
Neptune Analytics User Guide

Neptune Analytics

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics: Neptune Analytics User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Neptune Analytics Neptune Analytics User Guide

Table of Contents

What is Neptune Analytics? .. 1
Features .. 1
Pricing ... 2
Getting started .. 2
Neptune Analytics vs. Neptune Database ... 2

Latest updates .. 4
Getting started .. 6

Create an empty Neptune graph .. 6
Create a Neptune graph from existing sources ... 11

Using notebooks .. 14
Sample notebooks ... 15
Create a notebook with CloudFormation .. 15
Create a notebook on the console ... 17

Create an IAM role ... 17
Create the notebook .. 19
Local hosting .. 20

Create a graph ... 21
Loading data .. 23

Data formats ... 23
Batch load .. 25

Request .. 25
Response ... 26

Bulk import .. 28
Create a graph from Amazon S3, a Neptune cluster, or a snapshot .. 29
Bulk import data into an existing Neptune Analytics graph ... 41
Checking the details and progress of an import task ... 43
Canceling an import task .. 44
Troubleshooting .. 44

Security .. 49
Data protection ... 50
Identity and access management ... 50

Audience .. 51
Authenticating with identities .. 52
Managing access using policies .. 55

iii

Neptune Analytics Neptune Analytics User Guide

Working with IAM ... 57
Identity-based policy examples ... 64
Troubleshooting .. 67

Compliance validation ... 69
Resilience .. 70
Infrastructure Security .. 71
Cross-service confused deputy prevention ... 71
Service-linked roles .. 72

For Graphs .. 73
Creating an SLR ... 75
Editing an SLR ... 75
Deleting an SLR ... 75

Queries ... 77
Query APIs ... 77

ExecuteQuery ... 78
ListQueries .. 83
GetQuery ... 85
CancelQuery ... 86
GraphSummary .. 88
IAM role mappings ... 93

Query plan cache ... 94
.. 94

Query explain .. 97
.. 97
Inputs ... 97
Outputs ... 98
Examples ... 103

Statistics ... 105
.. 105

Exceptions .. 106
.. 106

Data model .. 107
.. 107

openCypher specification compliance ... 110
.. 110

Isolation levels .. 112

iv

Neptune Analytics Neptune Analytics User Guide

Algorithms .. 114
Custom ... 117

Property graph .. 117
Path-finding algorithms ... 120

BFS algorithms .. 120
SSSP algorithms .. 121
.bfs .. 123
.bfs.parents ... 129
.bfs.levels ... 136
.sssp.bellmanFord ... 142
.sssp.bellmanFord.parents .. 148
.sssp.deltaStepping .. 155
.sssp.deltaStepping.parents ... 161
.topksssp .. 168

Centrality algorithms .. 174
.degree ... 176
.degree.mutate .. 181
.pageRank .. 184
.pageRank.mutate ... 189
.closenessCentrality .. 192
.closenessCentrality.mutate ... 198

Similarity algorithms ... 202
.neighbors.common ... 203
.neighbors.total ... 207
.jaccardSimilarity ... 211
.overlapSimilarity ... 215

Community detection ... 220
.wcc .. 222
.wcc.mutate ... 227
.labelPropagation ... 230
.labelPropagation.mutate .. 237
.scc .. 241
.scc.mutate ... 245

Vector similarity .. 248
Vector indexing .. 251

Loading vectors ... 251

v

Neptune Analytics Neptune Analytics User Guide

Loading errors ... 252
Vector algorithms ... 253

VSS algorithms ... 254
.vectors.distance ... 256
.vectors.get ... 259
.vectors.topKByEmbedding .. 279
.vectors.topKByNode .. 284
.vectors.upsert .. 289
.vectors.remove .. 309

Best practices ... 311
openCypher query best practices ... 311

Use the SET clause to remove multiple properties at once ... 311
Use parameterized queries ... 312
Use flattened maps instead of nested maps in UNWIND clause .. 313
Place more restrictive nodes on the left side in Variable-Length Path (VLP) expressions 314
Avoid redundant node label checks by using granular relationship names 315
Specify edge labels where possible .. 316
Avoid using the WITH clause when possible .. 317
Place restrictive filters as early in the query as possible .. 317
Explicitly check whether properties exist .. 318
Do not use named path (unless it is required) ... 318
Avoid COLLECT(DISTINCT()) .. 319
Prefer the properties function over individual property lookup when retrieving all
property values ... 320
Perform static computations outside of the query ... 320
Batch inputs using UNWIND instead of individual statements ... 321
Prefer using custom IDs for node ... 322
Avoid doing ~id computations in the query ... 323

Limits .. 324
Regions ... 324
Quotas .. 324
Node counting limit .. 324
No parameterized algorithm calls .. 325
Size limits on properties, labels and strings .. 325

API reference ... 326
... 326

vi

Neptune Analytics Neptune Analytics User Guide

What is Neptune Analytics?

Neptune Analytics is a memory-optimized graph database engine for analytics. With Neptune
Analytics, you can get insights and find trends by processing large amounts of graph data in
seconds. To analyze graph data quickly and easily, Neptune Analytics stores large graph datasets in
memory. It supports a library of optimized graph analytic algorithms, low-latency graph queries,
and vector search capabilities within graph traversals.

Neptune Analytics is an ideal choice for investigatory, exploratory, or data-science workloads that
require fast iteration for data, analytical and algorithmic processing, or vector search on graph
data. It complements Amazon Neptune Database, a popular managed graph database. To perform
intensive analysis, you can load the data from a Neptune Database graph or snapshot into Neptune
Analytics. You can also load graph data that's stored in Amazon S3.

Topics

• Features

• Pricing

• Getting started

• When to use Neptune Analytics and when to use Neptune Database

Features

Neptune Analytics operates in a managed environment that can load data extremely fast into
memory and run graph algorithms natively. With Neptune Analytics, you can perform in-database
analytics on large graphs.

This functionality lets you perform business intelligence and custom analytical queries, and
use pre-built graph algorithms with the openCypher language. For example, with Neptune
Analytics you can ingest text from cybersecurity reports to analyze relationships within security
environments and calculate vulnerability mitigations using graph algorithms or openCypher
queries.

Neptune Analytics offers a graph as a service experience by managing graphs instead of
infrastructure, so you can focus on queries and workflows to solve problems. It automatically
provisions the compute resources necessary to run analytics workloads based on the size of the
graph.

Features 1

https://docs.aws.amazon.com/neptune/latest/userguide/intro.html

Neptune Analytics Neptune Analytics User Guide

You can load graph data into Neptune Analytics from Amazon S3 or from a Neptune Database
endpoint. You can then run graph analytics queries using pre-built or custom graph queries.

Pricing

Neptune Analytics uses a simple, predictable pricing model based on the resources consumed.
There are no additional costs or long-term contracts.

Getting started

You can get started by creating a new Neptune Analytics graph and loading data into it in a
number of ways.

When to use Neptune Analytics and when to use Neptune
Database

Amazon Neptune makes it easy to work with graph data in the AWS Cloud. Amazon Neptune
includes both Neptune Database and Neptune Analytics.

Neptune Database is a serverless graph database designed for optimal scalability and availability. It
provides a solution for graph database workloads that need to scale to 100,000 queries per second,
Multi-AZ high availability, and multi-Region deployments. You can use Neptune Database for social
networking, fraud alerting, and Customer 360 applications.

Neptune Analytics is an analytics database engine that can quickly analyze large amounts of
graph data in memory to get insights and find trends. Neptune Analytics is a solution for quickly
analyzing existing graph databases or graph datasets stored in a data lake. It uses popular graph
analytic algorithms and low-latency analytic queries.

You can use Neptune Analytics to analyze and query graphs in data science workflows that build
targeted content recommendations, assist with fraud investigations, and detect network threats.

By providing a simple API for loading, querying, and analyzing graph data, Neptune Analytics also
removes the overhead of building and managing complex data-analytics pipelines.

Neptune Analytics makes it easy to apply powerful algorithms both to the data in your Neptune
Database and to graph data that's stored externally. Because Neptune Analytics can load a large
dataset very quickly into memory, it becomes possible to analyze graphs with tens of billions

Pricing 2

https://docs.aws.amazon.com/neptune/latest/userguide/intro.html

Neptune Analytics Neptune Analytics User Guide

of relationships and to process thousands of analytic queries per second using popular graph
analytics algorithms.

Neptune Analytics vs. Neptune Database 3

Neptune Analytics Neptune Analytics User Guide

Changes and updates to Neptune Analytics

The following table lists important releases relating to Neptune Analytics.

Change Description Date

StartImportTask available Neptune Analytics now
allows you to efficiently
import large datasets into
an already provisioned
graph database using the
StartImportTask API.
This API facilitates the direct
loading of data from an
Amazon S3 bucket into an
empty Neptune Analytics
graph. This is designed for
loading data into existing
empty clusters.

March 30, 2024

Neptune Analytics available in
Europe (London) region

Neptune Analytics is now
available in the eu-west-2
Europe (London) region.

March 14, 2024

Column delimiter ; is now
supported in values

When a column delimiter
presents in the values, e.g.
for 'two;words' , two
values {'two','words'} will
be inserted. However, if the
column delimiter is escaped
by a backslash '\', the value
will be inserted as a whole
with the escape character
removed, e.g. 'one\;word'
will be inserted as 'one;word'.

February 27, 2024

4

Neptune Analytics Neptune Analytics User Guide

Graph provisioning time
reduced to five minutes or
less

Neptune Analytics graphs are
now provisioned and ready
to be used in five minutes or
less.

February 19, 2024

Query improvements - Data
Plane SDK

The Neptune Analytics data
API provides support for
data operations including
query execution, query status
checking, query cancellation,
and graph summarizing via
the HTTPS endpoint, the AWS
CLI, and the SDK.

February 2, 2024

Initial release Initial release of Neptune
Analytics.

November 29, 2023

5

Neptune Analytics Neptune Analytics User Guide

Getting started

To get started using Neptune Analytics, you need to create a graph using the AWS console, the
AWS CLI, or AWS CloudFormation. You can load data into a graph from another Neptune database,
Neptune database cluster snapshot, or from files located in Amazon S3.

Topics

• Create an empty Neptune graph

• Create a Neptune graph from existing sources

Create an empty Neptune graph

AWS console

1. Sign in to the AWS Management Console, and open the Amazon Neptune console at https://
console.aws.amazon.com/neptune/.

2. In the upper right corner of the console, choose the AWS region in which you want to create
the graph.

3. In the navigation pane, choose Graphs in the Analytics section.

4. Choose the Create graph button.

5. In settings, input the graph name, size, and replica configuration.

6. In the data source section, choose the empty graph option.

Note

Additional charges equivalent to the m-NCUs selected for the graph apply for each
replica.

Create an empty Neptune graph 6

https://console.aws.amazon.com/neptune/
https://console.aws.amazon.com/neptune/

Neptune Analytics Neptune Analytics User Guide

7. You can connect to a Neptune graph from a public endpoint or a private endpoint. Select
your network configuration accordingly.

Create an empty Neptune graph 7

Neptune Analytics Neptune Analytics User Guide

8. Additionally, you can select vector search configuration for the graph. For more information
on vector search configuration, see Vector indexing.

9. Choose Create graph.

Create an empty Neptune graph 8

Neptune Analytics Neptune Analytics User Guide

AWS CLI

Create a Neptune graph using the AWS CLI.

Create a public graph endpoint:

aws neptune-graph create-graph --graph-name 'test-neptune-graph' \
--region us-east-1 --provisioned-memory 128 --allow-from-public \
--replica-count 0 --vector-search '{"dimension": 384}'

Create a private graph endpoint:

aws neptune-p8 create-private-graph-endpoint —vpc-id vpc-0a9b7a5b15 \
--subnet-ids subnet-06a4b41a6221b subnet-0840a4b327ab77 subnet-0353627ab123 \
--vpc-security-group-ids sg-0ab7abab56ab \
--graph-identifier g-146a51b7a151ba —region us-east-1

AWS CloudFormation

Instead of using the console to create your Neptune graph, you can use AWS CloudFormation
to provision AWS resources by treating infrastructure as code. To help you organize your AWS
resources into smaller and more manageable units, you can use the AWS CloudFormation
nested stack functionality. For more information, see Creating a stack on the AWS
CloudFormation console and working with nested stacks.

AWS CloudFormation is free, but the resources that CloudFormation creates are live. You incur
the standard usage fees for these resources until you terminate them. The total charges will be
minimal. For information about how you might minimize any charges, see AWS free tier.

To create your resources using the AWS CloudFormation console, complete the following steps:

1. Create the CloudFormation template.

2. Configure your resources using CloudFormation.

The following sample template will create a Neptune graph with a public endpoint.

AWSTemplateFormatVersion: 2010-09-09
Description: NeptuneGraph Graph Create Demo using CloudFormation
Resources:

Create an empty Neptune graph 9

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/neptune-graph/create-graph.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/

Neptune Analytics Neptune Analytics User Guide

 NeptuneGraph:
 Type: AWS::NeptuneGraph::Graph
 DeletionPolicy: Delete
 Properties:
 DeletionProtection: false
 GraphName: neptune-graph-demo
 ProvisionedMemory: 128
 ReplicaCount: 1
 PublicConnectivity: true
 Tags:
 - Key: stage
 Value: test

The following sample template will create a Neptune graph with a public endpoint.

AWSTemplateFormatVersion: 2010-09-09
Description: NeptuneGraph Graph Create Demo using CloudFormation
Resources:
 NeptuneGraph:
 Type: AWS::NeptuneGraph::Graph
 DeletionPolicy: Delete
 Properties:
 DeletionProtection: false
 GraphName: neptune-graph-demo
 ProvisionedMemory: 128
 ReplicaCount: 1
 PublicConnectivity: false
 Tags:
 - Key: stage
 Value: test
 NeptuneGraphPrivateEndpoint:
 Type: AWS::NeptuneGraph::PrivateGraphEndpoint
 DeletionPolicy: Delete
 Properties:
 GraphIdentifier: NeptuneGraph
 VpcId: myVpc

Important

You can't change the graph name, VPC, subnet ids and vector search configuration.
After starting the graph creation, the graph has a status of Creating until the graph is
ready to use. When the status of the graph changes to Available, you can connect to the

Create an empty Neptune graph 10

Neptune Analytics Neptune Analytics User Guide

DB cluster at that time. Depending on the configuration, it can take up to 20 minutes
before the new graph is available.

Create a Neptune graph from existing sources

You can load data into a Neptune graph from another Neptune database, Neptune database cluster
snapshot, or from Amazon S3 files. Select the data sources and an IAM role for the data import
accordingly. For more information about loading data, see Create a graph from Amazon S3, a
Neptune cluster, or a snapshot.

Create a Neptune graph from existing sources 11

Neptune Analytics Neptune Analytics User Guide

AWS console

Create a Neptune graph from existing sources 12

Neptune Analytics Neptune Analytics User Guide

AWS CLI

The following example creates a graph and loads data from Amazon S3.

aws neptune-graph create-graph-using-import-task \
--graph-name "neptune-graph-from-s3-source" \
--region "us-east-1" \
--format "CSV" \
--role-arn "arn:aws:iam::1234567890124:role/GraphExecutionRole" \
--source "s3://neptune-demo-test-us-east-1/test-data-csv/" \
--public-connectivity \
--min-provisioned-memory 256 \
--max-provisioned-memory 256

Create a Neptune graph from existing sources 13

Neptune Analytics Neptune Analytics User Guide

Using notebooks with Neptune Analytics

The Neptune managed open-source graph-notebook project provides a plethora of Jupyter
extensions and sample notebooks that make it easy to interact with and learn to use a Neptune
Analytics graph.

These graph notebooks support a suite of intuitive Jupyter line- and cell-magic commands. The
magic commands abstract away much of the initial setup typically required for using Neptune
Analytics, and take care of SigV4 signing of requests. They can create graph connections, load data,
run openCypher queries, and interact with various Neptune Analytics APIs.

You can find a list of the full set of Neptune graph-notebook magics and their options in the
Neptune Userguide. However, only the following magics are compatible with Neptune Analytics
graphs:

• %seed (adds sample data to a graph).

• %load (uses the neptune-load() openCypher integration to let you batch-load data).

• %status (gets status information about the graph).

• %%opencypher or %%oc (issues an openCypher query).

• %opencypher_status, or %oc_status (retrieves query status for an opencypher query).

• %%graph_notebook_config (displays a JSON object containing the configuration that the
notebook is using).

• %graph_notebook_host (sets the line input as the notebook's host).

• %graph_notebook_version (returns the Neptune workbench notebook release number).

• %%graph_notebook_vis_options (lets you set visualization options for the notebook).

• %summary (retrieves graph summary information).

• %statistics (retrieves or manages graph data statistics; the refresh mode is disabled).

You can use a Neptune graph notebook to generate an interactive visualization of the results
returned from an openCypher query, and use options to customize the appearance of the
visualized graph (see Graph visualization in the Neptune workbench).

14

https://github.com/aws/graph-notebook
Jupyter
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-seed
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-load
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-status
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-cell-magics-opencypher
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-opencypher-status
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-cell-magics-graph-notebook-config
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-graph-notebook-host
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-graph-notebook-version
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-cell-magics-graph-notebook-vis-options
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-summary
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-statistics
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-visualization.html

Neptune Analytics Neptune Analytics User Guide

Take advantage of all the sample notebooks

A wide variety of sample Jupyter notebooks are available in the Neptune graph-notebook project.
Some of these are purpose-built for learning how to get the most of a Neptune Analytics graph
and its powerful built-in algorithms in the context of common real-world applications.

After installing the graph-notebook project either locally or on SageMaker, you should be able to
find sample notebooks under the notebook directory, ../Neptune/02-Neptune-Analytics.

Creating a new Neptune Analytics notebook using an AWS
CloudFormation template

Amazon SageMaker Notebook instances provide a fully managed Jupyter environment for running
graph notebooks that are connected to a Neptune Analytics graph. SageMaker Notebooks run
natively on Amazon Linux 2, and support use of the Jupyter Classic Notebook or JupyterLab 3
interface on the same instance.

You can use one of the following AWS CloudFormation templates to set up a new Neptune
Analytics notebook to use with your Neptune Analytics graph:

To use an AWS CloudFormation stack to create a new Neptune Analytics notebook

1. Choose one of the Launch Stack buttons in the following table to launch the AWS
CloudFormation stack on the AWS CloudFormation console.

Region View View in Designer Launch

US East (N. Virginia) View View in Designer

US East (Ohio) View View in Designer

US West (Oregon) View View in Designer

Europe (Ireland) View View in Designer

Sample notebooks 15

https://github.com/aws/graph-notebook
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/designer/home?region=us-east-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/designer/home?region=us-east-2&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/home?region=us-east-2#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/designer/home?region=us-west-2&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/designer/home?region=eu-west-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json

Neptune Analytics Neptune Analytics User Guide

Region View View in Designer Launch

Europe (Frankfurt) View View in Designer

Asia Pacific (Tokyo) View View in Designer

Asia Pacific
(Singapore)

View View in Designer

2. On the Select Template page, choose Next.

3. In the Stack Details page, under GraphEndpoint, enter the public or private endpoint of your
Neptune Analytics graph.

4. Under Notebook Name enter a name for the new notebook that is unique for your account
and region in SageMaker.

5. On the Options page, choose Next.

6. If you're using a private endpoint for your Neptune Analytics graph, enter the following under
Network Options:

a. Under GraphVPC enter the ID of a VPC associated with the private graph endpoint.

b. Under GraphSubnetId enter the ID of any subnet associated with your private graph
endpoint.

c. Under GraphSecurityGroup enter the ID of a security group associated with the VPC. This
is optional; if not provided, a new security group is automatically created for this purpose.

7. Click through the rest of the stack creation steps, leaving everything as default, and submit for
creation.

In around 5 minutes, you should see the new Neptune Analytics notebook appear in the SageMaker
and Neptune consoles.

Create a notebook with CloudFormation 16

https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/designer/home?region=eu-central-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/home?region=eu-central-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/designer/home?region=ap-northeast-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/home?region=ap-northeast-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/designer/home?region=ap-southeast-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://console.aws.amazon.com/cloudformation/home?region=ap-southeast-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json

Neptune Analytics Neptune Analytics User Guide

Creating a new Neptune Analytics notebook using the AWS
Management Console

You can create a new notebook manually using the AWS Management Console if you aren't able
to use AWS CloudFormation. The first thing you need is an IAM role to use for the notebook. If you
already have one, you can skip the following section.

Create an IAM role for a Neptune Analytics notebook

To create an IAM role for a Neptune Analytics notebook

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, expand Access management, then choose Roles.

3. Select Create role.

4. Under Trusted entity type, select Custom trust policy and copy in the following trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

5. Choose Next, and then Next again.

6. Enter a name and description for the role, and select Create role.

7. Go back to the Roles page, search for the name of the role you just created, and open it.

8. On the Permissions tab Under Permissions policies, select Add permissions and choose
Create inline policy.

9. In the Policy editor, switch to the JSON option, and copy in the following policy:

{

Create a notebook on the console 17

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Neptune Analytics Neptune Analytics User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::aws-neptune-notebook-(AWS region)",
 "arn:aws:s3:::aws-neptune-notebook-(AWS region)/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "neptune-graph:*",
 "Resource": [
 "arn:aws:neptune-graph:(AWS region):(AWS account ID):graph/(Neptune Graph
 resource ID)"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/sagemaker/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "sagemaker:DescribeNotebookInstance",
 "Resource": [
 arn:aws:sagemaker:(AWS region):(AWS account ID):notebook-instance/*"
]
 }
]
}

10. Choose Next.

Create an IAM role 18

Neptune Analytics Neptune Analytics User Guide

11. Give a name to the inline policy.

12. Select Create policy. Make note of the name of the policy you just created.

Next, create the Neptune Analytics notebook in SageMaker

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, expand Notebook, then choose Notebook instances.

3. Choose Create notebook instance.

4. In Notebook instance settings, under Notebook instance name, give the notebook a name
prefixed by aws-neptune- (for example, aws-neptune-my-test-notebook).

5. Under Platform identifier, select Amazon Linux 2, JupyterLab 3.

6. Select Additional configuration.

7. Under Lifecycle configuration, choose Create a new lifecycle configuration.

8. In Configuration, under Name enter the notebook instance name from step 4.

9. In Scripts, under Start notebook, replace the existing script with this:

#!/bin/bash

sudo -u ec2-user -i <<'EOF'

echo "export GRAPH_NOTEBOOK_AUTH_MODE=IAM" >> ~/.bashrc
echo "export GRAPH_NOTEBOOK_SSL=True" >> ~/.bashrc
echo "export GRAPH_NOTEBOOK_SERVICE=neptune-graph" >> ~/.bashrc
echo "export GRAPH_NOTEBOOK_HOST=(Neptune Analytics graph endpoint, public or
 private)" >> ~/.bashrc
echo "export GRAPH_NOTEBOOK_PORT=8182" >> ~/.bashrc
echo "export NEPTUNE_LOAD_FROM_S3_ROLE_ARN=" >> ~/.bashrc
echo "export AWS_REGION=(AWS region)" >> ~/.bashrc

aws s3 cp s3://aws-neptune-notebook-(AWS region)/graph_notebook.tar.gz /tmp/
graph_notebook.tar.gz
rm -rf /tmp/graph_notebook
tar -zxvf /tmp/graph_notebook.tar.gz -C /tmp
/tmp/graph_notebook/install.sh

EOF

Create the notebook 19

https://console.aws.amazon.com/sagemaker/

Neptune Analytics Neptune Analytics User Guide

10. Select Create configuration.

11. In Permissions and encryption, under IAM Role, select the role you created above.

12. In Network, if you are using a private graph endpoint:

a. Under VPC, select the VPC where the Neptune Analytics graph resides.

b. Under Subnet, select a subnet associated with the Neptune Analytics graph.

c. Under Security Group(s), select all the security groups associated with the Neptune
Analytics graph.

13. Choose Create notebook instance.

14. After 5 or 10 minutes, when your new notebook reaches Ready status, select it. Choose Open
Jupyter or Open JupyterLab.

Hosting a Neptune Analytics graph-notebook on your local machine

It is also possible to install and run a Neptune Analytics graph notebook on your local machine. You
can find instructions in the GitHub graph-notebook repository:

• Prerequisites

• Jupyter Classic Notebook or https://github.com/aws/graph-notebook/#jupyterlab-3x
installation

• Connecting to Neptune

When setting up for Neptune Analytics:

• When setting the connection using %%graph_notebook_config, make sure to set the
neptune_service field to the value neptune-graph.

• If you're connecting to a private graph endpoint, you need to enable access to the VPC where the
Neptune Analytics instance resides. The easiest way to set this is up is using an SSH tunnel to a
proxy EC2 instance in the VPC. For more information, see Connecting graph notebook locally to
Amazon Neptune in GitHub.

• If you're using a public graph endpoint, no additional connectivity setup is required.

Local hosting 20

https://github.com/aws/graph-notebook
https://github.com/aws/graph-notebook/#prerequisites
https://github.com/aws/graph-notebook/#installation
https://github.com/aws/graph-notebook/#jupyterlab-3x
https://github.com/aws/graph-notebook/#amazon-neptune
https://docs.aws.amazon.com/neptune/latest/userguide/notebooks-magics.html#notebooks-cell-magics-graph-notebook-config
https://github.com/aws/graph-notebook/blob/main/additional-databases/neptune/README.md#connecting-graph-notebook-locally-to-amazon-neptune-first-time-setup
https://github.com/aws/graph-notebook/blob/main/additional-databases/neptune/README.md#connecting-graph-notebook-locally-to-amazon-neptune-first-time-setup

Neptune Analytics Neptune Analytics User Guide

Creating a new Neptune Analytics graph using the AWS
Management Console

You can use the Neptune console to create a new Neptune Analytics graph.

Note

If you are working with a large dataset (on the order of 50 GiB or larger) that you intend to
load at the same time the new graph is created, be sure to create an IAM role that grants
permissions to load the dataset from the location where it resides.

To use the Neptune console to create a graph

1. Sign in to the AWS Management Console, and open the Amazon Neptune console at https://
console.aws.amazon.com/neptune/.

2. In the navigation pane, select Graphs under Analytics.

3. Select Create graph.

4. Enter a name for the new graph.

5. The next steps depend on whether you are creating an empty graph or one preloaded with
data.

• If you choose Create empty graph, choose the number of memory-optimized Neptune
Capacity Units (m-NCUs) to allocate to the new Neptune Analytics graph, between 128
and 1024. Each m-NCU has around one GiB of memory capacity and corresponding
compute and networking.

• If you choose Create Graph from existing source, Neptune Analytics will bulk-load
data for you when the graph is created. Choose this option if you want to import a large
dataset, on the order of 50 GiB or larger. See Bulk import for details.

a. Set values for the minimum and maximum m-NCUs, or just leave them at their
default values (128 m-NCUs). The units are memory-optimized Neptune Capacity
Units (m-NCUs), each of which is roughly equivalent to 1 GiB of memory and
corresponding compute and networking. Neptune Analytics evaluates the data that
you want to load and estimates the resources needed to handle it, within the range of
m-NCUs that you specify.

21

https://console.aws.amazon.com/neptune/
https://console.aws.amazon.com/neptune/

Neptune Analytics Neptune Analytics User Guide

b. Under Load role ARN, select an IAM role that you have created to provide the
necessary permissions for the data import. See Create an IAM role with permissions to
export from Neptune to Neptune Analytics for instructions about how to create the
role.

c. The next steps depend on what source you're loading data from:

• If you choose Neptune cluster as the type of source, select the DB cluster that
you want to load from under Neptune cluster.

• If you choose Neptune cluster snapshot as the type of source, select one of your
manual DB snapshots that you want to load from under Neptune DB snapshot.

• If you choose S3 as the type of source, enter the URL of the Amazon S3 location
where the data file(s) to be loaded are located, under Resource URI. The path to
the folder location must end in a slash rather than specify to a particular file.

6. Under Availability settings, choose how many failover replicas you want to create for the new
graph. The default is one, but if you select Use custom number of replicas you can choose from
zero to two failover replicas.

Important

Additional charges equivalent to the m-NCUs selected for the graph apply for each
replica.

7. Under Network and security, check Allow from public to create a public endpoint for your
new Neptune Analytics graph to make it accessible over the internet. If you want to use your
own KMS key to encrypt your data, check Customize encryption settings a specify a KMS key
of your choosing.

8. Under Vector search settings, if you want to set up a vector index for the graph, choose Use
vector dimension and then specify the number of dimensions for the vectors in the index.

9. Under Advanced settings, you can make it easier to delete your new graph by selecting Turn
off deletion protection. Deletion protection is turned on by default.

10. Finally, under Tags, you can associate tags with your new Neptune Analytics graph.

11. When everything is configured as you want it to be, choose Create Graph.

22

Neptune Analytics Neptune Analytics User Guide

Loading data into a Neptune Analytics graph

Neptune Analytics provides several options for loading data into a graph.

• Bulk import – Create a graph loaded with data from files in Amazon S3 in a CSV-like data
format, or data in a Neptune Database cluster. You can also load data from files in Amazon S3
into an empty graph. This could be the fastest way to load large volumes of initial data.

• Batch load – Add more data to an existing non-empty graph from files in Amazon S3 in a CSV-
like data format. This could be the fastest way to add more data or update single cardinality
property values in a non-empty graph. The volume of data that can be ingested in a single
request is lower than what bulk import can support, and multiple requests with smaller batches
of files could be a workaround.

• openCypher queries – Add more data through queries, if data is not available from files in
Amazon S3 or the data volume is small. This is also a more generic approach for conditional
inserts based on data already in the graph, and updating contents of the graph.

Topics

• Data format for loading from Amazon S3 into Neptune Analytics

• Batch load

• Bulk import data into a graph

Data format for loading from Amazon S3 into Neptune
Analytics

Neptune Analytics, just like Neptune Database, supports two formats for loading property graph
data: csv and opencypher. Both are csv-based formats with schema restrictions. A csv file must
contain a header row and the column values. The remainder of the files are interpreted based on
the corresponding header column. The header could contain predefined system column names and
user-defined column names annotated with predefined datatypes and cardinality.

Differences with Neptune csv (opencypher) format

Edge files:

Data formats 23

https://docs.aws.amazon.com/neptune/latest/userguide/bulk-load-tutorial-format.html
https://docs.aws.amazon.com/neptune/latest/userguide/bulk-load-tutorial-format-gremlin.html
https://docs.aws.amazon.com/neptune/latest/userguide/bulk-load-tutorial-format-opencypher.html

Neptune Analytics Neptune Analytics User Guide

• The ~id (:ID) column in edge (relationship) files in CSV (opencypher) format are not
supported. They are ignored if provided in any of the edge (relationship) files.

Vertex files:

• Only explicitly provided labels are associated with the vertices. If the label provided is empty, the
vertex would be added without a label. If a row contains just the vertex id without any labels or
properties then the row is ignored, and no vertex is added. For more information about vertices,
see vertices.

• A new column type Vector is supported for associating embeddings with vertices. Since
Neptune Analytics only supports one index type at this moment, the property name for
embeddings is currently fixed to Embeddings. If the element type of the embedding are
not floating point (FP32), there will be typecasted to FP32. The embeddings in the csv files
are optional when the vector index is enabled. This means that not every node needs to be
associated with an embedding. If you want to set up a vector index for the graph, choose use
vector dimension and then specify the number of dimensions for the vectors in the index.
Note that the dimension must match the dimension of the embeddings in the vertex files. For
more details of loading embeddings, refer to vector-index.

Edge or vertex files:

• Unlike Neptune Database, a vertex identifier could appear just in edge files. Neptune Analytics
allows loading just the edge data from files in Amazon S3, and running an algorithm over the
data without needing to provide any additional vertex information. The edges are created
between vertices with the given identifiers, and the vertices have no labels or properties unless
any are provided in the vertex files. For more information on vertices and what they are, see
vertices.

• Date column type is not supported. The datetime column type is supported and could be used
instead. Pure date values in the datetime column are implicitly assigned 00:00:00z time.

• The datetime values can either be provided in the XSD format or one of the following formats:

• yyyy-MM-dd

• yyyy-MM-ddTHH:mm

• yyyy-MM-ddTHH:mm:ss

• yyyy-MM-ddTHH:mm:ssZ

• yyyy-MM-ddTHH:mm:ss.SSSZ

Data formats 24

https://docs.aws.amazon.com/neptune-analytics/latest/userguide/vector-index.html
https://www.w3.org/TR/xmlschema-2/

Neptune Analytics Neptune Analytics User Guide

• yyyy-MM-ddTHH:mm:ss[+|-]hhmm

• yyyy-MM-ddTHH:mm:ss.SSS[+|-]hhmm

• Float and double values in scientific notation are currently not supported. Also, Infinity, INF,
-Infinity, -INF, and NaN (Not-a-number) values are not recognized.

