Flink VPC

Configure a Managed Service
for Apache Flink application
to connect to a virtual private
cloud. For more information,
see Configure MSF to access
resources in an Amazon VPC.

November 25, 2019

Managed Service for Apache
Flink Best Practices

Best practices for creating
and administering Managed
Service for Apache Flink
applications. For more
information, see ???.

October 14, 2019

Analyze Managed Service for
Apache Flink Application Logs

Use CloudWatch Logs
Insights to monitor your
Managed Service for Apache
Flink application. For more
information, see ???.

June 26, 2019

822

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

Managed Service for Apache
Flink Application Runtime
Properties

Work with Runtime Propertie
s in Managed Service for
Apache Flink. For more
information, see Use runtime
properties.

June 24, 2019

Tagging Managed Service for
Apache Flink Applications

Use application tagging to
determine per-application
costs, control access, or for
user-defined purposes. For
more information, see Add
tags to Managed Service for
Apache Flink applications.

May 8, 2019

Logging Managed Service for
Apache Flink API Calls with
AWS CloudTrail

Managed Service for Apache
Flink is integrated with AWS
CloudTrail, a service that
provides a record of actions
taken by a user, role, or an
AWS service in Managed
Service for Apache Flink. For
more information, see ???.

March 22, 2019

Create an Application
(Firehose Sink)

Exercise to create a Managed
Service for Apache Flink
with an Amazon Kinesis data
stream as a source, and an
Amazon Data Firehose stream
as a sink. For more informati
on, see Firehose sink.

December 13, 2018

Public release This is the initial release
of the Managed Service for
Apache Flink Developer Guide
for Java Applications.

November 27, 2018

823

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink API example code

This topic contains example request blocks for Managed Service for Apache Flink actions.

To use JSON as the input for an action with the AWS Command Line Interface (AWS CLI), save the
request in a JSON file. Then pass the file name into the action using the --cli-input-json
parameter.

The following example demonstrates how to use a JSON file with an action.

$ aws kinesisanalyticsv2 start-application --cli-input-json file://start.json

For more information about using JSON with the AWS CLI, see Generate CLI Skeleton and CLI Input
JSON Parameters in the AWS Command Line Interface User Guide.

Topics

• AddApplicationCloudWatchLoggingOption

• AddApplicationInput

• AddApplicationInputProcessingConfiguration

• AddApplicationOutput

• AddApplicationReferenceDataSource

• AddApplicationVpcConfiguration

• CreateApplication

• CreateApplicationSnapshot

• DeleteApplication

• DeleteApplicationCloudWatchLoggingOption

• DeleteApplicationInputProcessingConfiguration

• DeleteApplicationOutput

• DeleteApplicationReferenceDataSource

• DeleteApplicationSnapshot

• DeleteApplicationVpcConfiguration

• DescribeApplication

• DescribeApplicationSnapshot

824

https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• DiscoverInputSchema

• ListApplications

• ListApplicationSnapshots

• StartApplication

• StopApplication

• UpdateApplication

AddApplicationCloudWatchLoggingOption

The following example request code for the AddApplicationCloudWatchLoggingOption action adds
an Amazon CloudWatch logging option to a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CloudWatchLoggingOption": {
 "LogStreamARN": "arn:aws:logs:us-east-1:123456789123:log-group:my-log-
group:log-stream:My-LogStream"
 },
 "CurrentApplicationVersionId": 2
}

AddApplicationInput

The following example request code for the AddApplicationInput action adds an application input
to a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 2,
 "Input": {
 "InputParallelism": {
 "Count": 2
 },
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "$.TICKER",
 "Name": "TICKER_SYMBOL",

AddApplicationCloudWatchLoggingOption 825

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationCloudWatchLoggingOption.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationInput.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "SqlType": "VARCHAR(50)"
 },
 {
 "SqlType": "REAL",
 "Name": "PRICE",
 "Mapping": "$.PRICE"
 }
],
 "RecordEncoding": "UTF-8",
 "RecordFormat": {
 "MappingParameters": {
 "JSONMappingParameters": {
 "RecordRowPath": "$"
 }
 },
 "RecordFormatType": "JSON"
 }
 },
 "KinesisStreamsInput": {
 "ResourceARN": "arn:aws:kinesis:us-east-1:012345678901:stream/
ExampleInputStream"
 }
 }
}

AddApplicationInputProcessingConfiguration

The following example request code for the AddApplicationInputProcessingConfiguration action
adds an application input processing configuration to a Managed Service for Apache Flink
application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 2,
 "InputId": "2.1",
 "InputProcessingConfiguration": {
 "InputLambdaProcessor": {
 "ResourceARN": "arn:aws:lambda:us-
east-1:012345678901:function:MyLambdaFunction"
 }
 }
}

AddApplicationInputProcessingConfiguration 826

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationInputProcessingConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AddApplicationOutput

The following example request code for the AddApplicationOutput action adds a Kinesis data
stream as an application output to a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 2,
 "Output": {
 "DestinationSchema": {
 "RecordFormatType": "JSON"
 },
 "KinesisStreamsOutput": {
 "ResourceARN": "arn:aws:kinesis:us-east-1:012345678901:stream/
ExampleOutputStream"
 },
 "Name": "DESTINATION_SQL_STREAM"
 }
}

AddApplicationReferenceDataSource

The following example request code for the AddApplicationReferenceDataSource action adds a CSV
application reference data source to a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 5,
 "ReferenceDataSource": {
 "ReferenceSchema": {
 "RecordColumns": [
 {
 "Mapping": "$.TICKER",
 "Name": "TICKER",
 "SqlType": "VARCHAR(4)"
 },
 {
 "Mapping": "$.COMPANYNAME",
 "Name": "COMPANY_NAME",
 "SqlType": "VARCHAR(40)"
 },
],

