
User Guide

Amazon Managed Workflows for Apache
Airflow

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Managed Workflows for Apache Airflow User Guide

Amazon Managed Workflows for Apache Airflow: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Managed Workflows for Apache Airflow User Guide

Table of Contents

What Is Amazon MWAA? ... 1
Features .. 1
Architecture .. 2
Integration .. 4
Supported versions .. 4
What's next? .. 4

Quick start ... 5
In this tutorial ... 5
Prerequisites .. 6
Step one: Save the AWS CloudFormation template locally ... 7
Step two: Create the stack using the AWS CLI .. 16
Step three: Upload a DAG to Amazon S3 and run in the Apache Airflow UI 17
Step four: View logs in CloudWatch Logs .. 18
What's next? .. 18

Get started ... 19
Prerequisites .. 19
About this guide ... 19
Before you begin .. 20
Available regions .. 20
Create a bucket .. 21

Before you begin .. 21
Create the bucket ... 22
What's next? ... 23

Create the VPC network ... 24
Prerequisites ... 24
Before you begin .. 25
Options to create the Amazon VPC network .. 25
What's next? ... 37

Create an environment ... 37
Before you begin .. 38
Apache Airflow versions .. 38
Create an environment .. 39

What's next? .. 23
Managing access .. 44

iii

Amazon Managed Workflows for Apache Airflow User Guide

Accessing an Amazon MWAA environment .. 44
How it works .. 45
Full console access .. 46
Full API access ... 53
Read-only console access .. 57
Apache Airflow UI access .. 58
Apache Airflow Rest API access ... 59
Apache Airflow CLI access .. 60
Creating a JSON policy .. 61
Example use case .. 61
What's next? ... 63

Service-linked role ... 63
Service-linked role permissions for Amazon MWAA .. 64
Creating a service-linked role for Amazon MWAA ... 67
Editing a service-linked role for Amazon MWAA ... 68
Deleting a service-linked role for Amazon MWAA ... 68
Supported regions for Amazon MWAA service-linked roles .. 68
Policy updates ... 68

Execution role ... 69
Execution role overview .. 70
Create a new role ... 72
View and update an execution role policy .. 73
Grant access to Amazon S3 bucket with account-level public access block 74
Use Apache Airflow connections ... 75
Sample policies .. 75
What's next? ... 79

Cross-service confused deputy prevention ... 79
Apache Airflow access modes ... 81

Apache Airflow access modes .. 81
Access modes overview ... 83
Setup for private and public access modes .. 84
Accessing the VPC endpoint for your Apache Airflow Web server (private network
access) .. 86

Accessing Apache Airflow ... 87
Prerequisites .. 87

Access .. 87

iv

Amazon Managed Workflows for Apache Airflow User Guide

AWS CLI ... 88
Open the Apache Airflow UI ... 88
Logging into Apache Airflow ... 88
Create a web server access token ... 88

Prerequisites ... 89
Using the AWS CLI ... 90
Using a bash script ... 90
Using a Python script .. 91
What's next? ... 92

Setting up a custom domain ... 92
Configure the custom domain ... 92
Set up the networking infrastructure ... 93

Apache Airflow CLI token ... 98
Prerequisites ... 99
Using the AWS CLI ... 99
Using a curl script ... 99
Using a bash script ... 102
Using a Python script .. 103
What's next? .. 106

Using the Apache Airflow REST API .. 106
Granting access to the Apache Airflow REST API: airflow:InvokeRestApi 108
Calling the Apache Airflow REST API ... 109
Creating a web server session token and calling the Apache Airflow REST API 110

Apache Airflow CLI command reference ... 113
Prerequisites .. 113
What changed in v2 ... 114
Supported CLI commands .. 114
Sample code .. 117

Managing connections .. 120
Overview .. 120
Apache Airflow packages ... 120

Provider packages for Apache Airflow v2.10.1 connections .. 121
Provider packages for Apache Airflow v2.9.2 connections .. 122
Provider packages for Apache Airflow v2.8.1 connections .. 123
Provider packages for Apache Airflow v2.7.2 connections .. 124
Provider packages for Apache Airflow v2.6.3 connections .. 125

v

Amazon Managed Workflows for Apache Airflow User Guide

Provider packages for Apache Airflow v2.5.1 connections .. 126
Provider packages for Apache Airflow v2.4.3 connections .. 127
Provider packages for Apache Airflow v2.2.2 connections .. 127
Provider packages for Apache Airflow v2.0.2 connections .. 128
Specifying newer provider packages .. 128

Connection types ... 129
Example connection URI string ... 130
Example connection template ... 130
Example using an HTTP connection template for a Jdbc connection 132

Configuring Secrets Manager .. 134
Step one: Provide Amazon MWAA with permission to access Secrets Manager secret
keys .. 135
Step two: Create the Secrets Manager backend as an Apache Airflow configuration
option .. 136
Step three: Generate an Apache Airflow AWS connection URI string 137
Step four: Add the variables in Secrets Manager .. 140
Step five: Add the connection in Secrets Manager ... 141
Sample code .. 142
Resources .. 143
What's next? .. 143

Managing environments ... 144
Configuring the environment class .. 144

Environment capabilities ... 144
Apache Airflow Schedulers ... 147

Configuring worker auto scaling .. 147
How worker scaling works .. 148
Using the Amazon MWAA console ... 148
Example high performance use case .. 149
Troubleshooting tasks stuck in the running state ... 151
What's next? .. 151

Configuring web server auto scaling ... 151
How web server scaling works .. 151
Using the Amazon MWAA console ... 152

Using configuration options .. 152
Prerequisites .. 153
How it works ... 154

vi

Amazon Managed Workflows for Apache Airflow User Guide

Using configuration options to load plugins in Apache Airflow v2 .. 154
Configuration options overview .. 154
Configuration reference .. 155
Examples and sample code .. 162
What's next? .. 163

Update an environment ... 163
Before you begin .. 164
Worker replacement strategy .. 164
Update environment resources .. 165
Update an environment .. 165

Changing the version .. 169
Upgrade or downgrade your workflow resources ... 170
Specify the new version .. 171

Using a startup script ... 172
Configure a startup script ... 172
Install Linux runtimes .. 176
Set environment variables .. 177

Working with DAGs ... 181
Amazon S3 bucket overview ... 181
Adding or updating DAGs .. 182

Prerequisites .. 182
How it works ... 183
What's changed in v2 .. 183
Testing DAGs using the Amazon MWAA CLI utility ... 184
Uploading DAG code to Amazon S3 ... 184
Specifying the path to a DAGs folder .. 185
Viewing changes on your Apache Airflow UI ... 186
What's next? .. 186

Installing custom plugins ... 186
Prerequisites .. 187
How it works ... 188
When to use the plugins .. 188
Custom plugins overview .. 189
Examples of custom plugins .. 189
Creating a plugins.zip file ... 199
Uploading plugins.zip to Amazon S3 .. 200

vii

Amazon Managed Workflows for Apache Airflow User Guide

Installing custom plugins on your environment .. 201
Example use cases for plugins.zip .. 202
What's next? .. 202

Installing Python dependencies .. 202
Prerequisites .. 203
How it works ... 204
Python dependencies overview ... 204
Creating a requirements.txt file .. 205
Uploading requirements.txt to Amazon S3 .. 208
Installing Python dependencies on your environment ... 209
Viewing logs for your requirements.txt ... 210
What's next? .. 211

Deleting files on Amazon S3 ... 211
Prerequisites .. 212
Versioning overview ... 212
How it works ... 212
Deleting a DAG on Amazon S3 .. 213
Removing "current" plugins.zip or requirements.txt ... 213
Delete "non-current" plugins.zip or requirements.txt ... 214
Deleting files with lifecycles .. 214
Example lifecycle policy .. 214
What's next? .. 215

Networking .. 216
About networking .. 216

Terms ... 217
What's supported ... 217
VPC infrastructure overview ... 217
Example use cases for an Amazon VPC and Apache Airflow access mode 220

Security in your VPC ... 222
Terms ... 223
Security overview ... 223
Network access control lists (ACLs) .. 224
VPC security groups ... 224
VPC endpoint policies (private routing only) .. 226

Managing access to VPC endpoints ... 227
Pricing ... 228

viii

Amazon Managed Workflows for Apache Airflow User Guide

VPC endpoint overview ... 228
Permission to use other AWS services ... 229
Viewing VPC endpoints ... 229
Accessing the VPC endpoint for your Apache Airflow Web server (private network
access) ... 231

VPC service endpoints in private Amazon VPCs ... 233
Pricing ... 233
Private network and private routing .. 234
(Required) VPC endpoints ... 235
Attaching the required VPC endpoints .. 235
(Optional) Enable private IP addresses for your Amazon S3 VPC interface endpoint 239

Managing your own Amazon VPC endpoints ... 240
Creating an environment in a shared Amazon VPC .. 240

Tutorials ... 251
Tutorial: AWS Client VPN ... 251

Private network ... 252
Use cases .. 253
Before you begin .. 253
Objectives ... 253
(Optional) Step one: Identify your VPC, CIDR rules, and VPC security(s) 254
Step two: Create the server and client certificates ... 255
Step three: Save the AWS CloudFormation template locally .. 256
Step four: Create the Client VPN AWS CloudFormation stack .. 258
Step five: Associate subnets to your Client VPN ... 258
Step six: Add an authorization ingress rule to your Client VPN .. 259
Step seven: Download the Client VPN endpoint configuration file ... 259
Step eight: Connect to the AWS Client VPN .. 261
What's next? .. 262

Tutorial: Linux Bastion Host .. 262
Private network ... 262
Use cases .. 263
Before you begin .. 264
Objectives ... 264
Step one: Create the bastion instance ... 264
Step two: Create the ssh tunnel ... 266
Step three: Configure the bastion security group as an inbound rule 267

ix

Amazon Managed Workflows for Apache Airflow User Guide

Step four: Copy the Apache Airflow URL .. 268
Step five: Configure proxy settings .. 268
Step six: Open the Apache Airflow UI ... 271
What's next? .. 271

Tutorial: Restricting users to a subset of DAGs ... 271
Prerequisites .. 272
Step one: Provide Amazon MWAA web server access to your IAM principal with the default
Public Apache Airflow role. ... 272
Step two: Create a new Apache Airflow custom role ... 273
Step three: Assign the role you created to your Amazon MWAA user 274
Next steps .. 275
Related resources .. 275

Tutorial: Automate managing your own environment endpoints .. 275
Prerequisites .. 276
Create the Amazon VPC .. 276
Create the Lambda function .. 277
Create the EventBridge rule ... 278
Create the environment .. 278

Code examples ... 280
Import variables DAG .. 281

Version .. 281
Prerequisites .. 281
Permissions .. 281
Dependencies ... 281
Code sample .. 282
What's next? .. 283

Using the SSHOperator .. 283
Version .. 284
Prerequisites .. 284
Permissions .. 284
Requirements ... 285
Copy your secret key to Amazon S3 .. 285
Create a new Apache Airflow connection ... 285
Code sample .. 286

Apache Airflow Snowflake connection in Secrets Manager .. 288
Version .. 288

x

Amazon Managed Workflows for Apache Airflow User Guide

Prerequisites .. 288
Permissions .. 288
Requirements ... 289
Code sample .. 289
What's next? .. 290

Using a DAG to write custom metrics ... 290
Version .. 291
Prerequisites .. 291
Permissions .. 291
Dependencies ... 291
Code example .. 291

Aurora PostgreSQL database cleanup ... 294
Version .. 295
Prerequisites .. 295
Dependencies ... 295
Code sample .. 295

Exporting environment metadata to Amazon S3 ... 298
Version .. 299
Prerequisites .. 299
Permissions .. 299
Requirements ... 300
Code sample .. 300

Using an Apache Airflow variable in Secrets Manager .. 302
Version .. 303
Prerequisites .. 303
Permissions .. 303
Requirements ... 303
Code sample .. 304
What's next? .. 305

Using an Apache Airflow connection in Secrets Manager ... 305
Version .. 305
Prerequisites .. 305
Permissions .. 306
Requirements ... 303
Code sample .. 306
What's next? .. 309

xi

Amazon Managed Workflows for Apache Airflow User Guide

Custom plugin with Oracle .. 309
Version .. 310
Prerequisites .. 310
Permissions .. 310
Requirements ... 310
Code sample .. 311
Create the custom plugin ... 312
Airflow configuration options .. 315
What's next? .. 315

Custom plugin with environment variables ... 315
Version .. 316
Prerequisites .. 316
Permissions .. 316
Requirements ... 316
Custom plugin ... 316
Plugins.zip .. 317
Airflow configuration options .. 317
What's next? .. 317

Changing a DAG's timezone .. 318
Version .. 318
Prerequisites .. 318
Permissions .. 318
Create a plugin to change the timezone in Airflow logs ... 319
Create a plugins.zip ... 319
Code sample .. 320
What's next? .. 321

Refreshing an AWS CodeArtifact token at runtime .. 321
Version .. 322
Prerequisites .. 322
Permissions .. 322
Code sample .. 323
What's next? .. 324

Custom plugin with Apache Hive and Hadoop ... 324
Version .. 325
Prerequisites .. 325
Permissions .. 325

xii

Amazon Managed Workflows for Apache Airflow User Guide

Requirements ... 303
Download dependencies ... 326
Custom plugin ... 327
Plugins.zip .. 327
Code sample .. 328
Airflow configuration options .. 328
What's next? .. 328

Custom plugin to patch PythonVirtualenvOperator .. 329
Version .. 329
Prerequisites .. 329
Permissions .. 330
Requirements ... 330
Custom plugin sample code ... 330
Plugins.zip .. 332
Code sample .. 332
Airflow configuration options .. 334
What's next? .. 335

Invoking DAGs with Lambda ... 335
Version .. 335
Prerequisites .. 335
Permissions .. 336
Dependencies ... 336
Code example .. 337

Invoking DAGs in different environments ... 338
Version .. 338
Prerequisites .. 338
Permissions .. 339
Dependencies ... 339
Code example .. 339

Amazon RDS server ... 341
Version .. 342
Prerequisites .. 342
Dependencies ... 295
Apache Airflow v2 connection ... 343
Code sample .. 343
What's next? .. 345

xiii

Amazon Managed Workflows for Apache Airflow User Guide

Amazon EMR integration ... 346
Version .. 346
Code sample .. 346

Amazon EKS (eksctl) .. 349
Version .. 349
Prerequisites .. 349
Create a public key for Amazon EC2 .. 350
Create the cluster ... 350
Create a mwaa namespace .. 351
Create a role for the mwaa namespace .. 351
Create and attach an IAM role for the Amazon EKS cluster .. 353
Create the requirements.txt file .. 356
Create an identity mapping for Amazon EKS ... 356
Create the kubeconfig ... 357
Create a DAG ... 357
Add the DAG and kube_config.yaml to the Amazon S3 bucket ... 360
Enable and trigger the example .. 360

Using the ECSOperator .. 360
Version .. 361
Prerequisites .. 361
Permissions .. 361
Create an Amazon ECS cluster .. 362
Code sample .. 367

Using dbt with Amazon MWAA .. 370
Version .. 371
Prerequisites .. 371
Dependencies ... 371
Upload a dbt project to Amazon S3 .. 372
Use a DAG to verify dbt dependency installation ... 373
Use a DAG to run a dbt project ... 374

AWS blogs and tutorials ... 374
Best practices ... 375

Performance tuning for Apache Airflow ... 375
Adding an Apache Airflow configuration option ... 375
Apache Airflow scheduler ... 376
DAG folders .. 381

xiv

Amazon Managed Workflows for Apache Airflow User Guide

DAG files ... 383
Tasks .. 387

Managing Python dependencies .. 392
Testing DAGs using the Amazon MWAA CLI utility ... 392
Installing Python dependencies using PyPi.org Requirements File Format 393
Enabling logs on the Amazon MWAA console ... 400
Viewing logs on the CloudWatch Logs console ... 400
Viewing errors in the Apache Airflow UI ... 401
Example requirements.txt scenarios ... 402

Monitoring and metrics ... 403
Overview .. 403

Amazon CloudWatch overview .. 404
AWS CloudTrail overview .. 404

Viewing audit logs ... 404
Creating a trail in CloudTrail .. 405
Viewing events with CloudTrail Event History ... 405
Example trail for CreateEnvironment ... 405
What's next? .. 407

Viewing Airflow logs ... 407
Pricing ... 407
Before you begin .. 408
Log types .. 408
Enabling Apache Airflow logs .. 408
Viewing Apache Airflow logs ... 409
Example scheduler logs ... 409
What's next? .. 410

Monitoring dashboards and alarms ... 410
Metrics ... 411
Alarm states overview ... 411
Example custom dashboards and alarms .. 411
Deleting metrics and dashboards ... 417
What's next? .. 417

Apache Airflow v2 environment metrics .. 417
Terms ... 418
Dimensions ... 418
Accessing metrics in the CloudWatch console .. 419

xv

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow metrics available in CloudWatch .. 420
Choosing which metrics are reported .. 436
What's next? .. 437

Container, queue, and database metrics ... 437
Terms ... 438
Dimensions ... 438
Accessing metrics .. 439
List of metrics ... 440

Security .. 443
Data Protection .. 444

Encryption .. 444
Using customer managed keys .. 446

AWS Identity and Access Management ... 450
Audience ... 451
Authenticating With Identities ... 451
Managing Access Using Policies .. 454
Allowing users to view their own permissions ... 457
Troubleshooting Amazon Managed Workflows for Apache Airflow identity and access 458
How Amazon MWAA works with IAM .. 459

Compliance Validation .. 464
Resilience ... 465
Infrastructure Security .. 466
Configuration and Vulnerability Analysis ... 466
Best practices .. 467

Security best practices in Apache Airflow ... 467
Versions .. 469

About Amazon MWAA versions .. 469
Latest version .. 469
Apache Airflow versions ... 469
Apache Airflow components ... 471

Schedulers .. 471
Workers ... 471

Upgrading the Apache Airflow version ... 471
Downgrading the Apache Airflow version .. 472
Apache Airflow deprecated versions ... 472
Apache Airflow version support and FAQ .. 472

xvi

Amazon Managed Workflows for Apache Airflow User Guide

Frequently asked questions .. 473
Endpoints and quotas ... 475

Service endpoints ... 475
Service quotas .. 475
Increasing quotas ... 476

FAQs .. 477
Supported versions .. 478

Apache Airflow support .. 478
Apache Airflow versions .. 478
Python version .. 478

Use cases ... 479
Can I use Amazon MWAA with Amazon SageMaker Unified Studio? 479
When should I use AWS Step Functions vs. Amazon MWAA? ... 480

Environment specifications .. 480
How much task storage is available to each environment? ... 480
Default OS .. 480
Custom images .. 480
HIPAA compliance .. 480
Does Amazon MWAA support Spot Instances? .. 481
Custom domain ... 481
SSH access .. 481
Self-referencing rule .. 482
Custom metrics ... 482
Store data .. 482
Worker quota ... 482
Shared Amazon VPCs .. 482
Shared Amazon VPCs .. 483

Metrics .. 483
Worker metrics .. 483
Custom metrics ... 483

DAGs, Operators, Connections, and other questions .. 483
PythonVirtualenvOperator ... 483
How long does it take Amazon MWAA to recognize a new DAG file? 483
Why is my DAG file not picked up by Apache Airflow? .. 484
Remove plugins.zip or requirements.txt .. 484
Remove plugins.zip or requirements.txt .. 484

xvii

Amazon Managed Workflows for Apache Airflow User Guide

Can I use AWS Database Migration Service (DMS) Operators? ... 484
When I access the Airflow REST API using the AWS credentials, can I increase the throttling
limit to more than 10 transactions per second (TPS)? ... 485

Troubleshooting ... 486
Apache Airflow v2 ... 489

Connections ... 489
Web server ... 492
Tasks .. 493
CLI .. 495
Operators .. 496

Apache Airflow v1 ... 498
Updating requirements.txt ... 499
Broken DAG .. 499
Operators .. 501
Connections ... 502
Web server ... 504
Tasks .. 505
CLI .. 507

Amazon MWAA Create/Update ... 508
Updating requirements.txt ... 509
Plugins ... 510
Create bucket .. 510
Create environment ... 511
Update environment .. 514
Access environment .. 514

CloudWatch Logs and CloudTrail ... 515
Logs ... 515

Document History .. 520

xviii

Amazon Managed Workflows for Apache Airflow User Guide

What Is Amazon Managed Workflows for Apache
Airflow?
Use Amazon Managed Workflows for Apache Airflow, a managed orchestration service for Apache
Airflow, to setup and operate data pipelines in the cloud at scale. Apache Airflow is an open-source
tool used to programmatically author, schedule, and monitor sequences of processes and tasks
referred to as workflows.

With Amazon MWAA, you can use Apache Airflow and Python to create workflows without having
to manage the underlying infrastructure for scalability, availability, and security. Amazon MWAA
automatically scales its workflow execution capacity to meet your needs, and integrates with AWS
security services to help provide you with fast and secure access to your data.

Content

• Features

• Architecture

• Integration

• Supported versions

• What's next?

Features

Review the following features to learn how Amazon MWAA can simplify the management of your
Apache Airflow workflows.

• Automatic Airflow setup – Quickly setup Apache Airflow by choosing an Apache Airflow version
when you create an Amazon MWAA environment. Amazon MWAA sets up Apache Airflow for you
using the same Apache Airflow user interface and open-source code that you can download on
the Internet.

• Automatic scaling – Automatically scale Apache Airflow Workers by setting the minimum
and maximum number of Workers that run in your environment. Amazon MWAA monitors
the Workers in your environment and uses its autoscaling component to add Workers to meet
demand, up to and until it reaches the maximum number of Workers you defined.

• Built-in authentication – Enable role-based authentication and authorization for your
Apache Airflow Web server by defining the access control policies in AWS Identity and Access

Features 1

https://airflow.apache.org/
https://airflow.apache.org/

Amazon Managed Workflows for Apache Airflow User Guide

Management (IAM). The Apache Airflow Workers assume these policies for secure access to AWS
services.

• Built-in security – The Apache Airflow Workers and Schedulers run in Amazon MWAA's Amazon
VPC. Data is also automatically encrypted using AWS Key Management Service, so your
environment is secure by default.

• Public or private access modes – Access your Apache Airflow Web server using a private, or
public access mode. The Public network access mode uses a VPC endpoint for your Apache
Airflow Web server that is accessible over the Internet. The Private network access mode uses a
VPC endpoint for your Apache Airflow Web server that is accessible in your VPC. In both cases,
access for your Apache Airflow users is controlled by the access control policy you define in AWS
Identity and Access Management (IAM), and AWS SSO.

• Streamlined upgrades and patches – Amazon MWAA provides new versions of Apache Airflow
periodically. The Amazon MWAA team will update and patch the images for these versions.

• Workflow monitoring – View Apache Airflow logs and Apache Airflow metrics in Amazon
CloudWatch to identify Apache Airflow task delays or workflow errors without the need for
additional third-party tools. Amazon MWAA automatically sends environment metrics—and if
enabled—Apache Airflow logs to CloudWatch.

• AWS integration – Amazon MWAA supports open-source integrations with Amazon Athena, AWS
Batch, Amazon CloudWatch, Amazon DynamoDB, AWS DataSync, Amazon EMR, AWS Fargate,
Amazon EKS, Amazon Data Firehose, AWS Glue, AWS Lambda, Amazon Redshift, Amazon
SQS, Amazon SNS, Amazon SageMaker AI, and Amazon S3, as well as hundreds of built-in and
community-created operators and sensors.

• Worker fleets – Amazon MWAA offers support for using containers to scale the worker fleet
on demand and reduce scheduler outages using Amazon ECS on AWS Fargate. Operators that
invoke tasks on Amazon ECS containers, and Kubernetes operators that create and run pods on a
Kubernetes cluster are supported.

Architecture

All of the components contained in the outer box (in the image below) appear as a single Amazon
MWAA environment in your account. The Apache Airflow Scheduler and Workers are AWS Fargate
containers that connect to the private subnets in the Amazon VPC for your environment. Each
environment has its own Apache Airflow metadatabase managed by AWS that is accessible to the
Scheduler and Workers Fargate containers via a privately-secured VPC endpoint.

Architecture 2

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html

Amazon Managed Workflows for Apache Airflow User Guide

Amazon CloudWatch, Amazon S3, Amazon SQS, and AWS KMS are separate from Amazon MWAA
and need to be accessible from the Apache Airflow Scheduler(s) and Workers in the Fargate
containers.

The Apache Airflow Web server can be accessed either over the Internet by selecting the Public
network Apache Airflow access mode, or within your VPC by selecting the Private network Apache
Airflow access mode. In both cases, access for your Apache Airflow users is controlled by the access
control policy you define in AWS Identity and Access Management (IAM).

Note

Multiple Apache Airflow Schedulers are only available with Apache Airflow v2 and above.
Learn more about the Apache Airflow task lifecycle at Concepts in the Apache Airflow
reference guide.

Architecture 3

https://airflow.apache.org/docs/apache-airflow/stable/concepts.html#task-lifecycle

Amazon Managed Workflows for Apache Airflow User Guide

Integration

The active and growing Apache Airflow open-source community provides operators (plugins that
simplify connections to services) for Apache Airflow to integrate with AWS services. This includes
services such as Amazon S3, Amazon Redshift, Amazon EMR, AWS Batch, and Amazon SageMaker
AI, as well as services on other cloud platforms.

Using Apache Airflow with Amazon MWAA fully supports integration with AWS services and
popular third-party tools such as Apache Hadoop, Presto, Hive, and Spark to perform data
processing tasks. Amazon MWAA is committed to maintaining compatibility with the Apache
Airflow API, and Amazon MWAA intends to provide reliable integrations to AWS services and make
them available to the community, and be involved in community feature development.

For sample code, refer to Code examples for Amazon Managed Workflows for Apache Airflow.

Supported versions

Amazon MWAA supports multiple versions of Apache Airflow. For more information about the
Apache Airflow versions we support and the Apache Airflow components included with each
version, refer to Apache Airflow versions on Amazon Managed Workflows for Apache Airflow.

What's next?

• Get started with a single AWS CloudFormation template that creates an Amazon S3 bucket for
your Airflow DAGs and supporting files, an Amazon VPC with public routing, and an Amazon
MWAA environment in Quick start tutorial for Amazon Managed Workflows for Apache Airflow.

• Get started incrementally by creating an Amazon S3 bucket for your Airflow DAGs and
supporting files, choosing from one of three Amazon VPC networking options, and creating
an Amazon MWAA environment in Get started with Amazon Managed Workflows for Apache
Airflow.

Integration 4

Amazon Managed Workflows for Apache Airflow User Guide

Quick start tutorial for Amazon Managed Workflows for
Apache Airflow

This quick start tutorial uses an AWS CloudFormation template that creates the Amazon VPC
infrastructure, an Amazon S3 bucket with a dags folder, and an Amazon Managed Workflows for
Apache Airflow environment at the same time.

Topics

• In this tutorial

• Prerequisites

• Step one: Save the AWS CloudFormation template locally

• Step two: Create the stack using the AWS CLI

• Step three: Upload a DAG to Amazon S3 and run in the Apache Airflow UI

• Step four: View logs in CloudWatch Logs

• What's next?

In this tutorial

This tutorial walks you through three AWS Command Line Interface (AWS CLI) commands to
upload a DAG to Amazon S3, run the DAG in Apache Airflow, and view logs in CloudWatch.
It concludes by walking you through the steps to create an IAM policy for an Apache Airflow
development team.

Note

The AWS CloudFormation template on this page creates an Amazon Managed Workflows
for Apache Airflow environment for the latest version of Apache Airflow available in AWS
CloudFormation. The latest version available is Apache Airflow v2.10.3.

The AWS CloudFormation template on this page creates the following:

• VPC infrastructure. The template uses Public routing over the Internet. It uses the Public
network access mode for the Apache Airflow Web server in WebserverAccessMode:
PUBLIC_ONLY.

In this tutorial 5

Amazon Managed Workflows for Apache Airflow User Guide

• Amazon S3 bucket. The template creates an Amazon S3 bucket with a dags folder. It's
configured to Block all public access, with Bucket Versioning enabled, as defined in Create an
Amazon S3 bucket for Amazon MWAA.

• Amazon MWAA environment. The template creates an Amazon MWAA environment that's
associated to the dags folder on the Amazon S3 bucket, an execution role with permission to
AWS services used by Amazon MWAA, and the default for encryption using an AWS owned key,
as defined in Create an Amazon MWAA environment.

• CloudWatch Logs. The template enables Apache Airflow logs in CloudWatch at the "INFO" level
and up for the Airflow scheduler log group, Airflow web server log group, Airflow worker log group,
Airflow DAG processing log group, and the Airflow task log group, as defined in Viewing Airflow
logs in Amazon CloudWatch.

In this tutorial, you'll complete the following tasks:

• Upload and run a DAG. Upload Apache Airflow's tutorial DAG for the latest Amazon MWAA
supported Apache Airflow version to Amazon S3, and then run in the Apache Airflow UI, as
defined in Adding or updating DAGs.

• View logs. View the Airflow web server log group in CloudWatch Logs, as defined in Viewing
Airflow logs in Amazon CloudWatch.

• Create an access control policy. Create an access control policy in IAM for your Apache Airflow
development team, as defined in Accessing an Amazon MWAA environment.

Note

In the VPC that hosts the Amazon MWAA environment, set
assignIpv6AddressOnCreation to true for all attached subnets. This setting ensures
automatic Internet Protocol version 6 (IPv6) address assignment to the resources within
these subnets.

Prerequisites

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

Prerequisites 6

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon Managed Workflows for Apache Airflow User Guide

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

Step one: Save the AWS CloudFormation template locally

• Copy the contents of the following template and save locally as mwaa-public-
network.yml. You can also download the template.

AWSTemplateFormatVersion: "2010-09-09"

Parameters:

 EnvironmentName:
 Description: An environment name that is prefixed to resource names
 Type: String
 Default: MWAAEnvironment

 VpcCIDR:
 Description: The IP range (CIDR notation) for this VPC
 Type: String
 Default: 10.192.0.0/16

 PublicSubnet1CIDR:
 Description: The IP range (CIDR notation) for the public subnet in the first
 Availability Zone
 Type: String
 Default: 10.192.10.0/24

 PublicSubnet2CIDR:
 Description: The IP range (CIDR notation) for the public subnet in the second
 Availability Zone
 Type: String
 Default: 10.192.11.0/24

 PrivateSubnet1CIDR:
 Description: The IP range (CIDR notation) for the private subnet in the first
 Availability Zone
 Type: String
 Default: 10.192.20.0/24
 PrivateSubnet2CIDR:

Step one: Save the AWS CloudFormation template locally 7

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
./samples/mwaa-public-network.zip

Amazon Managed Workflows for Apache Airflow User Guide

 Description: The IP range (CIDR notation) for the private subnet in the second
 Availability Zone
 Type: String
 Default: 10.192.21.0/24
 MaxWorkerNodes:
 Description: The maximum number of workers that can run in the environment
 Type: Number
 Default: 2
 DagProcessingLogs:
 Description: Log level for DagProcessing
 Type: String
 Default: INFO
 SchedulerLogsLevel:
 Description: Log level for SchedulerLogs
 Type: String
 Default: INFO
 TaskLogsLevel:
 Description: Log level for TaskLogs
 Type: String
 Default: INFO
 WorkerLogsLevel:
 Description: Log level for WorkerLogs
 Type: String
 Default: INFO
 WebserverLogsLevel:
 Description: Log level for WebserverLogs
 Type: String
 Default: INFO

Resources:

 ###
 # CREATE VPC

 ###

 VPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: !Ref VpcCIDR
 EnableDnsSupport: true
 EnableDnsHostnames: true
 Tags:
 - Key: Name

Step one: Save the AWS CloudFormation template locally 8

Amazon Managed Workflows for Apache Airflow User Guide

 Value: MWAAEnvironment

 InternetGateway:
 Type: AWS::EC2::InternetGateway
 Properties:
 Tags:
 - Key: Name
 Value: MWAAEnvironment

 InternetGatewayAttachment:
 Type: AWS::EC2::VPCGatewayAttachment
 Properties:
 InternetGatewayId: !Ref InternetGateway
 VpcId: !Ref VPC

 PublicSubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [0, !GetAZs '']
 CidrBlock: !Ref PublicSubnet1CIDR
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Public Subnet (AZ1)

 PublicSubnet2:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [1, !GetAZs '']
 CidrBlock: !Ref PublicSubnet2CIDR
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Public Subnet (AZ2)

 PrivateSubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [0, !GetAZs '']
 CidrBlock: !Ref PrivateSubnet1CIDR
 MapPublicIpOnLaunch: false

Step one: Save the AWS CloudFormation template locally 9

Amazon Managed Workflows for Apache Airflow User Guide

 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Private Subnet (AZ1)

 PrivateSubnet2:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [1, !GetAZs '']
 CidrBlock: !Ref PrivateSubnet2CIDR
 MapPublicIpOnLaunch: false
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Private Subnet (AZ2)

 NatGateway1EIP:
 Type: AWS::EC2::EIP
 DependsOn: InternetGatewayAttachment
 Properties:
 Domain: vpc

 NatGateway2EIP:
 Type: AWS::EC2::EIP
 DependsOn: InternetGatewayAttachment
 Properties:
 Domain: vpc

 NatGateway1:
 Type: AWS::EC2::NatGateway
 Properties:
 AllocationId: !GetAtt NatGateway1EIP.AllocationId
 SubnetId: !Ref PublicSubnet1

 NatGateway2:
 Type: AWS::EC2::NatGateway
 Properties:
 AllocationId: !GetAtt NatGateway2EIP.AllocationId
 SubnetId: !Ref PublicSubnet2

 PublicRouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:

Step one: Save the AWS CloudFormation template locally 10

Amazon Managed Workflows for Apache Airflow User Guide

 - Key: Name
 Value: !Sub ${EnvironmentName} Public Routes

 DefaultPublicRoute:
 Type: AWS::EC2::Route
 DependsOn: InternetGatewayAttachment
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway

 PublicSubnet1RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet1

 PublicSubnet2RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet2

 PrivateRouteTable1:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Private Routes (AZ1)

 DefaultPrivateRoute1:
 Type: AWS::EC2::Route
 Properties:
 RouteTableId: !Ref PrivateRouteTable1
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId: !Ref NatGateway1

 PrivateSubnet1RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PrivateRouteTable1
 SubnetId: !Ref PrivateSubnet1

Step one: Save the AWS CloudFormation template locally 11

Amazon Managed Workflows for Apache Airflow User Guide

 PrivateRouteTable2:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Private Routes (AZ2)

 DefaultPrivateRoute2:
 Type: AWS::EC2::Route
 Properties:
 RouteTableId: !Ref PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId: !Ref NatGateway2

 PrivateSubnet2RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PrivateRouteTable2
 SubnetId: !Ref PrivateSubnet2

 SecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupName: "mwaa-security-group"
 GroupDescription: "Security group with a self-referencing inbound rule."
 VpcId: !Ref VPC

 SecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !Ref SecurityGroup
 IpProtocol: "-1"
 SourceSecurityGroupId: !Ref SecurityGroup

 EnvironmentBucket:
 Type: AWS::S3::Bucket
 Properties:
 VersioningConfiguration:
 Status: Enabled
 PublicAccessBlockConfiguration:
 BlockPublicAcls: true
 BlockPublicPolicy: true

Step one: Save the AWS CloudFormation template locally 12

Amazon Managed Workflows for Apache Airflow User Guide

 IgnorePublicAcls: true
 RestrictPublicBuckets: true

 ###
 # CREATE MWAA

 ###

 MwaaEnvironment:
 Type: AWS::MWAA::Environment
 DependsOn: MwaaExecutionPolicy
 Properties:
 Name: !Sub "${AWS::StackName}-MwaaEnvironment"
 SourceBucketArn: !GetAtt EnvironmentBucket.Arn
 ExecutionRoleArn: !GetAtt MwaaExecutionRole.Arn
 DagS3Path: dags/
 NetworkConfiguration:
 SecurityGroupIds:
 - !GetAtt SecurityGroup.GroupId
 SubnetIds:
 - !Ref PrivateSubnet1
 - !Ref PrivateSubnet2
 WebserverAccessMode: PUBLIC_ONLY
 MaxWorkers: !Ref MaxWorkerNodes
 LoggingConfiguration:
 DagProcessingLogs:
 LogLevel: !Ref DagProcessingLogs
 Enabled: true
 SchedulerLogs:
 LogLevel: !Ref SchedulerLogsLevel
 Enabled: true
 TaskLogs:
 LogLevel: !Ref TaskLogsLevel
 Enabled: true
 WorkerLogs:
 LogLevel: !Ref WorkerLogsLevel
 Enabled: true
 WebserverLogs:
 LogLevel: !Ref WebserverLogsLevel
 Enabled: true

 MwaaExecutionRole:
 Type: AWS::IAM::Role

Step one: Save the AWS CloudFormation template locally 13

Amazon Managed Workflows for Apache Airflow User Guide

 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - airflow-env.amazonaws.com
 - airflow.amazonaws.com
 Action:
 - "sts:AssumeRole"
 Path: "/service-role/"

 MwaaExecutionPolicy:
 DependsOn: EnvironmentBucket
 Type: AWS::IAM::ManagedPolicy
 Properties:
 Roles:
 - !Ref MwaaExecutionRole
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action: airflow:PublishMetrics
 Resource:
 - !Sub "arn:aws:airflow:${AWS::Region}:${AWS::AccountId}:environment/
${EnvironmentName}"
 - Effect: Deny
 Action: s3:ListAllMyBuckets
 Resource:
 - !Sub "${EnvironmentBucket.Arn}"
 - !Sub "${EnvironmentBucket.Arn}/*"

 - Effect: Allow
 Action:
 - "s3:GetObject*"
 - "s3:GetBucket*"
 - "s3:List*"
 Resource:
 - !Sub "${EnvironmentBucket.Arn}"
 - !Sub "${EnvironmentBucket.Arn}/*"
 - Effect: Allow
 Action:
 - logs:DescribeLogGroups

Step one: Save the AWS CloudFormation template locally 14

Amazon Managed Workflows for Apache Airflow User Guide

 Resource: "*"

 - Effect: Allow
 Action:
 - logs:CreateLogStream
 - logs:CreateLogGroup
 - logs:PutLogEvents
 - logs:GetLogEvents
 - logs:GetLogRecord
 - logs:GetLogGroupFields
 - logs:GetQueryResults
 - logs:DescribeLogGroups
 Resource:
 - !Sub "arn:aws:logs:${AWS::Region}:${AWS::AccountId}:log-
group:airflow-${AWS::StackName}*"
 - Effect: Allow
 Action: cloudwatch:PutMetricData
 Resource: "*"
 - Effect: Allow
 Action:
 - sqs:ChangeMessageVisibility
 - sqs:DeleteMessage
 - sqs:GetQueueAttributes
 - sqs:GetQueueUrl
 - sqs:ReceiveMessage
 - sqs:SendMessage
 Resource:
 - !Sub "arn:aws:sqs:${AWS::Region}:*:airflow-celery-*"
 - Effect: Allow
 Action:
 - kms:Decrypt
 - kms:DescribeKey
 - "kms:GenerateDataKey*"
 - kms:Encrypt
 NotResource: !Sub "arn:aws:kms:*:${AWS::AccountId}:key/*"
 Condition:
 StringLike:
 "kms:ViaService":
 - !Sub "sqs.${AWS::Region}.amazonaws.com"
Outputs:
 VPC:
 Description: A reference to the created VPC
 Value: !Ref VPC

Step one: Save the AWS CloudFormation template locally 15

Amazon Managed Workflows for Apache Airflow User Guide

 PublicSubnets:
 Description: A list of the public subnets
 Value: !Join [",", [!Ref PublicSubnet1, !Ref PublicSubnet2]]

 PrivateSubnets:
 Description: A list of the private subnets
 Value: !Join [",", [!Ref PrivateSubnet1, !Ref PrivateSubnet2]]

 PublicSubnet1:
 Description: A reference to the public subnet in the 1st Availability Zone
 Value: !Ref PublicSubnet1

 PublicSubnet2:
 Description: A reference to the public subnet in the 2nd Availability Zone
 Value: !Ref PublicSubnet2

 PrivateSubnet1:
 Description: A reference to the private subnet in the 1st Availability Zone
 Value: !Ref PrivateSubnet1

 PrivateSubnet2:
 Description: A reference to the private subnet in the 2nd Availability Zone
 Value: !Ref PrivateSubnet2

 SecurityGroupIngress:
 Description: Security group with self-referencing inbound rule
 Value: !Ref SecurityGroupIngress

 MwaaApacheAirflowUI:
 Description: MWAA Environment
 Value: !Sub "https://${MwaaEnvironment.WebserverUrl}"

Step two: Create the stack using the AWS CLI

1. In your command prompt, navigate to the directory where mwaa-public-network.yml is
stored. For example:

cd mwaaproject

2. Use the aws cloudformation create-stack command to create the stack using the AWS
CLI.

Step two: Create the stack using the AWS CLI 16

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/create-stack.html

Amazon Managed Workflows for Apache Airflow User Guide

aws cloudformation create-stack --stack-name mwaa-environment-public-network --
template-body file://mwaa-public-network.yml --capabilities CAPABILITY_IAM

Note

It takes over 30 minutes to create the Amazon VPC infrastructure, Amazon S3 bucket,
and Amazon MWAA environment.

Step three: Upload a DAG to Amazon S3 and run in the Apache
Airflow UI

1. Copy the contents of the tutorial.py file for the latest supported Apache Airflow version
and save locally as tutorial.py.

2. In your command prompt, navigate to the directory where tutorial.py is stored. For
example:

cd mwaaproject

3. Use the following command to list all of your Amazon S3 buckets.

aws s3 ls

4. Use the following command to list the files and folders in the Amazon S3 bucket for your
environment.

aws s3 ls s3://YOUR_S3_BUCKET_NAME

5. Use the following script to upload the tutorial.py file to your dags folder. Substitute the
sample value in amzn-s3-demo-bucket.

aws s3 cp tutorial.py s3://amzn-s3-demo-bucket/dags/

6. Open the Environments page on the Amazon MWAA console.

7. Choose an environment.

8. Choose Open Airflow UI.

Step three: Upload a DAG to Amazon S3 and run in the Apache Airflow UI 17

https://airflow.apache.org/docs/apache-airflow/2.2.2/tutorial.html
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

9. On the Apache Airflow UI, from the list of available DAGs, choose the tutorial DAG.

10. On the DAG details page, choose the Pause/Unpause DAG toggle next to your DAG name to
unpause the DAG.

11. Choose Trigger DAG.

Step four: View logs in CloudWatch Logs

You can view Apache Airflow logs in the CloudWatch console for all of the Apache Airflow logs that
were enabled by the AWS CloudFormation stack. The following section shows how to view logs for
the Airflow web server log group.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose the Airflow web server log group on the Monitoring pane.

4. Choose the webserver_console_ip log in Log streams.

What's next?

• Learn more about how to upload DAGs, specify Python dependencies in a requirements.txt
and custom plugins in a plugins.zip in Working with DAGs on Amazon MWAA.

• Learn more about the best practices we recommend to tune the performance of your
environment in Performance tuning for Apache Airflow on Amazon MWAA.

• Create a monitoring dashboard for your environment in Monitoring dashboards and alarms on
Amazon MWAA.

• Run some of the DAG code samples in Code examples for Amazon Managed Workflows for
Apache Airflow.

Step four: View logs in CloudWatch Logs 18

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Get started with Amazon Managed Workflows for Apache
Airflow

Amazon Managed Workflows for Apache Airflow uses the Amazon VPC, DAG code and supporting
files in your Amazon S3 storage bucket to create an environment. This chapter describes the
prerequisites and AWS resources needed to get started with Amazon MWAA.

Topics

• Prerequisites

• About this guide

• Before you begin

• Available regions

• Create an Amazon S3 bucket for Amazon MWAA

• Create the VPC network

• Create an Amazon MWAA environment

• What's next?

Prerequisites

To create an Amazon MWAA environment, you may want to take additional steps to ensure you
have permission to the AWS resources you need to create.

• AWS account – An AWS account with permission to use Amazon MWAA and the AWS services
and resources used by your environment.

About this guide

This section describes the AWS infrastructure and resources you'll create in this guide.

• Amazon VPC – The Amazon VPC networking components required by an Amazon MWAA
environment. You can configure an existing VPC that meets these requirements (advanced) as
seen in About networking on Amazon MWAA, or create the VPC and networking components, as
defined in the section called “Create the VPC network”.

Prerequisites 19

Amazon Managed Workflows for Apache Airflow User Guide

• Amazon S3 bucket – An Amazon S3 bucket to store your DAGs and associated files, such as
plugins.zip and requirements.txt. Your Amazon S3 bucket must be configured to Block
all public access, with Bucket Versioning enabled, as defined in Create an Amazon S3 bucket for
Amazon MWAA.

• Amazon MWAA environment – An Amazon MWAA environment configured with the location
of your Amazon S3 bucket, the path to your DAG code and any custom plugins or Python
dependencies, and your Amazon VPC and its security group, as defined in Create an Amazon
MWAA environment.

Before you begin

To create an Amazon MWAA environment, you may want to take additional steps to create and
configure other AWS resources before you create your environment.

To create an environment, you need the following:

• AWS KMS key – An AWS KMS key for data encryption on your environment. You can choose the
default option on the Amazon MWAA console to create an AWS owned key when you create
an environment, or specify an existing Customer managed key with permissions to other AWS
services used by your environment configured (advanced). To learn more, refer to Using customer
managed keys for encryption.

• Execution role – An execution role that allows Amazon MWAA to access AWS resources in
your environment. You can choose the default option on the Amazon MWAA console to create
an execution role when you create an environment. To learn more, refer to Amazon MWAA
execution role.

• VPC security group – A VPC security group that allows Amazon MWAA to access other AWS
resources in your VPC network. You can choose the default option on the Amazon MWAA console
to create a security group when you create an environment, or provide a security group with the
appropriate inbound and outbound rules (advanced). To learn more, refer to Security in your VPC
on Amazon MWAA.

Available regions

Amazon MWAA is available in the following AWS Regions.

• Europe (Stockholm) - eu-north-1

Before you begin 20

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Managed Workflows for Apache Airflow User Guide

• Europe (Frankfurt) - eu-central-1

• Europe (Ireland) - eu-west-1

• Europe (London) - eu-west-2

• Europe (Paris) - eu-west-3

• Asia Pacific (Mumbai) - ap-south-1

• Asia Pacific (Singapore) - ap-southeast-1

• Asia Pacific (Sydney) - ap-southeast-2

• Asia Pacific (Tokyo) - ap-northeast-1

• Asia Pacific (Seoul) - ap-northeast-2

• US East (N. Virginia) - us-east-1

• US East (Ohio) - us-east-2

• US West (Oregon) - us-west-2

• Canada (Central) - ca-central-1

• South America (São Paulo) - sa-east-1

Create an Amazon S3 bucket for Amazon MWAA

This guide describes the steps to create an Amazon S3 bucket to store your Apache Airflow
Directed Acyclic Graphs (DAGs), custom plugins in a plugins.zip file, and Python dependencies
in a requirements.txt file.

Contents

• Before you begin

• Create the bucket

• What's next?

Before you begin

• The Amazon S3 bucket name can't be changed after you create the bucket. To learn more, refer
to Rules for bucket naming in the Amazon Simple Storage Service User Guide.

• An Amazon S3 bucket used for an Amazon MWAA environment must be configured to Block all
public access, with Bucket Versioning enabled.

Create a bucket 21

https://docs.aws.amazon.com/AmazonS3/latest/userguide/BucketRestrictions.html#bucketnamingrules

Amazon Managed Workflows for Apache Airflow User Guide

• An Amazon S3 bucket used for an Amazon MWAA environment must be located in the same AWS
Region as an Amazon MWAA environment. To view a list of AWS Regions for Amazon MWAA,
refer to Amazon MWAA endpoints and quotas in the AWS General Reference.

Create the bucket

This section describes the steps to create the Amazon S3 bucket for your environment.

To create a bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. In Bucket name, enter a DNS-compliant name for your bucket.

The bucket name must:

• Be unique across all of Amazon S3.

• Be between 3 and 63 characters long.

• Not contain uppercase characters.

• Start with a lowercase letter or number.

Important

Avoid including sensitive information, such as account numbers, in the bucket name.
The bucket name is visible in the URLs that point to the objects in the bucket.

4. Choose an AWS Region in Region. This must be the same AWS Region as your Amazon MWAA
environment.

• We recommend choosing a region close to you to minimize latency and costs and address
regulatory requirements.

5. Choose Block all public access.

6. Choose Enable in Bucket Versioning.

7. Optional - Tags. Add key-value tag pairs to identify your Amazon S3 bucket in Tags. For
example, Bucket : Staging.

Create the bucket 22

https://docs.aws.amazon.com/general/latest/gr/mwaa.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Managed Workflows for Apache Airflow User Guide

8. Optional - Server-side encryption. You can optionally Enable one of the following encryption
options on your Amazon S3 bucket.

a. Choose Amazon S3 key (SSE-S3) in Server-side encryption to enable server-side
encryption for the bucket.

b. Choose AWS Key Management Service key (SSE-KMS) to use an AWS KMS key for
encryption on your Amazon S3 bucket:

i. AWS managed key (aws/s3) - If you choose this option, you can either use an AWS
owned key managed by Amazon MWAA, or specify a Customer managed key for
encryption of your Amazon MWAA environment.

ii. Choose from your AWS KMS keys or Enter AWS KMS key ARN - If you choose to
specify a Customer managed key in this step, you must specify an AWS KMS key ID or
ARN. AWS KMS aliases and multi-region keys are not supported by Amazon MWAA.
The AWS KMS key you specify must also be used for encryption on your Amazon
MWAA environment.

9. Optional - Advanced settings. If you want to enable Amazon S3 Object Lock:

a. Choose Advanced settings, Enable.

Important

Enabling Object Lock will permanently allow objects in this bucket to be locked. To
learn more, refer to Locking Objects Using Amazon S3 Object Lock in the Amazon
Simple Storage Service User Guide.

b. Choose the acknowledgement.

10. Choose Create bucket.

What's next?

• Learn how to create the required Amazon VPC network for an environment in Create the VPC
network.

• Learn how to how to manage access permissions in How do I set ACL bucket permissions?

• Learn how to delete a storage bucket in How do I delete an S3 Bucket?.

What's next? 23

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-bucket-permissions.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

Amazon Managed Workflows for Apache Airflow User Guide

Create the VPC network

Amazon Managed Workflows for Apache Airflow requires an Amazon VPC and specific networking
components to support an environment. This guide describes the different options to create the
Amazon VPC network for an Amazon Managed Workflows for Apache Airflow environment.

Note

Apache Airflow works best in a low-latency network environment. If you are using
an existing Amazon VPC which routes traffic to another region or to an on-premise
environment, we recommended adding AWS PrivateLink endpoints for Amazon SQS,
CloudWatch, Amazon S3, and AWS KMS. For more information about configuring AWS
PrivateLink for Amazon MWAA, refer to Creating an Amazon VPC network without internet
access.

Contents

• Prerequisites

• Before you begin

• Options to create the Amazon VPC network

• Option one: Creating the VPC network on the Amazon MWAA console

• Option two: Creating an Amazon VPC network with Internet access

• Option three: Creating an Amazon VPC network without Internet access

• What's next?

Prerequisites

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

Create the VPC network 24

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Amazon Managed Workflows for Apache Airflow User Guide

Before you begin

• The VPC network you specify for your environment can't be changed after the environment is
created.

• You can use private or public routing for your Amazon VPC and Apache Airflow Web server. To
view a list of options, refer to the section called “Example use cases for an Amazon VPC and
Apache Airflow access mode”.

Options to create the Amazon VPC network

The following section describes the options available to create the Amazon VPC network for an
environment.

Note

Amazon MWAA does not support the use of use1-az3 Availability Zone (AZ) in the US East
(N. Virginia) Region. When creating the VPC for Amazon MWAA in the US East (N. Virginia)
region, you must explicitly assign the AvailabilityZone in the AWS CloudFormation
(CFN) template. The assigned availability zone name must not be mapped to use1-az3.
You can retrieve the detailed mapping of AZ names to their corresponding AZ IDs by
running the following command:

aws ec2 describe-availability-zones --region us-east-1

Option one: Creating the VPC network on the Amazon MWAA console

The following section shows how to create an Amazon VPC network on the Amazon MWAA
console. This option uses Public routing over the Internet. It can be used for an Apache Airflow Web
server with the Private network or Public network access modes.

The following image shows where you can find the Create MWAA VPC button on the Amazon
MWAA console.

Before you begin 25

Amazon Managed Workflows for Apache Airflow User Guide

Option two: Creating an Amazon VPC network with Internet access

The following AWS CloudFormation template creates an Amazon VPC network with Internet access
in your default AWS Region. This option uses Public routing over the Internet. This template can be
used for an Apache Airflow Web server with the Private network or Public network access modes.

1. Copy the contents of the following template and save locally as cfn-vpc-public-
private.yaml. You can also download the template.

Description: This template deploys a VPC, with a pair of public and private
 subnets spread
 across two Availability Zones. It deploys an internet gateway, with a default
 route on the public subnets. It deploys a pair of NAT gateways (one in each AZ),
 and default routes for them in the private subnets.

Parameters:
 EnvironmentName:
 Description: An environment name that is prefixed to resource names
 Type: String
 Default: mwaa-

 VpcCIDR:
 Description: Please enter the IP range (CIDR notation) for this VPC
 Type: String
 Default: 10.192.0.0/16

 PublicSubnet1CIDR:
 Description: Please enter the IP range (CIDR notation) for the public subnet in
 the first Availability Zone

Options to create the Amazon VPC network 26

./samples/cfn-vpc-public-private.zip

Amazon Managed Workflows for Apache Airflow User Guide

 Type: String
 Default: 10.192.10.0/24

 PublicSubnet2CIDR:
 Description: Please enter the IP range (CIDR notation) for the public subnet in
 the second Availability Zone
 Type: String
 Default: 10.192.11.0/24

 PrivateSubnet1CIDR:
 Description: Please enter the IP range (CIDR notation) for the private subnet
 in the first Availability Zone
 Type: String
 Default: 10.192.20.0/24

 PrivateSubnet2CIDR:
 Description: Please enter the IP range (CIDR notation) for the private subnet
 in the second Availability Zone
 Type: String
 Default: 10.192.21.0/24

Resources:
 VPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: !Ref VpcCIDR
 EnableDnsSupport: true
 EnableDnsHostnames: true
 Tags:
 - Key: Name
 Value: !Ref EnvironmentName

 InternetGateway:
 Type: AWS::EC2::InternetGateway
 Properties:
 Tags:
 - Key: Name
 Value: !Ref EnvironmentName

 InternetGatewayAttachment:
 Type: AWS::EC2::VPCGatewayAttachment
 Properties:
 InternetGatewayId: !Ref InternetGateway
 VpcId: !Ref VPC

Options to create the Amazon VPC network 27

Amazon Managed Workflows for Apache Airflow User Guide

 PublicSubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [0, !GetAZs '']
 CidrBlock: !Ref PublicSubnet1CIDR
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Public Subnet (AZ1)

 PublicSubnet2:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [1, !GetAZs '']
 CidrBlock: !Ref PublicSubnet2CIDR
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Public Subnet (AZ2)

 PrivateSubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [0, !GetAZs '']
 CidrBlock: !Ref PrivateSubnet1CIDR
 MapPublicIpOnLaunch: false
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Private Subnet (AZ1)

 PrivateSubnet2:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [1, !GetAZs '']
 CidrBlock: !Ref PrivateSubnet2CIDR
 MapPublicIpOnLaunch: false
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Private Subnet (AZ2)

Options to create the Amazon VPC network 28

Amazon Managed Workflows for Apache Airflow User Guide

 NatGateway1EIP:
 Type: AWS::EC2::EIP
 DependsOn: InternetGatewayAttachment
 Properties:
 Domain: vpc

 NatGateway2EIP:
 Type: AWS::EC2::EIP
 DependsOn: InternetGatewayAttachment
 Properties:
 Domain: vpc

 NatGateway1:
 Type: AWS::EC2::NatGateway
 Properties:
 AllocationId: !GetAtt NatGateway1EIP.AllocationId
 SubnetId: !Ref PublicSubnet1

 NatGateway2:
 Type: AWS::EC2::NatGateway
 Properties:
 AllocationId: !GetAtt NatGateway2EIP.AllocationId
 SubnetId: !Ref PublicSubnet2

 PublicRouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Public Routes

 DefaultPublicRoute:
 Type: AWS::EC2::Route
 DependsOn: InternetGatewayAttachment
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway

 PublicSubnet1RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:

Options to create the Amazon VPC network 29

Amazon Managed Workflows for Apache Airflow User Guide

 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet1

 PublicSubnet2RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet2

 PrivateRouteTable1:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Private Routes (AZ1)

 DefaultPrivateRoute1:
 Type: AWS::EC2::Route
 Properties:
 RouteTableId: !Ref PrivateRouteTable1
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId: !Ref NatGateway1

 PrivateSubnet1RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PrivateRouteTable1
 SubnetId: !Ref PrivateSubnet1

 PrivateRouteTable2:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub ${EnvironmentName} Private Routes (AZ2)

 DefaultPrivateRoute2:
 Type: AWS::EC2::Route
 Properties:
 RouteTableId: !Ref PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0

Options to create the Amazon VPC network 30

Amazon Managed Workflows for Apache Airflow User Guide

 NatGatewayId: !Ref NatGateway2

 PrivateSubnet2RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PrivateRouteTable2
 SubnetId: !Ref PrivateSubnet2

 SecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupName: "mwaa-security-group"
 GroupDescription: "Security group with a self-referencing inbound rule."
 VpcId: !Ref VPC

 SecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !Ref SecurityGroup
 IpProtocol: "-1"
 SourceSecurityGroupId: !Ref SecurityGroup

Outputs:
 VPC:
 Description: A reference to the created VPC
 Value: !Ref VPC

 PublicSubnets:
 Description: A list of the public subnets
 Value: !Join [",", [!Ref PublicSubnet1, !Ref PublicSubnet2]]

 PrivateSubnets:
 Description: A list of the private subnets
 Value: !Join [",", [!Ref PrivateSubnet1, !Ref PrivateSubnet2]]

 PublicSubnet1:
 Description: A reference to the public subnet in the 1st Availability Zone
 Value: !Ref PublicSubnet1

 PublicSubnet2:
 Description: A reference to the public subnet in the 2nd Availability Zone
 Value: !Ref PublicSubnet2

 PrivateSubnet1:

Options to create the Amazon VPC network 31

Amazon Managed Workflows for Apache Airflow User Guide

 Description: A reference to the private subnet in the 1st Availability Zone
 Value: !Ref PrivateSubnet1

 PrivateSubnet2:
 Description: A reference to the private subnet in the 2nd Availability Zone
 Value: !Ref PrivateSubnet2

 SecurityGroupIngress:
 Description: Security group with self-referencing inbound rule
 Value: !Ref SecurityGroupIngress

2. In your command prompt, navigate to the directory where cfn-vpc-public-private.yaml
is stored. For example:

cd mwaaproject

3. Use the aws cloudformation create-stack command to create the stack using the AWS
CLI.

aws cloudformation create-stack --stack-name mwaa-environment --template-body
 file://cfn-vpc-public-private.yaml

Note

It takes about 30 minutes to create the Amazon VPC infrastructure.

Option three: Creating an Amazon VPC network without Internet access

The following AWS CloudFormation template creates an Amazon VPC network without Internet
access in your default AWS region.

This option uses Private routing without Internet access. This template can be used for an Apache
Airflow Web server with the Private network access mode only. It creates the required VPC
endpoints for the AWS services used by an environment.

1. Copy the contents of the following template and save locally as cfn-vpc-private.yaml.
You can also download the template.

AWSTemplateFormatVersion: "2010-09-09"

Options to create the Amazon VPC network 32

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/create-stack.html
./samples/cfn-vpc-private-no-ops.zip

Amazon Managed Workflows for Apache Airflow User Guide

Parameters:
 VpcCIDR:
 Description: The IP range (CIDR notation) for this VPC
 Type: String
 Default: 10.192.0.0/16

 PrivateSubnet1CIDR:
 Description: The IP range (CIDR notation) for the private subnet in the first
 Availability Zone
 Type: String
 Default: 10.192.10.0/24

 PrivateSubnet2CIDR:
 Description: The IP range (CIDR notation) for the private subnet in the second
 Availability Zone
 Type: String
 Default: 10.192.11.0/24

Resources:
 VPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: !Ref VpcCIDR
 EnableDnsSupport: true
 EnableDnsHostnames: true
 Tags:
 - Key: Name
 Value: !Ref AWS::StackName

 RouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub "${AWS::StackName}-route-table"

 PrivateSubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [0, !GetAZs '']
 CidrBlock: !Ref PrivateSubnet1CIDR
 MapPublicIpOnLaunch: false

Options to create the Amazon VPC network 33

Amazon Managed Workflows for Apache Airflow User Guide

 Tags:
 - Key: Name
 Value: !Sub "${AWS::StackName} Private Subnet (AZ1)"

 PrivateSubnet2:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [1, !GetAZs '']
 CidrBlock: !Ref PrivateSubnet2CIDR
 MapPublicIpOnLaunch: false
 Tags:
 - Key: Name
 Value: !Sub "${AWS::StackName} Private Subnet (AZ2)"

 PrivateSubnet1RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref RouteTable
 SubnetId: !Ref PrivateSubnet1

 PrivateSubnet2RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref RouteTable
 SubnetId: !Ref PrivateSubnet2

 S3VpcEndoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 ServiceName: !Sub "com.amazonaws.${AWS::Region}.s3"
 VpcEndpointType: Gateway
 VpcId: !Ref VPC
 RouteTableIds:
 - !Ref RouteTable

 SecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 VpcId: !Ref VPC
 GroupDescription: Security Group for Amazon MWAA Environments to access VPC
 endpoints
 GroupName: !Sub "${AWS::StackName}-mwaa-vpc-endpoints"

Options to create the Amazon VPC network 34

Amazon Managed Workflows for Apache Airflow User Guide

 SecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !Ref SecurityGroup
 IpProtocol: "-1"
 SourceSecurityGroupId: !Ref SecurityGroup

 SqsVpcEndoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 ServiceName: !Sub "com.amazonaws.${AWS::Region}.sqs"
 VpcEndpointType: Interface
 VpcId: !Ref VPC
 PrivateDnsEnabled: true
 SubnetIds:
 - !Ref PrivateSubnet1
 - !Ref PrivateSubnet2
 SecurityGroupIds:
 - !Ref SecurityGroup

 CloudWatchLogsVpcEndoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 ServiceName: !Sub "com.amazonaws.${AWS::Region}.logs"
 VpcEndpointType: Interface
 VpcId: !Ref VPC
 PrivateDnsEnabled: true
 SubnetIds:
 - !Ref PrivateSubnet1
 - !Ref PrivateSubnet2
 SecurityGroupIds:
 - !Ref SecurityGroup

 CloudWatchMonitoringVpcEndoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 ServiceName: !Sub "com.amazonaws.${AWS::Region}.monitoring"
 VpcEndpointType: Interface
 VpcId: !Ref VPC
 PrivateDnsEnabled: true
 SubnetIds:
 - !Ref PrivateSubnet1
 - !Ref PrivateSubnet2
 SecurityGroupIds:

Options to create the Amazon VPC network 35

Amazon Managed Workflows for Apache Airflow User Guide

 - !Ref SecurityGroup

 KmsVpcEndoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 ServiceName: !Sub "com.amazonaws.${AWS::Region}.kms"
 VpcEndpointType: Interface
 VpcId: !Ref VPC
 PrivateDnsEnabled: true
 SubnetIds:
 - !Ref PrivateSubnet1
 - !Ref PrivateSubnet2
 SecurityGroupIds:
 - !Ref SecurityGroup

Outputs:
 VPC:
 Description: A reference to the created VPC
 Value: !Ref VPC

 MwaaSecurityGroupId:
 Description: Associates the Security Group to the environment to allow access
 to the VPC endpoints
 Value: !Ref SecurityGroup

 PrivateSubnets:
 Description: A list of the private subnets
 Value: !Join [",", [!Ref PrivateSubnet1, !Ref PrivateSubnet2]]

 PrivateSubnet1:
 Description: A reference to the private subnet in the 1st Availability Zone
 Value: !Ref PrivateSubnet1

 PrivateSubnet2:
 Description: A reference to the private subnet in the 2nd Availability Zone
 Value: !Ref PrivateSubnet2

2. In your command prompt, navigate to the directory where cfn-vpc-private.yml is stored.
For example:

cd mwaaproject

Options to create the Amazon VPC network 36

Amazon Managed Workflows for Apache Airflow User Guide

3. Use the aws cloudformation create-stack command to create the stack using the AWS
CLI.

aws cloudformation create-stack --stack-name mwaa-private-environment --template-
body file://cfn-vpc-private.yml

Note

It takes about 30 minutes to create the Amazon VPC infrastructure.

4. You'll need to create a mechanism to access these VPC endpoints from your computer. To learn
more, refer to Managing access to service-specific Amazon VPC endpoints on Amazon MWAA.

Note

You can further restrict outbound access in the CIDR of your Amazon MWAA security group.
For example, you can restrict to itself by adding a self-referencing outbound rule, the prefix
list for Amazon S3, and the CIDR of your Amazon VPC.

What's next?

• Learn how to create an Amazon MWAA environment in Create an Amazon MWAA environment.

• Learn how to create a VPN tunnel from your computer to your Amazon VPC with private routing
in Tutorial: Configuring private network access using an AWS Client VPN.

Create an Amazon MWAA environment

Amazon Managed Workflows for Apache Airflow sets up Apache Airflow on an environment in
your chosen version using the same open-source Apache Airflow and user interface available from
Apache. This guide describes the steps to create an Amazon MWAA environment.

Contents

• Before you begin

• Apache Airflow versions

• Create an environment

What's next? 37

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/create-stack.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-gateway.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-gateway.html

Amazon Managed Workflows for Apache Airflow User Guide

• Step one: Specify details

• Step two: Configure advanced settings

• Step three: Review and create

Before you begin

• The VPC network you specify for your environment cannot be modified after the environment is
created.

• You need an Amazon S3 bucket configured to Block all public access, with Bucket Versioning
enabled.

• You need an AWS account with permissions to use Amazon MWAA, and permission in AWS
Identity and Access Management (IAM) to create IAM roles. If you choose the Private network
access mode for the Apache Airflow web server, which limits Apache Airflow access within your
Amazon VPC, you'll need permission in IAM to create Amazon VPC endpoints.

Note

Amazon MWAA dynamically determines the network during creation. If you use IPv6
subnets, Amazon MWAA creates IPv6 private link connectivity to the database and
webserver. Amazon MWAA does not support transitioning between network types and
cannot upgrade existing environments to IPv6.

Apache Airflow versions

The following Apache Airflow versions are supported on Amazon Managed Workflows for Apache
Airflow.

Note

• Effective December 30, 2025, Amazon MWAA will end support for Apache Airflow
versions v2.4.3, v2.5.1, and v2.6.3. For more information, refer to Apache Airflow version
support and FAQ.

Before you begin 38

Amazon Managed Workflows for Apache Airflow User Guide

• Beginning with Apache Airflow v2.2.2, Amazon MWAA supports installing Python
requirements, provider packages, and custom plugins directly on the Apache Airflow web
server.

• Beginning with Apache Airflow v2.7.2, your requirements file must include a --
constraint statement. If you do not provide a constraint, Amazon MWAA will specify
one for you to ensure the packages listed in your requirements are compatible with the
version of Apache Airflow you are using.

For more information on setting up constraints in your requirements file, refer to
Installing Python dependencies.

Apache Airflow
version

Apache Airflow
release date

Amazon MWAA
availability date

Apache Airflow
constraints

Python version

v2.10.3 November 4,
2024

December 18,
2024

v2.10.3
constraints file

Python 3.11

v2.10.1 September 5,
2024

September 26,
2024

v2.10.1
constraints file

Python 3.11

v2.9.2 June 10, 2024 July 9, 2024 v2.9.2 constrain
ts file

Python 3.11

v2.8.1 January 19,
2024

February 23,
2024

v2.8.1 constrain
ts file

Python 3.11

v2.7.2 October 12,
2023

November 6,
2023

v2.7.2 constrain
ts file

Python 3.11

For more information about migrating your self-managed Apache Airflow deployments, or
migrating an existing Amazon MWAA environment, including instructions for backing up your
metadata database, refer to the Amazon MWAA Migration Guide.

Create an environment

The following section describes the steps to create an Amazon MWAA environment.

Create an environment 39

https://airflow.apache.org/docs/apache-airflow/2.10.3
https://airflow.apache.org/docs/apache-airflow/2.10.3/release_notes.html#airflow-2-10-3-2024-11-04
https://airflow.apache.org/docs/apache-airflow/2.10.3/release_notes.html#airflow-2-10-3-2024-11-04
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.3/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.3/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.10.1
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-10-1-2024-09-05
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-10-1-2024-09-05
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.1/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.1/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.9.2
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-9-2-2024-06-10
https://raw.githubusercontent.com/apache/airflow/constraints-2.9.2/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.9.2/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.8.1
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-8-1-2024-01-19
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-8-1-2024-01-19
https://raw.githubusercontent.com/apache/airflow/constraints-2.8.1/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.8.1/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.7.2
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-7-2-2023-10-12
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-7-2-2023-10-12
https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://docs.aws.amazon.com/mwaa/latest/migrationguide/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Step one: Specify details

To specify details for the environment

1. Open the Amazon MWAA console.

2. Use the AWS Region selector to select your region.

3. Choose Create environment.

4. On the Specify details page, under Environment details:

a. Type a unique name for your environment in Name.

b. Choose the Apache Airflow version in Airflow version.

Note

If no value is specified, defaults to the latest Apache Airflow version. The latest
version available is Apache Airflow v2.10.3.

5. Under DAG code in Amazon S3 specify the following:

a. S3 Bucket. Choose Browse S3 and select your Amazon S3 bucket, or enter the Amazon S3
URI.

b. DAGs folder. Choose Browse S3 and select the dags folder in your Amazon S3 bucket, or
enter the Amazon S3 URI.

c. Plugins file - optional. Choose Browse S3 and select the plugins.zip file on your
Amazon S3 bucket, or enter the Amazon S3 URI.

d. Requirements file - optional. Choose Browse S3 and select the requirements.txt file
on your Amazon S3 bucket, or enter the Amazon S3 URI.

e. Startup script file - optional, Choose Browse S3 and select the script file on your Amazon
S3 bucket, or enter the Amazon S3 URI.

6. Choose Next.

Step two: Configure advanced settings

To configure advanced settings

1. On the Configure advanced settings page, under Networking:

Create an environment 40

https://console.aws.amazon.com/mwaa/home/

Amazon Managed Workflows for Apache Airflow User Guide

• Choose your Amazon VPC.

This step populates two of the private subnets in your Amazon VPC.

2. Under Web server access, select your preferred Apache Airflow access mode:

a. Private network. This limits access of the Apache Airflow UI to users within your Amazon
VPC that have been granted access to the IAM policy for your environment. You need
permission to create Amazon VPC endpoints for this step.

Note

Choose the Private network option if your Apache Airflow UI is only accessed
within a corporate network, and you do not require access to public repositories
for web server requirements installation. If you choose this access mode option,
you need to create a mechanism to access your Apache Airflow Web server in your
Amazon VPC. For more information, refer to Accessing the VPC endpoint for your
Apache Airflow Web server (private network access).

b. Public network. This allows the Apache Airflow UI to be accessed over the Internet by
users granted access to the IAM policy for your environment.

3. Under Security group(s), choose the security group used to secure your Amazon VPC:

a. By default, Amazon MWAA creates a security group in your Amazon VPC with specific
inbound and outbound rules in Create new security group.

b. Optional. Deselect the check box in Create new security group to select up to 5 security
groups.

Note

An existing Amazon VPC security group must be configured with specific inbound
and outbound rules to allow network traffic. To learn more, refer to Security in
your VPC on Amazon MWAA.

4. Under Environment class, choose an environment class.

We recommend choosing the smallest size necessary to support your workload. You can
change the environment class at any time.

Create an environment 41

Amazon Managed Workflows for Apache Airflow User Guide

5. For Maximum worker count, specify the maximum number of Apache Airflow workers to run
in the environment.

For more information, refer to Example high performance use case.

6. Specify the Maximum web server count and Minimum web server count to configure how
Amazon MWAA scales the Apache Airflow web servers in your environment.

For more information about web server automatic scaling, refer to the section called
“Configuring web server auto scaling”.

7. Under Encryption, choose a data encryption option:

a. By default, Amazon MWAA uses an AWS owned key to encrypt your data.

b. Optional. Choose Customize encryption settings (advanced) to choose a different AWS
KMS key. If you choose to specify a Customer managed key in this step, you must specify
an AWS KMS key ID or ARN. AWS KMS aliases and multi-region keys are not supported
by Amazon MWAA. If you specified an Amazon S3 key for server-side encryption on your
Amazon S3 bucket, you must specify the same key for your Amazon MWAA environment.

Note

You must have permissions to the key to select it on the Amazon MWAA console.
You must also grant permissions for Amazon MWAA to use the key by attaching
the policy described in Attach key policy.

8. Recommended. Under Monitoring, choose one or more log categories for Airflow logging
configuration to send Apache Airflow logs to CloudWatch Logs:

a. Airflow task logs. Choose the type of Apache Airflow task logs to send to CloudWatch
Logs in Log level.

b. Airflow web server logs. Choose the type of Apache Airflow web server logs to send to
CloudWatch Logs in Log level.

c. Airflow scheduler logs. Choose the type of Apache Airflow scheduler logs to send to
CloudWatch Logs in Log level.

d. Airflow worker logs. Choose the type of Apache Airflow worker logs to send to
CloudWatch Logs in Log level.

e. Airflow DAG processing logs. Choose the type of Apache Airflow DAG processing logs to
send to CloudWatch Logs in Log level.

Create an environment 42

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Managed Workflows for Apache Airflow User Guide

9. Optional. For Airflow configuration options, choose Add custom configuration option.

You can choose from the suggested dropdown list of Apache Airflow configuration options
for your Apache Airflow version, or specify custom configuration options. For example,
core.default_task_retries : 3.

10. Optional. Under Tags, choose Add new tag to associate tags to your environment. For
example, Environment: Staging.

11. Under Permissions, choose an execution role:

a. By default, Amazon MWAA creates an execution role in Create a new role. You must have
permission to create IAM roles to use this option.

b. Optional. Choose Enter role ARN to enter the Amazon Resource Name (ARN) of an
existing execution role.

12. Choose Next.

Step three: Review and create

To review an environment summary

• Review the environment summary, choose Create environment.

Note

It takes about twenty to thirty minutes to create an environment.

What's next?

• Learn how to create an Amazon S3 bucket in Create an Amazon S3 bucket for Amazon MWAA.

What's next? 43

Amazon Managed Workflows for Apache Airflow User Guide

Managing access to an Amazon MWAA environment

Amazon Managed Workflows for Apache Airflow needs to be permitted to use other AWS services
and resources used by an environment. You also need to be granted permission to access an
Amazon MWAA environment and your Apache Airflow UI in AWS Identity and Access Management
(IAM). This section describes the execution role used to grant access to the AWS resources for your
environment and how to add permissions, and the AWS account permissions you need to access
your Amazon MWAA environment and Apache Airflow UI.

Topics

• Accessing an Amazon MWAA environment

• Service-linked role for Amazon MWAA

• Amazon MWAA execution role

• Cross-service confused deputy prevention

• Apache Airflow access modes

Accessing an Amazon MWAA environment

To use Amazon Managed Workflows for Apache Airflow, you must use an account, and IAM entities
with the necessary permissions. This topic describes the access policies you can attach to your
Apache Airflow development team and Apache Airflow users for your Amazon Managed Workflows
for Apache Airflow environment.

We recommend using temporary credentials and configuring federated identities with groups
and roles, to access your Amazon MWAA resources. As a best practice, avoid attaching policies
directly to your IAM users, and instead define groups or roles to provide temporary access to AWS
resources.

An IAM role is an IAM identity that you can create in your account that has specific permissions.
An IAM role is similar to an IAM user in that it is an AWS identity with permissions policies that
determine what the identity can and cannot do in AWS. However, instead of being uniquely
associated with one person, a role is intended to be assumable by anyone who needs it. Also, a role
does not have standard long-term credentials such as a password or access keys associated with it.
Instead, when you assume a role, it provides you with temporary security credentials for your role
session.

Accessing an Amazon MWAA environment 44

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Managed Workflows for Apache Airflow User Guide

To assign permissions to a federated identity, you create a role and define permissions for the role.
When a federated identity authenticates, the identity is associated with the role and is granted the
permissions that are defined by the role. For information about roles for federation, see Create a
role for a third-party identity provider (federation) in the IAM User Guide. If you use IAM Identity
Center, you configure a permission set. To control what your identities can access after they
authenticate, IAM Identity Center correlates the permission set to a role in IAM. For information
about permissions sets, see Permission sets in the AWS IAM Identity Center User Guide.

You can use an IAM role in your account to grant another AWS account permissions to access your
account's resources. For an example, see Tutorial: Delegate access across AWS accounts using IAM
roles in the IAM User Guide.

Sections

• How it works

• Full console access policy: AmazonMWAAFullConsoleAccess

• Full API and console access policy: AmazonMWAAFullApiAccess

• Read-only console access policy: AmazonMWAAReadOnlyAccess

• Apache Airflow UI access policy: AmazonMWAAWebServerAccess

• Apache Airflow Rest API access policy: AmazonMWAARestAPIAccess

• Apache Airflow CLI policy: AmazonMWAAAirflowCliAccess

• Creating a JSON policy

• Example use case to attach policies to a developer group

• What's next?

How it works

The resources and services used in an Amazon MWAA environment are not accessible to all AWS
Identity and Access Management (IAM) entities. You must create a policy that grants Apache
Airflow users permission to access these resources. For example, you need to grant access to your
Apache Airflow development team.

Amazon MWAA uses these policies to validate whether a user has the permissions needed to
perform an action on the AWS console or via the APIs used by an environment.

You can use the JSON policies in this topic to create a policy for your Apache Airflow users in IAM,
and then attach the policy to a user, group, or role in IAM.

How it works 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html

Amazon Managed Workflows for Apache Airflow User Guide

• AmazonMWAAFullConsoleAccess – Use this policy to grant permission to configure an
environment on the Amazon MWAA console.

• AmazonMWAAFullApiAccess – Use this policy to grant access to all Amazon MWAA APIs used to
manage an environment.

• AmazonMWAAReadOnlyAccess – Use this policy to grant access to to view the resources used by
an environment on the Amazon MWAA console.

• AmazonMWAAWebServerAccess – Use this policy to grant access to the Apache Airflow web
server.

• AmazonMWAAAirflowCliAccess – Use this policy to grant access to run Apache Airflow CLI
commands.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Create a role for an IAM user
in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Full console access policy: AmazonMWAAFullConsoleAccess

A user may need access to the AmazonMWAAFullConsoleAccess permissions policy if they need
to configure an environment on the Amazon MWAA console.

Note

Your full console access policy must include permissions to perform iam:PassRole. This
allows the user to pass service-linked roles, and execution roles, to Amazon MWAA. Amazon

Full console access 46

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Managed Workflows for Apache Airflow User Guide

MWAA assumes each role in order to call other AWS services on your behalf. The following
example uses the iam:PassedToService condition key to specify the Amazon MWAA
service principal (airflow.amazonaws.com) as the service to which a role can be passed.
For more information about iam:PassRole, refer to Granting a user permissions to pass a
role to an AWS service in the IAM User Guide.

Use the following policy if you want to create, and manage, your Amazon MWAA environments
using an AWS owned key for encryption at-rest.

Using an AWS owned key

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "airflow:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "airflow.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles"
],
 "Resource": "*"
 },

Full console access 47

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon Managed Workflows for Apache Airflow User Guide

 {
 "Effect": "Allow",
 "Action": [
 "iam:CreatePolicy"
],
 "Resource": "arn:aws:iam::111122223333:policy/service-role/MWAA-
Execution-Policy*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole"
],
 "Resource": "arn:aws:iam::111122223333:role/service-role/AmazonMWAA*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/
airflow.amazonaws.com/AWSServiceRoleForAmazonMWAA"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:ListBucketVersions"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:PutObject",
 "s3:GetEncryptionConfiguration"
],
 "Resource": "arn:aws:s3:::*"
 },
 {

Full console access 48

Amazon Managed Workflows for Apache Airflow User Guide

 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeRouteTables"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateSecurityGroup"
],
 "Resource": "arn:aws:ec2:*:*:security-group/airflow-security-group-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:ListAliases"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateVpcEndpoint",
 "Resource": [
 "arn:aws:ec2:*:*:vpc-endpoint/*",
 "arn:aws:ec2:*:*:vpc/*",
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:network-interface/*"
]
 }

Full console access 49

Amazon Managed Workflows for Apache Airflow User Guide

]
}

Use the following policy if you want to create, and manage, your Amazon MWAA environments
using a customer managed key for encryption at-rest. To use a customer managed key, the IAM
principal must have permission to access AWS KMS resources using the key stored in your account.

Using a customer managed key

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "airflow:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "airflow.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

Full console access 50

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Managed Workflows for Apache Airflow User Guide

 "iam:CreatePolicy"
],
 "Resource": "arn:aws:iam::111122223333:policy/service-role/MWAA-
Execution-Policy*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole"
],
 "Resource": "arn:aws:iam::111122223333:role/service-role/AmazonMWAA*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/
airflow.amazonaws.com/AWSServiceRoleForAmazonMWAA"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:ListBucketVersions"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:PutObject",
 "s3:GetEncryptionConfiguration"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups",

Full console access 51

Amazon Managed Workflows for Apache Airflow User Guide

 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeRouteTables"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateSecurityGroup"
],
 "Resource": "arn:aws:ec2:*:*:security-group/airflow-security-group-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:ListAliases"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:ListGrants",
 "kms:CreateGrant",
 "kms:RevokeGrant",
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:ReEncrypt*"
],
 "Resource": "arn:aws:kms:*:111122223333:key/YOUR_KMS_ID"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateVpcEndpoint",
 "Resource": [
 "arn:aws:ec2:*:*:vpc-endpoint/*",
 "arn:aws:ec2:*:*:vpc/*",
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
]

Full console access 52

Amazon Managed Workflows for Apache Airflow User Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:network-interface/*"
]
 }
]
}

Full API and console access policy: AmazonMWAAFullApiAccess

A user may need access to the AmazonMWAAFullApiAccess permissions policy if they need access
to all Amazon MWAA APIs used to manage an environment. It does not grant permissions to access
the Apache Airflow UI.

Note

A full API access policy must include permissions to perform iam:PassRole. This allows
the user to pass service-linked roles, and execution roles, to Amazon MWAA. Amazon
MWAA assumes each role in order to call other AWS services on your behalf. The following
example uses the iam:PassedToService condition key to specify the Amazon MWAA
service principal (airflow.amazonaws.com) as the service to which a role can be passed.
For more information about iam:PassRole, refer to Granting a user permissions to pass a
role to an AWS service in the IAM User Guide.

Use the following policy if you want to create, and manage, your Amazon MWAA environments
using an AWS owned key for encryption at-rest.

Using an AWS owned key

JSON

{

Full API access 53

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon Managed Workflows for Apache Airflow User Guide

 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"airflow:*",
 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "iam:PassRole"
],
 "Resource":"*",
 "Condition":{
 "StringLike":{
 "iam:PassedToService":"airflow.amazonaws.com"
 }
 }
 },
 {
 "Effect":"Allow",
 "Action":[
 "iam:CreateServiceLinkedRole"
],
 "Resource":"arn:aws:iam::*:role/aws-service-role/airflow.amazonaws.com/
AWSServiceRoleForAmazonMWAA"
 },
 {
 "Effect":"Allow",
 "Action":[
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeRouteTables"
],
 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetEncryptionConfiguration"
],
 "Resource":"arn:aws:s3:::*"
 },

Full API access 54

Amazon Managed Workflows for Apache Airflow User Guide

 {
 "Effect":"Allow",
 "Action":"ec2:CreateVpcEndpoint",
 "Resource":[
 "arn:aws:ec2:*:*:vpc-endpoint/*",
 "arn:aws:ec2:*:*:vpc/*",
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "ec2:CreateNetworkInterface"
],
 "Resource":[
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:network-interface/*"
]
 }
]
}

Use the following policy if you want to create, and manage, your Amazon MWAA environments
using a customer managed key for encryption at-rest. To use a customer managed key, the IAM
principal must have permission to access AWS KMS resources using the key stored in your account.

Using a customer managed key

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "airflow:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",

Full API access 55

Amazon Managed Workflows for Apache Airflow User Guide

 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "airflow.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/
airflow.amazonaws.com/AWSServiceRoleForAmazonMWAA"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeRouteTables"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:ListGrants",
 "kms:CreateGrant",
 "kms:RevokeGrant",
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:ReEncrypt*"
],
 "Resource": "arn:aws:kms:*:111122223333:key/YOUR_KMS_ID"
 },
 {
 "Effect": "Allow",

Full API access 56

Amazon Managed Workflows for Apache Airflow User Guide

 "Action": [
 "s3:GetEncryptionConfiguration"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateVpcEndpoint",
 "Resource": [
 "arn:aws:ec2:*:*:vpc-endpoint/*",
 "arn:aws:ec2:*:*:vpc/*",
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:network-interface/*"
]
 }
]
}

Read-only console access policy: AmazonMWAAReadOnlyAccess

A user may need access to the AmazonMWAAReadOnlyAccess permissions policy if they need to
view the resources used by an environment on the Amazon MWAA console environment details
page. It doesn't allow a user to create new environments, edit existing environments, or allow a
user to view the Apache Airflow UI.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {

Read-only console access 57

Amazon Managed Workflows for Apache Airflow User Guide

 "Effect": "Allow",
 "Action": [
 "airflow:ListEnvironments",
 "airflow:GetEnvironment",
 "airflow:ListTagsForResource"
],
 "Resource": "*"
 }
]
}

Apache Airflow UI access policy: AmazonMWAAWebServerAccess

A user may need access to the AmazonMWAAWebServerAccess permissions policy if they need
to access the Apache Airflow UI. It does not allow the user to view environments on the Amazon
MWAA console or use the Amazon MWAA APIs to perform any actions. Specify the Admin, Op,
User, Viewer or the Public role in {airflow-role} to customize the level of access for the
user of the web token. For more information, refer to Default Roles in the Apache Airflow reference
guide.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "airflow:CreateWebLoginToken",
 "Resource": [
 "arn:aws:airflow:us-east-1:111122223333:role/{your-environment-
name}/{airflow-role}"
]
 }
]
}

Apache Airflow UI access 58

https://airflow.apache.org/docs/apache-airflow/1.10.6/security.html?highlight=ldap#default-roles

Amazon Managed Workflows for Apache Airflow User Guide

Note

• Amazon MWAA provides IAM integration with the five default Apache Airflow role-
based access control (RBAC) roles. For more information on working with custom Apache
Airflow roles, refer to the section called “Tutorial: Restricting users to a subset of DAGs”.

• The Resource field in this policy could be used to specify the Apache Airflow role-based
access control roles for the Amazon MWAA environment. However, it does not support
the Amazon MWAA environment ARN (Amazon Resource Name) in the Resource field of
the policy.

Apache Airflow Rest API access policy: AmazonMWAARestAPIAccess

To access the Apache Airflow REST API, you must grant the airflow:InvokeRestApi permission
in your IAM policy. In the following policy sample, specify the Admin, Op, User, Viewer or the
Public role in {airflow-role} to customize the level of user access. For more information, refer
to Default Roles in the Apache Airflow reference guide.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowMwaaRestApiAccess",
 "Effect": "Allow",
 "Action": "airflow:InvokeRestApi",
 "Resource": [
 "arn:aws:airflow:us-east-1:111122223333:role/{your-environment-name}/
{airflow-role}"
]
 }
]
}

Apache Airflow Rest API access 59

https://airflow.apache.org/docs/apache-airflow/stable/security/access-control.html?highlight=roles
https://airflow.apache.org/docs/apache-airflow/stable/security/access-control.html?highlight=roles
https://airflow.apache.org/docs/apache-airflow/1.10.6/security.html?highlight=ldap#default-roles

Amazon Managed Workflows for Apache Airflow User Guide

Note

• While configuring a private web server, the InvokeRestApi action cannot be invoked
from outside of a Virtual Private Cloud (VPC). You can use the aws:SourceVpc key to
apply more granular access control for this operation. For more information, refer to
aws:SourceVpc

• The Resource field in this policy could be used to specify the Apache Airflow role-based
access control roles for the Amazon MWAA environment. However, it does not support
the Amazon MWAA environment ARN (Amazon Resource Name) in the Resource field of
the policy.