• Gzip files are not supported.

• The maximum length of the strings supported is smaller, and limited to 1,048,062 bytes. The
limit would be lower for strings with unicode characters since some unicode characters are
represented using multiple bytes.

• Multi-line string values are not supported. Imports behavior is undefined if the dataset contains
multi-line string values.

• Quoted string values must not have leading space between the delimiter and quotes. For
example, if a line is abc, “def” then that is interpreted as line with two fields with string
values abc and “def”. “def" is a non-quoted string field and quotes are stored as is in the
value, with a size of 6 characters. If the line is abc,“def” then it is interpreted as a line with two
fields with string values abc and def.

Batch load

Neptune Analytics supports a CALL procedure neptune.load to load data from Amazon S3, to
insert new vertices, edges, and properties, or to update single cardinality vertex property values.
It executes as a mutation query and does atomic writes. It uses the IAM credentials of the caller
to access the data in Amazon S3. See Create your IAM role for Amazon S3 access to set up the
permissions.

Request syntax

The signature of the CALL procedure is shown below:

CALL neptune.load(
 {
 source: "string",
 region: "us-east-1",
 format: "csv",
 failOnError: "true",
 concurrency: 1
 }

Batch load 25

Neptune Analytics Neptune Analytics User Guide

)

• source (required) – An Amazon S3 URI prefix. All object names with matching prefixes are loaded.
See Neptune Database loader reference for Amazon S3 URI prefix examples. The IAM user who
signs the openCypher request must have permissions to list and download these objects, and
must be authorized for WriteDataViaQuery and DeleteDataViaQuery actions. See IAM role
mapping for more IAM authentication related details.

• region (required) – The AWS region where the Amazon S3 bucket is hosted. Currently, cross-
region loads are not supported.

• format (required) – The data format of the Amazon S3 data to be loaded, either csv or
opencypher. For more information, see Data format for loading from Amazon S3 into Neptune
Analytics.

• failOnError (optional) default: true – If set to true (the default), the load process halts
whenever there is an error parsing or inserting data. If set to false, the load process continues
and commits whatever data was successfully inserted.

Inserting edge or relationship data when failOnError is set to true is not recommended,
since a subsequent load would lead to duplication of partially committed edges or relationships.

• concurrency (optional) default: 1 – This value controls the number of threads used to run the load
process, up to the maximum available.

Note

Unlike bulk import, there is no need to pass the role-arn for batch load since the IAM
credentials of the signer of the openCypher query are used to download data from Amazon
S3. The signer must have permissions to download data from Amazon S3 with the trust
relationship set up to assume the role, so that Neptune Analytics can assume the role to
load the data into the graph from files in Amazon S3.

Response syntax

A sample response is shown below.

{
 "results": [

Response 26

https://docs.aws.amazon.com/neptune/latest/userguide/load-api-reference-load.html#load-api-reference-load-parameters
https://docs.aws.amazon.com/neptune-analytics/latest/userguide/query-APIs-IAM-role-mappings.html
https://docs.aws.amazon.com/neptune-analytics/latest/userguide/query-APIs-IAM-role-mappings.html

Neptune Analytics Neptune Analytics User Guide

 {
 "totalRecords": 108070,
 "totalDuplicates": 46521,
 "totalTimeSpentMillis": 558,
 "numThreads": 16,
 "insertErrors": 0,
 "throughputRecordsPerSec": 193673,
 "loadId": "13a60c3b-754d-c49b-4c23-06b9dd5b346b"
 }
]
}

• totalRecords: The number of graph elements - vertex labels, edges, and properties -
attempted for insertion.

• totalDuplicates: The count of duplicate graph elements - vertex labels or properties -
encountered. These elements may have pre-existed before the load request or were duplicates
within the input CSV files. Each edge is treated as new, so edges are excluded from this count.

• totalTimeSpentMillis: The total time taken for downloading, parsing, and inserting data
from CSV files, excluding the request queue time.

• numThreads: The number of threads utilized for downloading and inserting data. This correlates
with the provided concurrency parameter input, reflecting any caps applied.

• insertErrors: Errors faced during insertions, including parsing errors and Amazon S3 access
issues. Error details are available in the CloudWatch logs. Refer to the Troubleshooting section
of this document to understand troubleshooting insertErrors. Concurrent modification errors
may also cause insert errors in batch loads attempting to modify a vertex property value being
concurrently changed by another request.

• throughputRecordsPerSec: The total throughput in records per second.

• loadId: The loadId for searching errors and load summary. All batch information is published to
CloudWatch logs under /aws/neptune/import-task-logs/<graph-id>/<load-id>.

Note

Around 2.5Gb of Amazon S3 files can be loaded in a single request on 128 m-NCU. Larger
sized datasets could run into out of memory errors. To workaround that, the Amazon
S3 files can be split across multiple serial batch load requests. The source argument takes
a prefix, so files can be partitioned across requests by including prefixes of file names.
The limit scales linearly based on m-NCUs, so for example 5Gb of Amazon S3 files can be

Response 27

Neptune Analytics Neptune Analytics User Guide

loaded in a single request on 256 m-NCU. Also, if the dataset contains larger string values
for example, then larger volumes of data can also be ingested in a single request, since they
would generate fewer number of graph elements per byte of dataset. It is recommended to
run tests with your data to determine the exact details for this process.

Important

Duplicate edges get created if the same edge file content is loaded more than once. This
could happen if, for example:

1. The same Amazon S3 source or file is accidentally included for load in more than one
request that succeeded.

2. The edge data is first loaded with failOnError set to false and runs into partial errors,
and the errors are fixed and the entire dataset is reloaded. All of the edges that were
successfully inserted on the first request would get duplicated after the second request.

Bulk import data into a graph

The task system in Neptune Analytics provides a powerful and flexible way to bulk import data
into your graph. The import task is specifically designed to handle large-scale data ingestion from
various data sources, such as CSV files.

To initiate a bulk data import, you would first create an import task by specifying the data source,
the target graph, and any necessary configuration options. This can be done through the AWS
console or programmatically via the API.

Throughout the import process, you can monitor the progress of the import task through the user
interface or via API calls. Progress reports, and any potential errors or warnings will be accessible in
your CloudWatch account, allowing for close monitoring and troubleshooting if needed.

Importing of data through Import Task is supported in two ways:

• During graph creation: Create a graph from Amazon S3, a Neptune cluster, or a snapshot

• On an existing empty graph: Bulk import data into an existing Neptune Analytics graph

Bulk import 28

Neptune Analytics Neptune Analytics User Guide

Create a graph from Amazon S3, a Neptune cluster, or a snapshot

You can create a Neptune Analytics graph directly from Amazon S3 or from Neptune using the
CreateGraphUsingImportTask API. This is recommended for importing large graphs from
files in Amazon S3 (>50GB of data), importing from existing Neptune clusters, or importing
from existing Neptune snapshots. This API automatically analyzes the data, provisions a new
graph based on the analysis, and imports data as one atomic operation using maximum available
resources.

Note

The graph is made available for querying only after the data loading is completed
successfully.

If errors are encountered during the import process, Neptune Analytics will automatically roll back
the provisioned resources, and perform the cleanup. No manual cleanup actions are needed. Error
details are available in the CloudWatch logs. See troubleshooting for more details.

Topics

• Creating a Neptune Analytics graph from Amazon S3

• Creating a Neptune Analytics graph from Neptune cluster or snapshot

Creating a Neptune Analytics graph from Amazon S3

Neptune Analytics supports bulk importing of CSV data directly from Amazon S3 into a Neptune
Analytics graph using the CreateGraphUsingImportTask API. The data format is the same
as the CSV format used for Batch load. Refer to Data format for loading from Amazon S3 into
Neptune Analytics for the details of the format. It is recommended that you try the batch load
process with a subset of your data first to validate that it is correctly formatted. Once you have
validated that your data files are fully compatible with Neptune Analytics, you can prepare your full
dataset and perform the bulk import using the steps below.

A quick summary of steps needed to import a graph from Amazon S3:

• Copy the data files to an Amazon S3 bucket: Copy the data files to an Amazon Simple Storage
Service bucket in the same region where you want the Neptune Analytics graph to be created.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 29

Neptune Analytics Neptune Analytics User Guide

See Data format for loading from Amazon S3 into Neptune Analytics for the details of the
format when loading data from Amazon S3 into Neptune Analytics.

• Create your IAM role for Amazon S3 access: Create an IAM role with read and list access to
the bucket and a trust relationship that allows Neptune Analytics graphs to use your IAM role for
importing.

• Use the CreateGraphUsingImportTask API to import from Amazon S3: Create a graph using
the CreateGraphUsingImportTask API. This will generate a taskId for the operation.

• Use the GetImportTask API to get the details of the import task. The response will indicate the
status of the task (ie. INITIALIZING, ANALYZING_DATA, IMPORTING etc.).

• Once the task has completed successfully, you will see a COMPLETED status for the import task
and also the graphId for the newly created graph.

• Use the GetGraphs API to fetch all the details about your new graph, including the ARN,
endpoint, etc.

Copy the data files to an Amazon S3 bucket

The Amazon S3 bucket must be in the same AWS region as the cluster that loads the data. You can
use the following AWS CLI command to copy the files to the bucket.

aws s3 cp data-file-name s3://bucket-name/object-key-name

Note

In Amazon S3, an object key name is the entire path of a file, including the file name.
In the command

aws s3 cp datafile.txt s3://examplebucket/mydirectory/datafile.txt

the object key name is mydirectory/datafile.txt

You can also use the AWS management console to upload files to the Amazon S3 bucket. Open the
Amazon S3 console, and choose a bucket. In the upper-left corner, choose Upload to upload files.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 30

https://console.aws.amazon.com/s3/

Neptune Analytics Neptune Analytics User Guide

Create your IAM role for Amazon S3 access

Create an IAM role with permissions to read and list the contents of your bucket. Add a trust
relationship that allows Neptune Analytics to assume this role for doing the import task. You could
do this using the AWS console, or through the CLI/SDK.

1. Open the IAM console at https://console.aws.amazon.com/iam/. Choose Roles, and then choose
Create Role.

2. Provie a role name.

3. Choose Amazon S3 as the AWS service.

4. In the permissions section, choose AmazonS3ReadOnlyAccess.

Note

This policy grants s3:Get* and s3:List* permissions to all buckets. Later steps restrict
access to the role using the trust policy. The loader only requires s3:Get* and s3:List*
permissions to the bucket you are loading from, so you can also restrict these
permissions by the Amazon S3 resource. If your Amazon S3 bucket is encrypted, you
need to add kms:Decrypt permissions as well. kms:Decrypt permission is needed for
the exported data from Neptune Database

5. On the Trust Relationships tab, choose Edit trust relationship, and paste the following trust
policy. Choose Save to save the trust relationship.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "neptune-graph.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 }

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 31

https://console.aws.amazon.com/iam/

Neptune Analytics Neptune Analytics User Guide

Your IAM role is now ready for import.

Use CreateGraphUsingImportTask API to import from Amazon S3

You can perform this operation from the Neptune console as well as from AWS CLI/SDK. For more
information on different parameters, see https://docs.aws.amazon.com/neptune-analytics/latest/
apiref/API_CreateGraphUsingImportTask.html

Via CLI/SDK

aws neptune-graph create-graph-using-import-task \
 --graph-name <name> \
 --format <format> \
 --source <s3 path> \
 --role-arn <role arn> \
 [--fail-on-error | --no-fail-on-error] \
 [--deletion-protection | --no-deletion-protection]
 [--public-connectivity | --no-public-connectivity]
 [--min-provisioned-memory]
 [--max-provisioned-memory]
 [--vector-search-configuration]

• Different Minimum and Maximum Provisioned Memory: When the --min-provisioned-
memory and --max-provisioned-memory values are specified differently, the graph is created
with the maximum provisioned memory specified by --max-provisioned-memory.

• Single Provisioned Memory Value: When only one of --min-provisioned-memory or --
max-provisioned-memory is provided, the graph is created with the specified memory value.

• No Provisioned Memory Values: If neither --min-provisioned-memory nor --max-
provisioned-memory is provided, the graph is created with a default provisioned memory of
128 m-NCU (memory optimized Neptune Compute Units).

Example 1: Create a graph from Amazon S3, with no min/max provisioned memory.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \
 --format CSV

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 32

https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_CreateGraphUsingImportTask.html
https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_CreateGraphUsingImportTask.html

Neptune Analytics Neptune Analytics User Guide

Example 2: Create a graph from Amazon S3, with min & max provisioned memory. A graph with m-
NCU of 1024 is created.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \
 --format CSV
 --min-provisioned-memory 128 \
 --max-provisioned-memory 1024

Example 3: Create a graph from Amazon S3, and not fail on parsing errors.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \
 --format CSV
 --no-fail-on-error

Example 4: Create a graph from Amazon S3, with 2 replicas.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \
 --format CSV
 --replica-count 2

Example 5: Create a graph from Amazon S3 with vector search index.

Note

The dimension must match the dimension of the embeddings in the vertex files.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 33

Neptune Analytics Neptune Analytics User Guide

 --format CSV
 --replica-count 2 \
 --vector-search-configuration "{\"dimension\":768}"

Via Neptune console

1. Start the Create Graph wizard and choose Create graph from existing source.

2. Choose type of source as Amazon S3, minimum and maximum provisioned memory, Amazon S3
path, and load role ARN.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 34

Neptune Analytics Neptune Analytics User Guide

3. Choose the Network Settings and Replica counts.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 35

Neptune Analytics Neptune Analytics User Guide

4. Create graph.

Creating a Neptune Analytics graph from Neptune cluster or snapshot

Neptune Analytics provides an easy way to bulk import data from an existing
Neptune Database cluster or snapshot into a new Neptune Analytics graph, using the
CreateGraphUsingImportTask API. Data from your source cluster or snapshot is bulk exported
into an Amazon S3 bucket that you configure, analyzed to find the right memory configuration,
and bulk imported into a new Neptune Analytics graph. You can check the progress of your bulk
import at any time using the GetImportTask API as well.

A few things to consider while using this feature:

• You can only import from Neptune Database clusters and snapshots running on a version newer
than or equal to 1.3.0.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 36

Neptune Analytics Neptune Analytics User Guide

• The exported data from your source Neptune Database cluster or snapshot will reside
in your buckets only, and will be encrypted using a KMS key that you provide. The
exported data is not directly consumable in any other way into Neptune outside of the
CreateGraphUsingImportTask API. The exported data is not used after the lifetime of the
request, and can be deleted by the user.

• You need to provide permissions to perform the export task on the Neptune Database cluster or
snapshot, write to your Amazon S3 bucket, and use your KMS key while writing data.

• If your source is a Neptune Database cluster, a clone is taken from it and used for export. The
original Neptune Database cluster will not be impacted. The cloned cluster is internally managed
by the service and is deleted upon completion.

• If your source is a Neptune snapshot, a restored DBCluster is created from it, and used for export.
The restored cluster is internally managed by the service and is deleted upon completion.

• This process is not recommended for small sized graphs. The export process is async, and works
best for medium/large sized graphs with a size greater than 25GB. For smaller graphs, a better
alternative is to use the Neptune export feature to generate CSV data directly from your source,
upload that to Amazon S3 and then use the Batch load API instead.

A quick summary of steps to import from a Neptune cluster or a Neptune snapshot:

1. Obtain the ARN of your Neptune cluster or snapshot: This can be done from the AWS console or
using the Neptune CLI.

2. Create an IAM role with permissions to export from Neptune to Neptune Analytics: Create an
IAM role that has permissions to perform an export of your Neptune graph, write to Amazon S3
and use your KMS key for writing data in Amazon S3.

3. Use the CreateGraphUsingImportTask API with source = NEPTUNE, and provide the ARN
of your source, Amazon S3 path to export the data, KMS key to use for exporting data and
additional arguments for your Neptune Analytics graph. This should return a task-id.

4. Use GetImportTask API to get the details of your task.

Obtain the ARN of your Neptune cluster or snapshot

Via the CLI:

Obtaining the ARN of an existing DB Cluster
 aws neptune describe-db-clusters \
 --db-cluster-identifier *<name> \

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 37

https://docs.aws.amazon.com/neptune/latest/userguide/neptune-export.html

Neptune Analytics Neptune Analytics User Guide

 --query 'DBClusters[0].DBClusterArn'

 # Obtaining the ARN of an existing DB Cluster Snapshot
 aws neptune describe-db-cluster-snapshots \
 --db-cluster-snapshot-identifier <snapshot name> \
 --query 'DBClusterSnapshots[0].DBClusterSnapshotArn'

Via the AWS console. The ARN can be found on the cluster details page.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 38

Neptune Analytics Neptune Analytics User Guide

Create an IAM role with permissions to export from Neptune to Neptune Analytics

1. Open the IAM console at https://console.aws.amazon.com/iam/. Choose Roles, and then choose
Create Role.

2. Provie a role name.

3. Choose Amazon S3 as the AWS service.

4. In the permissions section, choose AmazonS3FullAccess, NeptuneFullAccess,
AmazonRDSFullAccess, AWSKeyManagementServicePowerUser.

5. On the Trust Relationships tab, choose Edit trust relationship, and paste the following trust
policy. Choose Save to save the trust relationship.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "export.rds.amazonaws.com",
 "neptune-graph.amazonaws.com"
]

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 39

https://console.aws.amazon.com/iam/

Neptune Analytics Neptune Analytics User Guide

 },
 "Action": "sts:AssumeRole"
 }
]
 }

Your IAM role is now ready for import.

Via CLI/SDK

For importing data via Neptune , the API expects additional import-options as defined here
NeptuneImportOptions .

Example 1: Create a graph from a Neptune cluster.

aws neptune-graph create-graph-using-import-task \
 --graph-name <graph-name>
 --source arn:aws:rds:<region>:451235071234:cluster:nodelete-p8-test-snb-neptune-
gremlin-data-100 \
 --min-provisioned-memory 1024 \
 --max-provisioned-memory 1024 \
 --role-arn <role-arn> \
 --import-options '{"neptune": {
 "s3ExportKmsKeyId":"arn:aws:kms:<region>:<account>:key/<key>",
 "s3ExportPath": :"<s3 path for exported data>"
 }}'

Example 2: Create a graph from a Neptune cluster with the default vertex preserved.

aws neptune-graph create-graph-using-import-task \
 --graph-name <graph-name>
 --source arn:aws:rds:<region>:451235071234:cluster:nodelete-p8-test-snb-neptune-
gremlin-data-100 \
 --min-provisioned-memory 1024 \
 --max-provisioned-memory 1024 \
 --role-arn <role-arn> \
 --import-options '{"neptune": {
 "s3ExportKmsKeyId":"arn:aws:kms:<region>:<account>:key/<key>",
 "s3ExportPath": :"<s3 path for exported data>",
 "preserveDefaultVertexLabels" : true
 }}'

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 40

https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_NeptuneImportOptions.html
https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_NeptuneImportOptions.html

Neptune Analytics Neptune Analytics User Guide

Example 3: Create a graph from Neptune cluster with the default edge Id preserved

aws neptune-graph create-graph-using-import-task \
 --graph-name <graph-name>
 --source arn:aws:rds:<region>:451235071234:cluster:nodelete-p8-test-snb-neptune-
gremlin-data-100 \
 --min-provisioned-memory 1024 \
 --max-provisioned-memory 1024 \
 --role-arn <role-arn> \
 --import-options '{"neptune": {
 "s3ExportKmsKeyId":"arn:aws:kms:<region>:<account>:key/<key>",
 "s3ExportPath": :"<s3 path for exported data>",
 "preserveEdgeIds" : true
 }}'

Bulk import data into an existing Neptune Analytics graph

Neptune Analytics now allows you to efficiently import large datasets into an already provisioned
graph database using the StartImportTask API. This API facilitates the direct loading of data
from an Amazon S3 bucket into an empty Neptune Analytics graph. This is designed for loading
data into existing empty clusters.

Two common use cases for using this feature:

1. Bulk importing data multiple times without provisioning a new graph for each dataset. This
helps during the development phase of a project where datasets are being converted into
Neptune Analytics compatible load formats.

2. Use cases where graph provisioning privileges need to be separated from data operation
privileges. For example, scenarios where graph provisioning needs to be done by only by the
infrastructure team, and data loading and querying is done by the data engineering team.

For use cases where you want to create a new graph loaded with data, use the
CreateGraphUsingImportTask API instead.

For incrementally loading data from Amazon S3 you can use the loader integration with the
openCypher CALL clause. For more information see Use Neptune load().

Prerequisites

• An empty Amazon Neptune Analytics graph.

Bulk import data into an existing Neptune Analytics graph 41

https://docs.aws.amazon.com/neptune-analytics/latest/userguide/neptune-load-batch.html

Neptune Analytics Neptune Analytics User Guide

• Data stored in an Amazon Amazon S3 bucket in the same region as the graph.

• An IAM role with permissions to access the Amazon S3 bucket. For more information, see Create
your IAM role for Amazon S3 access.

Important considerations

• Data integrity: The StartImportTask API is designed to work with graphs that are empty. If
your graph contains data, you can first reset the graph using the reset-graph API. If the Import
task finds that the graph is not empty the operation will fail. This operation will delete all data
from the graph, so ensure you have backups if necessary. You can use the create-graph-snapshot
API to create snapshot of your existing graph.

• Atomic Operation: The data import is atomic, meaning it either completes fully or does not
apply at all. If the import fails we would reset the state back to an empty graph.

• Format Support: Loading data supports the same data format as supported by create-graph-
using-import-task and neptune.load() This API doesn’t support importing data from
Neptune .

• Queries: Queries will stop working while the import is in progress. You will get a Cannot
execute any query until bulk import is complete error until the import finishes.

Steps for bulk importing data

1. Resetting the graph (if necessary):

If your graph is not empty, reset it using the following command:

aws neptune-graph reset-graph --graph-identifier <graph-id>

Note

This command will completely remove all existing data from your graph. It is
recommended that you take a graph snapshot before performing this action.

2. Start the import task:

To load data into your Neptune graph, use the start-import-task command as follows:

aws neptune-graph start-import-task \

Bulk import data into an existing Neptune Analytics graph 42

https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_ResetGraph.html
https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_CreateGraphSnapshot.html

Neptune Analytics Neptune Analytics User Guide

--graph-identifier <graph-id> \
--source <s3-path-to-data> \
--format <data-format> \
--role-arn <IAM-role-ARN> \
[--fail-on-error | --no-fail-on-error]

• graph-identifier: The unique identifier of your Neptune graph.

• source: An Amazon S3 URI prefix. All object names with matching prefixes are loaded. See
Neptune loader request parameters for Amazon S3 URI prefix examples.

• format: The data format of the Amazon S3 data to be loaded, either csv or openCypher. For
more information, see Data formats.

• role-arn: The ARN of the IAM role that Neptune Analytics can assume to access your
Amazon S3 data.

• (--no-)fail-on-error: (Optional) Stops the import process early if an error occurs. By
default, the system attempts to stop at the first error.

Checking the details and progress of an import task

You can use the GetImportTask API to track the progress and the status of your import task.

aws neptune-graph get-import-task --task-id <task-id>

An Import task can be in the following state:

• INITIALIZING: The task is preparing for import, including provisioning a graph when using the
CreateGraphUsingImportTask API.

• ANALYZING_DATA: The task is taking an initial pass through the dataset to determine the
optimal configuration for the graph.

• IMPORTING: The data is being loaded into the graph.

• EXPORTING: Data is being exported from the Neptune cluster or snapshot. This is only
applicable when performing an import task with a source of Neptune and through the
CreateGraphUsingImportTask API.

• ROLLING_BACK: The import task encountered an error. Refer to the troubleshooting section to
investigate the errors. The import task will be rolled back and eventually marked as FAILED.

• SUCCEEDED: Graph creation and data loading have succeeded. Use the get-graph API to view
details of the final graph.

Checking the details and progress of an import task 43

https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_GetImportTask.html

Neptune Analytics Neptune Analytics User Guide

• REPROVISIONING: A temporary state while the graph is being reconfigured during the import
task.

• FAILED: Graph creation or data loading has failed. Refer to the troubleshooting section to
understand the reason for the failure.

• CANCELLING: The user has cancelled the import task, and cancellation is in progress.

• CANCELLED: The import task has been cancelled, and all resources have been released.

Additionally, import task can be used to track the progress of the load, error count and graph
summary.

Canceling an import task

You can cancel a running import task by using the CancelImportTask API.

aws neptune-graph cancel-import-task \
--task-id <task-id>

The import task will will be canceled and all changes rolled back. The state of the import task will
switch to CANCELING after cancel-import-task API is called and eventually the state will be
CANCELED when rollback finishes. You can check the current state of your import task using the
GetImportTask API.

aws neptune-graph get-import-task \
--task-id <task-id>

Troubleshooting

For both bulk load and batch load, all the errors and summary of the load is sent to the
CloudWatch log group in your account. To view the logs go to CloudWatch, click log groups from
the left column, then search for and click /aws/neptune/import-task-logs/.

1. Batch Load: The logs for each load is saved under /aws/neptune/import-task-logs/
<graph-id>/<load-id> CloudWatch log stream.

2. Bulk Load using Import Task: The logs are saved under /aws/neptune/import-task-logs/
<graph-id>/<task-id> CloudWatch log stream.

Canceling an import task 44

https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_CancelImportTask.html
https://docs.aws.amazon.com/neptune-analytics/latest/userguide/bulk-import-checking-details.html

Neptune Analytics Neptune Analytics User Guide

• S3_ACCESS_DENIED: The server does not have permissions to list or download the given file. Fix
the permissions and retry. See Create your IAM role for Amazon S3 access for help setting up the
Amazon S3 permissions.

• LARGE_STRING_ERROR: One or more strings exceeded the limit on the size of strings. This data
cannot be inserted as is. Update the strings exceeding the limit and retry.

• PARSING_ERROR: Error parsing the given value(s). Correct the value(s) and retry. More
information on different parsing errors is provided in this section.

• OUT_OF_MEMORY: No more data can be loaded in the current m-NCU. If encountered during
import task, set a higher m-NCU and retry. If encountered during batch load, scale the number of
m-NCU and retry the batch load.

• PARTITION_FULL_ERROR: No more data can be loaded in the internal server configuration. If
encountered during import task, the import workflow would change the server configuration
and retry. If encountered during batch load, reach out to the AWS service team to unblock
loading of new data.

Common parsing errors and solutions

Error template Solution

Invalid data type encountered for header
val:badtype when parsing line [:ID,firs
tName:String,val:badtype,:L
ABEL] .

Incorrect Datatype provided. Check the
documentation for supported data types. See
Data formats for more information.

Multi-valued columns are not supported
firstName:String[] when parsing
line [:ID,firstName:String[],val
:String,:LABEL] .

The opencypher format does not support
multivalued user defined properties. Try using
the csv format to insert multivalued vertex
properties, or remove multivalued properties.

Bad header for a file in 'OPEN_CYPHER '
format, could not determine node or relations
hip file, found system columns from 'csv'
format when parsing line [~id,firs
tName:String,val:int,:LABEL] .

Both the opencypher and csv format
expect certain header columns to be present.
Make sure you have entered them correctly.

Check the Data formats documentation for
required fields by format.

Troubleshooting 45

Neptune Analytics Neptune Analytics User Guide

Error template Solution

Bad header for a file in 'OPEN_CYPHER '
format, could not determine node or relations
hip file.

The header of the files does not have the
required system columns. Check the Data
formats for required fields by format.

Relationship file in 'OPEN_CYPHER ' format
should contain both :START_ID and
:END_ID columns when parsing line
[:START_ID,firstName:String] .

The header of the edge files does not have all
the required system columns. Check the Data
formats for required fields by format.

Invalid data type. Found system columns from
'OPEN_CYPHER ' format :ID when parsing
line [:ID,firstName:String,val:I
nt,~label] .

The opencypher and csv formats have
different system column names, and they
begin with : and ~ respectively. User defined
properties cannot begin with those reserved
prefixes in the respective formats. Confirm
the format name and system column names,
or update user defined properties to not use
reserved prefixes.

Named column name is not present for header
field :BLAH when parsing line [:ID,:BLA
H,firstName:String] .

The opencypher and csv formats have
different system column names, and they
begin with : and ~ respectively. User defined
properties cannot begin with those reserved
prefixes in the respective formats. Confirm
the format name and system column names,
or update user defined properties to not use
reserved prefixes.

System column other than ID cannot be
stored as a property: <columnHeader>.

The opencypher and csv formats have
different system column names, and they
begin with : and ~ respectively. User defined
properties cannot begin with those reserved
prefixes in the respective formats. Confirm
the format name and system column names,
or update user defined properties to not use
reserved prefixes.

Troubleshooting 46

Neptune Analytics Neptune Analytics User Guide

Error template Solution

Duplicate user column firstName when
parsing line [:ID,:LABEL, firstName
:String, firstName:String] .

The file contains duplicate user defined
property column names in the header. Remove
all of the duplicate columns.

Duplicate system column :ID found when
parsing line [:ID,:ID,firstName
:String,:LABEL] .

The file contains duplicate system column
names in the header. Remove all of the
duplicate columns.

Invalid column name provided for loading
embeddings: [abcd] for filename: someFilen
ame. Embedding column name must be
the same as their corresponding vector
index name when parsing line [:ID,firs
tName:String,abcd:Vector,:L
ABEL] in [filename] .

An incorrect name is used for the vector
embeddings.

"date" type is curretly not supported.
"datetime" may be an alternative type.

Use datetime as the field type as date type
suppoorted yet in Neptune Analytics.

Headers must be non-empty. Headers need to be non empty. If the file has
an empty line in the beginning, remove the
empty line.

Failure encounted while parsing the csv file. Likely reason is the number of columns in the
row doesn't match the number of columns
provided in the header. If you dont have a
value for a column, provide an empty value.

For example: 123,vertex,,, .

Could not process value of type:http://
www.w3.org/2001/XMLSchema#int

 for value: a when parsing line [v1,v1968
3,con,a] in [file].

There is a mismatch between the type of the
value provided for that column in the row
and the type specified in the header. In this
specific case the column header is annotated
with integer type but a is not parseable as an
integer.

Troubleshooting 47

Neptune Analytics Neptune Analytics User Guide

Error template Solution

Could not load vector embedding: [a,bc].
Check the dimensionality for this vector.

The size of the vector does not match the
dimension defined in the vector search
configuration for the graph.

Could not load vector embedding: [a,NaN].
Check the value for this vector.

Float and double values in scientific notation
are currently not supported. Also Infinity,
-Infinity , INF, -INF, and NaN are not
recognized.

Troubleshooting 48

Neptune Analytics Neptune Analytics User Guide

Security in Neptune Analytics

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Neptune Analytics,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Neptune Analytics. The following topics show you how to configure Neptune Analytics to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Neptune Analytics resources.

Topics

• Data protection in Neptune Analytics

• Identity and access management for Neptune Analytics

• Compliance validation for Neptune Analytics

• Resilience in Neptune Analytics

• Infrastructure Security in Neptune Analytics

• Cross-service confused deputy prevention

• Using service-linked roles (SLRs) in Neptune Analytics

49

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Neptune Analytics Neptune Analytics User Guide

Data protection in Neptune Analytics

The AWS shared responsibility model applies to data protection in Neptune Analytics. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Neptune Analytics or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Identity and access management for Neptune Analytics

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)

Data protection 50

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Neptune Analytics Neptune Analytics User Guide

and authorized (have permissions) to use Neptune Analytics resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Neptune Analytics works with IAM

• Identity-based policy examples for Neptune Analytics

• Troubleshooting Neptune Analytics identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Neptune Analytics.

Service user – If you use the Neptune Analytics service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Neptune
Analytics features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in Neptune Analytics, see Troubleshooting Neptune Analytics identity and
access.

Service administrator – If you're in charge of Neptune Analytics resources at your company, you
probably have full access to Neptune Analytics. It's your job to determine which Neptune Analytics
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Neptune Analytics, see How Neptune Analytics works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Neptune Analytics. To view example Neptune Analytics
identity-based policies that you can use in IAM, see Identity-based policy examples for Neptune
Analytics.

Audience 51

Neptune Analytics Neptune Analytics User Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 52

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

Neptune Analytics Neptune Analytics User Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in

Authenticating with identities 53

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Neptune Analytics Neptune Analytics User Guide

the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For

Authenticating with identities 54

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Neptune Analytics Neptune Analytics User Guide

more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Managing access using policies 55

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Neptune Analytics Neptune Analytics User Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 56

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

Neptune Analytics Neptune Analytics User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Neptune Analytics works with IAM

Before you use IAM to manage access to Neptune Analytics, learn what IAM features are available
to use with Neptune Analytics.