AddApplicationOutput 827

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationOutput.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationReferenceDataSource.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "RecordEncoding": "UTF-8",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": " ",
 "RecordRowDelimiter": "\r\n"
 }
 },
 "RecordFormatType": "CSV"
 }
 },
 "S3ReferenceDataSource": {
 "BucketARN": "arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey": "TickerReference.csv"
 },
 "TableName": "string"
 }
}

AddApplicationVpcConfiguration

The following example request code for the AddApplicationVpcConfiguration action adds a VPC
configuration to an existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9,
 "VpcConfiguration": {
 "SecurityGroupIds": ["sg-0123456789abcdef0"],
 "SubnetIds": ["subnet-0123456789abcdef0"]
 }
}

CreateApplication

The following example request code for the CreateApplication action creates a Managed Service for
Apache Flink application:

{
 "ApplicationName":"MyApplication",

AddApplicationVpcConfiguration 828

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_AddApplicationVpcConfiguration.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationDescription":"My-Application-Description",
 "RuntimeEnvironment":"FLINK-1_15",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "CloudWatchLoggingOptions":[
 {
 "LogStreamARN":"arn:aws:logs:us-east-1:123456789123:log-group:my-log-group:log-
stream:My-LogStream"
 }
],
 "ApplicationConfiguration": {
 "EnvironmentProperties":
 {"PropertyGroups":
 [
 {"PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap":
 {"aws.region": "us-east-1",
 "flink.stream.initpos": "LATEST"}
 },
 {"PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap":
 {"aws.region": "us-east-1"}
 },
]
 },
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "CodeContentType":"ZIPFILE"
 },
 "FlinkApplicationConfiguration":{
 "ParallelismConfiguration":{
 "ConfigurationType":"CUSTOM",
 "Parallelism":2,
 "ParallelismPerKPU":1,
 "AutoScalingEnabled":true
 }
 }
 }

CreateApplication 829

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

CreateApplicationSnapshot

The following example request code for the CreateApplicationSnapshot action creates a snapshot
of application state:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MySnapshot"
}

DeleteApplication

The following example request code for the DeleteApplication action deletes a Managed Service
for Apache Flink application:

{"ApplicationName": "MyApplication",
"CreateTimestamp": 12345678912}

DeleteApplicationCloudWatchLoggingOption

The following example request code for the DeleteApplicationCloudWatchLoggingOption
action deletes an Amazon CloudWatch logging option from a Managed Service for Apache Flink
application:

{
 "ApplicationName": "MyApplication",
 "CloudWatchLoggingOptionId": "3.1"
 "CurrentApplicationVersionId": 3
}

DeleteApplicationInputProcessingConfiguration

The following example request code for the DeleteApplicationInputProcessingConfiguration action
removes an input processing configuration from a Managed Service for Apache Flink application:

CreateApplicationSnapshot 830

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_CreateApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationCloudWatchLoggingOption.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationInputProcessingConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "InputId": "2.1"
}

DeleteApplicationOutput

The following example request code for the DeleteApplicationOutput action removes an
application output from a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "OutputId": "4.1"
}

DeleteApplicationReferenceDataSource

The following example request code for the DeleteApplicationReferenceDataSource action removes
an application reference data source from a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 5,
 "ReferenceId": "5.1"
}

DeleteApplicationSnapshot

The following example request code for the DeleteApplicationSnapshot action deletes a snapshot
of application state:

{
 "ApplicationName": "MyApplication",
 "SnapshotCreationTimestamp": 12345678912,
 "SnapshotName": "MySnapshot"
}

DeleteApplicationOutput 831

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationOutput.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationReferenceDataSource.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

DeleteApplicationVpcConfiguration

The following example request code for the DeleteApplicationVpcConfiguration action removes an
existing VPC configuration from an application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9,
 "VpcConfigurationId": "1.1"
}

DescribeApplication

The following example request code for the DescribeApplication action returns details about a
Managed Service for Apache Flink application:

{"ApplicationName": "MyApplication"}

DescribeApplicationSnapshot

The following example request code for the DescribeApplicationSnapshot action returns details
about a snapshot of application state:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MySnapshot"
}

DiscoverInputSchema

The following example request code for the DiscoverInputSchema action generates a schema from
a streaming source:

{
 "InputProcessingConfiguration": {
 "InputLambdaProcessor": {

DeleteApplicationVpcConfiguration 832

https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_DeleteApplicationVpcConfiguration.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplicationSnapshot.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DiscoverInputSchema.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ResourceARN": "arn:aws:lambda:us-
east-1:012345678901:function:MyLambdaFunction"
 }
 },
 "InputStartingPositionConfiguration": {
 "InputStartingPosition": "NOW"
 },
 "ResourceARN": "arn:aws:kinesis:us-east-1:012345678901:stream/ExampleInputStream",
 "S3Configuration": {
 "BucketARN": "string",
 "FileKey": "string"
 },
 "ServiceExecutionRole": "string"
}

The following example request code for the DiscoverInputSchema action generates a schema from
a reference source:

{
 "S3Configuration": {
 "BucketARN": "arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKey": "TickerReference.csv"
 },
 "ServiceExecutionRole": "arn:aws:iam::123456789123:role/myrole"
}

ListApplications

The following example request code for the ListApplications action returns a list of Managed
Service for Apache Flink applications in your account:

{
 "ExclusiveStartApplicationName": "MyApplication",
 "Limit": 50
}

ListApplicationSnapshots

The following example request code for the ListApplicationSnapshots action returns a list of
snapshots of application state:

ListApplications 833

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_DiscoverInputSchema.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ListApplications.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_ListApplicationSnapshots.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{"ApplicationName": "MyApplication",
 "Limit": 50,
 "NextToken": "aBcDeFgHiJkLmNoPqRsTuVwXyZ0123"
}

StartApplication

The following example request code for the StartApplication action starts a Managed Service for
Apache Flink application, and loads the application state from the latest snapshot (if any):

{
 "ApplicationName": "MyApplication",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

StopApplication

The following example request code for the API_StopApplication action stops a Managed Service
for Apache Flink application:

{"ApplicationName": "MyApplication"}

UpdateApplication

The following example request code for the UpdateApplication action updates a Managed Service
for Apache Flink application to change the location of the application code:

{"ApplicationName": "MyApplication",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentTypeUpdate": "ZIPFILE",
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {

StartApplication 834

https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.aws.amazon.com/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "BucketARNUpdate": "arn:aws:s3:::amzn-s3-demo-bucket",
 "FileKeyUpdate": "my_new_code.zip",
 "ObjectVersionUpdate": "2"
 }
 }
 }
}

UpdateApplication 835

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink API Reference

For information about the APIs that Managed Service for Apache Flink provides, see Managed
Service for Apache Flink API Reference.

836

https://docs.aws.amazon.com/managed-flink/latest/apiv2/Welcome.html
https://docs.aws.amazon.com/managed-flink/latest/apiv2/Welcome.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Release versions

This content was moved to Release versions. See Supported and deprecated Apache Flink versions.

837

	Managed Service for Apache Flink
	Table of Contents
	
	What is Amazon Managed Service for Apache Flink?
	Decide between using Managed Service for Apache Flink or Managed Service for Apache Flink Studio
	Choose which Apache Flink APIs to use in Managed Service for Apache Flink
	Choose a Flink API

	Get started with streaming data applications

	Managed Service for Apache Flink: How it works
	Program your Apache Flink application
	DataStream API
	Table API

	Create your Managed Service for Apache Flink application
	Create a Managed Service for Apache Flink application
	Build your Managed Service for Apache Flink application code
	Specify your application's Apache Flink version

	Create your Managed Service for Apache Flink application
	Use customer managed keys
	Start your Managed Service for Apache Flink application
	Verify your Managed Service for Apache Flink application
	Enable system rollbacks for your Managed Service for Apache Flink application
	How it works
	Review common scenarios for automatic system rollback
	Use operation APIs for system rollbacks

	Run a Managed Service for Apache Flink application
	Identify application and job status
	Run batch workloads

	Review Managed Service for Apache Flink application resources
	Managed Service for Apache Flink application resources
	Apache Flink application resources
	Operator parallelism
	Operator chaining

	Per second billing in Managed Service for Apache Flink
	How it works
	AWS Region availability
	Pricing examples
	A long running, heavy workload
	A batch workload that runs for ~15 minutes every day
	A test application that stops and starts continuously in the same hour, attracting multiple minimum charges

	Review DataStream API components
	Use connectors to move data in Managed Service for Apache Flink with the DataStream API
	Available connectors
	Add streaming data sources to Managed Service for Apache Flink
	Use Kinesis data streams
	Create a KinesisStreamsSource
	Create a KinesisStreamsSource that uses an EFO consumer

	Use Amazon MSK
	Create a KafkaSource

	Write data using sinks in Managed Service for Apache Flink
	Use Kinesis data streams
	Use Apache Kafka and Amazon Managed Streaming for Apache Kafka (MSK)
	Use Amazon S3
	Use Firehose
	Create a FlinkKinesisFirehoseProducer
	FlinkKinesisFirehoseProducer Code Example

	Use Asynchronous I/O in Managed Service for Apache Flink

	Transform data using operators in Managed Service for Apache Flink with the DataStream API
	Use transform operators
	Use aggregation operators

	Track events in Managed Service for Apache Flink using the DataStream API

	Review Table API components
	Table API connectors
	Table API sources
	Table API sinks
	User-defined sources and sinks

	Table API time attributes

	Use Python with Managed Service for Apache Flink
	Program your Managed Service for Apache Flink Python application
	Read and write streaming data
	Create a table
	Read streaming data
	Write streaming data

	Read runtime properties
	Create your application's code package

	Create your Managed Service for Apache Flink Python application
	Specify your code files

	Monitor your Managed Service for Apache Flink Python application
	Query logs with CloudWatch Insights

	Use runtime properties in Managed Service for Apache Flink
	Manage runtime properties using the console
	Manage runtime properties using the CLI
	Add runtime properties when creating an application
	Add and update runtime properties in an existing application
	Remove runtime properties

	Access runtime properties in a Managed Service for Apache Flink application

	Use Apache Flink connectors with Managed Service for Apache Flink
	Known issues

	Implement fault tolerance in Managed Service for Apache Flink
	Configure checkpointing in Managed Service for Apache Flink
	Review checkpointing API examples
	Configure checkpointing for a new application
	Disable checkpointing for a new application
	Configure checkpointing for an existing application
	Disable checkpointing for an existing application

	Manage application backups using snapshots
	Manage automatic snapshot creation
	Restore from a snapshot that contains incompatible state data
	Review snapshot API examples
	Enable snapshots for an application
	Create a snapshot
	List snapshots for an application
	List details for an application snapshot
	Delete a snapshot
	Restart an application using a named snapshot
	Restart an application using the most recent snapshot
	Restart an application using no snapshot

	Use in-place version upgrades for Apache Flink
	Upgrade applications using in-place version upgrades for Apache Flink
	Before upgrading: Update your Apache Flink application