Apache Airflow CLI policy: AmazonMWAAAirflowCliAccess

A user may need access to the AmazonMWAAAirflowCliAccess permissions policy if they need
to run Apache Airflow CLI commands (such as trigger_dag). It does not allow the user to view
environments on the Amazon MWAA console or use the Amazon MWAA APIs to perform any
actions.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "airflow:CreateCliToken"
],
 "Resource": "arn:aws:airflow:us-east-1:111122223333:environment/
${EnvironmentName}"
 }
]
}

Apache Airflow CLI access 60

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcevpc

Amazon Managed Workflows for Apache Airflow User Guide

Creating a JSON policy

You can create the JSON policy, and attach the policy to your user, role, or group on the IAM
console. The following steps describe how to create a JSON policy in IAM.

To create the JSON policy

1. Open the Policies page on the IAM console.

2. Choose Create policy.

3. Choose the JSON tab.

4. Add your JSON policy.

5. Choose Review policy.

6. Enter a value in the text field for Name and Description (optional).

For example, you could name the policy AmazonMWAAReadOnlyAccess.

7. Choose Create policy.

Example use case to attach policies to a developer group

Let's say you're using a group in IAM named AirflowDevelopmentGroup to apply permissions
to all of the developers on your Apache Airflow development team. These users need
access to the AmazonMWAAFullConsoleAccess, AmazonMWAAAirflowCliAccess, and
AmazonMWAAWebServerAccess permission policies. This section describes how to create a group
in IAM, create and attach these policies, and associate the group to an IAM user. The steps assume
you're using an AWS owned key.

To create the AmazonMWAAFullConsoleAccess policy

1. Download the AmazonMWAAFullConsoleAccess access policy.

2. Open the Policies page on the IAM console.

3. Choose Create policy.

4. Choose the JSON tab.

5. Paste the JSON policy for AmazonMWAAFullConsoleAccess.

6. Substitute the following values:

a. 123456789012 – Your AWS account ID (such as 0123456789)

Creating a JSON policy 61

https://console.aws.amazon.com/iam/home#/policies
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
./samples/AmazonMWAAFullConsoleAccess.zip
https://console.aws.amazon.com/iam/home#/policies

Amazon Managed Workflows for Apache Airflow User Guide

b. {your-kms-id} – The unique identifer for a customer managed key, applicable only if
you use a customer managed key for encryption at-rest.

7. Choose the Review policy.

8. Type AmazonMWAAFullConsoleAccess in Name.

9. Choose Create policy.

To create the AmazonMWAAWebServerAccess policy

1. Download the AmazonMWAAWebServerAccess access policy.

2. Open the Policies page on the IAM console.

3. Choose Create policy.

4. Choose the JSON tab.

5. Paste the JSON policy for AmazonMWAAWebServerAccess.

6. Substitute the following values:

a. us-east-1 – the region of your Amazon MWAA environment (such as us-east-1)

b. 123456789012 – your AWS account ID (such as 0123456789)

c. {your-environment-name} – your Amazon MWAA environment name (such as
MyAirflowEnvironment)

d. {airflow-role} – the Admin Apache Airflow Default Role

7. Choose Review policy.

8. Type AmazonMWAAWebServerAccess in Name.

9. Choose Create policy.

To create the AmazonMWAAAirflowCliAccess policy

1. Download the AmazonMWAAAirflowCliAccess access policy.

2. Open the Policies page on the IAM console.

3. Choose Create policy.

4. Choose the JSON tab.

5. Paste the JSON policy for AmazonMWAAAirflowCliAccess.

6. Choose the Review policy.

Example use case 62

./samples/AmazonMWAAWebServerAccess.zip
https://console.aws.amazon.com/iam/home#/policies
https://airflow.apache.org/docs/apache-airflow/1.10.6/security.html?highlight=ldap#default-roles
./samples/AmazonMWAAAirflowCliAccess.zip
https://console.aws.amazon.com/iam/home#/policies

Amazon Managed Workflows for Apache Airflow User Guide

7. Type AmazonMWAAAirflowCliAccess in Name.

8. Choose Create policy.

To create the group

1. Open the Groups page on the IAM console.

2. Type a name of AirflowDevelopmentGroup.

3. Choose Next Step.

4. Type AmazonMWAA to filter results in Filter.

5. Select the three policies you created.

6. Choose Next Step.

7. Choose Create Group.

To associate to a user

1. Open the Users page on the IAM console.

2. Choose a user.

3. Choose Groups.

4. Choose Add user to groups.

5. Select the AirflowDevelopmentGroup.

6. Choose Add to Groups.

What's next?

• Learn how to generate a token to access the Apache Airflow UI in Accessing Apache Airflow.

• Learn more about creating IAM policies in Creating IAM policies.

Service-linked role for Amazon MWAA

Amazon Managed Workflows for Apache Airflow uses AWS Identity and Access Management
(IAM) service-linked roles. A service-linked role is a unique type of IAM role that is linked directly
to Amazon MWAA. Service-linked roles are predefined by Amazon MWAA and include all the
permissions that the service requires to call other AWS services on your behalf.

What's next? 63

https://console.aws.amazon.com/iam/home#/groups
https://console.aws.amazon.com/iam/home#/users
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon Managed Workflows for Apache Airflow User Guide

A service-linked role makes setting up Amazon MWAA easier because you don’t have to manually
add the necessary permissions. Amazon MWAA defines the permissions of its service-linked roles,
and unless defined otherwise, only Amazon MWAA can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Amazon MWAA resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, refer to AWS Services That
Work with IAM and look for the services that have Yes in the Service-linked roles column. Choose
a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon MWAA

Amazon MWAA uses the service-linked role named AWSServiceRoleForAmazonMWAA – The
service-linked role created in your account grants Amazon MWAA access to the following AWS
services:

• Amazon CloudWatch Logs (CloudWatch Logs) – To create log groups for Apache Airflow logs.

• Amazon CloudWatch (CloudWatch) – To publish metrics related to your environment and its
underlying components to your account.

• Amazon Elastic Compute Cloud (Amazon EC2) – To create the following resources:

• An Amazon VPC endpoint in your VPC for an AWS-managed Amazon Aurora PostgreSQL
database cluster to be used by the Apache Airflow Scheduler and Worker.

• An additional Amazon VPC endpoint to enable network access to the Web server if you choose
the private network option for your Apache Airflow Web server.

• Elastic Network Interfaces (ENIs) in your Amazon VPC to enable network access to AWS
resources hosted in your Amazon VPC.

The following trust policy allows the service principal to assume the service-linked role. The service
principal for Amazon MWAA is airflow.amazonaws.com as demonstrated by the policy.

JSON

{

Service-linked role permissions for Amazon MWAA 64

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

Amazon Managed Workflows for Apache Airflow User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "airflow.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The role permissions policy named AmazonMWAAServiceRolePolicy allows Amazon MWAA to
complete the following actions on the specified resources:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:DescribeLogGroups"
],
 "Resource": "arn:aws:logs:*:*:log-group:airflow-*:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachNetworkInterface",
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",

Service-linked role permissions for Amazon MWAA 65

Amazon Managed Workflows for Apache Airflow User Guide

 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeVpcs",
 "ec2:DetachNetworkInterface"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateVpcEndpoint",
 "Resource": "arn:aws:ec2:*:*:vpc-endpoint/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "AmazonMWAAManaged"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:ModifyVpcEndpoint",
 "ec2:DeleteVpcEndpoints"
],
 "Resource": "arn:aws:ec2:*:*:vpc-endpoint/*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/AmazonMWAAManaged": false
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateVpcEndpoint",
 "ec2:ModifyVpcEndpoint"
],
 "Resource": [
 "arn:aws:ec2:*:*:vpc/*",
 "arn:aws:ec2:*:*:security-group/*",
 "arn:aws:ec2:*:*:subnet/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",

Service-linked role permissions for Amazon MWAA 66

Amazon Managed Workflows for Apache Airflow User Guide

 "Resource": "arn:aws:ec2:*:*:vpc-endpoint/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateVpcEndpoint"
 },
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "AmazonMWAAManaged"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:PutMetricData",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": [
 "AWS/MWAA"
]
 }
 }
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, refer to Service-linked role permissions
in the IAM User Guide.

Creating a service-linked role for Amazon MWAA

You don't need to manually create a service-linked role. When you create a new Amazon MWAA
environment using the AWS Management Console, the AWS CLI, or the AWS API, Amazon MWAA
creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create another environment, Amazon MWAA creates
the service-linked role for you again.

Creating a service-linked role for Amazon MWAA 67

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Managed Workflows for Apache Airflow User Guide

Editing a service-linked role for Amazon MWAA

Amazon MWAA does not allow you to edit the AWSServiceRoleForAmazonMWAA service-linked
role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, refer to Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon MWAA

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained.

When you delete an Amazon MWAA environment, Amazon MWAA deletes all the associated
resources it uses as a part of the service. However, you must wait before Amazon MWAA completes
deleting your environment, before attempting to delete the service-linked role. If you delete the
service-linked role before Amazon MWAA deletes the environment, Amazon MWAA might be
unable to delete all of the environment's associated resources.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForAmazonMWAA
service-linked role. For more information, refer to Deleting a service-linked role in the IAM User
Guide.

Supported regions for Amazon MWAA service-linked roles

Amazon MWAA supports using service-linked roles in all of the regions where the service is
available. For more information, refer to Amazon Managed Workflows for Apache Airflow
endpoints and quotas.

Policy updates

Change Description Date

Amazon MWAA update its
service-linked role permission
policy

AmazonMWAAServiceR
olePolicy – Amazon
MWAA updates the permissio

November 18, 2022

Editing a service-linked role for Amazon MWAA 68

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/mwaa.html
https://docs.aws.amazon.com/general/latest/gr/mwaa.html

Amazon Managed Workflows for Apache Airflow User Guide

Change Description Date

n policy for its service-l
inked role to grant Amazon
MWAA permission to publish
additional metrics related
to the service's underlyin
g resources to customer
accounts. These new metrics
are published under the AWS/
MWAA

Amazon MWAA started
tracking changes

Amazon MWAA started
tracking changes for its AWS
managed service-linked role
permission policy.

November 18, 2022

Amazon MWAA execution role

An execution role is an AWS Identity and Access Management (IAM) role with a permissions policy
that grants Amazon Managed Workflows for Apache Airflow permission to invoke the resources
of other AWS services on your behalf. This can include resources such as your Amazon S3 bucket,
AWS owned key, and CloudWatch Logs. Amazon MWAA environments need one execution role
per environment. This topic describes how to use and configure the execution role for your
environment to allow Amazon MWAA to access other AWS resources used by your environment.

Contents

• Execution role overview

• Permissions attached by default

• How to add permission to use other AWS services

• How to associate a new execution role

• Create a new role

• View and update an execution role policy

• Attach a JSON policy to use other AWS services

• Grant access to Amazon S3 bucket with account-level public access block

Execution role 69

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon Managed Workflows for Apache Airflow User Guide

• Use Apache Airflow connections

• Sample JSON policies for an execution role

• Sample policy for a customer managed key

• Sample policy for an AWS owned key

• What's next?

Execution role overview

Permission for Amazon MWAA to use other AWS services used by your environment are obtained
from the execution role. An Amazon MWAA execution role needs permission to the following AWS
services used by an environment:

• Amazon CloudWatch (CloudWatch) – to send Apache Airflow metrics and logs.

• Amazon Simple Storage Service (Amazon S3) – to parse your environment's DAG code and
supporting files (such as a requirements.txt).

• Amazon Simple Queue Service (Amazon SQS) – to queue your environment's Apache Airflow
tasks in an Amazon SQS queue owned by Amazon MWAA.

• AWS Key Management Service (AWS KMS) – for your environment's data encryption (using either
an AWS owned key or your Customer managed key).

Note

If you have elected for Amazon MWAA to use an AWS owned KMS key to encrypt your
data, then you must define permissions in a policy attached to your Amazon MWAA
execution role that grant access to arbitrary KMS keys stored outside of your account via
Amazon SQS. The following two conditions are required in order for your environment's
execution role to access arbitrary KMS keys:

• A KMS key in a third-party account needs to allow this cross account access via its
resource policy.

• Your DAG code needs to access an Amazon SQS queue that starts with airflow-
celery- in the third-party account and uses the same KMS key for encryption.

In order to mitigate the risks associated with cross-account access to resources, we
recommend reviewing the code placed in your DAGs to ensure that your workflows are
not accessing arbitrary Amazon SQS queues outside your account. Furthermore, you can
use a customer managed KMS key stored in your own account to manage encryption on

Execution role overview 70

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Managed Workflows for Apache Airflow User Guide

Amazon MWAA. This limits your environment's execution role to access only the KMS key
in your account.
Keep in mind that after you choose an encryption option, you cannot change your
selection for an existing environment.

An execution role also needs permission to the following IAM actions:

• airflow:PublishMetrics – to allow Amazon MWAA to monitor the health of an
environment.

Permissions attached by default

You can use the default options on the Amazon MWAA console to create an execution role and an
AWS owned key, then use the steps on this page to add permission policies to your execution role.

• When you choose the Create new role option on the console, Amazon MWAA attaches the
minimal permissions needed by an environment to your execution role.

• In some cases, Amazon MWAA attaches the maximum permissions. For example, we recommend
choosing the option on the Amazon MWAA console to create an execution role when you create
an environment. Amazon MWAA adds the permissions policies for all CloudWatch Logs groups
automatically by using the regex pattern in the execution role as "arn:aws:logs:your-
region:your-account-id:log-group:airflow-your-environment-name-*".

How to add permission to use other AWS services

Amazon MWAA can't add or edit permission policies to an existing execution role after an
environment is created. You must update your execution role with additional permission policies
needed by your environment. For example, if your DAG requires access to AWS Glue, Amazon
MWAA can't automatically detect these permissions are required by your environment, or add the
permissions to your execution role.

You can add permissions to an execution role in two ways:

• By modifying the JSON policy for your execution role inline. You can use the sample JSON policy
documents on this page to either add to or replace the JSON policy of your execution role on the
IAM console.

Execution role overview 71

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html

Amazon Managed Workflows for Apache Airflow User Guide

• By creating a JSON policy for an AWS service and attaching it to your execution role. You can
use the steps on this page to associate a new JSON policy document for an AWS service to your
execution role on the IAM console.

Assuming the execution role is already associated to your environment, Amazon MWAA can start
using the added permission policies immediately. This also means if you remove any required
permissions from an execution role, your DAGs may fail.

How to associate a new execution role

You can change the execution role for your environment at any time. If a new execution role is not
already associated with your environment, use the steps on this page to create a new execution
role policy, and associate the role to your environment.

Create a new role

By default, Amazon MWAA creates an AWS owned key for data encryption and an execution role
on your behalf. You can choose the default options on the Amazon MWAA console when you create
an environment. The following image shows the default option to create an execution role for an
environment.

Important

When you create a new execution role, do not reuse the name of a deleted execution role.
Unique names can help prevent conflicts and ensure proper resource management.

Create a new role 72

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon Managed Workflows for Apache Airflow User Guide

View and update an execution role policy

You can view the execution role for your environment on the Amazon MWAA console, and update
the JSON policy for the role on the IAM console.

To update an execution role policy

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose the execution role on the Permissions pane to open the permissions page in IAM.

4. Choose the execution role name to open the permissions policy.

5. Choose Edit policy.

6. Choose the JSON tab.

7. Update your JSON policy.

8. Choose Review policy.

9. Choose Save changes.

Attach a JSON policy to use other AWS services

You can create a JSON policy for an AWS service and attach it to your execution role. For example,
you can attach the following JSON policy to grant read-only access to all resources in AWS Secrets
Manager.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource":[

View and update an execution role policy 73

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

 "*"
]
 }
]
}

To attach a policy to your execution role

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose your execution role on the Permissions pane.

4. Choose Attach policies.

5. Choose Create policy.

6. Choose JSON.

7. Paste the JSON policy.

8. Choose Next: Tags, Next: Review.

9. Enter a descriptive name (such as SecretsManagerReadPolicy) and a description for the
policy.

10. Choose Create policy.

Grant access to Amazon S3 bucket with account-level public access
block

You might want to block access to all buckets in your account by using the
PutPublicAccessBlock Amazon S3 operation. When you block access to all buckets in your
account, your environment execution role must include the s3:GetAccountPublicAccessBlock
action in a permission policy.

The following example demonstrates the policy you must attach to your execution role when
blocking access to all Amazon S3 buckets in your account.

JSON

{
 "Version": "2012-10-17",

Grant access to Amazon S3 bucket with account-level public access block 74

https://console.aws.amazon.com/mwaa/home#/environments
https://docs.aws.amazon.com/AmazonS3/latest/API/API_control_PutPublicAccessBlock.html

Amazon Managed Workflows for Apache Airflow User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:GetAccountPublicAccessBlock",
 "Resource": "*"
 }
]
}

For more information about restricting access to your Amazon S3 buckets, refer to Blocking public
access to your Amazon S3 storage in the Amazon Simple Storage Service User Guide.

Use Apache Airflow connections

You can also create an Apache Airflow connection and specify your execution role and its ARN in
your Apache Airflow connection object. To learn more, refer to Managing connections to Apache
Airflow.

Sample JSON policies for an execution role

The sample permission policies in this section show two policies you can use to replace the
permissions policy used for your existing execution role, or to create a new execution role and use
for your environment. These policies contain Resource ARN placeholders for Apache Airflow log
groups, an Amazon S3 bucket, and an Amazon MWAA environment.

We recommend copying the example policy, replacing the sample ARNs or placeholders, then using
the JSON policy to create or update an execution role. For example, replacing {your-region}
with us-east-1.

Sample policy for a customer managed key

The following example shows an execution role policy you can use for an Customer managed key.

Next, you need to allow Amazon MWAA to assume this role in order to perform actions on
your behalf. This can be done by adding "airflow.amazonaws.com" and "airflow-
env.amazonaws.com" service principals to the list of trusted entities for this execution role using
the IAM console, or by placing these service principals in the assume role policy document for this
execution role via the IAM create-role command using the AWS CLI. A sample assume role policy
document can be found below:

Use Apache Airflow connections 75

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

Amazon Managed Workflows for Apache Airflow User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": ["airflow.amazonaws.com","airflow-env.amazonaws.com"]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Then attach the following JSON policy to your Customer managed key. This policy uses the
kms:EncryptionContext condition key prefix to permit access to your Apache Airflow logs
group in CloudWatch Logs.

{
 "Sid": "Allow logs access",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.{your-region}.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt*",
 "kms:Decrypt*",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:Describe*"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "kms:EncryptionContext:aws:logs:arn": "arn:aws:logs:{your-region}:{your-
account-id}:*"
 }
 }
}

Sample policies 76

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-encryption-context

Amazon Managed Workflows for Apache Airflow User Guide

Sample policy for an AWS owned key

The following example shows an execution role policy you can use for an AWS owned key.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "airflow:PublishMetrics",
 "Resource": "arn:aws:airflow:us-east-1:111122223333:environment/
{your-environment-name}"
 },
 {
 "Effect": "Deny",
 "Action": "s3:ListAllMyBuckets",
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "logs:GetLogRecord",

Sample policies 77

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon Managed Workflows for Apache Airflow User Guide

 "logs:GetLogGroupFields",
 "logs:GetQueryResults"
],
 "Resource": [
 "arn:aws:logs:us-east-1:111122223333:log-group:airflow-{your-
environment-name}-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetAccountPublicAccessBlock"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:PutMetricData",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sqs:ChangeMessageVisibility",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl",
 "sqs:ReceiveMessage",
 "sqs:SendMessage"
],
 "Resource": "arn:aws:sqs:us-east-1:*:airflow-celery-*"
 },
 {

Sample policies 78

Amazon Managed Workflows for Apache Airflow User Guide

 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey*",
 "kms:Encrypt"
],
 "NotResource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "StringLike": {
 "kms:ViaService": [
 "sqs.us-east-1.amazonaws.com"
]
 }
 }
 }
]
}

What's next?

• Learn about the required permissions you and your Apache Airflow users need to access your
environment in Accessing an Amazon MWAA environment.

• Learn about Using customer managed keys for encryption.

• Explore more Customer managed policy examples.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

What's next? 79

https://docs.aws.amazon.com/kms/latest/developerguide/customer-managed-policies.html

Amazon Managed Workflows for Apache Airflow User Guide

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in your environment' execution role to limit the permissions that Amazon MWAA gives another
service to access the resource. Use aws:SourceArn if you want only one resource to be associated
with the cross-service access. Use aws:SourceAccount if you want to allow any resource in that
account to be associated with the cross-service use.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:airflow:*:123456789012:environment/*.

The value of aws:SourceArn must be your Amazon MWAA environment ARN, for which you are
creating an execution role.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in your environment's execution role trust policy to prevent the
confused deputy problem. You can use the following trust policy when you create a new execution
role.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "airflow.amazonaws.com",
 "airflow-env.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:airflow:us-
east-1:123456789012:environment/your-environment-name"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"

Cross-service confused deputy prevention 80

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Managed Workflows for Apache Airflow User Guide

 }
 }
 }
]
}

Apache Airflow access modes

The Amazon Managed Workflows for Apache Airflow console contains built-in options to configure
private or public routing to the Apache Airflow web server on your environment. This guide
describes the access modes available for the Apache Airflow Web server on your Amazon Managed
Workflows for Apache Airflow environment, and the additional resources you'll need to configure
in your Amazon VPC if you choose the private network option.

Contents

• Apache Airflow access modes

• Public network

• Private network

• Access modes overview

• Public network access mode

• Private network access mode

• Setup for private and public access modes

• Setup for public network

• Setup for private network

• Accessing the VPC endpoint for your Apache Airflow Web server (private network access)

Apache Airflow access modes

You can choose private or public routing for your Apache Airflow Web server. To enable private
routing, choose Private network. This limits user access to an Apache Airflow Web server to within
an Amazon VPC. To enable public routing, choose Public network. This allows users to access the
Apache Airflow Web server over the Internet.

Apache Airflow access modes 81

Amazon Managed Workflows for Apache Airflow User Guide

Public network

The following architectural diagram shows an Amazon MWAA environment with a public web
server.

The public network access mode allows the Apache Airflow UI to be accessed over the internet by
users granted access to the IAM policy for your environment.

The following image shows where to find the Public network option on the Amazon MWAA
console.

Private network

The following architectural diagram shows an Amazon MWAA environment with a private web
server.

Apache Airflow access modes 82

Amazon Managed Workflows for Apache Airflow User Guide

The private network access mode limits access to the Apache Airflow UI to users within your
Amazon VPC that have been granted access to the IAM policy for your environment.

When you create an environment with private web server access, you must package all
of your dependencies in a Python wheel archive (.whl), then reference the .whl in your
requirements.txt. For instructions on packaging and installing your dependencies using wheel,
refer to Managing dependencies using Python wheel.

The following image shows where to find the Private network option on the Amazon MWAA
console.

Access modes overview

This section describes the VPC endpoints (AWS PrivateLink) created in your Amazon VPC when you
choose the Public network or Private network access mode.

Access modes overview 83

Amazon Managed Workflows for Apache Airflow User Guide

Public network access mode

If you chose the Public network access mode for your Apache Airflow Web server, network traffic is
publicly routed over the Internet.

• Amazon MWAA creates a VPC interface endpoint for your Amazon Aurora PostgreSQL metadata
database. The endpoint is created in the Availability Zones mapped to your private subnets and
is independent from other AWS accounts.

• Amazon MWAA then binds an IP address from your private subnets to the interface endpoints.
This is designed to support the best practice of binding a single IP from each Availability Zone of
the Amazon VPC.

Private network access mode

If you chose the Private network access mode for your Apache Airflow Web server, network traffic
is privately routed within your Amazon VPC.

• Amazon MWAA creates a VPC interface endpoint for your Apache Airflow Web server, and an
interface endpoint for your Amazon Aurora PostgreSQL metadata database. The endpoints are
created in the Availability Zones mapped to your private subnets and is independent from other
AWS accounts.

• Amazon MWAA then binds an IP address from your private subnets to the interface endpoints.
This is designed to support the best practice of binding a single IP from each Availability Zone of
the Amazon VPC.

To learn more, refer to the section called “Example use cases for an Amazon VPC and Apache
Airflow access mode”.

Setup for private and public access modes

The following section describes the additional setup and configurations you'll need based on the
Apache Airflow access mode you've chosen for your environment.

Setup for public network

If you choose the Public network option for your Apache Airflow Web server, you can begin using
the Apache Airflow UI after you create your environment.

Setup for private and public access modes 84

Amazon Managed Workflows for Apache Airflow User Guide

You'll need to take the following steps to configure access for your users, and permission for your
environment to use other AWS services.

1. Add permissions. Amazon MWAA needs permission to use other AWS services. When you
create an environment, Amazon MWAA creates a service-linked role that allows it to use
certain IAM actions for Amazon Elastic Container Registry (Amazon ECR), CloudWatch Logs,
and Amazon EC2.

You can add permission to use additional actions for these services, or to use other AWS
services by adding permissions to your execution role. To learn more, refer to Amazon MWAA
execution role.

2. Create user policies. You may need to create multiple IAM policies for your users to configure
access to your environment and Apache Airflow UI. To learn more, refer to Accessing an
Amazon MWAA environment.

Setup for private network

If you choose the Private network option for your Apache Airflow Web server, you'll need to
configure access for your users, permission for your environment to use other AWS services, and
create a mechanism to access the resources in your Amazon VPC from your computer.

1. Add permissions. Amazon MWAA needs permission to use other AWS services. When you
create an environment, Amazon MWAA creates a service-linked role that allows it to use
certain IAM actions for Amazon Elastic Container Registry (Amazon ECR), CloudWatch Logs,
and Amazon EC2.

You can add permission to use additional actions for these services, or to use other AWS
services by adding permissions to your execution role. To learn more, refer to Amazon MWAA
execution role.

2. Create user policies. You may need to create multiple IAM policies for your users to configure
access to your environment and Apache Airflow UI. To learn more, refer to Accessing an
Amazon MWAA environment.

3. Enable network access. You'll need to create a mechanism in your Amazon VPC to connect
to the VPC endpoint (AWS PrivateLink) for your Apache Airflow Web server. For example, by
creating a VPN tunnel from your computer using an AWS Client VPN.

Setup for private and public access modes 85

Amazon Managed Workflows for Apache Airflow User Guide

Accessing the VPC endpoint for your Apache Airflow Web server
(private network access)

If you've chosen the Private network option, you'll need to create a mechanism in your Amazon
VPC to access the VPC endpoint (AWS PrivateLink) for your Apache Airflow Web server. We
recommend using the same Amazon VPC, VPC security group, and private subnets as your Amazon
MWAA environment for these resources.

To learn more, refer to Managing access for VPC endpoints.

Accessing the VPC endpoint for your Apache Airflow Web server (private network access) 86

https://docs.aws.amazon.com/mwaa/latest/userguide/vpc-vpe-access.html

Amazon Managed Workflows for Apache Airflow User Guide

Accessing Apache Airflow

Amazon MWAA let's you access your Apache Airflow environment using multiple methods: the
Apache Airflow user interface (UI) console, the Apache Airflow CLI, and the Apache Airflow REST
API. You can use the Amazon MWAA console to view and invoke a DAG in your Apache Airflow UI,
or use Amazon MWAA APIs to get a token and invoke a DAG. This section describes the permissions
needed to access the Apache Airflow UI, how to generate a token to make Amazon MWAA API calls
directly in your command shell, and the supported commands in the Apache Airflow CLI.

Topics

• Prerequisites

• Open the Apache Airflow UI

• Logging into Apache Airflow

• Create a Apache Airflow web server access token

• Setting up a custom domain for the Apache Airflow web server

• Creating an Apache Airflow CLI token

• Using the Apache Airflow REST API

• Apache Airflow CLI command reference

Prerequisites

The following section describes the preliminary steps required to use the commands and scripts in
this section.

Access

• AWS account access in AWS Identity and Access Management (IAM) to the Amazon MWAA
permissions policy in Apache Airflow UI access policy: AmazonMWAAWebServerAccess.

• AWS account access in AWS Identity and Access Management (IAM) to the Amazon MWAA
permissions policy Full API and console access policy: AmazonMWAAFullApiAccess.

Prerequisites 87

Amazon Managed Workflows for Apache Airflow User Guide

AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

Open the Apache Airflow UI

The following image shows the link to your Apache Airflow UI on the Amazon MWAA console.

Logging into Apache Airflow

You need Apache Airflow UI access policy: AmazonMWAAWebServerAccess permissions for your
AWS account in AWS Identity and Access Management (IAM) to view your Apache Airflow UI.

To access your Apache Airflow UI

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Open Airflow UI.

Create a Apache Airflow web server access token

You can use the commands on this page to create a web server access token. An access token
allows you access to your Amazon MWAA environment. For example, you can get a token, then
deploy DAGs programmatically using Amazon MWAA APIs. The following section includes the steps
to create an Apache Airflow web login token using the AWS CLI, a bash script, a POST API request,
or a Python script. The token returned in the response is valid for 60 seconds.

AWS CLI 88

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Important

Effective August 19, 2025, Amazon MWAA added support for IPv6 endpoints, and now
supports IPv4 and IPv6 endpoints. As of this date, all newly created environments will use
.on.aws domains for the Airflow user interface (UI). Customers must migrate their Airflow
UI from .amazonaws.com to .on.aws domains for these newly created environments.
Virtual Private Cloud (VPC) endpoint services for webserver and database will maintain
their current .amazonaws.com domains with no required changes.

Contents

• Prerequisites

• Access

• AWS CLI

• Using the AWS CLI

• Using a bash script

• Using a Python script

• What's next?

Prerequisites

The following section describes the preliminary steps required to use the commands and scripts on
this page.

Access

• AWS account access in AWS Identity and Access Management (IAM) to the Amazon MWAA
permissions policy in Apache Airflow UI access policy: AmazonMWAAWebServerAccess.

• AWS account access in AWS Identity and Access Management (IAM) to the Amazon MWAA
permissions policy Full API and console access policy: AmazonMWAAFullApiAccess.

Prerequisites 89

Amazon Managed Workflows for Apache Airflow User Guide

AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

Using the AWS CLI

The following example uses the create-web-login-token command in the AWS CLI to create an
Apache Airflow web login token.

aws mwaa create-web-login-token --name YOUR_ENVIRONMENT_NAME

Using a bash script

The following example uses a bash script to call the create-web-login-token command in the AWS
CLI to create an Apache Airflow web login token.

1. Copy the contents of the following code sample and save locally as get-web-token.sh.

#!/bin/bash
HOST=YOUR_HOST_NAME
YOUR_URL=https://$HOST/aws_mwaa/aws-console-sso?login=true#
WEB_TOKEN=$(aws mwaa create-web-login-token --name YOUR_ENVIRONMENT_NAME --query
 WebToken --output text)
echo $YOUR_URL$WEB_TOKEN

2. Substitute the placeholders in red for YOUR_HOST_NAME and YOUR_ENVIRONMENT_NAME. For
example, a host name for a public network may look like this (without the https://):

123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.amazonaws.com

3. (optional) macOS and Linux users may need to run the following command to ensure the script
is executable.

chmod +x get-web-token.sh

Using the AWS CLI 90

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/reference/mwaa/create-web-login-token.html
https://docs.aws.amazon.com/cli/latest/reference/mwaa/create-web-login-token.html

Amazon Managed Workflows for Apache Airflow User Guide

4. Run the following script to get a web login token.

./get-web-token.sh

5. You should see the following in your command prompt:

https://123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.amazonaws.com/
aws_mwaa/aws-console-sso?login=true#{your-web-login-token}

Using a Python script

The following example uses the boto3 create_web_login_token method in a Python script to create
an Apache Airflow web login token. You can run this script outside of Amazon MWAA. The only
thing you need to do is install the boto3 library. You may want to create a virtual environment to
install the library. It assumes you have configured AWS authentication credentials for your account.

1. Copy the contents of the following code sample and save locally as create-web-login-
token.py.

import boto3
mwaa = boto3.client('mwaa')
response = mwaa.create_web_login_token(
 Name="YOUR_ENVIRONMENT_NAME"
)
webServerHostName = response["WebServerHostname"]
webToken = response["WebToken"]
airflowUIUrl = 'https://{0}/aws_mwaa/aws-console-sso?
login=true#{1}'.format(webServerHostName, webToken)
print("Here is your Airflow UI URL: ")
print(airflowUIUrl)

2. Substitute the placeholder in red for YOUR_ENVIRONMENT_NAME.

3. Run the following script to get a web login token.

python3 create-web-login-token.py

Using a Python script 91

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/mwaa.html#MWAA.Client.create_web_login_token
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration

Amazon Managed Workflows for Apache Airflow User Guide

What's next?

• Explore the Amazon MWAA API operation used to create a web login token at
CreateWebLoginToken.

Setting up a custom domain for the Apache Airflow web server

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) lets you to set up a custom
domain for the managed Apache Airflow web server. Using a custom domain, you can access your
environment's Amazon MWAA managed Apache Airflow web server using the Apache Airflow UI,
the Apache Airflow CLI, or the Apache Airflow web server.

Note

You can only use custom domain with a private web server without internet access.

Use cases for a custom domain on Amazon MWAA

1. Share the web server domain across your cloud application on AWS — Using a custom domain
lets you define a user-friendly URL for accessing the web server, instead of the generated service
domain name. You can store this custom domain and share it as an environment variable in your
applications.

2. Access a private web server — If you want to configure access for a web server in a VPC with no
internet access, using a custom domain simplifies the URL redirection work flow.

Topics

• Configure the custom domain

• Set up the networking infrastructure

Configure the custom domain

To configure the custom domain feature, you need to provide the custom domain value via the
webserver.base_url Apache Airflow configuration when creating or updating your Amazon
MWAA environment. The following constraints apply to your custom domain name:

What's next? 92

https://docs.aws.amazon.com/mwaa/latest/API/API_CreateWebLoginToken.html

Amazon Managed Workflows for Apache Airflow User Guide

• The value should be a fully qualified domain name (FQDN) without any protocol or path. For
example, your-custom-domain.com.

• Amazon MWAA does not allow a path in the URL. For example, your-custom-domain.com/
dags/ is not a valid custom domain name.

• The URL length is limited to 255 ASCII characters.

• If you provide an empty string, by default, the environment will be created with a web server
URL generated by Amazon MWAA.

The following example shows using the AWS CLI to create an environment with a custom web
server domain name.

$ aws mwaa create-environment \
 --name my-mwaa-env \
 --source-bucket-arn arn:aws:s3:::amzn-s3-demo-bucket \
 --airflow-configuration-options '{"webserver.base_url":"my-custom-domain.com"}' \
 --network-configuration '{"SubnetIds":["subnet-0123456789abcdef","subnet-
fedcba9876543210"]}' \
 --execution-role-arn arn:aws:iam::123456789012:role/my-execution-role

After the environment is created or updated, you need to set up the networking infrastructure in
your AWS account to access the private web server via the custom domain.

To revert back to the default service-generated URL, update your private environment and remove
the webserver.base_url configuration option.

Set up the networking infrastructure

Use the following steps to set up the required networking infrastructure to use with your custom
domain in your AWS account.

1. Get the IP addresses for the Amazon VPC Endpoint Network Interfaces (ENI). To do this, first, use
get-environment to find the WebserverVpcEndpointService for your environment.

$ aws mwaa get-environment --name your-environment-name

If successful, you'll see output similar to the following.

{

Set up the networking infrastructure 93

https://awscli.amazonaws.com/v2/documentation/api/2.9.6/reference/mwaa/get-environment.html

Amazon Managed Workflows for Apache Airflow User Guide

 "Environment": {
 "AirflowConfigurationOptions": {},
 "AirflowVersion": "latest-version",
 "Arn": "environment-arn",
 "CreatedAt": "2024-06-01T01:00:00-00:00",
 "DagS3Path": "dags",
 .
 .
 .
 "WebserverVpcEndpointService": "web-server-vpc-endpoint-service",
 "WeeklyMaintenanceWindowStart": "TUE:21:30"
 }
}

Note the WebserverVpcEndpointService value and use it for web-server-vpc-
endpoint-service in the following Amazon EC2 describe-vpc-endpoints command. --
filters Name=service-name,Values=web-server-vpc-endpoint-service-id in the
following command.

2. Retrieve the Amazon VPC endpoint details. This command fetches details about Amazon VPC
endpoints that match a specific service name, returning the endpoint ID and associated network
interface IDs in a text format.

$ aws ec2 describe-vpc-endpoints \
 --filters Name=service-name,Values=web-server-vpc-endpoint-service \
 --query 'VpcEndpoints[*].
{EndpointId:VpcEndpointId,NetworkInterfaceIds:NetworkInterfaceIds}' \
 --output text

3. Get the network interface details. This command retrieves private IP addresses for each network
interface associated with the Amazon VPC endpoints identified in the previous step.

$ for eni_id in $(
 aws ec2 describe-vpc-endpoints \
 --filters Name=service-name,Values=service-id \
 --query 'VpcEndpoints[*].NetworkInterfaceIds' \
 --output text
); do
 aws ec2 describe-network-interfaces \
 --network-interface-ids $eni_id \
 --query 'NetworkInterfaces[*].PrivateIpAddresses[*].PrivateIpAddress' \
 --output text

Set up the networking infrastructure 94

Amazon Managed Workflows for Apache Airflow User Guide

 done

4. Use create-target-group to create a new target group. You will use this target group to
register the IP addresses for your web server Amazon VPC endpoints.

$ aws elbv2 create-target-group \
 --name new-target-group-namne \
 --protocol HTTPS \
 --port 443 \
 --vpc-id web-server-vpc-id \
 --target-type ip \
 --health-check-protocol HTTPS \
 --health-check-port 443 \
 --health-check-path / \
 --health-check-enabled \
 --matcher 'HttpCode="200,302"'

Register the IP addresses using the register-targets command.

$ aws elbv2 register-targets \
 --target-group-arn target-group-arn \
 --targets Id=ip-address-1 Id=ip-address-2

5. Request an ACM certificate. Skip this step if you are using an existing certificate.

$ aws acm request-certificate \
 --domain-name my-custom-domain.com \
 --validation-method DNS

6. Configure an Application Load Balancer. First, create the load balancer, then create a listener for
the load balancer. Specify the ACM certificate you created in the previous step.

$ aws elbv2 create-load-balancer \
 --name my-mwaa-lb \
 --type application \
 --subnets subnet-id-1 subnet-id-2

$ aws elbv2 create-listener \
 --load-balancer-arn load-balancer-arn \
 --protocol HTTPS \
 --port 443 \

Set up the networking infrastructure 95

Amazon Managed Workflows for Apache Airflow User Guide

 --ssl-policy ELBSecurityPolicy-2016-08 \
 --certificates CertificateArn=acm-certificate-arn \
 --default-actions Type=forward,TargetGroupArn=target-group-arn

If you use a Network Load Balancer in a private subnet, set up a bastion host or AWS VPN tunnel
to access the web server.

7. Create a hosted zone using Route 53 for the domain.

$ aws route53 create-hosted-zone --name my-custom-domain.com \
 --caller-reference 1

Create an A record for the domain. To do this using the AWS CLI, get the hosted zone ID using
list-hosted-zones-by-name then apply the record with change-resource-record-
sets.

$ HOSTED_ZONE_ID=$(aws route53 list-hosted-zones-by-name \
 --dns-name my-custom-domain.com \
 --query 'HostedZones[0].Id' --output text)

$ aws route53 change-resource-record-sets \
 --hosted-zone-id $HOSTED_ZONE_ID \
 --change-batch '{
 "Changes": [
 {
 "Action": "CREATE",
 "ResourceRecordSet": {
 "Name": "my-custom-domain.com",
 "Type": "A",
 "AliasTarget": {
 "HostedZoneId": "load-balancer-hosted-zone-id>",
 "DNSName": "load-balancer-dns-name",
 "EvaluateTargetHealth": true
 }
 }
 }
]
 }'

8. Update the security group rules for the web server Amazon VPC endpoint to follow the principle
of least privilege by allowing HTTPS traffic only from the public subnets where the Application

Set up the networking infrastructure 96

Amazon Managed Workflows for Apache Airflow User Guide

Load Balancer is located. Save the following JSON locally. For example, as sg-ingress-ip-
permissions.json.

[
{
 "IpProtocol": "tcp",
 "FromPort": 443,
 "ToPort": 443,
 "UserIdGroupPairs": [
 {
 "GroupId": "load-balancer-security-group-id"
 }
],
 "IpRanges": [
 {
 "CidrIp": "public-subnet-1-cidr"
 },
 {
 "CidrIp": "public-subnet-2-cidr"
 }
]
}
]

Run the following Amazon EC2 command to update your ingress security group rules. Specify
the JSON file for --ip-permissions.

$ aws ec2 authorize-security-group-ingress \
 --group-id <security-group-id> \
 --ip-permissions file://sg-ingress-ip-permissions.json

Run the following Amazon EC2 command to update your egress rules.

$ aws ec2 authorize-security-group-egress \
 --group-id webserver-vpc-endpoint-security-group-id \
 --protocol tcp \
 --port 443 \
 --source-group load-balancer-security-group-id

Set up the networking infrastructure 97

Amazon Managed Workflows for Apache Airflow User Guide

Open the Amazon MWAA console and navigate to the Apache Airflow UI. If you are setting up an
Network Load Balancer in a private subnet instead of the Application Load Balancer used here, you
must access the web server with one of the following options.

• the section called “Tutorial: Linux Bastion Host”

• the section called “Tutorial: AWS Client VPN”

Creating an Apache Airflow CLI token

Tip

REST API is more modern than the CLI and is designed for programmatic integration with
external systems. REST is the preferred way of interacting with Apache Airflow.

You can use the commands on this page to generate a CLI token, and then make Amazon Managed
Workflows for Apache Airflow API calls directly in your command shell. For example, you can get
a token, then deploy DAGs programmatically using Amazon MWAA APIs. The following section
includes the steps to create an Apache Airflow CLI token using the AWS CLI, a curl script, a Python
script, or a bash script. The token returned in the response is valid for 60 seconds.

The AWS CLI token is intended as a replacement for synchronous shell actions, not asynchronous
API commands. As such, available concurrency is limited. To ensure that the web server remains
responsive for users, it is recommended not to open a new AWS CLI request until the previous one
completes successfully.

Contents

• Prerequisites

• Access

• AWS CLI

• Using the AWS CLI

• Using a curl script

• Using a bash script

• Using a Python script

• What's next?

Apache Airflow CLI token 98

Amazon Managed Workflows for Apache Airflow User Guide

Prerequisites

The following section describes the preliminary steps required to use the commands and scripts on
this page.

Access

• AWS account access in AWS Identity and Access Management (IAM) to the Amazon MWAA
permissions policy in Apache Airflow UI access policy: AmazonMWAAWebServerAccess.

• AWS account access in AWS Identity and Access Management (IAM) to the Amazon MWAA
permissions policy Full API and console access policy: AmazonMWAAFullApiAccess.

AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

Using the AWS CLI

The following example uses the create-cli-token command in the AWS CLI to create an Apache
Airflow CLI token.

aws mwaa create-cli-token --name YOUR_ENVIRONMENT_NAME

Using a curl script

The following example uses a curl script to call the create-web-login-token command in the AWS
CLI to invoke the Apache Airflow CLI via an endpoint on the Apache Airflow web server.

Apache Airflow v2

1. Copy the curl statement from your text file and paste it in your command shell.

Prerequisites 99

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/reference/mwaa/create-cli-token.html
https://docs.aws.amazon.com/cli/latest/reference/mwaa/create-cli-token.html

Amazon Managed Workflows for Apache Airflow User Guide

Note

After copying it to your clipboard, you may need to use Edit > Paste from your shell
menu.

CLI_JSON=$(aws mwaa --region us-east-1 create-cli-token --
name YOUR_ENVIRONMENT_NAME) \
 && CLI_TOKEN=$(echo $CLI_JSON | jq -r '.CliToken') \
 && WEB_SERVER_HOSTNAME=$(echo $CLI_JSON | jq -r '.WebServerHostname') \
 && CLI_RESULTS=$(curl --request POST "https://$WEB_SERVER_HOSTNAME/aws_mwaa/
cli" \
 --header "Authorization: Bearer $CLI_TOKEN" \
 --header "Content-Type: text/plain" \
 --data-raw "dags trigger YOUR_DAG_NAME") \
 && echo "Output:" \
 && echo $CLI_RESULTS | jq -r '.stdout' | base64 --decode \
 && echo "Errors:" \
 && echo $CLI_RESULTS | jq -r '.stderr' | base64 --decode

2. Substitute the placeholders for YOUR_REGION with the AWS region for your environment,
YOUR_DAG_NAME, and YOUR_ENVIRONMENT_NAME. For example, a host name for a public
network may look like this (without the https://):

123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.amazonaws.com
(or 123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.on.aws)

3. You should see the following in your command prompt:

{
 "stderr":"<STDERR of the CLI execution (if any), base64 encoded>",
 "stdout":"<STDOUT of the CLI execution, base64 encoded>"
}

Apache Airflow v1

1. Copy the cURL statement from your text file and paste it in your command shell.

Using a curl script 100

Amazon Managed Workflows for Apache Airflow User Guide

Note

After copying it to your clipboard, you may need to use Edit > Paste from your shell
menu.

CLI_JSON=$(aws mwaa --region us-east-1 create-cli-token --
name YOUR_ENVIRONMENT_NAME) \
 && CLI_TOKEN=$(echo $CLI_JSON | jq -r '.CliToken') \
 && WEB_SERVER_HOSTNAME=$(echo $CLI_JSON | jq -r '.WebServerHostname') \
 && CLI_RESULTS=$(curl --request POST "https://$WEB_SERVER_HOSTNAME/aws_mwaa/
cli" \
 --header "Authorization: Bearer $CLI_TOKEN" \
 --header "Content-Type: text/plain" \
 --data-raw "trigger_dag YOUR_DAG_NAME") \
 && echo "Output:" \
 && echo $CLI_RESULTS | jq -r '.stdout' | base64 --decode \
 && echo "Errors:" \
 && echo $CLI_RESULTS | jq -r '.stderr' | base64 --decode

2. Substitute the placeholders for YOUR_REGION with the AWS region for your environment,
YOUR_DAG_NAME, and YOUR_HOST_NAME. For example, a host name for a public network
may look like this (without the https://):

123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.amazonaws.com
 (or 123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.on.aws)

3. You should see the following in your command prompt:

{
 "stderr":"<STDERR of the CLI execution (if any), base64 encoded>",
 "stdout":"<STDOUT of the CLI execution, base64 encoded>"
}

4. Substitute the placeholders for YOUR_ENVIRONMENT_NAME and YOUR_DAG_NAME.

Using a curl script 101

Amazon Managed Workflows for Apache Airflow User Guide

Using a bash script

The following example uses a bash script to call the create-cli-token command in the AWS CLI to
create an Apache Airflow CLI token.

Apache Airflow v2

1. Copy the contents of the following code sample and save locally as get-cli-token.sh.

brew install jq
 aws mwaa create-cli-token --name YOUR_ENVIRONMENT_NAME | export CLI_TOKEN=$(jq
 -r .CliToken) && curl --request POST "https://YOUR_HOST_NAME/aws_mwaa/cli" \
 --header "Authorization: Bearer $CLI_TOKEN" \
 --header "Content-Type: text/plain" \
 --data-raw "dags trigger YOUR_DAG_NAME"

2. Substitute the placeholders for YOUR_ENVIRONMENT_NAME, YOUR_HOST_NAME, and
YOUR_DAG_NAME. For example, a host name for a public network may look like this
(without the https://):

123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.amazonaws.com
(or 123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.on.aws)

3. (optional) macOS and Linux users may need to run the following command to ensure the
script is executable.

chmod +x get-cli-token.sh

4. Run the following script to create an Apache Airflow CLI token.

./get-cli-token.sh

Apache Airflow v1

1. Copy the contents of the following code sample and save locally as get-cli-token.sh.

brew install jq
 aws mwaa create-cli-token --name YOUR_ENVIRONMENT_NAME | export CLI_TOKEN=$(jq
 -r .CliToken) && curl --request POST "https://YOUR_HOST_NAME/aws_mwaa/cli" \
 --header "Authorization: Bearer $CLI_TOKEN" \

Using a bash script 102

https://docs.aws.amazon.com/cli/latest/reference/mwaa/create-cli-token.html

Amazon Managed Workflows for Apache Airflow User Guide

 --header "Content-Type: text/plain" \
 --data-raw "trigger_dag YOUR_DAG_NAME"

2. Substitute the placeholders in red for YOUR_ENVIRONMENT_NAME, YOUR_HOST_NAME,
and YOUR_DAG_NAME. For example, a host name for a public network may look like this
(without the https://):

123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.amazonaws.com
(or 123456a0-0101-2020-9e11-1b159eec9000.c2.us-east-1.airflow.on.aws)

3. (optional) macOS and Linux users may need to run the following command to ensure the
script is executable.

chmod +x get-cli-token.sh

4. Run the following script to create an Apache Airflow CLI token.

./get-cli-token.sh

Using a Python script

The following example uses the boto3 create_cli_token method in a Python script to create an
Apache Airflow CLI token and trigger a DAG. You can run this script outside of Amazon MWAA. The
only thing you need to do is install the boto3 library. You may want to create a virtual environment
to install the library. It assumes you have configured AWS authentication credentials for your
account.

Apache Airflow v2

1. Copy the contents of the following code sample and save locally as create-cli-
token.py.

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.

Using a Python script 103

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/mwaa.html#MWAA.Client.create_cli_token
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration

Amazon Managed Workflows for Apache Airflow User Guide

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import boto3
import json
import requests
import base64

mwaa_env_name = 'YOUR_ENVIRONMENT_NAME'
dag_name = 'YOUR_DAG_NAME'
mwaa_cli_command = 'dags trigger'

client = boto3.client('mwaa')

mwaa_cli_token = client.create_cli_token(
 Name=mwaa_env_name
)

mwaa_auth_token = 'Bearer ' + mwaa_cli_token['CliToken']
mwaa_webserver_hostname = 'https://{0}/aws_mwaa/
cli'.format(mwaa_cli_token['WebServerHostname'])
raw_data = '{0} {1}'.format(mwaa_cli_command, dag_name)

mwaa_response = requests.post(
 mwaa_webserver_hostname,
 headers={
 'Authorization': mwaa_auth_token,
 'Content-Type': 'text/plain'
 },
 data=raw_data
)

mwaa_std_err_message = base64.b64decode(mwaa_response.json()
['stderr']).decode('utf8')
mwaa_std_out_message = base64.b64decode(mwaa_response.json()
['stdout']).decode('utf8')

print(mwaa_response.status_code)
print(mwaa_std_err_message)

Using a Python script 104

Amazon Managed Workflows for Apache Airflow User Guide

print(mwaa_std_out_message)

2. Substitute the placeholders for YOUR_ENVIRONMENT_NAME and YOUR_DAG_NAME.

3. Run the following script to create an Apache Airflow CLI token.

python3 create-cli-token.py

Apache Airflow v1

1. Copy the contents of the following code sample and save locally as create-cli-
token.py.

import boto3
import json
import requests
import base64

mwaa_env_name = 'YOUR_ENVIRONMENT_NAME'
dag_name = 'YOUR_DAG_NAME'
mwaa_cli_command = 'trigger_dag'

client = boto3.client('mwaa')

mwaa_cli_token = client.create_cli_token(
 Name=mwaa_env_name
)

mwaa_auth_token = 'Bearer ' + mwaa_cli_token['CliToken']
mwaa_webserver_hostname = 'https://{0}/aws_mwaa/
cli'.format(mwaa_cli_token['WebServerHostname'])
raw_data = '{0} {1}'.format(mwaa_cli_command, dag_name)

mwaa_response = requests.post(
 mwaa_webserver_hostname,
 headers={
 'Authorization': mwaa_auth_token,
 'Content-Type': 'text/plain'
 },
 data=raw_data
)

Using a Python script 105

Amazon Managed Workflows for Apache Airflow User Guide

mwaa_std_err_message = base64.b64decode(mwaa_response.json()
['stderr']).decode('utf8')
mwaa_std_out_message = base64.b64decode(mwaa_response.json()
['stdout']).decode('utf8')

print(mwaa_response.status_code)
print(mwaa_std_err_message)
print(mwaa_std_out_message)

2. Substitute the placeholders for YOUR_ENVIRONMENT_NAME and YOUR_DAG_NAME.

3. Run the following script to create an Apache Airflow CLI token.

python3 create-cli-token.py

What's next?

• Explore the Amazon MWAA API operation used to create a CLI token at CreateCliToken.

Using the Apache Airflow REST API

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) supports interacting with
your Apache Airflow environments directly using the Apache Airflow REST API for environments
running Apache Airflow v2.4.3 and above. This lets you access and manage your Amazon MWAA
environments programmatically, providing a standardized way to invoke data orchestration
workflows, manage your DAGs, and monitor the status of various Apache Airflow components such
as the metadata database, triggerer, and scheduler.

In order to support scalability while using the Apache Airflow REST API, Amazon MWAA provides
you with the option to horizontally scale web server capacity to handle increased demand, whether
from REST API requests, command line interface (CLI) usage, or more concurrent Apache Airflow
user interface (UI) users. For more information on how Amazon MWAA scales web servers, refer to
the section called “Configuring web server auto scaling”.

You can use the Apache Airflow REST API to implement the following use-cases for your
environments:

What's next? 106

https://docs.aws.amazon.com/mwaa/latest/API/API_CreateCliToken.html

Amazon Managed Workflows for Apache Airflow User Guide

• Programmatic access – You can now start Apache Airflow DAG runs, manage datasets, and
retrieve the status of various components such as the metadata database, triggerers, and
schedulers without relying on the Apache Airflow UI or CLI.

• Integrate with external applications and microservices – REST API support allows you to
build custom solutions that integrate your Amazon MWAA environments with other systems.
For example, you can start workflows in response to events from external systems, such as
completed database jobs or new user sign-ups.

• Centralized monitoring – You can build monitoring dashboards that aggregate the status of
your DAGs across multiple Amazon MWAA environments, enabling centralized monitoring and
management.

For more information about the Apache Airflow REST API, refer to The Apache Airflow REST API
Reference.

By using InvokeRestApi, you can access the Apache Airflow REST API using AWS credentials.
Alternatively, you can also access it by obtaining a web server access token and then using the
token to call it.

• If you encounter an error with the message "Update your environment to use InvokeRestApi"
while using the InvokeRestApi operation, it indicates that you need to update your Amazon
MWAA environment. This error occurs when your Amazon MWAA environment is not compatible
with the latest changes related to the InvokeRestApi feature. To resolve this issue, update
your Amazon MWAA environment to incorporate the necessary changes for the InvokeRestApi
feature.

• The InvokeRestApi operation has a default timeout duration of 10 seconds. If the operation
does not complete within this 10-second timeframe, it will be automatically terminated, and an
error will be raised. Ensure that your REST API calls are designed to complete within this timeout
period to avoid encountering errors.

Important

The response payload size cannot exceed 6 MB. Your RestApi fails if this limit is exceeded.

The following examples show how you to make API calls to the Apache Airflow REST API and start
a new DAG run:

Using the Apache Airflow REST API 107

https://airflow.apache.org/docs/apache-airflow/stable/stable-rest-api-ref.html
https://airflow.apache.org/docs/apache-airflow/stable/stable-rest-api-ref.html

Amazon Managed Workflows for Apache Airflow User Guide

Topics

• Granting access to the Apache Airflow REST API: airflow:InvokeRestApi

• Calling the Apache Airflow REST API

• Creating a web server session token and calling the Apache Airflow REST API

Granting access to the Apache Airflow REST API:
airflow:InvokeRestApi

To access the Apache Airflow REST API using AWS credential, you must grant the
airflow:InvokeRestApi permission in your IAM policy. In the following policy sample, specify
the Admin, Op, User, Viewer or the Public role in {airflow-role} to customize the level of
user access. For more information, refer to Default Roles in the Apache Airflow reference guide.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowMwaaRestApiAccess",
 "Effect": "Allow",
 "Action": "airflow:InvokeRestApi",
 "Resource": [
 "arn:aws:airflow:us-east-1:111122223333:role/{your-environment-name}/
{airflow-role}"
]
 }
]
}

Note

While configuring a private web server, the InvokeRestApi action cannot be invoked
from outside of a Virtual Private Cloud (VPC). You can use the aws:SourceVpc key to
apply more granular access control for this operation. For more information, refer to
aws:SourceVpc.

Granting access to the Apache Airflow REST API: airflow:InvokeRestApi 108

https://airflow.apache.org/docs/apache-airflow/1.10.6/security.html?highlight=ldap#default-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcevpc

Amazon Managed Workflows for Apache Airflow User Guide

Calling the Apache Airflow REST API

The following sample script covers how to use the Apache Airflow REST API to list the available
DAGs in your environment and how to create an Apache Airflow variable:

import boto3

env_name = "MyAirflowEnvironment"

def list_dags(client):
 request_params = {
 "Name": env_name,
 "Path": "/dags",
 "Method": "GET",
 "QueryParameters": {
 "paused": False
 }
 }
 response = client.invoke_rest_api(
 **request_params
)

 print("Airflow REST API response: ", response['RestApiResponse'])

def create_variable(client):
 request_params = {
 "Name": env_name,
 "Path": "/variables",
 "Method": "POST",
 "Body": {
 "key": "test-restapi-key",
 "value": "test-restapi-value",
 "description": "Test variable created by MWAA InvokeRestApi API",
 }
 }
 response = client.invoke_rest_api(
 **request_params
)

 print("Airflow REST API response: ", response['RestApiResponse'])

if __name__ == "__main__":

Calling the Apache Airflow REST API 109

Amazon Managed Workflows for Apache Airflow User Guide

 client = boto3.client("mwaa")
 list_dags(client)
 create_variable(client)

Creating a web server session token and calling the Apache Airflow
REST API

To create a web server access token, use the following Python function. This function first calls
the Amazon MWAA API to obtain a web login token. The web login token, which expires after
60 seconds, is then exchanged for a web session token, which lets you access the web server and
use the Apache Airflow REST API. If you require more than 10 transactions per second (TPS) of
throttling capacity, you can use this method to access the Apache Airflow REST API.

Note

The session token expires after 12 hours.

def get_session_info(region, env_name):
 logging.basicConfig(level=logging.INFO)

 try:
 # Initialize MWAA client and request a web login token
 mwaa = boto3.client('mwaa', region_name=region)
 response = mwaa.create_web_login_token(Name=env_name)

 # Extract the web server hostname and login token
 web_server_host_name = response["WebServerHostname"]
 web_token = response["WebToken"]

 # Construct the URL needed for authentication
 login_url = f"https://{web_server_host_name}/aws_mwaa/login"
 login_payload = {"token": web_token}

 # Make a POST request to the MWAA login url using the login payload
 response = requests.post(
 login_url,
 data=login_payload,
 timeout=10
)

Creating a web server session token and calling the Apache Airflow REST API 110

Amazon Managed Workflows for Apache Airflow User Guide

 # Check if login was succesfull
 if response.status_code == 200:

 # Return the hostname and the session cookie
 return (
 web_server_host_name,
 response.cookies["session"]
)
 else:
 # Log an error
 logging.error("Failed to log in: HTTP %d", response.status_code)
 return None
 except requests.RequestException as e:
 # Log any exceptions raised during the request to the MWAA login endpoint
 logging.error("Request failed: %s", str(e))
 return None
 except Exception as e:
 # Log any other unexpected exceptions
 logging.error("An unexpected error occurred: %s", str(e))
 return None

Once authentication is complete, you have the credentials to start sending requests to the API
endpoints. In the example below, use the endpoint dags/{dag_id}/dagRuns.

def trigger_dag(region, env_name, dag_name):
 """
 Triggers a DAG in a specified MWAA environment using the Airflow REST API.

 Args:
 region (str): AWS region where the MWAA environment is hosted.
 env_name (str): Name of the MWAA environment.
 dag_name (str): Name of the DAG to trigger.
 """

 logging.info(f"Attempting to trigger DAG {dag_name} in environment {env_name} at
 region {region}")

 # Retrieve the web server hostname and session cookie for authentication
 try:
 web_server_host_name, session_cookie = get_session_info(region, env_name)
 if not session_cookie:
 logging.error("Authentication failed, no session cookie retrieved.")

Creating a web server session token and calling the Apache Airflow REST API 111

Amazon Managed Workflows for Apache Airflow User Guide

 return
 except Exception as e:
 logging.error(f"Error retrieving session info: {str(e)}")
 return

 # Prepare headers and payload for the request
 cookies = {"session": session_cookie}
 json_body = {"conf": {}}

 # Construct the URL for triggering the DAG
 url = f"https://{web_server_host_name}/api/v1/dags/{dag_id}/dagRuns"

 # Send the POST request to trigger the DAG
 try:
 response = requests.post(url, cookies=cookies, json=json_body)
 # Check the response status code to determine if the DAG was triggered
 successfully
 if response.status_code == 200:
 logging.info("DAG triggered successfully.")
 else:
 logging.error(f"Failed to trigger DAG: HTTP {response.status_code} -
 {response.text}")
 except requests.RequestException as e:
 logging.error(f"Request to trigger DAG failed: {str(e)}")

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO)

 # Check if the correct number of arguments is provided
 if len(sys.argv) != 4:
 logging.error("Incorrect usage. Proper format: python script_name.py {region}
 {env_name} {dag_name}")
 sys.exit(1)

 region = sys.argv[1]
 env_name = sys.argv[2]
 dag_name = sys.argv[3]

 # Trigger the DAG with the provided arguments
 trigger_dag(region, env_name, dag_name)

Creating a web server session token and calling the Apache Airflow REST API 112

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow CLI command reference

This topic describes the supported and unsupported Apache Airflow CLI commands on Amazon
Managed Workflows for Apache Airflow.

Tip

REST API is more modern than the CLI and is designed for programmatic integration with
external systems. REST is the preferred way of interacting with Apache Airflow.

Contents

• Prerequisites

• Access

• AWS CLI

• What changed in v2

• Supported CLI commands

• Supported commands

• Using commands that parse DAGs

• Sample code

• Set, get or delete an Apache Airflow v2 variable

• Add a configuration when triggering a DAG

• Run CLI commands on an SSH tunnel to a bastion host

• Samples in GitHub and AWS tutorials

Prerequisites

The following section describes the preliminary steps required to use the commands and scripts on
this page.

Access

• AWS account access in AWS Identity and Access Management (IAM) to the Amazon MWAA
permissions policy in Apache Airflow UI access policy: AmazonMWAAWebServerAccess.

Apache Airflow CLI command reference 113

Amazon Managed Workflows for Apache Airflow User Guide

• AWS account access in AWS Identity and Access Management (IAM) to the Amazon MWAA
permissions policy Full API and console access policy: AmazonMWAAFullApiAccess.

AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

What changed in v2

• New: Airflow CLI command structure. The Apache Airflow v2 CLI is organized so that related
commands are grouped together as subcommands, which means you need to update Apache
Airflow v1 scripts if you want to upgrade to Apache Airflow v2. For example, unpause in Apache
Airflow v1 is now dags unpause in Apache Airflow v2. To learn more, refer to Airflow CLI
changes in 2 in the Apache Airflow reference guide.

Supported CLI commands

The following section lists the Apache Airflow CLI commands available on Amazon MWAA.

Supported commands

Apache Airflow v2

Minor versions Command

v2.0+ cheat-sheet

v2.0+ connections add

v2.0+ connections delete

v2.2+ (note) dags backfill

What changed in v2 114

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
http://airflow.apache.org/docs/apache-airflow/2.0.2/upgrading-to-2.html#airflow-cli-changes-in-2-0
http://airflow.apache.org/docs/apache-airflow/2.0.2/upgrading-to-2.html#airflow-cli-changes-in-2-0
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#cheat-sheet
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#add
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#delete
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#backfill

Amazon Managed Workflows for Apache Airflow User Guide

Minor versions Command

v2.0+ dags delete

v2.2+ (note) dags list

v2.0+ dags list-jobs

v2.6+ dags list-import-errors

v2.2+ (note) dags list-runs

v2.2+ (note) dags next-execution

v2.0+ dags pause

v2.0+ dags report

v2.4+ dags reserialize

v2.0+ dags show

v2.0+ dags state

v2.0+ dags test

v2.0+ dags trigger

v2.0+ dags unpause

v2.4+ db clean

v2.0+ providers behaviours

v2.0+ providers get

v2.0+ providers hooks

v2.0+ providers links

v2.0+ providers list

Supported CLI commands 115

http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#delete_repeat1
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#list_repeat2
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#list-jobs
https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#list-import-errors
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#list-runs
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#next-execution
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#pause
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#report
https://airflow.apache.org/docs/apache-airflow/2.4.3/cli-and-env-variables-ref.html#reserialize
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#show
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#state
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#test
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#trigger
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#unpause
https://airflow.apache.org/docs/apache-airflow/2.4.3/cli-and-env-variables-ref.html#clean
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#behaviours
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#get_repeat2
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#hooks
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#links
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#list_repeat4

Amazon Managed Workflows for Apache Airflow User Guide

Minor versions Command

v2.8+ providers notifications

v2.6+ providers secrets

v2.7+ providers triggerer

v2.0+ providers widgets

v2.6+ roles add-perms

v2.6+ roles del-perms

v2.6+ roles create

v2.0+ roles list

v2.0+ tasks clear

v2.0+ tasks failed-deps

v2.0+ tasks list

v2.0+ tasks render

v2.0+ tasks state

v2.0+ tasks states-for-dag-run

v2.0+ tasks test

v2.0+ variables delete

v2.0+ variables get

v2.0+ variables set

v2.0+ variables list

v2.0+ version

Supported CLI commands 116

https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#notifications
https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#secrets
https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#triggerer
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#widgets
https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#add-perms
https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#del-perms
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#create
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#list_repeat5
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#clear
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#failed-deps
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#list_repeat6
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#render
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#state_repeat1
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#states-for-dag-run
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#test_repeat1
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#delete_repeat4
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#get_repeat3
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#set_repeat1
http://airflow.apache.org/docs/apache-airflow/2.2.2/cli-and-env-variables-ref.html#list_repeat8
http://airflow.apache.org/docs/apache-airflow/1.10.12/cli-ref.html#version

Amazon Managed Workflows for Apache Airflow User Guide

Using commands that parse DAGs

If your environment is running Apache Airflow v1.10.12 or v2.0.2, CLI commands that parse DAGs
will fail if the DAG uses plugins that depend on packages installed through a requirements.txt:

Apache Airflow v2.0.2

• dags backfill

• dags list

• dags list-runs

• dags next-execution

You can use these CLI commands if your DAGs do not use plugins that depend on packages
installed through a requirements.txt.

Sample code

The following section contains examples of different ways to use the Apache Airflow CLI.

Set, get or delete an Apache Airflow v2 variable

You can use the following sample code to set, get or delete a variable in the format of <script>
<mwaa env name> get | set | delete <variable> <variable value> </variable>
</variable>.

[$# -eq 0] && echo "Usage: $0 MWAA environment name " && exit

if [[$2 == ""]]; then
 dag="variables list"

elif [$2 == "get"] || [$2 == "delete"] || [$2 == "set"]; then
 dag="variables $2 $3 $4 $5"

else
 echo "Not a valid command"
 exit 1
fi

CLI_JSON=$(aws mwaa --region $AWS_REGION create-cli-token --name $1) \
 && CLI_TOKEN=$(echo $CLI_JSON | jq -r '.CliToken') \

Sample code 117

Amazon Managed Workflows for Apache Airflow User Guide

 && WEB_SERVER_HOSTNAME=$(echo $CLI_JSON | jq -r '.WebServerHostname') \
 && CLI_RESULTS=$(curl --request POST "https://$WEB_SERVER_HOSTNAME/aws_mwaa/cli" \
 --header "Authorization: Bearer $CLI_TOKEN" \
 --header "Content-Type: text/plain" \
 --data-raw "$dag") \
 && echo "Output:" \
 && echo $CLI_RESULTS | jq -r '.stdout' | base64 --decode \
 && echo "Errors:" \
 && echo $CLI_RESULTS | jq -r '.stderr' | base64 --decode

Add a configuration when triggering a DAG

You can use the following sample code with Apache Airflow v1 and Apache Airflow v2 to add a
configuration when triggering a DAG, such as airflow trigger_dag 'dag_name' —conf
'{"key":"value"}'.

import boto3
import json
import requests
import base64

mwaa_env_name = 'YOUR_ENVIRONMENT_NAME'
dag_name = 'YOUR_DAG_NAME'
key = "YOUR_KEY"
value = "YOUR_VALUE"
conf = "{\"" + key + "\":\"" + value + "\"}"

client = boto3.client('mwaa')

mwaa_cli_token = client.create_cli_token(
 Name=mwaa_env_name
)

mwaa_auth_token = 'Bearer ' + mwaa_cli_token['CliToken']
mwaa_webserver_hostname = 'https://{0}/aws_mwaa/
cli'.format(mwaa_cli_token['WebServerHostname'])
raw_data = "trigger_dag {0} -c '{1}'".format(dag_name, conf)

mwaa_response = requests.post(
 mwaa_webserver_hostname,
 headers={
 'Authorization': mwaa_auth_token,
 'Content-Type': 'text/plain'

Sample code 118

Amazon Managed Workflows for Apache Airflow User Guide

 },
 data=raw_data
)

mwaa_std_err_message = base64.b64decode(mwaa_response.json()['stderr']).decode('utf8')
mwaa_std_out_message = base64.b64decode(mwaa_response.json()['stdout']).decode('utf8')

print(mwaa_response.status_code)
print(mwaa_std_err_message)
print(mwaa_std_out_message)

Run CLI commands on an SSH tunnel to a bastion host

The following example shows how to run Airflow CLI commands using an SSH tunnel proxy to a
Linux Bastion Host.

Using curl

1. ssh -D 8080 -f -C -q -N YOUR_USER@YOUR_BASTION_HOST

2. curl -x socks5h://0:8080 --request POST https://YOUR_HOST_NAME/aws_mwaa/cli --
header YOUR_HEADERS --data-raw YOUR_CLI_COMMAND

Samples in GitHub and AWS tutorials

• Working with Apache Airflow v2.0.2 parameters and variables in Amazon Managed Workflows
for Apache Airflow

• Interacting with Apache Airflow v1.10.12 on Amazon MWAA via the command line

• Interactive Commands with Apache Airflow v1.10.12 on Amazon MWAA and Bash Operator on
GitHub

Sample code 119

https://dev.to/aws/interacting-with-amazon-managed-workflows-for-apache-airflow-via-the-command-line-4e91
https://dev.to/aws/interacting-with-amazon-managed-workflows-for-apache-airflow-via-the-command-line-4e91
https://dev.to/aws/interacting-with-amazon-managed-workflows-for-apache-airflow-via-the-command-line-4e91
https://github.com/aws-samples/amazon-mwaa-examples/tree/main/dags/bash_operator_script

Amazon Managed Workflows for Apache Airflow User Guide

Managing connections to Apache Airflow

This chapter describes how to configure an Apache Airflow connection for an Amazon Managed
Workflows for Apache Airflow environment.

Topics

• Overview of Apache Airflow variables and connections

• Apache Airflow provider packages installed on Amazon MWAA environments

• Overview of connection types

• Configuring an Apache Airflow connection using a AWS Secrets Manager secret

Overview of Apache Airflow variables and connections

In some cases, you may want to specify additional connections or variables for an environment,
such as an AWS profile, or to add your execution role in a connection object in the Apache Airflow
metastore, then refer to the connection from within a DAG.

• Self-managed Apache Airflow. On a self-managed Apache Airflow installation, you set Apache
Airflow configuration options in airflow.cfg.

[secrets]
backend = airflow.providers.amazon.aws.secrets.secrets_manager.SecretsManagerBackend
backend_kwargs = {"connections_prefix" : "airflow/connections", "variables_prefix" :
 "airflow/variables"}

• Apache Airflow on Amazon MWAA. On Amazon MWAA, you need to add these configuration
settings as Apache Airflow configuration options on the Amazon MWAA console. Apache Airflow
configuration options are written as environment variables to your environment and override all
other existing configurations for the same setting.

Apache Airflow provider packages installed on Amazon MWAA
environments

Amazon MWAA installs provider extras for Apache Airflow v2 and above connection types when
you create a new environment. Installing provider packages allows you to view a connection type

Overview 120

https://airflow.apache.org/docs/apache-airflow/stable/howto/set-config.html
https://airflow.apache.org/docs/apache-airflow/stable/howto/set-config.html
http://airflow.apache.org/docs/apache-airflow/2.0.2/extra-packages-ref.html#providers-extras

Amazon Managed Workflows for Apache Airflow User Guide

in the Apache Airflow UI. It also means you don't need to specify these packages as a Python
dependency in your requirements.txt file. This page lists the Apache Airflow provider packages
installed by Amazon MWAA for all Apache Airflow v2 environments.

Note

For Apache Airflow v2 and above, Amazon MWAA installs Watchtower version 2.0.1
after perfming pip3 install -r requirements.txt, to ensure compatibility with
CloudWatch logging is not overridden by other Python library installations.

Contents

• Provider packages for Apache Airflow v2.10.1 connections

• Provider packages for Apache Airflow v2.9.2 connections

• Provider packages for Apache Airflow v2.8.1 connections

• Provider packages for Apache Airflow v2.7.2 connections

• Provider packages for Apache Airflow v2.6.3 connections

• Provider packages for Apache Airflow v2.5.1 connections

• Provider packages for Apache Airflow v2.4.3 connections

• Provider packages for Apache Airflow v2.2.2 connections

• Provider packages for Apache Airflow v2.0.2 connections

• Specifying newer provider packages

Provider packages for Apache Airflow v2.10.1 connections

When you create an Amazon MWAA environment in Apache Airflow v2.10.1, Amazon MWAA
installs the following provider packages used for Apache Airflow connections.

Note

You can specify the latest supported version of apache-airflow-providers-amazon
to upgrade this provider. For more information on specifying newer versions, refer to the
section called “Specifying newer provider packages”.

Provider packages for Apache Airflow v2.10.1 connections 121

https://pypi.org/project/watchtower/2.0.1/

Amazon Managed Workflows for Apache Airflow User Guide

Connection type Package

AWS Connection apache-airflow-providers-amazon[aiob
otocore]==8.28.0

Postgres Connection apache-airflow-providers-postgres==5.12.0

FTP Connection apache-airflow-providers-ftp==3.11.0

Fab Connection apache-airflow-providers-fab==1.3.0

Celery Connection apache-airflow-providers-celery==3.8.1

HTTP Connection apache-airflow-providers-http==4.13.0

IMAP Connection apache-airflow-providers-imap==3.7.0

Common SQL apache-airflow-providers-common-sql=
=1.16.0

SQLite Connection apache-airflow-providers-sqlite==3.9.0

SMTP Connection apache-airflow-providers-smtp==1.8.0

Provider packages for Apache Airflow v2.9.2 connections

When you create an Amazon MWAA environment in Apache Airflow v2.9.2, Amazon MWAA installs
the following provider packages used for Apache Airflow connections.

Note

You can specify the latest supported version of apache-airflow-providers-amazon
to upgrade this provider. For more information on specifying newer versions, refer to the
section called “Specifying newer provider packages”.

Provider packages for Apache Airflow v2.9.2 connections 122

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ftp/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-fab/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-celery/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-imap/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sqlite/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-smtp/stable/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Connection type Package

AWS Connection apache-airflow-providers-amazon[aiob
otocore]==8.24.0

Postgres Connection apache-airflow-providers-postgres==5.11.1

FTP Connection apache-airflow-providers-ftp==3.9.1

Fab Connection apache-airflow-providers-fab==1.1.1

Celery Connection apache-airflow-providers-celery==3.7.2

HTTP Connection apache-airflow-providers-http==4.11.1

IMAP Connection apache-airflow-providers-imap==3.6.1

Common SQL apache-airflow-providers-common-sql=
=1.14.0

SQLite Connection apache-airflow-providers-sqlite==3.8.1

SMTP Connection apache-airflow-providers-smtp==1.7.1

Provider packages for Apache Airflow v2.8.1 connections

When you create an Amazon MWAA environment in Apache Airflow v2.8.1, Amazon MWAA installs
the following provider packages used for Apache Airflow connections.

Note

You can specify the latest supported version of apache-airflow-providers-amazon
to upgrade this provider. For more information on specifying newer versions, refer to the
section called “Specifying newer provider packages”.

Provider packages for Apache Airflow v2.8.1 connections 123

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ftp/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-fab/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-celery/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-imap/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sqlite/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-smtp/stable/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Connection type Package

AWS Connection apache-airflow-providers-amazon[aiob
otocore]==8.16.0

Postgres Connection apache-airflow-providers-postgres==5.10.0

FTP Connection apache-airflow-providers-ftp==3.7.0

Celery Connection apache-airflow-providers-celery==3.5.1

HTTP Connection apache-airflow-providers-http==4.8.0

IMAP Connection apache-airflow-providers-imap==3.5.0

Common SQL apache-airflow-providers-common-sql=
=1.10.0

SQLite Connection apache-airflow-providers-sqlite==3.7.0

Provider packages for Apache Airflow v2.7.2 connections

When you create an Amazon MWAA environment in Apache Airflow v2.7.2, Amazon MWAA installs
the following provider packages used for Apache Airflow connections.

Note

You can specify the latest supported version of apache-airflow-providers-amazon
to upgrade this provider. For more information on specifying newer versions, refer to the
section called “Specifying newer provider packages”.

Connection type Package

AWS Connection apache-airflow-providers-amazon[aiob
otocore]==8.7.1

Postgres Connection apache-airflow-providers-postgres==5.6.1

Provider packages for Apache Airflow v2.7.2 connections 124

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ftp/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-celery/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-imap/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sqlite/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Connection type Package

FTP Connection apache-airflow-providers-ftp==3.5.2

Celery Connection apache-airflow-providers-celery==3.3.4

HTTP Connection apache-airflow-providers-http==4.5.2

IMAP Connection apache-airflow-providers-imap==3.3.2

Common SQL apache-airflow-providers-common-sql==1.7.2

SQLite Connection apache-airflow-providers-sqlite==3.4.3

Provider packages for Apache Airflow v2.6.3 connections

When you create an Amazon MWAA environment in Apache Airflow v2.6.3, Amazon MWAA installs
the following provider packages used for Apache Airflow connections.

Note

You can specify the latest supported version of apache-airflow-providers-amazon
to upgrade this provider. For more information on specifying newer versions, refer to the
section called “Specifying newer provider packages”.

Connection type Package

AWS Connection apache-airflow-providers-amazon[aiob
otocore]==8.2.0

Postgres Connection apache-airflow-providers-postgres==5.5.1

FTP Connection apache-airflow-providers-ftp==3.4.2

Celery Connection apache-airflow-providers-celery==3.2.1

HTTP Connection apache-airflow-providers-http==4.4.2

Provider packages for Apache Airflow v2.6.3 connections 125

https://airflow.apache.org/docs/apache-airflow-providers-ftp/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-celery/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-imap/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sqlite/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ftp/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-celery/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Connection type Package

IMAP Connection apache-airflow-providers-imap==3.2.2

Common SQL apache-airflow-providers-common-sql==1.5.2

SQLite Connection apache-airflow-providers-sqlite==3.4.2

Provider packages for Apache Airflow v2.5.1 connections

When you create an Amazon MWAA environment in Apache Airflow v2.5.1, Amazon MWAA installs
the following provider packages used for Apache Airflow connections.

Note

You can specify the latest supported version of apache-airflow-providers-amazon
to upgrade this provider. For more information on specifying newer versions, refer to the
section called “Specifying newer provider packages”.

Connection type Package

AWS Connection apache-airflow-providers-amazon==7.1.0

Postgres Connection apache-airflow-providers-postgres==5.4.0

FTP Connection apache-airflow-providers-ftp==3.3.0

Celery Connection apache-airflow-providers-celery==3.1.0

HTTP Connection apache-airflow-providers-http==4.1.1

IMAP Connection apache-airflow-providers-imap==3.1.1

Common SQL apache-airflow-providers-common-sql==1.3.3

SQLite Connection apache-airflow-providers-sqlite==3.3.1

Provider packages for Apache Airflow v2.5.1 connections 126

https://airflow.apache.org/docs/apache-airflow-providers-imap/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sqlite/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ftp/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-celery/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-imap/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sqlite/stable/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Provider packages for Apache Airflow v2.4.3 connections

When you create an Amazon MWAA environment in Apache Airflow v2.4.3, Amazon MWAA installs
the following provider packages used for Apache Airflow connections.

Connection type Package

AWS Connection apache-airflow-providers-amazon==6.0.0

Postgres Connection apache-airflow-providers-postgres==5.2.2

FTP Connection apache-airflow-providers-ftp==3.1.0

Celery Connection apache-airflow-providers-celery==3.0.0

HTTP Connection apache-airflow-providers-http==4.0.0

IMAP Connection apache-airflow-providers-imap==3.0.0

Common SQL apache-airflow-providers-common-sql==1.2.0

SQLite Connection apache-airflow-providers-sqlite==3.2.1

Provider packages for Apache Airflow v2.2.2 connections

When you create an Amazon MWAA environment in Apache Airflow v2.2.2, Amazon MWAA installs
the following provider packages used for Apache Airflow connections.

Connection type Package

AWS Connection apache-airflow-providers-amazon==2.4.0

Postgres Connection apache-airflow-providers-postgres==2.3.0

FTP Connection apache-airflow-providers-ftp==2.0.1

Celery Connection apache-airflow-providers-celery==2.1.0

HTTP Connection apache-airflow-providers-http==2.0.1

Provider packages for Apache Airflow v2.4.3 connections 127

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ftp/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-celery/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-imap/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-common-sql/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sqlite/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ftp/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-celery/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Connection type Package

IMAP Connection apache-airflow-providers-imap==2.0.1

SQLite Connection apache-airflow-providers-sqlite==2.0.1

Provider packages for Apache Airflow v2.0.2 connections

When you create an Amazon MWAA environment in Apache Airflow v2.0.2, Amazon MWAA installs
the following provider packages used for Apache Airflow connections.

Connection type Package

Tableau Connection apache-airflow-providers-tableau==1.0.0

Databricks Connection apache-airflow-providers-databricks==1.0.1

SSH Connection apache-airflow-providers-ssh==1.3.0

Postgres Connection apache-airflow-providers-postgres==1.0.2

Docker Connection apache-airflow-providers-docker==1.2.0

Oracle Connection apache-airflow-providers-oracle==1.1.0

Presto Connection apache-airflow-providers-presto==1.0.2

SFTP Connection apache-airflow-providers-sftp==1.2.0

Specifying newer provider packages

Beginning with Apache Airflow v2.7.2, your requirements file must include a --constraint
statement. If you do not provide a constraint, Amazon MWAA will specify one for you to ensure the
packages listed in your requirements are compatible with the version of Apache Airflow you are
using.

Apache Airflow constraints files specify the provider versions available at the time of a Apache
Airflow release. In many cases, however, newer providers are compatible with that version of

Provider packages for Apache Airflow v2.0.2 connections 128

https://airflow.apache.org/docs/apache-airflow-providers-imap/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sqlite/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-tableau/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-databricks/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ssh/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-postgres/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-docker/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-oracle/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-presto/stable/index.html
https://airflow.apache.org/docs/apache-airflow-providers-sftp/stable/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow. Because you must use constraints, to specify a newer version of a provider
package, you can modify the constraints file for a specific provider version:

1. Download the version-specific constraints file from https://raw.githubusercontent.com/
apache/airflow/constraints-2.7.2/constraints-3.11.txt"

2. Modify the apache-airflow-providers-amazon version in the constraints file to the
version you want to use.

3. Save the modified constraints file to the Amazon S3 dags folder of your Amazon MWAA
environment, for example, as constraints-3.11-updated.txt

4. Specify your requirements as shown in the following.

--constraint "/usr/local/airflow/dags/constraints-3.11-updated.txt"

apache-airflow-providers-amazon==version-number

Note

If you are using a private web server, we recommend you package the required libraries
as WHL files by using the Amazon MWAA local-runner.

Overview of connection types

Apache Airflow stores connections as a connection URI string. It provides a connections template
in the Apache Airflow UI to generate the connection URI string, regardless of the connection
type. If a connection template is not available in the Apache Airflow UI, an alternate connection
template can be used to generate this connection URI string, such as using the HTTP connection
template. The primary difference is the URI prefix, such as my-conn-type://, which Apache
Airflow providers typically ignore for a connection. This page describes how to use connection
templates in the Apache Airflow UI interchangeably for different connection types.

Warning

Do not overwrite the aws_default connection in Amazon MWAA. Amazon MWAA
uses this connection to perform a variety of critical tasks, such as collecting task logs.

Connection types 129

https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.11.txt
https://github.com/aws/aws-mwaa-local-runner
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/connections/aws.html

Amazon Managed Workflows for Apache Airflow User Guide

Overwriting this connection might result in data loss and disruptions to your environment
availability.

Topics

• Example connection URI string

• Example connection template

• Example using an HTTP connection template for a Jdbc connection

Example connection URI string

The following example shows a connection URI string for the MySQL connection type.

'mysql://288888a0-50a0-888-9a88-1a111aaa0000.a1.us-east-1.airflow.amazonaws.com
%2Fhome?role_arn=arn%3Aaws%3Aiam%3A%3A001122332255%3Arole%2Fservice-role%2FAmazonMWAA-
MyAirflowEnvironment-iAaaaA®ion_name=us-east-1'

Example connection template

The following example shows the HTTP connection template in the Apache Airflow UI.

Apache Airflow v2

The following example shows the HTTP connection template for Apache Airflow v2 in the
Apache Airflow UI.

Example connection URI string 130

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow v1

The following example shows the HTTP connection template for Apache Airflow v1 in the
Apache Airflow UI.

Example connection template 131

Amazon Managed Workflows for Apache Airflow User Guide

Example using an HTTP connection template for a Jdbc connection

The following example shows how to use the HTTP connection template for a Jdbc connection
type in Apache Airflow v2.0.2, and the same values in the Jdbc connection template for Apache
Airflow v1.10.12 in the Apache Airflow UI.

Apache Airflow v2

The following example shows the connection URI string generated by Apache Airflow for the
example in this section.

http://myconnectionurl/some/path&login=mylogin&extra__jdbc__dry__path=usr/local/
airflow/dags/classpath/redshif-
jdbc42-2.0.0.1.jar&extra__jdbc__dry__clsname=redshift-jdbc42-2.0.0.1

The following example shows how to use the HTTP connection template for a Jdbc connection
for Apache Airflow v2 in the Apache Airflow UI.

Example using an HTTP connection template for a Jdbc connection 132

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow v1

The following example shows the connection URI string generated by Apache Airflow for the
example in this section.

jdbc://myconnectionurl/some/path&login=mylogin&extra__jdbc__dry__path=usr/local/
airflow/dags/classpath/redshif-
jdbc42-2.0.0.1.jar&extra__jdbc__dry__clsname=redshift-jdbc42-2.0.0.1

The following example shows the Jdbc connection template for Apache Airflow v1.10.12 in the
Apache Airflow UI.

Example using an HTTP connection template for a Jdbc connection 133

Amazon Managed Workflows for Apache Airflow User Guide

Configuring an Apache Airflow connection using a AWS Secrets
Manager secret

AWS Secrets Manager is a supported alternative Apache Airflow backend on an Amazon Managed
Workflows for Apache Airflow environment. This topic shows how to use AWS Secrets Manager to
securely store secrets for Apache Airflow variables and an Apache Airflow connection on Amazon
Managed Workflows for Apache Airflow.

Note

• You will be charged for the secrets you create. For more information on Secrets Manager
pricing, refer to AWS Pricing.

• AWS Systems Manager Parameter Store is also supported as a secrets backend in Amazon
MWAA. For more information, refer to Amazon Provider Package documentation.

Contents

Configuring Secrets Manager 134

https://aws.amazon.com/secrets-manager/pricing/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/secrets-backends/aws-ssm-parameter-store.html

Amazon Managed Workflows for Apache Airflow User Guide

• Step one: Provide Amazon MWAA with permission to access Secrets Manager secret keys

• Step two: Create the Secrets Manager backend as an Apache Airflow configuration option

• Step three: Generate an Apache Airflow AWS connection URI string

• Step four: Add the variables in Secrets Manager

• Step five: Add the connection in Secrets Manager

• Sample code

• Resources

• What's next?

Step one: Provide Amazon MWAA with permission to access Secrets
Manager secret keys

The execution role for your Amazon MWAA environment needs read access to the secret key in
AWS Secrets Manager. The following IAM policy allows read-write access using the AWS managed
SecretsManagerReadWrite policy.