Working with IAM 57

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Neptune Analytics Neptune Analytics User Guide

IAM features you can use with Neptune Analytics

IAM feature Neptune Analytics support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Neptune Analytics and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Neptune Analytics

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Working with IAM 58

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Neptune Analytics Neptune Analytics User Guide

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Neptune Analytics

To view examples of Neptune Analytics identity-based policies, see Identity-based policy examples
for Neptune Analytics.

Resource-based policies within Neptune Analytics

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for Neptune Analytics

Supports policy actions Yes

Working with IAM 59

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Neptune Analytics Neptune Analytics User Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Neptune Analytics actions, see Actions Defined by Neptune Analytics in the Service
Authorization Reference.

Policy actions in Neptune Analytics use the following prefix before the action:

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 ":action1",
 ":action2"
]

To view examples of Neptune Analytics identity-based policies, see Identity-based policy examples
for Neptune Analytics.

Policy resources for Neptune Analytics

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,

Working with IAM 60

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

Neptune Analytics Neptune Analytics User Guide

specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Neptune Analytics resource types and their ARNs, see Resources Defined by Neptune
Analytics in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions Defined by Neptune Analytics .

To view examples of Neptune Analytics identity-based policies, see Identity-based policy examples
for Neptune Analytics.

Policy condition keys for Neptune Analytics

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Working with IAM 61

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Neptune Analytics Neptune Analytics User Guide

To see a list of Neptune Analytics condition keys, see Condition Keys for Neptune Analytics in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Actions Defined by Neptune Analytics .

To view examples of Neptune Analytics identity-based policies, see Identity-based policy examples
for Neptune Analytics.

ACLs in Neptune Analytics

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Neptune Analytics

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Working with IAM 62

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Neptune Analytics Neptune Analytics User Guide

Using temporary credentials with Neptune Analytics

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Neptune Analytics

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Neptune Analytics

Supports service roles Yes

Working with IAM 63

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

Neptune Analytics Neptune Analytics User Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Neptune Analytics functionality.
Edit service roles only when Neptune Analytics provides guidance to do so.

Service-linked roles for Neptune Analytics

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing Neptune Analytics service-linked roles, see Using service-
linked roles (SLRs) in Neptune Analytics.

For details about creating or managing service-linked roles for other services, see AWS services that
work with IAM. Find a service in the table that includes a Yes in the Service-linked role column.
Choose the Yes link to view the service-linked role documentation for that service.

Identity-based policy examples for Neptune Analytics

By default, users and roles don't have permission to create or modify Neptune Analytics resources.
They also can't perform tasks by using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources
that they need, an IAM administrator can create IAM policies. The administrator can then add the
IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

Identity-based policy examples 64

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html

Neptune Analytics Neptune Analytics User Guide

For details about actions and resource types defined by Neptune Analytics, including the format of
the ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Neptune
Analytics in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Neptune Analytics console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Neptune Analytics
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and

Identity-based policy examples 65

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Neptune Analytics Neptune Analytics User Guide

functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Neptune Analytics console

To access the Neptune Analytics console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Neptune Analytics resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the Neptune Analytics console, also attach the
Neptune Analytics ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",

Identity-based policy examples 66

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Neptune Analytics Neptune Analytics User Guide

 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting Neptune Analytics identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Neptune Analytics and IAM.

Topics

• I am not authorized to perform an action in Neptune Analytics

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Neptune Analytics resources

I am not authorized to perform an action in Neptune Analytics

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

Troubleshooting 67

Neptune Analytics Neptune Analytics User Guide

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to
 perform: :GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the :GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Neptune Analytics.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Neptune Analytics. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Neptune Analytics
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support

Troubleshooting 68

Neptune Analytics Neptune Analytics User Guide

resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Neptune Analytics supports these features, see How Neptune Analytics works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Compliance validation for Neptune Analytics

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance validation 69

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html

Neptune Analytics Neptune Analytics User Guide

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Neptune Analytics

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Neptune Analytics offers several features to help
support your data resiliency and backup needs.

Resilience 70

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/

Neptune Analytics Neptune Analytics User Guide

Infrastructure Security in Neptune Analytics

As a managed service, Neptune Analytics is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access Neptune Analytics through the network. Clients must
support Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must
also support cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-
Hellman) or ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7
and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that ServiceNameLongEntity gives another service
to the resource. Use aws:SourceArn if you want only one resource to be associated with the
cross-service access. Use aws:SourceAccount if you want to allow any resource in that account to
be associated with the cross-service use.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:*:123456789012:*.

Infrastructure Security 71

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Neptune Analytics Neptune Analytics User Guide

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both global condition context keys to limit permissions.

The value of aws:SourceArn must be ResourceDescription.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in ServiceNameEntity to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "servicename.amazonaws.com"
 },
 "Action": "servicename:ActionName",
 "Resource": [
 "arn:aws:servicename:::ResourceName/*"
],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:servicename:*:123456789012:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

Using service-linked roles (SLRs) in Neptune Analytics

Neptune Analytics graphs use AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to Neptune Analytics graphs.
Service-linked roles are predefined by Neptune Analytics graphs and include all the permissions
that the service requires to call other AWS services on your behalf.

A service-linked role makes using Neptune Analytics graphs easier because you don't have to add
the necessary permissions manually. Neptune Analytics defines the permissions in its service-
linked roles, and unless defined otherwise, only Neptune Analytics graphs can assume its roles.

Service-linked roles 72

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Neptune Analytics Neptune Analytics User Guide

The defined permissions include the trust policy and the permissions policy, and that permissions
policy cannot be attached to any other IAM entity. You can delete the roles only after first deleting
their related resources. This protects your Neptune Analytics graph resources because you can't
inadvertently remove the permissions to access the resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that are marked with Yes in the Service-Linked Role column.
Choose a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Neptune Analytics Graphs

Neptune Analytics graphs uses the service-linked role named
AWSServiceRoleForNeptuneGraph to allow them to call AWS services on behalf of your DB
clusters.

This service-linked role has an IAM managed permissions policy attached to it named
AWSServiceRoleForNeptuneGraphPolicy that grants it permissions to operate in your account. See
AWS managed policies for Amazon Neptune. This policy provides read-only access to all Amazon
Neptune Analytics resources along with read-only permissions for dependent services, as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GraphMetrics",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": [
 "AWS/Neptune",
 "AWS/Usage"
]
 }
 }
 },
 {
 "Sid": "GraphLogGroup",
 "Effect": "Allow",

For Graphs 73

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/neptune/latest/userguide/aws-service-role-for-neptune-graph-policy.html
https://docs.aws.amazon.com/neptune/latest/userguide/security-iam-access-managed-policies.html

Neptune Analytics Neptune Analytics User Guide

 "Action": [
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/neptune/*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "GraphLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/neptune/*:log-stream:*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 }
]
}

Note

To allow an IAM entity such as a user, group, or role to be able to create, edit, or delete a
service-linked role, you must set the appropriate permissions, like this:

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/neptune-graph.amazonaws.com/
AWSServiceRoleForNeptuneGraph",
 "Condition": {

For Graphs 74

Neptune Analytics Neptune Analytics User Guide

 "StringLike": {
 "iam:AWSServiceName":"neptune-graph.amazonaws.com"
 }
}

If those permissions have not been set, or have not yet propagated, you may receive the
following error message when you try to create a service-linked role:

Unable to create the resource. Verify that you have permission
to create service linked role. Otherwise wait and try again later.

For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for Neptune Analytics

You don't have to create a service-linked role manually for Neptune Analytics. When you create a
graph, Neptune Analytics automatically creates the service-linked role for you.

Editing a service-linked role for Neptune Analytics

Neptune Analytics doesn't allow you to edit the AWSServiceRoleForNeptuneGraph service-
linked role. After you create a service-linked role, you cannot change the name of the role because
various entities might reference it. However, you can edi t the description of the role using IAM. For
more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role

If you no longer need to use a feature or service that requires a service-linked role, it's best to
delete that role so you don't have an unused entity that is not actively monitored or maintained.

However, before you can delete the service-linked role, you must first confirm that the role has no
active sessions, and remove any resources that it uses.

To check whether a service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the
check box) of the AWSServiceRoleForNeptuneGraph role.

Creating an SLR 75

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Neptune Analytics Neptune Analytics User Guide

3. On the Summary page for the chosen role, choose the Access Advisor tab.

Note

If you are unsure whether Neptune Analytics is using the
AWSServiceRoleForNeptuneGraph role, you can try to delete the role. If the service is
using the role, then the deletion fails and you can view the AWS Regions where the role is
being used. If the role is being used, then you must wait for the session to end before you
can delete the role. You cannot revoke the session for a service-linked role.

To delete your clusters so that you can delete AWSServiceRoleForNeptuneGraph

1. Open the Neptune console at https://console.aws.amazon.com/neptune/.

2. In the navigation pane, choose Graphs.

3. Choose a cluster that you want to delete.

4. For Actions, choose Delete.

5. If you are prompted to Create final Snapshot?, choose Yes or No. If you choose Yes enter the
name of your final snapshot for Final snapshot name.

6. Choose Delete.

You can use the IAM console, the IAM CLI, or the IAM API to delete the
AWSServiceRoleForNeptuneGraph service-linked role. For more information, see Deleting a
service-linked role in the IAM User Guide.

Deleting an SLR 76

https://console.aws.amazon.com/neptune/
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/

Neptune Analytics Neptune Analytics User Guide

Querying Neptune Analytics

Neptune Analytics currently supports only the openCypher query language to access a graph.
openCypher is a declarative query language for property graphs that was originally developed by
Neo4j, then open-sourced in 2015, and contributed to the openCypher project under an Apache 2
open-source license. Its syntax is documented in the openCypher spec.

Topics

• Query APIs

• Query plan cache

• Query explain

• Statistics

• Exceptions

• Neptune Analytics openCypher data model

• Neptune Analytics openCypher specification compliance

• Transaction isolation levels in Neptune Analytics

Query APIs

The Neptune Analytics data API provides support for data operations including query execution,
query status checking, query cancellation, and graph summarizing via the HTTPS endpoint, the
AWS CLI, and the SDK.

Topics

• ExecuteQuery

• ListQueries

• GetQuery

• CancelQuery

• GraphSummary

• IAM role mappings

Query APIs 77

https://opencypher.org/
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

Neptune Analytics Neptune Analytics User Guide

ExecuteQuery

ExecuteQuery runs queries against a Neptune Analytics graph. Supported language: openCypher.

ExecuteQuery inputs

• graph-identifier (required)

Type: String

The identifier representing a graph.

• region (required)

Type: String

The region where the graph is present.

• query-string (required)

Type: String

Default: none

A string representing a query.

• language (required)

Type: Enum

Default: none

The query language the query is written in. Currently, only OPEN_CYPHER is supported.

• parameters (optional)

Type: Map

A map from String to String where the key is the parameter name and the value is the
parameter value.

• plan-cache (optional)

Type: Enum
ExecuteQuery 78

Neptune Analytics Neptune Analytics User Guide

Query plan cache is a feature that saves the query plan and reuses it on successive executions
of the same query, reducing query latency. Query plan cache works for both read-only and
mutation queries. The plan cache is an LRU cache with a five minute TTL and a capacity of 1000.
It supports the following values:

• AUTO: The engine will automatically decide to cache the query plan. If the query is
parameterized and the runtime is shorter than 100ms, the query plan is automatically cached.

• ENABLED: The query plan is cached regardless of the query runtime. The plan cache uses the
query string as the key, this means that if a query is slightly different (i.e. different constants),
it will not be able to reuse the plan cache of similar queries.

• DISABLED: The query plan cache is not used.

For more information on the query plan cache, see Query plan cache.

• explain-mode (optional)

Type: Enum

The explain mode parameters allow getting a query explain instead of the actual query results.
A query explain can be used to gather insights about the query execution such as planning
decisions, time spent on each operator, number of records flowing etc. If this parameter is not
set the query is executed normally and the result is returned. The acceptable values for query
explain are:

• STATIC: Returns a query explain without executing the query. This can give an estimate on
what the query plan looks like without actually executing the query. The static query plan
may differ from the actual query plan. Actual queries may make planning decisions based on
runtime statistics, which may not be considered when fetching a static query plan. A static
query plan is useful when it is necessary to observe a plan for a query that either does not
complete or runs for too long.

• DETAILS: Returns a detailed query plan that shows what the running query did. This includes
information such as operators runtime, number of records flowing through the plan, runtime
planning decisions and more. If a query does not succeed in NONE mode, it will not succeed in
DETAILS mode either. In this instance, you would want to use STATIC mode.

For more information on query explain and its output, see Query explain.

• query-timeout-milliseconds (optional)

Type: Enum

ExecuteQuery 79

Neptune Analytics Neptune Analytics User Guide

If specified, provides an upper bound to the query run time. This parameter will override the
graph default timeout (30 minutes). Neptune Analytics graph have a maximum query runtime of
60 minutes. If the specified timeout is greater than the maximum query runtime, the query will
only run for the maximum query runtime.

• Using the default settings, any CLI or SDK request will timeout in 60 seconds and attempt a
retry. For the cases where you are running queries that can take longer than 60 seconds, it is
recommended to set the CLI/SDK timeout to 0 (no timeout), or a much larger value to avoid
unnecesssary retries.

It is also recommended to set MAX_ATTEMPTS for CLI/SDK to 1 for execute_query to avoid
any retries by CLI/SDK.

For the Boto client, set the read_timeout to None, and the total_max_attempts to 1.

import boto3
from botocore.config import Config
n = boto3.client('neptune-graph',
 config=(Config(retries={"total_max_attempts": 1, "mode":
 "standard"}, read_timeout=None)))

For the CLI, set the --cli-read-timeout parameter to 0 for no timeout, and set the
environment variable AWS_MAX_ATTEMPTS to 1 to prevent retries.

export AWS_MAX_ATTEMPTS=1

aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;" \
--cli-read-timeout 0
--language open_cypher /tmp/out.txt

ExecuteQuery examples

AWS CLI

Sample query

ExecuteQuery 80

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;" \
--language open_cypher \
/tmp/out.txt

Sample query that prints directly to the console.
aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;" \
--language open_cypher \
/dev/stdout

parameters supported
query-string [REQUIRED] : String
language [REQUIRED] : open_cypher
explain-mode [OPTIONAL] : static | details
query-timeout-milliseconds [OPTIONAL] : Integer
plan-cache [OPTIONAL] : enabled | disabled | auto
parameters [OPTIONAL] : Map

AWSCURL

Sample query
awscurl -X POST "https://<graph-id>.data.us-east-1-alpha.p8.neptune.aws.dev/queries"
 \
-H "Content-Type: application/x-www-form-urlencoded" \
--region <region> \
--service neptune-graph \
-d "query=MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;"

ExecuteQuery output

{
 "results": [{
 "p": {
 "~id": "fa1ef9b0-fa32-4b37-8051-78f2bf0e0d63",
 "~entityType": "node",
 "~labels": ["Person"],
 "~properties": {

ExecuteQuery 81

Neptune Analytics Neptune Analytics User Guide

 "name": "Simone"
 }
 },
 "p1": {
 "~id": "edaded10-b22b-4818-a22e-ddebfcf37acb",
 "~entityType": "node",
 "~labels": ["Person"],
 "~properties": {
 "name": "Mirro"
 }
 },
 "r": {
 "~id": "neptune_reserved_1_1154145192329347075",
 "~entityType": "relationship",
 "~start": "fa1ef9b0-fa32-4b37-8051-78f2bf0e0d63",
 "~end": "edaded10-b22b-4818-a22e-ddebfcf37acb",
 "~type": "KNOWS",
 "~properties": {}
 }
 }]
}

Parameterized queries

Neptune Analytics supports parameterized openCypher queries. This allows you to use the same
query structure multiple times with different arguments. Since the query structure doesn't change,
Neptune Analytics tries to cache the plan for these parameterized queries that run in less than 100
milliseconds.

The following is an example of using a parameterized query with the Neptune openCypher HTTPS
endpoint. The query is:

MATCH (n {name: $name, age: $age})
RETURN n

The parameters are definied as follows:

parameters={"name": "john", "age": 20}

AWS CLI

Sample query

ExecuteQuery 82

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (n {name: \$name, age: \$age}) RETURN n" \
--parameters "{\"name\": \"john\", \"age\": 20}"
--language open_cypher /tmp/out.txt

AWSCURL

Sample query
awscurl -X POST "https://[graph-id].<endpoint>/queries" \
-H "Content-Type: application/x-www-form-urlencoded" \
--region <region> \
--service neptune-graph \
-d "query=MATCH (n {name: \$name, age: \$age}) RETURN n;¶meters={\"name\":
 \"john\", \"age\": 20}"

ListQueries

ListQueries API fetches the list of running/waiting/cancelling queries on the graph.

ListQueries syntax

aws neptune-graph list-queries \
 --graph-identifier <graph-id> \
 --region <region> \
 --max-results <result_count>
 --state [all | running | waiting | cancelling]

ListQueries inputs

• graph-identifier (required)

Type: String

Identifier representing your graph.

• region (required)

Type: String

Region where the graph is present.

ListQueries 83

Neptune Analytics Neptune Analytics User Guide

• max-results (required)

Type: Integer

The maximum number of results to be fetched by the API.

• state (optional)

Type: String

Supported values: all | running | waiting | cancelling

If state parameter is not specified, the API fetches all types.

ListQueries outputs

Sample Response
{
 "queries": [
 {
 "id": "130ab841-8b4b-46c3-afbe-af00274c7fd9",
 "queryString": "MATCH p=(n)-[*]-(m) RETURN p;",
 "waited": 0,
 "elapsed": 1686,
 "state": "RUNNING"
 }
]
}

The output contains a list of query objects, each containing:

• id: String - representing the unique identifier of the query.

• queryString: String - The actual query text. The queryString may be truncated if the actual
query string is too long.

• waited: Integer - The time in milliseconds for which the query has waited in the waiting queue
before being picked up by a worker thread.

• elapsed: Integer - The time in milliseconds representing the running time of the query.

• state: Current state of the query (running | waiting | cancelling).

The default list order is queries that are running, followed by waiting and cancelling.

ListQueries 84

Neptune Analytics Neptune Analytics User Guide

ListQueries Examples

AWS CLI

aws neptune-graph list-queries \
 --graph-identifier <graph-id> \
 --region us-east-1 \
 --max-results 200
 --state waiting

AWSCURL

awscurl -X GET "https://<graph-id>.<endpoint>/queries?state=WAITING&maxResults=200"
 \
 -H "Content-Type: application/x-www-form-urlencoded" \
 --region us-east-1 \
 --service neptune-graph

GetQuery

The GetQuery API can be used to get the status of a specific query request.

GetQuery inputs

• graph-identifier (required)

Type: String

The identifier representing a graph.

• region (required)

Type: String

The region where the graph is present.

• query-id (required)

Type: String

The id of the query request for which you want to get information.

GetQuery 85

Neptune Analytics Neptune Analytics User Guide

GetQuery outputs

• id: The same id used in this request.

• queryString: Non-truncated query string associated to this query-id.

• waited: Time in milliseconds this query request had to wait to be executed.

• elapsed: Time in milliseconds the query spent while in execution.

• state: Current state of the query - running | waiting | cancelling.

{
 "id" : "d6873456-40a7-44d7-be5c-46b4acfdc171",
 "queryString" : "UNWIND range(1,100000) AS i MATCH (n) RETURN i, n",
 "waited" : 1,
 "elapsed" : 8645,
 "state" : "RUNNING"
}

GetQuery examples

AWS CLI

aws neptune-graph get-query \
 --graph-identifier <graph-id> \
 --region <region> \
 --query-id <query-id>

AWSCURL

awscurl -X GET "https://<graph-id>.<endpoint>/queries/<query-id>" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 --region us-east-1 \
 --service neptune-graph

CancelQuery

CancelQuery cancels a specific query request.

CancelQuery 86

Neptune Analytics Neptune Analytics User Guide

CancelQuery inputs

• graph-identifier (required)

Type: String

The identifier representing a graph.

• region (required)

Type: String

The region where the graph is present.

• query-id (required)

Type: String

The id of the query request for which you want to cancel.

CancelQuery outputs

CancelQuery does not have any output.

CancelQuery examples

AWS CLI

aws neptune-graph cancel-query \
 --graph-identifier <graph-id> \
 --region <region> \
 --query-id <query-id>

AWSCURL

awscurl -X DELETE "https://<graph-id>.<endpoint>/queries/<query-id>" --region us-
east-1 --service neptune-graph

CancelQuery 87

Neptune Analytics Neptune Analytics User Guide

GraphSummary

You can use the GetGraphSummary API to quickly gain a high-level understanding of your graph
data, size and content. In a graph application, this API can be used to improve the search results by
providing discovered node or edge labels as part of the search.

The GetGraphSummary API retrieves a read-only list of node and edge labels and property
keys, along with counts of nodes, edges, and properties. The API also accepts an optional
parameter named mode, which can take one of two values, namely basic (the default) and
detailed. The detailed graph summary response contains two additional fields, nodeStructures and
edgeStructures.

GetGraphSummary inputs

GetGraphSummary accepts two inputs:

• graph-identifier (required) - The unique identifier of the graph.

• mode (optional) - Can be basic or detailed.

GetGraphSummary outputs

The response contains the following fields:

• version - The version of this graph summary response.

• lastStatisticsComputationTime - The timestamp, in ISO 8601 format, of the time at
which Neptune Analytics last computed statistics.

• graphSummary

• numNodes - The number of nodes in the graph.

• numEdges - The number of edges in the graph.

• numNodeLabels - The number of distinct node labels in the graph.

• numEdgeLabels - The number of disctinct edge labels in the graph.

• nodeLabels - List of distinct node labels in the graph.

• edgeLabels - List of distinct edge labels in the graph.

• numNodeProperties - The number of distinct node properties in the graph.

• numEdgeProperites - The number of distinct edge properties in the graph.
GraphSummary 88

Neptune Analytics Neptune Analytics User Guide

• nodeProperties - List of distinct node properties in the graph along with the count of nodes
where each property is used.

• edgeProperties - List of distinct edge properties in the graph along with the count of edges
where each property is used.

• totalNodePropertyValues - Total number of usages of all node properties.

• totalEdgePropertyValues - Total number of usages of all edge properties.

• nodeStructures (only present for mode=detailed) - Contains a list of node structures, each
containing the following fields:

• count - Number of nodes that have this specific structure.

• nodeProperties - List of node properties present in this specific structure.

• distinctOutgoingEdgeLabels - List of distinct outgoing edge labels present in this
specific structure.

• edgeStructures (only present for mode=detailed) - Contains a list of edge structures each
containing the following fields:

• count - Number of edges that have this specific structure.

• edgeProperties - List of edge properties present in this specific structure.

GetGraphSummary examples

AWS CLI

Sample query
aws neptune-graph get-graph-summary \
--graph-identifier <graph-id> \
--region <region>
--mode detailed

parmeters supported
mode [Optional] : basic | detailed

AWSCURL

Sample query
awscurl "https://<graph-id>.<endpoint>/summary" \
-H "Content-Type: application/x-www-form-urlencoded" \
--region <region> \

GraphSummary 89

Neptune Analytics Neptune Analytics User Guide

--service neptune-graph

Sample output payload:

this is the graph summary with "mode=detailed"
{
 "version": "v1",
 "lastStatisticsComputationTime": "2024-01-25T19:50:42+00:00",
 "graphSummary": {
 "numNodes": 3749,
 "numEdges": 57645,
 "numNodeLabels": 4,
 "numEdgeLabels": 2,
 "nodeLabels": [
 "continent",
 "country",
 "version",
 "airport"
],
 "edgeLabels": [
 "contains",
 "route"
],
 "numNodeProperties": 14,
 "numEdgeProperties": 1,
 "nodeProperties": [
 {
 "code": 3749
 },
 {
 "desc": 3749
 },
 {
 "type": 3749
 },
 {
 "city": 3504
 },
 {
 "country": 3504
 },
 {

GraphSummary 90

Neptune Analytics Neptune Analytics User Guide

 "elev": 3504
 },
 {
 "icao": 3504
 },
 {
 "lat": 3504
 },
 {
 "lon": 3504
 },
 {
 "longest": 3504
 },
 {
 "region": 3504
 },
 {
 "runways": 3504
 },
 {
 "author": 1
 },
 {
 "date": 1
 }
],
 "edgeProperties": [
 {
 "dist": 50637
 }
],
 "totalNodePropertyValues": 42785,
 "totalEdgePropertyValues": 50637,
 "nodeStructures": [// will not be present with mode=basic
 {
 "count": 3475,
 "nodeProperties": [
 "city",
 "code",
 "country",
 "desc",
 "elev",
 "icao",

GraphSummary 91

Neptune Analytics Neptune Analytics User Guide

 "lat",
 "lon",
 "longest",
 "region",
 "runways",
 "type"
],
 "distinctOutgoingEdgeLabels": [
 "route"
]
 },
 {
 "count": 238,
 "nodeProperties": [
 "code",
 "desc",
 "type"
],
 "distinctOutgoingEdgeLabels": [
 "contains"
]
 },
 {
 "count": 29,
 "nodeProperties": [
 "city",
 "code",
 "country",
 "desc",
 "elev",
 "icao",
 "lat",
 "lon",
 "longest",
 "region",
 "runways",
 "type"
],
 "distinctOutgoingEdgeLabels": []
 },
 {
 "count": 6,
 "nodeProperties": [
 "code",

GraphSummary 92

Neptune Analytics Neptune Analytics User Guide

 "desc",
 "type"
],
 "distinctOutgoingEdgeLabels": []
 },
 {
 "count": 1,
 "nodeProperties": [
 "author",
 "code",
 "date",
 "desc",
 "type"
],
 "distinctOutgoingEdgeLabels": []
 }
],
 "edgeStructures": [//will not be present with mode=basic
 {
 "count": 50637,
 "edgeProperties": [
 "dist"
]
 }
]
 }
}

IAM role mappings

When you're calling Neptune Analytics API methods on a cluster, you require an IAM policy
attached to the user or role making the calls that provides permissions for the actions you want
to make. You set those permissions in the policy using corresponding IAM actions. You can also
restrict the actions that can be taken using IAM condition keys.

Most IAM actions have the same name as the API methods that they correspond to, but some
methods in the data API have different names, because some are shared by more than one method.
The table below lists data methods and their corresponding IAM actions.

IAM role mappings 93

https://docs.aws.amazon.com/neptune/latest/userguide/iam-data-condition-keys.html

Neptune Analytics Neptune Analytics User Guide

Data API operation name IAM correspondences

ListQueries Action: ListQueries

GetQuery Action: GetQueryStatus

Cancel Query Action: CancelQuery

GetGraphSummary Action: GetGraphSummary

ExecuteQuery Action: ReadDataViaQuery

Action: WriteDataViaQuery

Action: DeleteDataViaQuery

For more information, see Actions, resources and condition keys for Neptune Analytics.

Query plan cache

When a query is submitted to Neptune , the query string is parsed and translated into a query
plan, which then gets optimized and executed by the engine. Often, the applications are backed
by common query patterns that are instantiated with different values, and query plan cache would
be optimal to reduce latency of those common query patterns. The query plan cache does this by
storing a parameterized version of frequently used query plans (at most 1000 at any point), which
gets reused and instantiated properly based on new parameter values provided, if any.

Why use the query plan cache?

Reusing the query plan can reduce the latency, as the later executions skip parsing and
optimization steps.

Where can it be used?

Query plan cache can be used for all type of queries. By default, it automatically caches plan for
low-latency parameterized queries, whose execution time is less than 100ms.

How to force enable/disable the query plan cache?

Query plan cache 94

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonneptuneanalytics.html

Neptune Analytics Neptune Analytics User Guide

For read-only queries, query plan cache is enabled by default for low-latency queries. A plan is
cached only when latency is lower than the threshold of 100ms. This behavior can be overridden
on a per-query basis by HTTP parameter. HTTP parameter --plan-cache can take enabled or
disabled as a value.

Forcing plan to be cached or reused
% aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "MATCH (n) RETURN n LIMIT 1"
 --region <region> \
 --plan-cache "enabled"
 --language open_cypher /tmp/out.txt

% aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "RETURN \$arg"
 --region <region> \
 --plan-cache "enabled" \
 --parameters "{\"arg\": 123}"
 --language open_cypher /tmp/out.txt

How to check if a plan is cached?

To check if a plan is cached, use explain. For read-only queries, if the query was submitted and
the plan was cached, explain would show explain details relevant to the query plan cache.

% aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "MATCH (n) RETURN n LIMIT 1"
 --region <region> \
 --plan-cache "enabled" \
 --explain-mode "static" \
 --language open_cypher /tmp/out.txt

Query: <QUERY STRING>
Plan cached by request: <REQUEST ID OF FIRST TIME EXECUTION>
Plan cached at: <TIMESTAMP OF FIRST TIME EXECUTION>
Parameters: <PARAMETERS IF QUERY IS PARAMETERIZED QUERY>
Plan cache hits: <NUMBER OF CACHE HITS FOR CACHED PLAN>
First query evaluation time: <LATENCY OF FIRST TIME EXECUTION>

Query plan cache 95

Neptune Analytics Neptune Analytics User Guide

The query has been executed based on a cached query plan. Detailed explain with operator
runtime statistics can be obtained by running the query with plan cache disabled (using HTTP
parameter planCache=disabled).

Note

For a mutation query, explain is not yet supported.

Eviction

A query plan is evicted by cache TTL or maximum number of cached query plans reached. When
the query plan is hit, the TTL is refreshed. The defaults are:

• The maximum number of plans cached per instance is 1000.

• TTL: 300_000 milliseconds or 5 minutes. Note that cache hit refreshes the TTL back to 5 min.

Conditions when a query plan is not cached

The following list demonstrates conditions for when a query plan would not be cached.

• If submitted with query-specific parameter --plan-cache "disabled".

• If a cache is wanted, you can rerun the query without --plan-cache "disabled".

• If the query evaluation time is larger than latency threshold, it’s not cached since it’s a long-
running query and is considered to not benefit from query plan cache.

• If the query contains pattern that does not return any results.

• i.e. MATCH (n:nonexistentLabel) return n when there are zero nodes with specified
label.

• i.e. MATCH (n {name: $param}) return n with parameters={"param": "abcde"}
when there are zero nodes with name=abcde.

• If the query parameter is composite type (list, map).

aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "RETURN \$arg"
 --region <region> \
 --plan-cache "enabled" \

Query plan cache 96

Neptune Analytics Neptune Analytics User Guide

 --parameters "{\"arg\": [1, 2, 3]}"
 --language open_cypher /tmp/out.txt

 aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "RETURN \$arg"
 --region <region> \
 --plan-cache "enabled" \
 --parameters "{\"arg\": {\"a\": 1}}"
 --language open_cypher /tmp/out.txt

• If the query parameter is a string that has not been part of data load or data insertion.

• If CREATE (n {name: "X"}), is done to insert “X”.

• RETURN “X” is cached, while RETURN “Y” isn’t, as “Y” has not been inserted and does not
exist in the database.

Query explain

The openCypher explain feature is a feature that helps users to understand how the query is
executed. Usually this is used in the context of query performance analysis.

Explain inputs

To invoke explain, you can pass the explain-mode parameter to an ExecuteQuery request
specifying the desired explain mode (i.e., level of detail), where this explain mode value can be one
of the following:

• static - In static mode, explain doesn't run the query, but instead prints only the static
structure of the query plan.

• details - In details mode, explain runs the query, and includes dynamic aspects of the query
plan. These may include the number of intermediate bindings flowing through the operators,
the ratio of incoming bindings to outgoing bindings, and the total time taken by each operator.
Additional details, such as the actual openCypher query string and the estimated range count for
the pattern underlying a join operator, are also shown.

The following code examples provide the explain-mode when using either the AWS CLI or
AWSCURL.

Query explain 97

Neptune Analytics Neptune Analytics User Guide

AWS CLI

aws neptune-graph execute-query \
--region <region> \
--graph-identifier <graph-id> \
--query-string <query-string> \
--explain-mode <explain-mode> \
--language open_cypher /tmp/out.txt

AWSCURL

awscurl -X POST "https://<graph-id>.<endpoint>/queries" \
-H "Content-Type: application/x-www-form-urlencoded" \
--region <region> \
--service neptune-graph \
-d "query=<query>&explain=<mode>"

Explain outputs

DFE operators in openCypher explain output

To use the information that the openCypher explain feature provides, you need to understand
some details about how the DFE query engine works (DFE being the engine that Neptune uses to
process openCypher queries).

The DFE engine translates every query into a pipeline of operators. Starting from the first operator,
intermediate solutions flow from one operator to the next through this operator pipeline. Each
row in the explain table represents a result, up to the point of evaluation. The operators that can
appear in a DFE query plan are as follows:

• DFEApply – Executes the function specified by functor in the arguments section, on the value
stored in the specified variable

• DFEAlgoWriteProperty – Explain operator for the property-writing portion of mutate algorithm
invocations.