	Upgrade your application to a new Apache Flink version
	Upgrade an application in RUNNING state
	Upgrade an application in READY state

	Roll back application upgrades
	Runtime upgrade succeeded, the application is in RUNNING state, but the job is failing and continuously restarting
	Rolling back an application that is stuck in UPDATING

	General best practices and recommendations for application upgrades
	Precautions and known issues with application upgrades
	Kafka Commit on checkpointing fails repeatedly after a broker restart
	Known limitations of state compatibility
	Known issues with the Flink Kinesis Connector
	Flink applications written in Scala
	Things to consider when downgrading Flink application

	Implement application scaling in Managed Service for Apache Flink
	Configure application parallelism and ParallelismPerKPU
	Allocate Kinesis Processing Units
	Update your application's parallelism
	Use automatic scaling in Managed Service for Apache Flink
	Implement custom autoscaling
	Implement scheduled autoscaling

	maxParallelism considerations

	Add tags to Managed Service for Apache Flink applications
	Add tags when an application is created
	Add or update tags for an existing application
	List tags for an application
	Remove tags from an application

	Use CloudFormation with Managed Service for Apache Flink
	Before you begin
	Write a Lambda function
	Create a Lambda role
	Invoke the Lambda function
	Review an extended example

	Use the Apache Flink Dashboard with Managed Service for Apache Flink
	Access your application's Apache Flink Dashboard
	Access your application's Apache Flink Dashboard using the Managed Service for Apache Flink console
	Access your application's Apache Flink Dashboard using the Managed Service for Apache Flink CLI

	Supported and deprecated Apache Flink versions
	Amazon Managed Service for Apache Flink 1.20
	Supported features
	Components
	Known issues

	Amazon Managed Service for Apache Flink 1.19
	Supported features
	Changes in Amazon Managed Service for Apache Flink 1.19.1
	Components
	Known issues

	Amazon Managed Service for Apache Flink 1.18
	Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.18
	Components
	Known issues

	Amazon Managed Service for Apache Flink 1.15
	Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15
	Components
	Known issues

	Earlier version information for Managed Service for Apache Flink
	Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions
	Building applications with Apache Flink 1.8.2
	Building applications with Apache Flink 1.6.2
	Upgrading applications
	Available connectors in Apache Flink 1.6.2 and 1.8.2
	Getting started: Flink 1.13.2
	Components of a Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an AWS account and create an administrator user
	Sign up for an AWS account
	Create a user with administrative access
	Grant programmatic access
	Next step

	Next step
	Step 2: Set up the AWS Command Line Interface (AWS CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the Application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (AWS CLI)
	Create a permissions policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the Application
	Stop the Application
	Add a CloudWatch Logging Option
	Update Environment Properties
	Update the Application Code

	Next step

	Step 4: Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources
	Next step

	Step 5: Next steps

	Getting started: Flink 1.11.1 - deprecating
	Components of a Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an AWS account and create an administrator user
	Sign up for an AWS account
	Create a user with administrative access
	Grant programmatic access
	Next step

	Step 2: Set up the AWS Command Line Interface (AWS CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (AWS CLI)
	Create a Permissions Policy
	Create an IAM Role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Next step

	Step 4: Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete rour IAM resources
	Delete your CloudWatch resources
	Next step

	Step 5: Next steps

	Getting started: Flink 1.8.2 - deprecating
	Components of Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an AWS account and create an administrator user
	Sign up for an AWS account
	Create a user with administrative access
	Grant programmatic access

	Step 2: Set up the AWS Command Line Interface (AWS CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (AWS CLI)
	Create a Permissions Policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Next step

	Step 4: Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Getting started: Flink 1.6.2 - deprecating
	Components of a Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an AWS account and create an administrator user
	Sign up for an AWS account
	Create a user with administrative access
	Grant programmatic access

	Step 2: Set up the AWS Command Line Interface (AWS CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (AWS CLI)
	Create a permissions policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Step 4: Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Earlier version (legacy) examples for Managed Service for Apache Flink
	DataStream API examples
	Example: Tumbling window
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Sliding window
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Configure the application parallelism
	Run the application

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Writing to an Amazon S3 bucket
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Modify the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application

	Verify the application output
	Optional: Customize the source and sink
	Configure data partitioning
	Configure read frequency
	Configure write buffering

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data stream
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Tutorial: Using a Managed Service for Apache Flink application to replicate data from one topic in an MSK cluster to another in a VPC
	Create an Amazon VPC with an Amazon MSK cluster
	Create the application code
	Upload the Apache Flink streaming Java code
	Create the application
	Configure the application
	Run the application
	Test the application

	Example: Use an EFO consumer with a Kinesis data stream
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete Your Amazon S3 Object and Bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Writing to Firehose
	Create dependent resources
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (AWS CLI)
	Create a permissions policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update the application code

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data stream
	Delete your Firehose stream
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Read from a Kinesis stream in a different account
	Prerequisites
	Setup
	Create source Kinesis stream
	Create and update IAM roles and policies
	Sink account roles and policies
	Source account roles and policies

	Update the Python script
	Update the Java application
	Build, upload, and run the application

	Tutorial: Using a custom truststore with Amazon MSK
	Current data source APIs
	Legacy SourceFunction APIs
	Create a VPC with an Amazon MSK cluster
	Create a custom truststore and apply it to your cluster
	Create the application code
	Upload the Apache Flink streaming Java code
	Create the application
	Configure the application
	Run the application
	Test the application