To attach the policy to your execution role

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose your execution role on the Permissions pane.

4. Choose Attach policies.

5. Type SecretsManagerReadWrite in the Filter policies text field.

6. Choose Attach policy.

If you do not want to use an AWS managed permission policy, you can directly update your
environment's execution role to allow any level of access to your Secrets Manager resources. For
example, the following policy statement grants read access to all secrets you create in a specific
AWS Region in Secrets Manager.

{
 "Version": "2012-10-17",
 "Statement": [

Step one: Provide Amazon MWAA with permission to access Secrets Manager secret keys 135

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/SecretsManagerReadWrite$jsonEditor
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": "arn:aws:secretsmanager:us-west-2:012345678910:secret:*"
 },
 {
 "Effect": "Allow",
 "Action": "secretsmanager:ListSecrets",
 "Resource": "*"
 }
]
}

Step two: Create the Secrets Manager backend as an Apache Airflow
configuration option

The following section describes how to create an Apache Airflow configuration option on the
Amazon MWAA console for the AWS Secrets Manager backend. If you're using a configuration
setting of the same name in airflow.cfg, the configuration you create in the following steps will
take precedence and override the configuration settings.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. Choose Next.

5. Choose Add custom configuration in the Airflow configuration options pane. Add the
following key-value pairs:

a. secrets.backend:
airflow.providers.amazon.aws.secrets.secrets_manager.SecretsManagerBackend

b. secrets.backend_kwargs: {"connections_prefix" : "airflow/
connections", "variables_prefix" : "airflow/variables"} This configures
Apache Airflow to look for connection strings and variables at airflow/connections/*
and airflow/variables/* paths.

Step two: Create the Secrets Manager backend as an Apache Airflow configuration option 136

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

You can use a lookup pattern to reduces the number of API calls Amazon MWAA makes
to Secrets Manager on your behalf. If you do not specify a lookup pattern, Apache Airflow
searches for all connections and variables in the configured backend. By specifying a
pattern, you narrow the possible paths that Apache Airflow looks. This lowers your costs
when using Secrets Manager with Amazon MWAA.

To specify a lookup pattern, specify the connections_lookup_pattern and
variables_lookup_pattern parameters. These parameters accept a RegEx string
as input. For example, to look for secrets that start with test, enter the following for
secrets.backend_kwargs:

{
 "connections_prefix": "airflow/connections",
 "connections_lookup_pattern": "^test",
 "variables_prefix" : "airflow/variables",
 "variables_lookup_pattern": "^test"
}

Note

To use connections_lookup_pattern and variables_lookup_pattern,
you must install apache-airflow-providers-amazon version 7.3.0 or higher.
For more information on updating provder pacakges for to newer versions, refer to
the section called “Specifying newer provider packages”.

6. Choose Save.

Step three: Generate an Apache Airflow AWS connection URI string

To create a connection string, use the "tab" key on your keyboard to indent the key-value pairs
in the Connection object. We also recommend creating a variable for the extra object in your
shell session. The following section walks you through the steps to generate an Apache Airflow
connection URI string for an Amazon MWAA environment using Apache Airflow or a Python script.

Apache Airflow CLI

The following shell session uses your local Airflow CLI to generate a connection string. If you
don't have the CLI installed, we recommend using the Python script.

Step three: Generate an Apache Airflow AWS connection URI string 137

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/secrets-backends/aws-secrets-manager.html#optional-lookup
https://airflow.apache.org/docs/stable/howto/connection/index.html
https://airflow.apache.org/docs/apache-airflow/stable/howto/connection.html#generating-a-connection-uri
https://airflow.apache.org/docs/apache-airflow/stable/howto/connection.html#generating-a-connection-uri

Amazon Managed Workflows for Apache Airflow User Guide

1. Open a Python shell session:

python3

2. Enter the following command:

>>> import json

3. Enter the following command:

>>> from airflow.models.connection import Connection

4. Create a variable in your shell session for the extra object. Substitute the sample values in
YOUR_EXECUTION_ROLE_ARN with the execution role ARN, and the region in us-east-1
(such as us-east-1).

>>> extra=json.dumps({'role_arn': 'YOUR_EXECUTION_ROLE_ARN', 'region_name': 'us-
east-1'})

5. Create the connection object. Substitute the sample value in myconn with the name of the
Apache Airflow connection.

>>> myconn = Connection(

6. Use the "tab" key on your keyboard to indent each of the following key-value pairs in your
connection object. Substitute the sample values in red.

a. Specify the AWS connection type:

... conn_id='aws',

b. Specify the Apache Airflow database option:

... conn_type='mysql',

c. Specify the Apache Airflow UI URL on Amazon MWAA:

... host='288888a0-50a0-888-9a88-1a111aaa0000.a1.us-
east-1.airflow.amazonaws.com/home',

Step three: Generate an Apache Airflow AWS connection URI string 138

Amazon Managed Workflows for Apache Airflow User Guide

d. Specify the AWS access key ID (username) to login to Amazon MWAA:

... login='YOUR_AWS_ACCESS_KEY_ID',

e. Specify the AWS secret access key (password) to login to Amazon MWAA:

... password='YOUR_AWS_SECRET_ACCESS_KEY',

f. Specify the extra shell session variable:

... extra=extra

g. Close the connection object.

...)

7. Print the connection URI string:

>>> myconn.get_uri()

You should see the connection URI string in the response:

'mysql://288888a0-50a0-888-9a88-1a111aaa0000.a1.us-east-1.airflow.amazonaws.com
%2Fhome?role_arn=arn%3Aaws%3Aiam%3A%3A001122332255%3Arole%2Fservice-role
%2FAmazonMWAA-MyAirflowEnvironment-iAaaaA®ion_name=us-east-1'

Python script

The following Python script does not require the Apache Airflow CLI.

1. Copy the contents of the following code sample and save locally as
mwaa_connection.py.

import urllib.parse

conn_type = 'YOUR_DB_OPTION'
host = 'YOUR_MWAA_AIRFLOW_UI_URL'
port = 'YOUR_PORT'
login = 'YOUR_AWS_ACCESS_KEY_ID'
password = 'YOUR_AWS_SECRET_ACCESS_KEY'

Step three: Generate an Apache Airflow AWS connection URI string 139

Amazon Managed Workflows for Apache Airflow User Guide

role_arn = urllib.parse.quote_plus('YOUR_EXECUTION_ROLE_ARN')
region_name = 'us-east-1'

conn_string = '{0}://{1}:{2}@{3}:{4}?
role_arn={5}®ion_name={6}'.format(conn_type, login, password, host, port,
 role_arn, region_name)
print(conn_string)

2. Substitute the placeholders in red.

3. Run the following script to generate a connection string.

python3 mwaa_connection.py

Step four: Add the variables in Secrets Manager

The following section describes how to create the secret for a variable in Secrets Manager.

To create the secret

1. Open the AWS Secrets Manager console.

2. Choose Store a new secret.

3. Choose Other type of secret.

4. On the Specify the key/value pairs to be stored in this secret pane, choose Plaintext.

5. Add the variable value as Plaintext in the following format.

"YOUR_VARIABLE_VALUE"

For example, to specify an integer:

14

For example, to specify a string:

"mystring"

6. For Encryption key, choose an AWS KMS key option from the dropdown list.

7. Enter a name in the text field for Secret name in the following format.

Step four: Add the variables in Secrets Manager 140

https://console.aws.amazon.com/secretsmanager/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

airflow/variables/YOUR_VARIABLE_NAME

For example:

airflow/variables/test-variable

8. Choose Next.

9. On the Configure secret page, on the Secret name and description pane, do the following.

a. For Secret name, provide a name for your secret.

b. (Optional) For Description, provide a description for your secret.

Choose Next.

10. On the Configure rotation - optional leave the default options and choose Next.

11. Repeat these steps in Secrets Manager for any additional variables you want to add.

12. On the Review page, review your secret, then choose Store.

Step five: Add the connection in Secrets Manager

The following section describes how to create the secret for your connection string URI in Secrets
Manager.

To create the secret

1. Open the AWS Secrets Manager console.

2. Choose Store a new secret.

3. Choose Other type of secret.

4. On the Specify the key/value pairs to be stored in this secret pane, choose Plaintext.

5. Add the connection URI string as Plaintext in the following format.

YOUR_CONNECTION_URI_STRING

For example:

Step five: Add the connection in Secrets Manager 141

https://console.aws.amazon.com/secretsmanager/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

mysql://288888a0-50a0-888-9a88-1a111aaa0000.a1.us-east-1.airflow.amazonaws.com
%2Fhome?role_arn=arn%3Aaws%3Aiam%3A%3A001122332255%3Arole%2Fservice-role
%2FAmazonMWAA-MyAirflowEnvironment-iAaaaA®ion_name=us-east-1

Warning

Apache Airflow parses each of the values in the connection string. You must not use
single nor double quotes, or it will parse the connection as a single string.

6. For Encryption key, choose an AWS KMS key option from the dropdown list.

7. Enter a name in the text field for Secret name in the following format.

airflow/connections/YOUR_CONNECTION_NAME

For example:

airflow/connections/myconn

8. Choose Next.

9. On the Configure secret page, on the Secret name and description pane, do the following.

a. For Secret name, provide a name for your secret.

b. (Optional) For Description, provide a description for your secret.

Choose Next.

10. On the Configure rotation - optional leave the default options and choose Next.

11. Repeat these steps in Secrets Manager for any additional variables you want to add.

12. On the Review page, review your secret, then choose Store.

Sample code

• Learn how to use the secret key for the Apache Airflow connection (myconn) on this page using
the sample code at Using a secret key in AWS Secrets Manager for an Apache Airflow connection.

Sample code 142

Amazon Managed Workflows for Apache Airflow User Guide

• Learn how to use the secret key for the Apache Airflow variable (test-variable) on this page
using the sample code at Using a secret key in AWS Secrets Manager for an Apache Airflow
variable.

Resources

• For more information about configuring Secrets Manager secrets using the console and the AWS
CLI, refer to Create a secret in the AWS Secrets Manager User Guide.

• Use a Python script to migrate a large volume of Apache Airflow variables and connections
to Secrets Manager in Move your Apache Airflow connections and variables to AWS Secrets
Manager.

What's next?

• Learn how to generate a token to access the Apache Airflow UI in Accessing Apache Airflow.

Resources 143

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://aws.amazon.com/blogs/opensource/move-apache-airflow-connections-variables-aws-secrets-manager/
https://aws.amazon.com/blogs/opensource/move-apache-airflow-connections-variables-aws-secrets-manager/

Amazon Managed Workflows for Apache Airflow User Guide

Managing Amazon MWAA environments

The Amazon Managed Workflows for Apache Airflow console contains built-in options to configure
private or public access to the Apache Airflow UI. It also contains built-in options to configure the
environment size, when to scale workers, and Apache Airflow configuration options that allow you
to override Apache Airflow configurations that are normally only accessible in airflow.cfg. This
chapter describes how to use these configurations on the Amazon MWAA console.

Topics

• Configuring the Amazon MWAA environment class

• Configuring Amazon MWAA worker automatic scaling

• Configuring Amazon MWAA web server automatic scaling

• Using Apache Airflow configuration options on Amazon MWAA

• Update an Amazon MWAA environment

• Changing the Apache Airflow version

• Using a startup script with Amazon MWAA

Configuring the Amazon MWAA environment class

The environment class you choose for your Amazon MWAA environment determines the size of the
AWS-managed AWS Fargate containers where the Celery Executor runs, and the AWS-managed
Amazon Aurora PostgreSQL metadata database where the Apache Airflow schedulers creates task
instances. This topic describes each Amazon MWAA environment class, and how to update the
environment class on the Amazon MWAA console.

Sections

• Environment capabilities

• Apache Airflow Schedulers

Environment capabilities

The following section contains the default concurrent Apache Airflow tasks, Random Access
Memory (RAM), and the virtual centralized processing units (vCPUs) for each environment class.

Configuring the environment class 144

https://airflow.apache.org/docs/apache-airflow/stable/executor/celery.html

Amazon Managed Workflows for Apache Airflow User Guide

The concurrent tasks listed assume that task concurrency does not exceed the Apache Airflow
Worker capacity in the environment.

In the following table, DAG capacity refers to DAG definitions, not executions, and assumes that
your DAGs are dynamic in a single Python file and written with Apache Airflow best practices.

Task executions depend by how many are scheduled simultaneously, and assumes that
the number of DAG runs set to start at the same time does not exceed the default
max_dagruns_per_loop_to_schedule, as well as the size and number of workers as detailed in
this topic.

mw1.micro

• Up to 25 DAG capacity

• 3 concurrent tasks (by default)

• Components:

• Web server: 1 vCPU, 3GB RAM

• Worker and scheduler: 1 vCPU, 3GB RAM

• Database: 2 vCPU, 4GB RAM

Note

mw1.micro does not support auto-scaling.

mw1.small

• Up to 50 DAG capacity

• 5 concurrent tasks (by default)

• Components:

• Web servers: 1 vCPU, 2GB RAM each

• Workers: 1 vCPU, 2GB RAM each

• Schedulers: 1 vCPU, 2GB RAM each

• Database: 2 vCPU, 4GB RAM

Environment capabilities 145

https://airflow.apache.org/docs/apache-airflow/2.6.3/concepts/dags.html?highlight=dynamic%20dag#dynamic-dags
https://airflow.apache.org/docs/apache-airflow/2.6.3/best-practices.html?highlight=best%20practices
https://airflow.apache.org/docs/apache-airflow/2.6.3/configurations-ref.html#config-scheduler-max-dagruns-per-loop-to-schedule

Amazon Managed Workflows for Apache Airflow User Guide

mw1.medium

• Up to 250 DAG capacity

• 10 concurrent tasks (by default)

• Components:

• Web servers: 1 vCPU 2GB RAM each

• Workers: 2 vCPU 4GB RAM each

• Schedulers: 2 vCPU 4GB RAM each

• Database: 2 vCPU 8GB RAM

mw1.large

• Up to 1000 DAG capacity

• 20 concurrent tasks (by default)

• Components:

• Web servers: 2 vCPU 4GB RAM each

• Workers: 4 vCPU 8GB RAM each

• Schedulers: 4 vCPU 8GB RAM each

• Database: 2 vCPU 8GB RAM

mw1.xlarge

• Up to 2000 DAG capacity

• 40 concurrent tasks (by default)

• Components:

• Web servers: 4 vCPU 12GB RAM each

• Workers: 8 vCPU 24GB RAM each

• Schedulers: 8 vCPU 24GB RAM each

• Database: 4 vCPU 32GB RAM

mw1.2xlarge

• Up to 4000 DAG capacity
Environment capabilities 146

Amazon Managed Workflows for Apache Airflow User Guide

• 80 concurrent tasks (by default)

• Componenets:

• Web servers: 8 vCPU 24GB RAM each

• Workers: 16 vCPU 48GB RAM each

• Schedulers: 16 vCPU 48GB RAM each

• Database: 8 vCPU 64GB RAM

You can use celery.worker_autoscale to increase tasks per worker. For more information,
refer to the the section called “Example high performance use case”.

Apache Airflow Schedulers

The following section contains the Apache Airflow scheduler options available on the Amazon
MWAA, and how the number of schedulers affects the number of triggerers.

In Apache Airflow, a triggerer manages tasks which it defers until certain conditions specified
using a trigger have been met. In Amazon MWAA the triggerer runs alongside the scheduler on
the same Fargate task. Increasing the scheduler count correspondingly increases the number
of available triggerers, optimizing how the environment manages deferred tasks. This ensures
efficient handling of tasks, promptly scheduling them to run when conditions are satisfied.

Apache Airflow v2

• v2 - For environments larger than mw1.micro, accepts values from 2 to 5. Defaults to 2 for all
environment sizes except mw1.micro, which defaults to 1.

Configuring Amazon MWAA worker automatic scaling

The auto scaling mechanism automatically increases the number of Apache Airflow workers in
response to running and queued tasks on your Amazon Managed Workflows for Apache Airflow
environment and disposes of extra workers when there are no more tasks queued or executing. This
topic describes how you can configure auto scaling by specifying the maximum number of Apache
Airflow workers that run on your environment using the Amazon MWAA console.

Apache Airflow Schedulers 147

https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/deferring.html

Amazon Managed Workflows for Apache Airflow User Guide

Note

Amazon MWAA uses Apache Airflow metrics to determine when additional Celery Executor
workers are needed, and as required increases the number of Fargate workers up to the
value specified by max-workers. As the additional workers complete work and work load
decreases, Amazon MWAA removes them, thus downscaling back to the value set by min-
workers.
If workers pick up new tasks while downscaling, Amazon MWAA keeps the Fargate resource
and does not remove the worker. For more information, see How Amazon MWAA auto
scaling works.

Sections

• How worker scaling works

• Using the Amazon MWAA console

• Example high performance use case

• Troubleshooting tasks stuck in the running state

• What's next?

How worker scaling works

Amazon MWAA uses RunningTasks and QueuedTasks metrics, where (tasks running + tasks
queued) / (tasks per worker) = (required workers). If the required number of workers is greater than
the current number of workers, Amazon MWAA will add Fargate worker containers to that value, up
to the maximum value specified by max-workers.

As the workload decreases and the RunningTasks and QueuedTasks metric sum reduces,
Amazon MWAA requests Fargate to scale down the workers for the environment. Any workers
which still completing work remain protected during downscaling until they complete their work.
Depending on the workload, tasks may be queued while workers downscale.

Using the Amazon MWAA console

You can choose the maximum number of workers that can run on your environment concurrently
on the Amazon MWAA console. By default, you can specify a maximum value up to 25.

How worker scaling works 148

https://airflow.apache.org/docs/apache-airflow/stable/executor/celery.html

Amazon Managed Workflows for Apache Airflow User Guide

To configure the number of workers

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. Choose Next.

5. On the Environment class pane, enter a value in Maximum worker count.

6. Choose Save.

Note

It can take a few minutes before changes take effect on your environment.

Example high performance use case

The following section describes the type of configurations you can use to enable high performance
and parallelism on an environment.

On-premise Apache Airflow

Typically, in an on-premise Apache Airflow platform, you would configure task parallelism, auto
scaling, and concurrency settings in your airflow.cfg file:

• core.parallelism – The maximum number of task instances that can run simultaneously per
scheduler.

• core.dag_concurrency – The maximum concurrency for DAGs (not workers).

• celery.worker_autoscale – The maximum and minimum number of tasks that can run
concurrently on any worker.

For example, if core.parallelism was set to 100 and core.dag_concurrency was set to 7,
you would still only be able to run a total of 14 tasks concurrently if you had 2 DAGs. Given, each
DAG is set to run only seven tasks concurrently (in core.dag_concurrency), even though overall
parallelism is set to 100 (in core.parallelism).

Example high performance use case 149

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

On an Amazon MWAA environment

On an Amazon MWAA environment, you can configure these settings directly on the Amazon
MWAA console using Using Apache Airflow configuration options on Amazon MWAA, Configuring
the Amazon MWAA environment class, and the Maximum worker count auto scaling mechanism.
While core.dag_concurrency is not available in the drop down list as an Apache Airflow
configuration option on the Amazon MWAA console, you can add it as a custom Apache Airflow
configuration option.

Let's say, when you created your environment, you chose the following settings:

1. The mw1.small environment class which controls the maximum number of concurrent tasks
each worker can run by default and the vCPU of containers.

2. The default setting of 10 Workers in Maximum worker count.

3. An Apache Airflow configuration option for celery.worker_autoscale of 5,5 tasks per
worker.

This means you can run 50 concurrent tasks in your environment. Any tasks beyond 50 will be
queued, and wait for the running tasks to complete.

Run more concurrent tasks. You can modify your environment to run more tasks concurrently
using the following configurations:

1. Increase the maximum number of concurrent tasks each worker can run by default and
the vCPU of containers by choosing the mw1.medium (10 concurrent tasks by default)
environment class.

2. Add celery.worker_autoscale as an Apache Airflow configuration option.

3. Increase the Maximum worker count. In this example, increasing maximum workers from 10
to 20 would double the number of concurrent tasks the environment can run.

Specify Minimum workers. You can also specify the minimum and maximum number of Apache
Airflow Workers that run in your environment using the AWS Command Line Interface (AWS CLI).
For example:

aws mwaa update-environment --max-workers 10 --min-workers 10 --
name YOUR_ENVIRONMENT_NAME

Example high performance use case 150

Amazon Managed Workflows for Apache Airflow User Guide

To learn more, refer to the update-environment command in the AWS CLI.

Troubleshooting tasks stuck in the running state

In rare cases, Apache Airflow may think there are tasks still running. To resolve this issue, you need
to clear the stranded task in your Apache Airflow UI. For more information, refer to the I see my
tasks stuck or not completing troubleshooting topic.

What's next?

• Learn more about the best practices we recommend to tune the performance of your
environment in Performance tuning for Apache Airflow on Amazon MWAA.

Configuring Amazon MWAA web server automatic scaling

For environments running Apache Airflow v2.2.2 and above, Amazon MWAA dynamically scales
your web servers to handle fluctuating workloads, which in turn prevents performance issues
during peak loads. By automatically scaling the number of web servers based on CPU utilization
and active connection count, Amazon MWAA ensures that your Apache Airflow environment can
seamlessly accommodate increased demand, whether from REST API requests, CLI usage, or more
concurrent Apache Airflow user interface users.

Sections

• How web server scaling works

• Using the Amazon MWAA console

How web server scaling works

Amazon MWAA uses the container metric, CPUUtilization, and the load balancer metric,
ActiveConnectionCount, to determine if scaling the web servers is required based on the
amount of traffic. If CPUUtilization is higher than 70 or ActiveConnectionCount is higher
than 15, Amazon MWAA will add additional Fargate web server containers up to the maximum
value specified by MaxWebservers.

As traffic decreases and the CPUUtilization and ActiveConnectionCount values reduce,
Amazon MWAA requests Fargate to scale down the web server containers for the environment to
the minimum value set by MinimumWebservers.

Troubleshooting tasks stuck in the running state 151

https://docs.aws.amazon.com/cli/latest/reference/mwaa/update-environment.html

Amazon Managed Workflows for Apache Airflow User Guide

Using the Amazon MWAA console

You can choose the number of web servers that can run on your environment concurrently on the
Amazon MWAA console. By default, the minimum number of web servers is two, and the maximum
number of web servers is five.

To configure the number of web servers

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. Choose Next.

5. On the Environment class pane, enter a value in Maximum web server count.

6. Next, enter a value in Minimum web server count.

7. Choose Save.

Note

It can take a few minutes before changes take effect on your environment.

Using Apache Airflow configuration options on Amazon MWAA

Apache Airflow configuration options can be attached to your Amazon Managed Workflows
for Apache Airflow environment as environment variables. You can choose from the suggested
dropdown list, or specify custom configuration options for your Apache Airflow version on
the Amazon MWAA console. This topic describes the Apache Airflow configuration options
available, and how to use these options to override Apache Airflow configuration settings on your
environment.

Contents

• Prerequisites

• How it works

• Using configuration options to load plugins in Apache Airflow v2

• Configuration options overview

Using the Amazon MWAA console 152

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

• Apache Airflow configuration options

• Apache Airflow reference

• Using the Amazon MWAA console

• Configuration reference

• Email configurations

• Task configurations

• Scheduler configurations

• Worker configurations

• Web server configurations

• Triggerer configurations

• Examples and sample code

• Example DAG

• Example email notification settings

• What's next?

Prerequisites

You'll need the following before you can complete the steps on this page.

• Permissions — Your AWS account must have been granted access by your administrator to
the AmazonMWAAFullConsoleAccess access control policy for your environment. In addition,
your Amazon MWAA environment must be permitted by your execution role to access the AWS
resources used by your environment.

• Access — If you require access to public repositories to install dependencies directly on the web
server, your environment must be configured with public network web server access. For more
information, refer to the section called “Apache Airflow access modes”.

• Amazon S3 configuration — The Amazon S3 bucket used to store your DAGs, custom plugins
in plugins.zip, and Python dependencies in requirements.txt must be configured with
Public Access Blocked and Versioning Enabled.

Prerequisites 153

Amazon Managed Workflows for Apache Airflow User Guide

How it works

When you create an environment, Amazon MWAA attaches the configuration settings you specify
on the Amazon MWAA console in Airflow configuration options as environment variables to
the AWS Fargate container for your environment. If you're using a setting of the same name in
airflow.cfg, the options you specify on the Amazon MWAA console override the values in
airflow.cfg.

While we don't expose the airflow.cfg in the Apache Airflow UI of an Amazon MWAA
environment by default, you can change the Apache Airflow configuration options directly on
the Amazon MWAA console, including setting webserver.expose_config to expose the
configurations.

Using configuration options to load plugins in Apache Airflow v2

By default in Apache Airflow v2, plugins are configured to be "lazily" loaded using the
core.lazy_load_plugins : True setting. If you're using custom plugins in Apache Airflow v2,
you must add core.lazy_load_plugins : False as an Apache Airflow configuration option
to load plugins at the start of each Airflow process to override the default setting.

Configuration options overview

When you add a configuration on the Amazon MWAA console, Amazon MWAA writes the
configuration as an environment variable.

• Listed options. You can choose from one of the configuration settings available for
your Apache Airflow version in the dropdown list. For example, dag_concurrency :
16. The configuration setting is translated to your environment's Fargate container as
AIRFLOW__CORE__DAG_CONCURRENCY : 16

• Custom options. You can also specify Airflow configuration options that are not listed for your
Apache Airflow version in the dropdown list. For example, foo.user : YOUR_USER_NAME.
The configuration setting is translated to your environment's Fargate container as
AIRFLOW__FOO__USER : YOUR_USER_NAME

Apache Airflow configuration options

The following image shows where you can customize the Apache Airflow configuration options
on the Amazon MWAA console.

How it works 154

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow reference

For a list of configuration options supported by Apache Airflow, refer to Configuration Reference
in the Apache Airflow reference guide. To view the options for the version of Apache Airflow you are
running on Amazon MWAA, select the version from the drop down list.

Using the Amazon MWAA console

The following procedure walks you through the steps of adding an Airflow configuration option to
your environment.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. Choose Next.

5. Choose Add custom configuration in the Airflow configuration options pane.

6. Choose a configuration from the dropdown list and enter a value, or type a custom
configuration and enter a value.

7. Choose Add custom configuration for each configuration you want to add.

8. Choose Save.

Configuration reference

The following section contains the list of available Apache Airflow configurations in the dropdown
list on the Amazon MWAA console.

Configuration reference 155

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Email configurations

The following list shows the Airflow email notification configuration options available on Amazon
MWAA.

We recommend using port 587 for SMTP traffic. By default, AWS blocks outbound SMTP traffic
on port 25 of all Amazon EC2 instances. If you want to send outbound traffic on port 25, you can
request for this restriction to be removed.

Apache Airflow v2

Airflow version Airflow configura
tion option

Description Example value

v2 email.email_backend The Apache Airflow
utility used for email
notifications in
email_backend.

airflow.utils.emai
l.send_email_smtp

v2 smtp.smtp_host The name of
the outbound
server used for the
email address in
smtp_host.

localhost

v2 smtp.smtp_starttls Transport Layer
Security (TLS) is
used to encrypt
the email over the
Internet in smtp_star
ttls.

False

v2 smtp.smtp_ssl Secure Sockets Layer
(SSL) is used to
connect the server
and email client in
smtp_ssl.

True

Configuration reference 156

https://aws.amazon.com/premiumsupport/knowledge-center/ec2-port-25-throttle/
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#email-backend
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#smtp-host
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#smtp-starttls
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#smtp-starttls
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#smtp-ssl

Amazon Managed Workflows for Apache Airflow User Guide

Airflow version Airflow configura
tion option

Description Example value

v2 smtp.smtp_port The Transmission
Control Protocol
(TCP) port designate
d to the server in
smtp_port.

587

v2 smtp.smtp_mail_fro
m

The outbound
email address in
smtp_mail_from.

myemail@d
omain.com

Task configurations

The following list shows the configurations available in the dropdown list for Airflow tasks on
Amazon MWAA.

Apache Airflow v2

Airflow version Airflow configura
tion option

Description Example value

v2 core.default_task_
retries

The number of
times to retry an
Apache Airflow task
in default_task_retri
es.

3

v2 core.parallelism The maximum
number of task
instances that can
run simultaneously
across the entire
environment in
parallel (parallelism).

40

Configuration reference 157

https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#smtp-port
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#smtp-mail-from
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#default-task-retries
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#default-task-retries
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#parallelism

Amazon Managed Workflows for Apache Airflow User Guide

Scheduler configurations

The following list shows the Apache Airflow scheduler configurations available in the dropdown list
on Amazon MWAA.

Apache Airflow v2

Airflow version Airflow configura
tion option

Description Example value

v2 scheduler.catchup_
by_default

Tells the scheduler
to create a DAG
run to "catch up"
to the specific time
interval in catchup_b
y_default.

False

v2 scheduler.schedule
r_zombie_task_thre
shold

Tells the scheduler
whether to mark
the task instance
as failed and
reschedule the
task in scheduler
_zombie_task_thres
hold.

300

Worker configurations

The following list shows the Airflow worker configurations available in the dropdown list on
Amazon MWAA.

Apache Airflow v2

Airflow version Airflow configura
tion option

Description Example value

v2 celery.worker_auto
scale

The maximum and
minimum number

16,12

Configuration reference 158

https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#catchup-by-default
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#catchup-by-default
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#scheduler-zombie-task-threshold
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#scheduler-zombie-task-threshold
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#scheduler-zombie-task-threshold

Amazon Managed Workflows for Apache Airflow User Guide

Airflow version Airflow configura
tion option

Description Example value

of tasks that can run
concurrently on any
worker using the
Celery Executor in
worker_autoscale.
Value must be
comma-separated
in the following
order: max_concu
rrency,mi
n_concurrency .

Web server configurations

The following list shows the Airflow web server configurations available in the dropdown list on
Amazon MWAA.

Apache Airflow v2

Airflow version Airflow configura
tion option

Description Example value

v2 webserver.default_
ui_timezone

The default Apache
Airflow UI datetime
setting in default_u
i_timezone.

Note

Setting the
default_u
i_timezon
e option
does not

America/New_York

Configuration reference 159

https://airflow.apache.org/docs/apache-airflow/2.0.2/executor/celery.html
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#worker-autoscale
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#default-ui-timezone
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#default-ui-timezone

Amazon Managed Workflows for Apache Airflow User Guide

Airflow version Airflow configura
tion option

Description Example value

change the
time zone in
which your
DAGs are
scheduled
to run. To
change the
time zone for
your DAGs,
you can use
a custom
plugin.
For more
informati
on, refer to
the section
called
“Changing
a DAG's
timezone”.

Triggerer configurations

The following list shows the Apache Airflow triggerer configurations available on Amazon MWAA.

Apache Airflow v2

Airflow version Airflow configura
tion option

Description Example value

v2.7 mwaa.triggerer_ena
bled

Used for activatin
g and deactivating
the triggerer on

True

Configuration reference 160

https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/deferring.html

Amazon Managed Workflows for Apache Airflow User Guide

Airflow version Airflow configura
tion option

Description Example value

Amazon MWAA.
By default, this
value is set to True.
If set to False,
Amazon MWAA
will not start any
triggerer processes
on schedulers.

v2.7 triggerer.default_
capacity

Defines the number
triggers each
triggerer can run in
parallel. On Amazon
MWAA, this capacity
is set per each
triggerer and per
each scheduler as
both components
run alongside each
other. The default
per scheduler is set
to 60, 125, 250,
500, and 1000 for
small, medium and
large, xlarge, and
2xlarge instances,
respectively.

125

Configuration reference 161

Amazon Managed Workflows for Apache Airflow User Guide

Examples and sample code

Example DAG

You can use the following DAG to print your email_backend Apache Airflow configuration
options. To run in response to Amazon MWAA events, copy the code to your environment's DAGs
folder on your Amazon S3 storage bucket.

from airflow.decorators import dag
from datetime import datetime

def print_var(**kwargs):
 email_backend = kwargs['conf'].get(section='email', key='email_backend')
 print("email_backend")
 return email_backend

@dag(
 dag_id="print_env_variable_example",
 schedule_interval=None,
 start_date=datetime(yyyy, m, d),
 catchup=False,
)
def print_variable_dag():
 email_backend_test = PythonOperator(
 task_id="email_backend_test",
 python_callable=print_var,
 provide_context=True
)

print_variable_test = print_variable_dag()

Example email notification settings

The following Apache Airflow configuration options can be used for a Gmail.com email account
using an app password. For more information, refer to Sign in using app passwords in the Gmail
Help reference guide.

Examples and sample code 162

https://support.google.com/mail/answer/185833?hl=en-GB

Amazon Managed Workflows for Apache Airflow User Guide

What's next?

• Learn how to upload your DAG folder to your Amazon S3 bucket in Adding or updating DAGs.

Update an Amazon MWAA environment

Note

Amazon MWAA graceful updates are not yet supported in the Canada West (Calgary) and
Asia Pacific (Malaysia) regions.

Amazon MWAA environment updates apply the latest changes and security patches. You can also
edit existing configurations and upgrade the Apache Airflow version. This guide describes the steps
to update an Amazon MWAA environment.

What's next? 163

Amazon Managed Workflows for Apache Airflow User Guide

Contents

• Before you begin

• Worker replacement strategy

• Update environment resources

• Update an environment

• Step one: Specify details

• Step two: Configure advanced settings

• Step three: Review and update

Before you begin

• The VPC network you specified for your environment cannot be modified after the environment
is created.

• You need an Amazon S3 bucket configured to Block all public access, with Bucket Versioning
enabled.

• You need an AWS account with permissions to use Amazon MWAA, and permission in AWS
Identity and Access Management (IAM) to create IAM roles. If you choose the Private network
access mode for the Apache Airflow web server, which limits Apache Airflow access within your
Amazon VPC, you'll need permission in IAM to create Amazon VPC endpoints.

• To enable Graceful environment updates, you need to upgrade to Apache Airflow version 2.4.3 or
higher. To upgrade the Airflow version, refer to Changing the Apache Airflow version.

Worker replacement strategy

You can choose a worker replacement strategy to control how Amazon MWAA handles active
workers during an environment update. You can select one of the following strategies:

Forced updates

Forced update is the default worker replacement strategy. Forced updates immediately stop all
active workers, causing running tasks to fail during the update.

Before you begin 164

Amazon Managed Workflows for Apache Airflow User Guide

Graceful updates

Graceful updates allow workers to continue running tasks for up to 12 hours before shutting
down. It prevents tasks failing due to update interruptions, as long as they finish under 12
hours. New tasks are routed to updated workers.

To enable Graceful updates on an existing environment, you must complete one Forced update
and ensure the environment is on Apache Airflow version 2.4.3 or higher.

Note

If you perform an update while your environment is in MAINTENANCE status, the worker
replacement strategy for any ongoing environment update switches from GRACEFUL to
FORCED. Your update is performed after maintenance is complete.

Update environment resources

Amazon MWAA environment updates use the existing environment configuration by default. To
update the environment without changing your current configuration:

1. Open the Environments page on the Amazon MWAA console.

2. From the Environments list, choose the environment that you want to update.

3. On the environment page, choose Edit to edit the environment.

4. Choose Next until you are on the Review and save page.

5. On the Review and save page, review your changes, then choose Save.

Update an environment

The following section describes the steps to update an Amazon MWAA environment.

Step one: Specify details

To specify details for the environment

1. Open the Environments page on the Amazon MWAA console.

2. From the Environments list, choose the environment that you want to update.

Update environment resources 165

https://console.aws.amazon.com/mwaa/home#/environments
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

3. On the environment page, choose Edit to edit the environment.

4. In the Environment details section, for Airflow version, choose the new Apache Airflow version
number that you want to upgrade the environment to from the dropdown list.

Note

Before you upgrade, make sure that your DAGs and other workflow resources are
compatible with the new Apache Airflow version. For more information, refer to
Changing the Apache Airflow version.

5. Under DAG code in Amazon S3 specify the following:

a. S3 Bucket. Choose Browse S3 and select your Amazon S3 bucket, or enter the Amazon S3
URI.

b. DAGs folder. Choose Browse S3 and select the dags folder in your Amazon S3 bucket, or
enter the Amazon S3 URI.

c. Plugins file - optional. Choose Browse S3 and select the plugins.zip file on your
Amazon S3 bucket, or enter the Amazon S3 URI.

d. Requirements file - optional. Choose Browse S3 and select the requirements.txt file
on your Amazon S3 bucket, or enter the Amazon S3 URI.

e. Startup script file - optional, Choose Browse S3 and select the script file on your Amazon
S3 bucket, or enter the Amazon S3 URI.

6. Choose Next.

Step two: Configure advanced settings

To configure advanced settings

1. Under Web server access, select your preferred Apache Airflow access mode:

a. Private network. This limits access of the Apache Airflow UI to users within your Amazon
VPC that have been granted access to the IAM policy for your environment. You need
permission to create Amazon VPC endpoints for this step.

Update an environment 166

Amazon Managed Workflows for Apache Airflow User Guide

Note

Choose the Private network option if your Apache Airflow UI is only accessed
within a corporate network, and you do not require access to public repositories
for web server requirements installation. If you choose this access mode option,
you need to create a mechanism to access your Apache Airflow Web server in your
Amazon VPC. For more information, refer to Accessing the VPC endpoint for your
Apache Airflow Web server (private network access).

b. Public network. This allows the Apache Airflow UI to be accessed over the Internet by
users granted access to the IAM policy for your environment.

2. Under Security group(s), choose the security group used to secure your Amazon VPC:

a. By default, Amazon MWAA creates a security group in your Amazon VPC with specific
inbound and outbound rules in Create new security group.

b. Optional. Deselect the check box in Create new security group to select up to 5 security
groups.

Note

An existing Amazon VPC security group must be configured with specific inbound
and outbound rules to allow network traffic. To learn more, refer to Security in
your VPC on Amazon MWAA.

3. Under Environment class, choose an environment class.

We recommend choosing the smallest size necessary to support your workload. You can
change the environment class at any time.

4. For Maximum worker count, specify the maximum number of Apache Airflow workers to run
in the environment.

For more information, refer to Example high performance use case.

5. Specify the Maximum web server count and Minimum web server count to configure how
Amazon MWAA scales the Apache Airflow web servers in your environment.

For more information about web server automatic scaling, refer to the section called
“Configuring web server auto scaling”.

Update an environment 167

Amazon Managed Workflows for Apache Airflow User Guide

6. Under Encryption, choose a data encryption option:

a. By default, Amazon MWAA uses an AWS owned key to encrypt your data.

b. Optional. Choose Customize encryption settings (advanced) to choose a different AWS
KMS key. If you choose to specify a Customer managed key in this step, you must specify
an AWS KMS key ID or ARN. AWS KMS aliases and multi-region keys are not supported
by Amazon MWAA. If you specified an Amazon S3 key for server-side encryption on your
Amazon S3 bucket, you must specify the same key for your Amazon MWAA environment.

Note

You must have permissions to the key to select it on the Amazon MWAA console.
You must also grant permissions for Amazon MWAA to use the key by attaching
the policy described in Attach key policy.

7. Recommended. Under Monitoring, choose one or more log categories for Airflow logging
configuration to send Apache Airflow logs to CloudWatch Logs:

a. Airflow task logs. Choose the type of Apache Airflow task logs to send to CloudWatch
Logs in Log level.

b. Airflow web server logs. Choose the type of Apache Airflow web server logs to send to
CloudWatch Logs in Log level.

c. Airflow scheduler logs. Choose the type of Apache Airflow scheduler logs to send to
CloudWatch Logs in Log level.

d. Airflow worker logs. Choose the type of Apache Airflow worker logs to send to
CloudWatch Logs in Log level.

e. Airflow DAG processing logs. Choose the type of Apache Airflow DAG processing logs to
send to CloudWatch Logs in Log level.

8. Optional. For Airflow configuration options, choose Add custom configuration option.

You can choose from the suggested dropdown list of Apache Airflow configuration options
for your Apache Airflow version, or specify custom configuration options. For example,
core.default_task_retries : 3.

9. Under Permissions, choose an execution role:

a. By default, Amazon MWAA creates an execution role in Create a new role. You must have
permission to create IAM roles to use this option.

Update an environment 168

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Managed Workflows for Apache Airflow User Guide

b. Optional. Choose Enter role ARN to enter the Amazon Resource Name (ARN) of an
existing execution role.

10. Under Update specifications, choose a Worker replacement strategy to control how active
workers are handled during an update.

11. Choose Next.

Step three: Review and update

To review an environment summary

• Review the environment summary, choose Save.

Note

It takes about twenty to thirty minutes to update an environment using forced
updates. Graceful environment updates may take up to twelve hours to complete, as it
waits for your ongoing tasks to finish.

Changing the Apache Airflow version

Amazon MWAA supports minor version upgrades and downgrades. This means you can update
your environment from version x.4.z to x.5.z or from x.5.z to x.4.z. To perform a major
version upgrade, for example from version 1.y.z to 2.y.z, you must create a new environment
and migrate your resources. For more information on upgrading to a new major version of Apache
Airflow, refer to Migrating to a new Amazon MWAA environment in the Amazon MWAA Migration
Guide.

During the upgrade or downgrade process, Amazon MWAA captures a snapshot of your
environment metadata, upgrades or downgrades the workers, schedulers, the web server to the
new Apache Airflow version, and finally restores the metadata database using the snapshot.

Before you upgrade or downgrade, make sure that your DAGs and other workflow resources
are compatible with the new Apache Airflow version you are upgrading to. If you use a
requirements.txt to manage dependencies, you must also ensure that the dependencies you
specify in your requirements are compatible with the new version.

Topics

Changing the version 169

https://docs.aws.amazon.com/mwaa/latest/migrationguide/migrating-to-new-mwaa.html

Amazon Managed Workflows for Apache Airflow User Guide

• Upgrade or downgrade your workflow resources

• Specify the new version

Upgrade or downgrade your workflow resources

Whenever you're changing Apache Airflow versions, ensure that you reference the correct --
constraint URL in your requirements.txt.

Warning

Specifying requirements that are incompatible with your target Apache Airflow version
during an upgrade or downgrade might result in a lengthy rollback process to the previous
version of Apache Airflow with the previous requirements version.

Migrate your workflow resources

1. Create a fork of the aws-mwaa-local-runner repository, and clone a copy of the Amazon MWAA
local runner.

2. Checkout to the branch of the aws-mwaa-local-runner repository that matches the version you
are upgrading or downgrading to.

3. Use the Amazon MWAA local runner CLI tool to build the Docker image and run Apache
Airflow locally. For more information, see the local runner README in the GitHub repository.

4. To update your requirements.txt, follow the best practices we recommend in Managing
Python dependencies, in the Amazon MWAA User Guide.

5. (Optional) To speed up the upgrade or downgrade process, clean up the environment's
metadata database. Environments with a large amount of metadata can take significantly
longer to upgrade.

6. After you have successfully tested your workflow resources, copy your DAGs,
requirements.txt, and plugins to your environment's Amazon S3 bucket.

You are now ready to edit the environment, specify a new Apache Airflow version, and start the
update procedure.

Upgrade or downgrade your workflow resources 170

https://docs.aws.amazon.com/mwaa/latest/userguide/working-dags-dependencies.html#working-dags-dependencies-test-create
https://docs.aws.amazon.com/mwaa/latest/userguide/working-dags-dependencies.html#working-dags-dependencies-test-create
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner/tree/v1.10.15#readme
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices-dependencies.html
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices-dependencies.html

Amazon Managed Workflows for Apache Airflow User Guide

Specify the new version

After you have completed updating your workflow resources to ensure compatibility with the new
Apache Airflow version, do the following to edit environment details and specify the version of
Apache Airflow that you want to upgrade to.

Note

When you perform an upgrade or downgrade, all tasks currently running on the
environment are terminated during the procedure. The update procedure can take up to
two hours, during which time your environment will be unavailable.

Specify a new version using the console

1. Open the Environments page on the Amazon MWAA console.

2. From the Environments list, choose the environment that you want to upgrade or downgrade.

3. On the environment page, choose Edit to edit the environment.

4. In the Environment details section, for Airflow version, choose the Apache Airflow version
number that you want to upgrade or downgrade the environment to from the dropdown list.

5. Choose Next until you are on the Review and save page.

6. On the Review and save page, review your changes, then choose Save.

When you apply changes, your environment begins the upgrade or downgrade procedure. During
this period, the status of your environment indicates what actions Amazon MWAA is taking, and
whether the procedure is successful.

In a successful upgrade or downgrade scenario, the status will show UPDATING, then
CREATING_SNAPSHOT as Amazon MWAA captures a backup of your metadata. Finally, the status
will return first to UPDATING, then to AVAILABLE when the procedure is done.

If the environment fails to updrade or downgrade, your environment status will show
ROLLING_BACK. If the rollback is successful, the status will first show UPDATE_FAILED, indicating
that the update failed but the environment is available. If the rollback fails, the status will show
UNAVAILABLE, indicating that you cannot access the environment.

Specify the new version 171

https://console.aws.amazon.com/mwaa/home#/environments
https://docs.aws.amazon.com/mwaa/latest/API/API_Environment.html#mwaa-Type-Environment-Status

Amazon Managed Workflows for Apache Airflow User Guide

Using a startup script with Amazon MWAA

A startup script is a shell (.sh) script that you host in your environment's Amazon S3 bucket
similar to your DAGs, requirements, and plugins. Amazon MWAA runs this script during startup on
every individual Apache Airflow component (worker, scheduler, and web server) before installing
requirements and initializing the Apache Airflow process. Use a startup script to do the following:

• Install runtimes – Install Linux runtimes required by your workflows and connections.

• Configure environment variables – Set environment variables for each Apache Airflow
component. Overwrite common variables such as PATH, PYTHONPATH, and LD_LIBRARY_PATH.

• Manage keys and tokens – Pass access tokens for custom repositories to requirements.txt
and configure security keys.

The following topics describe how to configure a startup script to install Linux runtimes, set
environment variables, and troubleshoot related issues using CloudWatch Logs.

Topics

• Configure a startup script

• Install Linux runtimes using a startup script

• Set environment variables using a startup script

Configure a startup script

To use a startup script with your existing Amazon MWAA environment, upload a .sh file to your
environment's Amazon S3 bucket. Then, to associate the script with the environment, specify the
following in your environment details:

• The Amazon S3 URL path to the script – The relative path to the script hosted in your bucket,
for example, s3://mwaa-environment/startup.sh

• The Amazon S3 version ID of the script – The version of the startup shell script in your Amazon
S3 bucket. You must specify the version ID that Amazon S3 assigns to the file every time you
update the script. Version IDs are Unicode, UTF-8 encoded, URL-ready, opaque strings that
are no more than 1,024 bytes long, for example, 3sL4kqtJlcpXroDTDmJ+rmSpXd3dIbrHY
+MTRCxf3vjVBH40Nr8X8gdRQBpUMLUo.

Using a startup script 172

https://docs.aws.amazon.com/AmazonS3/latest/userguide/versioning-workflows.html

Amazon Managed Workflows for Apache Airflow User Guide

To complete the steps in this section, use the following sample script. The script outputs the value
assigned to MWAA_AIRFLOW_COMPONENT. This environment variable identifies each Apache Airflow
component that the script runs on.

Copy the code and save it locally as startup.sh.

#!/bin/sh

 echo "Printing Apache Airflow component"
 echo $MWAA_AIRFLOW_COMPONENT

Next, upload the script to your Amazon S3 bucket.

AWS Management Console

To upload a shell script (console)

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. From the Buckets list, choose the name of the bucket associated with your environment.

3. On the Objects tab, choose Upload.

4. On the Upload page, drag and drop the shell script you created.

5. Choose Upload.

The script appears in the list of Objects. Amazon S3 creates a new version ID for the file. If you
update the script and upload it again using the same file name, a new version ID is assigned to
the file.

AWS CLI

To create and upload a shell script (CLI)

1. Open a new command prompt, and run the Amazon S3 ls command to list and identify
the bucket associated with your environment.

$ aws s3 ls

2. Navigate to the folder where you saved the shell script. Use cp in a new prompt window to
upload the script to your bucket. Replace amzn-s3-demo-bucket with your information.

Configure a startup script 173

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Managed Workflows for Apache Airflow User Guide

$ aws s3 cp startup.sh s3://amzn-s3-demo-bucket/startup.sh

If successful, Amazon S3 outputs the URL path to the object:

upload: ./startup.sh to s3://amzn-s3-demo-bucket/startup.sh

3. Use the following command to retrieve the latest version ID for the script.

$ aws s3api list-object-versions --bucket amzn-s3-demo-bucket --prefix startup
 --query 'Versions[?IsLatest].[VersionId]' --output text

BbdVMmBRjtestta1EsVnbybZp1Wqh1J4

You specify this version ID when you associate the script with an environment.

Now, associate the script with your environment.

AWS Management Console

To associate the script with an environment (console)

1. Open the Environments page on the Amazon MWAA console.

2. Select the row for the environment you want to update, then choose Edit.

3. On the Specify details page, for Startup script file - optional, enter the Amazon S3 URL
for the script, for example: s3://amzn-s3-demo-bucket/startup-sh..

4. Choose the latest version from the drop down list, or Browse S3 to find the script.

5. Choose Next, then proceed to the Review and save page.

6. Review changes, then choose Save.

Environment updates can take between 10 to 30 minutes. Amazon MWAA runs the startup
script as each component in your environment restarts.

Configure a startup script 174

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

AWS CLI

To associate the script with an environment (CLI)

• Open a command prompt and use update-environment to specify the Amazon S3 URL
and version ID for the script.

$ aws mwaa update-environment \
 --name your-mwaa-environment \
 --startup-script-s3-path startup.sh \
 --startup-script-s3-object-version BbdVMmBRjtestta1EsVnbybZp1Wqh1J4

If successful, Amazon MWAA returns the Amazon Resource Name (ARN) for the
environment:

arn:aws::airflow:us-west-2:123456789012:environment/your-mwaa-environment

Environment update can take between 10 to 30 minutes. Amazon MWAA runs the startup script
as each component in your environment restarts.

Finally, retrieve log events to verify that the script is working as expected. When you activate
logging for an each Apache Airflow component, Amazon MWAA creates a new log group and log
stream. For more information, refer to Apache Airflow log types.

AWS Management Console

To check the Apache Airflow log stream (console)

1. Open the Environments page on the Amazon MWAA console.

2. Choose your environment.

3. In the Monitoring pane, choose the log group for which you want to view logs, for
example, Airflow scheduler log group .

4. In the CloudWatch console, from the Log streams list, choose a stream with the following
prefix: startup_script_exection_ip.

5. On the Log events pane, you will see the output of the command printing the value for
MWAA_AIRFLOW_COMPONENT. For example, for scheduler logs, you will the following:

Configure a startup script 175

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Printing Apache Airflow component
 scheduler
 Finished running startup script. Execution time: 0.004s.
 Running verification
 Verification completed

You can repeat the previous steps to view worker and web server logs.

Install Linux runtimes using a startup script

Use a startup script to update the operating system of an Apache Airflow component, and install
additional runtime libraries to use with your workflows. For example, the following script runs yum
update to update the operating system.

When running yum update in a startup script, you must exclude Python using --
exclude=python* as shown in the example. For your environment to run, Amazon MWAA installs
a specific version of Python compatible with your environment. Therefore, you can't update the
environment's Python version using a startup script.

#!/bin/sh

 echo "Updating operating system"
 sudo yum update -y --exclude=python*

To install runtimes on specific Apache Airflow component, use MWAA_AIRFLOW_COMPONENT and if
and fi conditional statements. This example runs a single command to install the libaio library
on the scheduler and worker, but not on the web server.

Important

• If you have configured a private web server, you must either use the following condition
or provide all installation files locally in order to avoid installation timeouts.

• Use sudo to run operations that require administrative privileges.

#!/bin/sh

Install Linux runtimes 176

Amazon Managed Workflows for Apache Airflow User Guide

 if [["${MWAA_AIRFLOW_COMPONENT}" != "webserver"]]
 then
 sudo yum -y install libaio
 fi

You can use a startup script to check the Python version.

#!/bin/sh

 export PYTHON_VERSION_CHECK=`python -c 'import sys; version=sys.version_info[:3];
 print("{0}.{1}.{2}".format(*version))'`
 echo "Python version is $PYTHON_VERSION_CHECK"

Amazon MWAA does not support overriding the default Python version, as this may lead to
incompatibilities with the installed Apache Airflow libraries.

Set environment variables using a startup script

Use startup scripts to set environment variables and modify Apache Airflow configurations. The
following defines a new variable, ENVIRONMENT_STAGE. You can reference this variable in a DAG
or in your custom modules.

#!/bin/sh

 export ENVIRONMENT_STAGE="development"
 echo "$ENVIRONMENT_STAGE"

Use startup scripts to overwrite common Apache Airflow or system variables. For example, you set
LD_LIBRARY_PATH to instruct Python to look for binaries in the path you specify. This lets you
provide custom binaries for your workflows using plugins:

#!/bin/sh

 export LD_LIBRARY_PATH=/usr/local/airflow/plugins/your-custom-binary

Reserved environment variables

Amazon MWAA reserves a set of critical environment variables. If you overwrite a reserved variable,
Amazon MWAA restores it to its default. The following lists the reserved variables:

Set environment variables 177

https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/plugins.html

Amazon Managed Workflows for Apache Airflow User Guide

• MWAA__AIRFLOW__COMPONENT – Used to identify the Apache Airflow component with one of
the following values: scheduler, worker, or webserver.

• AIRFLOW__WEBSERVER__SECRET_KEY – The secret key used for securely signing session
cookies in the Apache Airflow web server.

• AIRFLOW__CORE__FERNET_KEY – The key used for encryption and decryption of sensitive data
stored in the metadata database, for example, connection passwords.

• AIRFLOW_HOME – The path to the Apache Airflow home directory where configuration files and
DAG files are stored locally.

• AIRFLOW__CELERY__BROKER_URL – The URL of the message broker used for communication
between the Apache Airflow scheduler and the Celery worker nodes.

• AIRFLOW__CELERY__RESULT_BACKEND – The URL of the database used to store the results of
Celery tasks.

• AIRFLOW__CORE__EXECUTOR – The executor class that Apache Airflow should use. In Amazon
MWAA this is a CeleryExecutor

• AIRFLOW__CORE__LOAD_EXAMPLES – Used to activate, or deactivate, the loading of example
DAGs.

• AIRFLOW__METRICS__METRICS_BLOCK_LIST – Used to manage which Apache Airflow metrics
are emitted and captured by Amazon MWAA in CloudWatch.

• SQL_ALCHEMY_CONN – The connection string for the RDS for PostgreSQL database used to store
Apache Airflow metadata in Amazon MWAA.

• AIRFLOW__CORE__SQL_ALCHEMY_CONN – Used for the same purpose as SQL_ALCHEMY_CONN,
but following the new Apache Airflow naming convention.

• AIRFLOW__CELERY__DEFAULT_QUEUE – The default queue for Celery tasks in Apache Airflow.

• AIRFLOW__OPERATORS__DEFAULT_QUEUE – The default queue for tasks using specific Apache
Airflow operators.

• AIRFLOW_VERSION – The Apache Airflow version installed in the Amazon MWAA environment.

• AIRFLOW_CONN_AWS_DEFAULT – The default AWS credentials used to integrate with other AWS
services in.

• AWS_DEFAULT_REGION – Sets the default AWS Region used with default credentials to integrate
with other AWS services.

• AWS_REGION – If defined, this environment variable overrides the values in the environment
variable AWS_DEFAULT_REGION and the profile setting region.

• PYTHONUNBUFFERED – Used to send stdout and stderr streams to container logs.

Set environment variables 178

Amazon Managed Workflows for Apache Airflow User Guide

• AIRFLOW__METRICS__STATSD_ALLOW_LIST – Used to configure an allow list of comma-
separated prefixes to send the metrics that start with the elements of the list.

• AIRFLOW__METRICS__STATSD_ON – Activates sending metrics to StatsD.

• AIRFLOW__METRICS__STATSD_HOST – Used to connect to the StatSD daemon.

• AIRFLOW__METRICS__STATSD_PORT – Used to connect to the StatSD daemon.

• AIRFLOW__METRICS__STATSD_PREFIX – Used to connect to the StatSD daemon.

• AIRFLOW__CELERY__WORKER_AUTOSCALE – Sets the maximum and minimum concurrency.

• AIRFLOW__CORE__DAG_CONCURRENCY – Sets the number of task instances that can run
concurrently by the scheduler in one DAG.

• AIRFLOW__CORE__MAX_ACTIVE_TASKS_PER_DAG – Sets the maximum number of active tasks
per DAG.

• AIRFLOW__CORE__PARALLELISM – Defines the maximum number of task instances that can
simultaneously.

• AIRFLOW__SCHEDULER__PARSING_PROCESSES – Sets the maximum number of processes
parsed by the scheduler to schedule DAGs.

• AIRFLOW__CELERY_BROKER_TRANSPORT_OPTIONS__VISIBILITY_TIMEOUT – Defines the
number of seconds a worker waits to acknowledge the task before the message is redelivered to
another worker.

• AIRFLOW__CELERY_BROKER_TRANSPORT_OPTIONS__REGION – Sets the AWS Region for the
underlying Celery transport.

• AIRFLOW__CELERY_BROKER_TRANSPORT_OPTIONS__PREDEFINED_QUEUES – Sets the queue
for the underlying Celery transport.

• AIRFLOW_SCHEDULER_ALLOWED_RUN_ID_PATTERN – Used to verify the validity of your input
for the run_id parameter when triggering a DAG.

• AIRFLOW__WEBSERVER__BASE_URL – The URL of the web server used to host the Apache
Airflow UI.

• PYTHONPATH (only for Apache Airflow v2.9 and later) – Reserved by Amazon MWAA to ensure
that all basic environment functionalities operate correctly.

Note

For Apache Airflow versions earlier than v2.9, PYTHONPATH is an unreserved environment
variable.

Set environment variables 179

Amazon Managed Workflows for Apache Airflow User Guide

Unreserved environment variables

You can use a startup script to overwrite unreserved environment variables. The following lists
some of these common variables:

• PATH – Specifies a list of directories where the operating system searches for executable files and
scripts. When a command runs in the command line, the system checks the directories in PATH in
order to find and execute the command. When you create custom operators or tasks in Apache
Airflow, you might need to rely on external scripts or executables. If the directories containing
these files are not in the specified in the PATH variable, the tasks fail to run when the system is
unable to locate them. By adding the appropriate directories to PATH, Apache Airflow tasks can
find and run the required executables.

• PYTHONPATH – Used by the Python interpreter to determine which directories to search for
imported modules and packages. It is a list of directories that you can add to the default search
path. This lets the interpreter find and load Python libraries not included in the standard library,
or installed in system directories. Use this variable to add your modules and custom Python
packages and use them with your DAGs.

Note

For Apache Airflow v2.9 and later, PYTHONPATH is a reserved environment variable.

• LD_LIBRARY_PATH – An environment variable used by the dynamic linker and loader in Linux
to find and load shared libraries. It specifies a list of directories containing shared libraries,
which are searched before the default system library directories. Use this variable to specify your
custom binaries.

• CLASSPATH – Used by the Java Runtime Environment (JRE) and Java Development Kit (JDK) to
locate and load Java classes, libraries, and resources at runtime. It is a list of directories, JAR files,
and ZIP archives that contain compiled Java code.

Set environment variables 180

Amazon Managed Workflows for Apache Airflow User Guide

Working with DAGs on Amazon MWAA

To run Directed Acyclic Graphs (DAGs) on an Amazon Managed Workflows for Apache Airflow
environment, you copy your files to the Amazon S3 storage bucket attached to your environment,
then let Amazon MWAA know where your DAGs and supporting files are located on the Amazon
MWAA console. Amazon MWAA takes care of synchronizing the DAGs among workers, schedulers,
and the web server. This guide describes how to add or update your DAGs, and install custom
plugins and Python dependencies on an Amazon MWAA environment.

Topics

• Amazon S3 bucket overview

• Adding or updating DAGs

• Installing custom plugins

• Installing Python dependencies

• Deleting files on Amazon S3

Amazon S3 bucket overview

An Amazon S3 bucket for an Amazon MWAA environment must have Public Access Blocked. By
default, all Amazon S3 resources—buckets, objects, and related sub-resources (for example,
lifecycle configuration)—are private.

• Only the resource owner, the AWS account that created the bucket, can access the resource.
The resource owner (for example, your administrator) can grant access permissions to others by
writing an access control policy.

• The access policy you set up must have permission to add DAGs, custom plugins in
plugins.zip, and Python dependencies in requirements.txt to your Amazon
S3 bucket. For an example policy that contains the required permissions, refer to
AmazonMWAAFullConsoleAccess.

An Amazon S3 bucket for an Amazon MWAA environment must have Versioning Enabled. When
Amazon S3 bucket versioning is enabled, anytime a new version is created, a new copy is created.

• Versioning is enabled for the custom plugins in a plugins.zip, and Python dependencies in a
requirements.txt on your Amazon S3 bucket.

Amazon S3 bucket overview 181

Amazon Managed Workflows for Apache Airflow User Guide

• You must specify the version of a plugins.zip, and requirements.txt on the Amazon
MWAA console each time these files are updated on your Amazon S3 bucket.

Adding or updating DAGs

Directed Acyclic Graphs (DAGs) are defined within a Python file that defines the DAG's structure as
code. You can use the AWS CLI, or the Amazon S3 console to upload DAGs to your environment.
This topic describes the steps to add or update Apache Airflow DAGs on your Amazon Managed
Workflows for Apache Airflow environment using the dags folder in your Amazon S3 bucket.

Sections

• Prerequisites

• How it works

• What's changed in v2

• Testing DAGs using the Amazon MWAA CLI utility

• Uploading DAG code to Amazon S3

• Specifying the path to your DAGs folder on the Amazon MWAA console (the first time)

• Viewing changes on your Apache Airflow UI

• What's next?

Prerequisites

You'll need the following before you can complete the steps on this page.

• Permissions — Your AWS account must have been granted access by your administrator to
the AmazonMWAAFullConsoleAccess access control policy for your environment. In addition,
your Amazon MWAA environment must be permitted by your execution role to access the AWS
resources used by your environment.

• Access — If you require access to public repositories to install dependencies directly on the web
server, your environment must be configured with public network web server access. For more
information, refer to the section called “Apache Airflow access modes”.

• Amazon S3 configuration — The Amazon S3 bucket used to store your DAGs, custom plugins
in plugins.zip, and Python dependencies in requirements.txt must be configured with
Public Access Blocked and Versioning Enabled.

Adding or updating DAGs 182

Amazon Managed Workflows for Apache Airflow User Guide

How it works

A Directed Acyclic Graph (DAG) is defined within a single Python file that defines the DAG's
structure as code. It consists of the following:

• A DAG definition.

• Operators that describe how to run the DAG and the tasks to run.

• Operator relationships that describe the order in which to run the tasks.

To run an Apache Airflow platform on an Amazon MWAA environment, you need to copy your DAG
definition to the dags folder in your storage bucket. For example, the DAG folder in your storage
bucket may look like this:

Example DAG folder

dags/
dag_def.py

Amazon MWAA automatically syncs new and changed objects from your Amazon S3 bucket
to Amazon MWAA scheduler and worker containers’ /usr/local/airflow/dags folder
every 30 seconds, preserving the Amazon S3 source’s file hierarchy, regardless of file
type. The time that new DAGs take to appear in your Apache Airflow UI is controlled by
scheduler.dag_dir_list_interval. Changes to existing DAGs will be picked up on the next
DAG processing loop.

Note

You do not need to include the airflow.cfg configuration file in your DAG folder. You can
override the default Apache Airflow configurations from the Amazon MWAA console. For
more information, refer to Using Apache Airflow configuration options on Amazon MWAA.

What's changed in v2

• New: Operators, Hooks, and Executors. The import statements in your DAGs,
and the custom plugins you specify in a plugins.zip on Amazon MWAA have
changed between Apache Airflow v1 and Apache Airflow v2. For example, from

How it works 183

https://airflow.apache.org/docs/stable/concepts.html#dags
https://airflow.apache.org/concepts.html#operators
https://airflow.apache.org/docs/stable/concepts.html#tasks
https://airflow.apache.org/concepts.html#bitshift-composition

Amazon Managed Workflows for Apache Airflow User Guide

airflow.contrib.hooks.aws_hook import AwsHook in Apache Airflow v1 has changed
to from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook in
Apache Airflow v2. To learn more, refer to Python API Reference in the Apache Airflow reference
guide.

Testing DAGs using the Amazon MWAA CLI utility

• The command line interface (CLI) utility replicates an Amazon Managed Workflows for Apache
Airflow environment locally.

• The CLI builds a Docker container image locally that’s similar to an Amazon MWAA production
image. This allows you to run a local Apache Airflow environment to develop and test DAGs,
custom plugins, and dependencies before deploying to Amazon MWAA.

• To run the CLI, refer to the aws-mwaa-local-runner on GitHub.

Uploading DAG code to Amazon S3

You can use the Amazon S3 console or the AWS Command Line Interface (AWS CLI) to upload DAG
code to your Amazon S3 bucket. The following steps assume you are uploading code (.py) to a
folder named dags in your Amazon S3 bucket.

Using the AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

To upload using the AWS CLI

1. Use the following command to list all of your Amazon S3 buckets.

aws s3 ls

2. Use the following command to list the files and folders in the Amazon S3 bucket for your
environment.

Testing DAGs using the Amazon MWAA CLI utility 184

https://airflow.apache.org/docs/apache-airflow/2.2.2/python-api-ref.html
https://github.com/aws/aws-mwaa-local-runner
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Amazon Managed Workflows for Apache Airflow User Guide

aws s3 ls s3://YOUR_S3_BUCKET_NAME

3. The following command uploads a dag_def.py file to a dags folder.

aws s3 cp dag_def.py s3://amzn-s3-demo-bucket/dags/

If a folder named dags does not already exist on your Amazon S3 bucket, this command
creates the dags folder and uploads the file named dag_def.py to the new folder.

Using the Amazon S3 console

The Amazon S3 console is a web-based user interface that allows you to create and manage the
resources in your Amazon S3 bucket. The following steps assume you have a DAGs folder named
dags.

To upload using the Amazon S3 console

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Select the S3 bucket link in the DAG code in S3 pane to open your storage bucket on the
Amazon S3 console.

4. Choose the dags folder.

5. Choose Upload.

6. Choose Add file.

7. Select the local copy of your dag_def.py, choose Upload.

Specifying the path to your DAGs folder on the Amazon MWAA console
(the first time)

The following steps assume you are specifying the path to a folder on your Amazon S3 bucket
named dags.

1. Open the Environments page on the Amazon MWAA console.

2. Choose the environment where you want to run DAGs.

3. Choose Edit.

Specifying the path to a DAGs folder 185

https://console.aws.amazon.com/mwaa/home#/environments
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

4. On the DAG code in Amazon S3 pane, choose Browse S3 next to the DAG folder field.

5. Select your dags folder.

6. Choose Choose.

7. Choose Next, Update environment.

Viewing changes on your Apache Airflow UI

Logging into Apache Airflow

You need Apache Airflow UI access policy: AmazonMWAAWebServerAccess permissions for your
AWS account in AWS Identity and Access Management (IAM) to view your Apache Airflow UI.

To access your Apache Airflow UI

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Open Airflow UI.

What's next?

• Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

Installing custom plugins

Amazon Managed Workflows for Apache Airflow supports Apache Airflow's built-in plugin
manager, allowing you to use custom Apache Airflow operators, hooks, sensors, or interfaces.
This page describes the steps to install Apache Airflow custom plugins on your Amazon MWAA
environment using a plugins.zip file.

Contents

• Prerequisites

• How it works

• When to use the plugins

• Custom plugins overview

Viewing changes on your Apache Airflow UI 186

https://console.aws.amazon.com/mwaa/home#/environments
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://airflow.incubator.apache.org/plugins.html

Amazon Managed Workflows for Apache Airflow User Guide

• Custom plugins directory and size limits

• Examples of custom plugins

• Example using a flat directory structure in plugins.zip

• Example using a nested directory structure in plugins.zip

• Creating a plugins.zip file

• Step one: Test custom plugins using the Amazon MWAA CLI utility

• Step two: Create the plugins.zip file

• Uploading plugins.zip to Amazon S3

• Using the AWS CLI

• Using the Amazon S3 console

• Installing custom plugins on your environment

• Specifying the path to plugins.zip on the Amazon MWAA console (the first time)

• Specifying the plugins.zip version on the Amazon MWAA console

• Example use cases for plugins.zip

• What's next?

Prerequisites

You'll need the following before you can complete the steps on this page.

• Permissions — Your AWS account must have been granted access by your administrator to
the AmazonMWAAFullConsoleAccess access control policy for your environment. In addition,
your Amazon MWAA environment must be permitted by your execution role to access the AWS
resources used by your environment.

• Access — If you require access to public repositories to install dependencies directly on the web
server, your environment must be configured with public network web server access. For more
information, refer to the section called “Apache Airflow access modes”.

• Amazon S3 configuration — The Amazon S3 bucket used to store your DAGs, custom plugins
in plugins.zip, and Python dependencies in requirements.txt must be configured with
Public Access Blocked and Versioning Enabled.

Prerequisites 187

Amazon Managed Workflows for Apache Airflow User Guide

How it works

To run custom plugins on your environment, you must do three things:

1. Create a plugins.zip file locally.

2. Upload the local plugins.zip file to your Amazon S3 bucket.

3. Specify the version of this file in the Plugins file field on the Amazon MWAA console.

Note

If this is the first time you're uploading a plugins.zip to your Amazon S3 bucket, you
also need to specify the path to the file on the Amazon MWAA console. You only need to
complete this step once.

When to use the plugins

Plugins are required only for extending the Apache Airflow user interface, as outlined in the
Apache Airflow documentation. Custom operators can be placed directly in the /dags folder
alongside your DAG code.

If you need to create your own integrations with external systems, place them in the /dags folder
or a subfolder within it, but not in the plugins.zip folder. In Apache Airflow 2.x, plugins are
primarily used for extending the UI.

Similarly, other dependencies should not be placed in plugins.zip. Instead, they can be stored
in a location under the Amazon S3 /dags folder, where they will be synchronized to each Amazon
MWAA container before Apache Airflow starts.

Note

Any file in the /dags folder or in plugins.zip that does not explicitly define an Apache
Airflow DAG object must be listed in an .airflowignore file.

How it works 188

https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/plugins.html#plugins

Amazon Managed Workflows for Apache Airflow User Guide

Custom plugins overview

Apache Airflow's built-in plugin manager can integrate external features to its core by simply
dropping files in an $AIRFLOW_HOME/plugins folder. It allows you to use custom Apache
Airflow operators, hooks, sensors, or interfaces. The following section provides an example of
flat and nested directory structures in a local development environment and the resulting import
statements, which determines the directory structure within a plugins.zip.

Custom plugins directory and size limits

The Apache Airflow Scheduler and the Workers look for custom plugins during startup on the AWS-
managed Fargate container for your environment at /usr/local/airflow/plugins/*.

• Directory structure. The directory structure (at /*) is based on the contents of your
plugins.zip file. For example, if your plugins.zip contains the operators directory
as a top-level directory, then the directory will be extracted to /usr/local/airflow/
plugins/operators on your environment.

• Size limit. We recommend a plugins.zip file less than than 1 GB. The larger the size of a
plugins.zip file, the longer the startup time on an environment. Although Amazon MWAA
doesn't limit the size of a plugins.zip file explicitly, if dependencies can't be installed within
ten minutes, the Fargate service will time-out and attempt to rollback the environment to a
stable state.

Note

For environments using Apache Airflow v1.10.12 or Apache Airflow v2.0.2, Amazon MWAA
limits outbound traffic on the Apache Airflow web server, and does not allow you to install
plugins nor Python dependencies directly on the web server. Starting with Apache Airflow
v2.2.2, Amazon MWAA can install plugins and dependencies directly on the web server.

Examples of custom plugins

The following section uses sample code in the Apache Airflow reference guide to show how to
structure your local development environment.

Custom plugins overview 189

Amazon Managed Workflows for Apache Airflow User Guide

Example using a flat directory structure in plugins.zip

Apache Airflow v2

The following example shows a plugins.zip file with a flat directory structure for Apache
Airflow v2.

Example flat directory with PythonVirtualenvOperator plugins.zip

The following example shows the top-level tree of a plugins.zip file for the
PythonVirtualenvOperator custom plugin in Creating a custom plugin for Apache Airflow
PythonVirtualenvOperator.

virtual_python_plugin.py

Example plugins/virtual_python_plugin.py

The following example shows the PythonVirtualenvOperator custom plugin.

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from airflow.plugins_manager import AirflowPlugin
import airflow.utils.python_virtualenv
from typing import List

def _generate_virtualenv_cmd(tmp_dir: str, python_bin: str, system_site_packages:
 bool) -> List[str]:
 cmd = ['python3','/usr/local/airflow/.local/lib/python3.7/site-packages/
virtualenv', tmp_dir]

Examples of custom plugins 190

Amazon Managed Workflows for Apache Airflow User Guide

 if system_site_packages:
 cmd.append('--system-site-packages')
 if python_bin is not None:
 cmd.append(f'--python={python_bin}')
 return cmd

airflow.utils.python_virtualenv._generate_virtualenv_cmd=_generate_virtualenv_cmd

class VirtualPythonPlugin(AirflowPlugin):
 name = 'virtual_python_plugin'

Apache Airflow v1

The following example shows a plugins.zip file with a flat directory structure for Apache
Airflow v1.

Example flat directory with PythonVirtualenvOperator plugins.zip

The following example shows the top-level tree of a plugins.zip file for the
PythonVirtualenvOperator custom plugin in Creating a custom plugin for Apache Airflow
PythonVirtualenvOperator.

virtual_python_plugin.py

Example plugins/virtual_python_plugin.py

The following example shows the PythonVirtualenvOperator custom plugin.

from airflow.plugins_manager import AirflowPlugin
from airflow.operators.python_operator import PythonVirtualenvOperator

def _generate_virtualenv_cmd(self, tmp_dir):
 cmd = ['python3','/usr/local/airflow/.local/lib/python3.7/site-packages/
virtualenv', tmp_dir]
 if self.system_site_packages:
 cmd.append('--system-site-packages')
 if self.python_version is not None:
 cmd.append('--python=python{}'.format(self.python_version))
 return cmd
PythonVirtualenvOperator._generate_virtualenv_cmd=_generate_virtualenv_cmd

class EnvVarPlugin(AirflowPlugin):

Examples of custom plugins 191

Amazon Managed Workflows for Apache Airflow User Guide

 name = 'virtual_python_plugin'

Example using a nested directory structure in plugins.zip

Apache Airflow v2

The following example shows a plugins.zip file with separate directories for hooks,
operators, and a sensors directory for Apache Airflow v2.

Example plugins.zip

__init__.py
my_airflow_plugin.py
hooks/
|-- __init__.py
|-- my_airflow_hook.py
operators/
|-- __init__.py
|-- my_airflow_operator.py
|-- hello_operator.py
sensors/
|-- __init__.py
|-- my_airflow_sensor.py

The following example shows the import statements in the DAG (DAGs folder) that uses the
custom plugins.

Example dags/your_dag.py

from airflow import DAG
from datetime import datetime, timedelta
from operators.my_airflow_operator import MyOperator
from sensors.my_airflow_sensor import MySensor
from operators.hello_operator import HelloOperator

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date': datetime(2018, 1, 1),
 'email_on_failure': False,
 'email_on_retry': False,
 'retries': 1,

Examples of custom plugins 192

https://docs.aws.amazon.com/mwaa/latest/userguide/configuring-dag-folder.html#configuring-dag-folder-how

Amazon Managed Workflows for Apache Airflow User Guide

 'retry_delay': timedelta(minutes=5),
}

with DAG('customdag',
 max_active_runs=3,
 schedule_interval='@once',
 default_args=default_args) as dag:

 sens = MySensor(
 task_id='taskA'
)

 op = MyOperator(
 task_id='taskB',
 my_field='some text'
)

 hello_task = HelloOperator(task_id='sample-task', name='foo_bar')

 sens >> op >> hello_task

Example plugins/my_airflow_plugin.py

from airflow.plugins_manager import AirflowPlugin
from hooks.my_airflow_hook import *
from operators.my_airflow_operator import *

class PluginName(AirflowPlugin):

 name = 'my_airflow_plugin'

 hooks = [MyHook]
 operators = [MyOperator]
 sensors = [MySensor]

The following examples show each of the import statements needed in the custom plugin files.

Example hooks/my_airflow_hook.py

from airflow.hooks.base import BaseHook

Examples of custom plugins 193

Amazon Managed Workflows for Apache Airflow User Guide

class MyHook(BaseHook):

 def my_method(self):
 print("Hello World")

Example sensors/my_airflow_sensor.py

from airflow.sensors.base import BaseSensorOperator
from airflow.utils.decorators import apply_defaults

class MySensor(BaseSensorOperator):

 @apply_defaults
 def __init__(self,
 *args,
 **kwargs):
 super(MySensor, self).__init__(*args, **kwargs)

 def poke(self, context):
 return True

Example operators/my_airflow_operator.py

from airflow.operators.bash import BaseOperator
from airflow.utils.decorators import apply_defaults
from hooks.my_airflow_hook import MyHook

class MyOperator(BaseOperator):

 @apply_defaults
 def __init__(self,
 my_field,
 *args,
 **kwargs):
 super(MyOperator, self).__init__(*args, **kwargs)
 self.my_field = my_field

 def execute(self, context):
 hook = MyHook('my_conn')

Examples of custom plugins 194

Amazon Managed Workflows for Apache Airflow User Guide

 hook.my_method()

Example operators/hello_operator.py

from airflow.models.baseoperator import BaseOperator
from airflow.utils.decorators import apply_defaults

class HelloOperator(BaseOperator):

 @apply_defaults
 def __init__(
 self,
 name: str,
 **kwargs) -> None:
 super().__init__(**kwargs)
 self.name = name

 def execute(self, context):
 message = "Hello {}".format(self.name)
 print(message)
 return message

Follow the steps in Testing custom plugins using the Amazon MWAA CLI utility, and then
Creating a plugins.zip file to zip the contents within your plugins directory. For example, cd
plugins.

Apache Airflow v1

The following example shows a plugins.zip file with separate directories for hooks,
operators, and a sensors directory for Apache Airflow v1.10.12.

Example plugins.zip

__init__.py
my_airflow_plugin.py
hooks/
 |-- __init__.py
 |-- my_airflow_hook.py
operators/
 |-- __init__.py
 |-- my_airflow_operator.py
 |-- hello_operator.py

Examples of custom plugins 195

Amazon Managed Workflows for Apache Airflow User Guide

sensors/
 |-- __init__.py
 |-- my_airflow_sensor.py

The following example shows the import statements in the DAG (DAGs folder) that uses the
custom plugins.

Example dags/your_dag.py

from airflow import DAG
from datetime import datetime, timedelta
from operators.my_operator import MyOperator
from sensors.my_sensor import MySensor
from operators.hello_operator import HelloOperator

default_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'start_date': datetime(2018, 1, 1),
 'email_on_failure': False,
 'email_on_retry': False,
 'retries': 1,
 'retry_delay': timedelta(minutes=5),
}

with DAG('customdag',
 max_active_runs=3,
 schedule_interval='@once',
 default_args=default_args) as dag:

 sens = MySensor(
 task_id='taskA'
)

 op = MyOperator(
 task_id='taskB',
 my_field='some text'
)

 hello_task = HelloOperator(task_id='sample-task', name='foo_bar')

Examples of custom plugins 196

https://docs.aws.amazon.com/mwaa/latest/userguide/configuring-dag-folder.html#configuring-dag-folder-how

Amazon Managed Workflows for Apache Airflow User Guide

 sens >> op >> hello_task

Example plugins/my_airflow_plugin.py

from airflow.plugins_manager import AirflowPlugin
from hooks.my_airflow_hook import *
from operators.my_airflow_operator import *
from utils.my_utils import *

class PluginName(AirflowPlugin):

 name = 'my_airflow_plugin'

 hooks = [MyHook]
 operators = [MyOperator]
 sensors = [MySensor]

The following examples show each of the import statements needed in the custom plugin files.

Example hooks/my_airflow_hook.py

from airflow.hooks.base_hook import BaseHook

class MyHook(BaseHook):

 def my_method(self):
 print("Hello World")

Example sensors/my_airflow_sensor.py

from airflow.sensors.base_sensor_operator import BaseSensorOperator
from airflow.utils.decorators import apply_defaults

class MySensor(BaseSensorOperator):

 @apply_defaults
 def __init__(self,
 *args,
 **kwargs):

Examples of custom plugins 197

Amazon Managed Workflows for Apache Airflow User Guide

 super(MySensor, self).__init__(*args, **kwargs)

 def poke(self, context):
 return True

Example operators/my_airflow_operator.py

from airflow.operators.bash_operator import BaseOperator
from airflow.utils.decorators import apply_defaults
from hooks.my_hook import MyHook

class MyOperator(BaseOperator):

 @apply_defaults
 def __init__(self,
 my_field,
 *args,
 **kwargs):
 super(MyOperator, self).__init__(*args, **kwargs)
 self.my_field = my_field

 def execute(self, context):
 hook = MyHook('my_conn')
 hook.my_method()

Example operators/hello_operator.py

from airflow.models.baseoperator import BaseOperator
from airflow.utils.decorators import apply_defaults

class HelloOperator(BaseOperator):

 @apply_defaults
 def __init__(
 self,
 name: str,
 **kwargs) -> None:
 super().__init__(**kwargs)
 self.name = name

 def execute(self, context):
 message = "Hello {}".format(self.name)

Examples of custom plugins 198

Amazon Managed Workflows for Apache Airflow User Guide

 print(message)
 return message

Follow the steps in Testing custom plugins using the Amazon MWAA CLI utility, and then
Creating a plugins.zip file to zip the contents within your plugins directory. For example, cd
plugins.

Creating a plugins.zip file

The following steps describe the steps we recommend to create a plugins.zip file locally.

Step one: Test custom plugins using the Amazon MWAA CLI utility

• The command line interface (CLI) utility replicates an Amazon Managed Workflows for Apache
Airflow environment locally.

• The CLI builds a Docker container image locally that’s similar to an Amazon MWAA production
image. This allows you to run a local Apache Airflow environment to develop and test DAGs,
custom plugins, and dependencies before deploying to Amazon MWAA.

• To run the CLI, refer to the aws-mwaa-local-runner on GitHub.

Step two: Create the plugins.zip file

You can use a built-in ZIP archive utility, or any other ZIP utility (such as 7zip) to create a .zip file.

Note

The built-in zip utility for Windows OS may add subfolders when you create a .zip file. We
recommend verifying the contents of the plugins.zip file before uploading to your Amazon
S3 bucket to ensure no additional directories were added.

1. Change directories to your local Airflow plugins directory. For example:

myproject$ cd plugins

2. Run the following command to ensure that the contents have executable permissions (macOS
and Linux only).

Creating a plugins.zip file 199

https://github.com/aws/aws-mwaa-local-runner
https://www.7-zip.org/download.html

Amazon Managed Workflows for Apache Airflow User Guide

plugins$ chmod -R 755 .

3. Zip the contents within your plugins folder.

plugins$ zip -r plugins.zip .

Uploading plugins.zip to Amazon S3

You can use the Amazon S3 console or the AWS Command Line Interface (AWS CLI) to upload a
plugins.zip file to your Amazon S3 bucket.

Using the AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

To upload using the AWS CLI

1. In your command prompt, navigate to the directory where your plugins.zip file is stored.
For example:

cd plugins

2. Use the following command to list all of your Amazon S3 buckets.

aws s3 ls

3. Use the following command to list the files and folders in the Amazon S3 bucket for your
environment.

aws s3 ls s3://YOUR_S3_BUCKET_NAME

4. Use the following command to upload the plugins.zip file to the Amazon S3 bucket for
your environment.

Uploading plugins.zip to Amazon S3 200

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Amazon Managed Workflows for Apache Airflow User Guide

aws s3 cp plugins.zip s3://amzn-s3-demo-bucket/plugins.zip

Using the Amazon S3 console

The Amazon S3 console is a web-based user interface that allows you to create and manage the
resources in your Amazon S3 bucket.

To upload using the Amazon S3 console

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Select the S3 bucket link in the DAG code in S3 pane to open your storage bucket on the
Amazon S3 console.

4. Choose Upload.

5. Choose Add file.

6. Select the local copy of your plugins.zip, choose Upload.

Installing custom plugins on your environment

This section describes how to install the custom plugins you uploaded to your Amazon S3 bucket
by specifying the path to the plugins.zip file, and specifying the version of the plugins.zip file each
time the zip file is updated.

Specifying the path to plugins.zip on the Amazon MWAA console (the first
time)

If this is the first time you're uploading a plugins.zip to your Amazon S3 bucket, you also need
to specify the path to the file on the Amazon MWAA console. You only need to complete this step
once.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. On the DAG code in Amazon S3 pane, choose Browse S3 next to the Plugins file - optional
field.

Installing custom plugins on your environment 201

https://console.aws.amazon.com/mwaa/home#/environments
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

5. Select the plugins.zip file on your Amazon S3 bucket.

6. Choose Choose.

7. Choose Next, Update environment.

Specifying the plugins.zip version on the Amazon MWAA console

You need to specify the version of your plugins.zip file on the Amazon MWAA console each
time you upload a new version of your plugins.zip in your Amazon S3 bucket.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. On the DAG code in Amazon S3 pane, choose a plugins.zip version in the dropdown list.

5. Choose Next.

Example use cases for plugins.zip

• Learn how to create a custom plugin in Custom plugin with Apache Hive and Hadoop.

• Learn how to create a custom plugin in Custom plugin to patch PythonVirtualenvOperator .

• Learn how to create a custom plugin in Custom plugin with Oracle.

• Learn how to create a custom plugin in the section called “Changing a DAG's timezone”.

What's next?

• Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

Installing Python dependencies

A Python dependency is any package or distribution that is not included in the Apache Airflow base
install for your Apache Airflow version on your Amazon Managed Workflows for Apache Airflow
environment. This topic describes the steps to install Apache Airflow Python dependencies on your
Amazon MWAA environment using a requirements.txt file in your Amazon S3 bucket.

Example use cases for plugins.zip 202

https://console.aws.amazon.com/mwaa/home#/environments
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

Contents

• Prerequisites

• How it works

• Python dependencies overview

• Python dependencies location and size limits

• Creating a requirements.txt file

• Step one: Test Python dependencies using the Amazon MWAA CLI utility

• Step two: Create the requirements.txt

• Uploading requirements.txt to Amazon S3

• Using the AWS CLI

• Using the Amazon S3 console

• Installing Python dependencies on your environment

• Specifying the path to requirements.txt on the Amazon MWAA console (the first time)

• Specifying the requirements.txt version on the Amazon MWAA console

• Viewing logs for your requirements.txt

• What's next?

Prerequisites

You'll need the following before you can complete the steps on this page.

• Permissions — Your AWS account must have been granted access by your administrator to
the AmazonMWAAFullConsoleAccess access control policy for your environment. In addition,
your Amazon MWAA environment must be permitted by your execution role to access the AWS
resources used by your environment.

• Access — If you require access to public repositories to install dependencies directly on the web
server, your environment must be configured with public network web server access. For more
information, refer to the section called “Apache Airflow access modes”.

• Amazon S3 configuration — The Amazon S3 bucket used to store your DAGs, custom plugins
in plugins.zip, and Python dependencies in requirements.txt must be configured with
Public Access Blocked and Versioning Enabled.

Prerequisites 203

Amazon Managed Workflows for Apache Airflow User Guide

How it works

On Amazon MWAA, you install all Python dependencies by uploading a requirements.txt file to
your Amazon S3 bucket, then specifying the version of the file on the Amazon MWAA console each
time you update the file. Amazon MWAA runs pip3 install -r requirements.txt to install
the Python dependencies on the Apache Airflow scheduler and each of the workers.

To run Python dependencies on your environment, you must do three things:

1. Create a requirements.txt file locally.

2. Upload the local requirements.txt to your Amazon S3 bucket.

3. Specify the version of this file in the Requirements file field on the Amazon MWAA console.

Note

If this is the first time you're creating and uploading a requirements.txt to your
Amazon S3 bucket, you also need to specify the path to the file on the Amazon MWAA
console. You only need to complete this step once.

Python dependencies overview

You can install Apache Airflow extras and other Python dependencies from the Python Package
Index (PyPi.org), Python wheels (.whl), or Python dependencies hosted on a private PyPi/PEP-503
Compliant Repo on your environment.

Python dependencies location and size limits

The Apache Airflow Scheduler and the Workers look for the packages in the requirements.txt
file and the packages are installed on the environment at /usr/local/airflow/.local/bin.