• DFEBFSAlgo – Explain operator for invocations of the Breadth First Search algorithm, which
searches for nodes from a starting vertex (or starting vertices, also called multi-source BFS) in a
graph in breadth-first order.

• DFEBindRelation – Binds together variables with the specified names.

Outputs 98

Neptune Analytics Neptune Analytics User Guide

• DFEChunkLocalSubQuery – This is a non-blocking operation that acts as a wrapper around
subqueries being performed.

• DFEClosenessCentralityAlgo – Explain operator for invocations of the Closeness Centrality
algorithm, which computes a metric that can be used as a positive measure of how close a given
node is to all other nodes or how central it is in the graph.

• DFECommonNeighborsAlgo – Explain operator for invocations of the Common Neighbors
algorithm, which counts the number of common neighbors of two input nodes.

• DFECreateConstant – Extends the given input relation with new columns containing constant
values.

• DFEDegreeAlgo – Explain operator for invocations of the Degree algorithm, which calculates the
number of edges that are incident to a vertex.

• DFEDistinctColumn – Returns the distinct subset of the input values based on the variable
specified.

• DFEDistinctRelation – Returns the distinct subset of the input solutions based on the variable
specified.

• DFEDrain – Appears at the end of a subquery to act as a termination step for that subquery. The
number of solutions is recorded as Units In. Units Out is always zero.

• DFEForwardValue – Copies all input chunks directly as output chunks to be passed to its
downstream operator.

• DFEGroupByHashIndex – This is a blocking operation that organizes the rows of a relation
according to a set of variables, outputting a single group identifier column that is one-to-one
with the rows of the input relation. Groups here are defined by the join variables used to build
the hash index (See DFEHashIndexBuild for where this hash index might be built.)

• DFEHashIndexBuild – Builds a hash index over a set of variables as a side-effect. This hash index
is typically reused in later operations. (See DFEHashIndexJoin for where this hash index might be
used.)

• DFEHashIndexJoin – Performs a join over the incoming solutions against a previously built hash
index. (See DFEHashIndexBuild for where this hash index might be built.)

• DFEJaccardSimilarityAlgo – Explain operator for invocations of the Jaccard similarity algorithm,
which measures the similarity between two sets of nodes.

• DFEJoinExists – Takes a left and right hand input relation, and retains values from the left
relation that have a corresponding value in the right relation as defined by the given join
variables.

Outputs 99

Neptune Analytics Neptune Analytics User Guide

• DFELabelPropagationAlgo – Explain operator for invocations of the Label Propagation algorithm,
which is used for community detection.

• DFELoopSubQuery – This is a non-blocking operation that acts as a wrapper for a subquery,
allowing it to be run repeatedly for use in loops.

• DFEMergeChunks – This is a blocking operation that combines chunks from its upstream
operator into a single chunk of solutions to pass to its downstream operator (inverse of
DFESplitChunks).

• DFEMinus – Takes a left and right hand input relation, and retains values from the left relation
that do not have a corresponding value in the right relation as defined by the given join
variables. If there is no overlap in join variables across both relations, then this operator simply
returns the left hand input relation as is.

• DFENotExists – Takes a left and right hand input relation, and retains values from the left
relation that do not have a corresponding value in the right relation as defined by the given join
variables. If there is no overlap in join variables, then this operator will return an empty relation.

• DFEOptionalJoin – Performs the optional join A OPTIONAL B ≡ (A JOIN B) UNION (A MINUS_NE
B). This is a blocking operation.

• DFEOverlapSimilarityAlgo – Explain operator for invocations of the Overlap Similarity algorithm,
which measures the overlap between the neighbors of two nodes.

• DFEPageRankAlgo – Explain operator for invocations of the Page Rank algorithm, which
calculates a score for a given node based on the number, quality, and importance of the edges
pointing to that node.

• DFEPipelineJoin – Joins the input against the tuple pattern defined by the pattern argument.

• DFEPipelineRangeCount – Counts the number of solutions matching a given pattern, and returns
a single solution containing the count value.

• DFEPipelineScan – Scans the database for the given pattern argument, with or without a given
filter on column(s).

• DFEProject – Takes multiple input columns and projects only the desired columns.

• DFEReduce – Performs the specified aggregation function on specified variables.

• DFERelationalJoin – Joins the input of the previous operator based on the specified pattern keys
using a merge join. This is a blocking operation.

• DFERouteChunks – Takes input chunks from its singular incoming edge and routes those chunks
along its multiple outgoing edges.

Outputs 100

Neptune Analytics Neptune Analytics User Guide

• DFESCCAlgo – Explain operator for invocations of the Strongly Connected Components
algorithm, which calculates the maximally connected subgraphs of a directed graph where every
node is reachable from every other node.

• DFESelectRows – This operator selectively takes rows from its left input relation solutions to
forward to its downstream operator. The rows selected based on the row identifiers supplied in
the operator’s right input relation.

• DFESerialize – Serializes a query’s final results into a JSON string serialization, mapping each
input solution to the appropriate variable name. For node and edge results, these results are
serialized into a map of entity properties and metadata.

• DFESort – Takes an input relation and produces a sorted relation based on the provided sort key.

• DFESplitByGroup – Splits each single input chunk from one incoming edge into smaller output
chunks corresponding to row groups identified by row ids from the corresponding input chunk
from the other incoming edge.

• DFESplitChunks – Splits each single input chunk into smaller output chunks (inverse of
DFEMergeChunks).

• DFESSSPAlgo – Explain operator for invocations of the single source shortest path (SSSP)
algorithms (Delta-stepping and Bellman-ford).

• DFEStreamingHashIndexBuild – Streaming version of DFEHashIndexBuild.

• DFEStreamingGroupByHashIndex – Streaming version of DFEGroupByHashIndex.

• DFESubquery – This operator appears at the beginning of all plans and encapsulates the portions
of the plan that are run on the DFE engine, which is the entire plan for openCypher.

• DFESymmetricHashJoin – Joins the input of the previous operator based on the specified pattern
keys using a hash join. This is a non-blocking operation.

• DFESync – This operator is a synchronization operator supporting non-blocking plans. It takes
solutions from two incoming edges and forwards these solutions to the appropriate downstream
edges. For synchronization purposes, the inputs along one of these edges may be buffered
internally.

• DFETee – This is a branching operator that sends the same set of solutions to multiple operators.

• DFETermResolution – Performs a localize or globalize operation on its inputs, resulting in
columns of either localized or globalized identifiers respectively.

• DFETopKSSSPAlgo – Explain operator for invocations of the TopK hop-limited single source
(weighted) shortest path algorithm algorithm, which finds the single-source weighted shortest
paths from a source node to its neighbors out to the distance specified by maxDepth.

Outputs 101

Neptune Analytics Neptune Analytics User Guide

• DFETotalNeighborsAlgo – Explain operator for invocations of the Total Neighbors algorithm,
which counts the total number of unique neighbors of two input vertices.

• DFEUnfold – Unfolds lists of values from an input column into the output column as individual
elements.

• DFEUnion – Takes two or more input relations and produces a union of those relations using the
desired output schema.

• DFEVSSAlgo – Explain operator for invocations of the Vector similarity search algorithms, which
find similar vectors based on the distance to each other.

• DFEWCCAlgo – Explain operator for invocations of the Weakly Connected Components
algorithm, which finds the weakly-connected components in a directed graph.

• SolutionInjection – Appears before everything else in the explain output, with a value of one in
the Units Out column. However, it serves a no-op, and doesn't actually inject any solutions into
the DFE engine.

• TermResolution – Appears at the end of plans and translates of objects from the Neptune engine
into openCypher objects.

Columns in openCypher explain output

The query plan information generated as openCypher explain output contains tables with one
operator per row. The table has the following columns:

• ID – The numeric ID of this operator in the plan.

• Out #1 (and Out #2) – The ID(s) of operator(s) that are downstream from this operator. There can
be at most two downstream operators.

• Name – The name of this operator.

• Arguments – Any relevant details for the operator. This includes things like input schema, output
schema, pattern (for PipelineScan and PipelineJoin), and so on.

• Mode – A label describing fundamental operator behavior. This column is mostly blank (-). One
exception is TermResolution, where mode can be id2value_opencypher, indicating a
resolution from ID to openCypher value.

• Units In – The number of solutions passed as input to this operator. Operators without upstream
operators, such as DFEPipelineScan, SolutionInjections, and a DFESubquery with no
static value injected, would have zero value.

Outputs 102

Neptune Analytics Neptune Analytics User Guide

• Units Out – The number of solutions produced as output of this operator. DFEDrain is a special
case, where the number of solutions being drained is recorded in Units In and Units Out is
always zero.

• Ratio – The ratio of Units Out to Units In.

• Time (ms) – The CPU time consumed by this operator, in milliseconds.

Note

Depending on the level of detail selected via the explain mode parameter, some of these
columns may not appear in the output.

Explain examples

The following is a basic example of openCypher explain output. The query is a single-node
lookup in the air routes dataset for a node with the airport code ATL that invokes explain using
the details mode:

sample query
aws neptune-graph execute-query \
--region <region> \
--graph-identifier <graph-id> \
--query-string "MATCH (n {code: 'ATL'}) RETURN n" \
--explain-mode details \
--language open_cypher /tmp/out.txt

output
Query:
MATCH (n {code: 'ATL'}) RETURN n

###
ID # Out #1 # Out #2 # Name # Arguments # Mode # Units In #
 Units Out # Ratio # Time (ms) #
###
0 # 1 # - # SolutionInjection # solutions=[{}] # - # 0 #
 1 # 0.00 # 0 #
###
1 # - # - # DFESubquery # subQuery=subQuery1 # - # 0 #
 0 # 0.00 # 8.00 #
###

Examples 103

Neptune Analytics Neptune Analytics User Guide

Summed execution time # # # #
 # # 8.00 #
###

subQuery1
##
ID # Out #1 # Out #2 # Name # Arguments
 # Mode # Units In # Units Out # Ratio # Time (ms) #
##
0 # 1 # - # DFEPipelineScan (DFX) # pattern=project ?n ?n_code2 (?
n,code,?n_code2) [VERTEX_PROPERTY] # - # 0 # 1 # 0.00 # 0.03 #
inlineFilters=[(?n_code2 IN
 ["ATL"^^xsd:string])] # # # # #
 #
patternEstimate=1
 # # # # # #
##
1 # 2 # - # DFEProject (DFX) # columns=[?n]
 # - # 1 # 1 # 1.00 # 0.03 #
##
2 # 3 # - # DFESerialize (DFX) # columnsToSerialize=[?n]
 # - # 1 # 0 # 0.00 # 0.08 #
##
3 # - # - # DFEDrain (DFX) # -
 # - # 0 # 0 # 0.00 # 0 #
##
Summed execution time #
 # # # # # 0.15 #
##

At the top-level, SolutionInjection appears before everything else, with 1 unit out. Note that
it doesn't actually inject any solutions. You can see that the next operator, DFESubquery, has 0
units in.

After SolutionInjection at the top-level is the DFESubquery operator. DFESubquery
encapsulates the parts of the query execution plan that are pushed to the DFE engine (for
openCypher queries, the entire query plan is executed by the DFE). All the operators in the query
plan are nested inside subQuery1 that is referenced by DFESubquery.

Examples 104

Neptune Analytics Neptune Analytics User Guide

All the operators that are pushed down to the DFE engine have names that start with a DFE prefix.
As mentioned above, the whole openCypher query plan is executed by the DFE, so as a result, all of
the operators start with DFE.

Inside subQuery1, there can be zero (as in this case) or more DFEChunkLocalSubQuery
or DFELoopSubQuery operators that encapsulate a part of the pushed execution plan that
is executed in a memory-bounded mechanism. A DFEChunkLocalSubQuery contains one
SolutionInjection that is used as an input to the subquery. To find the table for that subquery
in the output, search for the subQuery=graph URI specified in the Arguments column for the
DFEChunkLocalSubQuery or DFELoopSubQuery operator.

In subQuery1, DFEPipelineScan with ID 0 scans the database for a specified pattern.
The pattern scans for vertices ?n with property code saved as a variable ?n_code2. The
inlineFilters argument shows the filtering for the code property equaling ATL.

Next, the DFEProject operator propagates forward only the ?n variable we’re interested in.
Finally, the DFESerialize operator performs result serialization, transforming the input solutions
into a readable format.

Statistics

Neptune Analytics uses similar statistics for planning query execution as in Neptune Database.
Computing these statistics is performed as an integrated part of the Neptune Analytics storage
system. There are a number of differences between the features and usage of statistics between
Neptune Analytics and Neptune Database:

1. Initial statistics generation is performed as part of either the initial import task or an initial
data load occurring before any query-driven updates. Subsequently, statistics re-computation is
triggered automatically based on the amount of update operations performed by the database.

2. Like with Neptune Database, Neptune Analytics has a size limit for statistics data, beyond which
statistics will be disabled. The number of predicate statistics, may not exceed one million (the
same as Neptune Database). There is no hard limit on the number of characteristic sets present
in the underlying data. However, beyond 10,000 characteristic sets, the system will begin to
merge statistics data in order to limit the overall size of data being managed.

3. Statistics generation is fully managed by the storage system. There are no APIs to disable or re-
compute statistics.

4. There are no CloudWatch metrics relating to statistics generation.

Statistics 105

https://docs.aws.amazon.com/neptune/latest/userguide/neptune-dfe-statistics.html

Neptune Analytics Neptune Analytics User Guide

Exceptions

The following table lists query-side exceptions that could be encountered while using a query.

Neptune Analytics
error code

HTTP status Retriable Description

Validation Exception 400 No Something is wrong
with the required
information - Eg. a
malformed query.

AccessDeniedExcept
ion

403 No User is not authorize
d to perform the
requested operation.

ResourceNotFoundEx
ception

404 No Requested resource is
not available.

ThrottlingException 429 Yes The server has
received too many
concurrent requests.

InternalServerErro
rException

500 Yes The server failed to
process the request
for an unknown
reason.

UnprocessableExcep
tion

422 No Request cannot be
processed due to
known reasons - Eg.
The query timed out.

ConflictException 409 Yes Concurrently running
queries attempted
to modify resources
or data records
concurrently and the

Exceptions 106

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics
error code

HTTP status Retriable Description

conflict could not be
resolved automatic
ally. Please retry with
an exponential back-
off strategy.

Neptune Analytics openCypher data model

For details on the openCypher data model, please refer to the Neptune Database documentation.
There are some differences in modeling of vertices without labels. Neptune Database adds vertices
with a default label if one is not explicitly provided. All but the last label of a vertex can be deleted.

What is a vertex?

As well as loading both vertices and edges, unlike Neptune Database, Neptune Analytics also
allows loading just edges and is still able to run algorithms and queries from that starting point.
This is useful if your main interest is, for example, loading a file of edge data from a CSV file and
running an algorithm over the data without needing to provide any additional vertex information.
This has some implications on how vertices are managed. For the Neptune Analytics query
engine, a vertex implicitly exists if it either has an explicit label, a property, or an edge. Likewise, a
vertex gets implicitly deleted if all its labels, properties, and edges get removed. Unlike Neptune
Database, Neptune Analytics stores a label for a vertex only if one is explicitly provided by the user,
and all labels of a vertex can be deleted.

This affects some common openCypher queries. An attempt to create a vertex that has neither a
label nor properties or edges has no effect. That is, queries such as CREATE (n) or CREATE (n
{`~id`: "xyz"}) do not add any vertices to the graph. CREATE (n {key:value}), where key
is different from `~id`, creates a vertex with the property key, and CREATE (n)-[knows]->(m)
creates two vertices with the one shared edge.

CREATE (n {key:value}), where key is different from `~id`, creates a vertex with the
property key, and a subsequent MATCH (n) will discover that vertex. A query such as MATCH
(n {key:value}) REMOVE n.key will remove the only property for the (edge- and label-
less) vertex, which implicitly deletes the vertex. A subsequent MATCH (n) query will not return
that vertex. Likewise, CREATE (n:Label) adds a vertex with the label Label (and no other

Data model 107

https://docs.aws.amazon.com/neptune/latest/userguide/access-graph-opencypher-data-model.html

Neptune Analytics Neptune Analytics User Guide

properties or edges). Now, MATCH (n) REMOVE n:Label deletes the only label of the vertex,
which implicitly deletes the vertex.

Similarly, CREATE (n)-[knows]->(m) creates two nodes and one edge. MATCH (n) will discover
those two vertices. Now, MATCH (n)-[r:knows]->(m) DELETE r will delete that edge, and
implicitly deletes the two vertices. Those two vertices are no longer returned when running a
MATCH (n) query.

Merge on empty vertices, MERGE (n) or MERGE (n {`~id`: "xyz"}), are not permitted
and will throw an exception. MERGE (n {key:value}) creates a vertex with property key if a
matching vertex does not exist.

The following table illustrates the differences between Neptune Database and Neptune Analytics.

Query (run on empty graph) Neptune Database Neptune Analytics

CREATE (n) Adds a vertex with label
"vertex" to the graph.

Each repeat request adds a
new vertex to the graph.

No change to the graph,
query returns without
exception.

Repeat requests similarly
do not change the graph,
and query returns without
exception.

CREATE (n {`~id`:
"xyz"})

Adds a vertex with id "xyz"
and label "vertex" to the
graph.

Repeat request fails with
exception.

No change to the graph,
query returns without
exception.

Repeat requests similarly
do not change the graph,
and query returns without
exception.

CREATE (n {key:valu
e})

Adds a vertex with label
"vertex" and property "key" to
the graph.

Adds a vertex with property
"key" to the graph. This vertex
has no label.

CREATE (n {key:valu
e})

The REMOVE query removes
the "key" property on the

The remove query removes
the property on the vertex,

Data model 108

Neptune Analytics Neptune Analytics User Guide

Query (run on empty graph) Neptune Database Neptune Analytics

MATCH (n {key:value})
REMOVE n.key

vertex. The graph contains a
vertex with label "vertex" but
no property.

MATCH (n) returns the
vertex.

and as a side effect the vertex
gets deleted from the graph.

MATCH (n) does not return
the vertex.

CREATE (n:Label
{`~id`: "xyz",
key:value})

MATCH (n {`~id`:
"xyz"}) REMOVE n:Label

The REMOVE query errors
out, the last label on a vertex
cannot be deleted.

The REMOVE query removes
the label. The graph contains
a graph with id "xyz" and
property "key".

CREATE (n)-[knows]-
>(m)

Adds two vertices with label
"vertex" and an edge with
label "knows" to the graph.

MATCH (n) returns both
those vertices.

Adds an edge between two
new vertices to the graph.

MATCH (n) returns both
those vertices.

CREATE (n)-[knows]-
>(m)

MATCH (n)-[r:knows]-
>(n) DELETE r

Deletes the edge. The graph
contains two isolated vertices.

MATCH (n) returns both
those vertices.

Deletes the edge, and as a
side effect the two vertices
also get deleted from the
graph. The graph is now
empty.

MATCH (n) does not return
the two vertices.

MERGE (n) Adds a vertex with label
"vertex" if graph is empty.

Matches all vertices in a non-
empty graph.

Throws an exception.

Data model 109

Neptune Analytics Neptune Analytics User Guide

Query (run on empty graph) Neptune Database Neptune Analytics

MERGE (n {`~id`:
"xyz"})

Adds a vertex with label
"vertex" and id "xyz" if one
does not exist in the graph.

Matches vertex with id "xyz".

Throws an exception.

MERGE (n {key:value}) Adds a vertex with label
"vertex" and property "key"
to the graph, if such a vertex
does not already exists.

Adds a vertex with property
"key" to the graph, if such a
vertex does not already exist.
This vertex has no label.

MERGE (n)-[knows]-
>(m)

Adds two vertices with label
"vertex" and an edge with
label "knows" to the graph,
if an edge with label knows
does not exist.

MATCH (n) returns both
those vertices.

Adds an edge between two
new vertices to the graph, if
an edge with label "knows"
does not exist. The two
vertices have no label.

MATCH (n) returns both
those vertices.

Note

A workaround to implicit deletion of a vertex when all of its labels, properties, and edges
get removed is to assign immutable labels to all vertices. This way, the deletion of all
properties, edges, or mutable labels of a vertex will not lead to an implicit deletion. A
vertex would not get deleted until explicitly deleted.
Likewise a workaround to no-op vertex create queries is to always create a vertex with a
label or a property. To combine it with the previous point, always create a vertex with an
immutable label. Extending this to bulk or batch loads, include all vertices in some vertex
files and assign a property or an immutable label to all vertices.

Neptune Analytics openCypher specification compliance

openCypher specification compliance 110

Neptune Analytics Neptune Analytics User Guide

Please refer to the Neptune Database documentation found here for openCypher specification
compliance, with the exception that Neptune Analytics does not support custom edge IDs.

Vertex and edge IDs

Custom IDs for vertices

Neptune Analytics supports both querying and creating vertices with custom IDs. See openCypher
custom IDs for more details.

Custom IDs for edges

Neptune Analytics does not support edge creation with custom edge IDs. Custom IDs are not
permitted in CREATE or MERGE clauses. Edges are assigned IDs by Neptune , using a reserved
prefix neptune_reserved_. Edges can be queried by the server assigned ids, just as in Neptune
Database.

Supported
MATCH (n)-[r:knows {`~id`: 'neptune_reserved_1_123456789'}]->(m)
RETURN r

Unsupported
CREATE (n:Person {name: 'John'})-[:knows {`~id`: 'john-knows->jim'}]->(m:Person {name:
 'Jim'})

Unsupported
MERGE (n)-[r:knows {`~id`: 'neptune_reserved_1_123456789'}]->(m)
RETURN r

Server assigned IDs are recycled. After an edge is deleted, a new edge created could get assigned
the same ID.

Note

The edges could get assigned new IDs if the graph gets restructured and the older IDs
would then become invalid. If the edges are reassigned IDs, older IDs would match no
other edges. It is not recommended to store these IDs externally for long-term querying
purposes.

openCypher specification compliance 111

https://docs.aws.amazon.com/neptune/latest/userguide/feature-opencypher-compliance.html
https://docs.aws.amazon.com/neptune/latest/userguide/feature-opencypher-compliance.html#opencypher-compliance-custom-ids
https://docs.aws.amazon.com/neptune/latest/userguide/feature-opencypher-compliance.html#opencypher-compliance-custom-ids
https://docs.aws.amazon.com/neptune/latest/userguide/feature-opencypher-compliance.html#opencypher-compliance-custom-ids
https://docs.aws.amazon.com/neptune/latest/userguide/feature-opencypher-compliance.html#opencypher-compliance-custom-ids

Neptune Analytics Neptune Analytics User Guide

Transaction isolation levels in Neptune Analytics

Neptune Analytics has some differences with isolation level supported by Neptune Database.

Read-only query isolation in Neptune Analytics: Neptune Analytics evaluates read-only queries
under snapshot isolation, just like Neptune Database.

Mutation query isolation in Neptune Analytics: Reads for mutation queries are normally executed
under snapshot isolation, unlike Neptune Database. This is less stricter isolation than Neptune
Database as the conditions in the query for proceeding to a write satisfied in a snapshot could have
changed concurrently before the query commits.

For some specific steps, such as node/relationship deletion or conditional creation of new data
using the MERGE step, reads also look at the concurrent writes, to avoid inconsistencies. Below are
some examples where concurrent execution of queries one and two always lead to a consistent
state. At most, one vertex gets created in example #1. The age is set to 10 or 11 in example #2,
not both. And in example #3, either the vertex is fully deleted or the age is set to 11 without any
deletion or removal of other properties.

EXAMPLE 1
Query 1: MERGE (m:Person {ssn: '123456789'})
Query 2: MERGE (n:Person {ssn: '123456789'})

EXAMPLE 2
Query 1: MATCH (n {ssn : '123456789'}) SET n.age=10
Query 2: MATCH (n {ssn : '123456789'}) SET n.age=11

EXAMPLE 3
Query 1: MATCH (n {ssn : '123456789'}) DETACH DELETE n
Query 2: MATCH (n {ssn : '123456789'}) SET n.age = 11

Conflict detection: Different from Neptune Database, conflicts are evaluated more precisely over
individual graph elements (properties or edges) rather than over a range of data. Queries one and
two in example #4 would not conflict when run concurrently because they search and merge on
different property values ('lname1' and 'lname2'). However, queries one and two in example #5
merge on different property-value sets, but they could still confict when run concurrently because
they share a property-value (firstName: 'fname').

EXAMPLE 4

Isolation levels 112

https://docs.aws.amazon.com/neptune/latest/userguide/transactions-neptune.html

Neptune Analytics Neptune Analytics User Guide

Query 1: MERGE (n {lastName: 'lname1'})
Query 2: MERGE (n {lastName: 'lname2'})

EXAMPLE 5
Query 1: MERGE (n {firstName: 'fname', lastName: 'lname1'})
Query 2: MERGE (n {firstName: 'fname', lastName: 'lname2'})

Isolation levels 113

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics algorithms

Graph algorithms are powerful tools for gaining insights into data. Neptune Analytics provides
a set of optimized in-database implementations of common graph algorithms that are exposed
as openCypher procedures. These algorithms analyze inherent aspects of the underlying graph
structure, such as connectedness (path finding), relative importance (centrality), and community
membership (community detection).

Neptune Analytics natively supports over 25 optimized graph algorithms and variants in the 5
most popular categories that help customers extract insights from their graphs, which are listed in
the following table.

Category Action Algorithms Common Uses

Pathfinding Find the existence,
quality, or availabil
ity of a path between
nodes.

• Breadth-First
Search

• Single-Source
Shortest Path

• Top-K Source
Shortest Path

• Logistics optimizat
ion

• Social network
recommendations

• Route optimization

Centrality Determines the
absolute or relative
importance of a node
in the graph.

• Degree

• PageRank

• Closeness Centralit
y

• Fraud ring/Coll
usion detection

• Social network
influencer identific
ation

• Supply chain risk
analysis

Similarity Compare the similarit
ies between different
graph structures.

• Common
Neighbors

• Total Neighbors

• Jaccard Similarity

• Overlap Similarity

• Biological structura
l analysis

• Social network
cluster comparison

• Link prediction

114

Neptune Analytics Neptune Analytics User Guide

Category Action Algorithms Common Uses

Clustering and
Community
Detection

Identify meaningfu
l groups or clusters
within graph
structures.

• Weakly Connected
Components (WCC)

• Strongly
Connected
Components (SCC)

• Label Propagation

• Social network
clusters

• Fraud ring identific
ation

• Householding

• Biological interacti
on

Vector Similarity
Search

Identify approxima
te nearest neighbor
(ANN) nodes by
comparing vector
embeddings using
the Hierarchical
Navigable Small
World (HNSW)
algorithm.

• Distance

• Top-K

• RAG applications

• Knowledge graph
backed chat bots

• Approximate
nearest neighbors

Many of these algorithms require interacting with most or all the nodes and edges in a graph,
often in an iterative fashion. As a result, they are too computationally expensive to process using
normal analytic technologies. Neptune Analytics has built highly optimized implementations that
allow them to run over graphs of any size.

Algorithms in Neptune Analytics are integrated naturally into openCypher through the CALL
clause, as illustrated below. This lets you combine algorithms naturally with openCypher clauses,
functions, and semantics to build very complex queries. For example, you could look for the top 10
most important airports in the US-AK region like this:

MATCH (n:airport {region: 'US-AK'})
CALL neptune.algo.pageRank(n, {edgeLabels: ['route'], numOfIterations: 10})
YIELD rank
RETURN n.code, rank
ORDER BY rank DESC LIMIT 10

115

Neptune Analytics Neptune Analytics User Guide

You can run algorithms in the SDKs using the ExecuteOpenCypherQuery operation or in boto3
and the AWS CLI using the execute-query command. If you don't want to use the SDK or CLI, you
can use you can use awscurl to sign your Neptune Analytics requests using signed using Signature
Version 4 (Sig4). For example, you can run a simple breadth-first search like this:

awscurl -X POST -H "Content-Type: application/x-www-form-urlencoded" \
 https://(graphIdentifier).(region).neptune-graph.amazonaws.com/opencypher \
 --service neptune-graph \
 --region (region) \
 -d "query=CALL neptune.algo.bfs([\"101\", \"102\"], {edgeLabels: [\"route\"]})"

You could run the same query using the AWS CLI like this:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.algo.bfs(["101", "102"], {edgeLabels: ["route"]})' \
 --language open_cypher \
 /tmp/out.txt

Algorithms having signatures with different kinds of input in Neptune Analytics are exposed as
separate algorithms. Unless otherwise indicated, the examples here are using the Air Routes
dataset.

Neptune Analytics currently supports five main categories of algorithm:

• Path finding algorithms – These find the existence, quality, or availability of a path or paths
between two or more nodes in the graph. A path in this sense is a set of nodes and connecting
edges.

By efficiently determining the optimal route between two nodes, path-finding algorithms enable
you to model real-world systems like roads or social networks as interconnected nodes and
edges. Finding the shortest paths between various points is crucial in applications like route
planning for GPS systems, logistics optimization, and even in solving complex problems in fields
like biology or engineering.

• Centrality algorithms – These are used to determine the absolute or relative importance or
influence of a node or nodes in the graph.

By identifying the most influential or important nodes within a network, centrality algorithms
can provide insights about key players or critical points of interaction. This is valuable in social

116

https://docs.aws.amazon.com/neptune/latest/userguide/iam-auth-connect-command-line.html#iam-auth-connect-awscurl
https://docs.aws.amazon.com/general/latest/gr/signing-aws-api-requests.html
https://docs.aws.amazon.com/general/latest/gr/signing-aws-api-requests.html
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

network analysis, where it helps pinpoint influential individuals, and in transportation networks,
where it aids in identifying crucial hubs for efficient routing and resource allocation.

• Similarity algorithms – Graph similarity algorithms allow you to compare and analyze the
similarities and dissimilarities between different graph structures, which can provide insight
into relationships, patterns, and commonalities across diverse datasets. This is invaluable in
various fields, such as biology, for comparing molecular structures, such as social networks, for
identifying similar communities, and such as recommendation systems, for suggesting similar
items based on user preferences.

• Clustering or community-detection algorithms – Community-detection algorithms can identify
meaningful groups or clusters of nodes in a network, revealing hidden patterns and structures
that can provide insights into the organization and dynamics of complex systems. This is valuable
in social network analysis, and in biology, for identifying functional modules in protein-protein
interaction networks, and more generally for understanding information flow and influence
propagation in many different domains.

• Vector Similarity Search – Vector similarity algorithms work by using vector based
representations of data, a.k.a. embeddings, to answer questions about the data's context
and its similarity and connection to other data. This is valuable in applications such as
Retrieval Augmented Generation (RAG) applications, knowledge graph backed chatbots, and
recommendation engines.

Custom Algorithms

Property graph information

Property Graph Information (graph.pg_info) summarizes some of the basic metrics of the graph,
such as the number of vertices, the number of edges, the number of edge properties, the number
of vertex properties, the number of edge labels, and the number of vertex labels.

Inputs for graph.pg_info

There are no inputs for graph.pg_info.

Outputs for graph.pg_info

There are two columns in the output relation: the first column is the metric name and the second
column is the count.

Custom 117

Neptune Analytics Neptune Analytics User Guide

metric: the metrics that graph.pg_info will return, which include:

• numVertices: the number of vertices in the graph.

• numEdges: the number of edges in the graph.

• numVertexProperties: the number of node properties in the graph.

• numEdgeProperties: the number of edge properties in the graph.

• numVertexLabels: the number of unique vertex labels in the graph.

• numEdgeLabels: the number of unique edge labels in the graph.

count

• count: the value of the above metrics.

graph.pg_info query example

Syntax
CALL neptune.graph.pg_info()
YIELD metric, count
RETURN metric, count

graph.pg_info query integration

sample query integration
CALL neptune.graph.pg_info()
YIELD metric, count
WHERE metric = 'numVertices'
RETURN count

Sample graph.pg_info output

sample output of graph.pg_info
aws neptune-graph execute-query \

 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.graph.pg_info()
 YIELD metric, count
 RETURN metric, count " \
 --language open_cypher \

Property graph 118

Neptune Analytics Neptune Analytics User Guide

 /tmp/out.txt
cat /tmp/out.txt
{
 "results": [{
 "metric": "numVertices",
 "count": 3748
 }, {
 "metric": "numEdges",
 "count": 57538
 }, {
 "metric": "numVertexProperties",
 "count": 42773
 }, {
 "metric": "numEdgeProperties",
 "count": 50532
 }, {
 "metric": "numVertexLabels",
 "count": 4
 }, {
 "metric": "numEdgeLabels",
 "count": 2
 }]
}

Property graph 119

Neptune Analytics Neptune Analytics User Guide

Path-finding algorithms in Neptune Analytics

Path-finding algorithms are a category of graph algorithms that focus on finding a path, a
connected set of nodes and edges, between two or more sets of nodes within a graph. They are
often used to find available or optimized paths based on the existence, quantity, or quality of the
paths and the values of properties along those paths.