	Python examples
	Example: Creating a tumbling window in Python
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compress and upload the Apache Flink streaming Python code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Creating a sliding window in Python
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compress and upload the Apache Flink streaming Python code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Send streaming data to Amazon S3 in Python
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compress and upload the Apache Flink streaming Python code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data stream
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Scala examples
	Example: Creating a tumbling window in Scala
	Download and examine the application code
	Compile and upload the application code
	Create and run the application (console)
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Create and run the application (CLI)
	Create a permissions policy
	Create an IAM role
	Create the application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties

	Update the application code
	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Creating a sliding window in Scala
	Download and examine the application code
	Compile and upload the application code
	Create and run the application (console)
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Create and run the application (CLI)
	Create a permissions policy
	Create an IAM role
	Create the application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties

	Update the application code
	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Send streaming data to Amazon S3 in Scala
	Download and examine the application code
	Compile and upload the application code
	Create and run the application (console)
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Create and run the application (CLI)
	Create a permissions policy
	Create an IAM role
	Create the application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties

	Update the application code
	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Use a Studio notebook with Managed Service for Apache Flink
	Use the correct Studio notebook Runtime version
	Create a Studio notebook
	Perform an interactive analysis of streaming data
	Flink interpreters
	Apache Flink table environment variables

	Deploy as an application with durable state
	Scala/Python criteria
	SQL criteria

	Review IAM permissions for Studio notebooks
	Use connectors and dependencies
	Default connectors
	Add dependencies and custom connectors

	Implement user-defined functions
	Considerations with user-defined functions

	Enable checkpointing
	Set the checkpointing interval
	Set the checkpointing type

	Upgrade Studio Runtime
	Upgrade your notebook to a new Studio Runtime
	SQL queries or Python code with no external dependencies
	SQL queries or Python code with external dependencies

	Work with AWS Glue
	Table properties
	Define Apache Flink time values
	Use Flink connector and format properties

	Examples and tutorials for Studio notebooks in Managed Service for Apache Flink
	Tutorial: Create a Studio notebook in Managed Service for Apache Flink
	Complete the prerequisites
	Create an AWS Glue database
	Next steps: Create a Studio notebook with Kinesis Data Streams or Amazon MSK
	Create a Studio notebook with Kinesis Data Streams
	Complete the prerequisites
	Create an AWS Glue table
	Create a Studio notebook with Kinesis Data Streams
	Create a Studio notebook using the AWS Management Console
	Create a Studio notebook using the AWS CLI

	Send data to your Kinesis data stream
	Test your Studio notebook

	Create a Studio notebook with Amazon MSK
	Set up an Amazon MSK cluster
	Add a NAT gateway to your VPC
	Create an AWS Glue connection and table
	Create a Studio notebook with Amazon MSK
	Create a Studio notebook using the AWS Management Console
	Create a Studio notebook using the AWS CLI

	Send data to your Amazon MSK cluster
	Test your Studio notebook

	Clean up your application and dependent resources
	Delete your Studio notebook
	Delete your AWS Glue database and connection
	Delete your IAM role and policy
	Delete your CloudWatch log group
	Clean up Kinesis Data Streams resources
	Clean up MSK resources
	Delete your Amazon MSK cluster
	Terminate your client instance
	Delete your Amazon VPC

	Tutorial: Deploy a Studio notebook as a Managed Service for Apache Flink application with durable state
	Complete prerequisites
	Deploy an application with durable state using the AWS Management Console
	Deploy an application with durable state using the AWS CLI

	View example queries to analyza data in a Studio notebook
	Create tables with Amazon MSK/Apache Kafka
	Create tables with Kinesis
	Query a tumbling window
	Query a sliding window
	Use interactive SQL
	Use the BlackHole SQL connector
	Use Scala to generate sample data
	Use interactive Scala
	Use interactive Python
	Use a combination of interactive Python, SQL, and Scala
	Use a cross-account Kinesis data stream

	Troubleshoot Studio notebooks for Managed Service for Apache Flink
	Stop a stuck application
	Deploy as an application with durable state in a VPC with no internet access
	Deploy-as-app size and build time reduction
	Cancel jobs
	Restart the Apache Flink interpreter

	Create custom IAM policies for Managed Service for Apache Flink Studio notebooks
	AWS Glue
	CloudWatch Logs
	Kinesis streams
	Amazon MSK clusters

	Get started with Amazon Managed Service for Apache Flink (DataStream API)
	Review the components of the Managed Service for Apache Flink application
	Fulfill the prerequisites for completing the exercises
	Set up an AWS account and create an administrator user
	Sign up for an AWS account
	Create a user with administrative access
	Grant programmatic access
	Next Step

	Set up the AWS Command Line Interface (AWS CLI)
	Next step

	Create and run a Managed Service for Apache Flink application
	Create dependent resources
	Create two Amazon Kinesis data streams
	Create an Amazon S3 bucket for the application code
	Other resources

	Set up your local development environment
	Authenticate your AWS session

	Download and examine the Apache Flink streaming Java code
	Review application components
	Use the pom.xml file

	Write sample records to the input stream
	Generate sample data using a Python script
	Generate sample data using Kinesis Data Generator

	Run your application locally
	Import the Java project into your IDE
	Check the local application configuration
	Set up your IDE run configuration
	Run the application in your IDE

	Observe input and output data in Kinesis streams
	Stop your application running locally
	Compile and package your application code
	Upload the application code JAR file
	Create and configure the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Observe the metrics of the running application
	Observe output data in Kinesis streams
	Stop the application

	Next step

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources
	Explore additional resources for Apache Flink

	Explore additional resources

	Get started with Amazon Managed Service for Apache Flink (Table API)
	Review the components of the Managed Service for Apache Flink application
	Complete the required prerequisites
	Create and run a Managed Service for Apache Flink application
	Create dependent resources
	Create an Amazon S3 bucket
	Other resources