• Size limit. We recommend a requirements.txt file that references libraries whose combined
size is less than than 1 GB. The more libraries Amazon MWAA needs to install, the longer the
startup time on an environment. Although Amazon MWAA doesn't limit the size of installed
libraries explicitly, if dependencies can't be installed within ten minutes, the Fargate service will
time-out and attempt to rollback the environment to a stable state.

How it works 204

Amazon Managed Workflows for Apache Airflow User Guide

Creating a requirements.txt file

The following steps describe the steps we recommend to create a requirements.txt file locally.

Step one: Test Python dependencies using the Amazon MWAA CLI utility

• The command line interface (CLI) utility replicates an Amazon Managed Workflows for Apache
Airflow environment locally.

• The CLI builds a Docker container image locally that’s similar to an Amazon MWAA production
image. This allows you to run a local Apache Airflow environment to develop and test DAGs,
custom plugins, and dependencies before deploying to Amazon MWAA.

• To run the CLI, refer to the aws-mwaa-local-runner on GitHub.

Step two: Create the requirements.txt

The following section describes how to specify Python dependencies from the Python Package
Index in a requirements.txt file.

Apache Airflow v2

1. Test locally. Add additional libraries iteratively to find the right combination of packages
and their versions, before creating a requirements.txt file. To run the Amazon MWAA
CLI utility, refer to the aws-mwaa-local-runner on GitHub.

2. Review the Apache Airflow package extras. To view a list of the packages installed
for Apache Airflow v2 on Amazon MWAA, refer to Amazon MWAA local runner
requirements.txt on the GitHub website.

3. Add a constraints statement. Add the constraints file for your Apache Airflow v2
environment at the top of your requirements.txt file. Apache Airflow constraints files
specify the provider versions available at the time of a Apache Airflow release.

Beginning with Apache Airflow v2.7.2, your requirements file must include a --
constraint statement. If you do not provide a constraint, Amazon MWAA will specify one
for you to ensure the packages listed in your requirements are compatible with the version
of Apache Airflow you are using.

In the following example, replace {environment-version} with your environment's
version number, and {Python-version} with the version of Python that's compatible
with your environment.

Creating a requirements.txt file 205

https://github.com/aws/aws-mwaa-local-runner
https://pypi.org/
https://pypi.org/
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

For information on the version of Python compatible with your Apache Airflow
environment, refer to Apache Airflow Versions.

--constraint "https://raw.githubusercontent.com/apache/airflow/
constraints-{Airflow-version}/constraints-{Python-version}.txt"

If the constraints file determines that xyz==1.0 package is not compatible with other
packages in your environment, pip3 install will fail in order to prevent incompatible
libraries from being installed to your environment. If installation fails for any packages, you
can view error logs for each Apache Airflow component (the scheduler, worker, and web
server) in the corresponding log stream on CloudWatch Logs. For more information on log
types, refer to the section called “Viewing Airflow logs”.

4. Apache Airflow packages. Add the package extras and the version (==). This helps to
prevent packages of the same name, but different version, from being installed on your
environment.

apache-airflow[package-extra]==2.5.1

5. Python libraries. Add the package name and the version (==) in your requirements.txt
file. This helps to prevent a future breaking update from PyPi.org from being automatically
applied.

library == version

Example Boto3 and psycopg2-binary

This example is provided for demonstration purposes. The boto and psycopg2-binary
libraries are included with the Apache Airflow v2 base install and don't need to be specified
in a requirements.txt file.

boto3==1.17.54
boto==2.49.0
botocore==1.20.54
psycopg2-binary==2.8.6

Creating a requirements.txt file 206

http://airflow.apache.org/docs/apache-airflow/2.5.1/extra-packages-ref.html
https://pypi.org

Amazon Managed Workflows for Apache Airflow User Guide

If a package is specified without a version, Amazon MWAA installs the latest version
of the package from PyPi.org. This version may conflict with other packages in your
requirements.txt.

Apache Airflow v1

1. Test locally. Add additional libraries iteratively to find the right combination of packages
and their versions, before creating a requirements.txt file. To run the Amazon MWAA
CLI utility, refer to the aws-mwaa-local-runner on GitHub.

2. Review the Airflow package extras. Review the list of packages available for
Apache Airflow v1.10.12 at https://raw.githubusercontent.com/apache/airflow/
constraints-1.10.12/constraints-3.7.txt.

3. Add the constraints file. Add the constraints file for Apache Airflow v1.10.12 to the top of
your requirements.txt file. If the constraints file determines that xyz==1.0 package is
not compatible with other packages on your environment, the pip3 install will fail to
prevent incompatible libraries from being installed to your environment.

--constraint "https://raw.githubusercontent.com/apache/airflow/
constraints-1.10.12/constraints-3.7.txt"

4. Apache Airflow v1.10.12 packages. Add the Airflow package extras and the Apache
Airflow v1.10.12 version (==). This helps to prevent packages of the same name, but
different version, from being installed on your environment.

apache-airflow[package]==1.10.12

Example Secure Shell (SSH)

The following example requirements.txt file installs SSH for Apache Airflow v1.10.12.

apache-airflow[ssh]==1.10.12

5. Python libraries. Add the package name and the version (==) in your requirements.txt
file. This helps to prevent a future breaking update from PyPi.org from being automatically
applied.

library == version

Creating a requirements.txt file 207

https://pypi.org
https://github.com/aws/aws-mwaa-local-runner
https://raw.githubusercontent.com/apache/airflow/constraints-1.10.12/constraints-3.7.txt
https://raw.githubusercontent.com/apache/airflow/constraints-1.10.12/constraints-3.7.txt
https://airflow.apache.org/docs/apache-airflow/1.10.12/installation.html#extra-packages
https://pypi.org

Amazon Managed Workflows for Apache Airflow User Guide

Example Boto3

The following example requirements.txt file installs the Boto3 library for Apache
Airflow v1.10.12.

boto3 == 1.17.4

If a package is specified without a version, Amazon MWAA installs the latest version
of the package from PyPi.org. This version may conflict with other packages in your
requirements.txt.

Uploading requirements.txt to Amazon S3

You can use the Amazon S3 console or the AWS Command Line Interface (AWS CLI) to upload a
requirements.txt file to your Amazon S3 bucket.

Using the AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables you to interact
with AWS services using commands in your command-line shell. To complete the steps on this
page, you need the following:

• AWS CLI – Install version 2.

• AWS CLI – Quick configuration with aws configure.

To upload using the AWS CLI

1. Use the following command to list all of your Amazon S3 buckets.

aws s3 ls

2. Use the following command to list the files and folders in the Amazon S3 bucket for your
environment.

aws s3 ls s3://YOUR_S3_BUCKET_NAME

3. The following command uploads a requirements.txt file to an Amazon S3 bucket.

Uploading requirements.txt to Amazon S3 208

https://pypi.org
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Amazon Managed Workflows for Apache Airflow User Guide

aws s3 cp requirements.txt s3://amzn-s3-demo-bucket/requirements.txt

Using the Amazon S3 console

The Amazon S3 console is a web-based user interface that allows you to create and manage the
resources in your Amazon S3 bucket.

To upload using the Amazon S3 console

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Select the S3 bucket link in the DAG code in S3 pane to open your storage bucket on the
Amazon S3 console.

4. Choose Upload.

5. Choose Add file.

6. Select the local copy of your requirements.txt, choose Upload.

Installing Python dependencies on your environment

This section describes how to install the dependencies you uploaded to your Amazon S3 bucket by
specifying the path to the requirements.txt file, and specifying the version of the requirements.txt
file each time it's updated.

Specifying the path to requirements.txt on the Amazon MWAA console (the
first time)

If this is the first time you're creating and uploading a requirements.txt to your Amazon S3
bucket, you also need to specify the path to the file on the Amazon MWAA console. You only need
to complete this step once.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. On the DAG code in Amazon S3 pane, choose Browse S3 next to the Requirements file -
optional field.

Installing Python dependencies on your environment 209

https://console.aws.amazon.com/mwaa/home#/environments
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

5. Select the requirements.txt file on your Amazon S3 bucket.

6. Choose Choose.

7. Choose Next, Update environment.

You can begin using the new packages immediately after your environment finishes updating.

Specifying the requirements.txt version on the Amazon MWAA console

You need to specify the version of your requirements.txt file on the Amazon MWAA console
each time you upload a new version of your requirements.txt in your Amazon S3 bucket.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. On the DAG code in Amazon S3 pane, choose a requirements.txt version in the dropdown
list.

5. Choose Next, Update environment.

You can begin using the new packages immediately after your environment finishes updating.

Viewing logs for your requirements.txt

You can view Apache Airflow logs for the Scheduler scheduling your workflows and parsing your
dags folder. The following steps describe how to open the log group for the Scheduler on the
Amazon MWAA console, and view Apache Airflow logs on the CloudWatch Logs console.

To view logs for a requirements.txt

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose the Airflow scheduler log group on the Monitoring pane.

4. Choose the requirements_install_ip log in Log streams.

5. You should see the list of packages that were installed on the environment at /usr/local/
airflow/.local/bin. For example:

Collecting appdirs==1.4.4 (from -r /usr/local/airflow/.local/bin (line 1))

Viewing logs for your requirements.txt 210

https://console.aws.amazon.com/mwaa/home#/environments
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Downloading https://files.pythonhosted.org/
packages/3b/00/2344469e2084fb28kjdsfiuyweb47389789vxbmnbjhsdgf5463acd6cf5e3db69324/
appdirs-1.4.4-py2.py3-none-any.whl
Collecting astroid==2.4.2 (from -r /usr/local/airflow/.local/bin (line 2))

6. Review the list of packages and whether any of these encountered an error during installation.
If something went wrong, you may see an error similar to the following:

2021-03-05T14:34:42.731-07:00
No matching distribution found for LibraryName==1.0.0 (from -r /usr/local/
airflow/.local/bin (line 4))
No matching distribution found for LibraryName==1.0.0 (from -r /usr/local/
airflow/.local/bin (line 4))

What's next?

• Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

Deleting files on Amazon S3

This page describes how versioning works in an Amazon S3 bucket for an Amazon Managed
Workflows for Apache Airflow environment, and the steps to delete a DAG, plugins.zip, or
requirements.txt file.

Contents

• Prerequisites

• Versioning overview

• How it works

• Deleting a DAG on Amazon S3

• Removing a "current" requirements.txt or plugins.zip from an environment

• Deleting a "non-current" (previous) requirements.txt or plugins.zip version

• Using lifecycles to delete "non-current" (previous) versions and delete markers automatically

• Example lifecycle policy to delete requirements.txt "non-current" versions and delete markers
automatically

• What's next?

What's next? 211

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

Prerequisites

You'll need the following before you can complete the steps on this page.

• Permissions — Your AWS account must have been granted access by your administrator to
the AmazonMWAAFullConsoleAccess access control policy for your environment. In addition,
your Amazon MWAA environment must be permitted by your execution role to access the AWS
resources used by your environment.

• Access — If you require access to public repositories to install dependencies directly on the web
server, your environment must be configured with public network web server access. For more
information, refer to the section called “Apache Airflow access modes”.

• Amazon S3 configuration — The Amazon S3 bucket used to store your DAGs, custom plugins
in plugins.zip, and Python dependencies in requirements.txt must be configured with
Public Access Blocked and Versioning Enabled.

Versioning overview

The requirements.txt and plugins.zip in your Amazon S3 bucket are versioned. When
Amazon S3 bucket versioning is enabled for an object, and an artifact (for example, plugins.zip)
is deleted from an Amazon S3 bucket, the file doesn't get deleted entirely. Anytime an artifact is
deleted on Amazon S3, a new copy of the file is created that is a 404 (Object not found) error/0k
file that says "I'm not here." Amazon S3 calls this a delete marker. A delete marker is a "null" version
of the file with a key name (or key) and version ID like any other object.

We recommend deleting file versions and delete markers periodically to reduce storage costs for
your Amazon S3 bucket. To delete "non-current" (previous) file versions entirely, you must delete
the versions of the file(s), and then the delete marker for the version.

How it works

Amazon MWAA runs a sync operation on your Amazon S3 bucket every thirty seconds. This causes
any DAG deletions in an Amazon S3 bucket to be synced to the Airflow image of your Fargate
container.

For plugins.zip and requirements.txt files, changes occur only after an environment
update when Amazon MWAA builds a new Airflow image of your Fargate container with
the custom plugins and Python dependencies. If you delete the current version of any of a

Prerequisites 212

Amazon Managed Workflows for Apache Airflow User Guide

requirements.txt or plugins.zip file, and then update your environment without providing a
new version for the deleted file, then the update will fail with an error message, such as, "Unable to
read version {version} of file {file}".

Deleting a DAG on Amazon S3

A DAG file (.py) is not versioned and can be deleted directly on the Amazon S3 console. The
following steps describe how to delete a DAG on your Amazon S3 bucket.

To delete a DAG

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Select the S3 bucket link in the DAG code in S3 pane to open your storage bucket on the
Amazon S3 console.

4. Choose the dags folder.

5. Select the DAG, Delete.

6. Under Delete objects?, type delete.

7. Choose Delete objects.

Note

Apache Airflow preserves historical DAG runs. After a DAG has been run in Apache Airflow,
it remains in the Airflow DAGs list regardless of the file status, until you delete it in Apache
Airflow. To delete a DAG in Apache Airflow, choose the red "delete" button under the Links
column.

Removing a "current" requirements.txt or plugins.zip from an
environment

Currently, there isn't a way to remove a plugins.zip or requirements.txt from an environment after
they’ve been added, but we're working on the issue. In the interim, a workaround is to point to an
empty text or zip file, respectively.

Deleting a DAG on Amazon S3 213

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Deleting a "non-current" (previous) requirements.txt or plugins.zip
version

The requirements.txt and plugins.zip files in your Amazon S3 bucket are versioned on
Amazon MWAA. If you want to delete these files on your Amazon S3 bucket entirely, you must
retrieve the current version (121212) of the object (for example, plugins.zip), delete the version,
and then remove the delete marker for the file version(s).

You can also delete "non-current" (previous) file versions on the Amazon S3 console; however,
you'll still need to delete the delete marker using one of the following options.

• To retrieve the object version, refer to Retrieving object versions from a versioning-enabled
bucket in the Amazon S3 guide.

• To delete the object version, refer to Deleting object versions from a versioning-enabled bucket
in the Amazon S3 guide.

• To remove a delete marker, refer to Managing delete markers in the Amazon S3 guide.

Using lifecycles to delete "non-current" (previous) versions and delete
markers automatically

You can configure a lifecycle policy for your Amazon S3 bucket to delete "non-current" (previous)
versions of the plugins.zip and requirements.txt files in your Amazon S3 bucket after a certain
number of days, or to remove an expired object's delete marker.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Under DAG code in Amazon S3, choose your Amazon S3 bucket.

4. Choose Create lifecycle rule.

Example lifecycle policy to delete requirements.txt "non-current"
versions and delete markers automatically

The following example shows how to create a lifecycle rule that permanently deletes "non-current"
versions of a requirements.txt file and their delete markers after thirty days.

1. Open the Environments page on the Amazon MWAA console.

Delete "non-current" plugins.zip or requirements.txt 214

https://docs.aws.amazon.com/AmazonS3/latest/userguide/RetrievingObjectVersions.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/RetrievingObjectVersions.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/DeletingObjectVersions.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ManagingDelMarkers.html
https://console.aws.amazon.com/mwaa/home#/environments
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

2. Choose an environment.

3. Under DAG code in Amazon S3, choose your Amazon S3 bucket.

4. Choose Create lifecycle rule.

5. In Lifecycle rule name, type Delete previous requirements.txt versions and
delete markers after thirty days.

6. In Prefix, requirements.

7. In Lifecycle rule actions, choose Permanently delete previous versions of objects and Delete
expired delete markers or incomplete multipart uploads.

8. In Number of days after objects become previous versions, type 30.

9. In Expired object delete markers, choose Delete expired object delete markers, objects are
permanently deleted after 30 days.

What's next?

• Learn more about Amazon S3 delete markers in Managing delete markers.

• Learn more about Amazon S3 lifecycles in Expiring objects.

What's next? 215

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-expire-general-considerations.html

Amazon Managed Workflows for Apache Airflow User Guide

Networking

This guide describes the Amazon VPC network setup you'll need for an Amazon MWAA
environment.

Sections

• About networking on Amazon MWAA

• Security in your VPC on Amazon MWAA

• Managing access to service-specific Amazon VPC endpoints on Amazon MWAA

• Creating the required VPC service endpoints in an Amazon VPC with private routing

• Managing your own Amazon VPC endpoints on Amazon MWAA

About networking on Amazon MWAA

An Amazon VPC is a virtual network that is linked to your AWS account. It gives you cloud
security and the ability to scale dynamically by providing fine-grained control over your
virtual infrastructure and network traffic segmentation. This page describes the Amazon VPC
infrastructure with public routing or private routing that's needed to support an Amazon Managed
Workflows for Apache Airflow environment.

Contents

• Terms

• What's supported

• VPC infrastructure overview

• Public routing over the Internet

• Private routing without Internet access

• Example use cases for an Amazon VPC and Apache Airflow access mode

• Internet access is allowed - new Amazon VPC network

• Internet access is not allowed - new Amazon VPC network

• Internet access is not allowed - existing Amazon VPC network

About networking 216

Amazon Managed Workflows for Apache Airflow User Guide

Terms

Public routing

An Amazon VPC network that has access to the Internet.

Private routing

An Amazon VPC network without access to the Internet.

What's supported

The following table describes the types of Amazon VPCs Amazon MWAA supports.

Amazon VPC types Supported

An Amazon VPC owned by
the account that is attemptin
g to create the environment.

Yes

A shared Amazon VPC where
multiple AWS accounts create
their AWS resources.

Yes

VPC infrastructure overview

When you create an Amazon MWAA environment, Amazon MWAA creates between one to two
VPC endpoints for your environment based on the Apache Airflow access mode you chose for your
environment. These endpoints appear as Elastic Network Interfaces (ENIs) with private IPs in your
Amazon VPC. After these endpoints are created, any traffic destined to these IPs is privately or
publicly routed to the corresponding AWS services used by your environment.

The following section describes the Amazon VPC infrastructure required to route traffic publicly
over the Internet, or privately within your Amazon VPC.

Public routing over the Internet

This section describes the Amazon VPC infrastructure of an environment with public routing. You'll
need the following VPC infrastructure:

Terms 217

Amazon Managed Workflows for Apache Airflow User Guide

• One VPC security group. A VPC security group acts as a virtual firewall to control ingress
(inbound) and egress (outbound) network traffic on an instance.

• Up to 5 security groups can be specified.

• The security group must specify a self-referencing inbound rule to itself.

• The security group must specify an outbound rule for all traffic (0.0.0.0/0; for IPv6, use
::/0).

• The security group must allow all traffic in the self-referencing rule. For example,
(Recommended) Example all access self-referencing security group .

• The security group can optionally restrict traffic further by specifying the port range for HTTPS
port range 443 and a TCP port range 5432. For example, (Optional) Example security group
that restricts inbound access to port 5432 and (Optional) Example security group that restricts
inbound access to port 443.

• Two public subnets. A public subnet is a subnet that's associated with a route table that has a
route to an Internet gateway.

• Two public subnets are required. This allows Amazon MWAA to build a new container image
for your environment in your other availability zone, if one container fails.

• The subnets must be in different Availability Zones. For example, us-east-1a, us-east-1b.

• The subnets must route to a NAT gateway (or NAT instance) with an Elastic IP Address (EIP).

• The subnets must have a route table that directs internet-bound traffic to an Internet gateway.

• Two private subnets. A private subnet is a subnet that's not associated with a route table that
has a route to an Internet gateway.

• Two private subnets are required. This allows Amazon MWAA to build a new container image
for your environment in your other availability zone, if one container fails.

• The subnets must be in different Availability Zones. For example, us-east-1a, us-east-1b.

• The subnets must have a route table to a NAT device (gateway or instance).

• The subnets must not route to an Internet gateway.

• Set assignIpV6AddressOnCreation to true for IPv6 subnets.

• For IPv6 private subnets, you must have a connection to an egress-only internet gateway
(EIGW).

• A network access control list (ACL). An NACL manages (by allow or deny rules) inbound and
outbound traffic at the subnet level.

• The NACL must have an inbound rule that allows all traffic (0.0.0.0/0; for IPv6, use ::/0).
VPC infrastructure overview 218

Amazon Managed Workflows for Apache Airflow User Guide

• The NACL must have an outbound rule that allows all traffic (0.0.0.0/0; for IPv6, use ::/0).

• For example, (Recommended) Example ACLs.

• Two NAT gateways (or NAT instances). A NAT device forwards traffic from the instances in the
private subnet to the Internet or other AWS services, and then routes the response back to the
instances.

• The NAT device must be attached to a public subnet. (One NAT device per public subnet.)

• The NAT device must have an Elastic IPv4 Address (EIP) attached to each public subnet.

• An Internet gateway. An Internet gateway connects an Amazon VPC to the Internet and other
AWS services.

• An Internet gateway must be attached to the Amazon VPC.

Private routing without Internet access

This section describes the Amazon VPC infrastructure of an environment with private routing. You'll
need the following VPC infrastructure:

• One VPC security group. A VPC security group acts as a virtual firewall to control ingress
(inbound) and egress (outbound) network traffic on an instance.

• Up to 5 security groups can be specified.

• The security group must specify a self-referencing inbound rule to itself.

• The security group must specify an outbound rule for all traffic (0.0.0.0/0; for IPv6, use
::/0).

• The security group must allow all traffic in the self-referencing rule. For example,
(Recommended) Example all access self-referencing security group .

• The security group can optionally restrict traffic further by specifying the port range for HTTPS
port range 443 and a TCP port range 5432. For example, (Optional) Example security group
that restricts inbound access to port 5432 and (Optional) Example security group that restricts
inbound access to port 443.

• Two private subnets. A private subnet is a subnet that's not associated with a route table that
has a route to an Internet gateway.

• Two private subnets are required. This allows Amazon MWAA to build a new container image
for your environment in your other availability zone, if one container fails.

• The subnets must be in different Availability Zones. For example, us-east-1a, us-east-1b.

• The subnets must have a route table to your VPC endpoints.

VPC infrastructure overview 219

Amazon Managed Workflows for Apache Airflow User Guide

• The subnets must have a route table to an EIGW in order to download from the internet as
part of a DAG.

• The subnets must not have a route table to a NAT device (gateway or instance), nor an
Internet gateway.

• A network access control list (ACL). An NACL manages (by allow or deny rules) inbound and
outbound traffic at the subnet level.

• The NACL must have an inbound rule that allows all traffic (0.0.0.0/0; for IPv6, use ::/0).

• The NACL must have an outbound rule that denies all traffic (0.0.0.0/0; for IPv6, use ::/0).

• For example, (Recommended) Example ACLs.

• A local route table. A local route table is a default route for communication within the VPC.

• The local route table must be associated to your private subnets.

• The local route table must enable instances in your VPC to communicate with your own
network. For example, if you're using an AWS Client VPN to access the VPC interface endpoint
for your Apache Airflow Web server, the route table must route to the VPC endpoint.

• VPC endpoints for each AWS service used by your environment, and Apache Airflow VPC
endpoints in the same AWS Region and Amazon VPC as your Amazon MWAA environment.

• A VPC endpoint for each AWS service used by the environment and VPC endpoints for Apache
Airflow. For example, (Required) VPC endpoints.

• The VPC endpoints must have private DNS enabled.

• The VPC endpoints must be associated to your environment's two private subnets.

• The VPC endpoints must be associated to your environment's security group.

• The VPC endpoint policy for each endpoint should be configured to allow access to AWS
services used by the environment. For example, (Recommended) Example VPC endpoint policy
to allow all access.

• A VPC endpoint policy for Amazon S3 should be configured to allow bucket access. For
example, (Recommended) Example Amazon S3 gateway endpoint policy to allow bucket
access.

Example use cases for an Amazon VPC and Apache Airflow access mode

This section descibes the different use cases for network access in your Amazon VPC and the
Apache Airflow Web server access mode you should choose on the Amazon MWAA console.

Example use cases for an Amazon VPC and Apache Airflow access mode 220

Amazon Managed Workflows for Apache Airflow User Guide

Internet access is allowed - new Amazon VPC network

If Internet access in your VPC is allowed by your organization, and you would like users to access
your Apache Airflow Web server over the Internet:

1. Create an Amazon VPC network with Internet access.

2. Create an environment with the Public network access mode for your Apache Airflow Web
server.

3. What we recommend: We recommend using the AWS CloudFormation quick-start template
that creates the Amazon VPC infrastructure, an Amazon S3 bucket, and an Amazon MWAA
environment at the same time. To learn more, refer to Quick start tutorial for Amazon
Managed Workflows for Apache Airflow.

If Internet access in your VPC is allowed by your organization, and you would like to limit Apache
Airflow Web server access to users within your VPC:

1. Create an Amazon VPC network with Internet access.

2. Create a mechanism to access the VPC interface endpoint for your Apache Airflow Web server
from your computer.

3. Create an environment with the Private network access mode for your Apache Airflow Web
server.

4. What we recommend:

a. We recommend using the Amazon MWAA console in Option one: Creating the VPC
network on the Amazon MWAA console, or the AWS CloudFormation template in Option
two: Creating an Amazon VPC network with Internet access.

b. We recommend configuring access using an AWS Client VPN to your Apache Airflow Web
server in Tutorial: Configuring private network access using an AWS Client VPN.

Internet access is not allowed - new Amazon VPC network

If Internet access in your VPC is not allowed by your organization:

1. Create an Amazon VPC network without Internet access.

2. Create a mechanism to access the VPC interface endpoint for your Apache Airflow Web server
from your computer.

Example use cases for an Amazon VPC and Apache Airflow access mode 221

Amazon Managed Workflows for Apache Airflow User Guide

3. Create VPC endpoints for each AWS service used by your environment.

4. Create an environment with the Private network access mode for your Apache Airflow Web
server.

5. What we recommend:

a. We recommend using the AWS CloudFormation template to create an Amazon VPC
without Internet access and the VPC endpoints for each AWS service used by Amazon
MWAA in Option three: Creating an Amazon VPC network without Internet access.

b. We recommend configuring access using an AWS Client VPN to your Apache Airflow Web
server in Tutorial: Configuring private network access using an AWS Client VPN.

Internet access is not allowed - existing Amazon VPC network

If Internet access in your VPC is not allowed by your organization, and you already have the
required Amazon VPC network without Internet access:

1. Create VPC endpoints for each AWS service used by your environment.

2. Create VPC endpoints for Apache Airflow.

3. Create a mechanism to access the VPC interface endpoint for your Apache Airflow Web server
from your computer.

4. Create an environment with the Private network access mode for your Apache Airflow Web
server.

5. What we recommend:

a. We recommend creating and attaching the VPC endpoints needed for each AWS service
used by Amazon MWAA, and the VPC endpoints needed for Apache Airflow in Creating the
required VPC service endpoints in an Amazon VPC with private routing.

b. We recommend configuring access using an AWS Client VPN to your Apache Airflow Web
server in Tutorial: Configuring private network access using an AWS Client VPN.

Security in your VPC on Amazon MWAA

This page describes the Amazon VPC components used to secure your Amazon Managed
Workflows for Apache Airflow environment and the configurations needed for these components.

Contents

Security in your VPC 222

Amazon Managed Workflows for Apache Airflow User Guide

• Terms

• Security overview

• Network access control lists (ACLs)

• (Recommended) Example ACLs

• VPC security groups

• (Recommended) Example all access self-referencing security group

• (Optional) Example security group that restricts inbound access to port 5432

• (Optional) Example security group that restricts inbound access to port 443

• VPC endpoint policies (private routing only)

• (Recommended) Example VPC endpoint policy to allow all access

• (Recommended) Example Amazon S3 gateway endpoint policy to allow bucket access

Terms

Public routing

An Amazon VPC network that has access to the Internet.

Private routing

An Amazon VPC network without access to the Internet.

Security overview

Security groups and access control lists (ACLs) provide ways to control the network traffic across
the subnets and instances in your Amazon VPC using rules you specify.

• Network traffic to and from a subnet can be controlled by Access Control Lists (ACLs). You only
need one ACL, and the same ACL can be used on multiple environments.

• Network traffic to and from an instance can be controlled by an Amazon VPC security group. You
can use between one to five security groups per environment.

• Network traffic to and from an instance can also be controlled by VPC endpoint policies. If
Internet access within your Amazon VPC is not allowed by your organization and you're using an
Amazon VPC network with private routing, a VPC endpoint policy is required for the AWS VPC
endpoints and Apache Airflow VPC endpoints.

Terms 223

Amazon Managed Workflows for Apache Airflow User Guide

Network access control lists (ACLs)

A network access control list (ACL) can manage (by allow or deny rules) inbound and outbound
traffic at the subnet level. An ACL is stateless, which means that inbound and outbound rules must
be specified separately and explicitly. It is used to specify the types of network traffic that are
allowed in or out from the instances in a VPC network.

Every Amazon VPC has a default ACL that allows all inbound and outbound traffic. You can edit the
default ACL rules, or create a custom ACL and attach it to your subnets. A subnet can only have one
ACL attached to it at any time, but one ACL can be attached to multiple subnets.

(Recommended) Example ACLs

The following example shows the inbound and outbound ACL rules that can be used for an Amazon
VPC with public routing or private routing.

Rule number Type Protocol Port range Source Allow/Deny

100 All IPv4
traffic

All All 0.0.0.0/0 Allow

* All IPv4
traffic

All All 0.0.0.0/0 Deny

VPC security groups

A VPC security group acts as a virtual firewall that controls the network traffic at the instance
level. A security group is stateful, which means that when an inbound connection is permitted, it
is allowed to reply. It is used to specify the types of network traffic that are allowed in from the
instances in a VPC network.

Every Amazon VPC has a default security group. By default, it has no inbound rules. It has an
outbound rule that allows all outbound traffic. You can edit the default security group rules, or
create a custom security group and attach it to your Amazon VPC. On Amazon MWAA, you need to
configure inbound and outbound rules to direct traffic on your NAT gateways.

Network access control lists (ACLs) 224

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Managed Workflows for Apache Airflow User Guide

(Recommended) Example all access self-referencing security group

The following example shows the inbound security group rules that allows all traffic for an Amazon
VPC with public routing or private routing. The security group in this example is a self-referencing
rule to itself.

Type Protocol Source Type Source

All traffic All All sg-0909e8
e81919 /
my-mwaa-v
pc-security-
group

The following example shows the outbound security group rules.

Type Protocol Source Type Source

All traffic All All 0.0.0.0/0

(Optional) Example security group that restricts inbound access to port 5432

The following example shows the inbound security group rules that allow all HTTPS traffic on port
5432 for the Amazon Aurora PostgreSQL metadata database (owned by Amazon MWAA) for your
environment.

Note

If you choose to restrict traffic using this rule, you'll need to add another rule to allow TCP
traffic on port 443.

Type Protocol Port range Source type Source

Custom TCP TCP 5432 Custom sg-0909e8
e81919 /

VPC security groups 225

Amazon Managed Workflows for Apache Airflow User Guide

Type Protocol Port range Source type Source

my-mwaa-v
pc-security-
group

(Optional) Example security group that restricts inbound access to port 443

The following example shows the inbound security group rules that allow all TCP traffic on port
443 for the Apache Airflow Web server.

Type Protocol Port range Source type Source

HTTPS TCP 443 Custom sg-0909e8
e81919 /
my-mwaa-v
pc-security-
group

VPC endpoint policies (private routing only)

A VPC endpoint (AWS PrivateLink) policy controls access to AWS services from your private subnet.
A VPC endpoint policy is an IAM resource policy that you attach to your VPC gateway or interface
endpoint. This section describes the permissions needed for the VPC endpoint policies for each VPC
endpoint.

We recommend using a VPC interface endpoint policy for each of the VPC endpoints you created
that allows full access to all AWS services, and using your execution role exclusively for AWS
permissions.

(Recommended) Example VPC endpoint policy to allow all access

The following example shows a VPC interface endpoint policy for an Amazon VPC with private
routing.

{
 "Statement": [
 {

VPC endpoint policies (private routing only) 226

https://docs.aws.amazon.com/mwaa/latest/userguide/vpc-create.html#vpc-create-required

Amazon Managed Workflows for Apache Airflow User Guide

 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 }
]
}

(Recommended) Example Amazon S3 gateway endpoint policy to allow bucket
access

The following example shows a VPC gateway endpoint policy that provides access to the Amazon
S3 buckets required for Amazon ECR operations for an Amazon VPC with private routing. This is
required for your Amazon ECR image to be retrieved, in addition to the bucket where your DAGs
and supporting files are stored.

{
 "Statement": [
 {
 "Sid": "Access-to-specific-bucket-only",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::prod-us-east-1-starport-layer-bucket/*"]
 }
]
}

Managing access to service-specific Amazon VPC endpoints on
Amazon MWAA

A VPC endpoint (AWS PrivateLink) enables you to privately connect your VPC to services hosted on
AWS without requiring an Internet gateway, a NAT device, VPN, or firewall proxies. These endpoints
are horizontally scalable and highly available virtual devices that allow communication between
instances in your VPC and AWS services. This page describes the VPC endpoints created by Amazon
MWAA, and how to access the VPC endpoint for your Apache Airflow Web server if you've chosen
the Private network access mode on Amazon Managed Workflows for Apache Airflow.

Managing access to VPC endpoints 227

Amazon Managed Workflows for Apache Airflow User Guide

Contents

• Pricing

• VPC endpoint overview

• Public network access mode

• Private network access mode

• Permission to use other AWS services

• Viewing VPC endpoints

• Viewing VPC endpoints on the Amazon VPC console

• Identifying the private IP addresses of your Apache Airflow Web server and its VPC endpoint

• Accessing the VPC endpoint for your Apache Airflow Web server (private network access)

• Using an AWS Client VPN

• Using a Linux Bastion Host

• Using a Load Balancer (advanced)

Pricing

• AWS PrivateLink Pricing

VPC endpoint overview

When you create an Amazon MWAA environment, Amazon MWAA creates between one to two VPC
endpoints for your environment. These endpoints appear as Elastic Network Interfaces (ENIs) with
private IPs in your Amazon VPC. After these endpoints are created, any traffic destined to these IPs
is privately or publicly routed to the corresponding AWS services used by your environment.

Public network access mode

If you chose the Public network access mode for your Apache Airflow Web server, network traffic is
publicly routed over the Internet.

• Amazon MWAA creates a VPC interface endpoint for your Amazon Aurora PostgreSQL metadata
database. The endpoint is created in the Availability Zones mapped to your private subnets and
is independent from other AWS accounts.

Pricing 228

https://aws.amazon.com/privatelink/pricing/

Amazon Managed Workflows for Apache Airflow User Guide

• Amazon MWAA then binds an IP address from your private subnets to the interface endpoints.
This is designed to support the best practice of binding a single IP from each Availability Zone of
the Amazon VPC.

Private network access mode

If you chose the Private network access mode for your Apache Airflow Web server, network traffic
is privately routed within your Amazon VPC.

• Amazon MWAA creates a VPC interface endpoint for your Apache Airflow Web server, and an
interface endpoint for your Amazon Aurora PostgreSQL metadata database. The endpoints are
created in the Availability Zones mapped to your private subnets and is independent from other
AWS accounts.

• Amazon MWAA then binds an IP address from your private subnets to the interface endpoints.
This is designed to support the best practice of binding a single IP from each Availability Zone of
the Amazon VPC.

Permission to use other AWS services

The interface endpoints use the execution role for your environment in AWS Identity and Access
Management (IAM) to manage permission to AWS resources used by your environment. As more
AWS services are enabled for an environment, each service will require you to configure permission
using your environment's execution role. To add permissions, refer to Amazon MWAA execution
role.

If you've chosen the Private network access mode for your Apache Airflow Web server, you must
also allow permission in the VPC endpoint policy for each endpoint. To learn more, refer to the
section called “VPC endpoint policies (private routing only)”.

Viewing VPC endpoints

This section describes how to view the VPC endpoints created by Amazon MWAA, and how to
identify the private IP addresses for your Apache Airflow VPC endpoint.

Viewing VPC endpoints on the Amazon VPC console

The following section shows the steps to view the VPC endpoint(s) created by Amazon MWAA, and
any VPC endpoints you may have created if you're using private routing for your Amazon VPC.

Permission to use other AWS services 229

Amazon Managed Workflows for Apache Airflow User Guide

To view the VPC endpoint(s)

1. Open the Endpoints page on the Amazon VPC console.

2. Use the AWS Region selector to select your region.

3. You should see the VPC interface endpoint(s) created by Amazon MWAA, and any VPC
endpoints you may have created if you're using private routing in your Amazon VPC.

To learn more about the VPC service endpoints that are required for an Amazon VPC with private
routing, refer to Creating the required VPC service endpoints in an Amazon VPC with private
routing.

Identifying the private IP addresses of your Apache Airflow Web server and its
VPC endpoint

The following steps describe how to retrieve the host name of your Apache Airflow Web server and
its VPC interface endpoint, and their private IP addresses.

1. Use the following AWS Command Line Interface (AWS CLI) command to retrieve the host name
for your Apache Airflow Web server.

aws mwaa get-environment --name YOUR_ENVIRONMENT_NAME --query
 'Environment.WebserverUrl'

You should see something similar to the following response:

"99aa99aa-55aa-44a1-a91f-f4552cf4e2f5-vpce.c10.us-west-2.airflow.amazonaws.com"

2. Run a dig command on the host name returned in the response of the previous command. For
example:

dig CNAME +short 99aa99aa-55aa-44a1-a91f-f4552cf4e2f5-vpce.c10.us-
west-2.airflow.amazonaws.com

You should see something similar to the following response:

vpce-0699aa333a0a0a0-bf90xjtr.vpce-svc-00bb7c2ca2213bc37.us-
west-2.vpce.amazonaws.com.

Viewing VPC endpoints 230

https://console.aws.amazon.com/vpc/home#Endpoints:

Amazon Managed Workflows for Apache Airflow User Guide

3. Use the following AWS Command Line Interface (AWS CLI) command to retrieve the VPC
endpoint DNS name returned in the response of the previous command. For example:

aws ec2 describe-vpc-endpoints | grep vpce-0699aa333a0a0a0-bf90xjtr.vpce-
svc-00bb7c2ca2213bc37.us-west-2.vpce.amazonaws.com.

You should see something similar to the following response:

"DnsName": "vpce-066777a0a0a0-bf90xjtr.vpce-svc-00bb7c2ca2213bc37.us-
west-2.vpce.amazonaws.com",

4. Run either an nslookup or dig command on your Apache Airflow host name and its VPC
endpoint DNS name to retrieve the IP addresses. For example:

dig +short YOUR_AIRFLOW_HOST_NAME YOUR_AIRFLOW_VPC_ENDPOINT_DNS

You should see something similar to the following response:

192.0.5.1
 192.0.6.1

Accessing the VPC endpoint for your Apache Airflow Web server
(private network access)

If you've chosen the Private network access mode for your Apache Airflow Web server, you'll need
to create a mechanism to access the VPC interface endpoint for your Apache Airflow Web server.
You must use the same Amazon VPC, VPC security group, and private subnets as your Amazon
MWAA environment for these resources.

Using an AWS Client VPN

AWS Client VPN is a managed client-based VPN service that enables you to securely access your
AWS resources and resources in your on-premises network. It provides a secure TLS connection
from any location using the OpenVPN client.

We recommend following the Amazon MWAA tutorial to configure a Client VPN: Tutorial:
Configuring private network access using an AWS Client VPN.

Accessing the VPC endpoint for your Apache Airflow Web server (private network access) 231

Amazon Managed Workflows for Apache Airflow User Guide

Using a Linux Bastion Host

A bastion host is a server whose purpose is to provide access to a private network from an external
network, such as over the Internet from your computer. Linux instances are in a public subnet, and
they are set up with a security group that allows SSH access from the security group attached to
the underlying Amazon EC2 instance running the bastion host.

We recommend following the Amazon MWAA tutorial to configure a Linux Bastion Host: Tutorial:
Configuring private network access using a Linux Bastion Host.

Using a Load Balancer (advanced)

The following section shows the configurations you'll need to apply to an Application Load
Balancer.

1. Target groups. You'll need to use target groups that point to the private IP addresses for
your Apache Airflow Web server, and its VPC interface endpoint. We recommend specifying
both private IP addresses as your registered targets, as using only one can reduce availability.
For more information on how to identify the private IP addresses, refer to the section called
“Identifying the private IP addresses of your Apache Airflow Web server and its VPC endpoint”.

2. Status codes. We recommend using 200 and 302 status codes in your target group settings.
Otherwise, the targets may be flagged as unhealthy if the VPC endpoint for the Apache
Airflow Web server responds with a 302 Redirect error.

3. HTTPS Listener. You'll need to specify the target port for the Apache Airflow Web server. For
example:

Protocol Port

HTTPS 443

4. ACM new domain. If you want to associate an SSL/TLS certificate in AWS Certificate Manager,
you'll need to create a new domain for the HTTPS listener for your load balancer.

5. ACM certificate region. If you want to associate an SSL/TLS certificate in AWS Certificate
Manager, you'll need to upload to the same AWS Region as your environment. For example:

Accessing the VPC endpoint for your Apache Airflow Web server (private network access) 232

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/tutorial-application-load-balancer-cli.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/tutorial-application-load-balancer-cli.html

Amazon Managed Workflows for Apache Airflow User Guide

• Example region to upload certificate

aws acm import-certificate --certificate fileb://Certificate.pem --certificate-
chain fileb://CertificateChain.pem --private-key fileb://PrivateKey.pem --
region us-west-2

Creating the required VPC service endpoints in an Amazon VPC
with private routing

An existing Amazon VPC network without Internet access needs additional VPC service endpoints
(AWS PrivateLink) to use Apache Airflow on Amazon Managed Workflows for Apache Airflow. This
page describes the VPC endpoints required for the AWS services used by Amazon MWAA, the VPC
endpoints required for Apache Airflow, and how to create and attach the VPC endpoints to an
existing Amazon VPC with private routing.

Contents

• Pricing

• Private network and private routing

• (Required) VPC endpoints

• Attaching the required VPC endpoints

• VPC endpoints required for AWS services

• VPC endpoints required for Apache Airflow

• (Optional) Enable private IP addresses for your Amazon S3 VPC interface endpoint

• Using Route 53

• VPCs with custom DNS

Pricing

• AWS PrivateLink Pricing

VPC service endpoints in private Amazon VPCs 233

https://aws.amazon.com/privatelink/pricing/

Amazon Managed Workflows for Apache Airflow User Guide

Private network and private routing

The private network access mode limits access to the Apache Airflow UI to users within your
Amazon VPC that have been granted access to the IAM policy for your environment.

When you create an environment with private web server access, you must package all
of your dependencies in a Python wheel archive (.whl), then reference the .whl in your
requirements.txt. For instructions on packaging and installing your dependencies using wheel,
refer to Managing dependencies using Python wheel.

The following image shows where to find the Private network option on the Amazon MWAA
console.

• Private routing. An Amazon VPC without Internet access limits network traffic within the VPC.
This page assumes your Amazon VPC does not have Internet access and requires VPC endpoints

Private network and private routing 234

Amazon Managed Workflows for Apache Airflow User Guide

for each AWS service used by your environment, and VPC endpoints for Apache Airflow in the
same AWS Region and Amazon VPC as your Amazon MWAA environment.

(Required) VPC endpoints

The following section shows the required VPC endpoints needed for an Amazon VPC without
Internet access. It lists the VPC endpoints for each AWS service used by Amazon MWAA, including
the VPC endpoints needed for Apache Airflow.

com.amazonaws.us-east-1.s3
com.amazonaws.us-east-1.monitoring
com.amazonaws.us-east-1.logs
com.amazonaws.us-east-1.sqs
com.amazonaws.us-east-1.kms

Note

When using Transit Gateway or any other routing that does not go directly to the AWS
API endpoints, we recommend you to add AWS PrivateLink to your Amazon MWAA private
subnets for the following services:

• Amazon S3

• Amazon SQS

• CloudWatch Logs

• CloudWatch metrics

• AWS KMS (if applicable)

This ensures that your Amazon MWAA environment can securely and efficiently
communicate with these services without routing traffic through the public internet,
thereby improving security and performance.

Attaching the required VPC endpoints

This section describes the steps to attach the required VPC endpoints for an Amazon VPC with
private routing.

(Required) VPC endpoints 235

Amazon Managed Workflows for Apache Airflow User Guide

VPC endpoints required for AWS services

The following section shows the steps to attach the VPC endpoints for the AWS services used by an
environment to an existing Amazon VPC.

To attach VPC endpoints to your private subnets

1. Open the Endpoints page on the Amazon VPC console.

2. Use the AWS Region selector to select your region.

3. Create the endpoint for Amazon S3:

a. Choose Create Endpoint.

b. In the Filter by attributes or search by keyword text field, type: .s3, then press Enter on
your keyboard.

c. We recommend choosing the service endpoint listed for the Gateway type.

For example, com.amazonaws.us-west-2.s3 amazon Gateway

d. Choose your environment's Amazon VPC in VPC.

e. Ensure that your two private subnets in different Availability Zones are selected, and that
that private DNS is enabled by selecting Enable DNS name.

f. Choose your environment's Amazon VPC security group(s).

g. Choose Full Access in Policy.

h. Choose Create endpoint.

4. Create the endpoint for CloudWatch Logs:

a. Choose Create Endpoint.

b. In the Filter by attributes or search by keyword text field, type: .logs, then press Enter on
your keyboard.

c. Select the service endpoint.

d. Choose your environment's Amazon VPC in VPC.

e. Ensure that your two private subnets in different Availability Zones are selected, and that
Enable DNS name is enabled.

f. Choose your environment's Amazon VPC security group(s).

g. Choose Full Access in Policy.

h. Choose Create endpoint.
Attaching the required VPC endpoints 236

https://console.aws.amazon.com/vpc/home#Endpoints:sort=vpcEndpointType

Amazon Managed Workflows for Apache Airflow User Guide

5. Create the endpoint for CloudWatch Monitoring:

a. Choose Create Endpoint.

b. In the Filter by attributes or search by keyword text field, type: .monitoring, then press
Enter on your keyboard.

c. Select the service endpoint.

d. Choose your environment's Amazon VPC in VPC.

e. Ensure that your two private subnets in different Availability Zones are selected, and that
Enable DNS name is enabled.

f. Choose your environment's Amazon VPC security group(s).

g. Choose Full Access in Policy.

h. Choose Create endpoint.

6. Create the endpoint for Amazon SQS:

a. Choose Create Endpoint.

b. In the Filter by attributes or search by keyword text field, type: .sqs, then press Enter on
your keyboard.

c. Select the service endpoint.

d. Choose your environment's Amazon VPC in VPC.

e. Ensure that your two private subnets in different Availability Zones are selected, and that
Enable DNS name is enabled.

f. Choose your environment's Amazon VPC security group(s).

g. Choose Full Access in Policy.

h. Choose Create endpoint.

7. Create the endpoint for AWS KMS:

a. Choose Create Endpoint.

b. In the Filter by attributes or search by keyword text field, type: .kms, then press Enter on
your keyboard.

c. Select the service endpoint.

d. Choose your environment's Amazon VPC in VPC.

e. Ensure that your two private subnets in different Availability Zones are selected, and that
Enable DNS name is enabled.Attaching the required VPC endpoints 237

Amazon Managed Workflows for Apache Airflow User Guide

f. Choose your environment's Amazon VPC security group(s).

g. Choose Full Access in Policy.

h. Choose Create endpoint.

VPC endpoints required for Apache Airflow

The following section shows the steps to attach the VPC endpoints for Apache Airflow to an
existing Amazon VPC.

To attach VPC endpoints to your private subnets

1. Open the Endpoints page on the Amazon VPC console.

2. Use the AWS Region selector to select your region.

3. Create the endpoint for the Apache Airflow API:

a. Choose Create Endpoint.

b. In the Filter by attributes or search by keyword text field, type: .airflow.api, then press
Enter on your keyboard.

c. Select the service endpoint.

d. Choose your environment's Amazon VPC in VPC.

e. Ensure that your two private subnets in different Availability Zones are selected, and that
Enable DNS name is enabled.

f. Choose your environment's Amazon VPC security group(s).

g. Choose Full Access in Policy.

h. Choose Create endpoint.

4. Create the first endpoint for the Apache Airflow environment:

a. Choose Create Endpoint.

b. In the Filter by attributes or search by keyword text field, type: .airflow.env, then press
Enter on your keyboard.

c. Select the service endpoint.

d. Choose your environment's Amazon VPC in VPC.

e. Ensure that your two private subnets in different Availability Zones are selected, and that
Enable DNS name is enabled.

Attaching the required VPC endpoints 238

https://console.aws.amazon.com/vpc/home#Endpoints:sort=vpcEndpointType

Amazon Managed Workflows for Apache Airflow User Guide

f. Choose your environment's Amazon VPC security group(s).

g. Choose Full Access in Policy.

h. Choose Create endpoint.

5. Create the second endpoint for Apache Airflow operations:

a. Choose Create Endpoint.

b. In the Filter by attributes or search by keyword text field, type: .airflow.ops, then press
Enter on your keyboard.

c. Select the service endpoint.

d. Choose your environment's Amazon VPC in VPC.

e. Ensure that your two private subnets in different Availability Zones are selected, and that
Enable DNS name is enabled.

f. Choose your environment's Amazon VPC security group(s).

g. Choose Full Access in Policy.

h. Choose Create endpoint.

(Optional) Enable private IP addresses for your Amazon S3 VPC
interface endpoint

Amazon S3 Interface endpoints don't support private DNS. The S3 endpoint requests still resolves
to a public IP address. To resolve the S3 address to a private IP address, you need to add a private
hosted zone in Route 53 for the S3 regional endpoint.

Using Route 53

This section describes the steps to enable private IP addresses for an S3 Interface endpoint using
Route 53.

1. Create a Private Hosted Zone for your Amazon S3 VPC interface endpoint (such as, s3.eu-
west-1.amazonaws.com) and associate it with your Amazon VPC.

2. Create an ALIAS A record for your Amazon S3 VPC interface endpoint (such as, s3.eu-
west-1.amazonaws.com) that resolves to your VPC Interface Endpoint DNS name.

3. Create an ALIAS A wildcard record for your Amazon S3 interface endpoint (such as, *.s3.eu-
west-1.amazonaws.com) that resolves to the VPC Interface Endpoint DNS name.

(Optional) Enable private IP addresses for your Amazon S3 VPC interface endpoint 239

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html

Amazon Managed Workflows for Apache Airflow User Guide

VPCs with custom DNS

If your Amazon VPC uses custom DNS routing, you need to make the changes in your DNS resolver
(not Route 53, typically an EC2 instance running a DNS server) by creating a CNAME record. For
example:

Name: s3.us-west-2.amazonaws.com
Type: CNAME
Value: *.vpce-0f67d23e37648915c-e2q2e2j3.s3.us-west-2.vpce.amazonaws.com

Managing your own Amazon VPC endpoints on Amazon MWAA

Amazon MWAA uses Amazon VPC endpoints to integrate with various AWS services necessary to
set up an Apache Airflow environment. Managing your own endpoints has two primary use-cases:

1. It means you can create Apache Airflow environments in a shared Amazon VPC when you use an
AWS Organizations to manage multiple AWS accounts and share resources.

2. It let's you use more restrictive access policies by narrowing down your permissions to the
specific resources that use your endpoints.

If you choose to manage your own VPC endpoints, you are responsible for creating your own
endpoints for the environment RDS for PostgreSQL database, and for the environment web server.

For more information about how Amazon MWAA deploys Apache Airflow in the cloud, refer to the
Amazon MWAA architecture diagram.

Important

Amazon MWAA does not validate the IP address type (AddressType) selection for
customer-managed endpoints, so make sure you correctly specify AddressType (valid
options are IPv4 or IPv6).

Creating an environment in a shared Amazon VPC

If you use AWS Organizations to manage multiple AWS accounts that share resources, you can
use customer managed VPC endpoints with Amazon MWAA to share environment resources with
another account in your organization.

Managing your own Amazon VPC endpoints 240

https://aws.amazon.com/organizations/
https://aws.amazon.com/organizations/

Amazon Managed Workflows for Apache Airflow User Guide

When you configure shared VPC access, the account that owns the main Amazon VPC (owner)
shares the two private subnets required by Amazon MWAA with other accounts (participants) that
belong to the same organization. Participant accounts that share those subnets can view, create,
modify, and delete environments in the shared Amazon VPC.

Assume you have an account, Owner, which acts as the Root account in the organization and
owns the Amazon VPC resources, and a participant account, Participant, a member of the same
organization. When Participant creates a new Amazon MWAA in Amazon VPC it shares with
Owner, Amazon MWAA will first create the service VPC resources, then enter a PENDING state for
up to 72 hours.

After the environment status changes from CREATING to PENDING, a principal acting on behalf of
Owner creates the required endpoints. To do this, Amazon MWAA lists the database and web server
endpoint in the Amazon MWAA console. You can also call the GetEnvironment API action to get
the service endpoints.

Note

If the Amazon VPC you use to share resources is a private Amazon VPC, you must still
complete the steps described in the section called “Managing access to VPC endpoints”.
The topic covers setting up a different set of Amazon VPC endpoints related to other AWS
services that AWS integrates with, such as Amazon ECR, Amazon ECS, and Amazon SQS.
These services are essential in operating, and managing, your Apache Airflow environment
in the cloud.

Prerequisites

Before you create an Amazon MWAA environment in a shared VPC, you need the following
resources:

• An AWS account, Owner to be used as the account that owns the Amazon VPC.

• An AWS Organizations organization unit, MyOrganization created as a root.

• A second AWS account, Participant, under MyOrganization to serve the participant account
that creates the new environment.

In addition, we recommend that you familiarize yourself with the responsibilities and permissions
for owners and participants when sharing resources in Amazon VPC.

Creating an environment in a shared Amazon VPC 241

https://docs.aws.amazon.com/mwaa/latest/API/API_Environment.html#mwaa-Type-Environment-Status
https://aws.amazon.com/organizations/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations

Amazon Managed Workflows for Apache Airflow User Guide

Create the Amazon VPC

First, create a new Amazon VPC that the owner and participant accounts will share:

1. Sign in to the console using Owner, then, open the AWS CloudFormation console. Use the
following template to create a stack. This stack provisions a number of networking resources
including a Amazon VPC, and the subnets that the two accounts will share in this scenario.

AWSTemplateFormatVersion: "2010-09-09"
 Description: >-
 This template deploys a VPC, with a pair of public and private subnets spread
 across two Availability Zones. It deploys an internet gateway, with a default
 route on the public subnets. It deploys a pair of NAT gateways (one in each
 AZ), and default routes for them in the private subnets.
 Parameters:
 EnvironmentName:
 Description: An environment name that is prefixed to resource names
 Type: String
 Default: mwaa-
 VpcCIDR:
 Description: Please enter the IP range (CIDR notation) for this VPC
 Type: String
 Default: 10.192.0.0/16
 PublicSubnet1CIDR:
 Description: >-
 Please enter the IP range (CIDR notation) for the public subnet in the
 first Availability Zone
 Type: String
 Default: 10.192.10.0/24
 PublicSubnet2CIDR:
 Description: >-
 Please enter the IP range (CIDR notation) for the public subnet in the
 second Availability Zone
 Type: String
 Default: 10.192.11.0/24
 PrivateSubnet1CIDR:
 Description: >-
 Please enter the IP range (CIDR notation) for the private subnet in the
 first Availability Zone
 Type: String
 Default: 10.192.20.0/24
 PrivateSubnet2CIDR:
 Description: >-

Creating an environment in a shared Amazon VPC 242

Amazon Managed Workflows for Apache Airflow User Guide

 Please enter the IP range (CIDR notation) for the private subnet in the
 second Availability Zone
 Type: String
 Default: 10.192.21.0/24
 Resources:
 VPC:
 Type: 'AWS::EC2::VPC'
 Properties:
 CidrBlock: !Ref VpcCIDR
 EnableDnsSupport: true
 EnableDnsHostnames: true
 Tags:
 - Key: Name
 Value: !Ref EnvironmentName
 InternetGateway:
 Type: 'AWS::EC2::InternetGateway'
 Properties:
 Tags:
 - Key: Name
 Value: !Ref EnvironmentName
 InternetGatewayAttachment:
 Type: 'AWS::EC2::VPCGatewayAttachment'
 Properties:
 InternetGatewayId: !Ref InternetGateway
 VpcId: !Ref VPC
 PublicSubnet1:
 Type: 'AWS::EC2::Subnet'
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select
 - 0
 - !GetAZs ''
 CidrBlock: !Ref PublicSubnet1CIDR
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub '${EnvironmentName} Public Subnet (AZ1)'
 PublicSubnet2:
 Type: 'AWS::EC2::Subnet'
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select
 - 1
 - !GetAZs ''

Creating an environment in a shared Amazon VPC 243

Amazon Managed Workflows for Apache Airflow User Guide

 CidrBlock: !Ref PublicSubnet2CIDR
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub '${EnvironmentName} Public Subnet (AZ2)'
 PrivateSubnet1:
 Type: 'AWS::EC2::Subnet'
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select
 - 0
 - !GetAZs ''
 CidrBlock: !Ref PrivateSubnet1CIDR
 MapPublicIpOnLaunch: false
 Tags:
 - Key: Name
 Value: !Sub '${EnvironmentName} Private Subnet (AZ1)'
 PrivateSubnet2:
 Type: 'AWS::EC2::Subnet'
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select
 - 1
 - !GetAZs ''
 CidrBlock: !Ref PrivateSubnet2CIDR
 MapPublicIpOnLaunch: false
 Tags:
 - Key: Name
 Value: !Sub '${EnvironmentName} Private Subnet (AZ2)'
 NatGateway1EIP:
 Type: 'AWS::EC2::EIP'
 DependsOn: InternetGatewayAttachment
 Properties:
 Domain: vpc
 NatGateway2EIP:
 Type: 'AWS::EC2::EIP'
 DependsOn: InternetGatewayAttachment
 Properties:
 Domain: vpc
 NatGateway1:
 Type: 'AWS::EC2::NatGateway'
 Properties:
 AllocationId: !GetAtt NatGateway1EIP.AllocationId
 SubnetId: !Ref PublicSubnet1

Creating an environment in a shared Amazon VPC 244

Amazon Managed Workflows for Apache Airflow User Guide

 NatGateway2:
 Type: 'AWS::EC2::NatGateway'
 Properties:
 AllocationId: !GetAtt NatGateway2EIP.AllocationId
 SubnetId: !Ref PublicSubnet2
 PublicRouteTable:
 Type: 'AWS::EC2::RouteTable'
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub '${EnvironmentName} Public Routes'
 DefaultPublicRoute:
 Type: 'AWS::EC2::Route'
 DependsOn: InternetGatewayAttachment
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnet1RouteTableAssociation:
 Type: 'AWS::EC2::SubnetRouteTableAssociation'
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet1
 PublicSubnet2RouteTableAssociation:
 Type: 'AWS::EC2::SubnetRouteTableAssociation'
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet2
 PrivateRouteTable1:
 Type: 'AWS::EC2::RouteTable'
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub '${EnvironmentName} Private Routes (AZ1)'
 DefaultPrivateRoute1:
 Type: 'AWS::EC2::Route'
 Properties:
 RouteTableId: !Ref PrivateRouteTable1
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId: !Ref NatGateway1
 PrivateSubnet1RouteTableAssociation:
 Type: 'AWS::EC2::SubnetRouteTableAssociation'

Creating an environment in a shared Amazon VPC 245

Amazon Managed Workflows for Apache Airflow User Guide

 Properties:
 RouteTableId: !Ref PrivateRouteTable1
 SubnetId: !Ref PrivateSubnet1
 PrivateRouteTable2:
 Type: 'AWS::EC2::RouteTable'
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub '${EnvironmentName} Private Routes (AZ2)'
 DefaultPrivateRoute2:
 Type: 'AWS::EC2::Route'
 Properties:
 RouteTableId: !Ref PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId: !Ref NatGateway2
 PrivateSubnet2RouteTableAssociation:
 Type: 'AWS::EC2::SubnetRouteTableAssociation'
 Properties:
 RouteTableId: !Ref PrivateRouteTable2
 SubnetId: !Ref PrivateSubnet2
 SecurityGroup:
 Type: 'AWS::EC2::SecurityGroup'
 Properties:
 GroupName: mwaa-security-group
 GroupDescription: Security group with a self-referencing inbound rule.
 VpcId: !Ref VPC
 SecurityGroupIngress:
 Type: 'AWS::EC2::SecurityGroupIngress'
 Properties:
 GroupId: !Ref SecurityGroup
 IpProtocol: '-1'
 SourceSecurityGroupId: !Ref SecurityGroup
 Outputs:
 VPC:
 Description: A reference to the created VPC
 Value: !Ref VPC
 PublicSubnets:
 Description: A list of the public subnets
 Value: !Join
 - ','
 - - !Ref PublicSubnet1
 - !Ref PublicSubnet2
 PrivateSubnets:

Creating an environment in a shared Amazon VPC 246

Amazon Managed Workflows for Apache Airflow User Guide

 Description: A list of the private subnets
 Value: !Join
 - ','
 - - !Ref PrivateSubnet1
 - !Ref PrivateSubnet2
 PublicSubnet1:
 Description: A reference to the public subnet in the 1st Availability Zone
 Value: !Ref PublicSubnet1
 PublicSubnet2:
 Description: A reference to the public subnet in the 2nd Availability Zone
 Value: !Ref PublicSubnet2
 PrivateSubnet1:
 Description: A reference to the private subnet in the 1st Availability Zone
 Value: !Ref PrivateSubnet1
 PrivateSubnet2:
 Description: A reference to the private subnet in the 2nd Availability Zone
 Value: !Ref PrivateSubnet2
 SecurityGroupIngress:
 Description: Security group with self-referencing inbound rule
 Value: !Ref SecurityGroupIngress

2. After the new Amazon VPC resources have been provisioned, navigate to the AWS Resource
Access Manager console, then choose Create resource share.

3. Choose the subnets you created in the first step from the list of available subnets you can
share with Participant.

Create the environment

Complete the following steps to create an Amazon MWAA environment with customer-managed
Amazon VPC endpoints.

1. Sign in using Participant, and open the Amazon MWAA console. Complete Step one:
Specify details to specify an Amazon S3 bucket, a DAG folder, and dependencies for your new
environment. For more information, refer to getting started.

2. On the Configure advanced settings page, under Networking, choose the subnets from the
shared Amazon VPC.

3. Under Endpoint management choose CUSTOMER from the dropdown list.

4. Keep the default for the remaining options on the page, then, choose Create environment on
the Review and create page.

Creating an environment in a shared Amazon VPC 247

Amazon Managed Workflows for Apache Airflow User Guide

The environment begins in a CREATING state, then changes to PENDING. When the environment
is PENDING, write down the Database endpoint service name and Web server endpoint service
name (if you set up a private web server) using the console.

When you create a new environment using the Amazon MWAA console. Amazon MWAA creates a
new security group with the required inbound and outbound rules. Write down the security group
ID.

In the next section, Owner will use the service endpoints and the security group ID to create new
Amazon VPC endpoints in the shared Amazon VPC.

Create the Amazon VPC endpoints

Complete the following steps to create the required Amazon VPC endpoints for your environment.

1. Sign in to the AWS Management Console using Owner, the open https://
console.aws.amazon.com/vpc/.

2. Choose Security groups from the left navigation panel, then create a new security group in
the shared Amazon VPC using the following inbound, and outbound, rules:

 Type Protocol Source type Source

Inbound
All traffic All All Your environme

nt security
group

Outbound
All traffic All All 0.0.0.0/0

Warning

The Owner account must set up a security group in the Owner account to allow traffic
from the new environment to the shared Amazon VPC. You can do this by creating a
new security group in Owner, or editing an existing one.

3. Choose Endpoints, then create new endpoints for the environment database and the web
server (if in private mode) using the endpoint service names from the previous steps. Choose

Creating an environment in a shared Amazon VPC 248

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Managed Workflows for Apache Airflow User Guide

the shared Amazon VPC, the subnets you used for the environment, and the environment's
security group.

If successful, the environment will change from PENDING back to CREATING, then finally to
AVAILABLE. When it is AVAILABLE, you can sign in to the Apache Airflow console.

Shared Amazon VPC Troubleshooting

Use the following reference to resolve issues you encounter when creating environments in a
shared Amazon VPC.

Environment in CREATE_FAILED after PENDING status

• Verify that Owner is sharing the subnets with Participant using AWS Resource Access
Manager.

• Verify that the Amazon VPC endpoints for the database and web server are created in the
same subnets associated with the environment.

• Verify that the security group used with your endpoints allows traffic from the security
groups used for the environment. The Owner account creates rules that reference the security
group in Participant as 123456789012/security-group-id:.

Type Protocol Source type Source

All traffic All All 123456789
012 /sg-0909e8
e81919

For more information, refer to Responsibilities and permissions for owners and participants

Environment stuck in PENDING status

Verify each VPC endpoint status to ensure it is Available. If you configure an environment
with a private web server, you must also create an endpoint for the web server. If the
environment is stuck in PENDING, this might indicate that the private web server endpoint is
missing.

Creating an environment in a shared Amazon VPC 249

https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations

Amazon Managed Workflows for Apache Airflow User Guide

Received The Vpc Endpoint Service 'vpce-service-name' does not exist error

If you see the following error, verify that the account creating the endpoints in the Owner
account that owns the shared VPC:

ClientError: An error occurred (InvalidServiceName) when calling the
 CreateVpcEndpoint operation:

 The Vpc Endpoint Service 'vpce-service-name' does not exist

Creating an environment in a shared Amazon VPC 250

Amazon Managed Workflows for Apache Airflow User Guide

Tutorials for Amazon Managed Workflows for Apache
Airflow

This guide includes step-by-step tutorials to using and configuring an Amazon Managed Workflows
for Apache Airflow environment.

Topics

• Tutorial: Configuring private network access using an AWS Client VPN

• Tutorial: Configuring private network access using a Linux Bastion Host

• Tutorial: Restricting an Amazon MWAA user's access to a subset of DAGs

• Tutorial: Automate managing your own environment endpoints on Amazon MWAA

Tutorial: Configuring private network access using an AWS
Client VPN

This tutorial walks you through the steps to create a VPN tunnel from your computer to the
Apache Airflow Web server for your Amazon Managed Workflows for Apache Airflow environment.
To connect to the Internet through a VPN tunnel, you'll first need to create a AWS Client VPN
endpoint. Once set up, a Client VPN endpoint acts as a VPN server allowing a secure connection
from your computer to the resources in your VPC. You'll then connect to the Client VPN from your
computer using the AWS Client VPN for Desktop.

Sections

• Private network

• Use cases

• Before you begin

• Objectives

• (Optional) Step one: Identify your VPC, CIDR rules, and VPC security(s)

• Step two: Create the server and client certificates

• Step three: Save the AWS CloudFormation template locally

• Step four: Create the Client VPN AWS CloudFormation stack

• Step five: Associate subnets to your Client VPN

Tutorial: AWS Client VPN 251

https://aws.amazon.com/vpn/client-vpn-download/

Amazon Managed Workflows for Apache Airflow User Guide

• Step six: Add an authorization ingress rule to your Client VPN

• Step seven: Download the Client VPN endpoint configuration file

• Step eight: Connect to the AWS Client VPN

• What's next?

Private network

This tutorial assumes you've chosen the Private network access mode for your Apache Airflow Web
server.

The private network access mode limits access to the Apache Airflow UI to users within your
Amazon VPC that have been granted access to the IAM policy for your environment.

When you create an environment with private web server access, you must package all
of your dependencies in a Python wheel archive (.whl), then reference the .whl in your
requirements.txt. For instructions on packaging and installing your dependencies using wheel,
refer to Managing dependencies using Python wheel.

The following image shows where to find the Private network option on the Amazon MWAA
console.

Private network 252

Amazon Managed Workflows for Apache Airflow User Guide

Use cases

You can use this tutorial before or after you've created an Amazon MWAA environment. You must
use the same Amazon VPC, VPC security group(s), and private subnets as your environment. If you
use this tutorial after you've created an Amazon MWAA environment, once you've completed the
steps, you can return to the Amazon MWAA console and change your Apache Airflow Web server
access mode to Private network.

Before you begin

1. Check for user permissions. Be sure that your account in AWS Identity and Access Management
(IAM) has sufficient permissions to create and manage VPC resources.

2. Use your Amazon MWAA VPC. This tutorial assumes that you are associating the Client VPN
to an existing VPC. The Amazon VPC must be in the same AWS Region as an Amazon MWAA
environment and have two private subnets. If you haven't created an Amazon VPC, use the
AWS CloudFormation template in Option three: Creating an Amazon VPC network without
Internet access.

Objectives

In this tutorial, you'll do the following:

1. Create a AWS Client VPN endpoint using a AWS CloudFormation template for an existing
Amazon VPC.

2. Generate server and client certificates and keys, and then upload the server certificate and key
to AWS Certificate Manager in the same AWS Region as an Amazon MWAA environment.

3. Download and modify a Client VPN endpoint configuration file for your Client VPN, and use
the file to create a VPN profile to connect using the Client VPN for Desktop.

Use cases 253

Amazon Managed Workflows for Apache Airflow User Guide

(Optional) Step one: Identify your VPC, CIDR rules, and VPC security(s)

The following section describes how to find IDs for your Amazon VPC, VPC security group, and a
way to identify the CIDR rules you'll need to create your Client VPN in subsequent steps.

Identify your CIDR rules

The following section shows how to identify the CIDR rules, which you'll need to create your Client
VPN.

To identify the CIDR for your Client VPN

1. Open the Your Amazon VPCs page on the Amazon VPC console.

2. Use the region selector in the navigation bar to choose the same AWS Region as an Amazon
MWAA environment.

3. Choose your Amazon VPC.

4. Assuming the CIDRs for your private subnets are:

• Private Subnet 1: 10.192.10.0/24

• Private Subnet 2: 10.192.11.0/24

If the CIDR for your Amazon VPC is 10.192.0.0/16, then the Client IPv4 CIDR you'd specify for
your Client VPN would be 10.192.0.0/22.

5. Save this CIDR value, and the value of your VPC ID for subsequent steps.

Identify your VPC and security group(s)

The following section shows how to find the ID of your Amazon VPC and security group(s), which
you'll need to create your Client VPN.

Note

You may be using more than one security group. You'll need to specify all of your VPC's
security groups in subsequent steps.

(Optional) Step one: Identify your VPC, CIDR rules, and VPC security(s) 254

https://console.aws.amazon.com/vpc/home#/vpcs:

Amazon Managed Workflows for Apache Airflow User Guide

To identify the security group(s)

1. Open the Security Groups page on the Amazon VPC console.

2. Use the region selector in the navigation bar to choose the AWS Region.

3. Look for the Amazon VPC in VPC ID, and identify the security groups associated with the VPC.

4. Save the ID of your security group(s) and VPC for subsequent steps.

Step two: Create the server and client certificates

A Client VPN endpoint supports 1024-bit and 2048-bit RSA key sizes only. The following section
shows how to use OpenVPN easy-rsa to generate the server and client certificates and keys, and
then upload the certificates to ACM using the AWS Command Line Interface (AWS CLI).

To create the client certificates

1. Follow these quick steps to create and upload the certificates to ACM via the AWS CLI in Client
authentication and authorization: Mutual authentication.

2. In these steps, you must specify the same AWS Region as an Amazon MWAA environment
in the AWS CLI command when uploading your server and client certificates. Here's some
examples of how to specify the region in these commands:

a. Example region for server certificate

aws acm import-certificate --certificate fileb://server.crt --private-key
 fileb://server.key --certificate-chain fileb://ca.crt --region us-west-2

b. Example region for client certificate

aws acm import-certificate --certificate fileb://client1.domain.tld.crt
 --private-key fileb://client1.domain.tld.key --certificate-chain fileb://
ca.crt --region us-west-2

c. After these steps, save the value returned in the AWS CLI response for the server
certificate and client certificate ARNs. You'll be specifying these ARNs in your AWS
CloudFormation template to create the Client VPN.

3. In these steps, a client certificate and a private key are saved to your computer. Here's an
example of where to find these credentials:

Step two: Create the server and client certificates 255

https://console.aws.amazon.com/vpc/home#/securityGroups:
https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/client-authentication.html#mutual
https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/client-authentication.html#mutual

Amazon Managed Workflows for Apache Airflow User Guide

a. Example on macOS

On macOS the contents are saved at /Users/your-user/custom_folder. If you list all
(ls -a) contents of this directory, you should see something similar to the following:

.

..
ca.crt
client1.domain.tld.crt
client1.domain.tld.key
server.crt
server.key

b. After these steps, save the contents or note the location of the client certificate in
client1.domain.tld.crt, and the private key in client1.domain.tld.key. You'll
be adding these values to the configuration file for your Client VPN.

Step three: Save the AWS CloudFormation template locally

The following section contains the AWS CloudFormation template to create the Client VPN. You
must specify the same Amazon VPC, VPC security group(s), and private subnets as your Amazon
MWAA environment.

• Copy the contents of the following template and save locally as mwaa_vpn_client.yaml.
You can also download the template.

Substitute the following values:

• YOUR_CLIENT_ROOT_CERTIFICATE_ARN – The ARN for your client1.domain.tld certificate
in ClientRootCertificateChainArn.

• YOUR_SERVER_CERTIFICATE_ARN – The ARN for your server certificate in
ServerCertificateArn.

• The Client IPv4 CIDR rule in ClientCidrBlock. A CIDR rule of 10.192.0.0/22 is
provided.

• Your Amazon VPC ID in VpcId. A VPC of vpc-010101010101 is provided.

• Your VPC security group ID(s) in SecurityGroupIds. A security group of sg-0101010101
is provided.

Step three: Save the AWS CloudFormation template locally 256

./samples/mwaa_vpn_client.zip

Amazon Managed Workflows for Apache Airflow User Guide

AWSTemplateFormatVersion: 2010-09-09
Description: This template deploys a VPN Client Endpoint.
Resources:
 ClientVpnEndpoint:
 Type: 'AWS::EC2::ClientVpnEndpoint'
 Properties:
 AuthenticationOptions:
 - Type: "certificate-authentication"
 MutualAuthentication:
 ClientRootCertificateChainArn: "YOUR_CLIENT_ROOT_CERTIFICATE_ARN"
 ClientCidrBlock: 10.192.0.0/22
 ClientConnectOptions:
 Enabled: false
 ConnectionLogOptions:
 Enabled: false
 Description: "MWAA Client VPN"
 DnsServers: []
 SecurityGroupIds:
 - sg-0101010101
 SelfServicePortal: ''
 ServerCertificateArn: "YOUR_SERVER_CERTIFICATE_ARN"
 SplitTunnel: true
 TagSpecifications:
 - ResourceType: "client-vpn-endpoint"
 Tags:
 - Key: Name
 Value: MWAA-Client-VPN
 TransportProtocol: udp
 VpcId: vpc-010101010101
 VpnPort: 443

Note

If you're using more than one security group for your environment, you can specify multiple
security groups in the following format:

SecurityGroupIds:
 - sg-0112233445566778b

Step three: Save the AWS CloudFormation template locally 257

Amazon Managed Workflows for Apache Airflow User Guide

 - sg-0223344556677889f

Step four: Create the Client VPN AWS CloudFormation stack

To create the AWS Client VPN

1. Open the AWS CloudFormation console.

2. Choose Template is ready, Upload a template file.

3. Choose Choose file, and select your mwaa_vpn_client.yaml file.

4. Choose Next, Next.

5. Select the acknowledgement, and then choose Create stack.

Step five: Associate subnets to your Client VPN

To associate private subnets to the AWS Client VPN

1. Open the Amazon VPC console.

2. Choose the Client VPN Endpoints page.

3. Select your Client VPN, and then choose the Associations tab, Associate.

4. Choose the following in the dropdown list:

• Your Amazon VPC in VPC.

• One of your private subnets in Choose a subnet to associate.

5. Choose Associate.

Note

It takes several minutes for the VPC and subnet to be associated to the Client VPN.

Step four: Create the Client VPN AWS CloudFormation stack 258

https://console.aws.amazon.com/cloudformation/home#
https://console.aws.amazon.com/vpc/home#

Amazon Managed Workflows for Apache Airflow User Guide

Step six: Add an authorization ingress rule to your Client VPN

You need to add an authorization ingress rule using the CIDR rule for your VPC to your Client VPN.
If you want to authorize specific users or groups from your Active Directory Group or SAML-based
Identity Provider (IdP), refer to the Authorization rules in the Client VPN guide.

To add the CIDR to the AWS Client VPN

1. Open the Amazon VPC console.

2. Choose the Client VPN Endpoints page.

3. Select your Client VPN, and then choose the Authorization tab, Authorize Ingress.

4. Specify the following:

• Your Amazon VPC's CIDR rule in Destination network to enable. For example:

10.192.0.0/16

• Choose Allow access to all users in Grant access to.

• Enter a descriptive name in Description.

5. Choose Add Authorization rule.

Note

Depending on the networking components for your Amazon VPC, you may also need to this
authorization ingress rule to your network access control list (NACL).

Step seven: Download the Client VPN endpoint configuration file

To download the configuration file

1. Follow these quick steps to download the Client VPN configuration file at Download the Client
VPN endpoint configuration file.

2. In these steps, you're asked to prepend a string to your Client VPN endpoint DNS name. Here's
an example:

Step six: Add an authorization ingress rule to your Client VPN 259

https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/cvpn-working-rules.html
https://console.aws.amazon.com/vpc/home#
https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/cvpn-getting-started.html#cvpn-getting-started-config
https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/cvpn-getting-started.html#cvpn-getting-started-config

Amazon Managed Workflows for Apache Airflow User Guide

• Example endpoint DNS name

If your Client VPN endpoint DNS name looks like this:

remote cvpn-endpoint-0909091212aaee1.prod.clientvpn.us-west-1.amazonaws.com 443

You can add a string to identify your Client VPN endpoint like this:

remote mwaavpn.cvpn-endpoint-0909091212aaee1.prod.clientvpn.us-
west-1.amazonaws.com 443

3. In these steps, you're asked to add the contents of the client certificate between a new set of
<cert></cert> tags and the contents of the private key between a new set of <key></key>
tags. Here's an example:

a. Open a command prompt and change directories to the location of your client certificate
and private key.

b. Example macOS client1.domain.tld.crt

To show the contents of the client1.domain.tld.crt file on macOS, you can use cat
client1.domain.tld.crt.

Copy the value from terminal and paste in downloaded-client-config.ovpn like this:

ZZZ1111dddaBBB
-----END CERTIFICATE-----
</ca>
<cert>
-----BEGIN CERTIFICATE-----
YOUR client1.domain.tld.crt
-----END CERTIFICATE-----
</cert>

c. Example macOS client1.domain.tld.key

To show the contents of the client1.domain.tld.key, you can use cat
client1.domain.tld.key.

Copy the value from terminal and paste in downloaded-client-config.ovpn like this:

Step seven: Download the Client VPN endpoint configuration file 260

Amazon Managed Workflows for Apache Airflow User Guide

ZZZ1111dddaBBB
-----END CERTIFICATE-----
</ca>
<cert>
-----BEGIN CERTIFICATE-----
YOUR client1.domain.tld.crt
-----END CERTIFICATE-----
</cert>
<key>
-----BEGIN CERTIFICATE-----
YOUR client1.domain.tld.key
-----END CERTIFICATE-----
</key>

Step eight: Connect to the AWS Client VPN

The client for AWS Client VPN is provided free of charge. You can connect your computer directly
to AWS Client VPN for an end-to-end VPN experience.

To connect to the Client VPN

1. Download and install the AWS Client VPN for Desktop.

2. Open the AWS Client VPN.

3. Choose File, Managed profiles in the VPN client menu.

4. Choose Add profile, and then choose the downloaded-client-config.ovpn.

5. Enter a descriptive name in Display Name.

6. Choose Add profile, Done.

7. Choose Connect.

After you connect to the Client VPN, you'll need to disconnect from other VPNs to view any of the
resources in your Amazon VPC.

Note

You may need to quit the client, and start again before you're able to get connected.

Step eight: Connect to the AWS Client VPN 261

https://aws.amazon.com/vpn/client-vpn-download/

Amazon Managed Workflows for Apache Airflow User Guide

What's next?

• Learn how to create an Amazon MWAA environment in Get started with Amazon Managed
Workflows for Apache Airflow. You must create an environment in the same AWS Region as the
Client VPN, and using the same VPC, private subnets, and security group as the Client VPN.

Tutorial: Configuring private network access using a Linux
Bastion Host

This tutorial walks you through the steps to create an SSH tunnel from your computer to the to the
Apache Airflow Web server for your Amazon Managed Workflows for Apache Airflow environment.
It assumes you've already created an Amazon MWAA environment. Once set up, a Linux Bastion
Host acts as a jump server allowing a secure connection from your computer to the resources in
your VPC. You'll then use a SOCKS proxy management add-on to control the proxy settings in your
browser to access your Apache Airflow UI.

Sections

• Private network

• Use cases

• Before you begin

• Objectives

• Step one: Create the bastion instance

• Step two: Create the ssh tunnel

• Step three: Configure the bastion security group as an inbound rule

• Step four: Copy the Apache Airflow URL

• Step five: Configure proxy settings

• Step six: Open the Apache Airflow UI

• What's next?

Private network

This tutorial assumes you've chosen the Private network access mode for your Apache Airflow Web
server.

What's next? 262

Amazon Managed Workflows for Apache Airflow User Guide

The private network access mode limits access to the Apache Airflow UI to users within your
Amazon VPC that have been granted access to the IAM policy for your environment.

When you create an environment with private web server access, you must package all
of your dependencies in a Python wheel archive (.whl), then reference the .whl in your
requirements.txt. For instructions on packaging and installing your dependencies using wheel,
refer to Managing dependencies using Python wheel.

The following image shows where to find the Private network option on the Amazon MWAA
console.

Use cases

You can use this tutorial after you've created an Amazon MWAA environment. You must use the
same Amazon VPC, VPC security group(s), and public subnets as your environment.

Use cases 263

Amazon Managed Workflows for Apache Airflow User Guide

Before you begin

1. Check for user permissions. Be sure that your account in AWS Identity and Access Management
(IAM) has sufficient permissions to create and manage VPC resources.

2. Use your Amazon MWAA VPC. This tutorial assumes that you are associating the bastion host
to an existing VPC. The Amazon VPC must be in the same region as your Amazon MWAA
environment and have two private subnets, as defined in Create the VPC network.

3. Create an SSH key. You need to create an Amazon EC2 SSH key (.pem) in the same Region as
your Amazon MWAA environment to connect to the virtual servers. If you don't have an SSH
key, refer to Create or import a key pair in the Amazon EC2 User Guide.

Objectives

In this tutorial, you'll do the following:

1. Create a Linux Bastion Host instance using a AWS CloudFormation template for an existing
VPC.

2. Authorize inbound traffic to the bastion instance's security group using an ingress rule on port
22.

3. Authorize inbound traffic from an Amazon MWAA environment's security group to the bastion
instance's security group.

4. Create an SSH tunnel to the bastion instance.

5. Install and configure the FoxyProxy add-on for the Firefox browser to view the Apache Airflow
UI.

Step one: Create the bastion instance

The following section describes the steps to create the linux bastion instance using a AWS
CloudFormation template for an existing VPC on the AWS CloudFormation console.

To create the Linux Bastion Host

1. Open the Deploy Quick Start page on the AWS CloudFormation console.

2. Use the region selector in the navigation bar to choose the same AWS Region as your Amazon
MWAA environment.

Before you begin 264

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#prepare-key-pair
https://fwd.aws/vWMxm
https://fwd.aws/vWMxm
https://fwd.aws/vWMxm
https://fwd.aws/vWMxm
https://fwd.aws/Jwzqv

Amazon Managed Workflows for Apache Airflow User Guide

3. Choose Next.

4. Type a name in the Stack name text field, such as mwaa-linux-bastion.

5. On the Parameters, Network configuration pane, choose the following options:

a. Choose your Amazon MWAA environment's VPC ID.

b. Choose your Amazon MWAA environment's Public subnet 1 ID.

c. Choose your Amazon MWAA environment's Public subnet 2 ID.

d. Enter the narrowest possible address range (for example, an internal CIDR range) in
Allowed bastion external access CIDR.

Note

The simplest way to identify a range is to use the same CIDR range as your public
subnets. For example, the public subnets in the AWS CloudFormation template on
the Create the VPC network page are 10.192.10.0/24 and 10.192.11.0/24.

6. On the Amazon EC2 configuration pane, choose the following:

a. Choose your SSH key in the dropdown list in Key pair name.

b. Enter a name in Bastion Host Name.

c. Choose true for TCP forwarding.

Warning

TCP forwarding must be set to true in this step. Otherwise, you won't be able to
create an SSH tunnel in the next step.

7. Choose Next, Next.

8. Select the acknowledgement, and then choose Create stack.

To learn more about the architecture of your Linux Bastion Host, refer to Linux Bastion Hosts on
the AWS Cloud: Architecture.

Step one: Create the bastion instance 265

https://docs.aws.amazon.com/quickstart/latest/linux-bastion/architecture.html
https://docs.aws.amazon.com/quickstart/latest/linux-bastion/architecture.html

Amazon Managed Workflows for Apache Airflow User Guide

Step two: Create the ssh tunnel

The following steps describe how to create the ssh tunnel to your linux bastion. An SSH tunnel
recieves the request from your local IP address to the linux bastion, which is why TCP forwarding
for the linux bastion was set to true in previous steps.

macOS/Linux

To create a tunnel via command line

1. Open the Instances page on the Amazon EC2 console.

2. Choose an instance.

3. Copy the address in Public IPv4 DNS. For example,
ec2-4-82-142-1.compute-1.amazonaws.com.

4. In your command prompt, navigate to the directory where your SSH key is stored.

5. Run the following command to connect to the bastion instance using ssh. Substitute the
sample value with your SSH key name in mykeypair.pem.

ssh -i mykeypair.pem -N -D 8157 ec2-user@YOUR_PUBLIC_IPV4_DNS

Windows (PuTTY)

To create a tunnel using PuTTY

1. Open the Instances page on the Amazon EC2 console.

2. Choose an instance.

3. Copy the address in Public IPv4 DNS. For example,
ec2-4-82-142-1.compute-1.amazonaws.com.

4. Open PuTTY, select Session.

5. Enter the host name in Host Name as ec2-user@YOUR_PUBLIC_IPV4_DNS and the port as
22.

6. Expand the SSH tab, select Auth. In Private Key file for authentication, choose your local
"ppk" file.

7. Under SSH, choose the Tunnels tab, and then select the Dynamic and Auto options.

Step two: Create the ssh tunnel 266

https://console.aws.amazon.com/ec2/v2/home#/Instances:
https://console.aws.amazon.com/ec2/v2/home#/Instances:
https://www.putty.org/

Amazon Managed Workflows for Apache Airflow User Guide

8. In Source Port, add the 8157 port (or any other unused port), and then leave the
Destination port blank. Choose Add.

9. Choose the Session tab and enter a session name. For example SSH Tunnel.

10. Choose Save, Open.

Note

You may need to enter a pass phrase for your public key.

Note

If you receive a Permission denied (publickey) error, we recommend using the
AWSSupport-TroubleshootSSH tool, and choose Run this Automation (console) to
troubleshoot your SSH setup.

Step three: Configure the bastion security group as an inbound rule

Access to the servers and regular internet access from the servers is allowed with a special
maintenance security group attached to those servers. The following steps describe how to
configure the bastion security group as an inbound source of traffic to an environment's VPC
security group.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. On the Networking pane, choose VPC security group.

4. Choose Edit inbound rules.

5. Choose Add rule.

6. Choose your VPC security group ID in the Source dropdown list.

7. Leave the remaining options blank, or set to their default values.

8. Choose Save rules.

Step three: Configure the bastion security group as an inbound rule 267

https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-awssupport-troubleshootssh.html
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Step four: Copy the Apache Airflow URL

The following steps describe how to open the Amazon MWAA console and copy the URL to the
Apache Airflow UI.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Copy the URL in Airflow UI for subsequent steps.

Step five: Configure proxy settings

If you use an SSH tunnel with dynamic port forwarding, you must use a SOCKS proxy management
add-on to control the proxy settings in your browser. For example, you can use the --proxy-
server feature of Chromium to kick off a browser session, or use the FoxyProxy extension in the
Mozilla FireFox browser.

Option one: Setup an SSH Tunnel using local port forwarding

If you do not wish to use a SOCKS proxy, you can set up an SSH tunnel using local port forwarding.
The following example command accesses the Amazon EC2 ResourceManager web interface by
forwarding traffic on local port 8157.