By efficiently determining the best route between two nodes, path-finding algorithms enable you
to model real-world systems like roads or social networks as interconnected nodes and edges.
Finding the shortest paths between various points is crucial in applications like route planning for
GPS systems, logistics optimization, and even in solving complex problems in fields like biology or
engineering.

Breadth-first search (BFS) path finding algorithms

Breadth-first search (BFS) path-finding algorithms search for nodes in breadth-first order, starting
from a single vertex. They can also, in the multi-source case, start from more than one vertex.

They can systematically explore and evaluates all neighboring nodes from a starting point before
moving on to the neighbors of those nodes, which ensures that the algorithm searches the
shallowest levels of the graph first.

Breadth-first-search is used in computer networking to find the shortest path between two devices,
and in social networks to understand how information spreads through connections, and in games
to explore possible moves and strategies.

Time complexity – The time complexity of breadth-first search algorithms is O(|V|+|E|),
where |V| is the number of vertices in the graph and |E| is the number of edges in the graph.

A breadth-first algorithm can be invoked as a standalone operation whose inputs are explicitly
defined, or as a query-algorithm integration which takes as its input the output of an immediately
preceding MATCH clause.

Neptune Analytics supports these BFS algorithms:

• .bfs – This standard breadth-first search algorithm starts from the source vertex of the graph
and returns a column of visited vertices.

• .bfs.parents – This variant of BFS starts from a source vertex or vertices and finds the
parent of each vertex during the search. It returns a key column of the vertices and a value
column of the parents of the key vertices.

Path-finding algorithms 120

Neptune Analytics Neptune Analytics User Guide

• .bfs.levels – This variant of BFS starts from a source vertex or vertices and finds the levels
of each vertex during the search. It returns a key column of the vertices and a value column of
integers that are the level values of the key vertices.

Note that the level of a source vertex is 0.

Single-source shortest-path algorithms

A single-source-shortest-path algorithm finds the shortest paths (or the distance of the shortest
paths) between a given vertex and all reachable vertices in the graph (including itself).

By determining the most efficient routes from a single starting node to all other nodes in the
graph, single-source-shortest-path can be used calculate the shortest distances or lowest cost
required to reach each destination. This is applicable in GPS systems to find the fastest routes
between a starting point and differeent destinations, and in logistics to optimize delivery routes,
and in transportation planning for efficient navigation through road networks.

Neptune Analytics supports the following single-source-shortest-path (SSSP) algorithms:

• .sssp.bellmanFord – Computes the shortest path distances from a source vertex to all
other vertices in the graph using the Bellman-Ford algorithm. Positive edge weights must be
provided using the edgeWeightProperty, and the traversal direction must not be set to both.

• .sssp.bellmanFord.parents – Identifies the parent vertices along the shortest paths from
the source vertex to all other vertices in the graph using the Bellman-Ford algorithm. Positive
edge weights must be provided using the edgeWeightProperty, and the traversal direction
must not be set to both.

• .sssp.deltaStepping – Computes the shortest path distances from a source vertex to
all other vertices in the graph using a delta-stepping algorithm. Positive edge weights must be
provided using the edgeWeightProperty, and the traversal direction must not be set to both.

• .sssp.deltaStepping.parents – Identifies the parent vertices along the shortest paths
from the source vertex to all other vertices in the graph using a delta-stepping algorithm.
Positive edge weights must be provided using the edgeWeightProperty, and the traversal
direction must not be set to both.

• .topksssp – The TopK hop-limited single source shortest path algorithm finds the single-
source weighted shortest paths starting from a source vertex to all its maxDepth neighbors. The
distance or cost from the source vertex to each target vertex is accumulated on the edge weights
of the path. The topK distances of the paths are sorted in descending or ascending order.

SSSP algorithms 121

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Parallel_single-source_shortest_path_algorithm#Delta_stepping_algorithm

Neptune Analytics Neptune Analytics User Guide

The algorithm can be run unweighted as well as weighted. When you run it unweighted, it's
equivalent to .bfs.levels.

SSSP algorithms 122

Neptune Analytics Neptune Analytics User Guide

Standard breadth-first search (BFS) algorithm

Standard breadth-first search (BFS) is an algorithm for finding nodes from a starting node or nodes
in a graph in breadth-first order.

It returns the source node or nodes that it started from, and all of the nodes visited by each search.

Note

Because every source node passed in leads to its own execution of the algorithm, your
queries should limit the number of source nodes as much as possible.

.bfs syntax

CALL neptune.algo.bfs(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 maxDepth: maximum number of hops to traverse from a source node (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.bfs inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The source-node list contains the node or nodes used as the starting locations for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

.bfs 123

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only nodes matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• maxDepth (optional) – type: positive integer or 0 or -1; default: -1.

The maximum number of hops to traverse from a source node. If set at -1 then there's no
maximum depth limit. If set to 0, only the nodes in the source node list are returned.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "oubound", or "both".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

.bfs outputs

The .bfs algorithm returns:

• source – type: Node[].

The source nodes.

• node – type: Node[].

The nodes that the algorithm traversed from each source node.

.bfs 124

Neptune Analytics Neptune Analytics User Guide

.bfs query examples

This is a standalone example, where the query provides an explicit source node list.

CALL neptune.algo.bfs(
 ["101", "102"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 maxDepth: 11,
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD node

You can run that query using the execute-query operation in the AWS CLI like this:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.algo.bfs(["101", "102"],
 {edgeLabels: ["route"], vertexLabel: "airport", maxDepth: 11,
 traversalDirection: "both", concurrency: 2})' \
 --language open_cypher \
 /tmp/out.txt

A query like this one would return an empty result because the source list is empty:

CALL neptune.algo.bfs([], {edgeLabels: ["route"]})

By default, both the source nodes ("source" output) and the visited nodes ("node" output) are
returned. You can use YIELD to specify which of those outputs you would like to see. For example,
to see only the "node" outputs:

CALL neptune.algo.bfs(["101"], {edgeLabels: ["route"]}) YIELD node

The examples below are query integration examples, where .bfs follows a MATCH clause and uses
the output of the MATCH clause as its source node list:

MATCH (n) WITH n LIMIT 5
CALL neptune.algo.bfs(n, {edgeLabels: ["route"]})

.bfs 125

Neptune Analytics Neptune Analytics User Guide

YIELD node
RETURN node

The MATCH clause can also explitly specify a starting node list using the id() function, like this:

MATCH (n) where id(n)="101"
CALL neptune.algo.bfs(n, {edgeLabels: ["route"]})
YIELD node
RETURN node

Also:

MATCH (n) where id(n) IN ["101", "102"]
CALL neptune.algo.bfs(n, {edgeLabels: ["route"]})
YIELD node
RETURN COUNT(node)

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .bfs output

Here is an example of the output returned by .bfs when run against the sample air-routes dataset
using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.bfs(['101'], {maxDepth: 1}) yield source, node
 return source, node limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [{
 "source": {

.bfs 126

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.681099891662599,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.74700164794901,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "1483",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 39.490000000000002,
 "elev": 4557,
 "longest": 9186,
 "city": "Ordos",
 "type": "airport",
 "region": "CN-15",
 "desc": "Ordos Ejin Horo Airport",
 "code": "DSN",
 "lon": 109.861388889,
 "country": "CN",
 "icao": "ZBDS",
 "runways": 1
 }
 }
 }, {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.681099891662599,

.bfs 127

Neptune Analytics Neptune Analytics User Guide

 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.74700164794901,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "103",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.972599029541001,
 "elev": 622,
 "longest": 12139,
 "city": "Moscow",
 "type": "airport",
 "region": "RU-MOS",
 "desc": "Moscow, Sheremetyevo International Airport",
 "code": "SVO",
 "lon": 37.414600372314503,
 "country": "RU",
 "icao": "UUEE",
 "runways": 2
 }
 }
 }]
}

.bfs 128

Neptune Analytics Neptune Analytics User Guide

Parents breadth-first search (BFS) algorithm

The parents variant of breadth-first search is an algorithm for finding nodes from a starting node
or vertices in breadth-first order and then performing a breadth-first search for the parent of each
node.

It returns a key column of vertices, and a value column of the vertices that are the parents of the
key vertices. The parent of a source node is itself.

Note

Because every source node passed in initiates its own execution of the algorithm, your
queries should limit the number of source nodes as much as possible.

.bfs.parents syntax

CALL neptune.algo.bfs.parents(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 maxDepth: maximum number of hops to traverse from a source node (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node and/or parent)
RETURN the outputs to return

.bfs.parents inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The source-node list contains the node or nodes used as the starting locations for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

.bfs.parents 129

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only vertices matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• maxDepth (optional) – type: positive inteeger or 0 or -1; default: -1.

The maximum number of hops to traverse from a source node. If set at -1 then there's no
maximum depth limit. If set to 0, only the vertices in the source node list are returned.

• traversalDirection (optional) – type: string; default: outbound.

The direction of edge to follow. Must be one of: inbound, oubound, or both.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

.bfs.parents outputs

The .bfs.parents algorithm returns:

• source – type: Node[].

The source nodes.

• node – type: Node[].

The vertices that the algorithm traversed from each source node.

• parent – type: Node[].

The parents of those traversed nodes..bfs.parents 130

Neptune Analytics Neptune Analytics User Guide

.bfs.parents query examples

Thus is a standalone examples, where the source node list is explicitly provided in the query:

CALL neptune.algo.bfs.parents(
 ["105", "113"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 maxDepth: 2,
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD node, parent

A query like this one would return an empty result because the source list is empty:

CALL neptune.algo.bfs.parents([], {edgeLabels: ["route"]})

This is a query integration example, where .bfs.parents follows a MATCH clause that provides
the source node list for .bfs.parents:

Match (n) with n LIMIT 5
CALL neptune.algo.bfs.parents(n, {edgeLabels: ["route"]})
YIELD node
RETURN n, node

This query is an example of aliasing the algorithm output:

MATCH (n {code: "AUS"})
CALL neptune.algo.bfs.parents(n, { edgeLabels: ["route"], maxDepth: 2})
YIELD node AS ReachedNode
RETURN ReachedNode

This query searches for routes to BFS from BKK, returning the starting node (BKK), 5 visited
vertices, and their parents:

MATCH (n) where n.code CONTAINS "BKK"
CALL neptune.algo.bfs.parents(n, {edgeLabels: ["route"]})
YIELD node, parent

.bfs.parents 131

Neptune Analytics Neptune Analytics User Guide

RETURN n, node, parent
LIMIT 5

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .bfs.parents output

Here is an example of the output returned by .bfs when run against the sample air-routes dataset
using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.bfs.parents(['101'], {maxDepth: 1})
 YIELD source, node, parent
 RETURN source, node, parent
 LIMIT 2"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",

.bfs.parents 132

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "1483",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 39.49,
 "elev": 4557,
 "longest": 9186,
 "city": "Ordos",
 "type": "airport",
 "region": "CN-15",
 "desc": "Ordos Ejin Horo Airport",
 "code": "DSN",
 "lon": 109.861388889,
 "country": "CN",
 "icao": "ZBDS",
 "runways": 1
 }
 },
 "parent": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 }

.bfs.parents 133

Neptune Analytics Neptune Analytics User Guide

 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "103",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.972599029541,
 "elev": 622,
 "longest": 12139,
 "city": "Moscow",
 "type": "airport",
 "region": "RU-MOS",
 "desc": "Moscow, Sheremetyevo International Airport",
 "code": "SVO",
 "lon": 37.4146003723145,
 "country": "RU",
 "icao": "UUEE",
 "runways": 2
 }
 },
 "parent": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],

.bfs.parents 134

Neptune Analytics Neptune Analytics User Guide

 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 }
 }
]
}

.bfs.parents 135

Neptune Analytics Neptune Analytics User Guide

Levels breadth-first search (BFS) algorithm

The levels variant of breadth-first search is an algorithm for searching nodes from a starting
node or nodes in breadth-first order. From there it performs a breadth-first search and records the
hop level from the starting node of each node that it finds.

It returns a key column of nodes, and a value column containing the level values of those key
nodes.

The level of a source node is 0. Note that because every source node passed into breadth-first
search levels initiates its own execution of the algorithm, your queries should filter to a subset of
the graph before executing BFS levels whenever possible.

.bfs.levels syntax

CALL neptune.algo.bfs.levels(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 maxDepth: maximum number of hops to traverse from a source node (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.bfs.levels inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The source-node list contains the node or nodes used as the starting locations for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

.bfs.levels 136

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only nodes matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• maxDepth (optional) – type: positive integer or 0 or -1; default: -1.

The maximum number of hops to traverse from a source node. If set at -1 then there's no
maximum depth limit. If set to 0, only the nodes in the source node list are returned.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "oubound", or "both".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

.bfs.levels outputs

The .bfs.levels algorithm returns:

• source – type: Node[].

The source nodes.

• node – type: Node[].

The nodes that the algorithm traversed from each source node.

• level – type: integer[].

The hop levels of those traversed nodes..bfs.levels 137

Neptune Analytics Neptune Analytics User Guide

.bfs.levels standalone query examples

The examples below are standalone examples, where the query provides an explicit source node
list.

A query like this one would return an empty result because the source list is empty:

CALL neptune.algo.bfs.levels(
 ["101", "102"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 maxDepth: 6,
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD node

You can run the algorithm using the execute-query operation in the AWS CLI like this:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.algo.bfs.levels(["101", "102"], {edgeLabels:
 ["route"]})' \
 --language open_cypher \
 /tmp/out.txt

By default, all the outputs are generated. You can use YIELD to specify which of those outputs to
generate. For example, to generate only the "node" and level outputs:

CALL neptune.algo.bfs.levels(["101"], {edgeLabels: ["route"]}) YIELD node, level

.bfs.levels query integration examples

The examples below are query integration examples, where .bfs.levels follows a MATCH clause
and uses the output of the MATCH clause as its source node list:

MATCH (n) WITH n LIMIT 5
CALL neptune.algo.bfs.levels(n, {edgeLabels: ["route"]})
YIELD node, level

.bfs.levels 138

Neptune Analytics Neptune Analytics User Guide

RETURN n, node, level

This query illustrates various ways to constrain the input and output:

MATCH (n) where id(n)="101"
CALL neptune.algo.bfs.levels(n, { edgeLabel: "route", maxDepth: 2})
YIELD node, level WHERE node.city CONTAINS "New"
RETURN n.city, node.city, level

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .bfs.levels output

Here is an example of the output returned by .bfs.levels when run against the sample air-
routes dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.bfs.levels(['101'], {maxDepth: 1}) yield source,
 node, level return source, node, level limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,

.bfs.levels 139

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "1483",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 39.49,
 "elev": 4557,
 "longest": 9186,
 "city": "Ordos",
 "type": "airport",
 "region": "CN-15",
 "desc": "Ordos Ejin Horo Airport",
 "code": "DSN",
 "lon": 109.861388889,
 "country": "CN",
 "icao": "ZBDS",
 "runways": 1
 }
 },
 "level": 1
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",

.bfs.levels 140

Neptune Analytics Neptune Analytics User Guide

 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "103",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.972599029541,
 "elev": 622,
 "longest": 12139,
 "city": "Moscow",
 "type": "airport",
 "region": "RU-MOS",
 "desc": "Moscow, Sheremetyevo International Airport",
 "code": "SVO",
 "lon": 37.4146003723145,
 "country": "RU",
 "icao": "UUEE",
 "runways": 2
 }
 },
 "level": 1
 }
]
}

.bfs.levels 141

Neptune Analytics Neptune Analytics User Guide

Bellman-Ford single source shortest path (SSSP) algorithm

The .sssp.bellmanFord algorithm computes the shortest path distances from a single source
vertex to all other vertices in the graph using the Bellman-Ford algorithm.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.bellmanFord syntax

CALL neptune.algo.sssp.bellmanFord(
 [source-node list (required)],
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.bellmanFord inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; default: none.

.sssp.bellmanFord 142

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

Neptune Analytics Neptune Analytics User Guide

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only nodes matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "oubound".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

Outputs for the .sssp.bellmanFord algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.

• distance – The distance between the source node and the found node.

.sssp.bellmanFord query examples

This is a standalone query, where a source node (or nodes) is explicitly provided:

.sssp.bellmanFord 143

Neptune Analytics Neptune Analytics User Guide

CALL neptune.algo.sssp.bellmanFord(
 [101],
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where .sssp.bellmanFord follows a MATCH clause and uses
the output of the MATCH clause as its source node list:

MATCH (source:airport {code: 'ANC'})
CALL neptune.algo.sssp.bellmanFord(
 "101",
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD node, parent, distance
RETURN source, node, parent, distance

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .sssp.bellmanFord output

Here is an example of the output returned by .sssp.bellmanFord when run against the sample
air-routes dataset using this query:

.sssp.bellmanFord 144

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.sssp.bellmanFord(['101'],
 {edgeWeightProperty: 'dist', edgeWeightType: 'int'})
 yield source, node, distance
 return source, node, distance
 limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2709",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,

.sssp.bellmanFord 145

Neptune Analytics Neptune Analytics User Guide

 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "prscore": 0.00016044313088059425,
 "degree": 18,
 "lon": 72.6988983154297,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "distance": 3812
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2667",
 "~entityType": "node",
 "~labels": ["airport"],

.sssp.bellmanFord 146

Neptune Analytics Neptune Analytics User Guide

 "~properties": {
 "lat": 56.8567008972168,
 "elev": 2188,
 "longest": 6562,
 "city": "Ust-Kut",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Ust-Kut Airport",
 "code": "UKX",
 "prscore": 0.000058275499999999997,
 "degree": 4,
 "lon": 105.730003356934,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UITT",
 "runways": 1
 }
 },
 "distance": 2993
 }
]
}

.sssp.bellmanFord 147

Neptune Analytics Neptune Analytics User Guide

Bellman-Ford single source shortest path (SSSP) parents algorithm

The .sssp.bellmanFord.parents algorithm uses the Bellman-Ford algorithm to find the
parent nodes along with the shortest path distances from the source node to all other nodes in the
graph.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.bellmanFord.parents syntax

CALL neptune.algo.sssp.bellmanFord.parents(
 [source-node list (required)],
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.bellmanFord.parents inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

.sssp.bellmanFord.parents 148

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; example: "distnce"; default: none.

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only nodes matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "oubound".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

Outputs for the .sssp.bellmanFord.parents algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.

• distance – The distance between the source node and the found node.

• parent – The parent of the found node. Note that the parent of the source vertex is itself.
.sssp.bellmanFord.parents 149

Neptune Analytics Neptune Analytics User Guide

.sssp.bellmanFord.parents query examples

This is a standalone query, where a source node (or nodes) is explicitly provided:

CALL neptune.algo.sssp.bellmanFord.parents(
 [101],
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where where .sssp.bellmanFord.parents follows a
MATCH clause and uses the output of the MATCH clause as its source node list:

MATCH (source:airport {code: 'ANC'})
CALL neptune.algo.sssp.bellmanFord.parents(
 "101",
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD node, parent, distance
RETURN source, node, parent, distance

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

.sssp.bellmanFord.parents 150

Neptune Analytics Neptune Analytics User Guide

Sample .sssp.bellmanFord.parents output

Here is an example of the output returned by .sssp.bellmanFord.parents when run against
the sample air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.sssp.bellmanFord.parents(['101'],
 {edgeWeightProperty: 'dist', edgeWeightType: 'int'})
 yield source, node, parent
 return source, node, parent
 limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2709",

.sssp.bellmanFord.parents 151

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "prscore": 0.00016044313088059425,
 "degree": 18,
 "lon": 72.6988983154297,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "parent": {
 "~id": "810",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.0125999450684,
 "elev": 365,
 "longest": 11818,
 "city": "Novosibirsk",
 "type": "airport",
 "region": "RU-NVS",
 "desc": "Tolmachevo Airport",
 "code": "OVB",
 "prscore": 0.0012910010991618038,
 "degree": 162,
 "lon": 82.6507034301758,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UNNT",
 "runways": 2
 }
 }
 },
 {

.sssp.bellmanFord.parents 152

Neptune Analytics Neptune Analytics User Guide

 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2667",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 56.8567008972168,
 "elev": 2188,
 "longest": 6562,
 "city": "Ust-Kut",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Ust-Kut Airport",
 "code": "UKX",
 "prscore": 0.000058275499999999997,
 "degree": 4,
 "lon": 105.730003356934,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UITT",
 "runways": 1
 }
 },

.sssp.bellmanFord.parents 153

Neptune Analytics Neptune Analytics User Guide

 "parent": {
 "~id": "1038",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 52.2680015563965,
 "elev": 1675,
 "longest": 10384,
 "city": "Irkutsk",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Irkutsk Airport",
 "code": "IKT",
 "prscore": 0.0008466026629321277,
 "degree": 84,
 "lon": 104.388999938965,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UIII",
 "runways": 1
 }
 }
 }
]
}

.sssp.bellmanFord.parents 154

Neptune Analytics Neptune Analytics User Guide

Delta-stepping single source shortest path (SSSP) algorithm

The .sssp.deltaStepping algorithm computes the shortest path distances from a single source
vertex to all other vertices in the graph using a delta-stepping algorithm.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.deltaStepping syntax

CALL neptune.algo.sssp.deltaStepping(
 [source-node list (required)],
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 delta: the stepping delta (optional)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.deltaStepping inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

.sssp.deltaStepping 155

https://en.wikipedia.org/wiki/Parallel_single-source_shortest_path_algorithm#Delta_stepping_algorithm

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; default: none.

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• delta (optional) – type: float; example: 3.0; default: 2.0.

The delta stepping value.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only nodes matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "oubound".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

Outputs for the sssp.deltaStepping algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.
.sssp.deltaStepping 156

Neptune Analytics Neptune Analytics User Guide

• distance – The distance between the source node and the found node.

.sssp.deltaStepping query examples

This is a standalone query, where a source node (or nodes) is explicitly provided:

CALL neptune.algo.sssp.deltaStepping(
 [101],
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where where .sssp.deltaStepping follows a MATCH clause
and uses the output of the MATCH clause as its source node list:

MATCH (source:airport {code: 'ANC'})
CALL neptune.algo.sssp.deltaStepping(
 "101",
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD node, parent, distance
RETURN source, node, parent, distance

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

.sssp.deltaStepping 157

Neptune Analytics Neptune Analytics User Guide

Sample .sssp.deltaStepping output

Here is an example of the output returned by .sssp.deltaStepping when run against the
sample air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.sssp.deltaStepping(['101'],
 {edgeWeightProperty: 'dist', edgeWeightType: 'int'})
 yield source, node, distance
 return source, node, distance
 limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2709",

.sssp.deltaStepping 158

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "prscore": 0.00016044313088059425,
 "degree": 18,
 "lon": 72.6988983154297,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "distance": 3812
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }

.sssp.deltaStepping 159

Neptune Analytics Neptune Analytics User Guide

 },
 "node": {
 "~id": "2667",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 56.8567008972168,
 "elev": 2188,
 "longest": 6562,
 "city": "Ust-Kut",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Ust-Kut Airport",
 "code": "UKX",
 "prscore": 0.000058275499999999997,
 "degree": 4,
 "lon": 105.730003356934,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UITT",
 "runways": 1
 }
 },
 "distance": 2993
 }
]
}

.sssp.deltaStepping 160

Neptune Analytics Neptune Analytics User Guide

Delta-stepping aingle source shortest path (SSSP) parents algorithm

The .sssp.deltaStepping.parents algorithm computes the shortest path distances from a
single source vertex to all other vertices in the graph using a delta-stepping algorithm.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.deltaStepping.parents syntax

CALL neptune.algo.sssp.deltaStepping.parents(
 [source-node list (required)],
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 delta: the stepping delta (optional)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.deltaStepping.parents inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

.sssp.deltaStepping.parents 161

https://en.wikipedia.org/wiki/Parallel_single-source_shortest_path_algorithm#Delta_stepping_algorithm

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; default: none.

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• delta (optional) – type: float; example: 3.0; default: 2.0.

The delta stepping value.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only nodes matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "oubound".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

Outputs for the sssp.deltaStepping.parents algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.
.sssp.deltaStepping.parents 162

Neptune Analytics Neptune Analytics User Guide

• distance – The distance between the source node and the found node.

• parent – The parent of the found node. Note that the parent of the source vertex is itself.

.sssp.deltaStepping.parents query examples

This is a standalone query, where a source node (or nodes) is explicitly provided:

CALL neptune.algo.sssp.deltaStepping.parents(
 [101],
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where where .sssp.deltaStepping.parents follows a
MATCH clause and uses the output of the MATCH clause as its source node list:

MATCH (source:airport {code: 'ANC'})
CALL neptune.algo.sssp.deltaStepping.parents(
 "101",
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD node, parent, distance
RETURN source, node, parent, distance

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which

.sssp.deltaStepping.parents 163

Neptune Analytics Neptune Analytics User Guide

can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .sssp.deltaStepping.parents output

Here is an example of the output returned by .sssp.deltaStepping.parents when run against
the sample air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.sssp.deltaStepping.parents(['101'],
 {edgeWeightProperty: 'dist', edgeWeightType: 'int'})
 yield source, node, distance
 return source, node, distance
 limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2

.sssp.deltaStepping.parents 164

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 }
 },
 "node": {
 "~id": "2709",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "prscore": 0.00016044313088059425,
 "degree": 18,
 "lon": 72.6988983154297,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "parent": {
 "~id": "810",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.0125999450684,
 "elev": 365,
 "longest": 11818,
 "city": "Novosibirsk",
 "type": "airport",
 "region": "RU-NVS",
 "desc": "Tolmachevo Airport",
 "code": "OVB",
 "prscore": 0.0012910010991618038,
 "degree": 162,
 "lon": 82.6507034301758,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UNNT",
 "runways": 2

.sssp.deltaStepping.parents 165

Neptune Analytics Neptune Analytics User Guide

 }
 }
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2667",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 56.8567008972168,
 "elev": 2188,
 "longest": 6562,
 "city": "Ust-Kut",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Ust-Kut Airport",
 "code": "UKX",
 "prscore": 0.000058275499999999997,
 "degree": 4,
 "lon": 105.730003356934,
 "wccid": 2357352929951779,
 "country": "RU",

.sssp.deltaStepping.parents 166

Neptune Analytics Neptune Analytics User Guide

 "icao": "UITT",
 "runways": 1
 }
 },
 "parent": {
 "~id": "1038",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 52.2680015563965,
 "elev": 1675,
 "longest": 10384,
 "city": "Irkutsk",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Irkutsk Airport",
 "code": "IKT",
 "prscore": 0.0008466026629321277,
 "degree": 84,
 "lon": 104.388999938965,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UIII",
 "runways": 1
 }
 }
 }
]
}

.sssp.deltaStepping.parents 167

Neptune Analytics Neptune Analytics User Guide

TopK hop-limited single source (weighted) shortest path algorithm

The .topkssspalgorithm finds the single-source weighted shortest paths from a source node to
its neighbors out to the distance specified by maxDepth. It accumulates the path lengths using the
edge weights along the paths and then returns a sorted list of the shortest paths.

.topksssp syntax

CALL neptune.algo.topksssp(
 [source-node list (required)],
 {
 hopCount: maximum hops on the shortest path (required),
 perHopLimits: [a list of the maximum number of nodes to carry forward at each hop
 (required)],
 edgeLabels: [list of edge labels for filtering (optional)],
 edgeWeightProperty: a numeric edge property to weight the traversal (optional),
 edgeWeightType: numeric type of the specified edgeWeightProperty (optional),
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional, default: outbound),
 costFunction: determines whether the topK distances are in ascending or descending
 order (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD source, node, distance
RETURN source, node, distance

Inputs for the topksssp algorithm

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• hopCount (required) – type: positive integer; default: none.

.topksssp 168

Neptune Analytics Neptune Analytics User Guide

Restricts the number of hops on a shortest path, which restricts the number of iterations of
the SSSP algorithm to be used.

• perHopLimits (required) – type: a list of integers; valid values: positive integers, or -1
meaning unlimited; default: none.

Each integer represents the maximum number of candidate vertices to carry to the next hop.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• edgeWeightProperty (optional) – type: string; default: none.

The edge weight predicate to for traversal. If no property is specified then the algorithm runs
unweighted. If multiple properties exist on an edge having the specified name, then one of
them is selected at random for the weight value.

• edgeWeightType (optional) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty. If
the edgeWeightProperty is not present, edgeWeightType is ignored and the algorithm
runs unweighted. If an edge contains a property specified by edgeWeightProperty that has
a numeric type different from what is specified in edgeWeightType, the property value is
typecast to the type specified by edgeWeightType.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• costFunction (optional) – type: string; valid values: "min", "max"; default: "min".

Specifies the ordering of the topK distances returned. A "min" value indicates that the topK
distances between the source and target vertices should be returned in descending order,
whereas a "max" value indicates that they should be returned in ascending order.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

.topksssp 169

Neptune Analytics Neptune Analytics User Guide

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

Outputs for the topksssp algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.

• distance – The distance between the source node and the found node.

.topksssp query examples

This ia a standalone query, where the source node list is explicitly provided in the query:

CALL neptune.algo.topksssp(
 ["101"],
 {
 edgeLabels: ["route"],
 hopCount: 3,
 perHopLimits: [10, 100, 1000],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where .topksssp follows a MATCH clause and uses the output
of the MATCH clause as its source node list:

MATCH (n) WHERE id(n) IN ["108","109"]
CALL neptune.algo.topksssp(
 n,
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 hopCount: 5,
 perHopLimits: [5,10,15,20,25]

.topksssp 170

Neptune Analytics Neptune Analytics User Guide

 }
)
YIELD distance
RETURN n, collect(distance) AS distances'

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .topksssp output

Here is an example of the output returned by .topksssp when run against the sample air-routes
dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier}
 --query-string "CALL neptune.algo.topksssp(['101'], {hopCount: 2, perHopLimits: [3,
 5]})
 YIELD source, node, distance
 RETURN source, node, distance limit 2" \
 --language open_cypher
 /tmp/out.txt

 cat /tmp/out.txt
 {
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",

.topksssp 171

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "170",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.8860015869,
 "elev": 294,
 "longest": 8622,
 "city": "Naples",
 "type": "airport",
 "region": "IT-72",
 "desc": "Naples International Airport",
 "code": "NAP",
 "prscore": 0.001119577675126493,
 "degree": 222,
 "lon": 14.2908000946,
 "wccid": 2357352929951779,
 "country": "IT",
 "icao": "LIRN",
 "runways": 1
 }
 },
 "distance": 2.0
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,

.topksssp 172

Neptune Analytics Neptune Analytics User Guide

 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "longest": 14511,
 "city": "New York",
 "type": "airport",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "code": "JFK",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "lon": -73.77890015,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KJFK",
 "runways": 4
 }
 },
 "distance": 2.0
 }
]
}

.topksssp 173

Neptune Analytics Neptune Analytics User Guide

Centrality algorithms in Neptune Analytics

Centrality algorithms utilize the topology of a network to determine the relative importance or
influence of a specific node within the graph. By measuring the relative importance of a node or
edge within a network, centrality values can indicate which elements in a graph play a critical role
in that network.

By identifying the most influential or important nodes within a network, centrality algorithms can
provide insights about key players or critical points of interaction. This is valuable in social network
analysis, where it helps pinpoint influential individuals, and in transportation networks, where it
aids in identifying crucial hubs for efficient routing and resource allocation.

Different types of centrality algorithms use different techniques to measure the importance of a
node. Understanding how an algorithm calculates centrality is important to understanding the
meaning of its outputs.

In addition to returning centrality data to the client, Neptune Analytics provides mutate variations
of the centrality algorithms which store the calculated centrality values as vertex properties in the
graph.

Neptune Analytics supports three centrality algorithms along with their mutate variants:

• degree – This measures a nodes's centrality by the number of edges connected to it, and can
therefore be used to find the most connected nodes in a network.

• degree.mutate – The degree centrality mutate algorithm measures the number of incident
edges of each vertex it traverses and writes that calculated degree value as a property of the
vertex.

• pageRank – This is an iterative algorithm that measures a nodes's centrality by the number
and quality of incident edges and adjacent vertices. The centrality of a node connected to a few
important nodes may therefore be higher than that of a node connected to many less important
nodes. The output of this algorithm is a value that indicates the importance of a given node
relative to the other nodes in the graph.

• pageRank.mutate – This algorithm stores the calculated PageRank of a given node as a
property of the node.

• closenessCentrality – This algorithm computes the closeness centrality (CC) metric of
nodes in a graph. The closeness centrality metric of a vertex is a positive measure of how close it
is to all other vertices, or how central it is in the graph. Because it indicates how quickly all other

Centrality algorithms 174

Neptune Analytics Neptune Analytics User Guide

nodes in a network can be reached from a given node, it can be used in transportation networks
to identify key hub locations, and in disease-spread modeling to pinpoint central locations for
targeted intervention efforts.