	Set up your local development environment
	Authenticate your AWS session

	Download and examine the Apache Flink streaming Java code
	Review application components
	Use the pom.xml file

	Run your application locally
	Import the Java project into your IDE
	Modify the local application configuration
	Set up your IDE run configuration
	Run the application in your IDE

	Observe the application writing data to an S3 bucket
	Stop your application running locally
	Compile and package your application code
	Upload the application code JAR file
	Create and configure the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Observe the metrics of the running application
	Observe the application writing data to the destination bucket
	Stop the application

	Next step
	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources
	Next step

	Explore additional resources

	Get started with Amazon Managed Service for Apache Flink for Python
	Review the components of a Managed Service for Apache Flink application
	Fulfill the prerequisites
	Create and run a Managed Service for Apache Flink for Python application
	Create dependent resources
	Create two Kinesis streams
	Create an Amazon S3 bucket
	Other resources

	Set up your local development environment
	Install the PyFlink library
	Authenticate your AWS session

	Download and examine the Apache Flink streaming Python code
	Review application components

	Manage JAR dependencies
	Use the pom.xml file
	Download and package dependencies

	Write sample records to the input stream
	Generate sample data using a Python script
	Generate sample data using Kinesis Data Generator

	Run your application locally
	Import the Python project into your IDE
	Check the local application configuration
	Run your Python application locally
	Inspect application logs locally

	Observe input and output data in Kinesis streams
	Stop your application running locally
	Package your application code
	Upload the application package to an Amazon S3 bucket
	Create and configure the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Observe the metrics of the running application
	Observe output data in Kinesis streams
	Stop the application

	Next step

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Get started (Scala)
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile and upload the application code
	Create and run the application (console)
	Create the Application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Create and run the application (CLI)
	Create a permissions policy
	Create an IAM policy
	Create the application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Use Apache Beam with Managed Service for Apache Flink applications
	Limitations of Apache Flink runner with Managed Service for Apache Flink
	Apache Beam capabilities with Managed Service for Apache Flink
	Create an application using Apache Beam
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the Application
	Edit the IAM policy
	Configure the application
	Run the application

	Clean up AWS resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Next steps

	Training workshops, labs, and solution implementations
	Deploy, operate, and scale applications with Amazon Managed Service for Apache Flink
	Develop Apache Flink applications locally before deploying to Managed Service for Apache Flink
	Use event detection with Managed Service for Apache Flink Studio
	Use the AWS Streaming data solution for Amazon Kinesis
	Practice using a Clickstream lab with Apache Flink and Apache Kafka
	Set up custom scaling using Application Auto Scaling
	View a sample Amazon CloudWatch dashboard
	Use templates for AWS Streaming data solution for Amazon MSK
	Explore more Managed Service for Apache Flink solutions on GitHub

	Use practical utilities for Managed Service for Apache Flink
	Snapshot manager
	Benchmarking

	Examples for creating and working with Managed Service for Apache Flink applications
	Java examples for Managed Service for Apache Flink
	Improve serialization performance defining custom TypeInfo
	Get started with the DataStream API
	Get started with the Table API and SQL
	Use S3Sink (DataStream API)
	Use a Kinesis source, standard or EFO consumers, and sink (DataStream API)
	Use an Amazon Data Firehose sink (DataStream API)
	Use the Prometheus sink connector
	Use windowing aggregations (DataStream API)
	Use custom metrics
	Use Kafka Configuration Providers to fetch custom keystore and truststore for mTLS at runtime
	Use Kafka Configuration Providers to fetch secrets for SASL/SCRAM authentication at runtime
	Use Kafka Configuration Providers to fetch custom keystore and truststore for mTLS at runtime with Table API/SQL
	Use Side Outputs to split a stream
	Use Async I/O to call an external endpoint

	Python examples for Managed Service for Apache Flink
	
	Get started with PyFlink
	Add Python dependencies
	Use windowing aggregations (DataStream API)
	Use an S3 sink
	Use a User Defined Function (UDF)
	Use an Amazon Data Firehose sink

	Scala examples for Managed Service for Apache Flink
	Set up a multi-step application

	Security in Amazon Managed Service for Apache Flink
	Data protection in Amazon Managed Service for Apache Flink
	Data encryption in Managed Service for Apache Flink
	Encryption at rest
	Encryption in transit
	Key management

	Key management in Amazon Managed Service for Apache Flink
	Transparent encryption in Amazon MSF
	Customer managed keys in Amazon MSF
	What is encrypted with CMKs?
	What isn't encrypted with CMKs?
	Supported KMS key types
	KMS key permissions
	KMS encryption context and constraints
	Key rotation policy
	Least-privileged key policy statements
	Example AWS CloudTrail log entries

	Using customer managed keys in Amazon MSF
	Managing CMK using AWS Management Console
	Create and assign KMS keys
	Update an existing application to use CMK
	Switch from CMK to an AWS owned key

	Managing CMK using APIs
	Create and assign KMS keys
	Create a KMS key policy
	Application lifecycle operator (API caller) permissions

	Update an existing application to use CMK
	Revert from CMK to AWS owned key

	Identity and Access Management for Amazon Managed Service for Apache Flink
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Managed Service for Apache Flink works with IAM
	Application permissions
	Permissions to access the application code and application logs
	Cross-service confused deputy prevention

	Application management and lifecycle control permissions
	Application lifecycle policy actions
	Application lifecycle policy resources
	Application lifecycle policy condition keys
	Attribute-based access control (ABAC) with Managed Service for Apache Flink
	Using temporary credentials
	Cross-service principal permissions