1. Open a new command prompt window.

2. Type the following command to open an SSH tunnel.

ssh -i mykeypair.pem -N -L 8157:YOUR_VPC_ENDPOINT_ID-vpce.us-
east-1.airflow.amazonaws.com:443 ubuntu@YOUR_PUBLIC_IPV4_DNS.us-
east-1.compute.amazonaws.com

-L signifies the use of local port forwarding which allows you to specify a local port used to
forward data to the identified remote port on the node's local web server.

3. Type http://localhost:8157/ in your browser.

Note

You may need to use https://localhost:8157/.

Step four: Copy the Apache Airflow URL 268

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Option two: Proxies via command line

Most web browsers allow you to configure proxies via a command line or configuration parameter.
For example, with Chromium you can start the browser with the following command:

chromium --proxy-server="socks5://localhost:8157"

This starts a browser session which uses the ssh tunnel you created in previous steps to proxy its
requests. You can open your Private Amazon MWAA environment URL (with https://) as follows:

https://YOUR_VPC_ENDPOINT_ID-vpce.us-east-1.airflow.amazonaws.com/home.

Option three: Proxies using FoxyProxy for Mozilla Firefox

The following example demonstrates a FoxyProxy Standard (version 7.5.1) configuration for
Mozilla Firefox. FoxyProxy provides a set of proxy management tools. It lets you use a proxy server
for URLs that match patterns corresponding to domains used by the Apache Airflow UI.

1. In Firefox, open the FoxyProxy Standard extension page.

2. Choose Add to Firefox.

3. Choose Add.

4. Choose the FoxyProxy icon in your browser's toolbar, choose Options.

5. Copy the following code and save locally as mwaa-proxy.json. Substitute the sample value
in YOUR_HOST_NAME with your Apache Airflow URL.

{
 "e0b7kh1606694837384": {
 "type": 3,
 "color": "#66cc66",
 "title": "airflow",
 "active": true,
 "address": "localhost",
 "port": 8157,
 "proxyDNS": false,
 "username": "",
 "password": "",
 "whitePatterns": [
 {

Step five: Configure proxy settings 269

https://addons.mozilla.org/en-US/firefox/addon/foxyproxy-standard/

Amazon Managed Workflows for Apache Airflow User Guide

 "title": "airflow-ui",
 "pattern": "YOUR_HOST_NAME",
 "type": 1,
 "protocols": 1,
 "active": true
 }
],
 "blackPatterns": [],
 "pacURL": "",
 "index": -1
 },
 "k20d21508277536715": {
 "active": true,
 "title": "Default",
 "notes": "These are the settings that are used when no patterns match a URL.",
 "color": "#0055E5",
 "type": 5,
 "whitePatterns": [
 {
 "title": "all URLs",
 "active": true,
 "pattern": "*",
 "type": 1,
 "protocols": 1
 }
],
 "blackPatterns": [],
 "index": 9007199254740991
 },
 "logging": {
 "active": true,
 "maxSize": 500
 },
 "mode": "patterns",
 "browserVersion": "82.0.3",
 "foxyProxyVersion": "7.5.1",
 "foxyProxyEdition": "standard"
}

6. On the Import Settings from FoxyProxy 6.0+ pane, choose Import Settings and select the
mwaa-proxy.json file.

7. Choose OK.

Step five: Configure proxy settings 270

Amazon Managed Workflows for Apache Airflow User Guide

Step six: Open the Apache Airflow UI

The following steps describe how to open your Apache Airflow UI.

1. Open the Environments page on the Amazon MWAA console.

2. Choose Open Airflow UI.

What's next?

• Learn how to run Airflow CLI commands on an SSH tunnel to a bastion host in Apache Airflow
CLI command reference.

• Learn how to upload DAG code to your Amazon S3 bucket in Adding or updating DAGs.

Tutorial: Restricting an Amazon MWAA user's access to a subset
of DAGs

Amazon MWAA manages access to your environment by mapping your IAM principals to one or
more of Apache Airflow's default roles. The following tutorial shows how you can restrict individual
Amazon MWAA users to only view and interact with a specific DAG or a set of DAGs.

Note

The steps in this tutorial can be completed using federated access, as long as the IAM roles
can be assumed.

Topics

• Prerequisites

• Step one: Provide Amazon MWAA web server access to your IAM principal with the default Public
Apache Airflow role.

• Step two: Create a new Apache Airflow custom role

• Step three: Assign the role you created to your Amazon MWAA user

• Next steps

• Related resources

Step six: Open the Apache Airflow UI 271

https://console.aws.amazon.com/mwaa/home#/environments
https://airflow.apache.org/docs/apache-airflow/stable/security/access-control.html#default-roles

Amazon Managed Workflows for Apache Airflow User Guide

Prerequisites

To complete the steps in this tutorial, you'll need the following:

• An Amazon MWAA environment with multiple DAGs

• An IAM principal, Admin with AdministratorAccess permissions, and an IAM user, MWAAUser, as
the principal for which you can limit DAG access. For more information about admin roles, refer
to Administrator job function in the IAM User Guide

Note

Do not attach permission policies directly to your IAM users. We recommend setting
up IAM roles that users can assume to gain temporary access to your Amazon MWAA
resources.

• AWS Command Line Interface version 2 installed.

Step one: Provide Amazon MWAA web server access to your IAM
principal with the default Public Apache Airflow role.

To grant permission using the AWS Management Console

1. Sign in to your AWS account with an Admin role and open the IAM console.

2. In the left navigation pane, choose Users, then choose your Amazon MWAA IAM user from the
users table.

3. On the user details page, under Summary, choose the Permissions tab, then choose
Permissions policies to expand the card and choose Add permissions.

4. In the Grant permissions section, choose Attach existing policies directly, then choose Create
policy to create and attach your own custom permissions policy.

5. On the Create policy page, choose JSON, then copy and paste the following JSON permissions
policy in the policy editor. Tha policy grants web server access to the user with the default
Public Apache Airflow role.

JSON

{

Prerequisites 272

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AdministratorAccess$jsonEditor
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install
https://console.aws.amazon.com/iam/

Amazon Managed Workflows for Apache Airflow User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "airflow:CreateWebLoginToken",
 "Resource": [
 "arn:aws:airflow:us-
east-1:111122223333:role/YOUR_ENVIRONMENT_NAME/Public"
]
 }
]
}

Step two: Create a new Apache Airflow custom role

To create a new role using the Apache Airflow UI

1. Using your administrator IAM role, open the Amazon MWAA console and launch your
environment's Apache Airflow UI.

2. From the navigation pane at the top, hover on Security to open the dropdown list, then
choose List Roles to view the default Apache Airflow roles.

3. From the roles list, select User, then at the top of the page choose Actions to open the
dropdown. Choose Copy Role, and confirm Ok

Note

Copy the Ops or Viewer roles to grant more or less access, respectively.

4. Locate the new role you created in the table and choose Edit record.

5. On the Edit Role page, do the following:

• For Name, type a new name for the role in the text field. For example, Restricted.

• For the list of Permissions, remove can read on DAGs and can edit on DAGs, then
add read and write permissions for the set of DAGs you want to provide access to. For
example, for a DAG, example_dag.py, add can read on DAG:example_dag and can
edit on DAG:example_dag.

Step two: Create a new Apache Airflow custom role 273

https://console.aws.amazon.com/mwaa/home

Amazon Managed Workflows for Apache Airflow User Guide

Choose Save. You should now have a new role that limits access to a subset of DAGs available
in your Amazon MWAA environment. You can now assign this role to any existing Apache
Airflow users.

Step three: Assign the role you created to your Amazon MWAA user

To assign the new role

1. Using access credentials for MWAAUser, run the following CLI command to retrieve your
environment's web server URL.

$ aws mwaa get-environment --name YOUR_ENVIRONMENT_NAME | jq
 '.Environment.WebserverUrl'

If successful, you'll see the following output:

"ab1b2345-678a-90a1-a2aa-34a567a8a901.c13.us-west-2.airflow.amazonaws.com"

2. With MWAAUser signed in to the AWS Management Console, open a new browser window and
access the following URl. Replace Webserver-URL with your information.

https://<Webserver-URL>/home

If successful, you'll see a Forbidden error page because MWAAUser has not been granted
permission to access the Apache Airflow UI yet.

3. With Admin signed in to the AWS Management Console, open the Amazon MWAA console
again and launch your environment's Apache Airflow UI.

4. From the UI dashboard, expand the Security dropdown, and this time choose List Users.

5. In the users table, find the new Apache Airflow user and choose Edit record. The user's first
name will match your IAM user name in the following pattern: user/mwaa-user.

6. On the Edit User page, in the Role section, add the new custom role you created, then choose
Save.

Step three: Assign the role you created to your Amazon MWAA user 274

Amazon Managed Workflows for Apache Airflow User Guide

Note

The Last Name field is required, but a space satisfies the requirement.

The IAM Public principal grants the MWAAUser permission to access the Apache Airflow UI,
while the new role provides the additional permissions needed to see their DAGs.

Important

Any of the 5 default roles (such as Admin) not authorized by IAM which are added using the
Apache Airflow UI will be removed on next user login.

Next steps

• To learn more about managing access to your Amazon MWAA environment, and to see sample
JSON IAM policies you can use for your environment users, refer to the section called “Accessing
an Amazon MWAA environment”

Related resources

• Access Control (Apache Airflow Documentation) – Learn more about the default Apache Airflow
roles on the Apache Airflow documentation website.

Tutorial: Automate managing your own environment endpoints
on Amazon MWAA

If you use AWS Organizations to manage multiple AWS accounts that share resources, Amazon
MWAA lets you create, and manage, your own Amazon VPC endpoints. This means you can use
stricter security policies that allow access only the resources required by your environment.

When you create an environment in a shared Amazon VPC, the account that owns the main
Amazon VPC (owner) shares the two private subnets required by Amazon MWAA with other

Next steps 275

https://airflow.apache.org/docs/apache-airflow/stable/security/access-control.html
https://docs.aws.amazon.com/

Amazon Managed Workflows for Apache Airflow User Guide

accounts (participants) that belong to the same organization. Participant accounts that share those
subnets can then view, create, modify, and delete environments in the shared VPC.

When you create an environment in a shared, or otherwise policy-restricted, Amazon VPC, Amazon
MWAA will first create the service VPC resources, then enter a PENDING state for up to 72 hours.

When the environment status changes from CREATING to PENDING, Amazon MWAA sends an
Amazon EventBridge notification of the change in state. This lets the owner account create the
required endpoints on behalf of participants based on endpoint service information from the
Amazon MWAA console or API, or programmatically In the following, we create new Amazon VPC
endpoints using an Lambda function and an EventBridge rule that listens to Amazon MWAA state
change notifications.

Here, we create the new endpoints in the same Amazon VPC as the environment. To set up a
shared Amazon VPC, create the EventBridge rule and Lambda function would in the owner account,
and the Amazon MWAA environment in the participant account.

Topics

• Prerequisites

• Create the Amazon VPC

• Create the Lambda function

• Create the EventBridge rule

• Create the Amazon MWAA environment

Prerequisites

To complete the steps in this tutorial, you will need the following:

• ...

Create the Amazon VPC

Use the following AWS CloudFormation template and AWS CLI command to create a new Amazon
VPC. The template sets up the Amazon VPC resources and modifies the endpoint policy to restrict
access to a specific queue.

1. Download the AWS CloudFormation template, then unzip the .yml file.

Prerequisites 276

https://docs.aws.amazon.com/mwaa/latest/API/API_Environment.html#mwaa-Type-Environment-Status
samples/cfn-vpc-private-network.zip

Amazon Managed Workflows for Apache Airflow User Guide

2. In a new command prompt window, navigate to the folder where you saved the template, then
use create-stack to create the stack. The --template-body flag specifies the path to the
template.

$ aws cloudformation create-stack --stack-name stack-name --template-body file://
cfn-vpc-private-network.yml

In the next section, you'll create the Lambda function.

Create the Lambda function

Use the following Python code and IAM JSON policy to create a new Lambda function and
execution role. This function creates Amazon VPC endpoints for a private Apache Airflow web
server and an Amazon SQS queue. Amazon MWAA uses Amazon SQS to queue tasks with Celery
among multiple workers when scaling your environment.

1. Download the Python function code.

2. Download the IAM permission policy, then unzip the file.

3. Open a command prompt, then navigate to the folder where you saved the JSON permission
policy. Use the IAM create-role command to create the new role.

$ aws iam create-role --role-name function-role \
--assume-role-policy-document file://lambda-mwaa-vpce-policy.json

Note the role ARN from the AWS CLI response. In the next step, we specify this new role as the
function's execution role using its ARN.

4. Navigate to the folder where you saved the function code, then use thecreate-function
command to create a new function.

$ aws lambda create-function --function-name mwaa-vpce-lambda \
--zip-file file://mwaa-lambda-shared-vpc.zip --runtime python3.8 --role
 arn:aws:iam::123456789012:role/function-role --handler lambda_handler

Note the function ARN from the AWS CLI response. In the next step we specify the ARN to
configure the function as a target for a new EventBridge rule.

Create the Lambda function 277

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/create-stack.html
./samples/mwaa-lambda-shared-vpc.zip
./samples/lambda-mwaa-shared-vpce-policy.zip
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/

Amazon Managed Workflows for Apache Airflow User Guide

In the next section, you will create the EventBridge rule that invokes this function when the
environment enters a PENDING state.

Create the EventBridge rule

Do the following to create a new rule that listens for Amazon MWAA notifications and targets your
new Lambda function.

1. Use the EventBridge put-rule command to create a new EventBridge rule.

$ aws events put-rule --name "mwaa-lambda-rule" \
--event-pattern "{\"source\":[\"aws.airflow\"],\"detail-type\":[\"MWAA Environment
 Status Change\"]}"

The event pattern listens for notifications that Amazon MWAA sends whenever an
environment status changes.

{
 "source": ["aws.airflow"],
 "detail-type": ["MWAA Environment Status Change"]
}

2. Use the put-targets command to add the Lambda function as a target for the new rule.

$ aws events put-targets --rule "mwaa-lambda-rule" \
--targets "Id"="1","Arn"="arn:aws::lambda:us-east-1:123456789012:function:mwaa-
vpce-lambda"

You're ready to create a new Amazon MWAA environment with customer-managed Amazon VPC
endpoints.

Create the Amazon MWAA environment

Use the Amazon MWAA console to create a new environment with customer-managed Amazon
VPC endpoints.

1. Open the Amazon MWAA console, and choose Create an environment.

2. For Name enter a unique name.

3. For Airflow version choose the latest version.

Create the EventBridge rule 278

https://console.aws.amazon.com/mwaa/home/

Amazon Managed Workflows for Apache Airflow User Guide

4. Choose an Amazon S3 bucket and a DAGs folder, such as dags/ to use with the environment,
then choose Next.

5. On the Configure advanced settings page, do the following:

a. For Virtual Private Cloud, choose the Amazon VPC you created in the previous step.

b. For Web server access, choose Public network (Internet accessible).

c. For Security groups, choose the security group you created with AWS CloudFormation.
Because the security groups for the AWS PrivateLink endpoints from the earlier step are
self-referencing, you must choose the same security group for your environment.

d. For Endpoint management, choose Customer managed endpoints.

6. Keep the remaining default settings, then choose Next.

7. Review your selections, then choose Create environment.

Tip

For more information about setting up a new environment, refer to Getting started with
Amazon MWAA.

When the environment is PENDING, Amazon MWAA sends a notification that matches the event
pattern you set for your rule. The rule invokes your Lambda function. The function parses the
notification event and gets the required endpoint information for the web server and the Amazon
SQS queue. It then creates the endpoints in your Amazon VPC.

When the endpoints are available, Amazon MWAA resumes creating your environment. When
ready, the environment status changes to AVAILABLE and you can access the Apache Airflow web
server using the Amazon MWAA console.

Create the environment 279

Amazon Managed Workflows for Apache Airflow User Guide

Code examples for Amazon Managed Workflows for
Apache Airflow

This guide contains code samples, including DAGs and custom plugins, that you can use on an
Amazon Managed Workflows for Apache Airflow environment. For more examples of using Apache
Airflow with AWS services, refer to the dags directory in the Apache Airflow GitHub repository.

Samples

• Using a DAG to import variables in the CLI

• Creating an SSH connection using the SSHOperator

• Using a secret key in AWS Secrets Manager for an Apache Airflow Snowflake connection

• Using a DAG to write custom metrics in CloudWatch

• Aurora PostgreSQL database cleanup on an Amazon MWAA environment

• Exporting environment metadata to CSV files on Amazon S3

• Using a secret key in AWS Secrets Manager for an Apache Airflow variable

• Using a secret key in AWS Secrets Manager for an Apache Airflow connection

• Creating a custom plugin with Oracle

• Creating a custom plugin that generates runtime environment variables

• Changing a DAG's timezone on Amazon MWAA

• Refreshing a CodeArtifact token

• Creating a custom plugin with Apache Hive and Hadoop

• Creating a custom plugin for Apache Airflow PythonVirtualenvOperator

• Invoking DAGs with a Lambda function

• Invoking DAGs in different Amazon MWAA environments

• Using Amazon MWAA with Amazon RDS for Microsoft SQL Server

• Using Amazon MWAA with Amazon EMR

• Using Amazon MWAA with Amazon EKS

• Connecting to Amazon ECS using the ECSOperator

• Using dbt with Amazon MWAA

• AWS blogs and tutorials

280

https://github.com/aws-samples/amazon-mwaa-examples/tree/main/dags

Amazon Managed Workflows for Apache Airflow User Guide

Using a DAG to import variables in the CLI

The following sample code imports variables using the CLI on Amazon Managed Workflows for
Apache Airflow.

Topics

• Version

• Prerequisites

• Permissions

• Dependencies

• Code sample

• What's next?

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

• No additional permissions are required to use the code example on this page.

Permissions

Your AWS account needs access to the AmazonMWAAAirflowCliAccess policy. To learn more,
refer to Apache Airflow CLI policy: AmazonMWAAAirflowCliAccess.

Dependencies

• To use this code example with Apache Airflow v2, no additional dependencies are required. The
code uses the Apache Airflow v2 base install on your environment.

Import variables DAG 281

https://peps.python.org/pep-0619/
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

Code sample

The following sample code takes three inputs: your Amazon MWAA environment name (in
mwaa_env), the AWS Region of your environment (in aws_region), and the local file that contains
the variables you want to import (in var_file).

import boto3
import json
import requests
import base64
import getopt
import sys

argv = sys.argv[1:]
mwaa_env=''
aws_region=''
var_file=''

try:
 opts, args = getopt.getopt(argv, 'e:v:r:', ['environment', 'variable-
file','region'])
 #if len(opts) == 0 and len(opts) > 3:
 if len(opts) != 3:
 print ('Usage: -e MWAA environment -v variable file location and filename -r
 aws region')
 else:
 for opt, arg in opts:
 if opt in ("-e"):
 mwaa_env=arg
 elif opt in ("-r"):
 aws_region=arg
 elif opt in ("-v"):
 var_file=arg

 boto3.setup_default_session(region_name="{}".format(aws_region))
 mwaa_env_name = "{}".format(mwaa_env)

 client = boto3.client('mwaa')
 mwaa_cli_token = client.create_cli_token(
 Name=mwaa_env_name
)

 with open ("{}".format(var_file), "r") as myfile:

Code sample 282

Amazon Managed Workflows for Apache Airflow User Guide

 fileconf = myfile.read().replace('\n', '')

 json_dictionary = json.loads(fileconf)
 for key in json_dictionary:
 print(key, " ", json_dictionary[key])
 val = (key + " " + json_dictionary[key])
 mwaa_auth_token = 'Bearer ' + mwaa_cli_token['CliToken']
 mwaa_webserver_hostname = 'https://{0}/aws_mwaa/
cli'.format(mwaa_cli_token['WebServerHostname'])
 raw_data = "variables set {0}".format(val)
 mwaa_response = requests.post(
 mwaa_webserver_hostname,
 headers={
 'Authorization': mwaa_auth_token,
 'Content-Type': 'text/plain'
 },
 data=raw_data
)
 mwaa_std_err_message = base64.b64decode(mwaa_response.json()
['stderr']).decode('utf8')
 mwaa_std_out_message = base64.b64decode(mwaa_response.json()
['stdout']).decode('utf8')
 print(mwaa_response.status_code)
 print(mwaa_std_err_message)
 print(mwaa_std_out_message)

except:
 print('Use this script with the following options: -e MWAA environment -v variable
 file location and filename -r aws region')
 print("Unexpected error:", sys.exc_info()[0])
 sys.exit(2)

What's next?

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

Creating an SSH connection using the SSHOperator

The following example describes how you can use the SSHOperator in a directed acyclic graph
(DAG) to connect to a remote Amazon EC2 instance from your Amazon Managed Workflows for

What's next? 283

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow environment. You can use a similar approach to connect to any remote instance
with SSH access.

In the following example, you upload a SSH secret key (.pem) to your environment's dags directory
on Amazon S3. Then, you install the necessary dependencies using requirements.txt and create
a new Apache Airflow connection in the UI. Finally, you write a DAG that creates an SSH connection
to the remote instance.

Topics

• Version

• Prerequisites

• Permissions

• Requirements

• Copy your secret key to Amazon S3

• Create a new Apache Airflow connection

• Code sample

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

• An SSH secret key. The code sample assumes you have an Amazon EC2 instance and a .pem in
the same Region as your Amazon MWAA environment. If you don't have a key, refer to Create or
import a key pair in the Amazon EC2 User Guide.

Permissions

• No additional permissions are required to use the code example on this page.

Version 284

https://peps.python.org/pep-0619/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#prepare-key-pair
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#prepare-key-pair

Amazon Managed Workflows for Apache Airflow User Guide

Requirements

Add the following parameter to requirements.txt to install the apache-airflow-
providers-ssh package on the web server. Once your environment updates and Amazon MWAA
successfully installs the dependency, you will see a new SSH connection type in the UI.

-c https://raw.githubusercontent.com/apache/airflow/constraints-Airflow-version/
constraints-Python-version.txt
apache-airflow-providers-ssh

Note

-c defines the constraints URL in requirements.txt. This ensures that Amazon MWAA
installs the correct package version for your environemnt.

Copy your secret key to Amazon S3

Use the following AWS Command Line Interface command to copy your .pem key to your
environment's dags directory in Amazon S3.

$ aws s3 cp your-secret-key.pem s3://amzn-s3-demo-bucket/dags/

Amazon MWAA copies the content in dags, including the .pem key, to the local /usr/local/
airflow/dags/ directory, By doing this, Apache Airflow can access the key.

Create a new Apache Airflow connection

To create a new SSH connection using the Apache Airflow UI

1. Open the Environments page on the Amazon MWAA console.

2. From the list of environments, choose Open Airflow UI for your environment.

3. On the Apache Airflow UI page, choose Admin from the top navigation bar to expand the
dropdown list, then choose Connections.

4. On the List Connections page, choose +, or Add a new record button to add a new
connection.

5. On the Add Connection page, add the following information:

Requirements 285

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

a. For Connection Id, enter ssh_new.

b. For Connection Type, choose SSH from the dropdown list.

Note

If the SSH connection type is not available in the list, Amazon MWAA hasn't
installed the required apache-airflow-providers-ssh package. Update your
requirements.txt file to include this package, then try again.

c. For Host, enter the IP address for the Amazon EC2 instance that you want to connect to.
For example, 12.345.67.89.

d. For Username, enter ec2-user if you are connecting to an Amazon EC2 instance. Your
username might be different, depending on the type of remote instance you want Apache
Airflow to connect to.

e. For Extra, enter the following key-value pair in JSON format:

{ "key_file": "/usr/local/airflow/dags/your-secret-key.pem" }

This key-value pair instructs Apache Airflow to look for the secret key in the local /dags
directory.

Code sample

The following DAG uses the SSHOperator to connect to your target Amazon EC2 instance, then
runs the hostname Linux command to print the name of the instance. You can modify the DAG to
run any command or script on the remote instance.

1. Open a terminal, and navigate to the directory where your DAG code is stored. For example:

cd dags

2. Copy the contents of the following code sample and save locally as ssh.py.

from airflow.decorators import dag
from datetime import datetime
from airflow.providers.ssh.operators.ssh import SSHOperator

Code sample 286

Amazon Managed Workflows for Apache Airflow User Guide

@dag(
 dag_id="ssh_operator_example",
 schedule_interval=None,
 start_date=datetime(2022, 1, 1),
 catchup=False,
)
def ssh_dag():
 task_1=SSHOperator(
 task_id="ssh_task",
 ssh_conn_id='ssh_new',
 command='hostname',
)

my_ssh_dag = ssh_dag()

3. Run the following AWS CLI command to copy the DAG to your environment's bucket, then
trigger the DAG using the Apache Airflow UI.

$ aws s3 cp your-dag.py s3://your-environment-bucket/dags/

4. If successful, you'll see output similar to the following in the task logs for ssh_task in the
ssh_operator_example DAG:

[2022-01-01, 12:00:00 UTC] {{base.py:79}} INFO - Using connection to: id: ssh_new.
 Host: 12.345.67.89, Port: None,
Schema: , Login: ec2-user, Password: None, extra: {'key_file': '/usr/local/airflow/
dags/your-secret-key.pem'}
[2022-01-01, 12:00:00 UTC] {{ssh.py:264}} WARNING - Remote Identification Change is
 not verified. This won't protect against Man-In-The-Middle attacks
[2022-01-01, 12:00:00 UTC] {{ssh.py:270}} WARNING - No Host Key Verification. This
 won't protect against Man-In-The-Middle attacks
[2022-01-01, 12:00:00 UTC] {{transport.py:1819}} INFO - Connected (version 2.0,
 client OpenSSH_7.4)
[2022-01-01, 12:00:00 UTC] {{transport.py:1819}} INFO - Authentication (publickey)
 successful!
[2022-01-01, 12:00:00 UTC] {{ssh.py:139}} INFO - Running command: hostname
[2022-01-01, 12:00:00 UTC]{{ssh.py:171}} INFO - ip-123-45-67-89.us-
west-2.compute.internal
[2022-01-01, 12:00:00 UTC] {{taskinstance.py:1280}} INFO - Marking task as SUCCESS.
 dag_id=ssh_operator_example, task_id=ssh_task, execution_date=20220712T200914,
 start_date=20220712T200915, end_date=20220712T200916

Code sample 287

Amazon Managed Workflows for Apache Airflow User Guide

Using a secret key in AWS Secrets Manager for an Apache
Airflow Snowflake connection

The following sample calls AWS Secrets Manager to get a secret key for an Apache Airflow
Snowflake connection on Amazon Managed Workflows for Apache Airflow. It assumes you've
completed the steps in Configuring an Apache Airflow connection using a AWS Secrets Manager
secret.

Topics

• Version

• Prerequisites

• Permissions

• Requirements

• Code sample

• What's next?

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• The Secrets Manager backend as an Apache Airflow configuration option as shown in Configuring
an Apache Airflow connection using a AWS Secrets Manager secret.

• An Apache Airflow connection string in Secrets Manager as shown in Configuring an Apache
Airflow connection using a AWS Secrets Manager secret.

Permissions

• Secrets Manager permissions as shown in Configuring an Apache Airflow connection using a AWS
Secrets Manager secret.

Apache Airflow Snowflake connection in Secrets Manager 288

https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

Requirements

To use the sample code on this page, add the following dependencies to your
requirements.txt. To learn more, refer to Installing Python dependencies.

apache-airflow-providers-snowflake==1.3.0

Code sample

The following steps describe how to create the DAG code that calls Secrets Manager to get the
secret.

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as
snowflake_connection.py.

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from airflow import DAG
from airflow.providers.snowflake.operators.snowflake import SnowflakeOperator
from airflow.utils.dates import days_ago

snowflake_query = [

Requirements 289

Amazon Managed Workflows for Apache Airflow User Guide

 """use warehouse "MY_WAREHOUSE";""",
 """select * from "SNOWFLAKE_SAMPLE_DATA"."WEATHER"."WEATHER_14_TOTAL" limit
 100;""",
]

with DAG(dag_id='snowflake_test', schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 snowflake_select = SnowflakeOperator(
 task_id="snowflake_select",
 sql=snowflake_query,
 snowflake_conn_id="snowflake_conn",
)

What's next?

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

Using a DAG to write custom metrics in CloudWatch

You can use the following code example to write a directed acyclic graph (DAG) that runs a
PythonOperator to retrieve OS-level metrics for an Amazon MWAA environment. The DAG then
publishes the data as custom metrics to Amazon CloudWatch.

Custom OS-level metrics provide you with additional visibility about how your environment
workers are utilizing resources such as virtual memory and CPU. You can use this information to
select the environment class that best suits your workload.

Topics

• Version

• Prerequisites

• Permissions

• Dependencies

• Code example

What's next? 290

Amazon Managed Workflows for Apache Airflow User Guide

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the code example on this page, you need the following:

• An Amazon MWAA environment.

Permissions

• No additional permissions are required to use the code example on this page.

Dependencies

• No additional dependencies are required to use the code example on this page.

Code example

1. In your command prompt, navigate to the folder where your DAG code is stored. For example:

cd dags

2. Copy the contents of the following code example and save it locally as dag-custom-
metrics.py. Replace MWAA-ENV-NAME with your environment name.

from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
from datetime import datetime
import os,json,boto3,psutil,socket

def publish_metric(client,name,value,cat,unit='None'):
 environment_name = os.getenv("MWAA_ENV_NAME")
 value_number=float(value)
 hostname = socket.gethostname()
 ip_address = socket.gethostbyname(hostname)

Version 291

https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

 print('writing value',value_number,'to metric',name)
 response = client.put_metric_data(
 Namespace='MWAA-Custom',
 MetricData=[
 {
 'MetricName': name,
 'Dimensions': [
 {
 'Name': 'Environment',
 'Value': environment_name
 },
 {
 'Name': 'Category',
 'Value': cat
 },
 {
 'Name': 'Host',
 'Value': ip_address
 },
],
 'Timestamp': datetime.now(),
 'Value': value_number,
 'Unit': unit
 },
]
)
 print(response)
 return response

def python_fn(**kwargs):
 client = boto3.client('cloudwatch')

 cpu_stats = psutil.cpu_stats()
 print('cpu_stats', cpu_stats)

 virtual = psutil.virtual_memory()
 cpu_times_percent = psutil.cpu_times_percent(interval=0)

 publish_metric(client=client, name='virtual_memory_total',
 cat='virtual_memory', value=virtual.total, unit='Bytes')
 publish_metric(client=client, name='virtual_memory_available',
 cat='virtual_memory', value=virtual.available, unit='Bytes')
 publish_metric(client=client, name='virtual_memory_used', cat='virtual_memory',
 value=virtual.used, unit='Bytes')

Code example 292

Amazon Managed Workflows for Apache Airflow User Guide

 publish_metric(client=client, name='virtual_memory_free', cat='virtual_memory',
 value=virtual.free, unit='Bytes')
 publish_metric(client=client, name='virtual_memory_active',
 cat='virtual_memory', value=virtual.active, unit='Bytes')
 publish_metric(client=client, name='virtual_memory_inactive',
 cat='virtual_memory', value=virtual.inactive, unit='Bytes')
 publish_metric(client=client, name='virtual_memory_percent',
 cat='virtual_memory', value=virtual.percent, unit='Percent')

 publish_metric(client=client, name='cpu_times_percent_user',
 cat='cpu_times_percent', value=cpu_times_percent.user, unit='Percent')
 publish_metric(client=client, name='cpu_times_percent_system',
 cat='cpu_times_percent', value=cpu_times_percent.system, unit='Percent')
 publish_metric(client=client, name='cpu_times_percent_idle',
 cat='cpu_times_percent', value=cpu_times_percent.idle, unit='Percent')

 return "OK"

with DAG(dag_id=os.path.basename(__file__).replace(".py", ""),
 schedule_interval='*/5 * * * *', catchup=False, start_date=days_ago(1)) as dag:
 t = PythonOperator(task_id="memory_test", python_callable=python_fn,
 provide_context=True)

3. Run the following AWS CLI command to copy the DAG to your environment's bucket, then
trigger the DAG using the Apache Airflow UI.

$ aws s3 cp your-dag.py s3://your-environment-bucket/dags/

4. If the DAG runs successfully, you should see something similar to the following in your Apache
Airflow logs:

[2022-08-16, 10:54:46 UTC] {{logging_mixin.py:109}} INFO -
 cpu_stats scpustats(ctx_switches=3253992384, interrupts=1964237163,
 soft_interrupts=492328209, syscalls=0)
[2022-08-16, 10:54:46 UTC] {{logging_mixin.py:109}} INFO - writing value
 16024199168.0 to metric virtual_memory_total
[2022-08-16, 10:54:46 UTC] {{logging_mixin.py:109}} INFO - {'ResponseMetadata':
 {'RequestId': 'fad289ac-aa51-46a9-8b18-24e4e4063f4d', 'HTTPStatusCode': 200,
 'HTTPHeaders': {'x-amzn-requestid': 'fad289ac-aa51-46a9-8b18-24e4e4063f4d',
 'content-type': 'text/xml', 'content-length': '212', 'date': 'Tue, 16 Aug 2022
 17:54:45 GMT'}, 'RetryAttempts': 0}}

Code example 293

Amazon Managed Workflows for Apache Airflow User Guide

[2022-08-16, 10:54:46 UTC] {{logging_mixin.py:109}} INFO - writing value
 14356287488.0 to metric virtual_memory_available
[2022-08-16, 10:54:46 UTC] {{logging_mixin.py:109}} INFO - {'ResponseMetadata':
 {'RequestId': '6ef60085-07ab-4865-8abf-dc94f90cab46', 'HTTPStatusCode': 200,
 'HTTPHeaders': {'x-amzn-requestid': '6ef60085-07ab-4865-8abf-dc94f90cab46',
 'content-type': 'text/xml', 'content-length': '212', 'date': 'Tue, 16 Aug 2022
 17:54:45 GMT'}, 'RetryAttempts': 0}}
[2022-08-16, 10:54:46 UTC] {{logging_mixin.py:109}} INFO - writing value
 1342296064.0 to metric virtual_memory_used
[2022-08-16, 10:54:46 UTC] {{logging_mixin.py:109}} INFO - {'ResponseMetadata':
 {'RequestId': 'd5331438-5d3c-4df2-bc42-52dcf8d60a00', 'HTTPStatusCode': 200,
 'HTTPHeaders': {'x-amzn-requestid': 'd5331438-5d3c-4df2-bc42-52dcf8d60a00',
 'content-type': 'text/xml', 'content-length': '212', 'date': 'Tue, 16 Aug 2022
 17:54:45 GMT'}, 'RetryAttempts': 0}}
...
[2022-08-16, 10:54:46 UTC] {{python.py:152}} INFO - Done. Returned value was: OK
[2022-08-16, 10:54:46 UTC] {{taskinstance.py:1280}} INFO - Marking task as SUCCESS.
 dag_id=dag-custom-metrics, task_id=memory_test, execution_date=20220816T175444,
 start_date=20220816T175445, end_date=20220816T175446
[2022-08-16, 10:54:46 UTC] {{local_task_job.py:154}} INFO - Task exited with return
 code 0

Aurora PostgreSQL database cleanup on an Amazon MWAA
environment

Amazon Managed Workflows for Apache Airflow uses an Aurora PostgreSQL database as the
Apache Airflow metadata database, where DAG runs and task instances are stored. The following
sample code periodically clears out entries from the dedicated Aurora PostgreSQL database for
your Amazon MWAA environment.

Topics

• Version

• Prerequisites

• Dependencies

• Code sample

Aurora PostgreSQL database cleanup 294

Amazon Managed Workflows for Apache Airflow User Guide

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

Dependencies

• To use this code example with Apache Airflow v2, no additional dependencies are required. The
code uses the Apache Airflow v2 base install on your environment.

Code sample

The following DAG cleans the metadata database for the tables specified in TABLES_TO_CLEAN.
The example deletes data from the specified tables that is older than 30 days. To adjust how far
back the entries are deleted, set MAX_AGE_IN_DAYS to a different value.

Apache Airflow v2.4 and later

from airflow import DAG
from airflow.models.param import Param
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago

from datetime import datetime, timedelta

Note: Database commands may time out if running longer than 5 minutes. If this
 occurs, please increase the MAX_AGE_IN_DAYS (or change
timestamp parameter to an earlier date) for initial runs, then reduce on
 subsequent runs until the desired retention is met.

MAX_AGE_IN_DAYS = 30

To clean specific tables, please provide a comma-separated list per

Version 295

https://peps.python.org/pep-0619/
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-
ref.html#clean
A value of None will clean all tables

TABLES_TO_CLEAN = None

with DAG(
 dag_id="clean_db_dag",
 schedule_interval=None,
 catchup=False,
 start_date=days_ago(1),
 params={
 "timestamp": Param(
 default=(datetime.now()-timedelta(days=MAX_AGE_IN_DAYS)).strftime("%Y-
%m-%d %H:%M:%S"),
 type="string",
 minLength=1,
 maxLength=255,
),
 }
) as dag:
 if TABLES_TO_CLEAN:
 bash_command="airflow db clean --clean-before-timestamp
 '{{ params.timestamp }}' --tables '"+TABLES_TO_CLEAN+"' --skip-archive --yes"
 else:
 bash_command="airflow db clean --clean-before-timestamp
 '{{ params.timestamp }}' --skip-archive --yes"

 cli_command = BashOperator(
 task_id="bash_command",
 bash_command=bash_command
)

Apache Airflow v2.2 and earlier

from airflow import settings
from airflow.utils.dates import days_ago
from airflow.models import DagTag, DagModel, DagRun, ImportError, Log, SlaMiss,
 RenderedTaskInstanceFields, TaskInstance, TaskReschedule, XCom
from airflow.decorators import dag, task
from airflow.utils.dates import days_ago
from time import sleep

Code sample 296

Amazon Managed Workflows for Apache Airflow User Guide

from airflow.version import version
major_version, minor_version = int(version.split('.')[0]), int(version.split('.')
[1])
if major_version >= 2 and minor_version >= 6:
 from airflow.jobs.job import Job
else:
 # The BaseJob class was renamed as of Apache Airflow v2.6
 from airflow.jobs.base_job import BaseJob as Job

Delete entries for the past 30 days. Adjust MAX_AGE_IN_DAYS to set how far back
 this DAG cleans the database.
MAX_AGE_IN_DAYS = 30
MIN_AGE_IN_DAYS = 0
DECREMENT = -7

This is a list of (table, time) tuples.
table = the table to clean in the metadata database
time = the column in the table associated to the timestamp of an entry
or None if not applicable.
TABLES_TO_CLEAN = [[Job, Job.latest_heartbeat],
 [TaskInstance, TaskInstance.execution_date],
 [TaskReschedule, TaskReschedule.execution_date],
 [DagTag, None],
 [DagModel, DagModel.last_parsed_time],
 [DagRun, DagRun.execution_date],
 [ImportError, ImportError.timestamp],
 [Log, Log.dttm],
 [SlaMiss, SlaMiss.execution_date],
 [RenderedTaskInstanceFields, RenderedTaskInstanceFields.execution_date],
 [XCom, XCom.execution_date],
]

@task()
def cleanup_db_fn(x):
 session = settings.Session()

 if x[1]:
 for oldest_days_ago in range(MAX_AGE_IN_DAYS, MIN_AGE_IN_DAYS, DECREMENT):
 earliest_days_ago = max(oldest_days_ago + DECREMENT, MIN_AGE_IN_DAYS)
 print(f"deleting {str(x[0])} entries between {earliest_days_ago} and
 {oldest_days_ago} days old...")
 earliest_date = days_ago(earliest_days_ago)
 oldest_date = days_ago(oldest_days_ago)

Code sample 297

Amazon Managed Workflows for Apache Airflow User Guide

 query = session.query(x[0]).filter(x[1] >= earliest_date).filter(x[1] <=
 oldest_date)
 query.delete(synchronize_session= False)
 session.commit()
 sleep(5)
 else:
 # No time column specified for the table. Delete all entries
 print("deleting", str(x[0]), "...")
 query = session.query(x[0])
 query.delete(synchronize_session= False)
 session.commit()

 session.close()

@dag(
 dag_id="cleanup_db",
 schedule_interval="@weekly",
 start_date=days_ago(7),
 catchup=False,
 is_paused_upon_creation=False
)

def clean_db_dag_fn():
 t_last=None
 for x in TABLES_TO_CLEAN:
 t=cleanup_db_fn(x)
 if t_last:
 t_last >> t
 t_last = t

clean_db_dag = clean_db_dag_fn()

Exporting environment metadata to CSV files on Amazon S3

The following code example shows how you can create a directed acyclic graph (DAG) that queries
the database for a range of DAG run information, and writes the data to .csv files stored on
Amazon S3.

You might want to export information from the your environment's Aurora PostgreSQL database
in order to inspect the data locally, archive them in object storage, or combine them with tools like

Exporting environment metadata to Amazon S3 298

Amazon Managed Workflows for Apache Airflow User Guide

the Amazon S3 to Amazon Redshift operator and the database cleanup, in order to move Amazon
MWAA metadata out of the environment, but preserve them for future analysis.

You can query the database for any of the objects listed in Apache Airflow models. This code
sample uses three models, DagRun, TaskFail, and TaskInstance, which provide information
relevant to DAG runs.

Topics

• Version

• Prerequisites

• Permissions

• Requirements

• Code sample

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

• A new Amazon S3 bucket where you want to export your metadata information.

Permissions

Amazon MWAA needs permission for the Amazon S3 action s3:PutObject to write the queried
metadata information to Amazon S3. Add the following policy statement to your environment's
execution role.

{
 "Effect": "Allow",
 "Action": "s3:PutObject*",
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket"
}

Version 299

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/s3_to_redshift.html
https://github.com/apache/airflow/tree/v2-0-stable/airflow/models
https://peps.python.org/pep-0619/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Managed Workflows for Apache Airflow User Guide

This policy limits write access to only amzn-s3-demo-bucket.

Requirements

• To use this code example with Apache Airflow v2, no additional dependencies are required. The
code uses the Apache Airflow v2 base install on your environment.

Code sample

The following steps describe how you can create a DAG that queries the Aurora PostgreSQL and
writes the result to your new Amazon S3 bucket.

1. In your terminal, navigate to the directory where your DAG code is stored. For example:

cd dags

2. Copy the contents of the following code example and save it locally as
metadata_to_csv.py. You can change the value assigned to MAX_AGE_IN_DAYS to control
the age of the oldest records your DAG queries from the metadata database.

from airflow.decorators import dag, task
from airflow import settings
import os
import boto3
from airflow.utils.dates import days_ago
from airflow.models import DagRun, TaskFail, TaskInstance
import csv, re
from io import StringIO

DAG_ID = os.path.basename(__file__).replace(".py", "")

MAX_AGE_IN_DAYS = 30
S3_BUCKET = '<your-export-bucket>'
S3_KEY = 'files/export/{0}.csv'

You can add other objects to export from the metadatabase,
OBJECTS_TO_EXPORT = [
 [DagRun,DagRun.execution_date],
 [TaskFail,TaskFail.execution_date],
 [TaskInstance, TaskInstance.execution_date],
]

Requirements 300

https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

@task()
def export_db_task(**kwargs):
 session = settings.Session()
 print("session: ",str(session))

 oldest_date = days_ago(MAX_AGE_IN_DAYS)
 print("oldest_date: ",oldest_date)

 s3 = boto3.client('s3')

 for x in OBJECTS_TO_EXPORT:
 query = session.query(x[0]).filter(x[1] >= days_ago(MAX_AGE_IN_DAYS))
 print("type",type(query))
 allrows=query.all()
 name=re.sub("[<>']", "", str(x[0]))
 print(name,": ",str(allrows))

 if len(allrows) > 0:
 outfileStr=""
 f = StringIO(outfileStr)
 w = csv.DictWriter(f, vars(allrows[0]).keys())
 w.writeheader()
 for y in allrows:
 w.writerow(vars(y))
 outkey = S3_KEY.format(name[6:])
 s3.put_object(Bucket=S3_BUCKET, Key=outkey, Body=f.getvalue())

@dag(
 dag_id=DAG_ID,
 schedule_interval=None,
 start_date=days_ago(1),
)
def export_db():
 t = export_db_task()

metadb_to_s3_test = export_db()

3. Run the following AWS CLI command to copy the DAG to your environment's bucket, then
trigger the DAG using the Apache Airflow UI.

$ aws s3 cp your-dag.py s3://your-environment-bucket/dags/

Code sample 301

Amazon Managed Workflows for Apache Airflow User Guide

4. If successful, you'll output similar to the following in the task logs for the export_db task:

[2022-01-01, 12:00:00 PDT] {{logging_mixin.py:109}} INFO - type <class
 'sqlalchemy.orm.query.Query'>
[2022-01-01, 12:00:00 PDT] {{logging_mixin.py:109}} INFO - class
 airflow.models.dagrun.DagRun : [your-tasks]
[2022-01-01, 12:00:00 PDT] {{logging_mixin.py:109}} INFO - type <class
 'sqlalchemy.orm.query.Query'>
[2022-01-01, 12:00:00 PDT] {{logging_mixin.py:109}} INFO - class
 airflow.models.taskfail.TaskFail : [your-tasks]
[2022-01-01, 12:00:00 PDT] {{logging_mixin.py:109}} INFO - type <class
 'sqlalchemy.orm.query.Query'>
[2022-01-01, 12:00:00 PDT] {{logging_mixin.py:109}} INFO - class
 airflow.models.taskinstance.TaskInstance : [your-tasks]
[2022-01-01, 12:00:00 PDT] {{python.py:152}} INFO - Done. Returned value was: OK
[2022-01-01, 12:00:00 PDT] {{taskinstance.py:1280}} INFO - Marking task as
 SUCCESS. dag_id=metadb_to_s3, task_id=export_db, execution_date=20220101T000000,
 start_date=20220101T000000, end_date=20220101T000000
[2022-01-01, 12:00:00 PDT] {{local_task_job.py:154}} INFO - Task exited with return
 code 0
[2022-01-01, 12:00:00 PDT] {{local_task_job.py:264}} INFO - 0 downstream tasks
 scheduled from follow-on schedule check

You can now access and download the exported .csv files in your new Amazon S3 bucket in /
files/export/.

Using a secret key in AWS Secrets Manager for an Apache
Airflow variable

The following sample calls AWS Secrets Manager to get a secret key for an Apache Airflow variable
on Amazon Managed Workflows for Apache Airflow. It assumes you've completed the steps in
Configuring an Apache Airflow connection using a AWS Secrets Manager secret.

Topics

• Version

• Prerequisites

• Permissions

• Requirements

Using an Apache Airflow variable in Secrets Manager 302

Amazon Managed Workflows for Apache Airflow User Guide

• Code sample

• What's next?

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• The Secrets Manager backend as an Apache Airflow configuration option as shown in Configuring
an Apache Airflow connection using a AWS Secrets Manager secret.

• An Apache Airflow variable string in Secrets Manager as shown in Configuring an Apache Airflow
connection using a AWS Secrets Manager secret.

Permissions

• Secrets Manager permissions as shown in Configuring an Apache Airflow connection using a AWS
Secrets Manager secret.

Requirements

• To use this code example with Apache Airflow v1, no additional dependencies are required. The
code uses the Apache Airflow v1 base install on your environment.

• To use this code example with Apache Airflow v2, no additional dependencies are required. The
code uses the Apache Airflow v2 base install on your environment.

Version 303

https://www.python.org/dev/peps/pep-0537/
https://peps.python.org/pep-0619/
https://raw.githubusercontent.com/apache/airflow/constraints-1.10.12/constraints-3.7.txt
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

Code sample

The following steps describe how to create the DAG code that calls Secrets Manager to get the
secret.

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as secrets-manager-
var.py.

from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.models import Variable
from airflow.utils.dates import days_ago
from datetime import timedelta
import os
DAG_ID = os.path.basename(__file__).replace(".py", "")
DEFAULT_ARGS = {
 'owner': 'airflow',
 'depends_on_past': False,
 'email': ['airflow@example.com'],
 'email_on_failure': False,
 'email_on_retry': False,
}
def get_variable_fn(**kwargs):
 my_variable_name = Variable.get("test-variable", default_var="undefined")
 print("my_variable_name: ", my_variable_name)
 return my_variable_name
with DAG(
 dag_id=DAG_ID,
 default_args=DEFAULT_ARGS,
 dagrun_timeout=timedelta(hours=2),
 start_date=days_ago(1),
 schedule_interval='@once',
 tags=['variable']
) as dag:
 get_variable = PythonOperator(
 task_id="get_variable",
 python_callable=get_variable_fn,

Code sample 304

Amazon Managed Workflows for Apache Airflow User Guide

 provide_context=True
)

What's next?

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

Using a secret key in AWS Secrets Manager for an Apache
Airflow connection

The following sample calls AWS Secrets Manager to get a secret key for an Apache Airflow
connection on Amazon Managed Workflows for Apache Airflow. It assumes you've completed the
steps in Configuring an Apache Airflow connection using a AWS Secrets Manager secret.

Topics

• Version

• Prerequisites

• Permissions

• Requirements

• Code sample

• What's next?

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

What's next? 305

https://www.python.org/dev/peps/pep-0537/
https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

• The Secrets Manager backend as an Apache Airflow configuration option as shown in Configuring
an Apache Airflow connection using a AWS Secrets Manager secret.

• An Apache Airflow connection string in Secrets Manager as shown in Configuring an Apache
Airflow connection using a AWS Secrets Manager secret.

Permissions

• Secrets Manager permissions as shown in Configuring an Apache Airflow connection using a AWS
Secrets Manager secret.

Requirements

• To use this code example with Apache Airflow v1, no additional dependencies are required. The
code uses the Apache Airflow v1 base install on your environment.

• To use this code example with Apache Airflow v2, no additional dependencies are required. The
code uses the Apache Airflow v2 base install on your environment.

Code sample

The following steps describe how to create the DAG code that calls Secrets Manager to get the
secret.

Apache Airflow v2

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as secrets-
manager.py.

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of

Permissions 306

https://raw.githubusercontent.com/apache/airflow/constraints-1.10.12/constraints-3.7.txt
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from airflow import DAG, settings, secrets
from airflow.operators.python import PythonOperator
from airflow.utils.dates import days_ago
from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook

from datetime import timedelta
import os

The steps to create this secret key can be found at: https://
docs.aws.amazon.com/mwaa/latest/userguide/connections-secrets-manager.html
sm_secretId_name = 'airflow/connections/myconn'

default_args = {
 'owner': 'airflow',
 'start_date': days_ago(1),
 'depends_on_past': False
}

Gets the secret myconn from Secrets Manager
def read_from_aws_sm_fn(**kwargs):
 ### set up Secrets Manager
 hook = AwsBaseHook(client_type='secretsmanager')
 client = hook.get_client_type(region_name='us-east-1')
 response = client.get_secret_value(SecretId=sm_secretId_name)
 myConnSecretString = response["SecretString"]

 return myConnSecretString

'os.path.basename(__file__).replace(".py", "")' uses the file name secrets-
manager.py for a DAG ID of secrets-manager
with DAG(

Code sample 307

Amazon Managed Workflows for Apache Airflow User Guide

 dag_id=os.path.basename(__file__).replace(".py", ""),
 default_args=default_args,
 dagrun_timeout=timedelta(hours=2),
 start_date=days_ago(1),
 schedule_interval=None
) as dag:
 write_all_to_aws_sm = PythonOperator(
 task_id="read_from_aws_sm",
 python_callable=read_from_aws_sm_fn,
 provide_context=True
)

Apache Airflow v1

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as secrets-
manager.py.

from airflow import DAG, settings, secrets
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
from airflow.contrib.hooks.aws_hook import AwsHook

from datetime import timedelta
import os

The steps to create this secret key can be found at: https://
docs.aws.amazon.com/mwaa/latest/userguide/connections-secrets-manager.html
sm_secretId_name = 'airflow/connections/myconn'

default_args = {
 'owner': 'airflow',
 'start_date': days_ago(1),
 'depends_on_past': False
}

Gets the secret myconn from Secrets Manager

Code sample 308

Amazon Managed Workflows for Apache Airflow User Guide

def read_from_aws_sm_fn(**kwargs):
 ### set up Secrets Manager
 hook = AwsHook()
 client = hook.get_client_type('secretsmanager')
 response = client.get_secret_value(SecretId=sm_secretId_name)
 myConnSecretString = response["SecretString"]

 return myConnSecretString

'os.path.basename(__file__).replace(".py", "")' uses the file name secrets-
manager.py for a DAG ID of secrets-manager
with DAG(
 dag_id=os.path.basename(__file__).replace(".py", ""),
 default_args=default_args,
 dagrun_timeout=timedelta(hours=2),
 start_date=days_ago(1),
 schedule_interval=None
) as dag:
 write_all_to_aws_sm = PythonOperator(
 task_id="read_from_aws_sm",
 python_callable=read_from_aws_sm_fn,
 provide_context=True
)

What's next?

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

Creating a custom plugin with Oracle

The following sample walks you through the steps to create a custom plugin using Oracle for
Amazon MWAA and can be combined with other custom plugins and binaries in your plugins.zip
file.

Contents

• Version

• Prerequisites

• Permissions

What's next? 309

Amazon Managed Workflows for Apache Airflow User Guide

• Requirements

• Code sample

• Create the custom plugin

• Download dependencies

• Custom plugin

• Plugins.zip

• Airflow configuration options

• What's next?

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

• Worker logging enabled at any log level, CRITICAL or above, for your environment. For more
information about Amazon MWAA log types and how to manage your log groups, refer to the
section called “Viewing Airflow logs”

Permissions

• No additional permissions are required to use the code example on this page.

Requirements

To use the sample code on this page, add the following dependencies to your
requirements.txt. To learn more, refer to Installing Python dependencies.

Version 310

https://www.python.org/dev/peps/pep-0537/
https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow v2

-c https://raw.githubusercontent.com/apache/airflow/constraints-2.0.2/
constraints-3.7.txt
cx_Oracle
apache-airflow-providers-oracle

Apache Airflow v1

cx_Oracle==8.1.0
apache-airflow[oracle]==1.10.12

Code sample

The following steps describe how to create the DAG code that will test the custom plugin.

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as oracle.py.

from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
import os
import cx_Oracle

DAG_ID = os.path.basename(__file__).replace(".py", "")

def testHook(**kwargs):
 cx_Oracle.init_oracle_client()
 version = cx_Oracle.clientversion()
 print("cx_Oracle.clientversion",version)
 return version

with DAG(dag_id=DAG_ID, schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 hook_test = PythonOperator(
 task_id="hook_test",

Code sample 311

Amazon Managed Workflows for Apache Airflow User Guide

 python_callable=testHook,
 provide_context=True
)

Create the custom plugin

This section describes how to download the dependencies, create the custom plugin and the
plugins.zip.

Download dependencies

Amazon MWAA will extract the contents of plugins.zip into /usr/local/airflow/plugins
on each Amazon MWAA scheduler and worker container. This is used to add binaries to your
environment. The following steps describe how to assemble the files needed for the custom plugin.

Pull the Amazon Linux container image

1. In your command prompt, pull the Amazon Linux container image, and run the container
locally. For example:

docker pull amazonlinux
docker run -it amazonlinux:latest /bin/bash

Your command prompt should invoke a bash command line. For example:

bash-4.2#

2. Install the Linux-native asynchronous I/O facility (libaio).

yum -y install libaio

3. Keep this window open for subsequent steps. We'll be copying the following files locally:
lib64/libaio.so.1, lib64/libaio.so.1.0.0, lib64/libaio.so.1.0.1.

Download client folder

1. Install the unzip package locally. For example:

sudo yum install unzip

Create the custom plugin 312

Amazon Managed Workflows for Apache Airflow User Guide

2. Create an oracle_plugin directory. For example:

mkdir oracle_plugin
cd oracle_plugin

3. Use the following curl command to download the instantclient-basic-
linux.x64-18.5.0.0.0dbru.zip from Oracle Instant Client Downloads for Linux x86-64 (64-bit).

curl https://download.oracle.com/otn_software/linux/instantclient/185000/
instantclient-basic-linux.x64-18.5.0.0.0dbru.zip > client.zip

4. Unzip the client.zip file. For example:

unzip *.zip

Extract files from Docker

1. In a new command prompt, display and write down your Docker container ID. For example:

docker container ls

Your command prompt should return all containers and their IDs. For example:

debc16fd6970

2. In your oracle_plugin directory, extract the lib64/libaio.so.1, lib64/
libaio.so.1.0.0, lib64/libaio.so.1.0.1 files to the local instantclient_18_5
folder. For example:

docker cp debc16fd6970:/lib64/libaio.so.1 instantclient_18_5/
docker cp debc16fd6970:/lib64/libaio.so.1.0.0 instantclient_18_5/
docker cp debc16fd6970:/lib64/libaio.so.1.0.1 instantclient_18_5/

Custom plugin

Apache Airflow will execute the contents of Python files in the plugins folder at startup. This is
used to set and modify environment variables. The following steps describe the sample code for
the custom plugin.

Create the custom plugin 313

https://download.oracle.com/otn_software/linux/instantclient/185000/instantclient-basic-linux.x64-18.5.0.0.0dbru.zip
https://download.oracle.com/otn_software/linux/instantclient/185000/instantclient-basic-linux.x64-18.5.0.0.0dbru.zip
https://www.oracle.com/database/technologies/instant-client/linux-x86-64-downloads.html

Amazon Managed Workflows for Apache Airflow User Guide

• Copy the contents of the following code sample and save locally as
env_var_plugin_oracle.py.

from airflow.plugins_manager import AirflowPlugin
import os

os.environ["LD_LIBRARY_PATH"]='/usr/local/airflow/plugins/instantclient_18_5'
os.environ["DPI_DEBUG_LEVEL"]="64"

class EnvVarPlugin(AirflowPlugin):
 name = 'env_var_plugin'

Plugins.zip

The following steps show how to create the plugins.zip. The contents of this example can be
combined with your other plugins and binaries into a single plugins.zip file.

Zip the contents of the plugin directory

1. In your command prompt, navigate to the oracle_plugin directory. For example:

cd oracle_plugin

2. Zip the instantclient_18_5 directory in plugins.zip. For example:

zip -r ../plugins.zip ./

3. You should see the following in your command prompt:

oracle_plugin$ ls
client.zip instantclient_18_5

4. Remove the client.zip file. For example:

rm client.zip

Zip the env_var_plugin_oracle.py file

1. Add the env_var_plugin_oracle.py file to the root of the plugins.zip. For example:

Create the custom plugin 314

Amazon Managed Workflows for Apache Airflow User Guide

zip plugins.zip env_var_plugin_oracle.py

2. Your plugins.zip should now include the following:

env_var_plugin_oracle.py
instantclient_18_5/

Airflow configuration options

If you're using Apache Airflow v2, add core.lazy_load_plugins : False as an Apache
Airflow configuration option. To learn more, refer to Using configuration options to load plugins in
2.

What's next?

• Learn how to upload the requirements.txt file in this example to your Amazon S3 bucket in
Installing Python dependencies.

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

• Learn more about how to upload the plugins.zip file in this example to your Amazon S3
bucket in Installing custom plugins.

Creating a custom plugin that generates runtime environment
variables

The following sample walks you through the steps to create a custom plugin that generates
environment variables at runtime on an Amazon Managed Workflows for Apache Airflow
environment.

Topics

• Version

• Prerequisites

• Permissions

• Requirements

Airflow configuration options 315

Amazon Managed Workflows for Apache Airflow User Guide

• Custom plugin

• Plugins.zip

• Airflow configuration options

• What's next?

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

Permissions

• No additional permissions are required to use the code example on this page.

Requirements

• To use this code example with Apache Airflow v1, no additional dependencies are required. The
code uses the Apache Airflow v1 base install on your environment.

Custom plugin

Apache Airflow will execute the contents of Python files in the plugins folder at startup. This is
used to set and modify environment variables. The following steps describe the sample code for
the custom plugin.

1. In your command prompt, navigate to the directory where your plugins are stored. For
example:

cd plugins

Version 316

https://www.python.org/dev/peps/pep-0537/
https://raw.githubusercontent.com/apache/airflow/constraints-1.10.12/constraints-3.7.txt

Amazon Managed Workflows for Apache Airflow User Guide

2. Copy the contents of the following code sample and save locally as env_var_plugin.py in
the above folder.

from airflow.plugins_manager import AirflowPlugin
import os

os.environ["PATH"] = os.getenv("PATH") + ":/usr/local/airflow/.local/lib/python3.7/
site-packages"
os.environ["JAVA_HOME"]="/usr/lib/jvm/java-1.8.0-
openjdk-1.8.0.272.b10-1.amzn2.0.1.x86_64"

class EnvVarPlugin(AirflowPlugin):
 name = 'env_var_plugin'

Plugins.zip

The following steps show how to create plugins.zip. The contents of this example can be
combined with other plugins and binaries into a single plugins.zip file.

1. In your command prompt, navigate to the hive_plugin directory from the previous step. For
example:

cd plugins

2. Zip the contents within your plugins folder.

zip -r ../plugins.zip ./

Airflow configuration options

If you're using Apache Airflow v2, add core.lazy_load_plugins : False as an Apache
Airflow configuration option. To learn more, refer to Using configuration options to load plugins in
2.

What's next?

• Learn how to upload the requirements.txt file in this example to your Amazon S3 bucket in
Installing Python dependencies.

Plugins.zip 317

Amazon Managed Workflows for Apache Airflow User Guide

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

• Learn more about how to upload the plugins.zip file in this example to your Amazon S3
bucket in Installing custom plugins.

Changing a DAG's timezone on Amazon MWAA

Apache Airflow schedules your directed acyclic graph (DAG) in UTC+0 by default. The following
steps show how you can change the timezone in which Amazon MWAA runs your DAGs with
Pendulum. Optionally, this topic demonstrates how you can create a custom plugin to change the
timezone for your environment's Apache Airflow logs.

Topics

• Version

• Prerequisites

• Permissions

• Create a plugin to change the timezone in Airflow logs

• Create a plugins.zip

• Code sample

• What's next?

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

Permissions

• No additional permissions are required to use the code example on this page.

Changing a DAG's timezone 318

https://pypi.org/project/pendulum/
https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

Create a plugin to change the timezone in Airflow logs

Apache Airflow will run the Python files in the plugins directory at start-up. With the following
plugin, you can override the executor's timezone, which modifies the timezone in which Apache
Airflow writes logs.

1. Create a directory named plugins for your custom plugin, and navigate to the directory. For
example:

$ mkdir plugins
$ cd plugins

2. Copy the contents of the following code sample and save locally as dag-timezone-
plugin.py in the plugins folder.

import time
import os

os.environ['TZ'] = 'America/Los_Angeles'
time.tzset()

3. In the plugins directory, create an empty Python file named __init__.py. Your plugins
directory should be similar to the following:

plugins/
|-- __init__.py
|-- dag-timezone-plugin.py

Create a plugins.zip

The following steps show how to create plugins.zip. The content of this example can be
combined with other plugins and binaries into a single plugins.zip file.

1. In your command prompt, navigate to the plugins directory from the previous step. For
example:

cd plugins

2. Zip the contents within your plugins directory.

Create a plugin to change the timezone in Airflow logs 319

Amazon Managed Workflows for Apache Airflow User Guide

zip -r ../plugins.zip ./

3. Upload plugins.zip to your S3 bucket

$ aws s3 cp plugins.zip s3://your-mwaa-bucket/

Code sample

To change the default timezone (UTC+0) in which the DAG runs, we'll use a library called
Pendulum, a Python library for working with timezone-aware datetime.

1. In your command prompt, navigate to the directory where your DAGs are stored. For example:

$ cd dags

2. Copy the content of the following example and save as tz-aware-dag.py.

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
Import the Pendulum library.
import pendulum

Instantiate Pendulum and set your timezone.
local_tz = pendulum.timezone("America/Los_Angeles")

with DAG(
 dag_id = "tz_test",
 schedule_interval="0 12 * * *",
 catchup=False,
 start_date=datetime(2022, 1, 1, tzinfo=local_tz)
) as dag:
 bash_operator_task = BashOperator(
 task_id="tz_aware_task",
 dag=dag,
 bash_command="date"
)

3. Run the following AWS CLI command to copy the DAG to your environment's bucket, then
trigger the DAG using the Apache Airflow UI.

Code sample 320

https://pypi.org/project/pendulum/

Amazon Managed Workflows for Apache Airflow User Guide

$ aws s3 cp your-dag.py s3://your-environment-bucket/dags/

4. If successful, you'll output similar to the following in the task logs for the tz_aware_task in
the tz_test DAG:

[2022-08-01, 12:00:00 PDT] {{subprocess.py:74}} INFO - Running command: ['bash', '-
c', 'date']
[2022-08-01, 12:00:00 PDT] {{subprocess.py:85}} INFO - Output:
[2022-08-01, 12:00:00 PDT] {{subprocess.py:89}} INFO - Mon Aug 1 12:00:00 PDT 2022
[2022-08-01, 12:00:00 PDT] {{subprocess.py:93}} INFO - Command exited with return
 code 0
[2022-08-01, 12:00:00 PDT] {{taskinstance.py:1280}} INFO - Marking task as
 SUCCESS. dag_id=tz_test, task_id=tz_aware_task, execution_date=20220801T190033,
 start_date=20220801T190035, end_date=20220801T190035
[2022-08-01, 12:00:00 PDT] {{local_task_job.py:154}} INFO - Task exited with return
 code 0
[2022-08-01, 12:00:00 PDT] {{local_task_job.py:264}} INFO - 0 downstream tasks
 scheduled from follow-on schedule check

What's next?

• Learn more about how to upload the plugins.zip file in this example to your Amazon S3
bucket in Installing custom plugins.

Refreshing a CodeArtifact token

If you're using CodeArtifact to install Python dependencies, Amazon MWAA requires an active
token. To allow Amazon MWAA to access a CodeArtifact repository at runtime, you can use a
startup script and set the PIP_EXTRA_INDEX_URL with the token.

The following topic describes how you can create a startup script that uses the
get_authorization_token CodeArtifact API operation to retrieve a fresh token every time your
environment starts up, or updates.

Topics

• Version

What's next? 321

https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-extra-index-url
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/codeartifact.html#CodeArtifact.Client.get_authorization_token

Amazon Managed Workflows for Apache Airflow User Guide

• Prerequisites

• Permissions

• Code sample

• What's next?

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

• A CodeArtifact repository where you store dependencies for your environment.

Permissions

To refresh the CodeArtifact token and write the result to Amazon S3 Amazon MWAA must have the
following permissions in the execution role.

• The codeartifact:GetAuthorizationToken action allows Amazon MWAA to retrieve a new
token from CodeArtifact. The following policy grants permission for every CodeArtifact domain
you create. You can further restrict access to your domains by modifying the resource value in
the statement, and specifying only the domains that you want your environment to access.

{
 "Effect": "Allow",
 "Action": "codeartifact:GetAuthorizationToken",
 "Resource": "arn:aws:codeartifact:us-west-2:*:domain/*"
}

• The sts:GetServiceBearerToken action is required to call the CodeArtifact
GetAuthorizationToken API operation. This operation returns a token that must be
used when using a package manager such as pip with CodeArtifact. To use a package
manager with a CodeArtifact repository, your environment's execution role role must allow
sts:GetServiceBearerToken as shown in the following policy statement.

Version 322

https://peps.python.org/pep-0619/
https://docs.aws.amazon.com/codeartifact/latest/ug/create-repo.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_GetAuthorizationToken.html

Amazon Managed Workflows for Apache Airflow User Guide

{
 "Sid": "AllowServiceBearerToken",
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*"
}

Code sample

The following steps describe how you can create a start up script that updates the CodeArtifact
token.

1. Copy the contents of the following code sample and save locally as
code_artifact_startup_script.sh.

#!/bin/sh

Startup script for MWAA, refer to https://docs.aws.amazon.com/mwaa/latest/
userguide/using-startup-script.html

set -eu

setup code artifact endpoint and token
https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-0
https://docs.aws.amazon.com/mwaa/latest/userguide/samples-code-artifact.html
DOMAIN="amazon"
DOMAIN_OWNER="112233445566"
REGION="us-west-2"
REPO_NAME="MyRepo"
echo "Getting token for CodeArtifact with args: --domain $DOMAIN --region $REGION
 --domain-owner $DOMAIN_OWNER"
TOKEN=$(aws codeartifact get-authorization-token --domain $DOMAIN --region $REGION
 --domain-owner $DOMAIN_OWNER | jq -r '.authorizationToken')
echo "Setting Pip env var for '--index-url' to point to CodeArtifact"
export PIP_EXTRA_INDEX_URL="https://aws:$TOKEN@$DOMAIN-
$DOMAIN_OWNER.d.codeartifact.$REGION.amazonaws.com/pypi/$REPO_NAME/simple/"
echo "CodeArtifact startup setup complete"

2. Navigate to the folder where you saved the script. Use cp in a new prompt window to upload
the script to your bucket. Replace amzn-s3-demo-bucket with your information.

Code sample 323

Amazon Managed Workflows for Apache Airflow User Guide

$ aws s3 cp code_artifact_startup_script.sh s3://amzn-s3-demo-bucket/
code_artifact_startup_script.sh

If successful, Amazon S3 outputs the URL path to the object:

upload: ./code_artifact_startup_script.sh to s3://amzn-s3-demo-bucket/
code_artifact_startup_script.sh

After you upload the script, your environment updates and runs the script at startup.

What's next?

• Learn how to use startup scripts to customize your environment in the section called “Using a
startup script”.

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

• Learn more about how to upload the plugins.zip file in this example to your Amazon S3
bucket in Installing custom plugins.

Creating a custom plugin with Apache Hive and Hadoop

Amazon MWAA extracts the contents of a plugins.zip to /usr/local/airflow/plugins.
This can be used to add binaries to your containers. In addition, Apache Airflow executes the
contents of Python files in the plugins folder at startup—enabling you to set and modify
environment variables. The following sample walks you through the steps to create a custom
plugin using Apache Hive and Hadoop on an Amazon Managed Workflows for Apache Airflow
environment and can be combined with other custom plugins and binaries.

Topics

• Version

• Prerequisites

• Permissions

• Requirements

• Download dependencies

What's next? 324

Amazon Managed Workflows for Apache Airflow User Guide

• Custom plugin

• Plugins.zip

• Code sample

• Airflow configuration options

• What's next?

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

Permissions

• No additional permissions are required to use the code example on this page.

Requirements

To use the sample code on this page, add the following dependencies to your
requirements.txt. To learn more, refer to Installing Python dependencies.

Apache Airflow v2

-c https://raw.githubusercontent.com/apache/airflow/constraints-2.0.2/
constraints-3.7.txt
apache-airflow-providers-amazon[apache.hive]

Version 325

https://www.python.org/dev/peps/pep-0537/
https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow v1

apache-airflow[hive]==1.10.12

Download dependencies

Amazon MWAA will extract the contents of plugins.zip into /usr/local/airflow/plugins
on each Amazon MWAA scheduler and worker container. This is used to add binaries to your
environment. The following steps describe how to assemble the files needed for the custom plugin.

1. In your command prompt, navigate to the directory where you would like to create your
plugin. For example:

cd plugins

2. Download Hadoop from a mirror, for example:

wget https://downloads.apache.org/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz

3. Download Hive from a mirror, for example:

wget https://downloads.apache.org/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz

4. Create a directory. For example:

mkdir hive_plugin

5. Extract Hadoop.

tar -xvzf hadoop-3.3.0.tar.gz -C hive_plugin

6. Extract Hive.

tar -xvzf apache-hive-3.1.2-bin.tar.gz -C hive_plugin

Download dependencies 326

https://hadoop.apache.org/
https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz
https://hive.apache.org/
https://www.apache.org/dyn/closer.cgi/hive/

Amazon Managed Workflows for Apache Airflow User Guide

Custom plugin

Apache Airflow will execute the contents of Python files in the plugins folder at startup. This is
used to set and modify environment variables. The following steps describe the sample code for
the custom plugin.

1. In your command prompt, navigate to the hive_plugin directory. For example:

cd hive_plugin

2. Copy the contents of the following code sample and save locally as hive_plugin.py in the
hive_plugin directory.

from airflow.plugins_manager import AirflowPlugin
import os
os.environ["JAVA_HOME"]="/usr/lib/jvm/jre"
os.environ["HADOOP_HOME"]='/usr/local/airflow/plugins/hadoop-3.3.0'
os.environ["HADOOP_CONF_DIR"]='/usr/local/airflow/plugins/hadoop-3.3.0/etc/hadoop'
os.environ["HIVE_HOME"]='/usr/local/airflow/plugins/apache-hive-3.1.2-bin'
os.environ["PATH"] = os.getenv("PATH") + ":/usr/local/airflow/plugins/
hadoop-3.3.0:/usr/local/airflow/plugins/apache-hive-3.1.2-bin/bin:/usr/local/
airflow/plugins/apache-hive-3.1.2-bin/lib"
os.environ["CLASSPATH"] = os.getenv("CLASSPATH") + ":/usr/local/airflow/plugins/
apache-hive-3.1.2-bin/lib"
class EnvVarPlugin(AirflowPlugin):
 name = 'hive_plugin'

3. Cope the content of the following text and save locally as .airflowignore in the
hive_plugin directory.

hadoop-3.3.0
apache-hive-3.1.2-bin

Plugins.zip

The following steps show how to create plugins.zip. The contents of this example can be
combined with other plugins and binaries into a single plugins.zip file.

1. In your command prompt, navigate to the hive_plugin directory from the previous step. For
example:

Custom plugin 327

Amazon Managed Workflows for Apache Airflow User Guide

cd hive_plugin

2. Zip the contents within your plugins folder.

zip -r ../hive_plugin.zip ./

Code sample

The following steps describe how to create the DAG code that will test the custom plugin.

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as hive.py.

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago

with DAG(dag_id="hive_test_dag", schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 hive_test = BashOperator(
 task_id="hive_test",
 bash_command='hive --help'
)

Airflow configuration options

If you're using Apache Airflow v2, add core.lazy_load_plugins : False as an Apache
Airflow configuration option. To learn more, refer to Using configuration options to load plugins in
2.

What's next?

• Learn how to upload the requirements.txt file in this example to your Amazon S3 bucket in
Installing Python dependencies.

Code sample 328

Amazon Managed Workflows for Apache Airflow User Guide

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

• Learn more about how to upload the plugins.zip file in this example to your Amazon S3
bucket in Installing custom plugins.

Creating a custom plugin for Apache Airflow
PythonVirtualenvOperator

The following sample shows how to patch the Apache Airflow PythonVirtualenvOperator with a
custom plugin on Amazon Managed Workflows for Apache Airflow.

Topics

• Version

• Prerequisites

• Permissions

• Requirements

• Custom plugin sample code

• Plugins.zip

• Code sample

• Airflow configuration options

• What's next?

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

Custom plugin to patch PythonVirtualenvOperator 329

https://www.python.org/dev/peps/pep-0537/
https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

Permissions

• No additional permissions are required to use the code example on this page.

Requirements

To use the sample code on this page, add the following dependencies to your
requirements.txt. To learn more, refer to Installing Python dependencies.

virtualenv

Custom plugin sample code

Apache Airflow will execute the contents of Python files in the plugins folder at startup. This
plugin will patch the built-in PythonVirtualenvOperator during that startup process to make it
compatible with Amazon MWAA. The following steps show the sample code for the custom plugin.

Apache Airflow v2

1. In your command prompt, navigate to the plugins directory above. For example:

cd plugins

2. Copy the contents of the following code sample and save locally as
virtual_python_plugin.py.

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

Permissions 330

Amazon Managed Workflows for Apache Airflow User Guide

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from airflow.plugins_manager import AirflowPlugin
import airflow.utils.python_virtualenv
from typing import List

def _generate_virtualenv_cmd(tmp_dir: str, python_bin: str,
 system_site_packages: bool) -> List[str]:
 cmd = ['python3','/usr/local/airflow/.local/lib/python3.7/site-packages/
virtualenv', tmp_dir]
 if system_site_packages:
 cmd.append('--system-site-packages')
 if python_bin is not None:
 cmd.append(f'--python={python_bin}')
 return cmd

airflow.utils.python_virtualenv._generate_virtualenv_cmd=_generate_virtualenv_cmd

class VirtualPythonPlugin(AirflowPlugin):
 name = 'virtual_python_plugin'

Apache Airflow v1

1. In your command prompt, navigate to the plugins directory above. For example:

cd plugins

2. Copy the contents of the following code sample and save locally as
virtual_python_plugin.py.

from airflow.plugins_manager import AirflowPlugin
from airflow.operators.python_operator import PythonVirtualenvOperator

def _generate_virtualenv_cmd(self, tmp_dir):
 cmd = ['python3','/usr/local/airflow/.local/lib/python3.7/site-packages/
virtualenv', tmp_dir]
 if self.system_site_packages:
 cmd.append('--system-site-packages')
 if self.python_version is not None:
 cmd.append('--python=python{}'.format(self.python_version))
 return cmd
PythonVirtualenvOperator._generate_virtualenv_cmd=_generate_virtualenv_cmd

Custom plugin sample code 331

Amazon Managed Workflows for Apache Airflow User Guide

class EnvVarPlugin(AirflowPlugin):
 name = 'virtual_python_plugin'

Plugins.zip

The following steps show how to create the plugins.zip.

1. In your command prompt, navigate to the directory containing
virtual_python_plugin.py above. For example:

cd plugins

2. Zip the contents within your plugins folder.

zip plugins.zip virtual_python_plugin.py

Code sample

The following steps describe how to create the DAG code for the custom plugin.

Apache Airflow v2

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as
virtualenv_test.py.

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.

Plugins.zip 332

Amazon Managed Workflows for Apache Airflow User Guide

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from airflow import DAG
from airflow.operators.python import PythonVirtualenvOperator
from airflow.utils.dates import days_ago
import os

os.environ["PATH"] = os.getenv("PATH") + ":/usr/local/airflow/.local/bin"

def virtualenv_fn():
 import boto3
 print("boto3 version ",boto3.__version__)

with DAG(dag_id="virtualenv_test", schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 virtualenv_task = PythonVirtualenvOperator(
 task_id="virtualenv_task",
 python_callable=virtualenv_fn,
 requirements=["boto3>=1.17.43"],
 system_site_packages=False,
 dag=dag,
)

Apache Airflow v1

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as
virtualenv_test.py.

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Code sample 333

Amazon Managed Workflows for Apache Airflow User Guide

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from airflow import DAG
from airflow.operators.python_operator import PythonVirtualenvOperator
from airflow.utils.dates import days_ago
import os

os.environ["PATH"] = os.getenv("PATH") + ":/usr/local/airflow/.local/bin"

def virtualenv_fn():
 import boto3
 print("boto3 version ",boto3.__version__)

with DAG(dag_id="virtualenv_test", schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 virtualenv_task = PythonVirtualenvOperator(
 task_id="virtualenv_task",
 python_callable=virtualenv_fn,
 requirements=["boto3>=1.17.43"],
 system_site_packages=False,
 dag=dag,
)

Airflow configuration options

If you're using Apache Airflow v2, add core.lazy_load_plugins : False as an Apache
Airflow configuration option. To learn more, refer to Using configuration options to load plugins in
2.

Airflow configuration options 334

Amazon Managed Workflows for Apache Airflow User Guide

What's next?

• Learn how to upload the requirements.txt file in this example to your Amazon S3 bucket in
Installing Python dependencies.

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

• Learn more about how to upload the plugins.zip file in this example to your Amazon S3
bucket in Installing custom plugins.

Invoking DAGs with a Lambda function

The following code example uses an AWS Lambda function to get an Apache Airflow CLI token and
invoke a directed acyclic graph (DAG) in an Amazon MWAA environment.

Topics

• Version

• Prerequisites

• Permissions

• Dependencies

• Code example

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use this code example, you must:

• Use the public network access mode for your Amazon MWAA environment.

• Have a Lambda function using the latest Python runtime.

What's next? 335

https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://peps.python.org/pep-0619/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html

Amazon Managed Workflows for Apache Airflow User Guide

Note

If the Lambda function and your Amazon MWAA environment are in the same VPC, you
can use this code on a private network. For this configuration, the Lambda function's
execution role needs permission to call the Amazon Elastic Compute Cloud (Amazon
EC2) CreateNetworkInterface API operation. You can provide this permission using the
AWSLambdaVPCAccessExecutionRole AWS managed policy.

Permissions

To use the code example on this page, your Amazon MWAA environment's execution role needs
access to perform the airflow:CreateCliToken action. You can provide this permission using
the AmazonMWAAAirflowCliAccess AWS managed policy:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "airflow:CreateCliToken"
],
 "Resource": "*"
 }
]
}

For more information, refer to Apache Airflow CLI policy: AmazonMWAAAirflowCliAccess.

Dependencies

• To use this code example with Apache Airflow v2, no additional dependencies are required. The
code uses the Apache Airflow v2 base install on your environment.

Permissions 336

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole$jsonEditor
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

Code example

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose your Lambda function from the Functions list.

3. On the function page, copy the following code and replace the following with the names of
your resources:

• YOUR_ENVIRONMENT_NAME – The name of your Amazon MWAA environment.

• YOUR_DAG_NAME – The name of the DAG that you want to invoke.

import boto3
import http.client
import base64
import ast
mwaa_env_name = 'YOUR_ENVIRONMENT_NAME'
dag_name = 'YOUR_DAG_NAME'
mwaa_cli_command = 'dags trigger'

client = boto3.client('mwaa')

def lambda_handler(event, context):
 # get web token
 mwaa_cli_token = client.create_cli_token(
 Name=mwaa_env_name
)

 conn = http.client.HTTPSConnection(mwaa_cli_token['WebServerHostname'])
 payload = mwaa_cli_command + " " + dag_name
 headers = {
 'Authorization': 'Bearer ' + mwaa_cli_token['CliToken'],
 'Content-Type': 'text/plain'
 }
 conn.request("POST", "/aws_mwaa/cli", payload, headers)
 res = conn.getresponse()
 data = res.read()
 dict_str = data.decode("UTF-8")
 mydata = ast.literal_eval(dict_str)
 return base64.b64decode(mydata['stdout'])

4. Choose Deploy.

Code example 337

https://console.aws.amazon.com/lambda/

Amazon Managed Workflows for Apache Airflow User Guide

5. Choose Test to invoke your function using the Lambda console.

6. To verify that your Lambda successfully invoked your DAG, use the Amazon MWAA console to
navigate to your environment's Apache Airflow UI, then do the following:

a. On the DAGs page, locate your new target DAG in the list of DAGs.

b. Under Last Run, check the timestamp for the latest DAG run. This timestamp should
closely match the latest timestamp for invoke_dag in your other environment.

c. Under Recent Tasks, check that the last run was successful.

Invoking DAGs in different Amazon MWAA environments

The following code example creates an Apache Airflow CLI token. The code then uses a directed
acyclic graph (DAG) in one Amazon MWAA environment to invoke a DAG in a different Amazon
MWAA environment.

Topics

• Version

• Prerequisites

• Permissions

• Dependencies

• Code example

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the code example on this page, you need the following:

• Two Amazon MWAA environments with public network web server access, including your
current environment.

• A sample DAG uploaded to your target environment's Amazon Simple Storage Service (Amazon
S3) bucket.

Invoking DAGs in different environments 338

https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

Permissions

To use the code example on this page, your environment's execution role must have
permission to create an Apache Airflow CLI token. You can attach the AWS managed policy
AmazonMWAAAirflowCliAccess to grant this permission.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "airflow:CreateCliToken"
],
 "Resource": "*"
 }
]
}

For more information, refer to Apache Airflow CLI policy: AmazonMWAAAirflowCliAccess.

Dependencies

• To use this code example with Apache Airflow v2, no additional dependencies are required. The
code uses the Apache Airflow v2 base install on your environment.

Code example

The following code example assumes that you're using a DAG in your current environment to
invoke a DAG in another environment.

1. In your terminal, navigate to the directory where your DAG code is stored. For example:

cd dags

2. Copy the content of the following code example and save it locally as invoke_dag.py.
Replace the following values with your information.

Permissions 339

https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

• your-new-environment-name – The name of the other environment where you want to
invoke the DAG.

• your-target-dag-id – The ID of the DAG in the other environment that you want to
invoke.

from airflow.decorators import dag, task
import boto3
from datetime import datetime, timedelta
import os, requests

DAG_ID = os.path.basename(__file__).replace(".py", "")

@task()
def invoke_dag_task(**kwargs):
 client = boto3.client('mwaa')
 token = client.create_cli_token(Name='your-new-environment-name')
 url = f"https://{token['WebServerHostname']}/aws_mwaa/cli"
 body = 'dags trigger your-target-dag-id'
 headers = {
 'Authorization' : 'Bearer ' + token['CliToken'],
 'Content-Type': 'text/plain'
 }
 requests.post(url, data=body, headers=headers)

@dag(
 dag_id=DAG_ID,
 schedule_interval=None,
 start_date=datetime(2022, 1, 1),
 dagrun_timeout=timedelta(minutes=60),
 catchup=False
)
def invoke_dag():
 t = invoke_dag_task()

invoke_dag_test = invoke_dag()

3. Run the following AWS CLI command to copy the DAG to your environment's bucket, then
trigger the DAG using the Apache Airflow UI.

$ aws s3 cp your-dag.py s3://your-environment-bucket/dags/

Code example 340

Amazon Managed Workflows for Apache Airflow User Guide

4. If the DAG runs successfully, you'll see output similar to the following in the task logs for
invoke_dag_task.

[2022-01-01, 12:00:00 PDT] {{python.py:152}} INFO - Done. Returned value was: None
[2022-01-01, 12:00:00 PDT] {{taskinstance.py:1280}} INFO - Marking task as SUCCESS.
 dag_id=invoke_dag, task_id=invoke_dag_task, execution_date=20220101T120000,
 start_date=20220101T120000, end_date=20220101T120000
[2022-01-01, 12:00:00 PDT] {{local_task_job.py:154}} INFO - Task exited with return
 code 0
[2022-01-01, 12:00:00 PDT] {{local_task_job.py:264}} INFO - 0 downstream tasks
 scheduled from follow-on schedule check

To verify that your DAG was successfully invoked, navigate to the Apache Airflow UI for your
new environment, then do the following:

a. On the DAGs page, locate your new target DAG in the list of DAGs.

b. Under Last Run, check the timestamp for the latest DAG run. This timestamp should
closely match the latest timestamp for invoke_dag in your other environment.

c. Under Recent Tasks, check that the last run was successful.

Using Amazon MWAA with Amazon RDS for Microsoft SQL
Server

You can use Amazon Managed Workflows for Apache Airflow to connect to an RDS for SQL Server.
The following sample code uses DAGs on an Amazon Managed Workflows for Apache Airflow
environment to connect to and execute queries on an Amazon RDS for Microsoft SQL Server.

Topics

• Version

• Prerequisites

• Dependencies

• Apache Airflow v2 connection

• Code sample

• What's next?

Amazon RDS server 341

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html

Amazon Managed Workflows for Apache Airflow User Guide

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

• Amazon MWAA and the RDS for SQL Server are running in the same Amazon VPC/

• VPC security groups of Amazon MWAA and the server are configured with the following
connections:

• An inbound rule for the port 1433 open for Amazon RDS in Amazon MWAA's security group

• Or an outbound rule for the port of 1433 open from Amazon MWAA to RDS

• Apache Airflow Connection for RDS for SQL Server reflects the hostname, port, username and
password from the Amazon RDS SQL server database created in previous process.