• closenessCentrality.mutate – This algorithm computes the closeness centrality (CC)
metric of vertices in a graph and writes them as a property of each vertex.

Centrality algorithms 175

Neptune Analytics Neptune Analytics User Guide

Degree centrality algorithm

The .degree centrality algorithm counts the number of incident edges at each node that it
traverses. This measure of how connected the node is can in turn indicate the node's importance
and level of influence in the network.

The .degree algorithm is used in social networks to identify popular individuals with many
connections, in transportation networks to locate central hubs with numerous roads leading to and
from them, and in web analysis to find influential web pages with many incoming links.

The time complexity of .degree is O(|E|), where |E| is the number of edges in the graph. The
space complexity is O(|V|), where |V| is the number of vertices in the graph.

.degree syntax

CALL neptune.algo.degree(
 [node list (required)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: "a node label for filtering (optional)",
 traversalDirection: traversal direction (optional),
 concurrency: the number of cores to be used to run the algorithm (optional)
 }
)
YIELD node, degree
RETURN node, degree

Inputs for the .degree algorithm

• a node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes for which to return the edge count (degree). If an empty list is provided, the
query result is also empty.

If the algorithm is called following a MATCH clause (query integration), the result returned by the
MATCH clause is taken as the node list.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

.degree 176

Neptune Analytics Neptune Analytics User Guide

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A vertex label for vertex filtering. If a vertex label is provided, vertices matching the label are
the only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "oubound", or "both".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

.degree outputs

• node – A list of the requested nodes. If vertexLabel is present, only the requested nodes
that match the vertexLabel value are included.

• degree – A list of corresponding degree values for the nodes with respect to edges with a label
specified in edgeLabels.

If the input vertex list is empty, the output is empty.

Query examples for .degree

This is a standalone example, where the source node list is explicitly specified in the query:

CALL neptune.algo.degree(["101"], {edgeLabel: "route"})

This is a more complicated standalone query submitted using the AWS CLI:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.algo.degree(

.degree 177

Neptune Analytics Neptune Analytics User Guide

 ["101", "102", "103"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 traversalDirection: "inbound",
 concurrency: 2
 }
)
 YIELD node, degree
 RETURN node, degree' \
 --language open_cypher \
 /tmp/out.txt

This is a query integration example with frontier injection, where .degree follows a MATCH clause
and finds the degree value for all vertices returned by MATCH(n:airport):

MATCH(n:airport)
CALL neptune.algo.degree(n, {edgeLabels: ["route"]})
YIELD degree
RETURN n, degree'

This is an example of multiple .degree invocations chained together, where the output of one
invocation serves as the input of another:

CALL neptune.algo.degree(
 ["108"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)
YIELD node
CALL neptune.algo.degree(
 node,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)
YIELD node AS node2 WITH id(node2) AS id
RETURN id

.degree 178

Neptune Analytics Neptune Analytics User Guide

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .degree output

Here is an example of the output returned by .degree when run against the sample air-routes
dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'MATCH (n)
 CALL neptune.algo.degree(n)
 YIELD node, degree
 RETURN node, degree
 LIMIT 2' \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "longest": 11500,
 "city": "Washington D.C.",
 "type": "airport",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "code": "IAD",
 "prscore": 0.002264724113047123,
 "lon": -77.45580292,

.degree 179

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KIAD",
 "runways": 4
 }
 },
 "degree": 312
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "longest": 14511,
 "city": "New York",
 "type": "airport",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "code": "JFK",
 "prscore": 0.002885053399950266,
 "lon": -73.77890015,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KJFK",
 "runways": 4
 }
 },
 "degree": 403
 }
]
}

.degree 180

Neptune Analytics Neptune Analytics User Guide

Degree mutate centrality algorithm

The .degree.mutate centrality algorithm counts the number of incident edges of every node in
the graph. This measure of how connected the node is can in turn indicate the node's importance
and level of influence in the network. The .degree.mutate algorithm then stores each node's
calculated degree value as a property of the node.

The algorithm returns a single success flag (true or false), which indicates whether the writes
succeeded or failed.

.degree.mutate syntax

CALL neptune.algo.degree.mutate(
 [node list (required)],
 {
 writeProperty: A name for the new node property where the degree values will be
 written,
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: "a node label for filtering (optional)",
 traversalDirection: traversal direction (optional),
 concurrency: the number of cores to be used to run the algorithm (optional)
 }
)
YIELD success
RETURN success

.degree.mutate inputs

a configuration object that contains:

• writeProperty (required) – type: string; default: none.

A name for the new node property that will contain the computed degree values.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

.degree.mutate 181

Neptune Analytics Neptune Analytics User Guide

A node label for node filtering. If vertexLabel is provided, vertices matching the label are the
only vertices that are processed, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "oubound", or "both".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used to run
algorithms concurrently. If the number is greater than the machine limit, it will be automatically
capped to the limit.

Output of the .degree.mutate algorithm

The computed degree values are written to a new vertex property using the property name
specified by the writeProperty input parameter.

A single Boolean success value (true or false) is returned, which indicates whether or not the
writes succeeded.

.degree.mutate query examples

The example below is a standalone example, where the source vertex list is explicitly provided in
the query.

This query writes the degree values of all nodes in the graph to a new vertex property called
DEGREE:

CALL neptune.algo.degree.mutate({writeProperty: "DEGREE", edgeLabels: ["route]})

After using the mutate algorithm, the newly written properties can then be accessed in subsequent
queries. For example, after the mutate algorithm call above, you could use the following query to
retrieve the .degree property of specific nodes:

MATCH (n) WHERE id(n) IN ["101", "102", "103"]
RETURN n.DEGREE'

.degree.mutate 182

Neptune Analytics Neptune Analytics User Guide

Sample output from .degree.mutate

Here is an example of the output returned by .degree.mutate when run against the sample air-
routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.degree.mutate({writeProperty: 'degree'}) YIELD
 success RETURN success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 { "success": true }
]
}

.degree.mutate 183

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

PageRank centrality algorithm

PageRank is an algorithm originally developed by Larry Page and Sergey Brin, co-founders of
Google. It was originally developed to rank web pages in search engine results. The PageRank score
for a given node is calculated based on the number and quality of the edges pointing to that node,
as well as the importance of the nodes that are connected to it. The PageRank algorithm assigns a
higher score to nodes that are linked to other high-scoring nodes, and a lower score to nodes that
are linked to low-scoring nodes.

The output of PageRank can be visualized as a ranking metric for the importance of a node within
a given graph, with the most important nodes having the highest score, and the least important
node having the lowest score. PageRank is used in search engines to rank web pages based on their
importance and influence, in citation networks to identify highly cited scientific papers, and in
recommendation systems to suggest popular and relevant content to users.

The space complexity of the .pageRank algorithm is:

O(|V|) + [storage of data O(|V|+|E|)]

In more detail, this is:

|V| * (3 * sizeof(local id type) +
 2 * sizeof(double) +
 sizeof(global id type)) +
 O(|1DData Parts|)

.pageRank syntax

CALL neptune.algo.pageRank(
 [list of source nodes (required)],
 {
 numOfIterations: a small positive integer like 20 (optional),
 dampingFactor: a positive float less than 1.0, like 0.85 (optional)
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: the number of threads to use to run the algorithm (optional)
 }
)
YIELD node, rank
RETURN node, rank

.pageRank 184

Neptune Analytics Neptune Analytics User Guide

.pageRank inputs

• a source vertex list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

If the algorithm is called following a MATCH clause (query algo integration), the source query list
is the result returned by the MATCH clause.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A vertex label for vertex filtering. If a vertex label is provided, vertices matching the label are
the only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "oubound" or "inbound".

• numOfIterations (optional) – type: a positive integer greater than zero; default: 20.

The number of iterations to perform to reach convergence. A number between 10 and 20 is
recommended.

• dampingFactor (optional) – type: a positive floating-point number less than 1.0; default:
0.85.

A positive floating-point damping factor between 0.0 and 1.0 that expresses the probability, at
any step, that the node will continue.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit..pageRank 185

Neptune Analytics Neptune Analytics User Guide

Outputs for the .pageRank algorithm

• node – A key column of the input nodes.

• rank – A key column of the corresponding page-rank scores for those nodes.

If the input nodes list is empty, the output is empty.

Query examples for .pageRank

This is a standalone example, where the source vertex list is explicitly specified in the query.

CALL neptune.algo.pageRank(
 ["101"],
 {
 numOfIterations: 1,
 dampingFactor: 0.85,
 edgeLabels: ["route"]
 }
)

This is a query integration examples, where .pageRank follows a MATCH clause and uses frontier
injection to take the output of the MATCH clause as its list of source nodes:

MATCH (n)
CALL neptune.algo.pageRank(
 n,
 {
 dampingFactor: 0.85,
 numOfIterations: 1,
 edgeLabels: ["route"]
 }
)
YIELD rank
RETURN n, rank

This query is an example of constraining the results of .pageRank based on the PageRank values,
and returning them in ascending order:

MATCH (n)
CALL neptune.algo.pageRank(

.pageRank 186

Neptune Analytics Neptune Analytics User Guide

 n,
 {
 numOfIterations: 10,
 dampingFactor: 0.85,
 vertexLabel: "airport",
 edgeLabels: ["route"]
 }
)
YIELD rank WHERE rank > 0.004
RETURN n, rank ORDER BY rank

Sample .pageRank output

Here is an example of the output returned by .pageRank when run against the sample air-routes
dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.pageRank(n) YIELD node, rank RETURN node, rank
 LIMIT" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "2709",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "lon": 72.6988983154297,
 "country": "RU",
 "icao": "USMM",

.pageRank 187

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "runways": 1
 }
 },
 "rank": 0.00016044313088059425
 },
 {
 "node": {
 "~id": "3747",
 "~entityType": "node",
 "~labels": ["continent"],
 "~properties": {
 "code": "AN",
 "type": "continent",
 "desc": "Antarctica"
 }
 },
 "rank": 0.0000404242
 }
]
}

.pageRank 188

Neptune Analytics Neptune Analytics User Guide

PageRank mutate centrality algorithm

The ranking metric computed by .pageRank.mutate can indicate the importance of a node
within a given graph, with the most important nodes having the highest score, and the least
important node having the lowest score. PageRank is used in search engines to rank web pages
based on their importance and influence, in citation networks to identify highly cited scientific
papers, and in recommendation systems to suggest popular and relevant content to users.

The mutate variant of the PageRank algorithm performs the PageRank calculation over the entire
graph unless the configuration parameters establish a filter, and each traversed node's calculated
PageRank value is stored on that node as a property.

pageRank.mutate inputs

Inputs for the pageRank.mutate algorithm are passed in a configuration object parameter that
contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• writeProperty (required) – type: string; default: none.

A name for the new vertex property that will contain the computed PageRank values. If a
property of that name already exists, it is overwritten.

• vertexLabel (optional) – type: string; default: none.

A vertex label for vertex filtering. If a vertex label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "oubound" or "inbound".

• numOfIterations (optional) – type: a positive integer greater than zero; default: 20.

The number of iterations to perform to reach convergence. A number between 10 and 20 is
recommended.

• dampingFactor (optional) – type: a positive floating-point number less than 1.0; default:
0.85.

.pageRank.mutate 189

Neptune Analytics Neptune Analytics User Guide

A positive floating-point damping factor between 0.0 and 1.0 that expresses the probability, at
any step, that the node will continue.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used to run
algorithms concurrently. If the number is greater than the machine limit, it will be automatically
capped to the limit.

Outputs for the pageRank.mutate algorithm

The computed PageRank values are written to a new vertex property on each node using the
property name specified by the writeProperty input parameter.

A single Boolean success value (true or false) is returned, which indicates whether or not the
writes succeeded.

Query example for pageRank.mutate

The example below computes the PageRank score of every vertex in the graph, and writes that
score to a new vertex property named P_RANK:

CALL neptune.algo.pageRank.mutate(
 {
 writeProperty:"P_RANK",
 dampingFactor: 0.85,
 numOfIterations: 1,
 edgeLabels: ["route"]
 }
)

This query illustrates how you could then access the PageRank values in the P_RANK vertex
property. It counts how many nodes have a P_RANK property value greater than the "SEA" node's
P_RANK property value:

MATCH (n) WHERE n.code = "SEA" WITH n.P_RANK AS lowerBound
MATCH (m) WHERE m.P_RANK > lowerBound
RETURN count(m)

.pageRank.mutate 190

Neptune Analytics Neptune Analytics User Guide

Sample .pageRank.mutate output

Here is an example of the output returned by .pageRank.mutate when run against the sample
air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.pageRank.mutate({writeProperty: 'prscore'}) YIELD
 success RETURN success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 { "success": true }
]
}

.pageRank.mutate 191

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

Closeness centrality algorithm

The closeness centrality algorithm computes a Closeness Centrality (CC) metric for specified nodes
in a graph. The CC metric of a node can be used as a positive measure of how close it is to all other
nodes or how central it is in the graph.

The CC metric can be interpreted to show how quickly all other nodes in a network can be reached
from a given node, and how important it is as a central hub for rapid information flow. It can be
used in transportation networks to identify key hub locations, and in disease-spread modeling to
pinpoint central points for targeted intervention efforts.

The closeness centrality (CC) score of a node is calculated based on the sum of its distances to all
other nodes. The CC score itself is the inverse of that number; in other words, one divided by that
sum. In practice, the calculation is commonly normalized to use the average length of the shortest
paths rather than the actual sum of their lengths.

.closenessCentrality syntax

CALL neptune.algo.closenessCentrality(
 [node list (required)],
 {
 numSources: the number of BFS sources to use for computing the CC (required)
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 normalize: Boolean, set to false to prevent normalization (optional)
 concurrency: the number of cores to be used to run the algorithm (optional)
 }
)
YIELD node, score
RETURN node, score

Inputs for the .closenessCentrality algorithm

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

If the algorithm is called following a MATCH clause (query algo integration), the source query list
is the result returned by the MATCH clause.

.closenessCentrality 192

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• numSources (required) – type: unsigned long; default: none.

The number of BFS sources for computing approximate Closeness Centrality (CC). To compute
exact closeness centrality, set numSources to a number larger than number of nodes, such as
maxInt.

Because of the computational complexity of the algorithm for large graphs, it's generally best
to specify a number in the order of thousands to ten thousands, such as 8,192.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• normalize (optional) – type: Boolean; default: true.

You can use this field to turn off normalization, which is on by default. Without normalization,
only centrality scores of nodes within the same component can be meaningfully compared.
Normalized scores can be compared across different connected components.

The CC is normalizd using the Wasserman-Faust normalization formula for unconnected
graphs. If there are n vertices reachable from vertex u (including vertex u itself), the
Wasserman-Faust normalized closeness centrality score of vertex u is calculated as follows:

(n-1)^2 / (|V| - 1) * sum(distance from u to these n vertices)

Without normalization, the centrality score of vertex u is calculated as:

(|V| - 1) / sum(distance from u to all other vertices in the graph)

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are included, including nodes in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "oubound", or "both".

• concurrency (optional) – type: positive integer or 0; default: 0..closenessCentrality 193

Neptune Analytics Neptune Analytics User Guide

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

Outputs for the .closenessCentrality algorithm

• node – A key column of the input nodes.

• score – A key column of the corresponding closeness-centrality (CC) scores for those nodes.

If the input node list is empty, the output is empty.

.closenessCentrality query examples

This is a standalone example, where the source node list is explicitly provided in the query:

CALL neptune.algo.closenessCentrality(
 ["101"],
 {
 numSources: 10,
 edgeLabels: ["route"],
 vertexLabel: "airport",
 traversalDirection: "outbound",
 normalize: true,
 concurrency: 1
 }
)
YIELD node, score
RETURN node, score

This is a query integration example, where .closenessCentrality.mutate follows a MATCH
clause and uses the output of the MATCH clause as its list of source nodes:

Match (n)
CALL neptune.algo.closenessCentrality(
 n,
 {
 numSources: 10,
 edgeLabels: ["route"],

.closenessCentrality 194

Neptune Analytics Neptune Analytics User Guide

 vertexLabel: "airport",
 traversalDirection: "outbound",
 normalize: true,
 concurrency: 1
 }
)
YIELD score
RETURN n, score

This is a query integration examples that returns the nodes with the 10 highest CC scores:

CALL neptune.algo.closenessCentrality(
 n,
 {
 edgeLabels: ["route"],
 numSources: 10
 }
)
YIELD score
RETURN n, score
ORDER BY score DESC
LIMIT 10"

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .closenessCentrality output

Here is an example of the output returned by .closenessCentrality when run against the
sample air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.closenessCentrality(n, {numSources: 10}) YIELD
 node, score RETURN node, score limit 2" \
 --language open_cypher \

.closenessCentrality 195

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "longest": 11500,
 "city": "Washington D.C.",
 "type": "airport",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "code": "IAD",
 "prscore": 0.002264724113047123,
 "degree": 312,
 "lon": -77.45580292,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KIAD",
 "runways": 4
 }
 },
 "score": 0.20877772569656373
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "longest": 14511,
 "city": "New York",
 "type": "airport",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "code": "JFK",

.closenessCentrality 196

Neptune Analytics Neptune Analytics User Guide

 "prscore": 0.002885053399950266,
 "degree": 403,
 "lon": -73.77890015,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KJFK",
 "runways": 4
 }
 },
 "score": 0.2199712097644806
 }
]
}

.closenessCentrality 197

Neptune Analytics Neptune Analytics User Guide

Closeness centrality mutatealgorithm

The closeness centrality mutate algorithm computes a Closeness Centrality (CC) metric for
specified nodes in a graph. The CC metric of a node can be used as a positive measure of how close
it is to all other nodes or how central it is in the graph.

The CC metric can be interpreted to show how quickly all other nodes in a network can be reached
from a given node, and how important it is as a central hub for rapid information flow. It can be
used in transportation networks to identify key hub locations, and in disease-spread modeling to
pinpoint central points for targeted intervention efforts.

The closeness centrality (CC) score of a node is calculated based on the sum of its distances to all
other vertices. The CC score itself is the inverse of that number; in other words, one divided by that
sum. In practice, the calculation is commonly normalized to use the average length of the shortest
paths rather than the actual sum of their lengths.

.closenessCentrality.mutate syntax

CALL neptune.algo.closenessCentrality.mutate(
 [node list (required)],
 {
 numSources: the number of BFS sources to use for computing the CC (required)
 writeProperty: name of the node property to write the CC score to (required)
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: "a node label for filtering (optional)",
 traversalDirection: traversal direction (optional),
 normalize: Boolean, set to false to prevent normalization (optional)
 concurrency: the number of cores to be used to run the algorithm (optional)
 }
)
YIELD success
RETURN success

.closenessCentrality.mutate inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

.closenessCentrality.mutate 198

Neptune Analytics Neptune Analytics User Guide

If the algorithm is called following a MATCH clause (query algo integration), the source node list
is the result returned by the MATCH clause.

• a configuration object that contains:

• numSources (required) – type: uint64_t; default: none.

The number of BFS sources for computing approximate Closeness Centrality (CC). To compute
exact closeness centrality, set numSources to a number larger than number of vertices, such
as maxInt.

Because of the computational complexity of the algorithm for large graphs, it's generally best
to specify a number in the order of thousands to ten thousands, such as 8,192.

• writeProperty (required) – type: string; default: none.

A name for the new node property that will contain the computed CC score of each node.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• normalize (optional) – type: Boolean; default: true.

You can use this field to turn off normalization, which is on by default. Without normalization,
only centrality scores of nodes within the same component can be meaningfully compared.
Normalized scores can be compared across different connected components.

The CC is normalizd using the Wasserman-Faust normalization formula for unconnected
graphs. If there are n vertices reachable from vertex u (including vertex u itself), the
Wasserman-Faust normalized closeness centrality score of vertex u is calculated as follows:

(n-1)^2 / (|V| - 1) * sum(distance from u to these n vertices)

Without normalization, the centrality score of vertex u is calculated as:

(|V| - 1) / sum(distance from u to all other vertices in the graph)

• vertexLabel (optional) – type: string; default: none.

.closenessCentrality.mutate 199

Neptune Analytics Neptune Analytics User Guide

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "oubound", or "both".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

.closenessCentrality.mutate outputs

The closeness centrality score of each source node in the input list is written as a new node
property using the property name specified in writeProperty.

If the algorithm is invoked as a standalone query, there is no other output.

If the algorithm is invoked following a MATCH clause that provides its source node list (query
integration), the algorithm outputs a key column of the source vertices from the MATCH clause
and a value column of Booleans (true or false) that indicate whether the CC value was successfully
written to the node in question.

Query examples for .closenessCentrality.mutate

This example computes closeness centrality scores and writes them as a new node property called
ccScore:

CALL neptune.algo.closenessCentrality.mutate(
 {
 numSources: 10,
 writeProperty: "ccScore",
 edgeLabels: ["route"],
 vertexLabel: "airport",
 traversalDirection: "outbound",
 normalize: true,
 concurrency: 1

.closenessCentrality.mutate 200

Neptune Analytics Neptune Analytics User Guide

 }
)

Then you can query the ccScore property in a subsequent query:

MATCH (n) RETURN id(n), n.ccScore limit 5

Sample .closenessCentrality output

Here is an example of the output returned by .closenessCentrality when run against the
sample air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.closenessCentrality.mutate(
 {
 writeProperty: 'ccscore',
 numSources: 10
 }
)
 YIELD success
 RETURN success"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "success": true
 }
]
}

.closenessCentrality.mutate 201

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

Similarity algorithms in Neptune Analytics

Graph similarity algorithms allow you to compare and analyze the similarities and dissimilarities
between different graph structures, which can provide insight into relationships, patterns, and
commonalities across diverse datasets. This is invaluable in various fields, such as biology, for
comparing molecular structures, such as social networks, for identifying similar communities, and
such as recommendation systems, for suggesting similar items based on user preferences.

Neptune Analytics supports the following similarity algorithms:

• neighbors.common – This algorithm counts the number of common neighbors of two input
vertices, which is the intersection of the neighborhoods of those vertices.

By counting how many neighboring nodes are shared by two nodes, it provides a measure of
their potential interaction or similarity within the network. It's used in social network analysis
to identify individuals with mutual connections, in citation networks to find influential papers
referenced by multiple sources, and in transportation networks to locate critical hubs with many
direct connections to other nodes.

• neighbors.total – This algorithm counts the number of total unique neighbors among two
input vertices, which is the union of the neighborhoods of those vertices.

• jaccardSimilarity – This algorithm measures the similarity between two sets by dividing
the size of their intersection by the size of their union.

By measuring the proportion of shared neighbors relative to the total number of unique
neighbors, it provides a metric for understanding the degree of overlap or commonality between
different parts of a network. Jaccard similarity is applied in recommendation systems to suggest
products or content to users based on their shared preferences and in biology to compare
genetic sequences for identifying similarities in DNA fragments.

• overlapSimilarity – This algorithm measures the overlap between the neighbors of two
vertices.

It quantifies the similarity between nodes by calculating the ratio of common neighbors they
share to the total number of neighbors they collectively have, providing a measure of their
closeness or similarity within the network. Overlap similarity is applied in social network analysis
to identify communities of individuals with shared interests or interactions, and in biological
networks to detect common functionalities among proteins in molecular pathways.

Similarity algorithms 202

Neptune Analytics Neptune Analytics User Guide

Common neighbors algorithm

Common neighbors is an algorithm that counts the number of common neighbors of two input
nodes, which is the intersection of their neighborhoods. This provides a measure of their potential
interaction or similarity within the network. The common neighbors algorithm is used in social
network analysis to identify individuals with mutual connections, in citation networks to find
influential papers referenced by multiple sources, and in transportation networks to locate critical
hubs with many direct connections to other nodes.

.neighbors.common syntax

CALL neptune.algo.neighbors.common(
 [first node(s)],
 [second node(s)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 }
)
YIELD common
RETURN firstNodes, secondNodes, common

.neighbors.common inputs

• first node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes of which to find the common neighbors with the corresponding second
node(s).

• second node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes of which to find the common neighbors with the corresponding first node(s).

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

.neighbors.common 203

Neptune Analytics Neptune Analytics User Guide

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are considered neighbors. This does not filter the nodes in the first or second
node lists.

.neighbors.common outputs

common: A row for each node in the first node list and corresponding node in the second node list,
and the number of neighboring nodes they have in common.

If either input node list is empty, the output is empty.

.neighbors.common query examples

This example specifies only two nodes:

MATCH (sydairport:airport {code: 'SYD'})
MATCH (jfkairport:airport {code: 'JFK'})
CALL neptune.algo.neighbors.common(sydairport, jfkairport, { edgeLabels: ['route'] })
YIELD common
RETURN sydairport, jfkairport, common

This example specifies multiple nodes. It returns a row for each combination of a US airport and a
UK airport, and the number of destinations we could reach from both of those two airports:

MATCH (usairports:airport {country: 'US'})
MATCH (ukairports:airport {country: 'UK'})
CALL neptune.algo.neighbors.common(usairports, ukairports, {edgeLabels: ['route']})
YIELD common
RETURN usairports, ukairports, common

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

.neighbors.common 204

Neptune Analytics Neptune Analytics User Guide

Sample .neighbors.common output

Here is an example of the output returned by .neighbors.common when run against the sample
air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (sydairport:airport {code: 'SYD'})
 MATCH (jfkairport:airport {code: 'JFK'})
 CALL neptune.algo.neighbors.common(sydairport, jfkairport,
 {edgeLabels: ['route']})
 YIELD common
 RETURN sydairport, jfkairport, common" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "sydairport": {
 "~id": "55",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": -33.9460983276367,
 "elev": 21,
 "type": "airport",
 "code": "SYD",
 "lon": 151.177001953125,
 "runways": 3,
 "longest": 12999,
 "communityId": 2357352929951971,
 "city": "Sydney",
 "region": "AU-NSW",
 "desc": "Sydney Kingsford Smith",
 "prscore": 0.0028037719894200565,
 "degree": 206,
 "wccid": 2357352929951779,
 "ccscore": 0.19631840288639069,
 "country": "AU",
 "icao": "YSSY"
 }

.neighbors.common 205

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 },
 "jfkairport": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "type": "airport",
 "code": "JFK",
 "lon": -73.77890015,
 "runways": 4,
 "longest": 14511,
 "communityId": 2357352929951971,
 "city": "New York",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "wccid": 2357352929951779,
 "ccscore": 0.2199712097644806,
 "country": "US",
 "icao": "KJFK"
 }
 },
 "common": 24
 }
]
}

.neighbors.common 206

Neptune Analytics Neptune Analytics User Guide

Total neighbors algorithm

Total neighbors is an algoithm that counts the total number of unique neighbors of two input
vertices, which is the union of the neighborhoods of those vertices.

.neighbors.total syntax

CALL neptune.algo.neighbors.total(
 [first node(s)],
 [second node(s)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 }
)
YIELD total
RETURN firstNodes, secondNodes, total

Inputs for the .neighbors.total algorithm

• first node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes of which to find the common neighbors with the corresponding second
nodes.

• second node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes of which to find the common neighbors with the corresponding first nodes.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are considered neighbors. This does not filter the nodes in the first or second
node lists.

.neighbors.total 207

Neptune Analytics Neptune Analytics User Guide

.neighbors.total outputs

total: A row for each node in the first node list and corresponding node in the second node list, and
the total number of neighboring nodes they have.

If either input node list is empty, the output is empty.

.neighbors.total query examples

This example returns a row for each combination of a US airport and a UK airport, and the total
number of destinations we could reach if we could fly out of either of the two airports.

MATCH (usairports:airport {country: 'US'})
MATCH (ukairports:airport {country: 'UK'})
CALL neptune.algo.neighbors.total(usairports, ukairports, {edgeLabels: ['route']})
YIELD total
RETURN usairports, ukairports, total"

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .neighbors.total output

Here is an example of the output returned by .neighbors.total when run against the sample
air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (sydairport:airport {code: 'SYD'})
 MATCH (jfkairport:airport {code: 'JFK'})
 CALL neptune.algo.neighbors.total(sydairport, jfkairport,
 {edgeLabels: ['route']})
 YIELD total
 RETURN sydairport, jfkairport, total"
 --language open_cypher \
 /tmp/out.txt

.neighbors.total 208

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

cat /tmp/out.txt
{
 "results": [
 {
 "sydairport": {
 "~id": "55",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": -33.9460983276367,
 "elev": 21,
 "type": "airport",
 "code": "SYD",
 "lon": 151.177001953125,
 "runways": 3,
 "longest": 12999,
 "communityId": 2357352929951971,
 "city": "Sydney",
 "region": "AU-NSW",
 "desc": "Sydney Kingsford Smith",
 "prscore": 0.0028037719894200565,
 "degree": 206,
 "wccid": 2357352929951779,
 "ccscore": 0.19631840288639069,
 "country": "AU",
 "icao": "YSSY"
 }
 },
 "jfkairport": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "type": "airport",
 "code": "JFK",
 "lon": -73.77890015,
 "runways": 4,
 "longest": 14511,
 "communityId": 2357352929951971,
 "city": "New York",
 "region": "US-NY",

.neighbors.total 209

Neptune Analytics Neptune Analytics User Guide

 "desc": "New York John F. Kennedy International Airport",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "wccid": 2357352929951779,
 "ccscore": 0.2199712097644806,
 "country": "US",
 "icao": "KJFK"
 }
 },
 "total": 279
 }
]
}

.neighbors.total 210

Neptune Analytics Neptune Analytics User Guide

Jaccard similarity algorithm

The Jaccard similarity algorithm measures the similarity between two sets. It is calculated by
dividing the size of the intersection of the two sets by the size of their union.

By measuring the proportion of shared neighbors relative to the total number of unique neighbors,
this algorithm provides a metric for the degree of overlap or commonality between different parts
of a network. It can be useful in recommendation systems to suggest products or content to users
based on their shared preferences and in biology to compare genetic sequences for identifying
similarities in DNA fragments.

.jaccardSimilarity syntax

CALL neptune.algo.jaccardSimilarity(
 [first node(s)],
 [second node(s)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 }
)
YIELD score
RETURN firstNodes, secondNodes, score

.jaccardSimilarity inputs

• first node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes for which to find the Jaccard similarity score with respect to the
corresponding second node(s).

• second node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes for which to find the Jaccard similarity score with respect to the
corresponding first node(s).

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

.jaccardSimilarity 211

Neptune Analytics Neptune Analytics User Guide

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are considered neighbors. This does not filter the nodes in the first or second
node lists.

Outputs for the .jaccardSimilarity algorithm

score: A row for each node in the first node list and corresponding node in the second node list,
and the Jaccard similarity score for the two.

If either input node list is empty, the output is empty.

.jaccardSimilarity query examples

The example below is a query integration examples, where the node list inputs for
.jaccardSimilarity come from a preceding MATCH clause:

MATCH (n1:Person {name: "Alice"}), (n2:Person {name: "Bob"})
CALL neptune.algo.jaccardSimilarity(n1, n2, {edgeLabels: ['knows']})
YIELD score
RETURN n1, n2, score

Another example:

MATCH (n {code: "AUS"})
MATCH (m {code: "FLL"})
CALL neptune.algo.jaccardSimilarity(
 n,
 m,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)
YIELD score
RETURN n, m, score

.jaccardSimilarity 212

Neptune Analytics Neptune Analytics User Guide

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .jaccardSimilarity output

Here is an example of the output returned by .jaccardSimilarity when run against the sample
air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {code: 'AUS'})
 MATCH (m {code: "FLL"})
 CALL neptune.algo.jaccardSimilarity(n, m,
 {edgeLabels: [\"route\"], vertexLabel: \"airport\"})
 YIELD score
 RETURN n, m, score"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "n": {
 "~id": "3",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 30.1944999694824,
 "elev": 542,
 "type": "airport",
 "code": "AUS",
 "lon": -97.6698989868164,
 "runways": 2,
 "longest": 12250,
 "communityId": 2357352929951971,
 "city": "Austin",

.jaccardSimilarity 213

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "region": "US-TX",
 "desc": "Austin Bergstrom International Airport",
 "prscore": 0.0012390684569254518,
 "degree": 188,
 "wccid": 2357352929951779,
 "ccscore": 0.1833982616662979,
 "country": "US",
 "icao": "KAUS"
 }
 },
 "m": {
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 26.0725994110107,
 "elev": 64,
 "type": "airport",
 "code": "FLL",
 "lon": -80.152702331543,
 "runways": 2,
 "longest": 9000,
 "communityId": 2357352929951971,
 "city": "Fort Lauderdale",
 "region": "US-FL",
 "desc": "Fort Lauderdale/Hollywood International Airport",
 "prscore": 0.0024497462436556818,
 "degree": 316,
 "wccid": 2357352929951779,
 "ccscore": 0.19741515815258027,
 "country": "US",
 "icao": "KFLL"
 }
 },
 "score": 0.2953367829322815
 }
]
}

.jaccardSimilarity 214

Neptune Analytics Neptune Analytics User Guide

Overlap similarity algorithm

Overlap Similarity is an algorithm that measures the overlap between the neighbors of two nodes.
It does this by dividing the intersection of the two neighborhoods by the neighbor with minimum
degree.