	Identity-based policies for Managed Service for Apache Flink
	Identity-based policy examples for Managed Service for Apache Flink

	Resource-based policies within Managed Service for Apache Flink
	Access control lists (ACLs) in Managed Service for Apache Flink
	Service roles for Managed Service for Apache Flink
	Service-linked roles for Managed Service for Apache Flink

	Identity-based policy examples for Amazon Managed Service for Apache Flink
	Policy best practices
	Using the Managed Service for Apache Flink console
	Allow users to view their own permissions

	Troubleshooting Amazon Managed Service for Apache Flink identity and access
	I am not authorized to perform an action in Managed Service for Apache Flink
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Managed Service for Apache Flink resources

	Cross-service confused deputy prevention

	Compliance validation for Amazon Managed Service for Apache Flink
	FedRAMP

	Resilience in Amazon Managed Service for Apache Flink
	Disaster recovery
	Versioning

	Infrastructure security in Managed Service for Apache Flink
	Security best practices for Managed Service for Apache Flink
	Implement least privilege access
	Use IAM roles to access other Amazon services
	Implement server-side encryption in dependent resources
	Use CloudTrail to monitor API calls

	Logging and monitoring in Amazon Managed Service for Apache Flink
	Logging in Managed Service for Apache Flink
	Query logs with CloudWatch Logs Insights

	Monitoring in Managed Service for Apache Flink
	Set up application logging in Managed Service for Apache Flink
	Set up CloudWatch logging using the console
	Set up CloudWatch logging using the CLI
	Create a CloudWatch log group and log stream
	Work with application CloudWatch logging options
	Add a CloudWatch log option when creating an application
	Add a CloudWatch log option to an existing application
	Update an existing CloudWatch log option
	Delete a CloudWatch log option from an application
	Set the application logging level
	Set the application logging level when creating an application
	Update the application logging level

	Add permissions to write to the CloudWatch log stream
	Trust policy
	Permissions policy

	Control application monitoring levels
	Apply logging best practices
	Perform logging troubleshooting
	Use CloudWatch Logs Insights

	Analyze logs with CloudWatch Logs Insights
	Run a sample query
	Review example queries
	Analyze operations: Distribution of tasks
	Analyze operations: Change in parallelism
	Analyze errors: Access denied
	Analyze errors: Source or sink not found
	Analyze errors: Application task-related failures

	Metrics and dimensions in Managed Service for Apache Flink
	Application metrics
	Kinesis Data Streams connector metrics
	Amazon MSK connector metrics
	Apache Zeppelin metrics
	View CloudWatch metrics
	Set CloudWatch metrics reporting levels
	Use custom metrics with Amazon Managed Service for Apache Flink
	How it works
	View examples for creating a mapping class
	Record count custom metric
	Word count custom metric

	View custom metrics

	Use CloudWatch Alarms with Amazon Managed Service for Apache Flink
	Review recommended alarms

	Write custom messages to CloudWatch Logs
	Write to CloudWatch logs using Log4J
	Write to CloudWatch logs using SLF4J

	Log Managed Service for Apache Flink API calls with AWS CloudTrail
	Managed Service for Apache Flink information in CloudTrail
	Understand Managed Service for Apache Flink log file entries

	Tune performance in Amazon Managed Service for Apache Flink
	Troubleshoot performance issues
	Understand the data path
	Performance troubleshooting solutions
	CloudWatch monitoring levels
	Application CPU metric
	Application parallelism
	Application logging
	Operator parallelism
	Application logic
	Application memory

	Use performance best practices
	Manage scaling properly
	Manage application scaling properly
	Manage operator scaling properly

	Monitor external dependency resource usage
	Run your Apache Flink application locally

	Monitor performance
	Monitor performance using CloudWatch metrics
	Monitor performance using CloudWatch logs and alarms

	Managed Service for Apache Flink and Studio notebook quota
	Manage maintenance tasks for Managed Service for Apache Flink
	Choose a maintenance window
	Identify when maintenance has occurred on your application

	Achieve production readiness for your Managed Service for Apache Flink applications
	Load-test your applications
	Define Max parallelism
	Set a UUID for all operators

	Maintain best practices for Managed Service for Apache Flink applications
	Minimize the size of the uber JAR
	Fault tolerance: checkpoints and savepoints
	Unsupported connector versions
	Performance and parallelism
	Setting per-operator parallelism
	Logging
	Coding
	Managing credentials
	Reading from sources with few shards/partitions
	Studio notebook refresh interval
	Studio notebook optimum performance
	How watermark strategies and idle shards affect time windows
	Summary
	Example

	Set a UUID for all operators
	Add ServiceResourceTransformer to the Maven shade plugin

	Apache Flink stateful functions
	Apache Flink application template
	Location of the module configuration

	Apache Flink settings
	Apache Flink configuration
	State backend
	Checkpointing
	Savepointing
	Heap sizes
	Buffer debloating
	Modifiable Flink configuration properties
	Restart strategy
	Checkpoints and state backends
	Checkpointing
	RocksDB native metrics
	RocksDB options
	Advanced state backends options
	Full TaskManager options
	Memory configuration
	RPC / Akka
	Client
	Advanced cluster options
	Filesystem configurations
	Advanced fault tolerance options
	Memory configuration
	Metrics
	Advanced options for the REST endpoint and client
	Advanced SSL security options
	Advanced scheduling options
	Advanced options for Flink web UI

	View configured Flink properties

	Configure Managed Service for Apache Flink to access resources in an Amazon VPC
	Amazon VPC concepts
	VPC application permissions
	Add a permissions policy for accessing an Amazon VPC

	Internet and service access for a VPC-connected Managed Service for Apache Flink application
	Related information