Dependencies

To use the sample code in this section, add the following dependency to your
requirements.txt. To learn more, refer to Installing Python dependencies

Apache Airflow v2

apache-airflow-providers-microsoft-mssql==1.0.1
apache-airflow-providers-odbc==1.0.1
pymssql==2.2.1

Apache Airflow v1

apache-airflow[mssql]==1.10.12

Version 342

https://www.python.org/dev/peps/pep-0537/
https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow v2 connection

If you're using a connection in Apache Airflow v2, ensure the Airflow connection object includes the
following key-value pairs:

1. Conn Id: mssql_default

2. Conn Type: Amazon Web Services

3. Host: YOUR_DB_HOST

4. Schema:

5. Login: admin

6. Password:

7. Port: 1433

8. Extra:

Code sample

1. In your command prompt, navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as sql-server.py.

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import pymssql

Apache Airflow v2 connection 343

Amazon Managed Workflows for Apache Airflow User Guide

import logging
import sys
from airflow import DAG
from datetime import datetime
from airflow.operators.mssql_operator import MsSqlOperator
from airflow.operators.python_operator import PythonOperator

default_args = {
 'owner': 'aws',
 'depends_on_past': False,
 'start_date': datetime(2019, 2, 20),
 'provide_context': True
}

dag = DAG(
 'mssql_conn_example', default_args=default_args, schedule_interval=None)

drop_db = MsSqlOperator(
 task_id="drop_db",
 sql="DROP DATABASE IF EXISTS testdb;",
 mssql_conn_id="mssql_default",
 autocommit=True,
 dag=dag
)

create_db = MsSqlOperator(
 task_id="create_db",
 sql="create database testdb;",
 mssql_conn_id="mssql_default",
 autocommit=True,
 dag=dag
)

create_table = MsSqlOperator(
 task_id="create_table",
 sql="CREATE TABLE testdb.dbo.pet (name VARCHAR(20), owner VARCHAR(20));",
 mssql_conn_id="mssql_default",
 autocommit=True,
 dag=dag
)

insert_into_table = MsSqlOperator(
 task_id="insert_into_table",
 sql="INSERT INTO testdb.dbo.pet VALUES ('Olaf', 'Disney');",

Code sample 344

Amazon Managed Workflows for Apache Airflow User Guide

 mssql_conn_id="mssql_default",
 autocommit=True,
 dag=dag
)

def select_pet(**kwargs):
 try:
 conn = pymssql.connect(
 server='sampledb.<xxxxxx>.<region>.rds.amazonaws.com',
 user='admin',
 password='<yoursupersecretpassword>',
 database='testdb'
)

 # Create a cursor from the connection
 cursor = conn.cursor()
 cursor.execute("SELECT * from testdb.dbo.pet")
 row = cursor.fetchone()

 if row:
 print(row)
 except:
 logging.error("Error when creating pymssql database connection: %s",
 sys.exc_info()[0])

select_query = PythonOperator(
 task_id='select_query',
 python_callable=select_pet,
 dag=dag,
)

drop_db >> create_db >> create_table >> insert_into_table >> select_query

What's next?

• Learn how to upload the requirements.txt file in this example to your Amazon S3 bucket in
Installing Python dependencies.

• Learn how to upload the DAG code in this example to the dags folder in your Amazon S3 bucket
in Adding or updating DAGs.

• Explore example scripts and other pymssql module examples.

What's next? 345

https://pymssql.readthedocs.io/en/stable/pymssql_examples.html

Amazon Managed Workflows for Apache Airflow User Guide

• Learn more about executing SQL code in a specific Microsoft SQL database using the
mssql_operator in the Apache Airflow reference guide.

Using Amazon MWAA with Amazon EMR

The following code sample demonstrates how to enable an integration using Amazon EMR and
Amazon Managed Workflows for Apache Airflow.

Topics

• Version

• Code sample

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

Code sample

 """
 Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

 Permission is hereby granted, free of charge, to any person obtaining a copy of
 this software and associated documentation files (the "Software"), to deal in
 the Software without restriction, including without limitation the rights to
 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 the Software, and to permit persons to whom the Software is furnished to do so.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 """
 from airflow import DAG

 from airflow.providers.amazon.aws.operators.emr import EmrAddStepsOperator
 from airflow.providers.amazon.aws.sensors.emr import EmrStepSensor
 from airflow.providers.amazon.aws.operators.emr import EmrCreateJobFlowOperator

Amazon EMR integration 346

https://airflow.apache.org/docs/apache-airflow/1.10.12/_api/airflow/operators/mssql_operator/index.html?highlight=mssqloperator#airflow.operators.mssql_operator.MsSqlOperator
https://www.python.org/dev/peps/pep-0537/

Amazon Managed Workflows for Apache Airflow User Guide

 from airflow.utils.dates import days_ago
 from datetime import timedelta
 import os

 DAG_ID = os.path.basename(__file__).replace(".py", "")

 DEFAULT_ARGS = {
 'owner': 'airflow',
 'depends_on_past': False,
 'email': ['airflow@example.com'],
 'email_on_failure': False,
 'email_on_retry': False,
 }

 SPARK_STEPS = [
 {
 'Name': 'calculate_pi',
 'ActionOnFailure': 'CONTINUE',
 'HadoopJarStep': {
 'Jar': 'command-runner.jar',
 'Args': ['/usr/lib/spark/bin/run-example', 'SparkPi', '10'],
 },
 }
]

 JOB_FLOW_OVERRIDES = {
 'Name': 'my-demo-cluster',
 'ReleaseLabel': 'emr-5.30.1',
 'Applications': [
 {
 'Name': 'Spark'
 },
],
 'Instances': {
 'InstanceGroups': [
 {
 'Name': "Master nodes",
 'Market': 'ON_DEMAND',
 'InstanceRole': 'MASTER',
 'InstanceType': 'm5.xlarge',
 'InstanceCount': 1,
 },
 {

Code sample 347

Amazon Managed Workflows for Apache Airflow User Guide

 'Name': "Slave nodes",
 'Market': 'ON_DEMAND',
 'InstanceRole': 'CORE',
 'InstanceType': 'm5.xlarge',
 'InstanceCount': 2,
 }
],
 'KeepJobFlowAliveWhenNoSteps': False,
 'TerminationProtected': False,
 'Ec2KeyName': 'mykeypair',
 },
 'VisibleToAllUsers': True,
 'JobFlowRole': 'EMR_EC2_DefaultRole',
 'ServiceRole': 'EMR_DefaultRole'
 }

 with DAG(
 dag_id=DAG_ID,
 default_args=DEFAULT_ARGS,
 dagrun_timeout=timedelta(hours=2),
 start_date=days_ago(1),
 schedule_interval='@once',
 tags=['emr'],
) as dag:

 cluster_creator = EmrCreateJobFlowOperator(
 task_id='create_job_flow',
 job_flow_overrides=JOB_FLOW_OVERRIDES
)

 step_adder = EmrAddStepsOperator(
 task_id='add_steps',
 job_flow_id="{{ task_instance.xcom_pull(task_ids='create_job_flow',
 key='return_value') }}",
 aws_conn_id='aws_default',
 steps=SPARK_STEPS,
)

 step_checker = EmrStepSensor(
 task_id='watch_step',
 job_flow_id="{{ task_instance.xcom_pull('create_job_flow',
 key='return_value') }}",
 step_id="{{ task_instance.xcom_pull(task_ids='add_steps',
 key='return_value')[0] }}",

Code sample 348

Amazon Managed Workflows for Apache Airflow User Guide

 aws_conn_id='aws_default',
)

 cluster_creator >> step_adder >> step_checker

Using Amazon MWAA with Amazon EKS

The following sample demonstrates how to use Amazon Managed Workflows for Apache Airflow
with Amazon EKS.

Topics

• Version

• Prerequisites

• Create a public key for Amazon EC2

• Create the cluster

• Create a mwaa namespace

• Create a role for the mwaa namespace

• Create and attach an IAM role for the Amazon EKS cluster

• Create the requirements.txt file

• Create an identity mapping for Amazon EKS

• Create the kubeconfig

• Create a DAG

• Add the DAG and kube_config.yaml to the Amazon S3 bucket

• Enable and trigger the example

Version

• The sample code on this page can be used with Apache Airflow v1 in Python 3.7.

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the example in this topic, you'll need the following:

Amazon EKS (eksctl) 349

https://www.python.org/dev/peps/pep-0537/
https://peps.python.org/pep-0619/

Amazon Managed Workflows for Apache Airflow User Guide

• An Amazon MWAA environment.

• eksctl. To learn more, refer to Install eksctl.

• kubectl. To learn more, refer to Install and Set Up kubectl. In some case this is installed with
eksctl.

• An EC2 key pair in the Region where you create your Amazon MWAA environment. To learn more,
refer to Creating or importing a key pair.

Note

When you use an eksctl command, you can include a --profile to specify a profile
other than the default.

Create a public key for Amazon EC2

Use the following command to create a public key from your private key pair.

ssh-keygen -y -f myprivatekey.pem > mypublickey.pub

To learn more, refer to Retrieving the public key for your key pair.

Create the cluster

Use the following command to create the cluster. If you want a custom name for the cluster or to
create it in a different Region, replace the name and Region values. You must create the cluster
in the same Region where you create the Amazon MWAA environment. Replace the values for
the subnets to match the subnets in your Amazon VPC network that you use for Amazon MWAA.
Replace the value for the ssh-public-key to match the key you use. You can use an existing key
from Amazon EC2 that is in the same Region, or create a new key in the same Region where you
create your Amazon MWAA environment.

eksctl create cluster \
--name mwaa-eks \
--region us-west-2 \
--version 1.18 \
--nodegroup-name linux-nodes \

Create a public key for Amazon EC2 350

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html#install-eksctl
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#prepare-key-pair
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#retrieving-the-public-key

Amazon Managed Workflows for Apache Airflow User Guide

--nodes 3 \
--nodes-min 1 \
--nodes-max 4 \
--with-oidc \
--ssh-access \
--ssh-public-key MyPublicKey \
--managed \
--vpc-public-subnets "subnet-11111111111111111, subnet-2222222222222222222" \
--vpc-private-subnets "subnet-33333333333333333, subnet-44444444444444444"

It takes some time to complete creating the cluster. Once complete, you can verify that the
cluster was created successfully and has the IAM OIDC Provider configured by using the following
command:

eksctl utils associate-iam-oidc-provider \
--region us-west-2 \
--cluster mwaa-eks \
--approve

Create a mwaa namespace

After confirming that the cluster was successfully created, use the following command to create a
namespace for the pods.

kubectl create namespace mwaa

Create a role for the mwaa namespace

After you create the namespace, create a role and role-binding for an Amazon MWAA user on EKS
that can run pods in a the MWAA namespace. If you used a different name for the namespace,
replace mwaa in -n mwaa with the name that you used.

cat << EOF | kubectl apply -f - -n mwaa
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: mwaa-role
rules:
 - apiGroups:
 - ""

Create a mwaa namespace 351

Amazon Managed Workflows for Apache Airflow User Guide

 - "apps"
 - "batch"
 - "extensions"
 resources:
 - "jobs"
 - "pods"
 - "pods/attach"
 - "pods/exec"
 - "pods/log"
 - "pods/portforward"
 - "secrets"
 - "services"
 verbs:
 - "create"
 - "delete"
 - "describe"
 - "get"
 - "list"
 - "patch"
 - "update"

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: mwaa-role-binding
subjects:
- kind: User
 name: mwaa-service
roleRef:
 kind: Role
 name: mwaa-role
 apiGroup: rbac.authorization.k8s.io
EOF

Confirm that the new role can access the Amazon EKS cluster by running the following command.
Be sure to use the correct name if you did not use mwaa:

kubectl get pods -n mwaa --as mwaa-service

You should see a message returned that says:

No resources found in mwaa namespace.

Create a role for the mwaa namespace 352

Amazon Managed Workflows for Apache Airflow User Guide

Create and attach an IAM role for the Amazon EKS cluster

You must create an IAM role and then bind it to the Amazon EKS (k8s) cluster so that it can be used
for authentication through IAM. The role is used only to log in to the cluster, and does not have any
permissions for the console or API calls.

Create a new role for the Amazon MWAA environment using the steps in Amazon MWAA execution
role. However, instead of creating and attaching the policies described in that topic, attach the
following policy:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "airflow:PublishMetrics",
 "Resource": "arn:aws:airflow:us-east-1:111122223333:environment/
${MWAA_ENV_NAME}"
 },
 {
 "Effect": "Deny",
 "Action": "s3:ListAllMyBuckets",
 "Resource": [
 "arn:aws:s3:::{MWAA_S3_BUCKET}",
 "arn:aws:s3:::{MWAA_S3_BUCKET}/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::{MWAA_S3_BUCKET}",
 "arn:aws:s3:::{MWAA_S3_BUCKET}/*"
]
 },
 {

Create and attach an IAM role for the Amazon EKS cluster 353

Amazon Managed Workflows for Apache Airflow User Guide

 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "logs:GetLogRecord",
 "logs:GetLogGroupFields",
 "logs:GetQueryResults",
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-east-1:111122223333:log-group:airflow-
${MWAA_ENV_NAME}-*"
]
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:PutMetricData",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sqs:ChangeMessageVisibility",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl",
 "sqs:ReceiveMessage",
 "sqs:SendMessage"
],
 "Resource": "arn:aws:sqs:us-east-1:*:airflow-celery-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey*",
 "kms:Encrypt"
],
 "NotResource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "StringLike": {

Create and attach an IAM role for the Amazon EKS cluster 354

Amazon Managed Workflows for Apache Airflow User Guide

 "kms:ViaService": [
 "sqs.us-east-1.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "eks:DescribeCluster"
],
 "Resource": "arn:aws:eks:us-east-1:111122223333:cluster/
${EKS_CLUSTER_NAME}"
 }
]
}

After you create role, edit your Amazon MWAA environment to use the role you created as the
execution role for the environment. To change the role, edit the environment to use. You select the
execution role under Permissions.

Known issues:

• There is a known issue with role ARNs with subpaths not being able to authenticate with Amazon
EKS. The workaround for this is to create the service role manually rather than using the one
created by Amazon MWAA itself. To learn more, refer to Roles with paths do not work when the
path is included in their ARN in the aws-auth configmap

• If Amazon MWAA service listing is not available in IAM you need to choose an alternate service
policy, such as Amazon EC2, and then update the role’s trust policy to match the following:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "airflow-env.amazonaws.com",
 "airflow.amazonaws.com"

Create and attach an IAM role for the Amazon EKS cluster 355

https://github.com/kubernetes-sigs/aws-iam-authenticator/issues/268
https://github.com/kubernetes-sigs/aws-iam-authenticator/issues/268

Amazon Managed Workflows for Apache Airflow User Guide

]
 },
 "Action": "sts:AssumeRole"
 }
]
}

To learn more, refer to How to use trust policies with IAM roles.

Create the requirements.txt file

To use the sample code in this section, ensure you've added one of the following database options
to your requirements.txt. To learn more, refer to Installing Python dependencies.

Apache Airflow v2

kubernetes
apache-airflow[cncf.kubernetes]==3.0.0

Apache Airflow v1

awscli
kubernetes==12.0.1

Create an identity mapping for Amazon EKS

Use the ARN for the role you created in the following command to create an identity mapping for
Amazon EKS. Change the Region us-east-1 to the Region where you created the environment.
Replace the ARN for the role, and finally, replace mwaa-execution-role with your environment's
execution role.

eksctl create iamidentitymapping \
--region us-east-1 \
--cluster mwaa-eks \
--arn arn:aws:iam::123456789012:role/mwaa-execution-role \
--username mwaa-service

Create the requirements.txt file 356

https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/

Amazon Managed Workflows for Apache Airflow User Guide

Create the kubeconfig

Use the following command to create the kubeconfig:

aws eks update-kubeconfig \
--region us-west-2 \
--kubeconfig ./kube_config.yaml \
--name mwaa-eks \
--alias aws

If you used a specific profile when you ran update-kubeconfig you need to remove the env:
section added to the kube_config.yaml file so that it works correctly with Amazon MWAA. To do so,
delete the following from the file and then save it:

env:
- name: AWS_PROFILE
 value: profile_name

Create a DAG

Use the following code example to create a Python file, such as mwaa_pod_example.py for the
DAG.

Apache Airflow v2

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from airflow import DAG
from datetime import datetime

Create the kubeconfig 357

Amazon Managed Workflows for Apache Airflow User Guide

from airflow.providers.cncf.kubernetes.operators.kubernetes_pod import
 KubernetesPodOperator

default_args = {
 'owner': 'aws',
 'depends_on_past': False,
 'start_date': datetime(2019, 2, 20),
 'provide_context': True
}

dag = DAG(
 'kubernetes_pod_example', default_args=default_args, schedule_interval=None)

#use a kube_config stored in s3 dags folder for now
kube_config_path = '/usr/local/airflow/dags/kube_config.yaml'

podRun = KubernetesPodOperator(
 namespace="mwaa",
 image="ubuntu:18.04",
 cmds=["bash"],
 arguments=["-c", "ls"],
 labels={"foo": "bar"},
 name="mwaa-pod-test",
 task_id="pod-task",
 get_logs=True,
 dag=dag,
 is_delete_operator_pod=False,
 config_file=kube_config_path,
 in_cluster=False,
 cluster_context='aws'
)

Apache Airflow v1

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

Create a DAG 358

Amazon Managed Workflows for Apache Airflow User Guide

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from airflow import DAG
from datetime import datetime
from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator

default_args = {
 'owner': 'aws',
 'depends_on_past': False,
 'start_date': datetime(2019, 2, 20),
 'provide_context': True
}

dag = DAG(
 'kubernetes_pod_example', default_args=default_args, schedule_interval=None)

#use a kube_config stored in s3 dags folder for now
kube_config_path = '/usr/local/airflow/dags/kube_config.yaml'

podRun = KubernetesPodOperator(
 namespace="mwaa",
 image="ubuntu:18.04",
 cmds=["bash"],
 arguments=["-c", "ls"],
 labels={"foo": "bar"},
 name="mwaa-pod-test",
 task_id="pod-task",
 get_logs=True,
 dag=dag,
 is_delete_operator_pod=False,
 config_file=kube_config_path,
 in_cluster=False,
 cluster_context='aws'
)

Create a DAG 359

Amazon Managed Workflows for Apache Airflow User Guide

Add the DAG and kube_config.yaml to the Amazon S3 bucket

Put the DAG you created and the kube_config.yaml file into the Amazon S3 bucket for the
Amazon MWAA environment. You can put files into your bucket using either the Amazon S3
console or the AWS Command Line Interface.

Enable and trigger the example

In Apache Airflow, enable the example and then trigger it.

After it runs and completes successfully, use the following command to verify the pod:

kubectl get pods -n mwaa

You should see output similar to the following:

NAME READY STATUS RESTARTS AGE
mwaa-pod-test-aa11bb22cc3344445555666677778888 0/1 Completed 0 2m23s

You can then verify the output of the pod with the following command. Replace the name value
with the value returned from the previous command:

kubectl logs -n mwaa mwaa-pod-test-aa11bb22cc3344445555666677778888

Connecting to Amazon ECS using the ECSOperator

The topic describes how you can use the ECSOperator to connect to an Amazon Elastic Container
Service (Amazon ECS) container from Amazon MWAA. In the following steps, you'll add the
required permissions to your environment's execution role, use a AWS CloudFormation template to
create an Amazon ECS Fargate cluster, and finally create and upload a DAG that connects to your
new cluster.

Topics

• Version

• Prerequisites

• Permissions

• Create an Amazon ECS cluster

• Code sample

Add the DAG and kube_config.yaml to the Amazon S3 bucket 360

Amazon Managed Workflows for Apache Airflow User Guide

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

To use the sample code on this page, you'll need the following:

• An Amazon MWAA environment.

Permissions

• The execution role for your environment needs permission to run tasks in Amazon ECS. You can
either attach the AmazonECS_FullAccess AWS-managed policy to your execution role, or create
and attach the following policy to your execution role.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask",
 "ecs:DescribeTasks"
],
 "Resource": "*"
 },
 {
 "Action": "iam:PassRole",
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "ecs-tasks.amazonaws.com"
 }
 }

Version 361

https://peps.python.org/pep-0619/
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonECS_FullAccess$jsonEditor

Amazon Managed Workflows for Apache Airflow User Guide

 }
]
}

• In addition to adding the required premissions to run tasks in Amazon ECS, you must also modify
the CloudWatch Logs policy statement in your Amazon MWAA execution role to allow access to
the Amazon ECS task log group as shown in the following. The Amazon ECS log group is created
by the AWS CloudFormation template in the section called “Create an Amazon ECS cluster”.

{
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "logs:GetLogRecord",
 "logs:GetLogGroupFields",
 "logs:GetQueryResults"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:airflow-environment-name-*",
 "arn:aws:logs:*:*:log-group:ecs-mwaa-group:*"
]
}

For more information about the Amazon MWAA execution role, and how to attach a policy, refer to
Execution role.

Create an Amazon ECS cluster

Using the following AWS CloudFormation template, you will build an Amazon ECS Fargate cluster
to use with your Amazon MWAA workflow. For more information, refer to Creating a task definition
in the Amazon Elastic Container Service Developer Guide.

1. Create a JSON file with the following code and save it as ecs-mwaa-cfn.json.

{
 "AWSTemplateFormatVersion": "2010-09-09",

Create an Amazon ECS cluster 362

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition

Amazon Managed Workflows for Apache Airflow User Guide

 "Description": "This template deploys an ECS Fargate cluster with an Amazon
 Linux image as a test for MWAA.",
 "Parameters": {
 "VpcId": {
 "Type": "AWS::EC2::VPC::Id",
 "Description": "Select a VPC that allows instances access to ECR, as
 used with MWAA."
 },
 "SubnetIds": {
 "Type": "List<AWS::EC2::Subnet::Id>",
 "Description": "Select at two private subnets in your selected VPC, as
 used with MWAA."
 },
 "SecurityGroups": {
 "Type": "List<AWS::EC2::SecurityGroup::Id>",
 "Description": "Select at least one security group in your selected
 VPC, as used with MWAA."
 }
 },
 "Resources": {
 "Cluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": {
 "Fn::Sub": "${AWS::StackName}-cluster"
 }
 }
 },
 "LogGroup": {
 "Type": "AWS::Logs::LogGroup",
 "Properties": {
 "LogGroupName": {
 "Ref": "AWS::StackName"
 },
 "RetentionInDays": 30
 }
 },
 "ExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",

Create an Amazon ECS cluster 363

Amazon Managed Workflows for Apache Airflow User Guide

 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AmazonECSTaskExecutionRolePolicy"
]
 }
 },
 "TaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "Family": {
 "Fn::Sub": "${AWS::StackName}-task"
 },
 "Cpu": 2048,
 "Memory": 4096,
 "NetworkMode": "awsvpc",
 "ExecutionRoleArn": {
 "Ref": "ExecutionRole"
 },
 "ContainerDefinitions": [
 {
 "Name": {
 "Fn::Sub": "${AWS::StackName}-container"
 },
 "Image": "137112412989.dkr.ecr.us-east-1.amazonaws.com/
amazonlinux:latest",
 "PortMappings": [
 {
 "Protocol": "tcp",
 "ContainerPort": 8080,
 "HostPort": 8080
 }
],
 "LogConfiguration": {
 "LogDriver": "awslogs",
 "Options": {
 "awslogs-region": {
 "Ref": "AWS::Region"

Create an Amazon ECS cluster 364

Amazon Managed Workflows for Apache Airflow User Guide

 },
 "awslogs-group": {
 "Ref": "LogGroup"
 },
 "awslogs-stream-prefix": "ecs"
 }
 }
 }
],
 "RequiresCompatibilities": [
 "FARGATE"
]
 }
 },
 "Service": {
 "Type": "AWS::ECS::Service",
 "Properties": {
 "ServiceName": {
 "Fn::Sub": "${AWS::StackName}-service"
 },
 "Cluster": {
 "Ref": "Cluster"
 },
 "TaskDefinition": {
 "Ref": "TaskDefinition"
 },
 "DesiredCount": 1,
 "LaunchType": "FARGATE",
 "PlatformVersion": "1.3.0",
 "NetworkConfiguration": {
 "AwsvpcConfiguration": {
 "AssignPublicIp": "ENABLED",
 "Subnets": {
 "Ref": "SubnetIds"
 },
 "SecurityGroups": {
 "Ref": "SecurityGroups"
 }
 }
 }
 }
 }
 }

Create an Amazon ECS cluster 365

Amazon Managed Workflows for Apache Airflow User Guide

}

2. In your command prompt, use the following AWS CLI command to create a new stack. You
must replace the values SecurityGroups and SubnetIds with values for your Amazon
MWAA environment's security groups and subnets.

$ aws cloudformation create-stack \
--stack-name my-ecs-stack --template-body file://ecs-mwaa-cfn.json \
--parameters ParameterKey=SecurityGroups,ParameterValue=your-mwaa-security-group \
ParameterKey=SubnetIds,ParameterValue=your-mwaa-subnet-1\\,your-mwaa-subnet-1 \
--capabilities CAPABILITY_IAM

Alternatively, you can use the following shell script. The script retrieves the required values
for your environment's security groups, and subnets using the get-environment AWS CLI
command, then creates the stack accordingly. To run the script, do the following.

a. Copy, and save the script as ecs-stack-helper.sh in the same directory as your AWS
CloudFormation template.

#!/bin/bash

joinByString() {
 local separator="$1"
 shift
 local first="$1"
 shift
 printf "%s" "$first" "${@/#/$separator}"
}

response=$(aws mwaa get-environment --name $1)

securityGroupId=$(echo "$response" | jq -r
 '.Environment.NetworkConfiguration.SecurityGroupIds[]')
subnetIds=$(joinByString '\,' $(echo "$response" | jq -r
 '.Environment.NetworkConfiguration.SubnetIds[]'))

aws cloudformation create-stack --stack-name $2 --template-body file://ecs-
cfn.json \
--parameters ParameterKey=SecurityGroups,ParameterValue=$securityGroupId \
ParameterKey=SubnetIds,ParameterValue=$subnetIds \
--capabilities CAPABILITY_IAM

Create an Amazon ECS cluster 366

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/mwaa/get-environment.html

Amazon Managed Workflows for Apache Airflow User Guide

b. Run the script using the following commands. Replace environment-name and stack-
name with your information.

$ chmod +x ecs-stack-helper.sh
$./ecs-stack-helper.bash environment-name stack-name

If successful, you'll see the following output displaying your new AWS CloudFormation stack
ID.

{
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-ecs-
stack/123456e7-8ab9-01cd-b2fb-36cce63786c9"
}

After your AWS CloudFormation stack is completed and AWS has provisioned your Amazon ECS
resources, you're ready to create and upload your DAG.

Code sample

1. Open a command prompt, and navigate to the directory where your DAG code is stored. For
example:

cd dags

2. Copy the contents of the following code sample and save locally as mwaa-ecs-operator.py,
then upload your new DAG to Amazon S3.

from http import client
from airflow import DAG
from airflow.providers.amazon.aws.operators.ecs import ECSOperator
from airflow.utils.dates import days_ago
import boto3

CLUSTER_NAME="mwaa-ecs-test-cluster" #Replace value for CLUSTER_NAME with your
 information.
CONTAINER_NAME="mwaa-ecs-test-container" #Replace value for CONTAINER_NAME with
 your information.
LAUNCH_TYPE="FARGATE"

Code sample 367

Amazon Managed Workflows for Apache Airflow User Guide

with DAG(
 dag_id = "ecs_fargate_dag",
 schedule_interval=None,
 catchup=False,
 start_date=days_ago(1)
) as dag:
 client=boto3.client('ecs')
 services=client.list_services(cluster=CLUSTER_NAME,launchType=LAUNCH_TYPE)

 service=client.describe_services(cluster=CLUSTER_NAME,services=services['serviceArns'])

 ecs_operator_task = ECSOperator(
 task_id = "ecs_operator_task",
 dag=dag,
 cluster=CLUSTER_NAME,
 task_definition=service['services'][0]['taskDefinition'],
 launch_type=LAUNCH_TYPE,
 overrides={
 "containerOverrides":[
 {
 "name":CONTAINER_NAME,
 "command":["ls", "-l", "/"],
 },
],
 },

 network_configuration=service['services'][0]['networkConfiguration'],
 awslogs_group="mwaa-ecs-zero",
 awslogs_stream_prefix=f"ecs/{CONTAINER_NAME}",
)

Note

In the example DAG, for awslogs_group, you might need to modify the log group
with the name for your Amazon ECS task log group. The example assumes a log group
named mwaa-ecs-zero. For awslogs_stream_prefix, use the Amazon ECS task
log stream prefix. The example assumes a log stream prefix, ecs.

3. Run the following AWS CLI command to copy the DAG to your environment's bucket, then
trigger the DAG using the Apache Airflow UI.

Code sample 368

Amazon Managed Workflows for Apache Airflow User Guide

$ aws s3 cp your-dag.py s3://your-environment-bucket/dags/

4. If successful, you'll see output similar to the following in the task logs for
ecs_operator_task in the ecs_fargate_dag DAG:

[2022-01-01, 12:00:00 UTC] {{ecs.py:300}} INFO - Running ECS Task -
Task definition: arn:aws:ecs:us-west-2:123456789012:task-definition/mwaa-ecs-test-
task:1 - on cluster mwaa-ecs-test-cluster
[2022-01-01, 12:00:00 UTC] {{ecs-operator-test.py:302}} INFO - ECSOperator
 overrides:
{'containerOverrides': [{'name': 'mwaa-ecs-test-container', 'command': ['ls', '-l',
 '/']}]}
.
.
.
[2022-01-01, 12:00:00 UTC] {{ecs.py:379}} INFO - ECS task ID is:
 e012340b5e1b43c6a757cf012c635935
[2022-01-01, 12:00:00 UTC] {{ecs.py:313}} INFO - Starting ECS Task Log Fetcher
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] total
 52
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC]
 lrwxrwxrwx 1 root root 7 Jun 13 18:51 bin -> usr/bin
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] dr-xr-
xr-x 2 root root 4096 Apr 9 2019 boot
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 5 root root 340 Jul 19 17:54 dev
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 1 root root 4096 Jul 19 17:54 etc
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 2 root root 4096 Apr 9 2019 home
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC]
 lrwxrwxrwx 1 root root 7 Jun 13 18:51 lib -> usr/lib
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC]
 lrwxrwxrwx 1 root root 9 Jun 13 18:51 lib64 -> usr/lib64
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 2 root root 4096 Jun 13 18:51 local
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 2 root root 4096 Apr 9 2019 media
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 2 root root 4096 Apr 9 2019 mnt
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 2 root root 4096 Apr 9 2019 opt

Code sample 369

Amazon Managed Workflows for Apache Airflow User Guide

[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] dr-xr-
xr-x 103 root root 0 Jul 19 17:54 proc
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] dr-xr-
x-\-\- 2 root root 4096 Apr 9 2019 root
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 2 root root 4096 Jun 13 18:52 run
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC]
 lrwxrwxrwx 1 root root 8 Jun 13 18:51 sbin -> usr/sbin
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 2 root root 4096 Apr 9 2019 srv
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] dr-xr-
xr-x 13 root root 0 Jul 19 17:54 sys
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC]
 drwxrwxrwt 2 root root 4096 Jun 13 18:51 tmp
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 13 root root 4096 Jun 13 18:51 usr
[2022-01-01, 12:00:00 UTC] {{ecs.py:119}} INFO - [2022-07-19, 17:54:03 UTC] drwxr-
xr-x 18 root root 4096 Jun 13 18:52 var
.
.
.
[2022-01-01, 12:00:00 UTC] {{ecs.py:328}} INFO - ECS Task has been successfully
 executed

Using dbt with Amazon MWAA

This topic demonstrates how you can use dbt and Postgres with Amazon MWAA. In the following
steps, you'll add the required dependencies to your requirements.txt, and upload a sample
dbt project to your environment's Amazon S3 bucket. Then, you'll use a sample DAG to verify that
Amazon MWAA has installed the dependencies, and finally use the BashOperator to run the dbt
project.

Topics

• Version

• Prerequisites

• Dependencies

• Upload a dbt project to Amazon S3

• Use a DAG to verify dbt dependency installation

• Use a DAG to run a dbt project

Using dbt with Amazon MWAA 370

Amazon Managed Workflows for Apache Airflow User Guide

Version

• You can use the code example on this page with Apache Airflow v2 in Python 3.10.

Prerequisites

Before you can complete the following steps, you'll need the following:

• An Amazon MWAA environment using Apache Airflow v2.2.2. This sample was written, and
tested with v2.2.2. You might need to modify the sample to use with other Apache Airflow
versions.

• A sample dbt project. To get started using dbt with Amazon MWAA, you can create a fork and
clone the dbt starter project from the dbt-labs GitHub repository.

Dependencies

To use Amazon MWAA with dbt, add the following startup script to your environment. To learn
more, refer to Using a startup script with Amazon MWAA.

#!/bin/bash

if [["${MWAA_AIRFLOW_COMPONENT}" != "worker"]]
then
 exit 0
fi

echo "------------------------------"
echo "Installing virtual Python env"
echo "------------------------------"

pip3 install --upgrade pip

echo "Current Python version:"
python3 --version
echo "..."

sudo pip3 install --user virtualenv
sudo mkdir python3-virtualenv
cd python3-virtualenv
sudo python3 -m venv dbt-env

Version 371

https://peps.python.org/pep-0619/
https://github.com/dbt-labs/dbt-starter-project

Amazon Managed Workflows for Apache Airflow User Guide

sudo chmod -R 777 *

echo "------------------------------"
echo "Activating venv in"
$DBT_ENV_PATH
echo "------------------------------"

source dbt-env/bin/activate
pip3 list

echo "------------------------------"
echo "Installing libraries..."
echo "------------------------------"

do not use sudo, as it will install outside the venv
pip3 install dbt-redshift==1.6.1 dbt-postgres==1.6.1

echo "------------------------------"
echo "Venv libraries..."
echo "------------------------------"

pip3 list
dbt --version

echo "------------------------------"
echo "Deactivating venv..."
echo "------------------------------"

deactivate

In the following sections, you'll upload your dbt project directory to Amazon S3 and run a DAG that
validates whether Amazon MWAA has successfully installed the required dbt dependencies.

Upload a dbt project to Amazon S3

To be able to use a dbt project with your Amazon MWAA environment, you can upload the entire
project directory to your environment's dags folder. When the environment updates, Amazon
MWAA downloads the dbt directory to the local usr/local/airflow/dags/ folder.

To upload a dbt project to Amazon S3

1. Navigate to the directory where you cloned the dbt starter project.

Upload a dbt project to Amazon S3 372

Amazon Managed Workflows for Apache Airflow User Guide

2. Run the following Amazon S3 AWS CLI command to recursively copy the content of the project
to your environment's dags folder using the --recursive parameter. The command creates
a sub-directory called dbt that you can use for all of your dbt projects. If the sub-directory
already exists, the project files are copied into the existing directory, and a new directory is not
created. The command also creates a sub-directory within the dbt directory for this specific
starter project.

$ aws s3 cp dbt-starter-project s3://amzn-s3-demo-bucket/dags/dbt/dbt-starter-
project --recursive

You can use different names for project sub-directories to organize multiple dbt projects
within the parent dbt directory.

Use a DAG to verify dbt dependency installation

The following DAG uses a BashOperator and a bash command to verify whether Amazon MWAA
has successfully installed the dbt dependencies specified in requirements.txt.

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago

with DAG(dag_id="dbt-installation-test", schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 cli_command = BashOperator(
 task_id="bash_command",
 bash_command=""/usr/local/airflow/python3-virtualenv/dbt-env/bin/dbt --
version""
)

Do the following to view task logs and verify that dbt and its dependencies have been installed.

1. Navigate to the Amazon MWAA console, then choose Open Airflow UI from the list of
available environments.

2. On the Apache Airflow UI, find the dbt-installation-test DAG from the list, then choose
the date under the Last Run column to open the last successful task.

3. Using Graph View, choose the bash_command task to open the task instance details.

Use a DAG to verify dbt dependency installation 373

Amazon Managed Workflows for Apache Airflow User Guide

4. Choose Log to open the task logs, then verify that the logs successfully list the dbt version we
specified in requirements.txt.

Use a DAG to run a dbt project

The following DAG uses a BashOperator to copy the dbt projects you uploaded to Amazon S3
from the local usr/local/airflow/dags/ directory to the write-accessible /tmp directory,
then runs the dbt project. The bash commands assume a starter dbt project titled dbt-starter-
project. Modify the directory name according to the name of your project directory.

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago

import os

DAG_ID = os.path.basename(__file__).replace(".py", "")

assumes all files are in a subfolder of DAGs called dbt

with DAG(dag_id=DAG_ID, schedule_interval=None, catchup=False, start_date=days_ago(1))
 as dag:
 cli_command = BashOperator(
 task_id="bash_command",
 bash_command="source /usr/local/airflow/python3-virtualenv/dbt-env/bin/
activate;\
cp -R /usr/local/airflow/dags/dbt /tmp;\
echo 'listing project files:';\
ls -R /tmp;\
cd /tmp/dbt/mwaa_dbt_test_project;\
/usr/local/airflow/python3-virtualenv/dbt-env/bin/dbt run --project-dir /tmp/dbt/
mwaa_dbt_test_project --profiles-dir ..;\
cat /tmp/dbt_logs/dbt.log;\
rm -rf /tmp/dbt/mwaa_dbt_test_project"
)

AWS blogs and tutorials

• Working with Amazon EKS and Amazon MWAA for Apache Airflow v2.x

Use a DAG to run a dbt project 374

https://dev.to/aws/working-with-amazon-eks-and-amazon-managed-workflows-for-apache-airflow-v2-x-k12

Amazon Managed Workflows for Apache Airflow User Guide

Best practices for Amazon Managed Workflows for
Apache Airflow

This guide describes the best practices we recommend when using Amazon Managed Workflows
for Apache Airflow.

Topics

• Performance tuning for Apache Airflow on Amazon MWAA

• Managing Python dependencies in requirements.txt

Performance tuning for Apache Airflow on Amazon MWAA

This topic describes how to tune the performance of an Amazon Managed Workflows for Apache
Airflow environment using Using Apache Airflow configuration options on Amazon MWAA.

Contents

• Adding an Apache Airflow configuration option

• Apache Airflow scheduler

• Parameters

• Limits

• DAG folders

• Parameters

• DAG files

• Parameters

• Tasks

• Parameters

Adding an Apache Airflow configuration option

The following procedure walks you through the steps of adding an Airflow configuration option to
your environment.

1. Open the Environments page on the Amazon MWAA console.

Performance tuning for Apache Airflow 375

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

2. Choose an environment.

3. Choose Edit.

4. Choose Next.

5. Choose Add custom configuration in the Airflow configuration options pane.

6. Choose a configuration from the dropdown list and enter a value, or type a custom
configuration and enter a value.

7. Choose Add custom configuration for each configuration you want to add.

8. Choose Save.

To learn more, refer to Using Apache Airflow configuration options on Amazon MWAA.

Apache Airflow scheduler

The Apache Airflow scheduler is a core component of Apache Airflow. An issue with the scheduler
can prevent DAGs from being parsed and tasks from being scheduled. For more information about
Apache Airflow scheduler tuning, refer to Fine-tuning your scheduler performance in the Apache
Airflow documentation website.

Parameters

This section describes the configuration options available for the Apache Airflow scheduler and
their use cases.

Apache Airflow v2

Version Configuration
option

Default Description Use case

v2 celery.sy
nc_parallelism

1 The number of
processes the
Celery Executor
uses to sync
task state.

You can use
this option to
prevent queue
conflicts by
limiting the
processes the
Celery Executor
uses. By default,

Apache Airflow scheduler 376

https://airflow.apache.org/docs/apache-airflow/2.2.2/concepts/scheduler.html#fine-tuning-your-scheduler-performance
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#sync-parallelism
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#sync-parallelism

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

a value is
set to 1 to
prevent errors
in delivering
task logs to
CloudWatch
Logs. Setting
the value to 0
means using
the maximum
number of
processes, but
might cause
errors when
delivering task
logs.

Apache Airflow scheduler 377

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

v2 scheduler
.idle_sleep_time

1 The number
of seconds to
wait between
consecuti
ve DAG file
processing in
the Scheduler
 "loop."

You can use
this option to
free up CPU
usage on the
Scheduler by
increasing
the time the
Scheduler
 sleeps after
it's finished
retrieving DAG
parsing results,
finding and
queuing tasks,
and executing
queued tasks
in the Executor.
Increasing this
value consumes
the number
of Scheduler
 threads run on
an environment
in scheduler
.parsing_
processes

 for Apache
Airflow v2 and
scheduler
.max_thre
ads for
Apache Airflow
v1. This may

Apache Airflow scheduler 378

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#processor-poll-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#processor-poll-interval

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

reduce the
capacity of the
Schedulers to
parse DAGs, and
increase the
time it takes
for DAGs to
appear in the
Web server.

v2 scheduler
.max_dagr
uns_to_cr
eate_per_loop

10 The maximum
number of
DAGs to create
DagRuns for
per Scheduler
 "loop."

You can use this
option to free
up resources
for schedulin
g tasks by
decreasing
the maximum
number of
DagRuns for
the Scheduler
 "loop."

Apache Airflow scheduler 379

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#max-dagruns-to-create-per-loop
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#max-dagruns-to-create-per-loop
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#max-dagruns-to-create-per-loop
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#max-dagruns-to-create-per-loop

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

v2 scheduler
.parsing_
processes

Set using the
following
formula: (2 *
number of
vCPUs) - 1 by
default.

The number
of threads the
Scheduler can
run in parallel
to schedule
DAGs.

You can use this
option to free
up resources
by decreasin
g the number
of processes
the Scheduler
 runs in parallel
to parse DAGs.
We recommend
keeping this
number low if
DAG parsing is
impacting task
scheduling. You
must specify a
value that's less
than the vCPU
count on your
environment.
To learn more,
refer to Limits.

Limits

This section describes the limits you should consider when adjusting the default parameters for the
scheduler.

scheduler.parsing_processes, scheduler.max_threads

Two threads are allowed per vCPU for an environment class. At least one thread must be
reserved for the scheduler for an environment class. If you notice a delay in tasks being
scheduled, you may need to increase your environment class. For example, a large environment
has a 4 vCPU Fargate container instance for its scheduler. This means that a maximum of 7 total

Apache Airflow scheduler 380

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#config-scheduler-parsing-processes
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#config-scheduler-parsing-processes
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#config-scheduler-parsing-processes

Amazon Managed Workflows for Apache Airflow User Guide

threads are available to use for other processes. That is, two threads multiplied four vCPUs,
minus one for the scheduler itself. The value you specify in scheduler.max_threads and
scheduler.parsing_processes must not exceed the number of threads available for an
environment class (as shown, below:

• mw1.small – Must not exceed 1 thread for other processes. The remaining thread is reserved
for the Scheduler.

• mw1.medium – Must not exceed 3 threads for other processes. The remaining thread is
reserved for the Scheduler.

• mw1.large – Must not exceed 7 threads for other processes. The remaining thread is reserved
for the Scheduler.

DAG folders

The Apache Airflow Scheduler continuously scans the DAGs folder on your environment. Any
contained plugins.zip files, or Python (.py) files containing “airflow” import statements. Any
resulting Python DAG objects are then placed into a DagBag for that file to be processed by the
Scheduler to determine what, if any, tasks need to be scheduled. Dag file parsing occurs regardless
of whether the files contain any viable DAG objects.

Parameters

This section describes the configuration options available for the DAGs folder and their use cases.

Apache Airflow v2

Version Configuration
option

Default Description Use case

v2 scheduler
.dag_dir_
list_interval

300 seconds The number
of seconds the
DAGs folder
should be
scanned for
new files.

You can use this
option to free
up resources
by increasin
g the number
of seconds
to parse the
DAGs folder.
We recommend

DAG folders 381

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-dir-list-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-dir-list-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-dir-list-interval

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

increasing this
value if you're
seeing long
parsing times
in total_par
se_time
metrics, which
may be due to
a large number
of files in your
DAGs folder.

DAG folders 382

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

v2 scheduler
.min_file
process
interval

30 seconds The number
of seconds
after which
the scheduler
parses a DAG
and updates
to the DAG are
reflected.

You can use this
option to free
up resources
by increasing
the number of
seconds that
the scheduler
waits before
parsing a DAG.
For example,
if you specify
a value of
30, the DAG
file is parsed
after every 30
seconds. We
recommend
keeping this
number high
to decrease the
CPU usage on
your environme
nt.

DAG files

As part of the Apache Airflow scheduler loop, individual DAG files are parsed to extract
DAG Python objects. In Apache Airflow v2 and above, the scheduler parses a maximum
of number of parsing processes at the same time. The number of seconds specified in
scheduler.min_file_process_interval must pass before the same file is parsed again.

DAG files 383

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-file-process-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-file-process-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-file-process-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-file-process-interval
https://airflow.apache.org/docs/apache-airflow/2.0.2/configurations-ref.html#parsing-processes

Amazon Managed Workflows for Apache Airflow User Guide

Parameters

This section describes the configuration options available for Apache Airflow DAG files and their
use cases.

Apache Airflow v2

Version Configuration
option

Default Description Use case

v2 core.dag_
file_proc
essor_timeout

50 seconds The number of
seconds before
the DagFilePr
ocessor times
out processing a
DAG file.

You can use this
option to free
up resources
by increasin
g the time it
takes before
the DagFilePr
ocessor times
out. We
recommend
increasing this
value if you're
seeing timeouts
in your DAG
processing logs
that result in
no viable DAGs
being loaded.

v2 core.dagb
ag_import
_timeout

30 seconds The number of
seconds before
importing a
Python file
times out.

You can use this
option to free
up resources
by increasin
g the time it
takes before
the Scheduler
 times out while
importing a

DAG files 384

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-file-processor-timeout
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-file-processor-timeout
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-file-processor-timeout
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dagbag-import-timeout
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dagbag-import-timeout
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dagbag-import-timeout

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

Python file
to extract the
DAG objects.
This option
is processed
as part of
the Scheduler
 "loop," and
must contain
a value lower
than the value
specified in
core.dag_
file_proc
essor_tim
eout .

DAG files 385

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

v2 core.min_
serialize
d_dag_upd
ate_interval

30 The minimum
number of
seconds after
which serialize
d DAGs in the
database are
updated.

You can use this
option to free
up resources
by increasing
the number of
seconds after
which serialize
d DAGs in the
database are
updated. We
recommend
increasing
this value if
you have a
large number
of DAGs, or
complex DAGs.
Increasing this
value reduces
the load on the
Scheduler and
the database
as DAGs are
serialized.

DAG files 386

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-serialized-dag-update-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-serialized-dag-update-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-serialized-dag-update-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-serialized-dag-update-interval

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

v2 core.min_
serialize
d_dag_fet
ch_interval

10 The number
of seconds a
serialized DAG is
re-fetched from
the database
when already
loaded in the
DagBag.

You can use this
option to free
up resources
by increasin
g the number
of seconds a
serialized DAG is
re-fetched. The
value must be
higher than the
value specified
in core.min_
serialize
d_dag_upd
ate_inter
val to reduce
database
"write" rates.
Increasing this
value reduces
the load on the
Web server and
the database
as DAGs are
serialized.

Tasks

The Apache Airflow scheduler and workers are both involved in queuing and de-queuing tasks.
The scheduler takes parsed tasks ready to schedule from a None status to a Scheduled status. The
executor, also running on the scheduler container in Fargate, queues those tasks and sets their
status to Queued. When the workers have capacity, it takes the task from the queue and sets the

Tasks 387

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-serialized-dag-fetch-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-serialized-dag-fetch-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-serialized-dag-fetch-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-serialized-dag-fetch-interval

Amazon Managed Workflows for Apache Airflow User Guide

status to Running, which subsequently changes its status to Success or Failed based on whether
the task succeeds or fails.

Parameters

This section describes the configuration options available for Apache Airflow tasks and their use
cases.

The default configuration options that Amazon MWAA overrides are marked in red.

Apache Airflow v2

Version Configuration
option

Default Description Use case

v2 core.parallelism Dynamically
set based on
(maxWorkers
* maxCelery
Workers) /
schedulers
* 1.5.

The maximum
number of
task instances
that can have
a status of
"Running."

You can use this
option to free
up resources
by increasing
the number of
task instances
that can run
simultane
ously. The value
specified should
be the number
of available
Workers "times"
the Workers
task density.
We recommend
changing this
value only when
you're seeing a
large number
of tasks stuck in
the “Running”

Tasks 388

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#parallelism

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

or “Queued”
state.

v2 core.dag_
concurrency

10000 The number of
task instances
allowed to run
concurrently for
each DAG.

You can use this
option to free
up resources
by increasing
the number of
task instances
allowed to run
concurrently.
For example,
if you have
one hundred
DAGs with ten
parallel tasks,
and you want
all DAGs to
run concurren
tly, you can
calculate the
maximum
parallelism as
the number
of available
Workers "times"
the Workers
task density
in celery.wo
rker_conc
urrency ,
divided by the
number of
DAGs (e.g. 100).

Tasks 389

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-concurrency
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-concurrency

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

v2 core.exec
ute_tasks
_new_pyth
on_interpreter

True Determine
s whether
Apache Airflow
executes tasks
by forking the
parent process,
or by creating
a new Python
process.

When set
to True,
Apache Airflow
recognizes
changes you
make to your
plugins as a
new Python
process so
created to
execute tasks.

v2 celery.wo
rker_conc
urrency

N/A Amazon MWAA
overrides the
Airflow base
install for this
option to scale
Workers as part
of its autoscali
ng component.

Any value
specified
for this
option is
ignored.

Tasks 390

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#execute-tasks-new-python-interpreter
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#execute-tasks-new-python-interpreter
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#execute-tasks-new-python-interpreter
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#execute-tasks-new-python-interpreter
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#worker-concurrency
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#worker-concurrency
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#worker-concurrency

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

v2 celery.wo
rker_autoscale

mw1.micro -
3,0

mw1.small -
5,0

mw1.medium -
10,0

mw1.large -
20,0

mw1.xlarge -
40,0

mw1.2xlarge -
80,0

The task
concurrency for
Workers.

You can use this
option to free
up resources
by reducing
the maximum,
minimum task
concurrency
of Workers.
Workers accept
up to the
maximum
concurrent
tasks configure
d, regardless of
whether there
are sufficien
t resources to
do so. If tasks
are scheduled
without
sufficient
resources
, the tasks
immediate
ly fail. We
recommend
changing
this value
for resource-
intensive tasks
by reducing
the values to
be less than

Tasks 391

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#worker-autoscale
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#worker-autoscale

Amazon Managed Workflows for Apache Airflow User Guide

Version Configuration
option

Default Description Use case

the defaults
to allow more
capacity per
task.

Managing Python dependencies in requirements.txt

This topic describes how to install and manage Python dependencies in a requirements.txt file
for an Amazon Managed Workflows for Apache Airflow environment.

Contents

• Testing DAGs using the Amazon MWAA CLI utility

• Installing Python dependencies using PyPi.org Requirements File Format

• Option one: Python dependencies from the Python Package Index

• Option two: Python wheels (.whl)

• Using the plugins.zip file on an Amazon S3 bucket

• Using a WHL file hosted on a URL

• Creating a WHL files from a DAG

• Option three: Python dependencies hosted on a private PyPi/PEP-503 Compliant Repo

• Enabling logs on the Amazon MWAA console

• Viewing logs on the CloudWatch Logs console

• Viewing errors in the Apache Airflow UI

• Logging into Apache Airflow

• Example requirements.txt scenarios

Testing DAGs using the Amazon MWAA CLI utility

• The command line interface (CLI) utility replicates an Amazon Managed Workflows for Apache
Airflow environment locally.

Managing Python dependencies 392

Amazon Managed Workflows for Apache Airflow User Guide

• The CLI builds a Docker container image locally that’s similar to an Amazon MWAA production
image. This allows you to run a local Apache Airflow environment to develop and test DAGs,
custom plugins, and dependencies before deploying to Amazon MWAA.

• To run the CLI, refer to the aws-mwaa-local-runner on GitHub.

Installing Python dependencies using PyPi.org Requirements File
Format

The following section describes the different ways to install Python dependencies according to the
PyPi.org Requirements File Format.

Option one: Python dependencies from the Python Package Index

The following section describes how to specify Python dependencies from the Python Package
Index in a requirements.txt file.

Apache Airflow v2

1. Test locally. Add additional libraries iteratively to find the right combination of packages
and their versions, before creating a requirements.txt file. To run the Amazon MWAA
CLI utility, refer to the aws-mwaa-local-runner on GitHub.

2. Review the Apache Airflow package extras. To view a list of the packages installed
for Apache Airflow v2 on Amazon MWAA, refer to Amazon MWAA local runner
requirements.txt on the GitHub website.

3. Add a constraints statement. Add the constraints file for your Apache Airflow v2
environment at the top of your requirements.txt file. Apache Airflow constraints files
specify the provider versions available at the time of a Apache Airflow release.

Beginning with Apache Airflow v2.7.2, your requirements file must include a --
constraint statement. If you do not provide a constraint, Amazon MWAA will specify one
for you to ensure the packages listed in your requirements are compatible with the version
of Apache Airflow you are using.

In the following example, replace {environment-version} with your environment's
version number, and {Python-version} with the version of Python that's compatible
with your environment.

Installing Python dependencies using PyPi.org Requirements File Format 393

https://github.com/aws/aws-mwaa-local-runner
https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format
https://pypi.org/
https://pypi.org/
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt
https://github.com/aws/aws-mwaa-local-runner/blob/main/docker/config/requirements.txt

Amazon Managed Workflows for Apache Airflow User Guide

For information on the version of Python compatible with your Apache Airflow
environment, refer to Apache Airflow Versions.

--constraint "https://raw.githubusercontent.com/apache/airflow/
constraints-{Airflow-version}/constraints-{Python-version}.txt"

If the constraints file determines that xyz==1.0 package is not compatible with other
packages in your environment, pip3 install will fail in order to prevent incompatible
libraries from being installed to your environment. If installation fails for any packages, you
can view error logs for each Apache Airflow component (the scheduler, worker, and web
server) in the corresponding log stream on CloudWatch Logs. For more information on log
types, refer to the section called “Viewing Airflow logs”.

4. Apache Airflow packages. Add the package extras and the version (==). This helps to
prevent packages of the same name, but different version, from being installed on your
environment.

apache-airflow[package-extra]==2.5.1

5. Python libraries. Add the package name and the version (==) in your requirements.txt
file. This helps to prevent a future breaking update from PyPi.org from being automatically
applied.

library == version

Example Boto3 and psycopg2-binary

This example is provided for demonstration purposes. The boto and psycopg2-binary
libraries are included with the Apache Airflow v2 base install and don't need to be specified
in a requirements.txt file.

boto3==1.17.54
boto==2.49.0
botocore==1.20.54
psycopg2-binary==2.8.6

Installing Python dependencies using PyPi.org Requirements File Format 394

http://airflow.apache.org/docs/apache-airflow/2.5.1/extra-packages-ref.html
https://pypi.org

Amazon Managed Workflows for Apache Airflow User Guide

If a package is specified without a version, Amazon MWAA installs the latest version
of the package from PyPi.org. This version may conflict with other packages in your
requirements.txt.

Apache Airflow v1

1. Test locally. Add additional libraries iteratively to find the right combination of packages
and their versions, before creating a requirements.txt file. To run the Amazon MWAA
CLI utility, refer to the aws-mwaa-local-runner on GitHub.

2. Review the Airflow package extras. Review the list of packages available for
Apache Airflow v1.10.12 at https://raw.githubusercontent.com/apache/airflow/
constraints-1.10.12/constraints-3.7.txt.

3. Add the constraints file. Add the constraints file for Apache Airflow v1.10.12 to the top of
your requirements.txt file. If the constraints file determines that xyz==1.0 package is
not compatible with other packages on your environment, the pip3 install will fail to
prevent incompatible libraries from being installed to your environment.

--constraint "https://raw.githubusercontent.com/apache/airflow/
constraints-1.10.12/constraints-3.7.txt"

4. Apache Airflow v1.10.12 packages. Add the Airflow package extras and the Apache
Airflow v1.10.12 version (==). This helps to prevent packages of the same name, but
different version, from being installed on your environment.

apache-airflow[package]==1.10.12

Example Secure Shell (SSH)

The following example requirements.txt file installs SSH for Apache Airflow v1.10.12.

apache-airflow[ssh]==1.10.12

5. Python libraries. Add the package name and the version (==) in your requirements.txt
file. This helps to prevent a future breaking update from PyPi.org from being automatically
applied.

library == version

Installing Python dependencies using PyPi.org Requirements File Format 395

https://pypi.org
https://github.com/aws/aws-mwaa-local-runner
https://raw.githubusercontent.com/apache/airflow/constraints-1.10.12/constraints-3.7.txt
https://raw.githubusercontent.com/apache/airflow/constraints-1.10.12/constraints-3.7.txt
https://airflow.apache.org/docs/apache-airflow/1.10.12/installation.html#extra-packages
https://pypi.org

Amazon Managed Workflows for Apache Airflow User Guide

Example Boto3

The following example requirements.txt file installs the Boto3 library for Apache
Airflow v1.10.12.

boto3 == 1.17.4

If a package is specified without a version, Amazon MWAA installs the latest version
of the package from PyPi.org. This version may conflict with other packages in your
requirements.txt.

Option two: Python wheels (.whl)

A Python wheel is a package format designed to ship libraries with compiled artifacts. There are
several benefits to wheel packages as a method to install dependencies in Amazon MWAA:

• Faster installation – the WHL files are copied to the container as a single ZIP, and then installed
locally, without having to download each one.

• Fewer conflicts – You can determine version compatibility for your packages in advance. As a
result, there is no need for pip to recursively work out compatible versions.

• More resilience – With externally hosted libraries, downstream requirements can change,
resulting in version incompatibility between containers on a Amazon MWAA environment. By
not depending on an external source for dependencies, every container on has have the same
libraries regardless of when the each container is instantiated.

We recommend the following methods to install Python dependencies from a Python wheel
archive (.whl) in your requirements.txt.

Methods

• Using the plugins.zip file on an Amazon S3 bucket

• Using a WHL file hosted on a URL

• Creating a WHL files from a DAG

Installing Python dependencies using PyPi.org Requirements File Format 396

https://pypi.org

Amazon Managed Workflows for Apache Airflow User Guide

Using the plugins.zip file on an Amazon S3 bucket

The Apache Airflow scheduler, workers, and web server (for Apache Airflow v2.2.2 and later) look
for custom plugins during startup on the AWS-managed Fargate container for your environment
at /usr/local/airflow/plugins/*. This process begins prior to Amazon MWAA's pip3
install -r requirements.txt for Python dependencies and Apache Airflow service startup.
A plugins.zip file be used for any files that you don't want continuously changed during
environment execution, or that you may not want to grant access to users that write DAGs. For
example, Python library wheel files, certificate PEM files, and configuration YAML files.

The following section describes how to install a wheel that's in the plugins.zip file on your
Amazon S3 bucket.

1. Download the necessary WHL files You can use pip download with your existing
requirements.txt on the Amazon MWAA local-runner or another Amazon Linux 2 container
to resolve and download the necessary Python wheel files.

$ pip3 download -r "$AIRFLOW_HOME/dags/requirements.txt" -d "$AIRFLOW_HOME/plugins"
$ cd "$AIRFLOW_HOME/plugins"
$ zip "$AIRFLOW_HOME/plugins.zip" *

2. Specify the path in your requirements.txt. Specify the plugins directory at the top of your
requirements.txt using --find-links and instruct pip not to install from other sources using
--no-index, as shown in the following

--find-links /usr/local/airflow/plugins
--no-index

Example wheel in requirements.txt

The following example assumes you've uploaded the wheel in a plugins.zip file at the root
of your Amazon S3 bucket. For example:

--find-links /usr/local/airflow/plugins
--no-index

numpy

Installing Python dependencies using PyPi.org Requirements File Format 397

https://pip.pypa.io/en/stable/cli/pip_download/
https://github.com/aws/aws-mwaa-local-runner
https://aws.amazon.com/amazon-linux-2
https://pip.pypa.io/en/stable/cli/pip_install/#install-find-links
https://pip.pypa.io/en/stable/cli/pip_install/#install-no-index

Amazon Managed Workflows for Apache Airflow User Guide

Amazon MWAA fetches the numpy-1.20.1-cp37-cp37m-manylinux1_x86_64.whl wheel
from the plugins folder and installs it on your environment.

Using a WHL file hosted on a URL

The following section describes how to install a wheel that's hosted on a URL. The URL must either
be publicly accessible, or accessible from within the custom Amazon VPC you specified for your
Amazon MWAA environment.

• Provide a URL. Provide the URL to a wheel in your requirements.txt.

Example wheel archive on a public URL

The following example downloads a wheel from a public site.

--find-links https://files.pythonhosted.org/packages/
--no-index

Amazon MWAA fetches the wheel from the URL you specified and installs them on your
environment.

Note

URLs are not accessible from private web servers installing requirements in Amazon
MWAA v2.2.2 and later.

Creating a WHL files from a DAG

If you have a private web server using Apache Airflow v2.2.2 or later and you're unable to install
requirements because your environment does not have access to external repositories, you can
use the following DAG to take your existing Amazon MWAA requirements and package them on
Amazon S3:

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago

S3_BUCKET = 'my-s3-bucket'

Installing Python dependencies using PyPi.org Requirements File Format 398

Amazon Managed Workflows for Apache Airflow User Guide

S3_KEY = 'backup/plugins_whl.zip'

with DAG(dag_id="create_whl_file", schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 cli_command = BashOperator(
 task_id="bash_command",
 bash_command=f"mkdir /tmp/whls;pip3 download -r /usr/local/airflow/
requirements/requirements.txt -d /tmp/whls;zip -j /tmp/plugins.zip /tmp/whls/*;aws s3
 cp /tmp/plugins.zip s3://amzn-s3-demo-bucket/{S3_KEY}"
)

After running the DAG, use this new file as your Amazon MWAA plugins.zip, optionally,
packaged with other plugins. Then, update your requirements.txt preceded by --find-
links /usr/local/airflow/plugins and --no-index without adding --constraint.

This method allows you to use the same libraries offline.

Option three: Python dependencies hosted on a private PyPi/PEP-503 Compliant
Repo

The following section describes how to install an Apache Airflow extra that's hosted on a private
URL with authentication.

1. Add your user name and password as Apache Airflow configuration options. For example:

• foo.user : YOUR_USER_NAME

• foo.pass : YOUR_PASSWORD

2. Create your requirements.txt file. Substitute the placeholders in the following example
with your private URL, and the username and password you've added as Apache Airflow
configuration options. For example:

--index-url https://${AIRFLOW__FOO__USER}:${AIRFLOW__FOO__PASS}@my.privatepypi.com

3. Add any additional libraries to your requirements.txt file. For example:

--index-url https://${AIRFLOW__FOO__USER}:${AIRFLOW__FOO__PASS}@my.privatepypi.com
my-private-package==1.2.3

Installing Python dependencies using PyPi.org Requirements File Format 399

Amazon Managed Workflows for Apache Airflow User Guide

Enabling logs on the Amazon MWAA console

The execution role for your Amazon MWAA environment needs permission to send logs to
CloudWatch Logs. To update the permissions of an execution role, refer to Amazon MWAA
execution role.

You can enable Apache Airflow logs at the INFO, WARNING, ERROR, or CRITICAL level. When you
choose a log level, Amazon MWAA sends logs for that level and all higher levels of severity. For
example, if you enable logs at the INFO level, Amazon MWAA sends INFO logs and WARNING,
ERROR, and CRITICAL log levels to CloudWatch Logs. We recommend enabling Apache Airflow
logs at the INFO level for the Scheduler to view logs received for the requirements.txt.

Viewing logs on the CloudWatch Logs console

You can view Apache Airflow logs for the Scheduler scheduling your workflows and parsing your
dags folder. The following steps describe how to open the log group for the Scheduler on the
Amazon MWAA console, and view Apache Airflow logs on the CloudWatch Logs console.

To view logs for a requirements.txt

1. Open the Environments page on the Amazon MWAA console.

Enabling logs on the Amazon MWAA console 400

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

2. Choose an environment.

3. Choose the Airflow scheduler log group on the Monitoring pane.

4. Choose the requirements_install_ip log in Log streams.

5. You should see the list of packages that were installed on the environment at /usr/local/
airflow/.local/bin. For example:

Collecting appdirs==1.4.4 (from -r /usr/local/airflow/.local/bin (line 1))
Downloading https://files.pythonhosted.org/
packages/3b/00/2344469e2084fb28kjdsfiuyweb47389789vxbmnbjhsdgf5463acd6cf5e3db69324/
appdirs-1.4.4-py2.py3-none-any.whl
Collecting astroid==2.4.2 (from -r /usr/local/airflow/.local/bin (line 2))

6. Review the list of packages and whether any of these encountered an error during installation.
If something went wrong, you may see an error similar to the following:

2021-03-05T14:34:42.731-07:00
No matching distribution found for LibraryName==1.0.0 (from -r /usr/local/
airflow/.local/bin (line 4))
No matching distribution found for LibraryName==1.0.0 (from -r /usr/local/
airflow/.local/bin (line 4))

Viewing errors in the Apache Airflow UI

You may also want to check your Apache Airflow UI to identify whether an error may be related to
another issue. The most common error you may encounter with Apache Airflow on Amazon MWAA
is:

Broken DAG: No module named x

If you see this error in your Apache Airflow UI, you're likely missing a required dependency in your
requirements.txt file.

Logging into Apache Airflow

You need Apache Airflow UI access policy: AmazonMWAAWebServerAccess permissions for your
AWS account in AWS Identity and Access Management (IAM) to view your Apache Airflow UI.

Viewing errors in the Apache Airflow UI 401

Amazon Managed Workflows for Apache Airflow User Guide

To access your Apache Airflow UI

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Open Airflow UI.

Example requirements.txt scenarios

You can mix and match different formats in your requirements.txt. The following example uses
a combination of the different ways to install extras.

Example Extras on PyPi.org and a public URL

You need to use the --index-url option when specifying packages from PyPi.org, in addition to
packages on a public URL, such as custom PEP 503 compliant repo URLs.

aws-batch == 0.6
phoenix-letter >= 0.3

--index-url http://dist.repoze.org/zope2/2.10/simple
 zopelib

Example requirements.txt scenarios 402

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Monitoring and metrics for Amazon Managed Workflows
for Apache Airflow

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Managed Workflows for Apache Airflow and your AWS solution. We recommend collecting
monitoring data from all parts of your AWS solution so that you can more easily debug a multi-
point failure if one occurs. This topic describes what resources AWS provides for monitoring your
Amazon MWAA environment and responding to potential events.

Note

Apache Airflow metrics and logging are subject to standard Amazon CloudWatch pricing.

For more information about monitoring Apache Airflow, refer to Logging & Monitoring in the
Apache Airflow documentation website.

Sections

• Monitoring overview on Amazon MWAA

• Viewing audit logs in AWS CloudTrail

• Viewing Airflow logs in Amazon CloudWatch

• Monitoring dashboards and alarms on Amazon MWAA

• Apache Airflow v2 environment metrics in CloudWatch

• Container, queue, and database metrics for Amazon MWAA

Monitoring overview on Amazon MWAA

This page describes the AWS services used to monitor an Amazon Managed Workflows for Apache
Airflow environment.

Contents

• Amazon CloudWatch overview

• AWS CloudTrail overview

Overview 403

https://aws.amazon.com/cloudwatch/pricing/
https://airflow.apache.org/docs/apache-airflow/stable/logging-monitoring/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Amazon CloudWatch overview

CloudWatch is a metrics repository for AWS services that allows you to retrieve statistics based on
the metrics and dimensions published by a service. You can use these metrics to configure alarms,
calculate statistics and then present the data in a dashboard that helps you assess the health of
your environment in the Amazon CloudWatch console.

Apache Airflow is already set-up to send StatsD metrics for an Amazon Managed Workflows for
Apache Airflow environment to Amazon CloudWatch.

To learn more, refer to What is Amazon CloudWatch?.

AWS CloudTrail overview

CloudTrail is an auditing service that provides a record of actions taken by a user, role, or an AWS
service in Amazon MWAA. Using the information collected by CloudTrail, you can determine the
request that was made to Amazon MWAA, the IP address from which the request was made, who
made the request, when it was made, and additional details available in audit logs.

To learn more, refer to What is AWS CloudTrail?.

Viewing audit logs in AWS CloudTrail

AWS CloudTrail is enabled on your AWS account when you create it. CloudTrail logs the activity
taken by an IAM entity or an AWS service, such as Amazon Managed Workflows for Apache
Airflow, which is recorded as a CloudTrail event. You can view, search, and download the past
90 days of event history in the CloudTrail console. CloudTrail captures all events on the Amazon
MWAA console and all calls to Amazon MWAA APIs. It doesn't capture read-only actions, such as
GetEnvironment, or the PublishMetrics action. This page describes how to use CloudTrail to
monitor events for Amazon MWAA.

Contents

• Creating a trail in CloudTrail

• Viewing events with CloudTrail Event History

• Example trail for CreateEnvironment

• What's next?

Amazon CloudWatch overview 404

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#CloudWatchAlarms
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://github.com/etsy/statsd
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Amazon Managed Workflows for Apache Airflow User Guide

Creating a trail in CloudTrail

You need to create a trail to view an ongoing record of events in your AWS account, including
events for Amazon MWAA. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket.
If you do not create a trail, you can still view available event history in the CloudTrail console. For
example, using the information collected by CloudTrail, you can determine the request that was
made to Amazon MWAA, the IP address from which the request was made, who made the request,
when it was made, and additional details. To learn more, refer to the Creating a trail for your AWS
account.

Viewing events with CloudTrail Event History

You can troubleshoot operational and security incidents over the past 90 days in the CloudTrail
console by viewing event history. For example, you can view events related to the creation,
modification, or deletion of resources (such as IAM users or other AWS resources) in your AWS
account on a per-region basis. To learn more, refer to the Viewing Events with CloudTrail Event
History.

1. Open the CloudTrail console.

2. Choose Event history.

3. Select the events you want to view, and then choose Compare event details.

Example trail for CreateEnvironment

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify.

CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, such as the date and time
of the action, or request parameters. CloudTrail log files are not an ordered stack trace of the
public API calls, and don't appear in any specific order. The following example is a log entry
for the CreateEnvironment action that is denied due to lacking permissions. The values in
AirflowConfigurationOptions have been redacted for privacy.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",

Creating a trail in CloudTrail 405

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://console.aws.amazon.com/cloudtrail/home#

Amazon Managed Workflows for Apache Airflow User Guide

 "principalId": "00123456ABC7DEF8HIJK",
 "arn": "arn:aws:sts::012345678901:assumed-role/root/myuser",
 "accountId": "012345678901",
 "accessKeyId": "",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "00123456ABC7DEF8HIJK",
 "arn": "arn:aws:iam::012345678901:role/user",
 "accountId": "012345678901",
 "userName": "user"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-10-07T15:51:52Z"
 }
 }
 },
 "eventTime": "2020-10-07T15:52:58Z",
 "eventSource": "airflow.amazonaws.com",
 "eventName": "CreateEnvironment",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "205.251.233.178",
 "userAgent": "PostmanRuntime/7.26.5",
 "errorCode": "AccessDenied",
 "requestParameters": {
 "SourceBucketArn": "arn:aws:s3:::my-bucket",
 "ExecutionRoleArn": "arn:aws:iam::012345678901:role/AirflowTaskRole",
 "AirflowConfigurationOptions": "***",
 "DagS3Path": "sample_dag.py",
 "NetworkConfiguration": {
 "SecurityGroupIds": [
 "sg-01234567890123456"
],
 "SubnetIds": [
 "subnet-01234567890123456",
 "subnet-65432112345665431"
]
 },
 "Name": "test-cloudtrail"
 },
 "responseElements": {
 "message": "Access denied."

Example trail for CreateEnvironment 406

Amazon Managed Workflows for Apache Airflow User Guide

 },
 "requestID": "RequestID",
 "eventID": "EventID",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "012345678901"
}

What's next?

• Learn how to configure other AWS services for the event data collected in CloudTrail logs in
CloudTrail Supported Services and Integrations.

• Learn how to be notified when CloudTrail publishes new log files to an Amazon S3 bucket in
Configuring Amazon SNS Notifications for CloudTrail.

Viewing Airflow logs in Amazon CloudWatch

Amazon MWAA can send Apache Airflow logs to Amazon CloudWatch. You can view logs for
multiple environments from a single location to easily identify Apache Airflow task delays or
workflow errors without the need for additional third-party tools. Apache Airflow logs need to be
enabled on the Amazon Managed Workflows for Apache Airflow console to view Apache Airflow
DAG processing, tasks, Web server, Worker logs in CloudWatch.

Contents

• Pricing

• Before you begin

• Log types

• Enabling Apache Airflow logs

• Viewing Apache Airflow logs

• Example scheduler logs

• What's next?

Pricing

• Standard CloudWatch Logs charges apply. For more information, refer to CloudWatch pricing.

What's next? 407

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://aws.amazon.com/cloudwatch/pricing/

Amazon Managed Workflows for Apache Airflow User Guide

Before you begin

• You must have a role that can view logs in CloudWatch. For more information, refer to Accessing
an Amazon MWAA environment.

Log types

Amazon MWAA creates a log group for each Airflow logging option you enable, and pushes the
logs to the CloudWatch Logs groups associated with an environment. Log groups are named in the
following format: YourEnvironmentName-LogType. For example, if your environment's named
Airflow-v202-Public, Apache Airflow task logs are sent to Airflow-v202-Public-Task.

Log type Description

YourEnvironmentName- DAGProces
sing

The logs of the DAG processor manager (the
part of the scheduler that processes DAG files).

YourEnvironmentName- Scheduler The logs the Airflow scheduler generates.

YourEnvironmentName- Task The task logs a DAG generates.

YourEnvironmentName- WebServer The logs the Airflow web interface generates.

YourEnvironmentName- Worker The logs generated as part of workflow and
DAG execution.

Enabling Apache Airflow logs

You can enable Apache Airflow logs at the INFO, WARNING, ERROR, or CRITICAL level. When you
choose a log level, Amazon MWAA sends logs for that level and all higher levels of severity. For
example, if you enable logs at the INFO level, Amazon MWAA sends INFO logs and WARNING,
ERROR, and CRITICAL log levels to CloudWatch Logs.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose Edit.

4. Choose Next.

Before you begin 408

https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

5. Choose one or more of the following logging options:

a. Choose the Airflow scheduler log group on the Monitoring pane.

b. Choose the Airflow web server log group on the Monitoring pane.

c. Choose the Airflow worker log group on the Monitoring pane.

d. Choose the Airflow DAG processing log group on the Monitoring pane.

e. Choose the Airflow task log group on the Monitoring pane.

f. Choose the logging level in Log level.

6. Choose Next.

7. Choose Save.

Viewing Apache Airflow logs

The following section describes how to view Apache Airflow logs in the CloudWatch console.

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose a log group in the Monitoring pane.

4. Choose a log in Log stream.

Example scheduler logs

You can view Apache Airflow logs for the Scheduler scheduling your workflows and parsing your
dags folder. The following steps describe how to open the log group for the Scheduler on the
Amazon MWAA console, and view Apache Airflow logs on the CloudWatch Logs console.

To view logs for a requirements.txt

1. Open the Environments page on the Amazon MWAA console.

2. Choose an environment.

3. Choose the Airflow scheduler log group on the Monitoring pane.

4. Choose the requirements_install_ip log in Log streams.

5. You should see the list of packages that were installed on the environment at /usr/local/
airflow/.local/bin. For example:

Viewing Apache Airflow logs 409

https://console.aws.amazon.com/mwaa/home#/environments
https://console.aws.amazon.com/mwaa/home#/environments

Amazon Managed Workflows for Apache Airflow User Guide

Collecting appdirs==1.4.4 (from -r /usr/local/airflow/.local/bin (line 1))
Downloading https://files.pythonhosted.org/
packages/3b/00/2344469e2084fb28kjdsfiuyweb47389789vxbmnbjhsdgf5463acd6cf5e3db69324/
appdirs-1.4.4-py2.py3-none-any.whl
Collecting astroid==2.4.2 (from -r /usr/local/airflow/.local/bin (line 2))

6. Review the list of packages and whether any of these encountered an error during installation.
If something went wrong, you may see an error similar to the following:

2021-03-05T14:34:42.731-07:00
No matching distribution found for LibraryName==1.0.0 (from -r /usr/local/
airflow/.local/bin (line 4))
No matching distribution found for LibraryName==1.0.0 (from -r /usr/local/
airflow/.local/bin (line 4))

What's next?

• Learn how to configure a CloudWatch alarm in Using Amazon CloudWatch alarms.

• Learn how to create a CloudWatch dashboard in Using CloudWatch dashboards.

Monitoring dashboards and alarms on Amazon MWAA

You can create a custom dashboard in Amazon CloudWatch and add alarms for a particular metric
to monitor the health status of an Amazon Managed Workflows for Apache Airflow environment.
When an alarm is on a dashboard, it turns red when it is in the ALARM state, making it easier for
you to monitor the health of an Amazon MWAA environment proactively.

Apache Airflow exposes metrics for a number of processes, including the number of DAG
processes, DAG bag size, currently running tasks, task failures, and successes. When you create
an environment, Airflow is configured to automatically send metrics for an Amazon MWAA
environment to CloudWatch. This page describes how to create a health status dashboard for the
Airflow metrics in CloudWatch for an Amazon MWAA environment.

Contents

• Metrics

• Alarm states overview

What's next? 410

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html

Amazon Managed Workflows for Apache Airflow User Guide

• Example custom dashboards and alarms

• About these metrics

• About the dashboard

• Using AWS tutorials

• Using AWS CloudFormation

• Deleting metrics and dashboards

• What's next?

Metrics

You can create a custom dashboard and alarm for any of the metrics available for your Apache
Airflow version. Each metric corresponds to an Apache Airflow key performance indicator (KPI). To
view a list of metrics, refer to:

• Apache Airflow v2 environment metrics in CloudWatch

Alarm states overview

A metric alarm has the following possible states:

• OK – The metric or expression is within the defined threshold.

• ALARM – The metric or expression is outside of the defined threshold.

• INSUFFICIENT_DATA – The alarm has just started, the metric is not available, or not enough
data is available for the metric to determine the alarm state.

Example custom dashboards and alarms

You can build a custom monitoring dashboard that displays charts of selected metrics for your
Amazon MWAA environment.

About these metrics

The following list describes each of the metrics created in the custom dashboard by the tutorial
and template definitions in this section.

Metrics 411

Amazon Managed Workflows for Apache Airflow User Guide

• QueuedTasks - The number of tasks with queued state. Corresponds to the
executor.queued_tasks Apache Airflow metric.

• TasksPending - The number of tasks pending in executor. Corresponds to the
scheduler.tasks.pending Apache Airflow metric.

Note

Does not apply to Apache Airflow v2.2 and above.

• RunningTasks - The number of tasks running in executor. Corresponds to the
executor.running_tasks Apache Airflow metric.

• SchedulerHeartbeat - The number of check-ins Apache Airflow performs on the scheduler job.
Corresponds to the scheduler_heartbeat Apache Airflow metrics.

• TotalParseTime - The number of seconds taken to scan and import all DAG files once.
Corresponds to the dag_processing.total_parse_time Apache Airflow metric.

About the dashboard

The following image shows the monitoring dashboard created by the tutorial and template
definition in this section.

Example custom dashboards and alarms 412

Amazon Managed Workflows for Apache Airflow User Guide

Using AWS tutorials

You can use the following AWS tutorial to automatically create a health status dashboard for any
Amazon MWAA environments that are currently deployed. It also creates CloudWatch alarms for
unhealthy workers and scheduler heartbeat failures across all Amazon MWAA environments.

• CloudWatch Dashboard Automation for Amazon MWAA

Example custom dashboards and alarms 413

https://github.com/aws-samples/mwaa-dashboard

Amazon Managed Workflows for Apache Airflow User Guide

Using AWS CloudFormation

You can use the AWS CloudFormation template definition in this section to create a monitoring
dashboard in CloudWatch, then add alarms on the CloudWatch console to receive notifications
when a metric surpasses a particular threshold. To create the stack using this template definition,
refer to Creating a stack on the AWS CloudFormation console. To add an alarm to the dashboard,
refer to Using alarms.

AWSTemplateFormatVersion: "2010-09-09"
Description: Creates MWAA Cloudwatch Dashboard
Parameters:
 DashboardName:
 Description: Enter the name of the CloudWatch Dashboard
 Type: String
 EnvironmentName:
 Description: Enter the name of the MWAA Environment
 Type: String
Resources:
 BasicDashboard:
 Type: AWS::CloudWatch::Dashboard
 Properties:
 DashboardName: !Ref DashboardName
 DashboardBody:
 Fn::Sub: '{
 "widgets": [
 {
 "type": "metric",
 "x": 0,
 "y": 0,
 "width": 12,
 "height": 6,
 "properties": {
 "view": "timeSeries",
 "stacked": true,
 "metrics": [
 [
 "AmazonMWAA",
 "QueuedTasks",
 "Function",
 "Executor",
 "Environment",
 "${EnvironmentName}"
]

Example custom dashboards and alarms 414

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Managed Workflows for Apache Airflow User Guide

],
 "region": "${AWS::Region}",
 "title": "QueuedTasks ${EnvironmentName}",
 "period": 300
 }
 },
 {
 "type": "metric",
 "x": 0,
 "y": 6,
 "width": 12,
 "height": 6,
 "properties": {
 "view": "timeSeries",
 "stacked": true,
 "metrics": [
 [
 "AmazonMWAA",
 "RunningTasks",
 "Function",
 "Executor",
 "Environment",
 "${EnvironmentName}"
]
],
 "region": "${AWS::Region}",
 "title": "RunningTasks ${EnvironmentName}",
 "period": 300
 }
 },
 {
 "type": "metric",
 "x": 12,
 "y": 6,
 "width": 12,
 "height": 6,
 "properties": {
 "view": "timeSeries",
 "stacked": true,
 "metrics": [
 [
 "AmazonMWAA",
 "SchedulerHeartbeat",
 "Function",

Example custom dashboards and alarms 415

Amazon Managed Workflows for Apache Airflow User Guide

 "Scheduler",
 "Environment",
 "${EnvironmentName}"
]
],
 "region": "${AWS::Region}",
 "title": "SchedulerHeartbeat ${EnvironmentName}",
 "period": 300
 }
 },
 {
 "type": "metric",
 "x": 12,
 "y": 0,
 "width": 12,
 "height": 6,
 "properties": {
 "view": "timeSeries",
 "stacked": true,
 "metrics": [
 [
 "AmazonMWAA",
 "TasksPending",
 "Function",
 "Scheduler",
 "Environment",
 "${EnvironmentName}"
]
],
 "region": "${AWS::Region}",
 "title": "TasksPending ${EnvironmentName}",
 "period": 300
 }
 },
 {
 "type": "metric",
 "x": 0,
 "y": 12,
 "width": 24,
 "height": 6,
 "properties": {
 "view": "timeSeries",
 "stacked": true,
 "region": "${AWS::Region}",

Example custom dashboards and alarms 416

Amazon Managed Workflows for Apache Airflow User Guide

 "metrics": [
 [
 "AmazonMWAA",
 "TotalParseTime",
 "Function",
 "DAG Processing",
 "Environment",
 "${EnvironmentName}"
]
],
 "title": "TotalParseTime ${EnvironmentName}",
 "period": 300
 }
 }
]
 }'

Deleting metrics and dashboards

If you delete an Amazon MWAA environment, the corresponding dashboard is also deleted.
CloudWatch metrics are stored for fifteen (15) months and can not be deleted. The CloudWatch
console limits the search of metrics to two (2) weeks after a metric is last ingested to ensure that
the most up to date instances are shown for your Amazon MWAA environment. To learn more, refer
to Amazon CloudWatch FAQs.

What's next?

• Learn how to create a DAG that queries the Amazon Aurora PostgreSQL metadata database for
your environment and publishes custom metrics to CloudWatch in Using a DAG to write custom
metrics in CloudWatch.

Apache Airflow v2 environment metrics in CloudWatch

Apache Airflow v2 is already set-up to collect and send StatsD metrics for an Amazon Managed
Workflows for Apache Airflow environment to Amazon CloudWatch. The complete list of metrics
Apache Airflow sends is available on the Metrics page in the Apache Airflow reference guide. This
page describes the Apache Airflow metrics available in CloudWatch, and how to access metrics in
the CloudWatch console.

Contents

Deleting metrics and dashboards 417

https://aws.amazon.com/cloudwatch/faqs/
https://github.com/etsy/statsd
https://airflow.apache.org/docs/apache-airflow/2.2.2/logging-monitoring/metrics.html

Amazon Managed Workflows for Apache Airflow User Guide

• Terms

• Dimensions

• Accessing metrics in the CloudWatch console

• Apache Airflow metrics available in CloudWatch

• Apache Airflow Counters

• Apache Airflow Gauges

• Apache Airflow Timers

• Choosing which metrics are reported

• What's next?

Terms

Namespace

A namespace is a container for the CloudWatch metrics of an AWS service. For Amazon MWAA,
the namespace is AmazonMWAA.

CloudWatch metrics

A CloudWatch metric represents a time-ordered set of data points that are specific to
CloudWatch.

Apache Airflow metrics

The Metrics specific to Apache Airflow.

Dimension

A dimension is a name/value pair that is part of the identity of a metric.

Unit

A statistic has a unit of measure. For Amazon MWAA, units include Count, Seconds, and
Milliseconds. For Amazon MWAA, units are set based on the units in the original Airflow metrics.

Dimensions

This section describes the CloudWatch Dimensions grouping for Apache Airflow metrics in
CloudWatch.

Terms 418

https://airflow.apache.org/docs/apache-airflow/2.2.2/logging-monitoring/metrics.html

Amazon Managed Workflows for Apache Airflow User Guide

Dimension Description

DAG Indicates a specific
Apache Airflow DAG
name.

DAG Filename Indicates a specific
Apache Airflow DAG file
name.

Function This dimension is used to
improve the grouping of
metrics in CloudWatch.

Job Indicates an Apache
Airflow Job run by the
Scheduler. Always has a
value of Job.

Operator Indicates a specific
Apache Airflow operator.

Pool Indicates a specific
Apache Airflow worker
pool.

Task Indicates a specific
Apache Airflow task.

HostName Indicates the hostname
for a specific running
Apache Airflow process.

Accessing metrics in the CloudWatch console

This section describes how to access performance metrics in CloudWatch for a specific DAG.

Accessing metrics in the CloudWatch console 419

Amazon Managed Workflows for Apache Airflow User Guide

To view performance metrics for a dimension

1. Open the Metrics page on the CloudWatch console.

2. Use the AWS Region selector to select your region.

3. Choose the AmazonMWAA namespace.

4. In the All metrics tab, select a dimension. For example, DAG, Environment.

5. Choose a CloudWatch metric for a dimension. For example, TaskInstanceSuccesses or
TaskInstanceDuration. Choose Graph all search results.

6. Choose the Graphed metrics tab to view performance statistics for Apache Airflow metrics,
such as DAG, Environment, Task.

Apache Airflow metrics available in CloudWatch

This section describes the Apache Airflow metrics and dimensions sent to CloudWatch.

Apache Airflow Counters

The Apache Airflow metrics in this section contain data about Apache Airflow Counters.

CloudWatch metric Apache
Airflow
metric

Unit Dimension

SLAMissed

Note

Available for Apache
Airflow v2.4.3 and
above.

sla_missed Count Function,
Scheduler

FailedSLACallback sla_callb
ack_notif
ication_f
ailure

Count Function,
Scheduler

Apache Airflow metrics available in CloudWatch 420

https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~()
https://airflow.apache.org/docs/apache-airflow/2.2.2/logging-monitoring/metrics.html#counters

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch metric Apache
Airflow
metric

Unit Dimension

Note

Available for Apache
Airflow v2.4.3 and
above.

Updates

Note

Available for Apache
Airflow v2.6.3 and
above.

dataset.u
pdates

Count Function,
Scheduler

Orphaned

Note

Available for Apache
Airflow v2.6.3 and
above.

dataset.o
rphaned

Count Function,
Scheduler

FailedCeleryTaskExecution

Note

Available for Apache
Airflow v2.4.3 and
above.

celery.ex
ecute_com
mand.failure

Count Function,
Celery

Apache Airflow metrics available in CloudWatch 421

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch metric Apache
Airflow
metric

Unit Dimension

FilePathQueueUpdateCount

Note

Available for Apache
Airflow v2.6.3 and
above.

dag_proce
ssing.fil
e_path_qu
eue_updat
e_count

Count Function,
Scheduler

CriticalSectionBusy scheduler
.critical
section
busy

Count Function,
Scheduler

DagBagSize dagbag_size Count Function,
DAG
Processing

DagCallbackExceptions dag.callb
ack_excep
tions

Count DAG, All

FailedSLAEmailAttempts sla_email
_notifica
tion_failure

Count Function,
Scheduler

TaskInstanceFinished ti.finish.
{dag_id}.
{task_id}.
{state}

Count DAG,
{dag_id}

Task,
{task_id}

State, {state}

Apache Airflow metrics available in CloudWatch 422

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch metric Apache
Airflow
metric

Unit Dimension

JobEnd {job_name
}_end

Count Job,
{job_name}

JobHeartbeatFailure {job_name
}_heartbe
at_failure

Count Job,
{job_name}

JobStart {job_name
}_start

Count Job,
{job_name}

ManagerStalls dag_proce
ssing.man
ager_stalls

Count Function,
DAG
Processing

OperatorFailures operator_
failures_
{operator
_name}

Count Operator,
{operator
_name}

OperatorSuccesses operator_
successes
_{operato
r_name}

Count Operator,
{operator
_name}

OtherCallbackCount

Note

Available in Apache
Airflow v2.6.3 and
above.

dag_proce
ssing.oth
er_callba
ck_count

Count Function,
Scheduler

Apache Airflow metrics available in CloudWatch 423

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch metric Apache
Airflow
metric

Unit Dimension

Processes dag_proce
ssing.pro
cesses

Count Function,
DAG
Processing

SchedulerHeartbeat scheduler
_heartbeat

Count Function,
Scheduler

StartedTaskInstances ti.start.
{dag_id}.
{task_id}

Count DAG, All

Task, All

SlaCallbackCount dag_proce
ssing.sla
_callback
_count

Note

Available
for
Apache
Airflow
v2.6.3
and
above.