By calculating the ratio of common neighbors shared by two nodes to the total number of
neighbors they collectively have, it provides a measure of their closeness or similarity within
the network. Overlap similarity is applied in social network analysis to identify communities of
individuals with shared interests or interactions, and in biological networks to detect common
functionalities among proteins in molecular pathways.

.overlapSimilarity syntax

CALL neptune.algo.overlapSimilarity(
 [first node(s)],
 [second node(s)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 }
)
YIELD score
RETURN firstNodes, secondNodes, score

.overlapSimilarity inputs

• first node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes for which to find the overlap similarity score with respect to the
corresponding second node(s).

• second node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes for which to find the overlap similarity score with respect to the
corresponding first node(s).

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

.overlapSimilarity 215

Neptune Analytics Neptune Analytics User Guide

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are considered neighbors. This does not filter the nodes in the first or second
node lists.

.overlapSimilarity outputs

score: A row for each node in the first node list and corresponding node in the second node list,
and the overlap similarity score for the two.

If either input node list is empty, the output is empty.

.overlapSimilarity query examples

This is a query integration examples, where .overlapSimilarity takes its input node lists from
the output of a MATCH clause:

MATCH (n1:Person {name: "Alice"}), (n2:Person {name: "Bob"})
CALL neptune.algo.overlapSimilarity(n1, n2, {edgeLabel: 'knows'})
YIELD score
RETURN n1, n2, score

Another example:

MATCH (n {code: "AUS"})
MATCH (m {code: "FLL"})
CALL neptune.algo.overlapSimilarity(
 n,
 m,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)
YIELD score
RETURN n, m, score'

.overlapSimilarity 216

Neptune Analytics Neptune Analytics User Guide

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .overlapSimilarity output

Here is an example of the output returned by .overlapSimilarity when run against the sample
air-routes dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'MATCH (n {code: "AUS"})
 MATCH (m {code: "FLL"})
 CALL neptune.algo.overlapSimilarity(
 n,
 m,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)
 YIELD score
 RETURN n, m, score' \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "n": {
 "~id": "3",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 30.1944999694824,
 "elev": 542,
 "type": "airport",

.overlapSimilarity 217

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "code": "AUS",
 "lon": -97.6698989868164,
 "runways": 2,
 "longest": 12250,
 "communityId": 2357352929951971,
 "city": "Austin",
 "region": "US-TX",
 "desc": "Austin Bergstrom International Airport",
 "prscore": 0.0012390684569254518,
 "degree": 188,
 "wccid": 2357352929951779,
 "ccscore": 0.1833982616662979,
 "country": "US",
 "icao": "KAUS"
 }
 },
 "m": {
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 26.0725994110107,
 "elev": 64,
 "type": "airport",
 "code": "FLL",
 "lon": -80.152702331543,
 "runways": 2,
 "longest": 9000,
 "communityId": 2357352929951971,
 "city": "Fort Lauderdale",
 "region": "US-FL",
 "desc": "Fort Lauderdale/Hollywood International Airport",
 "prscore": 0.0024497462436556818,
 "degree": 316,
 "wccid": 2357352929951779,
 "ccscore": 0.19741515815258027,
 "country": "US",
 "icao": "KFLL"
 }
 },
 "score": 0.6129032373428345
 }
]

.overlapSimilarity 218

Neptune Analytics Neptune Analytics User Guide

}

.overlapSimilarity 219

Neptune Analytics Neptune Analytics User Guide

Clustering and community detection algorithms in Neptune
Analytics

Clustering algorithms evaluate how nodes are clustered in communities, in closely-knit sets, or in
highly or loosely interconnected groups.

These algorithms can identify meaningful groups or clusters of nodes in a network, revealing
hidden patterns and structures that can provide insights into the organization and dynamics
of complex systems. This is valuable in social network analysis and in biology, for identifying
functional modules in protein-protein interaction networks, and more generally for understanding
information flow and influence propagation in many different domains.

Neptune Analytics supports these community detection algorithms:

• wcc – The Weakly Connected Components (WCC) algorithm finds weakly-connected
components in a directed graph. A weakly-connected component is a group of nodes where
every node in the group is reachable from every other mode in the group if edge direction is
ignored.

Identifying weakly-conected components helps in understanding the overall connectivity and
structure of the graph. Weakly-connected components can be used in transportation networks
to identify disconnected regions that may require improved connectivity, and in social networks
to find isolated groups of users with limited interactions, and in webpage analysis to pinpoint
sections with low accessibility.

• wcc.mutate – This algorithm stores the calculated component value of each given node as a
property of the node.

• labelPropagation – Label Propagation Algorithm (LPA) is an algorithm for community
detection that is also used in semi-supervised machine learning for data classification.

• labelPropagation.mutate – Label Propagation Algorithm (LPA) is an algorithm tha
assigns labels to nodes based on the consensus of their neighboring nodes, making it useful for
identifying groups. Label propagation can be applied in social networks to find groups, and in
identity management to identify households, and in recommendation systems to group similar
products for personalized suggestions. It can also be used in semi-supervised machine learning
for data classification.

• scc – The Strongly Connected Components (SCC) algorithm identifies maximally connected
subgraphs of a directed graph, where every node is reachable from every other node. This can
provide insights into the tightly interconnected portions of a graph and highlight key structures

Community detection 220

Neptune Analytics Neptune Analytics User Guide

within it. Strongly connected components are valuable in computer programming for detecting
loops or cycles in code, in social networks to find tightly connected groups of users who interact
frequently, and in web crawling to identify clusters of interlinked pages for efficient indexing.

• scc.mutate – This algorithm finds the maximally connected subgraphs of a directed graph
and writes their component IDs as a new property of each subgraph node.

Community detection 221

Neptune Analytics Neptune Analytics User Guide

Weakly connected components algorithm

The Weakly Connected Components (WCC) algorithm finds the weakly-connected components
in a directed graph. A weakly-connected component is a group of nodes in which every node is
reachable from every other node when edge directions are ignored. Weakly connected components
are the maximal connected subgraphs of an undirected graph.

Identifying weakly-conected components helps in understanding the overall connectivity and
structure of the graph. Weakly-connected components can be used in transportation networks to
identify disconnected regions that may require improved connectivity, and in social networks to
find isolated groups of users with limited interactions, and in webpage analysis to pinpoint sections
with low accessibility.

The time complexity of the WCC algorithm is O(|E|logD), where |E| is the number of edges in
the graph, and D is the diameter (the length of the longest path from one node to any other node)
of the graph.

The memory used by the WCC algorithm is approximately |V| * 20 bytes.

.wcc syntax

CALL neptune.algo.wcc(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD node, component
RETURN node, component

.wcc inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

If the algorithm is called following a MATCH clause (query algo integration), the source query list
is the result returned by the MATCH clause.

.wcc 222

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, only nodes matching the label are
considered. This includes the nodes in the source node lists.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

.wcc outputs

For each source node:

• node – The source node.

• component – The component ID associated with the source node.

If the input node list is empty, the output is empty.

.wcc query examples

This is a standalone example, where the source node list is explicitly provided in the query:

CALL neptune.algo.wcc(
 ["101"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 concurrency: 2
 }
)

.wcc 223

Neptune Analytics Neptune Analytics User Guide

YIELD node, component
RETURN node, component

This is a query integration examples, where .wcc follows a MATCH clause and uses the output of
the MATCH clause as its source node list:

MATCH (n) WHERE n.region = 'US-WA'
CALL neptune.algo.wcc(
 n,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)
YIELD component
RETURN n, component

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .wcc output

Here is an example of the output returned by .wcc when run against the sample air-routes dataset
using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n)
 CALL neptune.algo.wcc(n)
 YIELD node, component
 RETURN node, component
 LIMIT 2"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt

.wcc 224

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "longest": 11500,
 "city": "Washington D.C.",
 "type": "airport",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "code": "IAD",
 "prscore": 0.002264724113047123,
 "lon": -77.45580292,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KIAD",
 "runways": 4
 }
 },
 "component": 2357352929951779
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "longest": 14511,
 "city": "New York",
 "type": "airport",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "code": "JFK",
 "prscore": 0.002885053399950266,
 "lon": -73.77890015,
 "wccid": 2357352929951779,
 "country": "US",

.wcc 225

Neptune Analytics Neptune Analytics User Guide

 "icao": "KJFK",
 "runways": 4
 }
 },
 "component": 2357352929951779
 }
]
}

.wcc 226

Neptune Analytics Neptune Analytics User Guide

Weakly connected components mutate algorithm

The mutate variant of the weakly connected components (WCC) algorithm performs the weakly
connected components calculation over the entire graph unless the configuration parameters
establish a filter, and each traversed node's calculated WCC value is stored as a property on the
node.

.wcc.mutate syntax

CALL neptune.algo.wcc.mutate(
 {
 writeProperty: the name for the node property to which to write component IDs
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD success
RETURN success

.wcc.mutate inputs

Inputs for .wcc.mutate are passed in a configuration object that contains:

• writeProperty (required) – type: string; default: none.

A name for the new node property where the component IDs will be written.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

The node label to filter on for traversing. Only nodes matching this label will be traversed. For
example: "airport".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

.wcc.mutate 227

Neptune Analytics Neptune Analytics User Guide

If concurrency is set to 0 or is not specified, all the available compute cores will be used to run
algorithms concurrently. If the number is greater than the machine limit, it will be automatically
capped to the limit.

.wcc.mutate outputs

success: The computed component IDs are written as a new property on each node using the
property name specified by writeProperty, and a single success flag (true or false) is
returned to indicate whether or not the writes succeeded.

.wcc.mutate query examples

This query writes the calculated component ID of each vertex in the graph to a new property of the
vertex named CCID:

CALL neptune.algo.wcc.mutate(
 {
 writeProperty: "CCID",
 edgeLabels: ["route"],
 vertexLabel: "airport",
 concurrency: 2
 }
)

After the mutate algorithm call above, the following query can retrieve the CCID property of a
specific node:

MATCH (n: airport {code: "SEA"})
RETURN n.CCID

Sample .wcc.mutate output

Here is an example of the output returned by .wcc.mutate when run against the sample air-
routes dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.wcc.mutate({writeProperty: 'wccid'}) YIELD success
 RETURN success"

.wcc.mutate 228

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "success": true
 }]
}

.wcc.mutate 229

Neptune Analytics Neptune Analytics User Guide

Label propagation algorithm (LPA)

Label Propagation Algorithm (LPA) is an algorithm for community detection that is also used in
semi-supervised machine learning for data classification.

A community structure is loosely defined as a tightly knit group of entities in social networks. LPA
can be enhanced by providing a set of seed nodes, the quality of which can dramatically influence
the solution quality of the found communities. If the seeds are well-selected, the quality of the
solution can be good, but if not, the quality of the solution can be very bad.

See Xu T. Liu et al, Direction-optimizing label propagation and its application to community
detection, and Xu T. Liu et al, Direction-optimizing Label Propagation Framework for Structure
Detection in Graphs: Design, Implementation, and Experimental Analysis, and the Neo4j Label
Propagation API.

The time complexity of the algorithm is O(k|E|), where |E| is the number of edges in the graph,
and k is the number of iterations for the algorithm to converge. Its space complexity is O(|V|),
where |V| is the number of nodes in the graph.

.labelPropagation syntax

CALL neptune.algo.labelPropagation(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 vertexWeightProperty: a numeric node property used to weight the community ID
 (optional),
 vertexWeightType: numeric type of the specified vertexWeightProperty (optional),
 edgeWeightProperty: a numeric edge property used to weight the community ID
 (optional),
 edgeWeightType: numeric type of the specified edgeWeightProperty (optional),
 maxIterations: the maximum number of iterations to run (optional, default: 10),
 traversalDirection: traversal direction (optional, default: outbound),
 concurrency: number of threads to use (optional)
 }
)
Yield node, community
Return node, community

.labelPropagation 230

https://doi.org/10.1145/3387902.3392634
https://doi.org/10.1145/3387902.3392634
https://doi.org/10.1145/3564593
https://doi.org/10.1145/3564593
https://neo4j.com/docs/graph-data-science/current/algorithms/label-propagation/
https://neo4j.com/docs/graph-data-science/current/algorithms/label-propagation/

Neptune Analytics Neptune Analytics User Guide

.labelPropagation inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

If the algorithm is called following a MATCH clause (query algo integration), the source query list
is the result returned by the MATCH clause.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are included in the calculation, including nodes in the input list.

• vertexWeightProperty (optional) – type: string; default: none.

The node weight used in Label Propagation. When vertexWeightProperty is not specified,
each node's communityId is treated equally, as if the node weight were 1.0. When the
vertexWeightProperty is specified without an edgeWeightProperty, the weight of
the communityId for each node is the value of the node weight property. When both
vertexWeightProperty and edgeWeightProperty are specified, the weight of the
communityId is the product of the node property value and edge property value.

Note that if multiple properties exist on the node with the name specified by
vertexWeightProperty, one of those property values will be sampled at random.

• vertexWeightType (required if vertexWeightProperty is presnt) – type: string; valid
values: "int", "long", "float", "double"; default: empty.

The type of the numeric values in the node property specified by vertexWeightProperty.

If vertexWeightProperty is not provided, vertexWeightType is ignored. If a node
contains a numeric property with the name specified by vertexWeightProperty but
its value is a different numeric type than is specified by vertexWeightType, the value is

.labelPropagation 231

Neptune Analytics Neptune Analytics User Guide

typecast to the type specified by vertexWeightType. If both vertexWeightType and
edgeWeightType are given, the type specified by edgeWeightType is used for both node
and edge properties.

• edgeWeightProperty (optional) – type: string; default: none.

The numeric edge property used as a weight in Label Propagation. When
vertexWeightProperty is not specified, the default edge weight is 1.0, so each edge
is treated equally. When only edgeWeightProperty is provided, the weight of the
communityId is the value of that edge property. When both vertexWeightProperty and
edgeWeightProperty are present, the weight of a communityId is the product of the edge
property value and the node property value.

Note that if multiple properties exist on the edge with the name specified by
edgeWeightProperty, one of those property values will be sampled at random.

• edgeWeightType (required if edgeWeightProperty is presnt) – type: string; valid values:
"int", "unsignedInt", "long", "unsignedLong", "float", "double"; default: none.

The type of the numeric values in the edge property specified by edgeWeightProperty.

If edgeWeightProperty is not provided, edgeWeightType is ignored. If a node contains
a numeric property with the name specified by edgeWeightProperty but its value is a
different numeric type than is specified by edgeWeightType, the value is typecast to the type
specified by edgeWeightType. If both vertexWeightType and edgeWeightType are given,
the type specified by edgeWeightType is used for both node and edge properties.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "oubound", or "both".

• maxIterations (optional) – type: integer; default: 10.

The maximum number of iterations to run.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

.labelPropagation 232

Neptune Analytics Neptune Analytics User Guide

.labelPropagation outputs

• node – A key column of the input nodes.

• community – A key column of the corresponding communityId values for those nodes. All
the nodes with the same communityId are in the same weakly-connected component.

If the input node list is empty, the output is empty.

.labelPropagation query examples

This is a standalone example, where the source node list is explicitly provided in the query. It runs
the algorithm over the whole graph, but only queries the component ID of one node:

CALL neptune.algo.labelPropagation(
 ["101"],
 {
 edgeLabels: ["route"],
 maxIterations: 10,
 vertexLabel: "airport",
 vertexWeightProperty: "runways",
 vertexWeightType: "int",
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD node, community
RETURN node, community

This is a query integration example, where .labelPropagation uses the output of a preceding
MATCH clause as its source node list:

Match (n)
CALL neptune.algo.labelPropagation(
 n,
 {
 edgeLabels: ["route"],
 maxIterations: 10,
 vertexLabel: "airport",
 vertexWeightProperty: "runways",

.labelPropagation 233

Neptune Analytics Neptune Analytics User Guide

 vertexWeightType: "int",
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD community
RETURN n, community

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .pageRank output

Here is an example of the output returned by .pageRank when run against the sample air-routes
dataset using this query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n) CALL neptune.algo.labelPropagation(n) YIELD node, community
 RETURN node, community LIMIT 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "type": "airport",

.labelPropagation 234

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "code": "IAD",
 "lon": -77.45580292,
 "runways": 4,
 "longest": 11500,
 "communityId": 2357352929951971,
 "city": "Washington D.C.",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "prscore": 0.002264724113047123,
 "degree": 312,
 "wccid": 2357352929951779,
 "ccscore": 0.20877772569656373,
 "country": "US",
 "icao": "KIAD"
 }
 },
 "community": 2357352929951971
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "type": "airport",
 "code": "JFK",
 "lon": -73.77890015,
 "runways": 4,
 "longest": 14511,
 "communityId": 2357352929951971,
 "city": "New York",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "wccid": 2357352929951779,
 "ccscore": 0.2199712097644806,
 "country": "US",
 "icao": "KJFK"
 }
 },
 "community": 2357352929951971

.labelPropagation 235

Neptune Analytics Neptune Analytics User Guide

 }
]
}

.labelPropagation 236

Neptune Analytics Neptune Analytics User Guide

Label propagation mutate algorithm

Label Propagation Algorithm (LPA) is an algorithm for community detection that is also used in
semi-supervised machine learning for data classification.

The .labelPropagation.mutate variant of the algorithm writes the derived community
component ID of each node in the source list to a new property of that node.

.labelPropagation.mutate syntax

CALL neptune.algo.labelPropagation(
 {
 writeProperty: the name for the node property to which to write component IDs
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 vertexWeightProperty: a numeric node property used to weight the community ID
 (optional),
 vertexWeightType: numeric type of the specified vertexWeightProperty (optional),
 edgeWeightProperty: a numeric edge property used to weight the community ID
 (optional),
 edgeWeightType: numeric type of the specified edgeWeightProperty (optional),
 maxIterations: the maximum number of iterations to run (optional, default: 10),
 traversalDirection: traversal direction (optional, default: outbound),
 concurrency: number of threads to use (optional)
 }
)

.labelPropagation.mutate inputs

Inputs for .wcc.mutate are passed in a configuration object that contains:

• writeProperty (required) – type: string; default: none.

A name for the new node property that will contain the computed community component ID of
the node.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• vertexWeightProperty (optional) – type: string; default: none.

.labelPropagation.mutate 237

Neptune Analytics Neptune Analytics User Guide

The node weight used in Label Propagation. When vertexWeightProperty is not specified,
each node's communityId is treated equally, as if the node weight were 1.0. When the
vertexWeightProperty is specified without an edgeWeightProperty, the weight of
the communityId for each node is the value of the node weight property. When both
vertexWeightProperty and edgeWeightProperty are specified, the weight of the
communityId is the product of the node property value and edge property value.

Note that if multiple properties exist on the node with the name specified by
vertexWeightProperty, one of those property values will be sampled at random.

• vertexWeightType (required if vertexWeightProperty is presnt) – type: string; valid
values: "int", "long", "float", "double"; default: empty.

The type of the numeric values in the node property specified by vertexWeightProperty.

If vertexWeightProperty is not provided, vertexWeightType is ignored. If a node contains
a numeric property with the name specified by vertexWeightProperty but its value is a
different numeric type than is specified by vertexWeightType, the value is typecast to the type
specified by vertexWeightType. If both vertexWeightType and edgeWeightType are given,
the type specified by edgeWeightType is used for both node and edge properties.

• edgeWeightProperty (optional) – type: string; default: none.

The numeric edge property used as a weight in Label Propagation. When
vertexWeightProperty is not specified, the default edge weight is 1.0, so each edge is treated
equally. When only edgeWeightProperty is provided, the weight of the communityId is the
value of that edge property. When both vertexWeightProperty and edgeWeightProperty
are present, the weight of a communityId is the product of the edge property value and the
node property value.

Note that if multiple properties exist on the edge with the name specified by
edgeWeightProperty, one of those property values will be sampled at random.

• edgeWeightType (required if edgeWeightProperty is presnt) – type: string; valid values:
"int", "unsignedInt", "long", "unsignedLong", "float", "double"; default: none.

The type of the numeric values in the edge property specified by edgeWeightProperty.

If edgeWeightProperty is not provided, edgeWeightType is ignored. If a node contains a
numeric property with the name specified by edgeWeightProperty but its value is a different

.labelPropagation.mutate 238

Neptune Analytics Neptune Analytics User Guide

numeric type than is specified by edgeWeightType, the value is typecast to the type specified
by edgeWeightType. If both vertexWeightType and edgeWeightType are given, the type
specified by edgeWeightType is used for both node and edge properties.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "oubound", or "both".

• maxIterations (optional) – type: integer; default: 10.

The maximum number of iterations to run.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used to run
algorithms concurrently. If the number is greater than the machine limit, it will be automatically
capped to the limit.

Outputs for the .labelPropagation.mutate algorithm

The community component IDs are written as a new node property of each source node using the
property name specified by writeProperty.

If the algorithm is invoked as a standalone query, there is no other output.

If the algorithm is invoked immediately after a MATCH clause that supplies its source node list, the
algorithm outputs a key column of the source nodes from the MATCH clause and a value column of
success flags (true or false) to indicate whether or not the write to the new node property of that
node succeeded.

.labelPropagation.mutate query example

CALL neptune.algo.labelPropagation.mutate(
 {
 writeProperty: "COMM_ID",
 edgeLabels: ["route"],
 maxIterations: 10,
 vertexLabel: "airport",
 vertexWeightProperty: "runways",
 vertexWeightType: "int",
 edgeWeightProperty: "dist",

.labelPropagation.mutate 239

Neptune Analytics Neptune Analytics User Guide

 edgeWeightType: "int",
 traversalDirection: "both",
 concurrency: 2
 }
)

Sample .labelPropagation.mutate output

Here is an example of the output returned by .labelPropagation.mutate when run against the
sample air-routes dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.labelPropagation.mutate({writeProperty:
 'communityId'}) YIELD success RETURN success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "success": true
 }
]
}

.labelPropagation.mutate 240

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

Strongly connected components algorithm

Strongly connected components (SCC) are the maximally connected subgraphs of a directed graph
where every node is reachable from every other node (in other words, there exists a path between
every node in the subgraph).

Neptune Analytics implements this algorithm using a modified multi-step approach (see BFS and
Coloring-based Parallel Algorithms for Strongly Connected Components and Related Problems, by
George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri, IPDPS 2014).

The time complexity of the .scc algorithm in the worst case is O(|V|+|E|*D), where |V| is the
number of nodes in the graph, |E| is the number of edges in the graph, and D is the diameter,
defined as the length of the longest path from one node to another in the graph.

The algorith's space complexity is O(|V|) + [storage of data O(|V|+|E|)]. This can be
expressed in more detail as: |V| * (7 * sizeof(local id type) + 4 * sizeof(global
id type)) + O(|1DData Parts|).

.scc syntax

CALL neptune.algo.scc(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD node, component
RETURN node, component

.scc inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

.scc 241

https://docs.aws.amazon.com/https://www.cs.rpi.edu/~slotag/pub/SCC-IPDPS14.pdf
https://docs.aws.amazon.com/https://www.cs.rpi.edu/~slotag/pub/SCC-IPDPS14.pdf

Neptune Analytics Neptune Analytics User Guide

• vertexLabel (optional) – type: string; default: none.

A node label to filter on.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used
to run algorithms concurrently. If the number is greater than the machine limit, it will be
automatically capped to the limit.

.scc outputs

For each source node:

• node – The source node.

• component – The component ID associated with the source node.

If the input node list is empty, the output is empty.

.scc query examples

This openCypher query has an empty input list, and so will have no output:

Match (n)
CALL neptune.algo.scc(n, {edgeLabels: ["route", "contains"]})
YIELD component
RETURN n, component

This is a query integration example, where .scc follows a MATCH clause that generates its input
node list:

Match (n)
CALL neptune.algo.scc(n, {})
Yield component
Return n, component

.scc 242

Neptune Analytics Neptune Analytics User Guide

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .scc output

Here is an example of the output returned by .wcc.mutate when run against the sample air-
routes dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.wcc.mutate({writeProperty: 'wccid'}) YIELD success
 RETURN success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "type": "airport",
 "code": "IAD",
 "lon": -77.45580292,
 "runways": 4,
 "longest": 11500,
 "communityId": 2357352929951971,
 "city": "Washington D.C.",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "prscore": 0.002264724113047123,
 "degree": 312,

.scc 243

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

 "wccid": 2357352929951779,
 "ccscore": 0.20877772569656373,
 "country": "US",
 "icao": "KIAD"
 }
 },
 "component": 2357352929966149
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "type": "airport",
 "code": "JFK",
 "lon": -73.77890015,
 "runways": 4,
 "longest": 14511,
 "communityId": 2357352929951971,
 "city": "New York",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "wccid": 2357352929951779,
 "ccscore": 0.2199712097644806,
 "country": "US",
 "icao": "KJFK"
 }
 },
 "component": 2357352929966149
 }
]
}

.scc 244

Neptune Analytics Neptune Analytics User Guide

Strongly connected components mutate algorithm

Strongly connected components (SCC) are the maximally connected subgraphs of a directed graph,
where every node is reachable from every other node (in other words, there exists a path between
every node in the subgraph).

The time complexity of the .scc-mutate algorithm in the worst case is O(|V|+|E|*D), where
|V| is the number of nodes in the graph, |E| is the number of edges in the graph, and D is the
diameter, the length of the longest path from one node to another in the graph.

The algorith's space complexity is O(|V|) + [storage of data O(|V|+|E|)]. This can be
expressed in more detail as: |V| * (7 * sizeof(local id type) + 4 * sizeof(global
id type)) + O(|1DData Parts|).

.scc.mutate syntax

CALL neptune.algo.scc.mutate(
 {
 writeProperty: the name for the node property to which to write component IDs
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD success
RETURN success

Inputs for the .scc.mutate algorithm

Inputs for .scc.mutate are passed in a configuration object that contains:

• writeProperty (required) – type: string; default: none.

A name for the new node property where the component IDs will be written.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

.scc.mutate 245

Neptune Analytics Neptune Analytics User Guide

The node label to filter on for traversing. Only nodes matching this label will be traversed. For
example: "airport".

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used to run
algorithms concurrently. If the number is greater than the machine limit, it will be automatically
capped to the limit.

Outputs for the .scc.mutate algorithm

The computed strongly connected component IDs are written as a new node property using the
specified property name. A single success flag (true or false) is returned to indicate whether the
computation and writes succeeded or failed.

.scc.mutate query example

CALL neptune.algo.scc.mutate(
 {
 writeProperty: "SCOMM_ID",
 edgeLabels: ["route", ..],
 vertexLabel: "airport",
 concurrency: 2
 }
)

Sample .scc.mutate output

Here is an example of the output returned by .scc.mutate when run against the sample air-
routes dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.scc.mutate({writeProperty: 'sccid'}) YIELD success
 RETURN success" \
 --language open_cypher \
 /tmp/out.txt

.scc.mutate 246

s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

cat /tmp/out.txt
{
 "results": [
 {
 "success": true
 }
]
}

.scc.mutate 247

Neptune Analytics Neptune Analytics User Guide

Working with vector similarity in Neptune Analytics

You can answer complex questions about your data by transforming data shapes into embeddings
(that is, vectors). Using a vector search index lets you answer questions about the your data's
context and its similarity and connection to other data.

For example, a support agent could translate a question that they receive into a vector and use
it to search the support knowledge base for articles that are similar to the words in the question
(implicit similarity). For the most applicable articles, they could then collect metadata about the
author, previous cases, runbooks, and so on so as to provide additional context when answering the
question (explicit data).

Vector similarity search in Neptune Analytics makes it easy for you to build machine learning (ML)
augmented search experiences and generative artificial intelligence (GenAI) applications. It also
gives you an overall lower total cost of ownership and simpler management overhead because
you no longer need to manage separate data stores, build pipelines, or worry about keep the data
stores in sync. You can use vector similarity search in Neptune Analytics to augment your LLMs by
integrating graph queries for domain-specific context with the results from low-latency, nearest-
neighbor similarity search on embeddings imported from LLMs hosted in Amazon Bedrock, Graph
Neural Networks (GNNs) in GraphStorm, or other sources.

As an example, Bioinformatics researchers who are interested in re-purposing existing blood
pressure drugs for other treatable diseases, want to use vector similarity search over in-house
knowledge graphs to find patterns in protein interaction networks.

For another example, a large online book retailer may need to use known pirated material to
quickly identify similar media in conjunction with a knowledge graph to identify patterns of
deceptive listing behaviours and find malicious sellers.

In both cases, vector search over a knowledge graph increases accuracy and speed when building
the solution. It reduces the operational overhead and complexity using the tools available today.

You can create a vector index for your graph to try out this feature. Neptune Analytics supports
associating embeddings generated from LLMs with the nodes of your graphs.

Contents

• Vector indexing in Neptune Analytics

• Loading vectors into a Neptune Analytics graph vector index

248

Neptune Analytics Neptune Analytics User Guide

• Load the vectors from graph data files Amazon S3

• Using the vectors.upsert algorithm to load vectors for your graph

• Common errors you may encounter when loading embeddings

• Vector-search algorithms in Neptune Analytics

• Vector-similarity search (VSS) algorithms in Neptune Analytics

• The .vectors.distance algorithm

• .vectors.distance syntax

• .vectors.distance inputs

• .vectors.distance outputs

• .vectors.distance query example

• Sample .vectors.distance output

• The .vectors.get algorithm

• .vectors.get syntax

• .vectors.get input

• .vectors.get outputs

• .vectors.get query example

• Sample .vectors.get output

• .vectors.topKByEmbedding algorithm

• .vectors.topKByEmbedding syntax

• .vectors.topKByEmbedding input

• .vectors.topKByEmbedding outputs

• .vectors.topKByEmbedding query example

• Sample .vectors.topKByEmbedding output

• .vectors.topKByNode algorithm

• .vectors.topKByNode syntax

• .vectors.topKByNode input

• .vectors.topKByNode outputs

• .vectors.topKByNode query example

• Sample .vectors.topKByNode output

• .vectors.upsert algorithm
249

Neptune Analytics Neptune Analytics User Guide

• .vectors.upsert syntax

• .vectors.upsert input

• .vectors.upsert outputs

• .vectors.upsert query examples

• Sample .vectors.upsert output

• .vectors.remove algorithm

• .vectors.remove syntax

• .vectors.remove input

• .vectors.remove outputs

• .vectors.remove query examples

• Sample .vectors.remove output

250

Neptune Analytics Neptune Analytics User Guide

Vector indexing in Neptune Analytics

You can only create a vector search index for a Neptune Analytics graph at the time the graph
is created. Neptune Analytics lets you create only one vector index for a graph, with a fixed
dimension between 1 and 65,535 inclusive.

When you create a Neptune Analytics graph in the console, you specify the index dimension under
Vector search settings near the end of the process.

Loading vectors into a Neptune Analytics graph vector index

Note that the nodes in your graph must have at least one user property or label in order to
associate them with embeddings. Also, Neptune Analytics does not support the special positive
and negative infinity (INF, -INF) and not-a-number (NaN) floating-point values.

Neptune Analytics supports optional embeddings in the CSV file when the vector index is enabled.
This means that not every node needs to be associated with an embedding.

Neptune Analytics does not currently support loading vectors from Neptune Database or a
snapshot.

There are two ways you can load vectors associated with nodes in your graph:

Load the vectors from graph data files Amazon S3

When you're loading graph data from files in Amazon S3 using the console or the
neptune.load{} openCypher integration, you can add a column to your CSV data with an
embedding:vector header. This column should contain a list of integer or floating-point values
separated by semicolons (;) that forms a vector of the required dimension and is the embedding
for the node in question.