	Use the Managed Service for Apache Flink VPC API
	Create application
	AddApplicationVpcConfiguration
	DeleteApplicationVpcConfiguration
	Update application

	Example: Use a VPC to access data in an Amazon MSK cluster

	Troubleshoot Managed Service for Apache Flink
	Development troubleshooting
	System rollback best practices
	System rollbacks
	Manual rollback
	Operations visibility

	Hudi configuration best practices
	Apache Flink Flame Graphs
	Credential provider issue with EFO connector 1.15.2
	Applications with unsupported Kinesis connectors
	Rejection error
	Steps to remediate
	Update a Maven dependency
	Update a Gradle dependency

	Compile error: "Could not resolve dependencies for project"
	Invalid choice: "kinesisanalyticsv2"
	UpdateApplication action isn't reloading application code
	S3 StreamingFileSink FileNotFoundExceptions
	FlinkKafkaConsumer issue with stop with savepoint
	Flink 1.15 Async Sink Deadlock
	Update Java applications
	flink-connector-kinesis
	Other affected connectors

	Update Python applications
	flink-sql-connector-kinesis
	flink-sql-connector-aws-kinesis-streams
	flink-sql-connector-aws-kinesis-firehose
	flink-sql-connector-dynamodb

	Amazon Kinesis data streams source processing out of order during re-sharding
	Real-time vector embedding blueprints FAQ and troubleshooting
	Real-time vector embedding blueprints - FAQ
	What AWS resources does this blueprint create?
	What are my actions after the AWS CloudFormation stack deployment is complete?
	What should be the structure of the data in the source Amazon MSK topic(s)?
	Can I specify parts of a message to embed?
	Can I read data from multiple Amazon MSK topics?
	Can I use regex to configure Amazon MSK topic names?
	What is the maximum size of a message that can be read from an Amazon MSK topic?
	What type of OpenSearch is supported?
	Why do I need to use a vector search collection, vector index, and add a vector field in my OpenSearch Serverless colelction?
	What should I set as the dimension for my vector field?
	What does the output look like in the configured OpenSearch index?
	Can I specify metadata fields to add to the document stored in the OpenSearch index?
	Should I expect duplicate entries in the OpenSearch index?
	Can I send data to multiple OpenSearch indices?
	Can I deploy multiple real-time vector embedding applications in a single AWS account?
	Can multiple real-time vector embedding applications use the same data source or sink?
	Does the application support cross-account connectivity?
	Does the application support cross-Region connectivity?
	Can my Amazon MSK cluster and OpenSearch collection be in different VPCs or subnets?
	What embedding models are supported by the application?
	Can I fine-tune the performance of my application based on my workload?
	What Amazon MSK authentication types are supported?
	What is sink.os.bulkFlushIntervalMillis and how do I set it?
	When I deploy my Managed Service for Apache Flink application, from what point in the Amazon MSK topic will it begin reading messages?
	How do I use source.msk.starting.offset?
	What chunking strategies are supported?
	How do I read records in my vector datastore?
	Where can I find new updates to the source code?
	Can I make a change to the AWS CloudFormation template and update the Managed Service for Apache Flink application?
	Will AWS monitor and maintain the application on my behalf?
	Does this application move my data outside my AWS account?

	Real-time vector embedding blueprints - troubleshooting
	My CloudFormation stack deployment has failed or rolled back. What can I do to fix it?
	I don't want my application to start reading messages from the beginning of the Amazon MSK topics. What do I do?
	How do I know if there is an issue with my Managed Service for Apache Flink application and how can I debug it?
	What are the key metrics that I should be monitoring for my Managed Service for Apache Flink application?

	Runtime troubleshooting
	Troubleshooting tools
	Application issues
	Application is stuck in a transient status
	Snapshot creation fails
	Cannot access resources in a VPC
	Data is lost when writing to an Amazon S3 bucket
	Application is in the RUNNING status but isn't processing data
	Snapshot, application update, or application stop error: InvalidApplicationConfigurationException
	java.nio.file.NoSuchFileException: /usr/local/openjdk-8/lib/security/cacerts

	Application is restarting
	Symptoms
	Causes and solutions

	Throughput is too slow
	Symptoms
	Causes and solutions

	Unbounded state growth
	Symptoms
	Causes and solutions

	I/O bound operators
	Upstream or source throttling from a Kinesis data stream
	Checkpoints
	Checkpointing stages
	Investigating
	Thread dumps
	Thread dumps in Flink

	Flame graphs

	Checkpointing is timing out
	Symptoms
	Causes and solutions

	Checkpoint failure for Apache Beam application
	Symptom
	Cause
	Solution

	Backpressure
	Testing throughput with the Discarding Sink

	Data skew
	State skew
	Integrate with resources in different Regions

	Document history for Amazon Managed Service for Apache Flink
	Managed Service for Apache Flink API example code
	AddApplicationCloudWatchLoggingOption
	AddApplicationInput
	AddApplicationInputProcessingConfiguration
	AddApplicationOutput
	AddApplicationReferenceDataSource
	AddApplicationVpcConfiguration
	CreateApplication
	CreateApplicationSnapshot
	DeleteApplication
	DeleteApplicationCloudWatchLoggingOption
	DeleteApplicationInputProcessingConfiguration
	DeleteApplicationOutput
	DeleteApplicationReferenceDataSource
	DeleteApplicationSnapshot
	DeleteApplicationVpcConfiguration
	DescribeApplication
	DescribeApplicationSnapshot
	DiscoverInputSchema
	ListApplications
	ListApplicationSnapshots
	StartApplication
	StopApplication
	UpdateApplication

	Managed Service for Apache Flink API Reference
	Release versions