Count Function,
Scheduler

TasksKilledExternally scheduler
.tasks.ki
lled_exte
rnally

Count Function,
Scheduler

Apache Airflow metrics available in CloudWatch 424

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch metric Apache
Airflow
metric

Unit Dimension

TaskTimeoutError celery.ta
sk_timeou
t_error

Count Function,
Celery

TaskInstanceCreate
dUsingOperator

task_inst
ance_crea
ted-{oper
ator_name}

Count Operator,
{operator
_name}

TaskInstancePreviouslySucce
eded

previousl
y_succeeded

Count DAG, All

Task, All

TaskInstanceFailures ti_failures Count DAG, All

Task, All

TaskInstanceSuccesses ti_successes Count DAG, All

Task, All

TaskRemovedFromDAG task_remo
ved_from_
dag.{dag_id}

Count DAG,
{dag_id}

TaskRestoredToDAG task_rest
ored_to_dag.
{dag_id}

Count DAG,
{dag_id}

Apache Airflow metrics available in CloudWatch 425

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch metric Apache
Airflow
metric

Unit Dimension

TriggersSucceeded

Note

Available for Apache
Airflow v2.7.2 and
above.

triggers.
succeeded

Count Function,
Trigger

TriggersFailed

Note

Available for Apache
Airflow v2.7.2 and
above.

triggers.
failed

Count Function,
Trigger

TriggersBlockedMainThread

Note

Available for Apache
Airflow v2.7.2 and
above.

triggers.
blocked_m
ain_thread

Count Function,
Trigger

TriggerHeartbeat

Note

Available for Apache
Airflow v2.8.1 and
above.

triggerer
_heartbeat

Count Function,
Triggerer

Apache Airflow metrics available in CloudWatch 426

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch metric Apache
Airflow
metric

Unit Dimension

TaskInstanceCreate
dUsingOperator

airflow.t
ask_insta
nce_creat
ed_{operator
_name}

Note

Available
for
Apache
Airflow
v2.7.2
and
above.

Count Operator,
{operator
_name}

ZombiesKilled zombies_k
illed

Count DAG, All

Task, All

Apache Airflow Gauges

The Apache Airflow metrics in this section contain data about Apache Airflow Gauges.

CloudWatch
metric

Apache Airflow metric Unit Dimension

DAGFileRe
freshError

dag_file_refresh_error Count Function, DAG
Processing

ImportErrors dag_processing.imp
ort_errors

Count Function, DAG
Processing

Apache Airflow metrics available in CloudWatch 427

https://airflow.apache.org/docs/apache-airflow/2.2.2/logging-monitoring/metrics.html#gauges

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow metric Unit Dimension

Exception
Failures

smart_sensor_opera
tor.exception_failures

Count Function,
Smart Sensor
Operator

ExecutedTasks smart_sensor_opera
tor.executed_tasks

Count Function,
Smart Sensor
Operator

InfraFailures smart_sensor_opera
tor.infra_failures

Count Function,
Smart Sensor
Operator

LoadedTasks smart_sensor_opera
tor.loaded_tasks

Count Function,
Smart Sensor
Operator

TotalPars
eTime

dag_processing.tot
al_parse_time

Seconds Function, DAG
Processing

Triggered
DagRuns

Note

Available
in
Apache
Airflow
v2.6.3
and
above.

dataset.triggered_
dagruns

Count Function,
Scheduler

Apache Airflow metrics available in CloudWatch 428

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow metric Unit Dimension

TriggersR
unning

Note

Available
in
Apache
Airflow
v2.7.2
and
above.

triggers.
running.{hostname}

Count Function,
Trigger

HostName,
{hostname}

PoolDefer
redSlots

Note

Available
in
Apache
Airflow
v2.7.2
and
above.

pool.deferred_slot
s.{pool_name}

Count Pool,
{pool_name}

DAGFilePr
ocessingL
astRunSec
ondsAgo

dag_processing.las
t_run.seconds_ago.
{dag_filename}

Seconds DAG Filename,
{dag_file
name}

OpenSlots executor.open_slots Count Function,
Executor

Apache Airflow metrics available in CloudWatch 429

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow metric Unit Dimension

OrphanedT
asksAdopted

scheduler.orphaned
_tasks.adopted

Count Function,
Scheduler

OrphanedT
asksCleared

scheduler.orphaned
_tasks.cleared

Count Function,
Scheduler

PokedExce
ptions

smart_sensor_opera
tor.poked_exception

Count Function,
Smart Sensor
Operator

PokedSuccess smart_sensor_opera
tor.poked_success

Count Function,
Smart Sensor
Operator

PokedTasks smart_sensor_opera
tor.poked_tasks

Count Function,
Smart Sensor
Operator

PoolFailures pool.open_slots.{p
ool_name}

Count Pool,
{pool_name}

PoolStarv
ingTasks

pool.starving_tasks.
{pool_name}

Count Pool,
{pool_name}

PoolOpenSlots pool.open_slots.{p
ool_name}

Count Pool,
{pool_name}

PoolQueue
dSlots

pool.queued_slots.
{pool_name}

Count Pool,
{pool_name}

PoolRunni
ngSlots

pool.running_slots.
{pool_name}

Count Pool,
{pool_name}

Processor
Timeouts

dag_processing.pro
cessor_timeouts

Count Function, DAG
Processing

Apache Airflow metrics available in CloudWatch 430

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow metric Unit Dimension

QueuedTasks executor.queued_tasks Count Function,
Executor

RunningTasks executor.running_tasks Count Function,
Executor

TasksExec
utable

scheduler.tasks.ex
ecutable

Count Function,
Scheduler

TasksPending

Note

Does
not
apply
to
Apache
Airflow
v2.2
and
above.

scheduler.tasks.pe
nding

Count Function,
Scheduler

TasksRunning scheduler.tasks.running Count Function,
Scheduler

TasksStarving scheduler.tasks.starving Count Function,
Scheduler

TasksWith
outDagRun

scheduler.tasks.wi
thout_dagrun

Count Function,
Scheduler

Apache Airflow metrics available in CloudWatch 431

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow metric Unit Dimension

DAGFilePr
ocessingL
astNumOfD
bQueries

Note

Available
in
Apache
Airflow
v2.10.1
and
above.

dag_processing.las
t_num_of_db_queries.
{dag_filename}

Count DAG Filename,
{dag_file
name}

PoolSched
uledSlots

Note

Available
in
Apache
Airflow
v2.10.1
and
above.

pool.scheduled_slots.
{pool_name}

Count Pool,
{pool_name}

Apache Airflow metrics available in CloudWatch 432

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow metric Unit Dimension

TaskCpuUsage

Note

Available
in
Apache
Airflow
v2.10.1
and
above.

cpu.usage.{dag_id}.
{task_id}

Percent DAG, {dag_id}

Task, {task_id}

TaskMemor
yUsage

Note

Available
in
Apache
Airflow
v2.10.1
and
above.

mem.usage.{dag_id}.
{task_id}

Percent DAG, {dag_id}

Task, {task_id}

Apache Airflow Timers

The Apache Airflow metrics in this section contain data about Apache Airflow Timers.

Apache Airflow metrics available in CloudWatch 433

https://airflow.apache.org/docs/apache-airflow/2.2.2/logging-monitoring/metrics.html#timers

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow
metric

Unit Dimension

CollectDBDags collect_db_dags Milliseconds Function, DAG
Processing

CriticalS
ectionDuration

scheduler
.critical_section_
duration

Milliseconds Function,
Scheduler

CriticalS
ectionQue
ryDuration

Note

Available
for
Apache
Airflow
v2.5.1
and
above.

scheduler
.critical_section_
query_duration

Milliseconds Function,
Scheduler

DAGDepend
encyCheck

dagrun.de
pendency-check.
{dag_id}

Milliseconds DAG, {dag_id}

DAGDurati
onFailed

dagrun.du
ration.failed.
{dag_id}

Milliseconds DAG, {dag_id}

DAGDurati
onSuccess

dagrun.du
ration.success.
{dag_id}

Milliseconds DAG, {dag_id}

Apache Airflow metrics available in CloudWatch 434

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow
metric

Unit Dimension

DAGFilePr
ocessingL
astDuration

dag_proce
ssing.las
t_duration.
{dag_filename}

Seconds DAG Filename,
{dag_filename}

DAGSchedu
leDelay

dagrun.sc
hedule_delay.
{dag_id}

Milliseconds DAG, {dag_id}

FirstTask
SchedulingDelay

dagrun.{d
ag_id}.fi
rst_task_
schedulin
g_delay

Milliseconds DAG, {dag_id}

Scheduler
LoopDuration

Note

Available
for
Apache
Airflow
v2.5.1
and
above.

scheduler
.schedule
r_loop_duration

Milliseconds Function,
Scheduler

TaskInsta
nceDuration

dag.{dag_id}.
{task_id}.dura
tion

Milliseconds DAG, {dag_id}

Task, {task_id}

Apache Airflow metrics available in CloudWatch 435

Amazon Managed Workflows for Apache Airflow User Guide

CloudWatch
metric

Apache Airflow
metric

Unit Dimension

TaskInsta
nceQueued
Duration

dag.{dag_id}.{task_id}
.queued_d

uration

Note

Available
for
Apache
Airflow
v2.7.2
and
above.

Milliseconds DAG, {dag_id}

Task, {task_id}

TaskInsta
nceSchedu
ledDuration

Note

Available
for
Apache
Airflow
v2.7.2
and
above.

dag.{dag_id}.{task_id}
.schedule

d_duration

Milliseconds DAG, {dag_id}

Task, {task_id}

Choosing which metrics are reported

You can choose which Apache Airflow metrics are emitted to CloudWatch, or blocked by Apache
Airflow, using the following Amazon MWAA configuration options:

Choosing which metrics are reported 436

Amazon Managed Workflows for Apache Airflow User Guide

• metrics.metrics_allow_list — A list of comma-separated prefixes you can use to select
which metrics are emitted to CloudWatch by your environment. Use this option if you want
Apache Airflow to not send all available metrics and instead select a subset of elements. For
example, scheduler,executor,dagrun.

• metrics.metrics_block_list — A list of comma-separated prefixes to filter out metrics
that start with the elements of the list. For example, scheduler,executor,dagrun.

If you configure both metrics.metrics_allow_list and metrics.metrics_block_list,
Apache Airflow ignores metrics.metrics_block_list. If you configure
metrics.metrics_block_list but not metrics.metrics_allow_list, Apache Airflow
filters out the elements you specify in metrics.metrics_block_list.

Note

The metrics.metrics_allow_list and metrics.metrics_block_list
configuration options only apply to Apache Airflow v2.6.3 and above. For
previous version of Apache Airflow use metrics.statsd_allow_list and
metrics.statsd_block_list instead.

What's next?

• Explore the Amazon MWAA API operation used to publish environment health metrics at
PublishMetrics.

Container, queue, and database metrics for Amazon MWAA

In addition to Apache Airflow metrics, you can monitor the underlying components of your
Amazon Managed Workflows for Apache Airflow environments using CloudWatch, which collects
raw data and processes data into readable, near real-time metrics. With these environment metrics,
you will have greater visibility into key performance indicators to help you appropriately size your
environments and debug issues with your workflows. These metrics apply to all supported Apache
Airflow versions on Amazon MWAA.

Amazon MWAA will provide CPU and memory utilization for each Amazon Elastic Container Service
(Amazon ECS) container and Amazon Aurora PostgreSQL instance, and Amazon Simple Queue

What's next? 437

https://docs.aws.amazon.com/mwaa/latest/API/API_PublishMetrics.html

Amazon Managed Workflows for Apache Airflow User Guide

Service (Amazon SQS) metrics for the number of messages and the age of the oldest message,
Amazon Relational Database Service (Amazon RDS) metrics for database connections, disk queue
depth, write operations, latency, and throughput, and Amazon RDS Proxy metrics. These metrics
also include the number of base workers, additional workers, schedulers, and web servers.

These statistics are kept for 15 months, so that you can access historical information and gain a
better perspective on why a schedule is failing, and troubleshoot underlying issues. You can also
set alarms that watch for certain thresholds, and send notifications or take actions when those
thresholds are met. For more information, refer to the Amazon CloudWatch User Guide.

Topics

• Terms

• Dimensions

• Accessing metrics in the CloudWatch console

• List of metrics

Terms

Namespace

A namespace is a container for the CloudWatch metrics of an AWS service. For Amazon MWAA,
the namespace is AWS/MWAA.

CloudWatch metrics

A CloudWatch metric represents a time-ordered set of data points that are specific to
CloudWatch.

Dimension

A dimension is a name/value pair that is part of the identity of a metric.

Unit

A statistic has a unit of measure. For Amazon MWAA, units include Count.

Dimensions

This section describes the CloudWatch dimensions grouping for Amazon MWAA metrics in
CloudWatch.

Terms 438

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Managed Workflows for Apache Airflow User Guide

Dimension Description

Cluster Metrics for the minimum three Amazon ECS
container that an Amazon MWAA environme
nt uses to run Apache Airflow components:
scheduler, worker, and web server.

Queue Metrics for the Amazon SQS queues that
decouple the scheduler from workers. When
workers read the messages, they are considere
d in-flight and not available for other workers.
Messages become available for other workers
to read if they are not deleted before the 12
hours visibility timeout.

Database Metrics the Aurora clusters used by Amazon
MWAA. This includes metrics for the primary
database instance and a read replica to
support the read operations. Amazon MWAA
publishes database metrics for both READER
and WRITER instances.

Accessing metrics in the CloudWatch console

This section describes how to access your Amazon MWAA metrics in CloudWatch.

To view performance metrics for a dimension

1. Open the Metrics page on the CloudWatch console.

2. Use the AWS Region selector to select your region.

3. Choose the AWS/MWAA namespace.

4. In the All metrics tab, choose a dimension. For example, Cluster.

5. Choose a CloudWatch metric for a dimension. For example, NumSchedulers or CPUUtilization.
Then, choose Graph all search results.

6. Choose the Graphed metrics tab to view performance metrics.

Accessing metrics 439

https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~()

Amazon Managed Workflows for Apache Airflow User Guide

List of metrics

The following tables list the cluster, queue, and database service metrics for Amazon MWAA. To
view descriptions for metrics directly emitted from Amazon ECS, Amazon SQS, or Amazon RDS,
choose the respective documentation link.

Topics

• Cluster metrics

• Database metrics

• Queue metrics

• Application Load Balancer metrics

Cluster metrics

The following metrics apply to each scheduler, base worker, additional worker, and web server.
For more information and descriptions of each cluster metric, refer to Available metrics and
dimensions in the Amazon ECS Developer Guide.

Namespace Metric Unit

AWS/MWAA CPUUtilization Percent

AWS/MWAA MemoryUtilization Percent

Evaluating the number of additional worker and web server containers

You can use the component metrics provided under the Cluster dimension, as described in the
following procedure, to assess how many additional workers, or web servers, an environment
is using at a given point in time. You can do this by graphing either the CPUUtilization or the
MemoryUtilization metric and setting the statistic type to Sample Count. The resulting value is
the total number of RUNNING tasks for the AdditionalWorker component. Understanding the
number of additional worker instances utilized by your environment can help you gauge how your
environment scales and allow you to optimize the number of additional workers.

List of metrics 440

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html#available_cloudwatch_metrics
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html#available_cloudwatch_metrics

Amazon Managed Workflows for Apache Airflow User Guide

Workers

To evaluate the number of additional workers using the AWS Management Console

1. Choose the AWS/MWAA namespace.

2. In the All metrics tab, choose the Cluster dimension.

3. Under the Cluster dimension, for the AdditionalWorker, choose either the CPUUtilization
or the MemoryUtilization metric.

4. On the Graphed metrics tab, set Period to 1 Minute and Statistic to Sample Count.

Web servers

To evaluate the number of additional web servers using the AWS Management Console

1. Choose the AWS/MWAA namespace.

2. In the All metrics tab, choose the Cluster dimension.

3. Under the Cluster dimension, for the AdditionalWebservers, choose either the
CPUUtilization or the MemoryUtilization metric.

4. On the Graphed metrics tab, set Period to 1 Minute and Statistic to Sample Count.

For more information, refer to Service RUNNING task count in the Amazon Elastic Container Service
Developer Guide.

Database metrics

The following metrics apply to each database instance associated with the Amazon MWAA
environment.

Namespace Metric Unit

AWS/MWAA CPUUtilization Percent

AWS/MWAA DatabaseConnections Count

AWS/MWAA DiskQueueDepth Count

AWS/MWAA FreeableMemory Bytes

List of metrics 441

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html#cw_running_task_count

Amazon Managed Workflows for Apache Airflow User Guide

Namespace Metric Unit

AWS/MWAA VolumeWriteIOPS Count per five
minutes

AWS/MWAA WriteIOPS Count per
second

AWS/MWAA WriteLatency Seconds

AWS/MWAA WriteThroughput Bytes per second

Queue metrics

For more information on units and descriptions for the following queue metrics, refer to Available
CloudWatch metrics for Amazon SQS in the Amazon Simple Queue Service Developer Guide.

Namespace Metric Unit

AWS/MWAA ApproximateAgeOfOl
destTask

Seconds

AWS/MWAA RunningTasks Count

AWS/MWAA QueuedTasks Count

Application Load Balancer metrics

Application Load Balancer metrics apply to the web servers running in your environment. Amazon
MWAA uses these metrics to for scaling your web servers based on the amount of traffic. For more
information on units and descriptions for the following load balancer metrics, refer to CloudWatch
metrics for your Application Load Balancer in the Application Load Balancers User Guide.

Namespace Metric Unit

AWS/MWAA ActiveConnectionCount Count

List of metrics 442

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html

Amazon Managed Workflows for Apache Airflow User Guide

Security in Amazon Managed Workflows for Apache
Airflow

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you (the customer). The shared responsibility
model describes this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon MWAA,
refer to AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Managed Workflows for Apache Airflow. It shows you how to configure Amazon
MWAA to meet your security and compliance objectives. You also learn how to use other AWS
services that help you to monitor and secure your Amazon MWAA resources.

In this section:

• Data Protection in Amazon Managed Workflows for Apache Airflow

• AWS Identity and Access Management

• Compliance Validation for Amazon Managed Workflows for Apache Airflow

• Resilience in Amazon Managed Workflows for Apache Airflow

• Infrastructure Security in Amazon MWAA

• Configuration and Vulnerability Analysis in Amazon MWAA

• Security best practices on Amazon MWAA

443

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Managed Workflows for Apache Airflow User Guide

Data Protection in Amazon Managed Workflows for Apache
Airflow

The AWS shared responsibility model applies to data protection in Amazon Managed Workflows
for Apache Airflow. As described in this model, AWS is responsible for protecting the global
infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your
content that is hosted on this infrastructure. This content includes the security configuration and
management tasks for the AWS services that you use. For more information about data privacy,
refer to the Data Privacy FAQ. For information about data protection in Europe, refer to the AWS
Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is
given only the permissions necessary to fulfill their job duties. We also recommend that you secure
your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form fields such as a Name field. This includes when
you work with Amazon MWAA or other AWS services using the console, API, AWS CLI, or AWS SDKs.
Any data that you enter into tags or free-form fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

Encryption on Amazon MWAA

The following topics describe how Amazon MWAA protects your data at rest, and in transit. Use
this information to learn how Amazon MWAA integrates with AWS KMS to encrypt data at rest, and
how data is encrypted using Transport Layer Security (TLS) protocol in transit.

Topics

Data Protection 444

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon Managed Workflows for Apache Airflow User Guide

• Encryption at rest

• Encryption in transit

Encryption at rest

On Amazon MWAA, data at rest is data that the service saves to persistent media.

You can use an AWS owned key for data at rest encryption, or optionally provide a Customer
managed key for additional encryption when you create an environment. If you choose to use
a customer managed KMS key, it must be in the same account as the other AWS resources and
services you are using with your environment.

To use a customer managed KMS key, you must attach the required policy statement for
CloudWatch access to your key policy. When you use a customer managed KMS key for your
environment, Amazon MWAA attaches four grants on your behalf. For more information on the
grants Amazon MWAA attaches to a customer managed KMS key, refer to Customer managed keys
for data encryption.

If you do not specify a customer managed KMS key, by default, Amazon MWAA uses an AWS owned
KMS key for to encrypt and decrypt your data. We recommend using an AWS owned KMS key to
manage data encryption on Amazon MWAA.

Note

You pay for the storage and use of AWS owned, or customer managed KMS keys on
Amazon MWAA. For more information, refer to AWS KMS Pricing.

Encryption artifacts

You specify the encryption artifacts used for at rest encryption by specifying an AWS owned key or
Customer managed key when you create your Amazon MWAA environment. Amazon MWAA adds
the grants needed to your specified key.

Amazon S3 – Amazon S3 data is encrypted at the object-level using Server-Side Encryption (SSE).
Amazon S3 encryption and decryption takes place on the Amazon S3 bucket where your DAG code
and supporting files are stored. Objects are encrypted when they are uploaded to Amazon S3 and
decrypted when they are downloaded to your Amazon MWAA environment. By default, if you are

Encryption 445

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

Amazon Managed Workflows for Apache Airflow User Guide

using a customer managed KMS key, Amazon MWAA uses it to read and decrypt the data on your
Amazon S3 bucket.

CloudWatch Logs – If you are using an AWS owned KMS key, Apache Airflow logs sent to
CloudWatch Logs are encrypted using SSE with CloudWatch Logs's AWS owned KMS key. If you
are using a customer managed KMS key, you must add a key policy to your KMS key to allow
CloudWatch Logs to use your key.

Amazon SQS – Amazon MWAA creates one Amazon SQS queue for your environment. Amazon
MWAA handles encrypting data passed to and from the queue using SSE with either an AWS
owned KMS key, or a customer managed KMS key that you specify. You must add Amazon SQS
permissions to your execution role regardless of whether you are using an AWS owned or customer
managed KMS key.

Aurora PostgreSQL – Amazon MWAA creates one PostgreSQL cluster for your environment. Aurora
PostgreSQL encrypts the content with either an AWS owned or customer managed KMS key using
SSE. If you are using a customer managed KMS key, Amazon RDS adds at least two grants to the
key: one for the cluster and one for the database instance. Amazon RDS might create additional
grants if you choose to use your customer managed KMS key on multiple environments. For more
information, refer to Data protection in Amazon RDS.

Encryption in transit

Data in transit is referred to as data that may be intercepted as it travels the network.

Transport Layer Security (TLS) encrypts the Amazon MWAA objects in transit between your
environment's Apache Airflow components and other AWS services that integrate with Amazon
MWAA. such as Amazon S3. For more information about Amazon S3 encryption, refer to Protecting
data using encryption.

Using customer managed keys for encryption

You can optionally provide a Customer managed key for data encryption on your environment.
You must create the customer managed KMS key in the same Region as your Amazon MWAA
environment instance and your Amazon S3 bucket where you store resources for your workflows.
If the customer managed KMS key that you specify is in a different account from the one you use
to configure an environment, you must specify the key using its ARN for cross-account access. For
more information about creating keys, refer to Creating Keys in the AWS Key Management Service
Developer Guide.

Using customer managed keys 446

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DataDurability.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Managed Workflows for Apache Airflow User Guide

What's supported

AWS KMS feature Supported

An AWS KMS key ID or ARN. Yes

An AWS KMS key alias. No

An AWS KMS multi-region
key.

No

Using Grants for Encryption

This topic describes the grants Amazon MWAA attaches to a customer managed KMS key on your
behalf to encrypt and decrypt your data.

How it works

There are two resource-based access control mechanisms supported by AWS KMS for customer
managed KMS key: a key policy and grant.

A key policy is used when the permission is mostly static and used in synchronous service mode. A
grant is used when more dynamic and granular permissions are required, such as when a service
needs to define different access permissions for itself or other accounts.

Amazon MWAA uses and attaches four grant policies to your customer managed KMS key. This
is due to the granular permissions required for an environment to encrypt data at rest from
CloudWatch Logs, Amazon SQS queue, Aurora PostgreSQL database database, Secrets Manager
secrets, Amazon S3 bucket and DynamoDB tables.

When you create an Amazon MWAA environment and specify a customer managed KMS key,
Amazon MWAA attaches the grant policies to your customer managed KMS key. These policies
allow Amazon MWAA in airflow.us-east-1}.amazonaws.com to use your customer managed
KMS key to encrypt resources on your behalf that are owned by Amazon MWAA.

Amazon MWAA creates, and attaches, additional grants to a specified KMS key on your behalf. This
includes policies to retire a grant if you delete your environment, to use your customer managed
KMS key for Client-Side Encryption (CSE), and for the AWS Fargate execution role that needs to
access secrets protected by your customer managed key in Secrets Manager.

Using customer managed keys 447

https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-alias.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

Amazon Managed Workflows for Apache Airflow User Guide

Grant policies

Amazon MWAA adds the following resource based policy grants on your behalf to a customer
managed KMS key. These policies allow the grantee and the principal (Amazon MWAA) to perform
actions defined in the policy.

Grant 1: used to create data plane resources

{
 "Name": "mwaa-grant-for-env-mgmt-role-environment name",
 "GranteePrincipal": "airflow.us-east-1.amazonaws.com",
 "RetiringPrincipal": "airflow.us-east-1.amazonaws.com",
 "Operations": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:RetireGrant"
]
 }

Grant 2: used for ControllerLambdaExecutionRole access

{
 "Name": "mwaa-grant-for-lambda-exec-environment name",
 "GranteePrincipal": "airflow.us-east-1.amazonaws.com",
 "RetiringPrincipal": "airflow.us-east-1.amazonaws.com",
 "Operations": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:RetireGrant"
]
 }

Using customer managed keys 448

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Amazon Managed Workflows for Apache Airflow User Guide

Grant 3: used for CfnManagementLambdaExecutionRole access

{
 "Name": " mwaa-grant-for-cfn-mgmt-environment name",
 "GranteePrincipal": "airflow.us-east-1.amazonaws.com",
 "RetiringPrincipal": "airflow.us-east-1.amazonaws.com",
 "Operations": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
]
 }

Grant 4: used for Fargate execution role to access backend secrets

{
 "Name": "mwaa-fargate-access-for-environment name",
 "GranteePrincipal": "airflow.us-east-1.amazonaws.com",
 "RetiringPrincipal": "airflow.us-east-1.amazonaws.com",
 "Operations": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:RetireGrant"
]
 }

Attaching key policies to a customer managed key

If you choose to use your own customer managed KMS key with Amazon MWAA, you must attach
the following policy to the key to allow Amazon MWAA to use it to encrypt your data.

If the customer managed KMS key you used for your Amazon MWAA environment is not already
configured to work with CloudWatch, you must update the key policy to allow for encrypted
CloudWatch Logs. For more information, refer to the Encrypt log data in CloudWatch using AWS
Key Management Service service.

Using customer managed keys 449

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html

Amazon Managed Workflows for Apache Airflow User Guide

The following example represents a key policy for CloudWatch Logs. Substitute the sample values
provided for the region.

{
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.us-east-1.amazonaws.com"
 },
 "Action": [
 "kms:Encrypt*",
 "kms:Decrypt*",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:Describe*"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "kms:EncryptionContext:aws:logs:arn": "arn:aws:logs:us-east-1:*:*"
 }
 }
 }

AWS Identity and Access Management

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed
in) and authorized (have permissions) to use Amazon Managed Workflows for Apache Airflow
resources. IAM is an AWS service that you can use with no additional charge.

This topic provides a basic overview of how Amazon MWAA uses AWS Identity and Access
Management (IAM). To learn about managing access to Amazon MWAA, refer to Managing access
to an Amazon MWAA environment.

Contents

• Audience

• Authenticating With Identities

• Managing Access Using Policies

• Allowing users to view their own permissions

AWS Identity and Access Management 450

Amazon Managed Workflows for Apache Airflow User Guide

• Troubleshooting Amazon Managed Workflows for Apache Airflow identity and access

• How Amazon MWAA works with IAM

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon MWAA.

Service user – If you use the Amazon MWAA service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Amazon MWAA
features to do your work, you might need additional permissions. Understanding how access is
managed can help you request the right permissions from your administrator. If you cannot access
a feature in Amazon MWAA, see Troubleshooting Amazon Managed Workflows for Apache Airflow
identity and access.

Service administrator – If you're in charge of Amazon MWAA resources at your company, you
probably have full access to Amazon MWAA. It's your job to determine which Amazon MWAA
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon MWAA, see How Amazon MWAA works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Amazon MWAA. To view example Amazon MWAA identity-
based policies that you can use in IAM, see Amazon MWAA identity-based policy examples.

Authenticating With Identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Audience 451

Amazon Managed Workflows for Apache Airflow User Guide

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM Users and Groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Authenticating With Identities 452

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

Amazon Managed Workflows for Apache Airflow User Guide

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM Roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the

Authenticating With Identities 453

https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Managed Workflows for Apache Airflow User Guide

principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing Access Using Policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

Managing Access Using Policies 454

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Managed Workflows for Apache Airflow User Guide

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-Based Policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-Based Policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access Control Lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Managing Access Using Policies 455

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Managed Workflows for Apache Airflow User Guide

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other Policy Types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing Access Using Policies 456

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Managed Workflows for Apache Airflow User Guide

Multiple Policy Types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Allowing users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }

Allowing users to view their own permissions 457

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Managed Workflows for Apache Airflow User Guide

]
}

Troubleshooting Amazon Managed Workflows for Apache Airflow
identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon MWAA and IAM.

I am not authorized to perform an action in Amazon MWAA

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon MWAA.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the
console to perform an action in Amazon MWAA. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting Amazon Managed Workflows for Apache Airflow identity and access 458

Amazon Managed Workflows for Apache Airflow User Guide

I want to allow people outside of my AWS account to access my Amazon MWAA
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon MWAA supports these features, see How Amazon MWAA works with
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

How Amazon MWAA works with IAM

Amazon MWAA uses IAM identity-based policies to grant permissions to Amazon MWAA actions
and resources. For recommended examples of custom IAM policies you can use to control access
to your Amazon MWAA resources, refer to the section called “Accessing an Amazon MWAA
environment”.

To get a high-level view of how Amazon MWAA and other AWS services work with IAM, refer to
AWS Services That Work with IAM in the IAM User Guide.

Amazon MWAA identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources, as well
as the conditions under which actions are allowed or denied. Amazon MWAA supports specific
actions, resources, and condition keys.

How Amazon MWAA works with IAM 459

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Managed Workflows for Apache Airflow User Guide

The following steps show how you can create a new JSON policy using the IAM console. This policy
provides read-only access to your Amazon MWAA resources.

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "airflow:ListEnvironments",
 "airflow:GetEnvironment",
 "airflow:ListTagsForResource"
],
 "Resource": "*"
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

How Amazon MWAA works with IAM 460

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Managed Workflows for Apache Airflow User Guide

7. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

8. Choose Create policy to save your new policy.

To learn about all of the elements that you use in a JSON policy, refer to IAM JSON Policy Elements
Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy statements must include either an Action element or a NotAction element. The Action
element lists the actions allowed by the policy. The NotAction element lists the actions that are
not allowed.

The actions defined for Amazon MWAA reflect tasks that you can perform using Amazon MWAA.
Policy actions in Detective have the following prefix: airflow:.

You can also use wildcards (*) to specify multiple actions. Instead of listing these actions separately,
you can grant access to all actions that end with the word, for example, environment.

To get a list of Amazon MWAA actions, refer to Actions Defined by Amazon Managed Workflows for
Apache Airflow in the IAM User Guide.

Amazon MWAA identity-based policy examples

To view the Amazon MWAA policies, refer to Managing access to an Amazon MWAA environment.

By default, IAM users and roles don't have permission to create or modify Amazon MWAA
resources. They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS
API.

How Amazon MWAA works with IAM 461

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_mwaa.html#mwaa-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_mwaa.html#mwaa-actions-as-permissions

Amazon Managed Workflows for Apache Airflow User Guide

An IAM administrator must create IAM policies that grant users and roles permission to perform
specific API operations on the specified resources they need. The administrator then attaches those
policies to the IAM users or groups that require those permissions.

Important

We recommend using IAM roles and temporary credentials to provide access to your
Amazon MWAA resources. Avoiding attaching permission poicies directly to your IAM users.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
refer to Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy best practices

• Using the Amazon MWAA console

• Allowing users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon MWAA
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to

How Amazon MWAA works with IAM 462

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Amazon Managed Workflows for Apache Airflow User Guide

specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon MWAA console

To use the Amazon MWAA console, the user or role must have access to the relevant actions, which
match corresponding actions in the API.

To view the Amazon MWAA policies, refer to Managing access to an Amazon MWAA environment.

Allowing users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",

How Amazon MWAA works with IAM 463

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Managed Workflows for Apache Airflow User Guide

 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Compliance Validation for Amazon Managed Workflows for
Apache Airflow

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

Compliance Validation 464

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/

Amazon Managed Workflows for Apache Airflow User Guide

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon Managed Workflows for Apache Airflow

The AWS global infrastructure is built around AWS Regions and Availability Zones. Regions provide
multiple physically separated and isolated Availability Zones, which are connected through
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, refer to AWS Global
Infrastructure.

Resilience 465

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Managed Workflows for Apache Airflow User Guide

Infrastructure Security in Amazon MWAA

As a managed service, Amazon Managed Workflows for Apache Airflow is protected by AWS
global network security. For information about AWS security services and how AWS protects
infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices
for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐Architected
Framework.

You use AWS published API calls to access Amazon MWAA through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Configuration and Vulnerability Analysis in Amazon MWAA

Configuration and IT controls are a shared responsibility between AWS and you, our customer.

Amazon Managed Workflows for Apache Airflow periodically patches and upgrades Apache Airflow
on your environments. You should ensure that the appropriate access policies are used for your
VPCs.

For more details, refer to the following resources:

• Compliance Validation for Amazon Managed Workflows for Apache Airflow

• Shared Responsibility Model

• Amazon Web Services: Overview of Security Processes

• Infrastructure Security in Amazon MWAA

• Security best practices on Amazon MWAA

Infrastructure Security 466

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon Managed Workflows for Apache Airflow User Guide

Security best practices on Amazon MWAA

Amazon MWAA provides a number of security features to consider as you develop and implement
your own security policies. The following best practices are general guidelines and don’t represent
a complete security solution. Because these best practices might not be appropriate or sufficient
for your environment, treat them as helpful considerations rather than prescriptions.

• Use least-permissive permission policies. Grant permissions to only the resources or actions that
users need to perform tasks.

• Use AWS CloudTrail to monitor user activity in your account.

• Ensure that the Amazon S3 bucket policy and object ACLs grant permissions to the users
from the associated Amazon MWAA environment to put objects into the bucket. This ensures
that users with permissions to add workflows to the bucket also have permissions to run the
workflows in Airflow.

• Use the Amazon S3 buckets associated with Amazon MWAA environments. Your Amazon S3
bucket can be any name. Do not store other objects in the bucket, or use the bucket with another
service.

Security best practices in Apache Airflow

Apache Airflow is not multi-tenant. While there are access control measures to limit some features
to specific users, which Amazon MWAA implements, DAG creators do have the ability to write DAGs
that can change Apache Airflow user privileges and interact with the underlying metadatabase.

We recommend the following steps when working with Apache Airflow on Amazon MWAA to
ensure your environment's metadatabase and DAGs are secure.

• Use separate environments for separate teams with DAG writing access, or the ability to add
files to your Amazon S3 /dags folder, assuming anything accessible by the Amazon MWAA
Execution Role or Apache Airflow connections will also be accessible to users who can write to
the environment.

• Do not provide direct Amazon S3 DAGs folder access. Instead, use CI/CD tools to write DAGs
to Amazon S3, with a validation step ensuring that the DAG code meets your team's security
guidelines.

Best practices 467

https://airflow.apache.org/docs/apache-airflow/2.0.2/security/access-control.html
https://airflow.apache.org/docs/apache-airflow/2.0.2/howto/connection.html

Amazon Managed Workflows for Apache Airflow User Guide

• Prevent user access to your environment's Amazon S3 bucket. Instead, use a DAG factory that
generates DAGs based on a YAML, JSON, or other definition file stored in a separate location
from your Amazon MWAA Amazon S3 bucket where you store DAGs.

• Store secrets in Secrets Manager. While this will not prevent users who can write DAGs from
reading secrets, it will prevent them from modifying the secrets that your environment uses.

Detecting changes to Apache Airflow user privileges

You can use CloudWatch Logs Insights to detect occurences of DAGs changing Apache Airflow
user privileges. To do so, you can use an EventBridge scheduled rule, a Lambda function, and
CloudWatch Logs Insights to deliver notifications to CloudWatch metrics whenever one of your
DAGs changes Apache Airflow user privileges.

Prerequisites

To complete the following steps, you will need the following:

• An Amazon MWAA environment with all Apache Airflow log types enabled at the INFO log level.
For more information, refer to the section called “Viewing Airflow logs”.

To configure notifications for changes to Apache Airflow user privileges

1. Create a Lambda function that runs the following CloudWatch Logs Insights query string
against the five Amazon MWAA environment log groups (DAGProcessing, Scheduler, Task,
WebServer, and Worker).

fields @log, @timestamp, @message | filter @message like "add-role" | stats count()
 by @log

2. Create an EventBridge rule that runs on a schedule, with the Lambda function you created in
the previous step as the rule's target. Configure your schedule using a cron or rate expression
to run at regular intervals.

Security best practices in Apache Airflow 468

https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow versions on Amazon Managed Workflows
for Apache Airflow

This topic describes the Apache Airflow versions Amazon Managed Workflows for Apache Airflow
supports, and best-practices for upgrading to the latest version.

Topics

• About Amazon MWAA versions

• Latest version

• Apache Airflow versions

• Apache Airflow components

• Upgrading the Apache Airflow version

• Downgrading the Apache Airflow version

• Apache Airflow deprecated versions

• Apache Airflow version support and FAQ

About Amazon MWAA versions

Amazon MWAA builds container images that bundle Apache Airflow releases with other common
binaries and Python libraries. The image uses the Apache Airflow base install for the version
you specify. When you create an environment, you specify an image version to use. Once an
environment is created, it keeps using the specified image version until you upgrade it to a later
version.

Latest version

Amazon MWAA supports more than one Apache Airflow version. If you do not specify an image
version when you create an environment, Amazon MWAA creates an environment using the latest
supported version of Apache Airflow.

Apache Airflow versions

The following Apache Airflow versions are supported on Amazon Managed Workflows for Apache
Airflow.

About Amazon MWAA versions 469

Amazon Managed Workflows for Apache Airflow User Guide

Note

• Effective December 30, 2025, Amazon MWAA will end support for Apache Airflow
versions v2.4.3, v2.5.1, and v2.6.3. For more information, refer to Apache Airflow version
support and FAQ.

• Beginning with Apache Airflow v2.2.2, Amazon MWAA supports installing Python
requirements, provider packages, and custom plugins directly on the Apache Airflow web
server.

• Beginning with Apache Airflow v2.7.2, your requirements file must include a --
constraint statement. If you do not provide a constraint, Amazon MWAA will specify
one for you to ensure the packages listed in your requirements are compatible with the
version of Apache Airflow you are using.

For more information on setting up constraints in your requirements file, refer to
Installing Python dependencies.

Apache Airflow
version

Apache Airflow
release date

Amazon MWAA
availability date

Apache Airflow
constraints

Python version

v2.10.3 November 4,
2024

December 18,
2024

v2.10.3
constraints file

Python 3.11

v2.10.1 September 5,
2024

September 26,
2024

v2.10.1
constraints file

Python 3.11

v2.9.2 June 10, 2024 July 9, 2024 v2.9.2 constrain
ts file

Python 3.11

v2.8.1 January 19,
2024

February 23,
2024

v2.8.1 constrain
ts file

Python 3.11

v2.7.2 October 12,
2023

November 6,
2023

v2.7.2 constrain
ts file

Python 3.11

Apache Airflow versions 470

https://airflow.apache.org/docs/apache-airflow/2.10.3
https://airflow.apache.org/docs/apache-airflow/2.10.3/release_notes.html#airflow-2-10-3-2024-11-04
https://airflow.apache.org/docs/apache-airflow/2.10.3/release_notes.html#airflow-2-10-3-2024-11-04
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.3/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.3/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.10.1
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-10-1-2024-09-05
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-10-1-2024-09-05
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.1/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.1/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.9.2
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-9-2-2024-06-10
https://raw.githubusercontent.com/apache/airflow/constraints-2.9.2/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.9.2/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.8.1
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-8-1-2024-01-19
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-8-1-2024-01-19
https://raw.githubusercontent.com/apache/airflow/constraints-2.8.1/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.8.1/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.7.2
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-7-2-2023-10-12
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-7-2-2023-10-12
https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.11.txt
https://peps.python.org/pep-0664/

Amazon Managed Workflows for Apache Airflow User Guide

For more information about migrating your self-managed Apache Airflow deployments, or
migrating an existing Amazon MWAA environment, including instructions for backing up your
metadata database, refer to the Amazon MWAA Migration Guide.

Apache Airflow components

This section describes the number of Apache Airflow schedulers and workers available for each
Apache Airflow version on Amazon MWAA, and provides a list of key Apache Airflow features,
indicating the version that supports each feature.

Schedulers

Apache Airflow
version

Scheduler
(default)

Scheduler (min) Scheduler (max)

Apache Airflow
v2 and above

2 2 5

Workers

Airflow version Workers (min) Workers (max) Workers
(default)

Apache Airflow
v2

1 25 10

Upgrading the Apache Airflow version

Amazon MWAA supports minor version upgrades. This means you can upgrade your environment
from version x.1.z to x.2.z, but not to a new major version, for example, from 1.y.z to 2.y.z.

For more information, and detailed instructions on updating your workflow resources, and
upgrading the environment to a new version, refer to the section called “Changing the version”.

Apache Airflow components 471

https://docs.aws.amazon.com/mwaa/latest/migrationguide/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Downgrading the Apache Airflow version

Amazon MWAA supports minor version downgrades to an earlier version that is still supported at
the time of downgrade. This means you can downgrade your environment from version x.2.z to
x.1.z, but not to a previous major version, for example, from 2.y.z to 1.y.z.

For more information, and detailed instructions on updating your workflow resources, and
upgrading the environment to a new version, refer to the section called “Changing the version”.

Apache Airflow deprecated versions

The following table lists the deprecated versions of Apache Airflow in Amazon MWAA, along with
initial release and end-of-support dates for each version. For more information about migrating to
a newer version, refer to the Amazon MWAA Migration Guide.

Apache
Airflow
version

Apache Airflow release
date

Amazon MWAA availabil
ity date

Amazon MWAA end-of-
support date

v1.10.12 August 25, 2020 November 24, 2020 February 21, 2024

v2.0.2 April 19, 2021 May 25, 2021 April 29, 2024

v2.2.2 November 15, 2021 January 27,2022 June 27, 2024

v2.4.3 November 14, 2022 January 05, 2023 December 30, 2025

v2.5.1 January 20, 2023 April 11, 2023 December 30, 2025

v2.6.3 July 10, 2023 August 09, 2023 December 30, 2025

Apache Airflow version support and FAQ

In accordance with the Apache Airflow community release process and version policy, Amazon
MWAA is committed to supporting at least three minor versions of Apache Airflow at any given
time. We will announce the end of support date of a given Apache Airflow minor version at least
180 days before the end of support date.

Downgrading the Apache Airflow version 472

https://docs.aws.amazon.com/mwaa/latest/migrationguide/about-mwaa-migration.html
https://airflow.apache.org/docs/apache-airflow/stable/release-process.html

Amazon Managed Workflows for Apache Airflow User Guide

Frequently asked questions

Q: How long does Amazon MWAA support an Apache Airflow version?

A: Amazon MWAA supports an Apache Airflow patch version for a minimum of 12 months after
first being available.

Q: Am I notified when support is ending for an Apache Airflow version on Amazon MWAA?

A: Yes. If any Amazon MWAA environments in your account run the version nearing the end of
support, Amazon MWAA sends out a notice through the AWS Health Dashboard with the end of
support date.

Q: What happens on the end of support date?

A: On the end of support date, you can no longer use a deprecated version to create new Amazon
MWAA environments. You can continue to access your existing Amazon MWAA environments that
run the associated, deprecated version of Apache Airflow at your own risk. To upgrade to a newer
version of Apache Airflow on Amazon MWAA, refer to the Amazon MWAA Migration Guide.

Important

You are responsible for keeping your Amazon MWAA versions current. AWS urges all
customers to upgrade their Amazon MWAA environments to the latest version in order
to benefit from the most current security, privacy, and availability safeguards. If you
operate your environment on an unsupported version or software past the deprecation
date, referred to as the legacy version, you face a greater likelihood of security, privacy,
and operational risks, including downtime events. By operating your Amazon MWAA
environment on a legacy version, you confirm that you understand and knowingly assume
these risks, and you agree to complete your upgrade to the latest version as soon as
possible. Continued operation of your environment on a legacy version is subject to the
agreement governing your use of the AWS services.
Legacy versions are not considered generally available, and AWS no longer provides
support for the legacy version. As a result, AWS may place limits on the access to or use of
any legacy version at any time, if AWS determines that the legacy version poses a security
or liability risk, or a risk of harm, to the services, AWS, its Affiliates, or any other third party.
Your decision to continue running Your workloads on a legacy version might result in Your
content becoming unavailable, corrupted, or unrecoverable. Environments running on a
legacy version are subject to Service Level Agreement (SLA) exceptions.

Frequently asked questions 473

https://docs.aws.amazon.com/mwaa/latest/migrationguide/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Environments, and related software, running on a legacy version might contain bugs,
errors, defects, and harmful components. Accordingly, and notwithstanding any
information to the contrary in the agreement, or the terms of service, AWS provides the
legacy version as is.
For more information about AWS's shared responsibility model, refer to Shared
responsibility in the AWS Well-Architected Framework.

Frequently asked questions 474

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/shared-responsibility.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/shared-responsibility.html

Amazon Managed Workflows for Apache Airflow User Guide

Amazon Managed Workflows for Apache Airflow service
endpoints and quotas

Amazon Managed Workflows for Apache Airflow has the following service quotas and endpoints.
Service quotas, also referred to as limits, are the maximum number of service resources or
operations for your AWS account.

Contents

• Service endpoints

• Service quotas

• Increasing quotas

Service endpoints

To view a list of endpoints for Amazon MWAA, refer to Amazon Managed Workflows for Apache
Airflow endpoints and quotas.

Service quotas

Quota name Description Default quota Adjustable

Environments The maximum
number of Amazon
MWAA environme
nts per account per
Region.

10 Yes

Workers per
environment

The maximum
number of workers
per Amazon MWAA
environment.

25 Yes

Web servers per
environment

The maximum
number of web

5 Yes

Service endpoints 475

https://docs.aws.amazon.com/general/latest/gr/mwaa.html
https://docs.aws.amazon.com/general/latest/gr/mwaa.html

Amazon Managed Workflows for Apache Airflow User Guide

Quota name Description Default quota Adjustable

servers per Amazon
MWAA environment.

Increasing quotas

You can request an increase to an adjustable quota by submitting a quota increase request.

Increasing quotas 476

https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/services/

Amazon Managed Workflows for Apache Airflow User Guide

Amazon MWAA frequently asked questions

This page describes common questions you may encounter when using Amazon Managed
Workflows for Apache Airflow.

Contents

• Supported versions

• What does Amazon MWAA support for Apache Airflow v2?

• Why are older versions of Apache Airflow not supported?

• What Python version should I use?

• Use cases

• Can I use Amazon MWAA with Amazon SageMaker Unified Studio?

• When should I use AWS Step Functions vs. Amazon MWAA?

• Environment specifications

• How much task storage is available to each environment?

• What is the default operating system used for Amazon MWAA environments?

• Can I use a custom image for my Amazon MWAA environment?

• Is Amazon MWAA HIPAA compliant?

• Does Amazon MWAA support Spot Instances?

• Does Amazon MWAA support a custom domain?

• Can I SSH into my environment?

• Why is a self-referencing rule required on the VPC security group?

• Can I hide environments from different groups in IAM?

• Can I store temporary data on the Apache Airflow Worker?

• Can I specify more than 25 Apache Airflow Workers?

• Does Amazon MWAA support shared Amazon VPCs or shared subnets?

• Can I create or integrate custom Amazon SQS queues to manage task execution and workflow
orchestration in Apache Airflow?

• Metrics

• What metrics are used to determine whether to scale Workers?

• Can I create custom metrics in CloudWatch? 477

Amazon Managed Workflows for Apache Airflow User Guide

• DAGs, Operators, Connections, and other questions

• Can I use the PythonVirtualenvOperator?

• How long does it take Amazon MWAA to recognize a new DAG file?

• Why is my DAG file not picked up by Apache Airflow?

• Can I remove a plugins.zip or requirements.txt from an environment?

• Why don't I see my plugins in the Apache Airflow v2.0.2 Admin Plugins menu?

• Can I use AWS Database Migration Service (DMS) Operators?

• When I access the Airflow REST API using the AWS credentials, can I increase the throttling
limit to more than 10 transactions per second (TPS)?

Supported versions

What does Amazon MWAA support for Apache Airflow v2?

To learn what Amazon MWAA supports, refer to Apache Airflow versions on Amazon Managed
Workflows for Apache Airflow.

Why are older versions of Apache Airflow not supported?

We are only supporting the latest (as of launch) Apache Airflow version Apache Airflow v1.10.12
due to security concerns with older versions.

What Python version should I use?

The following Apache Airflow versions are supported on Amazon Managed Workflows for Apache
Airflow.

Note

• Effective December 30, 2025, Amazon MWAA will end support for Apache Airflow
versions v2.4.3, v2.5.1, and v2.6.3. For more information, refer to Apache Airflow version
support and FAQ.

• Beginning with Apache Airflow v2.2.2, Amazon MWAA supports installing Python
requirements, provider packages, and custom plugins directly on the Apache Airflow web
server.

Supported versions 478

Amazon Managed Workflows for Apache Airflow User Guide

• Beginning with Apache Airflow v2.7.2, your requirements file must include a --
constraint statement. If you do not provide a constraint, Amazon MWAA will specify
one for you to ensure the packages listed in your requirements are compatible with the
version of Apache Airflow you are using.

For more information on setting up constraints in your requirements file, refer to
Installing Python dependencies.

Apache Airflow
version

Apache Airflow
release date

Amazon MWAA
availability date

Apache Airflow
constraints

Python version

v2.10.3 November 4,
2024

December 18,
2024

v2.10.3
constraints file

Python 3.11

v2.10.1 September 5,
2024

September 26,
2024

v2.10.1
constraints file

Python 3.11

v2.9.2 June 10, 2024 July 9, 2024 v2.9.2 constrain
ts file

Python 3.11

v2.8.1 January 19,
2024

February 23,
2024

v2.8.1 constrain
ts file

Python 3.11

v2.7.2 October 12,
2023

November 6,
2023

v2.7.2 constrain
ts file

Python 3.11

For more information about migrating your self-managed Apache Airflow deployments, or
migrating an existing Amazon MWAA environment, including instructions for backing up your
metadata database, refer to the Amazon MWAA Migration Guide.

Use cases

Can I use Amazon MWAA with Amazon SageMaker Unified Studio?

Yes. With an Amazon SageMaker Unified Studio workflow, you can set up and run a series of tasks
in Amazon SageMaker Unified Studio. Amazon SageMaker Unified Studio workflows use Apache

Use cases 479

https://airflow.apache.org/docs/apache-airflow/2.10.3
https://airflow.apache.org/docs/apache-airflow/2.10.3/release_notes.html#airflow-2-10-3-2024-11-04
https://airflow.apache.org/docs/apache-airflow/2.10.3/release_notes.html#airflow-2-10-3-2024-11-04
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.3/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.3/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.10.1
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-10-1-2024-09-05
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-10-1-2024-09-05
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.1/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.10.1/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.9.2
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-9-2-2024-06-10
https://raw.githubusercontent.com/apache/airflow/constraints-2.9.2/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.9.2/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.8.1
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-8-1-2024-01-19
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-8-1-2024-01-19
https://raw.githubusercontent.com/apache/airflow/constraints-2.8.1/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.8.1/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://airflow.apache.org/docs/apache-airflow/2.7.2
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-7-2-2023-10-12
https://airflow.apache.org/docs/apache-airflow/2.10.1/release_notes.html#airflow-2-7-2-2023-10-12
https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.11.txt
https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.11.txt
https://peps.python.org/pep-0664/
https://docs.aws.amazon.com/mwaa/latest/migrationguide/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Airflow to model data processing procedures and orchestrate your Amazon SageMaker Unified
Studio code artifacts. For more information, refer to the Workflows section. To learn more about
Amazon SageMaker, refer to What is Amazon SageMaker?

When should I use AWS Step Functions vs. Amazon MWAA?

1. You can use Step Functions to process individual customer orders, since Step Functions can
scale to meet demand for one order or one million orders.

2. If you’re running an overnight workflow that processes the previous day’s orders, you can
use Step Functions or Amazon MWAA. Amazon MWAA allows you an open source option to
abstract the workflow from the AWS resources you're using.

Environment specifications

How much task storage is available to each environment?

The task storage is limited to 20 GB, and is specified by Amazon ECS Fargate 1.4. The amount of
RAM is determined by the environment class you specify. For more information about environment
classes, refer to Configuring the Amazon MWAA environment class.

What is the default operating system used for Amazon MWAA
environments?

Amazon MWAA environments are created on instances running Amazon Linux 2 for versions 2.6
and older, and on instances running Amazon Linux 2023 for versions 2.7 and newer.

Can I use a custom image for my Amazon MWAA environment?

Custom images are not supported. Amazon MWAA uses images that are built on Amazon Linux
AMI. Amazon MWAA installs the additional requirements by running pip3 -r install for
the requirements specified in the requirements.txt file you add to the Amazon S3 bucket for the
environment.

Is Amazon MWAA HIPAA compliant?

Amazon MWAA is Health Insurance Portability and Accountability Act (HIPAA) eligible. If you have
a HIPAA Business Associate Addendum (BAA) in place with AWS, you can use Amazon MWAA for

When should I use AWS Step Functions vs. Amazon MWAA? 480

https://docs.aws.amazon.com/sagemaker-unified-studio/latest/userguide/workflow-orchestration.html
https://docs.aws.amazon.com/next-generation-sagemaker/latest/userguide/what-is-sagemaker.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-storage.html#fargate-task-storage-linux-pv
https://aws.amazon.com/compliance/hipaa-compliance/

Amazon Managed Workflows for Apache Airflow User Guide

workflows handling Protected Health Information (PHI) on environments created on, or after,
November 14th, 2022.

Does Amazon MWAA support Spot Instances?

Amazon MWAA does not currently support on-demand Amazon EC2 Spot Instance types for
Apache Airflow. However, an Amazon MWAA environment can trigger Spot Instances on, for
example, Amazon EMR and Amazon EC2.

Does Amazon MWAA support a custom domain?

To be able to use a custom domain for your Amazon MWAA hostname, do one of the following:

• For Amazon MWAA deployments with public web server access, you can use Amazon CloudFront
with Lambda@Edge to direct traffic to your environment, and map a custom domain name to
CloudFront. For more information and an example of setting up a custom domain for a public
environment, refer to the Amazon MWAA custom domain for public web server sample in the
Amazon MWAA examples GitHub repository.

• For Amazon MWAA deployments with private web server access, refer to the section called
“Setting up a custom domain”.

Can I SSH into my environment?

While SSH is not supported on a Amazon MWAA environment, it's possible to use a DAG to run
bash commands using the BashOperator. For example:

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago
with DAG(dag_id="any_bash_command_dag", schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 cli_command = BashOperator(
 task_id="bash_command",
 bash_command="{{ dag_run.conf['command'] }}"
)

To trigger the DAG in the Apache Airflow UI, use:

{ "command" : "your bash command"}

Does Amazon MWAA support Spot Instances? 481

https://github.com/aws-samples/amazon-mwaa-examples/tree/main/usecases/mwaa-public-webserver-custom-domain

Amazon Managed Workflows for Apache Airflow User Guide

Why is a self-referencing rule required on the VPC security group?

By creating a self-referencing rule, you're restricting the source to the same security group in the
VPC, and it's not open to all networks. To learn more, refer to the section called “Security in your
VPC”.

Can I hide environments from different groups in IAM?

You can limit access by specifying an environment name in AWS Identity and Access Management,
however, visibility filtering isn't available in the AWS console—if a user can see one environment,
they can see all environments.

Can I store temporary data on the Apache Airflow Worker?

Your Apache Airflow Operators can store temporary data on the Workers. Apache Airflow Workers
can access temporary files in the /tmp on the Fargate containers for your environment.

Note

Total task storage is limited to 20 GB, according to Amazon ECS Fargate 1.4. There's no
guarantee that subsequent tasks will run on the same Fargate container instance, which
might use a different /tmp folder.

Can I specify more than 25 Apache Airflow Workers?

Yes. Although you can specify up to 25 Apache Airflow workers on the Amazon MWAA console, you
can configure up to 50 on an environment by requesting a quota increase. For more information,
refer to Requesting a quota increase.

Does Amazon MWAA support shared Amazon VPCs or shared subnets?

Amazon MWAA does not support shared Amazon VPCs or shared subnets. The Amazon VPC you
select when you create an environment should be owned by the account that is attempting to
create the environment. However, you can route traffic from an Amazon VPC in the Amazon MWAA
account to a shared VPC. For more information and an example of routing traffic to a shared
Amazon VPC, refer to Centralized outbound routing to the internet in the Amazon VPC Transit
Gateways Guide.

Self-referencing rule 482

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-storage.html#fargate-task-storage-linux-pv
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/vpc/latest/tgw/transit-gateway-nat-igw.html

Amazon Managed Workflows for Apache Airflow User Guide

Can I create or integrate custom Amazon SQS queues to manage task
execution and workflow orchestration in Apache Airflow?

No, you cannot create, modify, or use custom Amazon SQS queues within Amazon MWAA. This
is because Amazon MWAA automatically provisions and manages its own Amazon SQS queue for
each Amazon MWAA environment.

Metrics

What metrics are used to determine whether to scale Workers?

Amazon MWAA monitors the QueuedTasks and RunningTasks in CloudWatch to determine
whether to scale Apache Airflow Workers on your environment. To learn more, refer to Monitoring
and metrics.

Can I create custom metrics in CloudWatch?

Not on the CloudWatch console. However, you can create a DAG that writes custom metrics in
CloudWatch. For more information, refer to the section called “Using a DAG to write custom
metrics”.

DAGs, Operators, Connections, and other questions

Can I use the PythonVirtualenvOperator?

The PythonVirtualenvOperator is not explicitly supported on Amazon MWAA, but you can
create a custom plugin that uses the PythonVirtualenvOperator. For sample code, refer to the
section called “Custom plugin to patch PythonVirtualenvOperator ”.

How long does it take Amazon MWAA to recognize a new DAG file?

DAGs are periodically synchronized from the Amazon S3 bucket to your environment. If you add
a new DAG file, it takes about 300 seconds for Amazon MWAA to start using the new file. If you
update an existing DAG, it takes Amazon MWAA about 30 seconds to recognize your updates.

These values, 300 seconds for new DAGs, and 30 seconds for updates to existing DAGs,
correspond to Apache Airflow configuration options dag_dir_list_interval, and
min_file_process_interval respectively.

Shared Amazon VPCs 483

https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#dag-dir-list-interval
https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#min-file-process-interval

Amazon Managed Workflows for Apache Airflow User Guide

Why is my DAG file not picked up by Apache Airflow?

The following are possible solutions for this issue:

1. Check that your execution role has sufficient permissions to your Amazon S3 bucket. To learn
more, refer to Amazon MWAA execution role.

2. Check that the Amazon S3 bucket has Block Public Access configured, and Versioning enabled.
To learn more, refer to Create an Amazon S3 bucket for Amazon MWAA.

3. Verify the DAG file itself. For example, be sure that each DAG has a unique DAG ID.

Can I remove a plugins.zip or requirements.txt from an
environment?

Currently, there is no way to remove a plugins.zip or requirements.txt from an environment once
they’ve been added, but we're working on the issue. In the interim, a workaround is to point to an
empty text or zip file, respectively. To learn more, refer to Deleting files on Amazon S3.

Why don't I see my plugins in the Apache Airflow v2.0.2 Admin Plugins
menu?

For security reasons, the Apache Airflow Web server on Amazon MWAA has limited network egress,
and does not install plugins nor Python dependencies directly on the Apache Airflow web server for
version 2.0.2 environments. The plugin that's shown allows Amazon MWAA to authenticate your
Apache Airflow users in AWS Identity and Access Management (IAM).

To be able to install plugins and Python dependencies directly on the web server, we recommend
creating a new environemnt with Apache Airflow v2.2 and above. Amazon MWAA installs Python
dependencies and and custom plugins directly on the web server for Apache Airflow v2.2 and
above.

Can I use AWS Database Migration Service (DMS) Operators?

Amazon MWAA supports DMS Operators. However, this operator cannot be used to perform
actions on the Amazon Aurora PostgreSQL metadata database associated with an Amazon MWAA
environment.

Why is my DAG file not picked up by Apache Airflow? 484

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/dms.html

Amazon Managed Workflows for Apache Airflow User Guide

When I access the Airflow REST API using the AWS credentials, can I
increase the throttling limit to more than 10 transactions per second
(TPS)?

Yes, you can. To increase the throttling limit, please contact AWS Customer Support.

When I access the Airflow REST API using the AWS credentials, can I increase the throttling limit to
more than 10 transactions per second (TPS)?

485

https://aws.amazon.com/contact-us/

Amazon Managed Workflows for Apache Airflow User Guide

Troubleshooting Amazon Managed Workflows for
Apache Airflow

This chapter describes common issues and errors you may encounter when using Apache Airflow
on Amazon Managed Workflows for Apache Airflow and recommended steps to resolve these
errors.

Contents

• Troubleshooting: DAGs, Operators, Connections, and other issues in Apache Airflow v2

• Connections

• I can't connect to Secrets Manager

• How do I configure secretsmanager:ResourceTag/<tag-key> secrets manager conditions or
a resource restriction in my execution role policy?

• I can't connect to Snowflake

• I can't see my connection in the Airflow UI

• Web server

• I see a 5xx error accessing the web server

• I see a 'The scheduler does not appear to be running' error

• Tasks

• I see my tasks stuck or not completing

• CLI

• I see a '503' error when triggering a DAG in the CLI

• Why does the dags backfill Apache Airflow CLI command fail? Is there a workaround?

• Operators

• I received a PermissionError: [Errno 13] Permission denied error using the S3Transform
operator

• Troubleshooting: DAGs, Operators, Connections, and other issues in Apache Airflow v1

• Updating requirements.txt

• Adding apache-airflow-providers-amazon causes my environment to fail

• Broken DAG

• I received a 'Broken DAG' error when using Amazon DynamoDB operators
486

Amazon Managed Workflows for Apache Airflow User Guide

• I received 'Broken DAG: No module named psycopg2' error

• I received a 'Broken DAG' error when using the Slack operators

• I received various errors installing Google/GCP/BigQuery

• I received 'Broken DAG: No module named Cython' error

• Operators

• I received an error using the BigQuery operator

• Connections

• I can't connect to Snowflake

• I can't connect to Secrets Manager

• I can't connect to my MySQL server on '<DB-identifier-name>.cluster-
id.<region>.rds.amazonaws.com'

• Web server

• I'm using the BigQueryOperator and it's causing my web server to crash

• I see a 5xx error accessing the web server

• I see a 'The scheduler does not appear to be running' error

• Tasks

• I see my tasks stuck or not completing

• CLI

• I see a '503' error when triggering a DAG in the CLI

• Troubleshooting: Creating and updating an Amazon MWAA environment

• Updating requirements.txt

• I specified a new version of my requirements.txt and it's taking more than 20 minutes to
update my environment

• Plugins

• Does Amazon MWAA support implementing custom UI?

• I am able to implement custom UI changes on the Amazon MWAA local runner via plugins,
yet when I try to do the same on Amazon MWAA, I do not see my changes nor any errors.
Why is this happening?

• Create bucket

• I can't select the option for S3 Block Public Access settings

• Create environment
487

Amazon Managed Workflows for Apache Airflow User Guide

• I tried to create an environment and it's stuck in the "Creating" state

• I tried to create an environment but it shows the status as "Create failed"

• I tried to select a VPC and received a "Network Failure" error

• I tried to create an environment and received a service, partition, or resource "must be
passed" error

• I tried to create an environment and it shows the status as "Available" but when I try to
access the Airflow UI an "Empty Reply from Server" or "502 Bad Gateway" error is shown

• I tried to create an environment and my user name is a bunch of random character names

• Update environment

• I tried changing the environment class but the update failed

• Access environment

• I can't access the Apache Airflow UI

• Troubleshooting: CloudWatch Logs and CloudTrail errors

• Logs

• I can't see my task logs, or I received a 'Reading remote log from Cloudwatch log_group'
error

• Tasks are failing without any logs

• I see a 'ResourceAlreadyExistsException' error in CloudTrail

• I see an 'Invalid request' error in CloudTrail

• I see a 'Cannot locate a 64-bit Oracle Client library: "libclntsh.so: cannot open shared
object file: No such file or directory' in Apache Airflow logs

• I see psycopg2 'server closed the connection unexpectedly' in my Scheduler logs

• I see 'Executor reports task instance %s finished (%s) although the task says its %s' in my
DAG processing logs

• I see 'Could not read remote logs from log_group: airflow-*{*environmentName}-Task
log_stream:* {*DAG_ID}/*{*TASK_ID}/*{*time}/*{*n}.log.' in my task logs

488

Amazon Managed Workflows for Apache Airflow User Guide

Troubleshooting: DAGs, Operators, Connections, and other
issues in Apache Airflow v2

The topics on this page describe resolutions to Apache Airflow v2 Python dependencies, custom
plugins, DAGs, Operators, Connections, tasks, and Web server issues you may encounter on an
Amazon Managed Workflows for Apache Airflow environment.

Contents

• Connections

• I can't connect to Secrets Manager

• How do I configure secretsmanager:ResourceTag/<tag-key> secrets manager conditions or a
resource restriction in my execution role policy?

• I can't connect to Snowflake

• I can't see my connection in the Airflow UI

• Web server

• I see a 5xx error accessing the web server

• I see a 'The scheduler does not appear to be running' error

• Tasks

• I see my tasks stuck or not completing

• CLI

• I see a '503' error when triggering a DAG in the CLI

• Why does the dags backfill Apache Airflow CLI command fail? Is there a workaround?

• Operators

• I received a PermissionError: [Errno 13] Permission denied error using the S3Transform
operator

Connections

The following topic describes the errors you may receive when using an Apache Airflow connection,
or using another AWS database.

I can't connect to Secrets Manager

We recommend the following steps:

Apache Airflow v2 489

Amazon Managed Workflows for Apache Airflow User Guide

1. Learn how to create secret keys for your Apache Airflow connection and variables in the
section called “Configuring Secrets Manager”.

2. Learn how to use the secret key for an Apache Airflow variable (test-variable) in Using a
secret key in AWS Secrets Manager for an Apache Airflow variable.

3. Learn how to use the secret key for an Apache Airflow connection (myconn) in Using a secret
key in AWS Secrets Manager for an Apache Airflow connection.

How do I configure secretsmanager:ResourceTag/<tag-key> secrets
manager conditions or a resource restriction in my execution role policy?

Note

Applies to Apache Airflow version 2.0 and earlier.

Currently, you cannot limit access to Secrets Manager secrets by using condition keys or other
resource restrictions in your environment's execution role, due to a known issue in Apache Airflow.

I can't connect to Snowflake

We recommend the following steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. Add the following entries to the requirements.txt for your environment.

apache-airflow-providers-snowflake==1.3.0

3. Add the following imports to your DAG:

from airflow.providers.snowflake.operators.snowflake import SnowflakeOperator

Ensure the Apache Airflow connection object includes the following key-value pairs:

1. Conn Id: snowflake_conn

2. Conn Type: Snowflake

Connections 490

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

3. Host: <my account>.<my region if not us-west-2>.snowflakecomputing.com

4. Schema: <my schema>

5. Login: <my user name>

6. Password: ********

7. Port: <port, if any>

8. Extra:

{
 "account": "<my account>",
 "warehouse": "<my warehouse>",
 "database": "<my database>",
 "region": "<my region if not using us-west-2 otherwise omit this line>"
}

For example:

>>> import json
>>> from airflow.models.connection import Connection
>>> myconn = Connection(
... conn_id='snowflake_conn',
... conn_type='Snowflake',
... host='123456789012.us-east-1.snowflakecomputing.com',
... schema='YOUR_SCHEMA'
... login='YOUR_USERNAME',
... password='YOUR_PASSWORD',
... port='YOUR_PORT'
... extra=json.dumps(dict(account='123456789012', warehouse='YOUR_WAREHOUSE',
 database='YOUR_DB_OPTION', region='us-east-1')),
...)

I can't see my connection in the Airflow UI

Apache Airflow provides connection templates in the Apache Airflow UI. It uses this to generate the
connection URI string, regardless of the connection type. If a connection template is not available
in the Apache Airflow UI, an alternate connection template can be used to generate a connection
URI string, such as using the HTTP connection template.

We recommend the following steps:

Connections 491

Amazon Managed Workflows for Apache Airflow User Guide

1. View the connection types Amazon MWAA's providing in the Apache Airflow UI at Apache
Airflow provider packages installed on Amazon MWAA environments.

2. View the commands to create an Apache Airflow connection in the CLI at Apache Airflow CLI
command reference.

3. Learn how to use connection templates in the Apache Airflow UI interchangeably for
connection types that aren't available in the Apache Airflow UI on Amazon MWAA at Overview
of connection types.

Web server

The following topic describes the errors you may receive for your Apache Airflow Web server on
Amazon MWAA.

I see a 5xx error accessing the web server

We recommend the following steps:

1. Check Apache Airflow configuration options. Verify that the key-value pairs you specified as an
Apache Airflow configuration option, such as AWS Secrets Manager, were configured correctly.
To learn more, refer to the section called “I can't connect to Secrets Manager”.

2. Check the requirements.txt. Verify the Airflow "extras" package and other libraries listed in
your requirements.txt are compatible with your Apache Airflow version.

3. Explore ways to specify Python dependencies in a requirements.txt file, refer to Managing
Python dependencies in requirements.txt.

I see a 'The scheduler does not appear to be running' error

If the scheduler doesn't appear to be running, or the last "heart beat" was received several hours
ago, your DAGs may not appear in Apache Airflow, and new tasks will not be scheduled.

We recommend the following steps:

1. Confirm that your VPC security group allows inbound access to port 5432. This port is needed
to connect to the Amazon Aurora PostgreSQL metadata database for your environment. After
this rule is added, give Amazon MWAA a few minutes, and the error should disappear. To learn
more, refer to the section called “Security in your VPC”.

Web server 492

Amazon Managed Workflows for Apache Airflow User Guide

Note

• The Aurora PostgreSQL metadatabase is part of the Amazon MWAA service
architecture and is not visible in your AWS account.

• Database-related errors are usually a symptom of scheduler failure and not the root
cause.

2. If the scheduler is not running, it might be due to a number of factors such as dependency
installation failures, or an overloaded scheduler. Confirm that your DAGs, plugins, and
requirements are working correctly by viewing the corresponding log groups in CloudWatch
Logs. To learn more, refer to Monitoring and metrics.

Tasks

The following topic describes the errors you may receive for Apache Airflow tasks in an
environment.

I see my tasks stuck or not completing

If your Apache Airflow tasks are "stuck" or not completing, we recommend the following steps:

1. There may be a large number of DAGs defined. Reduce the number of DAGs and perform an
update of the environment (such as changing a log level) to force a reset.

a. Airflow parses DAGs whether they are enabled or not. If you're using greater than 50% of
your environment's capacity you may start overwhelming the Apache Airflow Scheduler.
This leads to large Total Parse Time in CloudWatch Metrics or long DAG processing times in
CloudWatch Logs. There are other ways to optimize Apache Airflow configurations which
are outside the scope of this guide.

b. To learn more about the best practices we recommend to tune the performance of your
environment, refer to the section called “Performance tuning for Apache Airflow”.

2. There may be a large number of tasks in the queue. This often appears as a large—and
growing—number of tasks in the "None" state, or as a large number in Queued Tasks and/or
Tasks Pending in CloudWatch. This can occur for the following reasons:

Tasks 493

Amazon Managed Workflows for Apache Airflow User Guide

a. If there are more tasks to run than the environment has the capacity to run, and/or a large
number of tasks that were queued before autoscaling has time to detect the tasks and
deploy additional Workers.

b. If there are more tasks to run than an environment has the capacity to run, we
recommend reducing the number of tasks that your DAGs run concurrently, and/or
increasing the minimum Apache Airflow Workers.

c. If there are a large number of tasks that were queued before autoscaling has had time to
detect and deploy additional workers, we recommend staggering task deployment and/or
increasing the minimum Apache Airflow Workers.

d. You can use the update-environment command in the AWS Command Line Interface
(AWS CLI) to change the minimum or maximum number of Workers that run on your
environment.

aws mwaa update-environment --name MyEnvironmentName --min-workers 2 --max-
workers 10

e. To learn more about the best practices we recommend to tune the performance of your
environment, refer to the section called “Performance tuning for Apache Airflow”.

3. If your tasks are stuck in the "running" state, you can also clear the tasks or mark them as
succeeded or failed. This allows the autoscaling component for your environment to scale
down the number of workers running on your environment. The following image shows an
example of a stranded task.

• Choose the circle for the stranded task, and then select Clear (as shown). This allows
Amazon MWAA to scale down workers; otherwise, Amazon MWAA can't determine which
DAGs are enabled or disabled, and can't scale down, if there are still queued tasks.

Tasks 494

https://docs.aws.amazon.com/cli/latest/reference/mwaa/update-environment.html

Amazon Managed Workflows for Apache Airflow User Guide

4. Learn more about the Apache Airflow task lifecycle at Concepts in the Apache Airflow reference
guide.

CLI

The following topic describes the errors you may receive when running Airflow CLI commands in
the AWS Command Line Interface.

I see a '503' error when triggering a DAG in the CLI

The Airflow CLI runs on the Apache Airflow Web server, which has limited concurrency. Typically a
maximum of 4 CLI commands can run simultaneously.

CLI 495

https://airflow.apache.org/docs/apache-airflow/stable/concepts.html#task-lifecycle

Amazon Managed Workflows for Apache Airflow User Guide

Why does the dags backfill Apache Airflow CLI command fail? Is there a
workaround?

Note

The following applies only to Apache Airflow v2.0.2 environments.

The backfill command, like other Apache Airflow CLI commands, parses all DAGs locally
before any DAGs are processed, regardless of which DAG the CLI operation applies to. In Amazon
MWAA environments using Apache Airflow v2.0.2, because plugins and requirements are not yet
installed on the web server by the time the CLI command runs, the parsing operation fails, and
the backfill operation is not invoked. If you did not have any requirements nor plugins in your
environment, the backfill operation would succeed.

In order to be able to run the backfill CLI command, we recommend invoking it in a bash
operator. In a bash operator, backfill is initiated from the worker, allowing the DAGs to parse
successfully as all necessary requirements and plguins are available and installed. The following
example shows how you can create a DAG with a BashOperator to run backfill.

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago

with DAG(dag_id="backfill_dag", schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 cli_command = BashOperator(
 task_id="bash_command",
 bash_command="airflow dags backfill my_dag_id"
)

Operators

The following topic describes the errors you may receive when using Operators.

I received a PermissionError: [Errno 13] Permission denied error using
the S3Transform operator

We recommend the following steps if you're trying to run a shell script with the S3Transform
operator and you're receiving a PermissionError: [Errno 13] Permission denied

Operators 496

Amazon Managed Workflows for Apache Airflow User Guide

error. The following steps assume you have an existing plugins.zip file. If you're creating a new
plugins.zip, refer to Installing custom plugins.

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. Create your "transform" script.

#!/bin/bash
cp $1 $2

3. (optional) macOS and Linux users may need to run the following command to ensure the script
is executable.

chmod 777 transform_test.sh

4. Add the script to your plugins.zip.

zip plugins.zip transform_test.sh

5. Follow the steps in Upload the plugins.zip to Amazon S3.

6. Follow the steps in Specifying the plugins.zip version on the Amazon MWAA console.

7. Create the following DAG.

from airflow import DAG
from airflow.providers.amazon.aws.operators.s3_file_transform import
 S3FileTransformOperator
from airflow.utils.dates import days_ago
import os

DAG_ID = os.path.basename(__file__).replace(".py", "")

with DAG (dag_id=DAG_ID, schedule_interval=None, catchup=False,
 start_date=days_ago(1)) as dag:
 file_transform = S3FileTransformOperator(
 task_id='file_transform',
 transform_script='/usr/local/airflow/plugins/transform_test.sh',
 source_s3_key='s3://amzn-s3-demo-bucket/files/input.txt',
 dest_s3_key='s3://amzn-s3-demo-bucket/files/output.txt'
)

8. Follow the steps in Uploading DAG code to Amazon S3.

Operators 497

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

Troubleshooting: DAGs, Operators, Connections, and other
issues in Apache Airflow v1

The topics on this page contains resolutions to Apache Airflow v1.10.12 Python dependencies,
custom plugins, DAGs, Operators, Connections, tasks, and Web server issues you may encounter on
an Amazon Managed Workflows for Apache Airflow environment.

Contents

• Updating requirements.txt

• Adding apache-airflow-providers-amazon causes my environment to fail

• Broken DAG

• I received a 'Broken DAG' error when using Amazon DynamoDB operators

• I received 'Broken DAG: No module named psycopg2' error

• I received a 'Broken DAG' error when using the Slack operators

• I received various errors installing Google/GCP/BigQuery

• I received 'Broken DAG: No module named Cython' error

• Operators

• I received an error using the BigQuery operator

• Connections

• I can't connect to Snowflake

• I can't connect to Secrets Manager

• I can't connect to my MySQL server on '<DB-identifier-name>.cluster-
id.<region>.rds.amazonaws.com'

• Web server

• I'm using the BigQueryOperator and it's causing my web server to crash

• I see a 5xx error accessing the web server

• I see a 'The scheduler does not appear to be running' error

• Tasks

• I see my tasks stuck or not completing

• CLI

• I see a '503' error when triggering a DAG in the CLIApache Airflow v1 498

Amazon Managed Workflows for Apache Airflow User Guide

Updating requirements.txt

The following topic describes the errors you may receive when updating your requirements.txt.

Adding apache-airflow-providers-amazon causes my environment to fail

apache-airflow-providers-xyz is only compatible with Apache Airflow v2. apache-
airflow-backport-providers-xyz is compatible with Apache Airflow 1.10.12.

Broken DAG

The following topic describes the errors you may receive when running DAGs.

I received a 'Broken DAG' error when using Amazon DynamoDB operators

We recommend the following steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. Add the following package to your requirements.txt.

boto

3. Explore ways to specify Python dependencies in a requirements.txt file, refer to Managing
Python dependencies in requirements.txt.

I received 'Broken DAG: No module named psycopg2' error

We recommend the following steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. Add the following to your requirements.txt with your Apache Airflow version. For
example:

apache-airflow[postgres]==1.10.12

3. Explore ways to specify Python dependencies in a requirements.txt file, refer to Managing
Python dependencies in requirements.txt.

Updating requirements.txt 499

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

I received a 'Broken DAG' error when using the Slack operators

We recommend the following steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. Add the following package to your requirements.txt and specify your Apache Airflow
version. For example:

apache-airflow[slack]==1.10.12

3. Explore ways to specify Python dependencies in a requirements.txt file, refer to Managing
Python dependencies in requirements.txt.

I received various errors installing Google/GCP/BigQuery

Amazon MWAA uses Amazon Linux which requires a specific version of Cython and cryptograpy
libraries. We recommend the following steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. Add the following package to your requirements.txt.

grpcio==1.27.2
cython==0.29.21
pandas-gbq==0.13.3
cryptography==3.3.2
apache-airflow-backport-providers-amazon[google]

3. If you’re not using backport providers, you can use:

grpcio==1.27.2
cython==0.29.21
pandas-gbq==0.13.3
cryptography==3.3.2
apache-airflow[gcp]==1.10.12

4. Explore ways to specify Python dependencies in a requirements.txt file, refer to Managing
Python dependencies in requirements.txt.

Broken DAG 500

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

I received 'Broken DAG: No module named Cython' error

Amazon MWAA uses Amazon Linux which requires a specific version of Cython. We recommend the
following steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. Add the following package to your requirements.txt.

cython==0.29.21

3. Cython libraries have various required pip dependency versions. For example, using
awswrangler==2.4.0 requires pyarrow<3.1.0,>=2.0.0, so pip3 tries to install
pyarrow==3.0.0 which causes a Broken DAG error. We recommend specifying the oldest
acceptible version explicity. For example, if you specify the minimum value pyarrow==2.0.0
before awswrangler==2.4.0 then the error goes away, and the requirements.txt installs
correctly. The final requirements should look like this:

cython==0.29.21
pyarrow==2.0.0
awswrangler==2.4.0

4. Explore ways to specify Python dependencies in a requirements.txt file, refer to Managing
Python dependencies in requirements.txt.

Operators

The following topic describes the errors you may receive when using Operators.

I received an error using the BigQuery operator

Amazon MWAA does not support operators with UI extensions. We recommend the following
steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. A workaround is to override the extension by adding a line in the DAG to set <operator
name>.operator_extra_links = None after importing the problem operators. For
example:

Operators 501

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

from airflow.contrib.operators.bigquery_operator import BigQueryOperator
BigQueryOperator.operator_extra_links = None

3. You can use this approach for all DAGs by adding the above to a plugin. For an example, refer
to the section called “Custom plugin to patch PythonVirtualenvOperator ”.

Connections

The following topic describes the errors you may receive when using an Apache Airflow connection,
or using another AWS database.

I can't connect to Snowflake

We recommend the following steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. Add the following entries to the requirements.txt for your environment.

asn1crypto == 0.24.0
snowflake-connector-python == 1.7.2

3. Add the following imports to your DAG:

from airflow.contrib.hooks.snowflake_hook import SnowflakeHook
from airflow.contrib.operators.snowflake_operator import SnowflakeOperator

Ensure the Apache Airflow connection object includes the following key-value pairs:

1. Conn Id: snowflake_conn

2. Conn Type: Snowflake

3. Host: <my account>.<my region if not us-west-2>.snowflakecomputing.com

4. Schema: <my schema>

5. Login: <my user name>

6. Password: ********

7. Port: <port, if any>

Connections 502

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

8. Extra:

{
 "account": "<my account>",
 "warehouse": "<my warehouse>",
 "database": "<my database>",
 "region": "<my region if not using us-west-2 otherwise omit this line>"
}

For example:

>>> import json
>>> from airflow.models.connection import Connection
>>> myconn = Connection(
... conn_id='snowflake_conn',
... conn_type='Snowflake',
... host='123456789012.us-east-1.snowflakecomputing.com',
... schema='YOUR_SCHEMA'
... login='YOUR_USERNAME',
... password='YOUR_PASSWORD',
... port='YOUR_PORT'
... extra=json.dumps(dict(account='123456789012', warehouse='YOUR_WAREHOUSE',
 database='YOUR_DB_OPTION', region='us-east-1')),
...)

I can't connect to Secrets Manager

We recommend the following steps:

1. Learn how to create secret keys for your Apache Airflow connection and variables in the
section called “Configuring Secrets Manager”.

2. Learn how to use the secret key for an Apache Airflow variable (test-variable) in Using a
secret key in AWS Secrets Manager for an Apache Airflow variable.

3. Learn how to use the secret key for an Apache Airflow connection (myconn) in Using a secret
key in AWS Secrets Manager for an Apache Airflow connection.

Connections 503

Amazon Managed Workflows for Apache Airflow User Guide

I can't connect to my MySQL server on '<DB-identifier-name>.cluster-
id.<region>.rds.amazonaws.com'

Amazon MWAA's security group and the RDS security group need an ingress rule to allow traffic to
and from one another. We recommend the following steps:

1. Modify the RDS security group to allow all traffic from Amazon MWAA's VPC security group.

2. Modify Amazon MWAA's VPC security group to allow all traffic from the RDS security group.

3. Rerun your tasks again and verify whether the SQL query succeeded by checking Apache
Airflow logs in CloudWatch Logs.

Web server

The following topic describes the errors you may receive for your Apache Airflow Web server on
Amazon MWAA.

I'm using the BigQueryOperator and it's causing my web server to crash

We recommend the following steps:

1. Apache Airflow operators such as the BigQueryOperator and QuboleOperator that
contain operator_extra_links could cause your Apache Airflow web server to crash. These
operators attempt to load code to your web server, which is not permitted for security reasons.
We recommend patching the operators in your DAG by adding the following code after your
import statements:

BigQueryOperator.operator_extra_links = None

2. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

I see a 5xx error accessing the web server

We recommend the following steps:

1. Check Apache Airflow configuration options. Verify that the key-value pairs you specified as an
Apache Airflow configuration option, such as AWS Secrets Manager, were configured correctly.
To learn more, refer to the section called “I can't connect to Secrets Manager”.

Web server 504

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

2. Check the requirements.txt. Verify the Airflow "extras" package and other libraries listed in
your requirements.txt are compatible with your Apache Airflow version.

3. Explore ways to specify Python dependencies in a requirements.txt file, refer to Managing
Python dependencies in requirements.txt.

I see a 'The scheduler does not appear to be running' error

If the scheduler doesn't appear to be running, or the last "heart beat" was received several hours
ago, your DAGs may not appear in Apache Airflow, and new tasks will not be scheduled.

We recommend the following steps:

1. Confirm that your VPC security group allows inbound access to port 5432. This port is needed
to connect to the Amazon Aurora PostgreSQL metadata database for your environment. After
this rule is added, give Amazon MWAA a few minutes, and the error should disappear. To learn
more, refer to the section called “Security in your VPC”.

Note

• The Aurora PostgreSQL metadatabase is part of the Amazon MWAA service
architecture and is not visible in your AWS account.

• Database-related errors are usually a symptom of scheduler failure and not the root
cause.

2. If the scheduler is not running, it might be due to a number of factors such as dependency
installation failures, or an overloaded scheduler. Confirm that your DAGs, plugins, and
requirements are working correctly by viewing the corresponding log groups in CloudWatch
Logs. To learn more, refer to Monitoring and metrics.

Tasks

The following topic describes the errors you may receive for Apache Airflow tasks in an
environment.

I see my tasks stuck or not completing

If your Apache Airflow tasks are "stuck" or not completing, we recommend the following steps:

Tasks 505

Amazon Managed Workflows for Apache Airflow User Guide

1. There may be a large number of DAGs defined. Reduce the number of DAGs and perform an
update of the environment (such as changing a log level) to force a reset.

a. Airflow parses DAGs whether they are enabled or not. If you're using greater than 50% of
your environment's capacity you may start overwhelming the Apache Airflow Scheduler.
This leads to large Total Parse Time in CloudWatch Metrics or long DAG processing times in
CloudWatch Logs. There are other ways to optimize Apache Airflow configurations which
are outside the scope of this guide.

b. To learn more about the best practices we recommend to tune the performance of your
environment, refer to the section called “Performance tuning for Apache Airflow”.

2. There may be a large number of tasks in the queue. This often appears as a large—and
growing—number of tasks in the "None" state, or as a large number in Queued Tasks and/or
Tasks Pending in CloudWatch. This can occur for the following reasons:

a. If there are more tasks to run than the environment has the capacity to run, and/or a large
number of tasks that were queued before autoscaling has time to detect the tasks and
deploy additional Workers.

b. If there are more tasks to run than an environment has the capacity to run, we
recommend reducing the number of tasks that your DAGs run concurrently, and/or
increasing the minimum Apache Airflow Workers.

c. If there are a large number of tasks that were queued before autoscaling has had time to
detect and deploy additional workers, we recommend staggering task deployment and/or
increasing the minimum Apache Airflow Workers.

d. You can use the update-environment command in the AWS Command Line Interface
(AWS CLI) to change the minimum or maximum number of Workers that run on your
environment.

aws mwaa update-environment --name MyEnvironmentName --min-workers 2 --max-
workers 10

e. To learn more about the best practices we recommend to tune the performance of your
environment, refer to the section called “Performance tuning for Apache Airflow”.

3. If your tasks are stuck in the "running" state, you can also clear the tasks or mark them as
succeeded or failed. This allows the autoscaling component for your environment to scale
down the number of workers running on your environment. The following image shows an
example of a stranded task.

Tasks 506

https://docs.aws.amazon.com/cli/latest/reference/mwaa/update-environment.html

Amazon Managed Workflows for Apache Airflow User Guide

• Choose the circle for the stranded task, and then select Clear (as shown). This allows
Amazon MWAA to scale down workers; otherwise, Amazon MWAA can't determine which
DAGs are enabled or disabled, and can't scale down, if there are still queued tasks.

4. Learn more about the Apache Airflow task lifecycle at Concepts in the Apache Airflow reference
guide.

CLI

The following topic describes the errors you may receive when running Airflow CLI commands in
the AWS Command Line Interface.

CLI 507

https://airflow.apache.org/docs/apache-airflow/stable/concepts.html#task-lifecycle

Amazon Managed Workflows for Apache Airflow User Guide

I see a '503' error when triggering a DAG in the CLI

The Airflow CLI runs on the Apache Airflow Web server, which has limited concurrency. Typically a
maximum of 4 CLI commands can run simultaneously.

Troubleshooting: Creating and updating an Amazon MWAA
environment

The topics on this page contains errors you may encounter when creating and updating an Amazon
Managed Workflows for Apache Airflow environment and how to resolve these errors.

Contents

• Updating requirements.txt

• I specified a new version of my requirements.txt and it's taking more than 20 minutes to
update my environment

• Plugins

• Does Amazon MWAA support implementing custom UI?

• I am able to implement custom UI changes on the Amazon MWAA local runner via plugins, yet
when I try to do the same on Amazon MWAA, I do not see my changes nor any errors. Why is
this happening?

• Create bucket

• I can't select the option for S3 Block Public Access settings

• Create environment

• I tried to create an environment and it's stuck in the "Creating" state

• I tried to create an environment but it shows the status as "Create failed"

• I tried to select a VPC and received a "Network Failure" error

• I tried to create an environment and received a service, partition, or resource "must be passed"
error

• I tried to create an environment and it shows the status as "Available" but when I try to access
the Airflow UI an "Empty Reply from Server" or "502 Bad Gateway" error is shown

• I tried to create an environment and my user name is a bunch of random character names

• Update environment

• I tried changing the environment class but the update failed

Amazon MWAA Create/Update 508

Amazon Managed Workflows for Apache Airflow User Guide

• Access environment

• I can't access the Apache Airflow UI

Updating requirements.txt

The following topic describes the errors you may receive when updating your requirements.txt.

I specified a new version of my requirements.txt and it's taking more than 20
minutes to update my environment

If it takes more than twenty minutes for your environment to install a new version of a
requirements.txt file, the environment update failed and Amazon MWAA is rolling back to the
last stable version of the container image.

1. Check package versions. We recommend always specifying either a specific version (==) or a
maximum version (<=) for the Python dependencies in your requirements.txt.

2. Check Apache Airflow logs. If you enabled Apache Airflow logs, verify your log groups were
created successfully on the Logs groups page on the CloudWatch console. If you see blank
logs, the most common reason is due to missing permissions in your execution role for
CloudWatch or Amazon S3 where logs are written. To learn more, refer to Execution role.

3. Check Apache Airflow configuration options. If you're using Secrets Manager, verify that the
key-value pairs you specified as an Apache Airflow configuration option were configured
correctly. To learn more, refer to the section called “Configuring Secrets Manager”.

4. Check VPC network configuration. To learn more, refer to the section called “Environment
stuck”.

5. Check execution role permissions. An execution role is an AWS Identity and Access
Management (IAM) role with a permissions policy that grants Amazon MWAA permission to
invoke the resources of other AWS services (such as Amazon S3, CloudWatch, Amazon SQS,
Amazon ECR) on your behalf. Your Customer managed key or AWS owned key also needs to be
permitted access. To learn more, refer to Execution role.

6. To run a troubleshooting script that checks the Amazon VPC network setup and configuration
for your Amazon MWAA environment, refer to the Verify Environment script in AWS Support
Tools on GitHub.

Updating requirements.txt 509

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://github.com/awslabs/aws-support-tools/tree/master/MWAA

Amazon Managed Workflows for Apache Airflow User Guide

Plugins

The following topic describes issues you may encounter when configuring or updating Apache
Airflow plugins.

Does Amazon MWAA support implementing custom UI?

Starting with Apache Airflow v2.2.2, Amazon MWAA supports installing plugins on the Apache
Airflow web server, and implementing custom UI. If your Amazon MWAA environment is running
Apache Airflow v2.0.2 or older, you will not be able to implement custom UI.

For more information about version management, and upgrading your existing environments, refer
to Versions.

I am able to implement custom UI changes on the Amazon MWAA local runner via
plugins, yet when I try to do the same on Amazon MWAA, I do not see my changes
nor any errors. Why is this happening?

the Amazon MWAA local runner has all the Apache Airflow components bundled into one image,
allowing you to apply custom UI plugin changes.

Create bucket

The following topic describes the errors you may receive when creating an Amazon S3 bucket.

I can't select the option for S3 Block Public Access settings

The execution role for your Amazon MWAA environment needs permission to the
GetBucketPublicAccessBlock action on the Amazon S3 bucket to verify the bucket blocked
public access. We recommend the following steps:

1. Follow the steps to Attach a JSON policy to your execution role.

2. Attach the following JSON policy:

{
 "Effect":"Allow",
 "Action":[
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*"
],

Plugins 510

https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

 "Resource":[
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
}

Substitute the sample placeholders in amzn-s3-demo-bucket with your Amazon S3 bucket
name.

3. To run a troubleshooting script that checks the Amazon VPC network setup and configuration
for your Amazon MWAA environment, refer to the Verify Environment script in AWS Support
Tools on GitHub.

Create environment

The following topic describes the errors you may receive when creating an environment.

I tried to create an environment and it's stuck in the "Creating" state

We recommend the following steps:

1. Check VPC network with public routing. If you're using an Amazon VPC with Internet access,
verify the following:

• That your Amazon VPC is configured to allow network traffic between the different AWS
resources used by your Amazon MWAA environment, as defined in the section called
“About networking”. For example, your VPC security group must either allow all traffic in a
self-referencing rule, or optionally specify the port range for HTTPS port range 443 and a
TCP port range 5432.

2. Check VPC network with private routing. If you're using an Amazon VPC without Internet
access, verify the following:

• That your Amazon VPC is configured to allow network traffic between the different AWS
resources for your Amazon MWAA environment, as defined in the section called “About
networking”. For example, your two private subnets must not have a route table to a NAT
gateway (or NAT instance), nor an Internet gateway.

3. To run a troubleshooting script that checks the Amazon VPC network setup and configuration
for your Amazon MWAA environment, refer to the Verify Environment script in AWS Support
Tools on GitHub.

Create environment 511

https://github.com/awslabs/aws-support-tools/tree/master/MWAA
https://github.com/awslabs/aws-support-tools/tree/master/MWAA

Amazon Managed Workflows for Apache Airflow User Guide

I tried to create an environment but it shows the status as "Create failed"

We recommend the following steps:

1. Check VPC network configuration. To learn more, refer to the section called “Environment
stuck”.

2. Check user permissions. Amazon MWAA performs a dry run against a user's credentials before
creating an environment. Your AWS account may not have permission in AWS Identity and
Access Management (IAM) to create some of the resources for an environment. For example,
if you chose the Private network Apache Airflow access mode, your AWS account must have
been granted access by your administrator to the AmazonMWAAFullConsoleAccess access
control policy for your environment, which allows your account to create VPC endpoints.

3. Check execution role permissions. An execution role is an AWS Identity and Access
Management (IAM) role with a permissions policy that grants Amazon MWAA permission to
invoke the resources of other AWS services (such as Amazon S3, CloudWatch, Amazon SQS,
Amazon ECR) on your behalf. Your Customer managed key or AWS owned key also needs to be
permitted access. To learn more, refer to Execution role.

4. Check Apache Airflow logs. If you enabled Apache Airflow logs, verify your log groups were
created successfully on the Logs groups page on the CloudWatch console. If you see blank
logs, the most common reason is due to missing permissions in your execution role for
CloudWatch or Amazon S3 where logs are written. To learn more, refer to Execution role.

5. To run a troubleshooting script that checks the Amazon VPC network setup and configuration
for your Amazon MWAA environment, refer to the Verify Environment script in AWS Support
Tools on GitHub.

6. If you are using an Amazon VPC without internet access, ensure that you've created an Amazon
S3 gateway endpoint, and granted the minimum required permisions to Amazon ECR to
access Amazon S3. To learn more about creating an Amazon S3 gateway endpoint, refer to the
following:

• Creating an Amazon VPC network without internet access

• Create the Amazon S3 gateway endpoint in the Amazon Elastic Container Registry User Guide

I tried to select a VPC and received a "Network Failure" error

We recommend the following steps:

Create environment 512

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups
https://github.com/awslabs/aws-support-tools/tree/master/MWAA
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html#ecr-setting-up-s3-gateway

Amazon Managed Workflows for Apache Airflow User Guide

• If you see a "Network Failure" error when you try to select an Amazon VPC when creating your
environment, turn off any in-browser proxies that are running, and then try again.

I tried to create an environment and received a service, partition, or resource
"must be passed" error

We recommend the following steps:

• You may be receiving this error because the URI you specified for your Amazon S3 bucket
includes a '/' at the end of the URI. We recommend removing the '/' in the path. The value
should be in the following format:

s3://amzn-s3-demo-bucket

I tried to create an environment and it shows the status as "Available" but when I
try to access the Airflow UI an "Empty Reply from Server" or "502 Bad Gateway"
error is shown

We recommend the following steps:

1. Check VPC security group configuration. To learn more, refer to the section called
“Environment stuck”.

2. Confirm that any Apache Airflow packages you listed in the requirements.txt correspond
to the Apache Airflow version you're running on Amazon MWAA. To learn more, refer to
Installing Python dependencies.

3. To run a troubleshooting script that checks the Amazon VPC network setup and configuration
for your Amazon MWAA environment, refer to the Verify Environment script in AWS Support
Tools on GitHub.

I tried to create an environment and my user name is a bunch of random
character names

• Apache Airflow has a maximum of 64 characters for user names. If your AWS Identity and
Access Management (IAM) role exceeds this length, a hash algorithm is used to reduce it, while
remaining unique.

Create environment 513

https://github.com/awslabs/aws-support-tools/tree/master/MWAA

Amazon Managed Workflows for Apache Airflow User Guide

Update environment

The following topic describes the errors you may receive when updating an environment.

I tried changing the environment class but the update failed

If you update your environment to a different environment class (such as changing an mw1.medium
to an mw1.small), and the request to update your environment failed, the environment status
goes into an UPDATE_FAILED state and the environment is rolled back to, and is billed according
to, the previous stable version of an environment.

We recommend the following steps:

1. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

2. To run a troubleshooting script that checks the Amazon VPC network setup and configuration
for your Amazon MWAA environment, refer to the Verify Environment script in AWS Support
Tools on GitHub.

Access environment

The following topic describes the errors you may receive when accessing an environment.

I can't access the Apache Airflow UI

We recommend the following steps:

1. Check user permissions. You may not have been granted access to a permissions policy that
allows you to view the Apache Airflow UI. To learn more, refer to the section called “Accessing
an Amazon MWAA environment”.

2. Check network access. This may be because you selected the Private
network access mode. If the URL of your Apache Airflow UI is in the
following format 387fbcn-8dh4-9hfj-0dnd-834jhdfb-vpce.c10.us-
west-2.airflow.amazonaws.com, it means that you're using private routing for your
Apache Airflow Web server. You can either update the Apache Airflow access mode to the
Public network access mode, or create a mechanism to access the VPC endpoint for your
Apache Airflow Web server. To learn more, refer to the section called “Managing access to VPC
endpoints”.

Update environment 514

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://github.com/awslabs/aws-support-tools/tree/master/MWAA

Amazon Managed Workflows for Apache Airflow User Guide

Troubleshooting: CloudWatch Logs and CloudTrail errors

The topics on this page contains resolutions to Amazon CloudWatch Logs and AWS CloudTrail
errors you may encounter on an Amazon Managed Workflows for Apache Airflow environment.

Contents

• Logs

• I can't see my task logs, or I received a 'Reading remote log from Cloudwatch log_group' error

• Tasks are failing without any logs

• I see a 'ResourceAlreadyExistsException' error in CloudTrail

• I see an 'Invalid request' error in CloudTrail

• I see a 'Cannot locate a 64-bit Oracle Client library: "libclntsh.so: cannot open shared object
file: No such file or directory' in Apache Airflow logs

• I see psycopg2 'server closed the connection unexpectedly' in my Scheduler logs

• I see 'Executor reports task instance %s finished (%s) although the task says its %s' in my DAG
processing logs

• I see 'Could not read remote logs from log_group: airflow-*{*environmentName}-Task
log_stream:* {*DAG_ID}/*{*TASK_ID}/*{*time}/*{*n}.log.' in my task logs

Logs

The following topic describes the errors you may receive when viewing Apache Airflow logs.

I can't see my task logs, or I received a 'Reading remote log from Cloudwatch
log_group' error

Amazon MWAA has configured Apache Airflow to read and write logs directly from and to Amazon
CloudWatch Logs. If a worker fails to start a task, or fails to write any logs, you will see the error:

*** Reading remote log from Cloudwatch log_group: airflow-environmentName-Task
 log_stream: DAG_ID/TASK_ID/timestamp/n.log.Could not read remote logs from log_group:
 airflow-environmentName-Task log_stream: DAG_ID/TASK_ID/time/n.log.

• We recommend the following steps:

CloudWatch Logs and CloudTrail 515

Amazon Managed Workflows for Apache Airflow User Guide

a. Verify that you have enabled task logs at the INFO level for your environment. For more
information, refer to Viewing Airflow logs in Amazon CloudWatch.

b. Verify that the environment execution role has the correct permission policies.

c. Verify that your operator or task is working correctly, has sufficient resources to parse the
DAG, and has the appropriate Python libraries to load. To verify your whether you have
the correct dependencies, try eliminating imports until you find the one that is causing the
issue. We recommend testing your Python dependencies using the Amazon MWAA local-
runner tool.

Tasks are failing without any logs

If tasks are failing in a workflow and you can't locate any logs for the failed tasks, check if you are
setting the queue parameter in your default arguments, as shown in the following.

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago

Setting queue argument to default.
default_args = {
 "start_date": days_ago(1),
 "queue": "default"
}

with DAG(dag_id="any_command_dag", schedule_interval=None, catchup=False,
 default_args=default_args) as dag:
 cli_command = BashOperator(
 task_id="bash_command",
 bash_command="{{ dag_run.conf['command'] }}"
)

To resovle the issue, remove queue from your code, and invoke the DAG again.

I see a 'ResourceAlreadyExistsException' error in CloudTrail

"errorCode": "ResourceAlreadyExistsException",
 "errorMessage": "The specified log stream already exists",
 "requestParameters": {
 "logGroupName": "airflow-MyAirflowEnvironment-DAGProcessing",

Logs 516

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

 "logStreamName": "scheduler_cross-account-eks.py.log"
 }

Certain Python requirements such as apache-airflow-backport-providers-amazon roll
back the watchtower library that Amazon MWAA uses to communicate with CloudWatch to an
older version. We recommend the following steps:

• Add the following library to your requirements.txt

watchtower==1.0.6

I see an 'Invalid request' error in CloudTrail

Invalid request provided: Provided role does not have sufficient permissions for s3
 location airflow-xxx-xxx/dags

If you're creating an Amazon MWAA environment and an Amazon S3 bucket using the same AWS
CloudFormation template, you need to add a DependsOn section within your AWS CloudFormation
template. The two resources (MWAA Environment and MWAA Execution Policy) have a dependency
in AWS CloudFormation. We recommend the following steps:

• Add the following DependsOn statement to your AWS CloudFormation template.

...
 MaxWorkers: 5
 NetworkConfiguration:
 SecurityGroupIds:
 - !GetAtt SecurityGroup.GroupId
 SubnetIds: !Ref subnetIds
 WebserverAccessMode: PUBLIC_ONLY
 DependsOn: MwaaExecutionPolicy

 MwaaExecutionPolicy:
 Type: AWS::IAM::ManagedPolicy
 Properties:
 Roles:
 - !Ref MwaaExecutionRole
 PolicyDocument:
 Version: 2012-10-17
 Statement:

Logs 517

Amazon Managed Workflows for Apache Airflow User Guide

 - Effect: Allow
 Action: airflow:PublishMetrics
 Resource:
...

For an example, refer to Quick start tutorial for Amazon Managed Workflows for Apache
Airflow.

I see a 'Cannot locate a 64-bit Oracle Client library: "libclntsh.so: cannot open
shared object file: No such file or directory' in Apache Airflow logs

• We recommend the following steps:

• If you're using Apache Airflow v2, add core.lazy_load_plugins : False as an
Apache Airflow configuration option. To learn more, refer to Using configuration options
to load plugins in 2.

I see psycopg2 'server closed the connection unexpectedly' in my Scheduler logs

If you see an error similar to the following, your Apache Airflow Scheduler may have run out of
resources.

2021-06-14T10:20:24.581-05:00 sqlalchemy.exc.OperationalError:
 (psycopg2.OperationalError) server closed the connection unexpectedly
2021-06-14T10:20:24.633-05:00 This probably means the server terminated abnormally
2021-06-14T10:20:24.686-05:00 before or while processing the request.

We recommend the following steps:

• Consider upgrading to Apache Airflow v2.0.2, which allows you to specify up to 5 Schedulers.

I see 'Executor reports task instance %s finished (%s) although the task says its
%s' in my DAG processing logs

If you see an error similar to the following, your long-running tasks may have reached the task time
limit on Amazon MWAA. Amazon MWAA has a limit of 12 hours for any one Airflow task, to prevent
tasks from getting stuck in the queue and blocking activities like autoscaling.

Logs 518

Amazon Managed Workflows for Apache Airflow User Guide

Executor reports task instance %s finished (%s) although the task says its %s. (Info:
 %s) Was the task killed externally

We recommend the following steps:

• Consider breaking up the task into multiple, shorter running tasks. Airflow typically has a
model whereby operators are asynchronous. It invokes activities on external systems, and
Apache Airflow Sensors poll to see when its complete. If a Sensor fails, it can be safely retried
without impacting the Operator's functionality.

I see 'Could not read remote logs from log_group: airflow-*{*environmentName}-
Task log_stream:* {*DAG_ID}/*{*TASK_ID}/*{*time}/*{*n}.log.' in my task logs

If you see an error similar to the following, the execution role for your environment may not
contain a permissions policy to create log streams for task logs.

Could not read remote logs from log_group: airflow-*{*environmentName}-Task
 log_stream:* {*DAG_ID}/*{*TASK_ID}/*{*time}/*{*n}.log.

We recommend the following steps:

• Modify the execution role for your environment using one of the sample policies at the section
called “Execution role”.

You may have also specified a provider package in your requirements.txt file that is
incompatible with your Apache Airflow version. For example, if you're using Apache Airflow v2.0.2,
you may have specified a package, such as the apache-airflow-providers-databricks package, which
is only compatible with Airflow 2.1+.

We recommend the following steps:

1. If you're using Apache Airflow v2.0.2, modify the requirements.txt file and add apache-
airflow[databricks]. This installs the correct version of the Databricks package that is
compatible with Apache Airflow v2.0.2.

2. Test your DAGs, custom plugins, and Python dependencies locally using the aws-mwaa-local-
runner on GitHub.

Logs 519

https://airflow.apache.org/docs/apache-airflow-providers-databricks/stable/index.html
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner

Amazon Managed Workflows for Apache Airflow User Guide

Amazon MWAA Document History

The following table describes important additions to the Amazon MWAA service documentation,
beginning in November 2020. To receive notifications about updates to this documentation,
subscribe to the RSS feed.

Change Description Date

IPv6 updates Added information about IPv6
support.

• the section called “About
networking”

August 26, 2025

Environment updates Added a note about the
workerReplacementS
trategy changing from
 GRACEFUL to FORCED if
you perform an update
while your environment is in
MAINTENANCE status.

• the section called “Update
an environment”

August 6, 2025

Version deprecation informati
on

Updated topic on version
deprecation to include
deprecation notices and
timelines for Apache Airflow
v2.4.3, Apache Airflow v2.5.1,
and Apache Airflow v2.6.3.

• the section called “Apache
Airflow deprecated
versions”

June 24, 2025

520

Amazon Managed Workflows for Apache Airflow User Guide

Added a new environment
class: mw1.micro

Amazon MWAA now provides
a new environment class:
mw1.micro.

• the section called “Configur
ing the environment class”

• the section called
“Performance tuning for
Apache Airflow”

November 19, 2024

Support for simpler method
to access Apache Airflow
REST API

Amazon MWAA now provides
a simplified approach for
interacting with the Apache
Airflow REST API using AWS
credentials.

• the section called “Using
the Apache Airflow REST
API”

• the section called “Apache
Airflow Rest API access”

October 23, 2024

New Apache Airflow version Amazon MWAA now supports
Apache Airflow v2.10.1. This
update includes informati
on on updated provider
packages, and details about
using Apache Airflow v2.10.1
on Amazon MWAA.

• Versions

• the section called “Provider
packages for Apache
Airflow v2.10.1 connectio
ns”

September 26, 2024

521

Amazon Managed Workflows for Apache Airflow User Guide

New Apache Airflow version Amazon MWAA now supports
Apache Airflow v2.9.2. This
update includes informati
on on updated provider
packages, and details about
using Apache Airflow v2.9.2
on Amazon MWAA.

• Versions

• the section called “Provider
packages for Apache
Airflow v2.9.2 connections”

July 9, 2024

Amazon MWAA supports
configuring a custom web
server domain names

Amazon MWAA supports
configuring a custom web
server domain names for
private environments with no
internet access. This update
includes the following new
topic that describes setting up
a new custom domain.

• the section called “Setting
up a custom domain”

June 18, 2024

Amazon MWAA supports web
server automatic scaling and
the Apache Airflow REST API

Amazon MWAA now supports
automatic scaling of web
servers as well as the ability
to access and use the Apache
Airflow REST API.

• the section called “Configur
ing web server auto scaling”

• the section called “Using
the Apache Airflow REST
API”

May 16, 2024

522

Amazon Managed Workflows for Apache Airflow User Guide

Improved description of
automatic scaling behavior

Updated the following topic
to reflect the new Amazon
MWAA automatic scaling
behavior when workers pick
up new tasks as Fargate
workers downscale.

• the section called “Configur
ing worker auto scaling”

May 10, 2024

Support for larger instance
sizes

Amazon MWAA now supports
two larger instance size
options for larger workloads
: mw1.xlarge , and
mw1.2xlarge

• the section called
“Environment capabilities”

April 16, 2024

New Apache Airflow version Amazon MWAA now supports
Apache Airflow v2.8.1. This
update includes informati
on on updated provider
packages, and details about
using Apache Airflow v2.8.1
on Amazon MWAA.

• Versions

• the section called “Provider
packages for Apache
Airflow v2.8.1 connections”

February 22, 2024

523

Amazon Managed Workflows for Apache Airflow User Guide

Support for shared Amazon
VPC

Amazon MWAA supports
cross-account environment
creation for organizations
using Amazon OpenSearch
Service to manage Amazon
MWAA resources using a
central shared Amazon VPC
in an owner account. As part
of this launch, Amazon MWAA
lets you choose to create, and
manage, your own Amazon
VPC endpoints.

• the section called
“Managing your own
Amazon VPC endpoints”

November 15, 2023

New Apache Airflow version Amazon MWAA now supports
Apache Airflow v2.7.2. This
update includes informati
on on updated provider
packages, and details about
using Apache Airflow v2.7.2
on Amazon MWAA.

• Versions

• the section called “Provider
packages for Apache
Airflow v2.7.2 connections”

November 6, 2023

524

Amazon Managed Workflows for Apache Airflow User Guide

New Apache Airflow version Amazon MWAA now supports
Apache Airflow v2.6.3. This
update includes informati
on on updated provider
packages, and details about
using Apache Airflow v2.6.3
on Amazon MWAA,

• Versions

• the section called “Provider
packages for Apache
Airflow v2.6.3 connections”

August 9, 2023

Version deprecation informati
on

Updated topic on version
deprecation to include
deprecation notices and
timelines for Apache Airflow
v2.0.2 and Apache Airflow
v2.2.2.

• the section called “Apache
Airflow deprecated
versions”

July 31, 2023

New topics and use cases Amazon MWAA supports
minor version upgrades.
This updates includes the
following new topic that
describes how to upgrade the
environment and make sure
your workflow resources are
compatible with the version
of Apache Airflow you are
upgrading to:

• the section called
“Changing the version”

June 5, 2023

525

Amazon Managed Workflows for Apache Airflow User Guide

Updated topic Updated customer managed
IAM policies that grant a
user full console and API
access to Amazon MWAA. The
update describes why you
must provide permission for
iam:PassRole in order
to allow a user to pass roles
to Amazon MWAA. Amazon
MWAA uses these permissions
to perform actions on a user's
behalf.

• the section called “Accessin
g an Amazon MWAA
environment”

April 12, 2023

New guidance Updated topic on configuri
ng AWS Secrets Manager
as a backend for Amazon
MWAA to provide guidance on
using lookup patterns. Using
lookup patterns narrow the
secrets that Apache Airflow
searches for and reduce the
number of API calls Amazon
MWAA makes to Secrets
Manager to retrieve connectio
ns and variables. This reduces
the costs associated with
using Secrets Manager as a
backend.

• Create the Secrets Manager
backend as an Apache
Airflow configuration
option

April 12, 2023

526

Amazon Managed Workflows for Apache Airflow User Guide

New Apache Airflow version Amazon MWAA now supports
Apache Airflow v2.5.1. This
update includes informati
on on updated provider
packages, and details about
using Apache Airflow v2.5.1
on Amazon MWAA,

• Versions

• the section called “Provider
packages for Apache
Airflow v2.5.1 connections”

April 11, 2023

New topics and use cases Added a new topic on using a
startup script with an Amazon
MWAA environment. This
topic descibes configuring a
startup script for an existing
environment, using it to
install Linux runtimes, and
setting environment variables
.

• the section called “Using a
startup script”

April 3, 2023

Updated section on private
web server access

Updated the following topic
on private web server access.
The update clarifies that, in
environments with private
web server access, you must
use a Python wheel archive
(.whl) to package, and install,
dependencies.

• Private web server access
mode

February 24, 2023

527

Amazon Managed Workflows for Apache Airflow User Guide

Added information on
deprecated Apache Airflow
versions

Updated the Versions topic
with new information on how
Amazon MWAA managed
deprecating Apache Airflow
versions. Removed a section
about upgrading to newer
version of Apache Airflow,
and a section that described
changes between Apach
e Airflow v1 and Apache
Airflow v2. For more informati
on about migrating to a
newversion of Apache Airflow,
refer to the Amazon MWAA
Migration Guide.

• the section called “Apache
Airflow deprecated
versions”

• the section called “Apache
Airflow version support and
FAQ”

February 17, 2023

528

https://docs.aws.amazon.com/mwaa/latest/userguide/airflow-versions.html
https://docs.aws.amazon.com/mwaa/latest/migrationguide/index.html
https://docs.aws.amazon.com/mwaa/latest/migrationguide/index.html

Amazon Managed Workflows for Apache Airflow User Guide

Fixes in Amazon MWAA
container metrics

Updated the container
metrics topic, and removed
a set of erroneous metrics
that did not exist under
the Cluster dimension.
Added an additional section
that describes how you can
evaluate the number of
additional workers that an
environment is utilizing at
a given time by graphing
the CPUUtilization or
the MemoryUtilization
metric for the Additiona
lWorker component, and
setting the statistics type to
Sample Count.

• the section called “Evaluati
ng the number of additiona
l worker and web server
containers”

January 20, 2023

529

Amazon Managed Workflows for Apache Airflow User Guide

New Apache Airflow version Amazon MWAA now supports
Apache Airflow v2.4.3. This
update includes informati
on on updated provider
packages, details about
using Apache Airflow v2.4.3
on Amazon MWAA, and
consolidated information
about which features are
supported in each Apache
Airflow version on Amazon
MWAA.

• Versions

• the section called “Provider
packages for Apache
Airflow v2.4.3 connections”

January 5, 2023

Updated topic on service-l
inked role

Updated information about
the service-linked role that
Amazon MWAA uses to create
and manage AWS resources
on your behalf, including
information about how you
can delete the service-linked
role when you no longer need
it. This includes an updated
service-linked role permissio
n policy that allows Amazon
MWAA to publishe additiona
l CloudWatch metrics under
the AWS/MWAA namespace.

• the section called “Service-
linked role”

November 18, 2022

530

Amazon Managed Workflows for Apache Airflow User Guide

New topic on service metrics Added new topic that
describes service metrics
emitted by Amazon MWAA
under the AWS/MWAA
namespace. These include
 Amazon ECS cluster metrics
schedulers, workers, and web
servers, Amazon SQS metrics
for the queues that allow
Amazon MWAA to decouple
schedulers and workers, as
well as Amazon RDS metrics
for the metadata database.

• the section called “Containe
r, queue, and database
metrics”

November 18, 2022

New topic Added new guidance on
modifying a constraints file
to specify new versions of
provider packages to use
with your Amazon MWAA
environment.

• the section called “Specifyi
ng newer provider
packages”

November 18, 2022

Updated FAQ entry Updated information related
to Amazon MWAA's HIPAA
eligibility.

• the section called “HIPAA
compliance”

November 15, 2022

531

Amazon Managed Workflows for Apache Airflow User Guide

New topic Added new topic on using
aws:SourceArn and
aws:SourceAccount
global condition context
keys in an Amazon MWAA
execution role trust policy, in
order to prevent cross-service
confused deputy.

• the section called “Cross-
service confused deputy
prevention”

October 21, 2022

New sample code Added updated instructi
ons and DAG code example
that writes custom OS-level
metrics to CloudWatch.

• the section called “Using
a DAG to write custom
metrics”

September 13, 2022

New sample code Added updated instructi
ons and a new AWS Lambda
Python code example that
retrieves an Apache Airflow
CLI token, then invokes a DAG
in a specified Amazon MWAA
environment.

• the section called “Invoking
DAGs with Lambda”

September 12, 2022

532

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Managed Workflows for Apache Airflow User Guide

New architectural diagrams Added new architectural
diagrams that demonstrate
an Amazon MWAA environme
nt with a public and private
web server.

• the section called “Apache
Airflow access modes”

September 12, 2022

New sample code Added updated instructi
ons and a new DAG code
example that retrieves an
Apache Airflow CLI token,
then invokes another DAG in
a different Amazon MWAA
environment.

• the section called
“Invoking DAGs in different
 environments”

August 16, 2022

New sample code Added updated instructions
and new DAG that queries
an environment's Aurora
PostgreSQL for metadata
information, writes the result
to CSV files and stores the
files in Amazon S3.

• the section called “Exportin
g environment metadata to
Amazon S3”

August 12, 2022

533

Amazon Managed Workflows for Apache Airflow User Guide

New sample code Added updated instructions
and new DAG that refreshes
an AWS CodeArtifact token at
runtime and stores the result
in Amazon S3.

• the section called “Refreshi
ng an AWS CodeArtifact
token at runtime”

August 3, 2022

New sample code Added updated instructions
and DAG code sample for
using the ECSOperator in
Amazon MWAA.

• the section called “Using
the ECSOperator ”

July 26, 2022

New sample code Added updated instructions
and DAG code sample for
using the SSHOperator in
Amazon MWAA.

• the section called “Using
the SSHOperator ”

July 15, 2022

New sample code Added new instructions and
DAG code sample for using
dbt Postgres with Amazon
MWAA.

• the section called “Using
dbt with Amazon MWAA”

June 17, 2022

534

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added new instructions and
DAG code sample for installin
g dependencies using Python
wheel files for Amazon MWAA
environments with public and
private access.

• Managing dependencies
using Python wheels

May 13, 2022

New topics and use cases Added new guidance on
choosing which Apache
Airflow metrics Amazon
MWAA sends to CloudWatch.

• Choosing which Apache
Airflow metrics are
reported

April 19, 2022

New guides Amazon MWAA offers
a migration guide for
migrating Apache Airflow
workflows from self-mana
ged deployments, as well
as existing Amazon MWAA
environments.

• Amazon MWAA Migration
Guide

March 7, 2022

535

https://docs.aws.amazon.com/mwaa/latest/userguide/access-metrics-cw-202.html#choosing-metrics
https://docs.aws.amazon.com/mwaa/latest/userguide/access-metrics-cw-202.html#choosing-metrics
https://docs.aws.amazon.com/mwaa/latest/userguide/access-metrics-cw-202.html#choosing-metrics
https://docs.aws.amazon.com/mwaa/latest/migrationguide/
https://docs.aws.amazon.com/mwaa/latest/migrationguide/

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added new security best
practice for working with
Apache Airflow, including
a solution for detecting
changes to the Apache
Airflow user privileges.

• the section called “Security
best practices in Apache
Airflow”

February 18, 2022

New sample code Added new code sample for
creating timezone-aware
DAGs using Pendulum,
and clarified how to use a
custom plugin to change the
timezone in which Apache
Airflow logs are created.

• the section called
“Changing a DAG's
timezone”

February 11, 2022

536

https://pypi.org/project/pendulum/

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow v2.2.2 launch Amazon Managed Workflows
for Apache Airflow now
supports Apache Airflow
v2.2.2. Beginning with v2.2,
Amazon MWAA will install
Python packages and custom
plugins directly on the Apache
Airflow web server allowing
you greater flexibility to
manage your environments.
For more information, refer to
the following.

• Apache Airflow versions
on Amazon Managed
Workflows for Apache
Airflow.

• the section called “Provider
packages for Apache
Airflow v2.2.2 connections”.

• Apache Airflow v2.2.2
changelog on the Apache
Airflow documentation
website.

January 27, 2022

537

https://airflow.apache.org/docs/apache-airflow/stable/changelog.html#airflow-2-2-2-2021-11-15
https://airflow.apache.org/docs/apache-airflow/stable/changelog.html#airflow-2-2-2-2021-11-15

Amazon Managed Workflows for Apache Airflow User Guide

New tutorials Added a new tutorial that
demonstrates creating a new
custom Apache Airflow role,
and assigning the role to an
Apache Airflow user mapped
from IAM in order to limit the
user's access to a subset of
specified DAGs.

• the section called “Tutorial:
Restricting users to a subset
of DAGs”

December 8, 2021

Fixes Fixed a best practices
recommendation for setting
the value of scheduler
.min_file_process_
interval in order to
optimize CPU usage. Added
an IAM policy example
granting access to Secrets
Manager resources in the
execution role. Added
troubleshooting topic on
using Secrets Manager
condition keys.

• Performance tuning how
the scheduler parses DAGs

• Provide Amazon MWAA
with permission to access
Secrets Manager secret keys

• Configuring condition
keys in the Amazon MWAA
execution role for Secrets
Manager

November 22, 2021

538

Amazon Managed Workflows for Apache Airflow User Guide

New sample code Added the following new
code sample for modifying
the time zone in which DAGs
are processed using a custom
plugin, and new troublesh
ooting topic for invoking
the dags backfill Apache
Airflow CLI command from
within a bash operator.

• the section called
“Changing a DAG's
timezone”

• Backfill CLI command using
a bash operator

November 1, 2021

Fixes Fixed issues in the Amazon
ECS operator code sample,
and clarified the additional
permissions required in the
Amazon MWAA execution role
to allow the environment to
access Amazon ECS task log
group in CloudWatch Logs.

• Amazon ECS operator
permissions.

October 26, 2021

539

Amazon Managed Workflows for Apache Airflow User Guide

New sample code Added new code sample that
queries the Aurora PostgreSQ
L database for information
relevant to DAG runs and
writes the results to CSV file
stored on Amazon S3.

• the section called “Exportin
g environment metadata to
Amazon S3”.

October 1, 2021

Fixes Corrected information
about how Amazon MWAA
automatically syncs new and
changed objects from your
target Amazon S3 bucket to
your schedulers and workers.

• How the DAG folder works.

October 1, 2021

Now supported Amazon MWAA now supports
additional provider packages
for Apache Airflow 2.0+. To
learn more about supported
packages, refer to the
following:

• the section called “Provider
packages for Apache
Airflow v2.0.2 connections”.

September 24, 2021

540

Amazon Managed Workflows for Apache Airflow User Guide

New commands and
procedures

Added additional guidance
and AWS CLI command
examples for creating an
Amazon S3 gateway endpoint
when using an Amazon VPC
without internet access:

• Creating an Amazon VPC
network without Internet
access.

September 24, 2021

New topics and use cases Added the following changes:

• Added a new code sample
that uses an Amazon Elastic
Container Service operator
in the section called “Using
the ECSOperator ”.

• Added new troublesh
ooting topics for issues in
configuring Apache Airflow
plugins in the section called
“Plugins”.

September 19, 2021

541

Amazon Managed Workflows for Apache Airflow User Guide

New supported region Amazon MWAA is now
available in the following
regions:

• Asia Pacific (Mumbai) - ap-
south-1

• Asia Pacific (Seoul) - ap-
northeast-2

• Europe (London) - eu-
west-2

• Europe (Paris) - eu-west-3

• Canada (Central) - ca-centra
l-1

• South America (São Paulo) -
sa-east-1

For more information about
region availability and service
endpoints, refer to the
following:

• Amazon MWAA endpoints
and quotas in the AWS
General Reference.

August 31, 2021

New topics and use cases Added the following changes:

• Updated the sample
policies to allow Amazon
MWAA to fetch account-l
evel Amazon S3 settings
(s3:GetAccountPubli
cAccessBlock) in
Amazon MWAA execution
role.

August 27, 2021

542

https://docs.aws.amazon.com/general/latest/gr/mwaa.html
https://docs.aws.amazon.com/general/latest/gr/mwaa.html

Amazon Managed Workflows for Apache Airflow User Guide

Fixes Added the following changes:

• Fixed the AWS CloudForm
ation template to use a
self-referencing inbound
rule for the security group
in Create the VPC network.

• Fixed the AWS CloudForm
ation template to use a
self-referencing inbound
rule for the security group
in Quick start tutorial
for Amazon Managed
Workflows for Apache
Airflow.

August 27, 2021

New topics and use cases Added the following changes:

• Added DAG decorator to
the list of what's supported
for Apache Airflow v2.0.2
Apache Airflow versions
on Amazon Managed
Workflows for Apache
Airflow.

August 20, 2021

543

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added celery.sy
nc_parallelism use
case to Performance tuning
for Apache Airflow on
Amazon MWAA.

• Added service endpoints to
quotas page and changed
name to Amazon Managed
Workflows for Apache
Airflow service endpoints
and quotas.

• Clarified networking
prerequisites based on user
feedback at Get started
with Amazon Managed
Workflows for Apache
Airflow.

• Moved dags list-runs
 and dags next-exec
ution to unsupported
Airflow CLI commands
in Apache Airflow CLI
command reference.

August 13, 2021

544

Amazon Managed Workflows for Apache Airflow User Guide

New sample code Added the following changes:

• Added bash example to set,
get or delete an Apache
Airflow v2.0.2 variable
in Apache Airflow CLI
command reference.

• Added Apache Airflow
v2.0.2 dependencies and
Airflow connection example
to Using Amazon MWAA
with Amazon RDS for
Microsoft SQL Server.

August 13, 2021

Fixes Added the following changes:

• Fixed the Python code
sample based on user
feedback at Creating an
SSH connection using the
SSHOperator .

August 13, 2021

545

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Moved variables set
to supported Airflow CLI
commands in Apache
Airflow CLI command
reference.

• Added the summary of
What's changed in v2.0.2
from the Airflow versions
page to Installing Python
dependencies based on user
feedback.

• Added the summary of
What's changed in v2.0.2
from the Airflow versions
page to Apache Airflow CLI
command reference based
on user feedback.

• Added the summary of
What's changed in v2.0.2
from the Airflow versions
page to Overview of
connection types based on
user feedback.

• Added the summary of
What's changed in v2.0.2
from the Airflow versions
page to Installing custom
plugins based on user
feedback.

• Added the summary
of What's changed in
v2.0.2 from the Airflow
versions page to Adding or

August 6, 2021

546

Amazon Managed Workflows for Apache Airflow User Guide

updating DAGs based on
user feedback.

New sample code Added the following changes:

• Added Apache Airflow
v2.0.2 sample code to Using
a DAG to import variables in
the CLI.

• Added Apache Airflow
v2.0.2 sample code to
Invoking DAGs with a
Lambda function.

August 6, 2021

New topics and use cases Added the following changes:

• Added troubleshooting
topic for 'I can't see
my connection in the
Airflow UI' at Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added a list of Amazon
VPCs Amazon MWAA
supports to About
networking on Amazon
MWAA.

July 29, 2021

547

Amazon Managed Workflows for Apache Airflow User Guide

Fixes Added the following changes:

• Fixed the Python code
sample based on user
feedback to print the web
login token at Create a
Apache Airflow web server
access token.

• Fixed the Snowflake
connection topic based
on user feedback to use
a single quote for the
warehouse parameter at
Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

July 29, 2021

Removed or moved topics Added the following changes:

• Restructed the existing
page to include all
monitoring and metrics
documentation pages in
Monitoring and metrics
for Amazon Managed
Workflows for Apache
Airflow.

• Moved Apache Airflow
v2 environment metrics
in CloudWatch to the
monitoring and metrics
navigation menu.

July 23, 2021

548

Amazon Managed Workflows for Apache Airflow User Guide

New guides Added the following changes:

• Created Apache Airflow
provider packages installed
on Amazon MWAA
environments.

• Created Monitoring
overview on Amazon
MWAA.

• Created Viewing audit logs
in AWS CloudTrail.

• Created Viewing Airflow
logs in Amazon CloudWatc
h.

July 23, 2021

Fixes Added the following changes:

• Fixed the Python code
sample based on user
feedback to generate an
Airflow connection string
in the correct sequence and
added the port parameter
in Configuring an Apache
Airflow connection using
a AWS Secrets Manager
secret.

• Added a step to install
an unzip package locally
based on user feedback in
Creating a custom plugin
with Oracle.

July 23, 2021

549

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added topic for AWS DMS
Operators at Amazon
MWAA frequently asked
questions.

• Added troubleshooting
topic for a remote
logs error to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Moved variables set
to unsupported Airflow
CLI commands in Apache
Airflow CLI command
reference.

July 16, 2021

550

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added sequential steps
to create a requireme
nts.txt file based on user
feedback at Installing
Python dependencies.

• Added sequential steps
to create a plugins.zip file
based on user feedback at
Installing custom plugins.

• Added cross-reference
links throughout the user
guide to the API reference
guide at Amazon Managed
Workflows for Apache
Airflow API Reference
guide.

• Added topic for why plugins
aren't shown in the Airflow
2.0 Admin > Plugins menu
at Amazon MWAA frequentl
y asked questions.

July 9, 2021

New guides Added the following changes:

• Created Deleting files on
Amazon S3.

July 9, 2021

551

https://docs.aws.amazon.com/mwaa/latest/API/Welcome.html
https://docs.aws.amazon.com/mwaa/latest/API/Welcome.html
https://docs.aws.amazon.com/mwaa/latest/API/Welcome.html
https://docs.aws.amazon.com/mwaa/latest/API/Welcome.html

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added a list of supported
values at Using customer
managed keys for encryptio
n.

• Updated and clarified
the example for a private
repo URL based on user
feedback in Managing
Python dependencies in
requirements.txt.

July 2, 2021

New sample code Added the following changes:

• Added Apache Airflow
v1.10.12 sample code to
use a private key in AWS
Secrets Manager for an SSH
connection at Creating an
SSH connection using the
SSHOperator .

July 2, 2021

New topics and use cases Added the following changes:

• Added StartedTaskInstanc
es and FinishedTaskInstan
ces metrics to Apache
Airflow v2 environment
metrics in CloudWatch.

June 25, 2021

New sample code Added the following changes:

• Added Apache Airflow
v2.0.2 sample code at
Using Amazon MWAA with
Amazon EKS.

June 25, 2021

552

Amazon Managed Workflows for Apache Airflow User Guide

New guides Added the following changes:

• Created Performance
tuning for Apache Airflow
on Amazon MWAA.

June 25, 2021

553

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added connections
add and connections
delete to the supported
 Apache Airflow v2.0.2
CLI commands at Apache
Airflow CLI command
reference.

• Added that the latest
version available in AWS
CloudFormation is Apache
Airflow v2.0.2 at Quick
start tutorial for Amazon
Managed Workflows for
Apache Airflow.

• Added question for storing
temporary data on Apache
Airflow Workers to Amazon
MWAA frequently asked
questions.

• Added topic for the
'Executor reports task
instance %s finished' error
to Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

• Added topic for the 'server
closed the connectio
n unexpectedly' log to
Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

• Added example to run
CLI commands on an SSH

June 18, 2021

554

Amazon Managed Workflows for Apache Airflow User Guide

tunnel to a bastion host to
Creating an Apache Airflow
CLI token.

• Added topic for randomly-
generated user names to
Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

• Added topic for a 503
error when running a DAG
in the CLI to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added topic for custom
plugins in Apache Airflow
v2.0.2 which need an
Airflow configuration
option of core.lazy
_load_plugins :
False to load plugins at
the start of each Airflow
process to override the
version's default setting
to Using Apache Airflow
configuration options on
Amazon MWAA.

• Added Airflow configura
tion options step for
Apache Airflow v2.0.2
plugins sample code at
Creating a custom plugin
with Apache Hive and
Hadoop.

555

Amazon Managed Workflows for Apache Airflow User Guide

• Added Airflow configura
tion options step for
Apache Airflow v2.0.2
plugins sample code at
Creating a custom plugin
that generates runtime
environment variables.

• Added Airflow configura
tion options step for
Apache Airflow v2.0.2
plugins sample code
at Creating a custom
plugin for Apache Airflow
PythonVirtualenvOperator.

• Added Airflow configura
tion options step for
Apache Airflow v2.0.2
plugins sample code at
Creating a custom plugin
with Oracle.

New sample code Added the following changes:

• Added sample code
for an Apache Airflow
Snowflake connection at
Using a secret key in AWS
Secrets Manager for an
Apache Airflow Snowflake
connection.

June 18, 2021

556

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added server-side encryptio
n guidance to Create an
Amazon S3 bucket for
Amazon MWAA.

• Added the secrets backend
for Apache Airflow v2.0.2
to Configuring an Apache
Airflow connection using
a AWS Secrets Manager
secret.

• Added question for Apache
Airflow Workers quota
increase requests to
Amazon MWAA frequently
asked questions.

• Added question for
which metrics are used to
determine whether to scale
Apache Airflow Workers to
Amazon MWAA frequently
asked questions.

• Added question for
creating custom metrics
in CloudWatch to Amazon
MWAA frequently asked
questions.

• Added steps to enable
private IP addresses for an
Amazon S3 VPC interface
endpoint for a VPC with
private routing in Creating
the required VPC service

June 2, 2021

557

Amazon Managed Workflows for Apache Airflow User Guide

endpoints in an Amazon
VPC with private routing.

• Added an option to setup
an SSH Tunnel using
local port forwarding
in Tutorial: Configuring
private network access
using a Linux Bastion Host.

New sample code Added the following changes:

• Added sample code for
a DAG that queries the
Amazon Aurora PostgreSQ
L metadata database and
publishes custom metrics
to Amazon CloudWatc
h at Using a DAG to
write custom metrics in
CloudWatch.

June 2, 2021

New guides Added the following changes:

• Created a guide on how to
use connection templates
interchangeably in the
Apache Airflow UI in
Overview of connection
types.

June 2, 2021

558

Amazon Managed Workflows for Apache Airflow User Guide

Fixes Added the following changes:

• Added Apache Airflow
VPC endpoints to the AWS
CloudFormation template
in Option three: Creating
a VPC network without
Internet access to Create
the VPC network.

June 2, 2021

559

Amazon Managed Workflows for Apache Airflow User Guide

Apache Airflow v2.0.2 launch General availability launch of
Apache Airflow v2.0.2.

• Created Apache Airflow
versions on Amazon
Managed Workflows for
Apache Airflow.

• Created Apache Airflow
v2 environment metrics in
CloudWatch.

• Added version-specific links
for Apache Airflow v2.0.2
to Using Apache Airflow
configuration options on
Amazon MWAA.

• Added Apache Airflow
v2.0.2 version-specific
guidance to Installing
Python dependencies.

• Added Apache Airflow
v2.0.2 version-specific
guidance to Managing
Python dependencies in
requirements.txt.

• Added Apache Airflow
v2.0.2 sample plugins to
Installing custom plugins.

• Added Apache Airflow
v2.0.2 sample code
to Aurora PostgreSQL
database cleanup on an
Amazon MWAA environme
nt.

• Added Apache Airflow
v2.0.2 sample code to Using

May 26, 2021

560

Amazon Managed Workflows for Apache Airflow User Guide

a secret key in AWS Secrets
Manager for an Apache
Airflow connection.

• Added Apache Airflow
v2.0.2 sample code
to Creating a custom
plugin for Apache Airflow
PythonVirtualenvOperator.

• Added Apache Airflow
v2.0.2 commands to
Apache Airflow CLI
command reference.

• Added Apache Airflow
v2.0.2 scripts to Creating an
Apache Airflow CLI token.

• Added a note that Amazon
MWAA uses the latest
Apache Airflow version
by default to Create an
Amazon MWAA environme
nt.

New topics and use cases Added the following changes:

• Added guidance to
troubleshooting Airflow
tasks that are stuck or
not running to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

May 14, 2021

561

Amazon Managed Workflows for Apache Airflow User Guide

Fixes Added the following changes:

• We've updated the sample
plugins code to use the
latest Java version in
Creating a custom plugin
with Apache Hive and
Hadoop. Previously, it was
os.environ["JAVA_H
OME"]="/usr/lib/jv
m/jre-1.8.0-openjd
k-1.8.0.272.b10-1.
amzn2.0.1.x86_64" .

May 12, 2021

Removed or moved topics Added the following changes:

• Moved topics in Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow to new pages by
category.

May 10, 2021

New topics and use cases Added the following changes:

• Added Amazon S3 bucket
overview to Working with
DAGs on Amazon MWAA.

May 10, 2021

562

Amazon Managed Workflows for Apache Airflow User Guide

Removed or moved topics Added the following changes:

• Moved Accessing Apache
Airflow to the top-level
navigation, and added
pages for Create a Apache
Airflow web server access
token, Creating an Apache
Airflow CLI token, and
Apache Airflow CLI
command reference.

May 7, 2021

New topics and use cases Added the following changes:

• Added version-specific
links to the Apache Airflow
reference guide for all
supported and unsupport
ed Airflow CLI commands
in Apache Airflow CLI
command reference.

• Added version-specific
links to the Apache Airflow
reference guide for all
configuration options
in Using Apache Airflow
configuration options on
Amazon MWAA.

• Added the Amazon MWAA
CLI utility to Managing
Python dependencies in
requirements.txt.

May 7, 2021

563

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added flat and nested
examples for how to
structure a plugins.zip in
Installing custom plugins.

• Added the Amazon
MWAA CLI utility to the
Adding or updating DAGs,
Installing custom plugins,
and Installing Python
dependencies pages.

• Restructured content into
an overview, upload to
Amazon S3, and installing
on Amazon MWAA sections
based on user feedback in
Installing custom plugins,
and Installing Python
dependencies pages.

• Added an example use
case to create and attach
required VPC endpoints to
an existing Amazon VPC
without Internet access
in About networking on
Amazon MWAA.

April 30, 2021

564

Amazon Managed Workflows for Apache Airflow User Guide

New sample code Added the following changes:

• Added sample code that
uses a secret key in Secrets
Manager for an Apache
Airflow variable in Using a
secret key in AWS Secrets
Manager for an Apache
Airflow variable.

April 30, 2021

New guides Added the following changes:

• Created Creating the
required VPC service
endpoints in an Amazon
VPC with private routing.

April 30, 2021

Fixes Added the following changes:

• Oops! We've updated
core.default_ui_ti
mezone to webserver
.default_ui_timezo
ne in Using Apache
Airflow configuration
options on Amazon MWAA.

April 30, 2021

565

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added Windows (PuTTY)
steps for SSH tunnel to
Tutorial: Configuring
private network access
using a Linux Bastion Host.

• Added topic for apache-
airflow-providers-
amazon , which is only
compatible with Apache
Airflow 2.0 to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

April 23, 2021

New sample code Added the following changes:

• Added sample code that
uses a secret key in Secrets
Manager for an Apache
Airflow connection in Using
a secret key in AWS Secrets
Manager for an Apache
Airflow connection.

April 23, 2021

New guides Added the following changes:

• Created About networking
on Amazon MWAA.

• Created Security in your
VPC on Amazon MWAA.

• Created Managing access
to service-specific Amazon
VPC endpoints on Amazon
MWAA.

April 23, 2021

566

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added a new AWS
CloudFormation template
to create an Amazon VPC
network without Internet
access in Create the VPC
network.

• Added a new tutorial to
create an AWS Client VPN
in Tutorial: Configuring
private network access
using an AWS Client VPN.

• Changed the name of the
Networking access page
to Apache Airflow access
modes based on user
feedback, and streamlin
ed docs in Apache Airflow
access modes.

• Streamlined docs to include
only Amazon VPC getting
started information and
templates based on user
feedback in Create the VPC
network.

• Added BigQuery operator
workaround to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added an Apache Airflow
v1.10.12 constraints file
best practice to Installing
Python dependencies.

April 16, 2021

567

Amazon Managed Workflows for Apache Airflow User Guide

New sample code Added the following changes:

• Added sample code to
create a custom plugin
using Oracle in Creating a
custom plugin with Oracle.

• Added sample code to
create a custom plugin
that generates runtime
environment variables in
Creating a custom plugin
that generates runtime
environment variables.

•

April 16, 2021

568

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added topic for the self-
referencing rule requireme
nt on a VPC security group
to Amazon MWAA frequentl
y asked questions.

• Added custom plugins
directory and size limits to
Installing custom plugins.

• Added requirements
directory and size limits
to Installing Python
dependencies.

• Clarified the Apache Airflow
configuration options for
foo.user and foo.pass
in Managing Python
dependencies in requireme
nts.txt.

• Added configuration
options overview to Using
Apache Airflow configura
tion options on Amazon
MWAA.

April 9, 2021

569

Amazon Managed Workflows for Apache Airflow User Guide

New sample code Added the following changes:

• Added sample code to
create a custom plugin
using PythonVirtualenvOp
erator in Creating a custom
plugin for Apache Airflow
PythonVirtualenvOperator.

• Added sample code to
create a custom plugin with
Apache Hive and Hadoop
in Creating a custom plugin
with Apache Hive and
Hadoop.

April 9, 2021

Fixes Added the following changes:

• Oops! We've updated the
format for a requireme
nts.txt, and added an
example that's compatibl
e with Apache Airflow
v1.10.12 in Installing
Python dependencies.

March 31, 2021

570

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added workaround to
removing a requireme
nts.txt or plugins.zip to
Amazon MWAA frequently
asked questions.

• Added a bash workaround
for SSH on an environment
to Amazon MWAA frequentl
y asked questions.

• Added topic for CloudTrai
l ResourceAlreadyExi
stsException error to
Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

March 26, 2021

571

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added list of AWS services
used to Amazon MWAA
execution role.

• Added list of AWS services
used to Service-linked role
for Amazon MWAA.

• Added question for Python
3.7 version for Amazon
MWAA to Amazon MWAA
frequently asked questions.

• Added question for
PythonVirtualenvOperator
to Amazon MWAA frequentl
y asked questions.

• Added the troubleshooting
script as next steps for all
topics related to VPC and
environment configuration
at Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

• Clarified the docs that a
linux bastion must be in
the same Region as an
environment at Tutorial:
Configuring private
network access using a
Linux Bastion Host.

March 19, 2021

572

Amazon Managed Workflows for Apache Airflow User Guide

New guides Added the following changes:

• Created Apache Airflow
connections guide for
AWS Secrets Manager at
Configuring an Apache
Airflow connection using
a AWS Secrets Manager
secret.

• Created quick start tutorial
using a AWS CloudForm
ation template to create
the Amazon VPC infrastru
cture, Amazon S3 bucket,
and Amazon MWAA
environment at Quick
start tutorial for Amazon
Managed Workflows for
Apache Airflow.

March 19, 2021

New topics and use cases Added the following changes:

• Added the create Amazon
S3 bucket troublesh
ooting topic Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added steps to create and
attach a JSON policy to
Amazon MWAA execution
role.

March 12, 2021

573

Amazon Managed Workflows for Apache Airflow User Guide

New sample code Added the following changes:

• Added sample code
to add a configuration
when triggering a DAG to
Accessing Apache Airflow.

March 12, 2021

New guides Added the following changes:

• Created best practices
guide at Managing Python
dependencies in requireme
nts.txt.

March 12, 2021

New topics and use cases Added the following changes:

• Added Google/GCP/
BigQuery troublesh
ooting topic to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added Cython troublesh
ooting topic to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added MySQL troublesh
ooting topic to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added 5xx web server error
troubleshooting topic to
Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

March 5, 2021

574

Amazon Managed Workflows for Apache Airflow User Guide

Now supported Added the following changes:

• Previously, backend_k
wargs was not supported
for AWS Secrets Manager
and you needed a
workaround to override the
Secrets Manager function
call. Now, backend_k
wargs is supported.
Refer to the AWS Secrets
Manager troublesh
ooting topic in Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

March 4, 2021

Fixes Added the following changes:

• Oops! We've updated the
size of each environment
class to reflect the actual
GB in Configuring the
Amazon MWAA environme
nt class.

March 4, 2021

575

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added private network
access using a VPC
endpoint policy to Apache
Airflow access modes.

• Added additional checks for
the creating an environme
nt troubleshooting topic to
Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

• Added steps to view logs
for requirements.txt
to Installing Python
dependencies.

February 26, 2021

New topics and use cases Added the following changes:

• Added Apache Hive use
case to Installing Python
dependencies.

• Clarified the docs that the
required dependencies for
an Apache Airflow package
needs to be included in
the requirements.txt
file at Installing Python
dependencies.

• Added Updating requireme
nts.txt troubleshooting
topic to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

February 25, 2021

576

Amazon Managed Workflows for Apache Airflow User Guide

New tutorials Added the following changes:

• Added private network
tutorial to Tutorial:
Configuring private
network access using a
Linux Bastion Host.

February 22, 2021

New topics and use cases Added the following changes:

• Added private and public
network configurations
to Apache Airflow access
modes.

• Added development
group use case and user
scenarios to Amazon MWAA
execution role.

February 22, 2021

New sample code Added the following changes:

• Added sample Python
scripts for web login token
and CLI token to Accessing
Apache Airflow.

• Added sample code to
trigger DAG in another
environment to Code
examples for Amazon
Managed Workflows for
Apache Airflow.

• Added sample code to
trigger DAG using a Lambda
function to Invoking DAGs
with a Lambda function.

February 22, 2021

577

Amazon Managed Workflows for Apache Airflow User Guide

New commands and
procedures

Added the following changes:

• Added step by step
procedures to all scripts at
Accessing Apache Airflow.

February 22, 2021

New sample code Added the following changes:

• Updated curl example
for web login token at
Accessing Apache Airflow.

• Added sample code to
connect to an Amazon RDS
Microsoft SQL Server to
Using Amazon MWAA with
Amazon RDS for Microsoft
SQL Server.

February 17, 2021

578

Amazon Managed Workflows for Apache Airflow User Guide

New commands and
procedures

Added the following changes:

• Added AWS CLI commands
to Working with DAGs on
Amazon MWAA pages.

• Apache Airflow doesn't
support serialized DAGs
in CLI commands. Since
the CLI runs on the web
server, which doesn't
have plugins or requireme
nts for security reasons,
any MWAA environme
nts with a plugins.z
ip or requirements.txt
will not support these
commands. Moved Apache
Airflow list_dags and
backfill commands to
unsupported commands at
Accessing Apache Airflow.

February 17, 2021

GitHub launch User guide docs are now open
source on GitHub. Choose
"Edit this page on GitHub" on
any page.

February 17, 2021

579

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added question for Step
Functions v. Amazon MWAA
use case to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added CLI access policy
to Accessing an Amazon
MWAA environment.

• Clarified the docs that any
supported Apache Airflow
configuration option can be
specified at Using Apache
Airflow configuration
options on Amazon MWAA.

• Clarified the docs that
if a Fargate container
in one availability zone
fails, MWAA switches to
the other container in a
different availability zone at
Create the VPC network.

February 12, 2021

New topics and use cases Added the following changes:

• Added Configuring the
Amazon MWAA environme
nt class.

February 5, 2021

580

Amazon Managed Workflows for Apache Airflow User Guide

Removed or moved topics Added the following changes:

• Removed requirement for
Amazon S3 bucket name
to start with airflow- at
Get started with Amazon
Managed Workflows for
Apache Airflow.

• Moved Accessing an
Amazon MWAA environme
nt and Amazon MWAA
execution role to Managing
access to an Amazon MWAA
environment.

February 4, 2021

Amazon MWAA CloudForm
ation

Update the parameters to
create an environment at
Amazon MWAA CloudForm
ation.

• Remove SubnetList.

• Remove TagList.

• Add NetworkConfiguration.

• Add TagMap.

• Add create environment
request examples.

February 4, 2021

581

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-mwaa-environment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-mwaa-environment.html

Amazon Managed Workflows for Apache Airflow User Guide

New topics and use cases Added the following changes:

• Added example email
configuration to Using
Apache Airflow configura
tion options on Amazon
MWAA.

• Added PostgresHook
troubleshooting topic to
Troubleshooting Amazon
Managed Workflows for
Apache Airflow.

• Added AWS Secrets
Manager troublesh
ooting topic to Troublesh
ooting Amazon Managed
Workflows for Apache
Airflow.

• Added high performan
ce use case to Configuri
ng Amazon MWAA worker
automatic scaling.

January 29, 2021

Amazon MWAA launch General availability launch of
Amazon Managed Workflows
for Apache Airflow.

• User guide documentation

• AWS CloudFormation
documentation

November 24, 2020

582

	Amazon Managed Workflows for Apache Airflow
	Table of Contents
	What Is Amazon Managed Workflows for Apache Airflow?
	Features
	Architecture
	Integration
	Supported versions
	What's next?

	Quick start tutorial for Amazon Managed Workflows for Apache Airflow
	In this tutorial
	Prerequisites
	Step one: Save the AWS CloudFormation template locally
	Step two: Create the stack using the AWS CLI
	Step three: Upload a DAG to Amazon S3 and run in the Apache Airflow UI
	Step four: View logs in CloudWatch Logs
	What's next?

	Get started with Amazon Managed Workflows for Apache Airflow
	Prerequisites
	About this guide
	Before you begin
	Available regions
	Create an Amazon S3 bucket for Amazon MWAA
	Before you begin
	Create the bucket
	What's next?

	Create the VPC network
	Prerequisites
	Before you begin
	Options to create the Amazon VPC network
	Option one: Creating the VPC network on the Amazon MWAA console
	Option two: Creating an Amazon VPC network with Internet access
	Option three: Creating an Amazon VPC network without Internet access

	What's next?

	Create an Amazon MWAA environment
	Before you begin
	Apache Airflow versions
	Create an environment
	Step one: Specify details
	Step two: Configure advanced settings
	Step three: Review and create

	What's next?

	Managing access to an Amazon MWAA environment
	Accessing an Amazon MWAA environment
	How it works
	Full console access policy: AmazonMWAAFullConsoleAccess
	Using an AWS owned key
	Using a customer managed key

	Full API and console access policy: AmazonMWAAFullApiAccess
	Using an AWS owned key
	Using a customer managed key

	Read-only console access policy: AmazonMWAAReadOnlyAccess
	Apache Airflow UI access policy: AmazonMWAAWebServerAccess
	Apache Airflow Rest API access policy: AmazonMWAARestAPIAccess
	Apache Airflow CLI policy: AmazonMWAAAirflowCliAccess
	Creating a JSON policy
	Example use case to attach policies to a developer group
	What's next?

	Service-linked role for Amazon MWAA
	Service-linked role permissions for Amazon MWAA
	Creating a service-linked role for Amazon MWAA
	Editing a service-linked role for Amazon MWAA
	Deleting a service-linked role for Amazon MWAA
	Supported regions for Amazon MWAA service-linked roles
	Policy updates

	Amazon MWAA execution role
	Execution role overview
	Permissions attached by default
	How to add permission to use other AWS services
	How to associate a new execution role

	Create a new role
	View and update an execution role policy
	Attach a JSON policy to use other AWS services

	Grant access to Amazon S3 bucket with account-level public access block
	Use Apache Airflow connections
	Sample JSON policies for an execution role
	Sample policy for a customer managed key
	Sample policy for an AWS owned key

	What's next?

	Cross-service confused deputy prevention
	Apache Airflow access modes
	Apache Airflow access modes
	Public network
	Private network

	Access modes overview
	Public network access mode
	Private network access mode

	Setup for private and public access modes
	Setup for public network
	Setup for private network

	Accessing the VPC endpoint for your Apache Airflow Web server (private network access)

	Accessing Apache Airflow
	Prerequisites
	Access
	AWS CLI

	Open the Apache Airflow UI
	Logging into Apache Airflow
	Create a Apache Airflow web server access token
	Prerequisites
	Access
	AWS CLI

	Using the AWS CLI
	Using a bash script
	Using a Python script
	What's next?

	Setting up a custom domain for the Apache Airflow web server
	Configure the custom domain
	Set up the networking infrastructure

	Creating an Apache Airflow CLI token
	Prerequisites
	Access
	AWS CLI

	Using the AWS CLI
	Using a curl script
	Using a bash script
	Using a Python script
	What's next?

	Using the Apache Airflow REST API
	Granting access to the Apache Airflow REST API: airflow:InvokeRestApi
	Calling the Apache Airflow REST API
	Creating a web server session token and calling the Apache Airflow REST API

	Apache Airflow CLI command reference
	Prerequisites
	Access
	AWS CLI

	What changed in v2
	Supported CLI commands
	Supported commands
	Using commands that parse DAGs

	Sample code
	Set, get or delete an Apache Airflow v2 variable
	Add a configuration when triggering a DAG
	Run CLI commands on an SSH tunnel to a bastion host
	Samples in GitHub and AWS tutorials

	Managing connections to Apache Airflow
	Overview of Apache Airflow variables and connections
	Apache Airflow provider packages installed on Amazon MWAA environments
	Provider packages for Apache Airflow v2.10.1 connections
	Provider packages for Apache Airflow v2.9.2 connections
	Provider packages for Apache Airflow v2.8.1 connections
	Provider packages for Apache Airflow v2.7.2 connections
	Provider packages for Apache Airflow v2.6.3 connections
	Provider packages for Apache Airflow v2.5.1 connections
	Provider packages for Apache Airflow v2.4.3 connections
	Provider packages for Apache Airflow v2.2.2 connections
	Provider packages for Apache Airflow v2.0.2 connections
	Specifying newer provider packages

	Overview of connection types
	Example connection URI string
	Example connection template
	Example using an HTTP connection template for a Jdbc connection

	Configuring an Apache Airflow connection using a AWS Secrets Manager secret
	Step one: Provide Amazon MWAA with permission to access Secrets Manager secret keys
	Step two: Create the Secrets Manager backend as an Apache Airflow configuration option
	Step three: Generate an Apache Airflow AWS connection URI string
	Step four: Add the variables in Secrets Manager
	Step five: Add the connection in Secrets Manager
	Sample code
	Resources
	What's next?

	Managing Amazon MWAA environments
	Configuring the Amazon MWAA environment class
	Environment capabilities
	Apache Airflow Schedulers

	Configuring Amazon MWAA worker automatic scaling
	How worker scaling works
	Using the Amazon MWAA console
	Example high performance use case
	On-premise Apache Airflow
	On an Amazon MWAA environment

	Troubleshooting tasks stuck in the running state
	What's next?

	Configuring Amazon MWAA web server automatic scaling
	How web server scaling works
	Using the Amazon MWAA console

	Using Apache Airflow configuration options on Amazon MWAA
	Prerequisites
	How it works
	Using configuration options to load plugins in Apache Airflow v2
	Configuration options overview
	Apache Airflow configuration options
	Apache Airflow reference
	Using the Amazon MWAA console

	Configuration reference
	Email configurations
	Task configurations
	Scheduler configurations
	Worker configurations
	Web server configurations
	Triggerer configurations

	Examples and sample code
	Example DAG
	Example email notification settings

	What's next?

	Update an Amazon MWAA environment
	Before you begin
	Worker replacement strategy
	Update environment resources
	Update an environment
	Step one: Specify details
	Step two: Configure advanced settings
	Step three: Review and update

	Changing the Apache Airflow version
	Upgrade or downgrade your workflow resources
	Specify the new version

	Using a startup script with Amazon MWAA
	Configure a startup script
	Install Linux runtimes using a startup script
	Set environment variables using a startup script
	Reserved environment variables
	Unreserved environment variables

	Working with DAGs on Amazon MWAA
	Amazon S3 bucket overview
	Adding or updating DAGs
	Prerequisites
	How it works
	What's changed in v2
	Testing DAGs using the Amazon MWAA CLI utility
	Uploading DAG code to Amazon S3
	Using the AWS CLI
	Using the Amazon S3 console

	Specifying the path to your DAGs folder on the Amazon MWAA console (the first time)
	Viewing changes on your Apache Airflow UI
	Logging into Apache Airflow

	What's next?

	Installing custom plugins
	Prerequisites
	How it works
	When to use the plugins
	Custom plugins overview
	Custom plugins directory and size limits

	Examples of custom plugins
	Example using a flat directory structure in plugins.zip
	Example using a nested directory structure in plugins.zip

	Creating a plugins.zip file
	Step one: Test custom plugins using the Amazon MWAA CLI utility
	Step two: Create the plugins.zip file

	Uploading plugins.zip to Amazon S3
	Using the AWS CLI
	Using the Amazon S3 console

	Installing custom plugins on your environment
	Specifying the path to plugins.zip on the Amazon MWAA console (the first time)
	Specifying the plugins.zip version on the Amazon MWAA console

	Example use cases for plugins.zip
	What's next?

	Installing Python dependencies
	Prerequisites
	How it works
	Python dependencies overview
	Python dependencies location and size limits

	Creating a requirements.txt file
	Step one: Test Python dependencies using the Amazon MWAA CLI utility
	Step two: Create the requirements.txt

	Uploading requirements.txt to Amazon S3
	Using the AWS CLI
	Using the Amazon S3 console

	Installing Python dependencies on your environment
	Specifying the path to requirements.txt on the Amazon MWAA console (the first time)
	Specifying the requirements.txt version on the Amazon MWAA console

	Viewing logs for your requirements.txt
	What's next?

	Deleting files on Amazon S3
	Prerequisites
	Versioning overview
	How it works
	Deleting a DAG on Amazon S3
	Removing a "current" requirements.txt or plugins.zip from an environment
	Deleting a "non-current" (previous) requirements.txt or plugins.zip version
	Using lifecycles to delete "non-current" (previous) versions and delete markers automatically
	Example lifecycle policy to delete requirements.txt "non-current" versions and delete markers automatically
	What's next?

	Networking
	About networking on Amazon MWAA
	Terms
	What's supported
	VPC infrastructure overview
	Public routing over the Internet
	Private routing without Internet access

	Example use cases for an Amazon VPC and Apache Airflow access mode
	Internet access is allowed - new Amazon VPC network
	Internet access is not allowed - new Amazon VPC network
	Internet access is not allowed - existing Amazon VPC network

	Security in your VPC on Amazon MWAA
	Terms
	Security overview
	Network access control lists (ACLs)
	(Recommended) Example ACLs

	VPC security groups
	(Recommended) Example all access self-referencing security group
	(Optional) Example security group that restricts inbound access to port 5432
	(Optional) Example security group that restricts inbound access to port 443

	VPC endpoint policies (private routing only)
	(Recommended) Example VPC endpoint policy to allow all access
	(Recommended) Example Amazon S3 gateway endpoint policy to allow bucket access

	Managing access to service-specific Amazon VPC endpoints on Amazon MWAA
	Pricing
	VPC endpoint overview
	Public network access mode
	Private network access mode

	Permission to use other AWS services
	Viewing VPC endpoints
	Viewing VPC endpoints on the Amazon VPC console
	Identifying the private IP addresses of your Apache Airflow Web server and its VPC endpoint

	Accessing the VPC endpoint for your Apache Airflow Web server (private network access)
	Using an AWS Client VPN
	Using a Linux Bastion Host
	Using a Load Balancer (advanced)

	Creating the required VPC service endpoints in an Amazon VPC with private routing
	Pricing
	Private network and private routing
	(Required) VPC endpoints
	Attaching the required VPC endpoints
	VPC endpoints required for AWS services
	VPC endpoints required for Apache Airflow

	(Optional) Enable private IP addresses for your Amazon S3 VPC interface endpoint
	Using Route 53
	VPCs with custom DNS

	Managing your own Amazon VPC endpoints on Amazon MWAA
	Creating an environment in a shared Amazon VPC
	Prerequisites
	Create the Amazon VPC
	Create the environment
	Create the Amazon VPC endpoints
	Shared Amazon VPC Troubleshooting

	Tutorials for Amazon Managed Workflows for Apache Airflow
	Tutorial: Configuring private network access using an AWS Client VPN
	Private network
	Use cases
	Before you begin
	Objectives
	(Optional) Step one: Identify your VPC, CIDR rules, and VPC security(s)
	Identify your CIDR rules
	Identify your VPC and security group(s)

	Step two: Create the server and client certificates
	Step three: Save the AWS CloudFormation template locally
	Step four: Create the Client VPN AWS CloudFormation stack
	Step five: Associate subnets to your Client VPN
	Step six: Add an authorization ingress rule to your Client VPN
	Step seven: Download the Client VPN endpoint configuration file
	Step eight: Connect to the AWS Client VPN
	What's next?

	Tutorial: Configuring private network access using a Linux Bastion Host
	Private network
	Use cases
	Before you begin
	Objectives
	Step one: Create the bastion instance
	Step two: Create the ssh tunnel
	Step three: Configure the bastion security group as an inbound rule
	Step four: Copy the Apache Airflow URL
	Step five: Configure proxy settings
	Option one: Setup an SSH Tunnel using local port forwarding
	Option two: Proxies via command line
	Option three: Proxies using FoxyProxy for Mozilla Firefox

	Step six: Open the Apache Airflow UI
	What's next?

	Tutorial: Restricting an Amazon MWAA user's access to a subset of DAGs
	Prerequisites
	Step one: Provide Amazon MWAA web server access to your IAM principal with the default Public Apache Airflow role.
	Step two: Create a new Apache Airflow custom role
	Step three: Assign the role you created to your Amazon MWAA user
	Next steps
	Related resources

	Tutorial: Automate managing your own environment endpoints on Amazon MWAA
	Prerequisites
	Create the Amazon VPC
	Create the Lambda function
	Create the EventBridge rule
	Create the Amazon MWAA environment

	Code examples for Amazon Managed Workflows for Apache Airflow
	Using a DAG to import variables in the CLI
	Version
	Prerequisites
	Permissions
	Dependencies
	Code sample
	What's next?

	Creating an SSH connection using the SSHOperator
	Version
	Prerequisites
	Permissions
	Requirements
	Copy your secret key to Amazon S3
	Create a new Apache Airflow connection
	Code sample

	Using a secret key in AWS Secrets Manager for an Apache Airflow Snowflake connection
	Version
	Prerequisites
	Permissions
	Requirements
	Code sample
	What's next?

	Using a DAG to write custom metrics in CloudWatch
	Version
	Prerequisites
	Permissions
	Dependencies
	Code example

	Aurora PostgreSQL database cleanup on an Amazon MWAA environment
	Version
	Prerequisites
	Dependencies
	Code sample

	Exporting environment metadata to CSV files on Amazon S3
	Version
	Prerequisites
	Permissions
	Requirements
	Code sample

	Using a secret key in AWS Secrets Manager for an Apache Airflow variable
	Version
	Prerequisites
	Permissions
	Requirements
	Code sample
	What's next?

	Using a secret key in AWS Secrets Manager for an Apache Airflow connection
	Version
	Prerequisites
	Permissions
	Requirements
	Code sample
	What's next?

	Creating a custom plugin with Oracle
	Version
	Prerequisites
	Permissions
	Requirements
	Code sample
	Create the custom plugin
	Download dependencies
	Custom plugin
	Plugins.zip

	Airflow configuration options
	What's next?

	Creating a custom plugin that generates runtime environment variables
	Version
	Prerequisites
	Permissions
	Requirements
	Custom plugin
	Plugins.zip
	Airflow configuration options
	What's next?

	Changing a DAG's timezone on Amazon MWAA
	Version
	Prerequisites
	Permissions
	Create a plugin to change the timezone in Airflow logs
	Create a plugins.zip
	Code sample
	What's next?

	Refreshing a CodeArtifact token
	Version
	Prerequisites
	Permissions
	Code sample
	What's next?

	Creating a custom plugin with Apache Hive and Hadoop
	Version
	Prerequisites
	Permissions
	Requirements
	Download dependencies
	Custom plugin
	Plugins.zip
	Code sample
	Airflow configuration options
	What's next?

	Creating a custom plugin for Apache Airflow PythonVirtualenvOperator
	Version
	Prerequisites
	Permissions
	Requirements
	Custom plugin sample code
	Plugins.zip
	Code sample
	Airflow configuration options
	What's next?

	Invoking DAGs with a Lambda function
	Version
	Prerequisites
	Permissions
	Dependencies
	Code example

	Invoking DAGs in different Amazon MWAA environments
	Version
	Prerequisites
	Permissions
	Dependencies
	Code example

	Using Amazon MWAA with Amazon RDS for Microsoft SQL Server
	Version
	Prerequisites
	Dependencies
	Apache Airflow v2 connection
	Code sample
	What's next?

	Using Amazon MWAA with Amazon EMR
	Version
	Code sample

	Using Amazon MWAA with Amazon EKS
	Version
	Prerequisites
	Create a public key for Amazon EC2
	Create the cluster
	Create a mwaa namespace
	Create a role for the mwaa namespace
	Create and attach an IAM role for the Amazon EKS cluster
	Create the requirements.txt file
	Create an identity mapping for Amazon EKS
	Create the kubeconfig
	Create a DAG
	Add the DAG and kube_config.yaml to the Amazon S3 bucket
	Enable and trigger the example

	Connecting to Amazon ECS using the ECSOperator
	Version
	Prerequisites
	Permissions
	Create an Amazon ECS cluster
	Code sample

	Using dbt with Amazon MWAA
	Version
	Prerequisites
	Dependencies
	Upload a dbt project to Amazon S3
	Use a DAG to verify dbt dependency installation
	Use a DAG to run a dbt project

	AWS blogs and tutorials

	Best practices for Amazon Managed Workflows for Apache Airflow
	Performance tuning for Apache Airflow on Amazon MWAA
	Adding an Apache Airflow configuration option
	Apache Airflow scheduler
	Parameters
	Limits

	DAG folders
	Parameters

	DAG files
	Parameters

	Tasks
	Parameters

	Managing Python dependencies in requirements.txt
	Testing DAGs using the Amazon MWAA CLI utility
	Installing Python dependencies using PyPi.org Requirements File Format
	Option one: Python dependencies from the Python Package Index
	Option two: Python wheels (.whl)
	Using the plugins.zip file on an Amazon S3 bucket
	Using a WHL file hosted on a URL
	Creating a WHL files from a DAG

	Option three: Python dependencies hosted on a private PyPi/PEP-503 Compliant Repo

	Enabling logs on the Amazon MWAA console
	Viewing logs on the CloudWatch Logs console
	Viewing errors in the Apache Airflow UI
	Logging into Apache Airflow

	Example requirements.txt scenarios

	Monitoring and metrics for Amazon Managed Workflows for Apache Airflow
	Monitoring overview on Amazon MWAA
	Amazon CloudWatch overview
	AWS CloudTrail overview

	Viewing audit logs in AWS CloudTrail
	Creating a trail in CloudTrail
	Viewing events with CloudTrail Event History
	Example trail for CreateEnvironment
	What's next?

	Viewing Airflow logs in Amazon CloudWatch
	Pricing
	Before you begin
	Log types
	Enabling Apache Airflow logs
	Viewing Apache Airflow logs
	Example scheduler logs
	What's next?

	Monitoring dashboards and alarms on Amazon MWAA
	Metrics
	Alarm states overview
	Example custom dashboards and alarms
	About these metrics
	About the dashboard
	Using AWS tutorials
	Using AWS CloudFormation

	Deleting metrics and dashboards
	What's next?

	Apache Airflow v2 environment metrics in CloudWatch
	Terms
	Dimensions
	Accessing metrics in the CloudWatch console
	Apache Airflow metrics available in CloudWatch
	Apache Airflow Counters
	Apache Airflow Gauges
	Apache Airflow Timers

	Choosing which metrics are reported
	What's next?

	Container, queue, and database metrics for Amazon MWAA
	Terms
	Dimensions
	Accessing metrics in the CloudWatch console
	List of metrics
	Cluster metrics
	Evaluating the number of additional worker and web server containers

	Database metrics
	Queue metrics
	Application Load Balancer metrics

	Security in Amazon Managed Workflows for Apache Airflow
	Data Protection in Amazon Managed Workflows for Apache Airflow
	Encryption on Amazon MWAA
	Encryption at rest
	Encryption artifacts

	Encryption in transit

	Using customer managed keys for encryption
	What's supported
	Using Grants for Encryption
	How it works

	Grant policies
	Grant 1: used to create data plane resources
	Grant 2: used for ControllerLambdaExecutionRole access
	Grant 3: used for CfnManagementLambdaExecutionRole access
	Grant 4: used for Fargate execution role to access backend secrets

	Attaching key policies to a customer managed key

	AWS Identity and Access Management
	Audience
	Authenticating With Identities
	AWS account root user
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	Allowing users to view their own permissions
	Troubleshooting Amazon Managed Workflows for Apache Airflow identity and access
	I am not authorized to perform an action in Amazon MWAA
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon MWAA resources

	How Amazon MWAA works with IAM
	Amazon MWAA identity-based policies
	Actions

	Amazon MWAA identity-based policy examples
	Policy best practices
	Using the Amazon MWAA console
	Allowing users to view their own permissions

	Compliance Validation for Amazon Managed Workflows for Apache Airflow
	Resilience in Amazon Managed Workflows for Apache Airflow
	Infrastructure Security in Amazon MWAA
	Configuration and Vulnerability Analysis in Amazon MWAA
	Security best practices on Amazon MWAA
	Security best practices in Apache Airflow
	Detecting changes to Apache Airflow user privileges
	Prerequisites

	Apache Airflow versions on Amazon Managed Workflows for Apache Airflow
	About Amazon MWAA versions
	Latest version
	Apache Airflow versions
	Apache Airflow components
	Schedulers
	Workers

	Upgrading the Apache Airflow version
	Downgrading the Apache Airflow version
	Apache Airflow deprecated versions
	Apache Airflow version support and FAQ
	Frequently asked questions

	Amazon Managed Workflows for Apache Airflow service endpoints and quotas
	Service endpoints
	Service quotas
	Increasing quotas

	Amazon MWAA frequently asked questions
	Supported versions
	What does Amazon MWAA support for Apache Airflow v2?
	Why are older versions of Apache Airflow not supported?
	What Python version should I use?

	Use cases
	Can I use Amazon MWAA with Amazon SageMaker Unified Studio?
	When should I use AWS Step Functions vs. Amazon MWAA?

	Environment specifications
	How much task storage is available to each environment?
	What is the default operating system used for Amazon MWAA environments?
	Can I use a custom image for my Amazon MWAA environment?
	Is Amazon MWAA HIPAA compliant?
	Does Amazon MWAA support Spot Instances?
	Does Amazon MWAA support a custom domain?
	Can I SSH into my environment?
	Why is a self-referencing rule required on the VPC security group?
	Can I hide environments from different groups in IAM?
	Can I store temporary data on the Apache Airflow Worker?
	Can I specify more than 25 Apache Airflow Workers?
	Does Amazon MWAA support shared Amazon VPCs or shared subnets?
	Can I create or integrate custom Amazon SQS queues to manage task execution and workflow orchestration in Apache Airflow?

	Metrics
	What metrics are used to determine whether to scale Workers?
	Can I create custom metrics in CloudWatch?

	DAGs, Operators, Connections, and other questions
	Can I use the PythonVirtualenvOperator?
	How long does it take Amazon MWAA to recognize a new DAG file?
	Why is my DAG file not picked up by Apache Airflow?
	Can I remove a plugins.zip or requirements.txt from an environment?
	Why don't I see my plugins in the Apache Airflow v2.0.2 Admin Plugins menu?
	Can I use AWS Database Migration Service (DMS) Operators?
	When I access the Airflow REST API using the AWS credentials, can I increase the throttling limit to more than 10 transactions per second (TPS)?

	Troubleshooting Amazon Managed Workflows for Apache Airflow
	Troubleshooting: DAGs, Operators, Connections, and other issues in Apache Airflow v2
	Connections
	I can't connect to Secrets Manager
	How do I configure secretsmanager:ResourceTag/<tag-key> secrets manager conditions or a resource restriction in my execution role policy?
	I can't connect to Snowflake
	I can't see my connection in the Airflow UI

	Web server
	I see a 5xx error accessing the web server
	I see a 'The scheduler does not appear to be running' error

	Tasks
	I see my tasks stuck or not completing

	CLI
	I see a '503' error when triggering a DAG in the CLI
	Why does the dags backfill Apache Airflow CLI command fail? Is there a workaround?

	Operators
	I received a PermissionError: [Errno 13] Permission denied error using the S3Transform operator

	Troubleshooting: DAGs, Operators, Connections, and other issues in Apache Airflow v1
	Updating requirements.txt
	Adding apache-airflow-providers-amazon causes my environment to fail

	Broken DAG
	I received a 'Broken DAG' error when using Amazon DynamoDB operators
	I received 'Broken DAG: No module named psycopg2' error
	I received a 'Broken DAG' error when using the Slack operators
	I received various errors installing Google/GCP/BigQuery
	I received 'Broken DAG: No module named Cython' error

	Operators
	I received an error using the BigQuery operator

	Connections
	I can't connect to Snowflake
	I can't connect to Secrets Manager
	I can't connect to my MySQL server on '<DB-identifier-name>.cluster-id.<region>.rds.amazonaws.com'

	Web server
	I'm using the BigQueryOperator and it's causing my web server to crash
	I see a 5xx error accessing the web server
	I see a 'The scheduler does not appear to be running' error

	Tasks
	I see my tasks stuck or not completing

	CLI
	I see a '503' error when triggering a DAG in the CLI

	Troubleshooting: Creating and updating an Amazon MWAA environment
	Updating requirements.txt
	I specified a new version of my requirements.txt and it's taking more than 20 minutes to update my environment

	Plugins
	Does Amazon MWAA support implementing custom UI?
	I am able to implement custom UI changes on the Amazon MWAA local runner via plugins, yet when I try to do the same on Amazon MWAA, I do not see my changes nor any errors. Why is this happening?

	Create bucket
	I can't select the option for S3 Block Public Access settings

	Create environment
	I tried to create an environment and it's stuck in the "Creating" state
	I tried to create an environment but it shows the status as "Create failed"
	I tried to select a VPC and received a "Network Failure" error
	I tried to create an environment and received a service, partition, or resource "must be passed" error
	I tried to create an environment and it shows the status as "Available" but when I try to access the Airflow UI an "Empty Reply from Server" or "502 Bad Gateway" error is shown
	I tried to create an environment and my user name is a bunch of random character names

	Update environment
	I tried changing the environment class but the update failed

	Access environment
	I can't access the Apache Airflow UI

	Troubleshooting: CloudWatch Logs and CloudTrail errors
	Logs
	I can't see my task logs, or I received a 'Reading remote log from Cloudwatch log_group' error
	Tasks are failing without any logs
	I see a 'ResourceAlreadyExistsException' error in CloudTrail
	I see an 'Invalid request' error in CloudTrail
	I see a 'Cannot locate a 64-bit Oracle Client library: "libclntsh.so: cannot open shared object file: No such file or directory' in Apache Airflow logs
	I see psycopg2 'server closed the connection unexpectedly' in my Scheduler logs
	I see 'Executor reports task instance %s finished (%s) although the task says its %s' in my DAG processing logs
	I see 'Could not read remote logs from log_group: airflow-*{*environmentName}-Task log_stream:* {*DAG_ID}/*{*TASK_ID}/*{*time}/*{*n}.log.' in my task logs

	Amazon MWAA Document History