For example, associating a 4-dimensional vector with nodes in your graph in the openCypher CSV
format would look like this:

:ID, name:String, embedding:Vector, :LABEL
v1,"ABC",0.1;0.5;0.8;-1.32,person
v2,"DEF",8.1;-0.2;0.432;-1.02,person
v3,"GHI",12323343;24324;2433554;-4343434,person
v4,"JKL",121.12213;3223.212;265;-1.32,person

Vector indexing 251

Neptune Analytics Neptune Analytics User Guide

In the Gremlin CSV format, the same thing would look like this:

~id, name, embedding:vector, ~label
v1,"ABC",0.1;0.5;0.8;-1.32,person
v2,"DEF",8.1;-0.2;0.432;-1.02,person
v3,"GHI",12323343;24324;2433554;-4343434,person
v4,"JKL",121.12213;3223.212;265;-1.32,person

Using the vectors.upsert algorithm to load vectors for your graph

You can also use the vectors.upsert algorithm to insert or update embeddings in a Neptune
Analytics graph that has a vector search index. For example, in openCypher you can call the
algorithm like this:

CALL neptune.algo.vectors.upsert(
 "person933",
 [0.1, 0.2, 0.3, ..]
)
YIELD node, embedding, success
RETURN node, embedding, success

Another example is:

UNWIND [
 {id: "933", embedding: [1,2,3,4]},
 {id: "934", embedding: [-1,-2,-3,-4]}
] as entry
MATCH (n:person) WHERE id(n)=entry.id WITH n, entry.embedding as embedding
CALL neptune.algo.vectors.upsert(n, embedding)
YIELD success
RETURN n, embedding, success

Common errors you may encounter when loading embeddings

• If the embeddings you are trying to load have a different dimension than is expected by the
vector index, the load fails with parsing exception and a message like the following:

An error occurred (ParsingException) when calling the
 ExecuteOpenCypherQuery operation: Could not load vector embedding: (the
 embedding in question). Please check the dimensionality for this vector

Loading errors 252

Neptune Analytics Neptune Analytics User Guide

 when parsing line [(line number)] in [(file
 name)]

• If the embeddings in a file are not properly formatted, Neptune Analytics reports a Parsing
Exception before starting the load. For example, if the column header for the embedding column
is not embedding:vector, Neptune Analytics would report an error like this:

An error occurred (ParsingException) when calling the
 ExecuteOpenCypherQuery operation: Invalid data type encountered for header
 embedding:Vectttor when parsing line
 [~id, name:string, embedding:Vectttor, ~label] in [(file name)]

• If embeddings are present in a file to be loaded but no vector index is present, Neptune Analytics
simply ignores the embeddings and loads the graph data without them.

Vector-search algorithms in Neptune Analytics

Neptune Analytics supports a variety of vector-search algorithms that are listed in the VSS
algorithms section.

Vector algorithms 253

Neptune Analytics Neptune Analytics User Guide

Vector-similarity search (VSS) algorithms in Neptune Analytics

Vector simlarity search algorithms identify similar vectors based on the vector distance between
them.

Neptune Analytics supports the following vector-similarity search algorithms:

Note

The following special floating-point values are not supported in Neptune Analytics vector-
similarity search algorithms:

• INF (infinity)

• -INF (negative infinity)

• NaN (not-a-number)

Contents

• The .vectors.distance algorithm

• .vectors.distance syntax

• .vectors.distance inputs

• .vectors.distance outputs

• .vectors.distance query example

• Sample .vectors.distance output

• The .vectors.get algorithm

• .vectors.get syntax

• .vectors.get input

• .vectors.get outputs

• .vectors.get query example

• Sample .vectors.get output

• .vectors.topKByEmbedding algorithm

• .vectors.topKByEmbedding syntax

• .vectors.topKByEmbedding input

• .vectors.topKByEmbedding outputs

VSS algorithms 254

Neptune Analytics Neptune Analytics User Guide

• .vectors.topKByEmbedding query example

• Sample .vectors.topKByEmbedding output

• .vectors.topKByNode algorithm

• .vectors.topKByNode syntax

• .vectors.topKByNode input

• .vectors.topKByNode outputs

• .vectors.topKByNode query example

• Sample .vectors.topKByNode output

• .vectors.upsert algorithm

• .vectors.upsert syntax

• .vectors.upsert input

• .vectors.upsert outputs

• .vectors.upsert query examples

• Sample .vectors.upsert output

• .vectors.remove algorithm

• .vectors.remove syntax

• .vectors.remove input

• .vectors.remove outputs

• .vectors.remove query examples

• Sample .vectors.remove output

VSS algorithms 255

Neptune Analytics Neptune Analytics User Guide

The .vectors.distance algorithm

The .vectors.distance algorithm computes the distance between two vectors based on their
embeddings. The distance is the L2 norm of the vectors.

.vectors.distance syntax

MATCH(n {`~id`: "the ID of the source node(s)"})
MATCH(m {`~id`: "the ID of the target node(s)" })
CALL neptune.algo.vectors.distance(n, m)
YIELD distance
RETURN n, m, distance

.vectors.distance inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement from which you want to source distance computations.

• a target node (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement from which you want to source distance computations.

Warning

Be careful to limit MATCH(n) and MATCH(m) so that they don't return a large
number of nodes. Keep in mind that every pair of n and m in the join result invokes
.vectors.distance once. Too many inputs can therefore result in very long runtimes.
Use LIMIT or put conditions on the MATCH clause to restrict its output appropriately.

.vectors.distance outputs

For every pair of source node and target node:

• source – The starting point for the distance call.

• target – The target for the distance computation.

• distance – The distance between source and target.

.vectors.distance 256

Neptune Analytics Neptune Analytics User Guide

.vectors.distance query example

MATCH (n {`~id`: "106"})
MATCH (m {`~id`: "110" })
CALL neptune.algo.vectors.distance(n, m)
YIELD distance
RETURN n, m, distance

Sample .vectors.distance output

Here is an example of the output returned by .vectors.distance when run against a sample
Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n{`~id`: '0'})
 MATCH (m{`~id`: '1'})
 CALL neptune.algo.vectors.distance(n, m)
 YIELD distance
 RETURN n, m, distance" \
 --language open_cypher \
 /tmp/out.txt

{
 "results": [
 {
 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called

.vectors.distance 257

Neptune Analytics Neptune Analytics User Guide

 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "m": {
 "~id": "1",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }
 },
 "distance": 27.762847900390626
 }
]
}

.vectors.distance 258

Neptune Analytics Neptune Analytics User Guide

The .vectors.get algorithm

The .vectors.get algorithm retrieves the embedding for a node.

.vectors.get syntax

MATCH(n {`~id`: "the ID of the node"})
CALL neptune.algo.vectors.get(n)
YIELD embedding
RETURN n, embedding

.vectors.get input

• a source node or nodes (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement that produces the node(s) for which you want to retrieve the
embedding.

Warning

Be careful to limit MATCH(n) so that it doesn't return a large number of nodes. Keep in
mind that every source node in the n result invokes .vectors.get once. Too many inputs
can therefore result in very long runtimes. Use LIMIT or put conditions on the MATCH
clause to restrict its output appropriately.

.vectors.get outputs

For each source node provided:

• node – The source node.

• embedding – The embedding of that source node.

.vectors.get query example

MATCH (n {`~id`: "0"})
CALL neptune.algo.vectors.get(n)
YIELD embedding

.vectors.get 259

Neptune Analytics Neptune Analytics User Guide

RETURN n, embedding

Sample .vectors.get output

Here is an example of the output returned by .vectors.get when run against the sample
Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '0'})
 CALL neptune.algo.vectors.get(n)
 YIELD embedding
 RETURN n, embedding" \
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "embedding": [
 0.07711287587881088,
 0.3197174072265625,
 -0.2051590085029602,
 0.6302579045295715,

.vectors.get 260

s3://neptune-benchmark-artifacts-us-east-1/data/CP/wiki/
s3://neptune-benchmark-artifacts-us-east-1/data/CP/wiki/

Neptune Analytics Neptune Analytics User Guide

 0.032093219459056857,
 0.200703963637352,
 0.16665680706501008,
 -0.31295087933540347,
 0.17575109004974366,
 0.5308129191398621,
 -0.37528499960899355,
 0.3338659405708313,
 -0.046272162348032,
 0.07841536402702332,
 -0.3490406274795532,
 0.27182886004447939,
 0.3073517680168152,
 -0.08306130766868592,
 0.5035958886146545,
 0.254621684551239,
 -0.40407684445381167,
 0.28878292441368105,
 -0.22588828206062318,
 -0.13185778260231019,
 -0.21559733152389527,
 0.4900434613227844,
 0.03866531699895859,
 0.507415771484375,
 -0.3067346513271332,
 0.10740984976291657,
 0.08998646587133408,
 -0.2652775049209595,
 -0.28492602705955508,
 0.33600345253944399,
 -0.27227747440338137,
 0.3691731095314026,
 -0.2815995514392853,
 0.0856710895895958,
 -0.13187488913536073,
 0.4753035008907318,
 -0.2241700142621994,
 0.20263174176216126,
 0.4390721619129181,
 0.06424559652805329,
 0.2463042289018631,
 -0.39631763100624087,
 0.2971232533454895,
 0.2415716052055359,

.vectors.get 261

Neptune Analytics Neptune Analytics User Guide

 -0.02803819440305233,
 0.32105034589767458,
 -0.02222033031284809,
 -0.008510420098900795,
 -0.00032598740654066205,
 0.031057516112923623,
 -0.5332233309745789,
 0.45022767782211306,
 -0.6829474568367004,
 1.3313145637512208,
 0.19445496797561646,
 -0.15697629749774934,
 -0.09996363520622254,
 -0.2786232829093933,
 -0.09833164513111115,
 -0.17644722759723664,
 0.11717787384986878,
 0.2820119559764862,
 0.029635537415742875,
 0.5247654914855957,
 0.5323811173439026,
 -0.06254086643457413,
 -0.05274389684200287,
 0.3877565860748291,
 0.43260684609413149,
 0.5207982063293457,
 -0.27160540223121645,
 -0.06000519543886185,
 -0.032806672155857089,
 -0.3594319522380829,
 0.4218965470790863,
 -0.3766363263130188,
 0.44727250933647158,
 -0.04586323723196983,
 0.06902860850095749,
 0.3030509352684021,
 0.18945887684822083,
 0.21681705117225648,
 -0.014492596499621868,
 -0.38649576902389529,
 -0.1129651814699173,
 0.050081491470336917,
 -0.01697717048227787,
 0.1415158063173294,

.vectors.get 262

Neptune Analytics Neptune Analytics User Guide

 -0.3284287750720978,
 -0.02309800498187542,
 -0.2051207274198532,
 -0.017861712723970414,
 -0.07372242212295532,
 -0.12263767421245575,
 0.21828559041023255,
 -0.36898064613342287,
 0.3558262288570404,
 -0.16924124956130982,
 -0.31757786870002749,
 0.5452765226364136,
 0.24666202068328858,
 -0.08289600908756256,
 -0.14674079418182374,
 -0.18049933016300202,
 0.3646247982978821,
 0.42489132285118105,
 0.0909421369433403,
 -0.1764664500951767,
 0.22471413016319276,
 0.049531541764736179,
 -0.022898104041814805,
 0.08607156574726105,
 0.14532636106014253,
 -0.205774188041687,
 -0.3457978069782257,
 -1.2771626710891724,
 0.2826114892959595,
 0.2066900134086609,
 -0.3884444832801819,
 -0.3564482629299164,
 -0.25118574500083926,
 -0.728326141834259,
 0.5217206478118897,
 -0.43305152654647829,
 0.3510914444923401,
 0.5106240510940552,
 -0.11594267934560776,
 0.43993058800697329,
 0.25412991642951968,
 0.4275965392589569,
 0.1463870108127594,
 0.3510439395904541,

.vectors.get 263

Neptune Analytics Neptune Analytics User Guide

 0.1619710624217987,
 0.11160195618867874,
 -0.22760489583015443,
 -0.23652249574661256,
 0.05374380201101303,
 0.7251803278923035,
 -0.13991153240203858,
 0.9363659024238586,
 -0.05858418717980385,
 0.5233941674232483,
 0.12388131022453308,
 0.6248424649238586,
 -0.11751417070627213,
 0.09689709544181824,
 0.7467237710952759,
 0.2247271090745926,
 -0.6747357845306397,
 -0.16039365530014039,
 -0.41555172204971316,
 -0.04566565155982971,
 0.21260707080364228,
 0.2549103796482086,
 0.24795542657375337,
 0.5625612735748291,
 0.8036459684371948,
 0.15800043940544129,
 0.04797195643186569,
 -0.15839435160160066,
 -0.06506697088479996,
 -0.2577322721481323,
 0.3262946903705597,
 0.5458049178123474,
 0.616370439529419,
 -0.35092639923095705,
 0.048758912831544879,
 0.11522434651851654,
 0.04175107553601265,
 -0.12269306182861328,
 0.1227836161851883,
 0.4020257890224457,
 0.07093577086925507,
 -0.1880340874195099,
 0.5334663391113281,
 0.46888044476509097,

.vectors.get 264

Neptune Analytics Neptune Analytics User Guide

 0.18104688823223115,
 0.30756646394729617,
 0.29316428303718569,
 -0.10604366660118103,
 0.44999250769615176,
 0.18227706849575044,
 0.5962150692939758,
 0.38278165459632876,
 -0.40461188554763796,
 0.17775404453277589,
 -0.16349074244499207,
 0.06950787454843521,
 0.7547341585159302,
 -0.4842711389064789,
 0.4062837064266205,
 0.09000574052333832,
 0.03859427571296692,
 0.24143263697624207,
 -0.3383118510246277,
 0.3363209366798401,
 0.10778547078371048,
 0.3429640233516693,
 -0.20395530760288239,
 0.011477324180305004,
 0.6145590543746948,
 -0.5488739609718323,
 -0.26194247603416445,
 -0.09723474085330963,
 -0.19020821154117585,
 -0.18068274855613709,
 0.1601778119802475,
 0.038950759917497638,
 0.6372026205062866,
 -0.12897184491157533,
 0.10720998793840409,
 0.13482464849948884,
 -0.07540713250637055,
 -0.0881727784872055,
 0.5626690983772278,
 -0.31975486874580386,
 -0.029084375128149987,
 0.43618619441986086,
 0.32975345849990847,
 -0.4053913652896881,

.vectors.get 265

Neptune Analytics Neptune Analytics User Guide

 0.15788795053958894,
 -0.3212168216705322,
 -0.20272433757781983,
 -0.8973743319511414,
 0.060059018433094028,
 -0.014103145338594914,
 -0.3387225568294525,
 -0.49839726090431216,
 -0.011007139459252358,
 -0.16101065278053285,
 -0.20850643515586854,
 0.4891682267189026,
 0.33551496267318728,
 -0.23595896363258363,
 -0.4257577359676361,
 -0.48884832859039309,
 0.48760101199150088,
 0.34031161665916445,
 0.1722799688577652,
 -0.35575979948043826,
 0.629051923751831,
 -0.8014369010925293,
 0.575096607208252,
 0.421142578125,
 -0.2668846547603607,
 -0.046029768884181979,
 0.2791147530078888,
 -0.22112232446670533,
 0.02008579671382904,
 0.22087614238262177,
 -0.17961964011192323,
 0.4235396981239319,
 0.295818567276001,
 -0.18260923027992249,
 0.3227207660675049,
 0.11412205547094345,
 0.04591478034853935,
 0.5127033591270447,
 0.428005576133728,
 0.20718106627464295,
 0.18405631184577943,
 -0.22416146099567414,
 0.4277373254299164,
 0.5384698510169983,

.vectors.get 266

Neptune Analytics Neptune Analytics User Guide

 0.04109276458621025,
 0.5105301141738892,
 0.473961740732193,
 -0.6853302717208862,
 -0.16557902097702027,
 -0.12704522907733918,
 0.0026600745040923359,
 0.5272349715232849,
 0.12121742218732834,
 0.427141010761261,
 -0.3047095239162445,
 0.5948843359947205,
 0.335798442363739,
 0.35749775171279909,
 -0.18497343361377717,
 0.26501506567001345,
 0.1564970314502716,
 0.4210122525691986,
 -0.1915784478187561,
 0.057152874767780307,
 -0.28498271107673647,
 0.04969947412610054,
 0.7697478532791138,
 0.5546697974205017,
 0.0958070456981659,
 -0.3533228933811188,
 0.4784282147884369,
 0.624963104724884,
 0.2151053100824356,
 0.17361000180244447,
 0.22527147829532624,
 -0.12481484562158585,
 0.4212929904460907,
 -0.2926572859287262,
 0.2562543749809265,
 0.38751208782196047,
 0.1340814083814621,
 0.0680900365114212,
 0.2952287793159485,
 0.12217980623245239,
 -0.2869758605957031,
 0.15682946145534516,
 -0.022066200152039529,
 -0.09002991020679474,

.vectors.get 267

Neptune Analytics Neptune Analytics User Guide

 -0.2826828360557556,
 0.84619140625,
 0.7544476985931397,
 0.5953861474990845,
 0.6517565250396729,
 -0.07932830601930618,
 0.22802823781967164,
 -0.135965958237648,
 -0.8263510465621948,
 -0.6325801610946655,
 -0.5928561091423035,
 0.4108763635158539,
 0.0964483916759491,
 -0.5045000910758972,
 -0.06772734969854355,
 -0.79107666015625,
 0.060380879789590839,
 0.015578197315335274,
 0.32540079951286318,
 -0.044692762196063998,
 -0.17132098972797395,
 -0.19123415648937226,
 0.17911623418331147,
 0.3269428014755249,
 -0.22874118387699128,
 0.4686919152736664,
 -0.15749554336071015,
 -0.25185921788215639,
 -0.21561351418495179,
 -0.10132477432489395,
 -0.057977184653282168,
 0.09759098291397095,
 0.16202516853809358,
 0.01888692006468773,
 0.1724688857793808,
 -0.3449697196483612,
 0.4449881315231323,
 0.10185430943965912,
 -0.2976726293563843,
 0.06075461208820343,
 0.21909406781196595,
 -0.07409229874610901,
 0.6881160140037537,
 0.17447273433208466,

.vectors.get 268

Neptune Analytics Neptune Analytics User Guide

 -0.048471711575984958,
 0.5318611264228821,
 0.30954766273498537,
 -0.24350836873054505,
 0.14386573433876038,
 -0.10827953368425369,
 0.08575868606567383,
 0.14200334250926972,
 0.5095603466033936,
 -0.025056177750229837,
 0.24901045858860017,
 -0.23696841299533845,
 -0.03630203381180763,
 0.45206722617149355,
 0.5019969344139099,
 -0.21705971658229829,
 -0.08452687412500382,
 -0.10376924276351929,
 -0.3200875520706177,
 -0.2048267275094986,
 -0.2703971266746521,
 0.2925371825695038,
 0.3755778670310974,
 0.2522588074207306,
 0.22964833676815034,
 0.7995960116386414,
 0.12206973880529404,
 0.2896155118942261,
 0.04163726791739464,
 -0.12602514028549195,
 0.004978220444172621,
 0.3399927020072937,
 0.09124521911144257,
 -0.5452605485916138,
 0.2247130423784256,
 0.23503662645816804,
 0.06750215590000153,
 -0.2884872257709503,
 -0.2791622579097748,
 -0.1780446618795395,
 -0.44350507855415347,
 -0.1840016394853592,
 0.8970789909362793,
 -0.3687478303909302,

.vectors.get 269

Neptune Analytics Neptune Analytics User Guide

 0.36603569984436037,
 0.23560358583927155,
 0.020292289555072786,
 0.2446030080318451,
 4.3314642906188969,
 0.194863960146904,
 -0.10218192636966706,
 0.5695234537124634,
 0.016988292336463929,
 -0.15768325328826905,
 0.050476688891649249,
 0.09948820620775223,
 -0.06554386019706726,
 0.22301962971687318,
 -0.05468735471367836,
 0.29051196575164797,
 0.12100572139024735,
 0.4127441644668579,
 0.1667146235704422,
 0.0587792843580246,
 -0.09758614003658295,
 -0.20510408282279969,
 -0.21746976673603059,
 0.43335747718811037,
 -0.32159093022346499,
 0.6942153573036194,
 0.6173154711723328,
 0.3104712665081024,
 0.5751503109931946,
 0.4174514412879944,
 -0.2948107421398163,
 0.3532458245754242,
 0.4869029223918915,
 0.3115881681442261,
 0.28135108947753909,
 0.38450825214385989,
 0.016915690153837205,
 -0.11598393321037293,
 -0.32250434160232546,
 -0.06988134980201721,
 0.22417351603507996,
 -0.35582518577575686,
 0.2677224576473236,
 0.008019124157726765,

.vectors.get 270

Neptune Analytics Neptune Analytics User Guide

 -0.19177919626235963,
 0.5731900334358215,
 -0.03540642186999321,
 0.43302130699157717,
 0.1796148121356964,
 -0.005056577268987894,
 0.37953320145606997,
 0.13488957285881043,
 0.7240068912506104,
 -0.3088097870349884,
 0.5610846281051636,
 -0.29582735896110537,
 -0.20909856259822846,
 -0.2881403863430023,
 0.10329002141952515,
 0.49255961179733279,
 0.14558906853199006,
 0.41020694375038149,
 0.04002099484205246,
 -0.24476903676986695,
 -0.389543354511261,
 0.3901459574699402,
 0.6170359253883362,
 0.18917717039585114,
 -0.41235554218292239,
 -0.19313344359397889,
 -0.10294703394174576,
 0.5560699105262756,
 0.5773581266403198,
 -0.17282086610794068,
 0.28679269552230837,
 0.34322652220726015,
 -0.07227988541126251,
 -0.5244243741035461,
 -0.26529040932655337,
 -0.11131077259778977,
 -0.19524210691452027,
 0.4082769453525543,
 -0.009217939339578152,
 -0.1462743580341339,
 0.7264918684959412,
 -0.09149657934904099,
 -0.3374916911125183,
 -0.05742226541042328,

.vectors.get 271

Neptune Analytics Neptune Analytics User Guide

 -0.3913151025772095,
 0.7185215950012207,
 -0.3785516619682312,
 -0.00010882654169108719,
 0.6655824780464172,
 0.4194306433200836,
 0.3726831376552582,
 -0.014721312560141087,
 0.5345744490623474,
 0.33022087812423708,
 -0.06344814598560333,
 -0.1560882031917572,
 0.22698232531547547,
 -3.8697707653045656,
 0.06812435388565064,
 -0.4368731677532196,
 -0.07041455805301666,
 -0.015291529707610608,
 -0.41140303015708926,
 0.31612321734428408,
 0.2914712429046631,
 -0.3867192566394806,
 -0.026363473385572435,
 -0.08788029104471207,
 -0.10701339691877365,
 -0.2673511505126953,
 0.27538666129112246,
 -0.3661351501941681,
 0.5879861116409302,
 0.06352981925010681,
 0.15547777712345124,
 0.0863194614648819,
 -0.021183960139751436,
 0.428565114736557,
 0.04859453812241554,
 0.35721391439437868,
 -0.3864029347896576,
 -0.20986808836460114,
 0.15433000028133393,
 0.25567296147346499,
 0.25359275937080386,
 -0.4783596396446228,
 -0.010366495698690415,
 0.4777776598930359,

.vectors.get 272

Neptune Analytics Neptune Analytics User Guide

 -0.029405448585748674,
 0.3631121814250946,
 -0.18738743662834168,
 0.2193489819765091,
 0.7861229777336121,
 -0.01961355283856392,
 0.16653983294963838,
 -0.4193624258041382,
 0.3085209131240845,
 -0.03517897054553032,
 -0.035910699516534808,
 0.37241387367248537,
 -0.13769084215164185,
 -0.08015040308237076,
 0.4384872615337372,
 -0.12396809458732605,
 0.15661391615867616,
 -0.3919837176799774,
 -0.6586825251579285,
 0.5687432885169983,
 0.0396936871111393,
 -0.09660491347312927,
 0.05788198113441467,
 0.48911261558532717,
 0.5213083028793335,
 0.3355415165424347,
 -0.006735790055245161,
 -0.11381038278341294,
 0.09182903915643692,
 -0.11055094748735428,
 -0.28275448083877566,
 0.24975340068340302,
 0.11746659129858017,
 -0.42452141642570498,
 -0.2323901206254959,
 -0.38694220781326296,
 0.015501483343541623,
 0.6440262198448181,
 -0.3121536672115326,
 -0.08778296411037445,
 -0.14549347758293153,
 0.01749151013791561,
 -0.5398207902908325,
 0.4124368131160736,

.vectors.get 273

Neptune Analytics Neptune Analytics User Guide

 0.5154116749763489,
 -0.34769660234451296,
 0.5662841796875,
 0.4989481270313263,
 0.06761053949594498,
 0.014184223487973214,
 0.601079523563385,
 -0.3859538435935974,
 0.3446619212627411,
 2.190366744995117,
 0.4051366150379181,
 2.288928508758545,
 0.5293960571289063,
 -0.3505767583847046,
 0.5397417545318604,
 -0.6520821452140808,
 0.4239364266395569,
 0.2618080675601959,
 0.20174439251422883,
 0.030146604403853418,
 0.0610184520483017,
 0.062213074415922168,
 -0.11276254057884217,
 -0.1301877349615097,
 -0.19404706358909608,
 0.5268515348434448,
 -0.7370991706848145,
 0.028712594881653787,
 -0.4024544954299927,
 0.18225152790546418,
 0.7267741560935974,
 -0.2734072208404541,
 0.1759040206670761,
 -0.2950340211391449,
 0.14166314899921418,
 0.6515365242958069,
 -0.29643580317497256,
 -0.06734377890825272,
 0.09662584215402603,
 -0.010966300964355469,
 -0.3204823136329651,
 0.6417866349220276,
 -0.051218003034591678,
 -0.008819818496704102,

.vectors.get 274

Neptune Analytics Neptune Analytics User Guide

 0.5098630785942078,
 -0.21459998190402986,
 4.437846660614014,
 -0.24779054522514344,
 0.018799694254994394,
 -0.01747281290590763,
 -0.0487254373729229,
 0.6121163964271545,
 0.4686623811721802,
 -0.22926479578018189,
 -0.03692511469125748,
 -0.4286654591560364,
 0.46073317527770998,
 0.16875289380550385,
 -0.014255600981414318,
 -0.07684683054685593,
 0.12223237752914429,
 -0.30599895119667055,
 0.39215049147605898,
 0.22453786432743073,
 0.5624862313270569,
 -0.011985340155661106,
 0.05180392041802406,
 0.030400553718209268,
 0.08391892164945603,
 0.10214067250490189,
 -0.4449590742588043,
 0.2225639522075653,
 0.3862999975681305,
 0.24732927978038789,
 -0.05571140721440315,
 -0.021564822643995286,
 0.28468334674835207,
 5.213898658752441,
 0.13289497792720796,
 -0.1400047093629837,
 -0.39865049719810488,
 0.12139834463596344,
 0.45539018511772158,
 -0.1865275651216507,
 -0.08270177245140076,
 -0.38520801067352297,
 0.08869948983192444,
 -0.05266271159052849,

.vectors.get 275

Neptune Analytics Neptune Analytics User Guide

 0.14364486932754517,
 -0.2860695719718933,
 0.4430652856826782,
 0.7777798771858215,
 0.21114271879196168,
 -0.358752578496933,
 -0.3664247989654541,
 0.6665846109390259,
 -0.40493687987327578,
 0.1747705042362213,
 -0.06670021265745163,
 0.20972059667110444,
 -0.19101694226264954,
 0.23892535269260407,
 -0.08149895817041397,
 0.018510373309254648,
 0.8112999796867371,
 0.07871513813734055,
 0.09570053964853287,
 0.5030911564826965,
 0.21463628113269807,
 -0.31457462906837466,
 0.3051794767379761,
 -0.39506298303604128,
 0.06605447828769684,
 0.6144300699234009,
 -0.4566810429096222,
 0.3146623373031616,
 0.1887989640235901,
 0.9544244408607483,
 0.5103438496589661,
 -0.4859951138496399,
 -0.32647767663002016,
 -0.07584235072135925,
 0.21474787592887879,
 -0.1920636147260666,
 -0.4472030997276306,
 0.08618132770061493,
 -0.17384092509746552,
 -0.20969024300575257,
 -0.1831870973110199,
 0.8782939314842224,
 -0.15720084309577943,
 0.37347128987312319,

.vectors.get 276

Neptune Analytics Neptune Analytics User Guide

 0.5088165998458862,
 0.29395583271980288,
 -0.3580363988876343,
 -0.17590023577213288,
 -0.508141279220581,
 0.4661521315574646,
 0.142064169049263,
 -0.05615571141242981,
 0.592810869216919,
 0.37807324528694155,
 -0.14052101969718934,
 -0.19951890408992768,
 -0.12800109386444093,
 0.748070478439331,
 0.13753947615623475,
 -0.08446942269802094,
 0.3747580945491791,
 -0.12847286462783814,
 -0.13892321288585664,
 0.08525972813367844,
 0.12516680359840394,
 0.5701874494552612,
 -0.24708901345729829,
 0.0679594948887825,
 0.10870008915662766,
 0.20561885833740235,
 -0.7872452139854431,
 0.07303950190544129,
 0.35694700479507449,
 0.245212584733963,
 0.3299793303012848,
 -0.010669616051018238,
 -0.12047348916530609,
 0.3540535271167755,
 0.32180890440940859,
 0.3066200911998749,
 0.021576205268502237,
 0.17679384350776673,
 -0.23050960898399354,
 0.1292697787284851,
 0.022921407595276834,
 0.5460971593856812,
 0.3612038493156433,
 0.1963733434677124,

.vectors.get 277

Neptune Analytics Neptune Analytics User Guide

 0.4622957706451416,
 0.16855642199516297,
 0.2564740478992462,
 -0.27637141942977908,
 -0.16345584392547608,
 0.08119463175535202,
 0.07851938903331757,
 -0.5181471109390259,
 -0.5290305614471436,
 0.5271350741386414,
 0.3391841650009155,
 0.501441240310669,
 0.740936279296875,
 -0.26713573932647707,
 0.030347898602485658,
 0.05174243822693825
]
 }
]
}

.vectors.get 278

Neptune Analytics Neptune Analytics User Guide

.vectors.topKByEmbedding algorithm

The .vectors.topKByEmbedding algorithm finds the topK nearest neighbors of an embedding
based on the distance of their vector embeddings.

.vectors.topKByEmbedding syntax

CALL neptune.algo.vectors.topKByEmbedding(
 [an embedding (required)],
 {
 topK: the number of result nodes to return (optional, default: 10),
 concurrency: the number of cores to use to run the algorithm (optional)
 }
)
YIELD embedding, node, score
RETURN embedding, node, score

.vectors.topKByEmbedding input

• an embedding (required) type: a list of floating-point values.

The source input embedding to use to compute the distance to the embeddings of the candidate
target nodes. The dimension of the embedding must match the declared dimension of the
associated vector index.

The embedding may or may not exist in the database. If not, it can be any vector of the same
dimension as is declared in the associated vector index.

• topK (optional) type: a positive integer; default: 10.

The number of result nodes to return.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used to run
algorithms concurrently. If the number is greater than the machine limit, it will be automatically
capped to the limit.

.vectors.topKByEmbedding 279

Neptune Analytics Neptune Analytics User Guide

.vectors.topKByEmbedding outputs

For each node returned:

• embedding – The input embedding.

• node – A node whose embedding is at one of the topK nearest distances from the input
embedding.

• score – The distance between the input embedding and the embedding of this node.

.vectors.topKByEmbedding query example

You can provide the embedding explicitly in the query, although embeddings tend to be very large:

CALL neptune.algo.vectors.topKByEmbedding(
 [0.1, 0.2, 0.3, ...],
 {
 topK: 7,
 concurrency: 1
 }
)
YIELD embedding, node, score
RETURN embedding, node, score

Most often, you will by generating embeddings to pass to the algorithm. For example:

MATCH (n:airport {code: 'ANC'})
CALL neptune.algo.vectors.get(n) YIELD embedding AS vector WITH vector
CALL neptune.algo.vectors.topKByEmbedding(
 vector,
 {
 topK: 10,
 concurrency: 1
 }
)
YIELD node, score
RETURN vector, node, score

.vectors.topKByEmbedding 280

Neptune Analytics Neptune Analytics User Guide

Warning

In queries like the one above, be careful to limit MATCH(n) so that it doesn't return a
large number of nodes. Keep in mind that every node in n invokes a separate run of both
.vectors.get and .vectors.topKByEmbedding. Too many inputs can therefore result
in very long runtimes. Use LIMIT or put conditions on the MATCH clause to restrict its
output appropriately.

Sample .vectors.topKByEmbedding output

Here is an example of the output returned by .vectors.topKByEmbedding when run against the
sample Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '0'})
 CALL neptune.algo.vectors.get(n) YIELD embedding AS vector
 CALL neptune.algo.vectors.topKByEmbedding(vector, { topK: 3 })
 YIELD node, score
 RETURN node, score"
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called

.vectors.topKByEmbedding 281

s3://neptune-benchmark-artifacts-us-east-1/data/CP/wiki/

Neptune Analytics Neptune Analytics User Guide

 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "score": 0.0
 },
 {
 "node": {
 "~id": "2",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 2,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "However\\, the US military prefers not to say 24:00 - they do not
 like to have two names for the same thing\\, so they always say \"23:59\"\\, which is
 one minute before midnight."
 }
 },
 "score": 24.000200271606447
 },
 {
 "node": {
 "~id": "3",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 3,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "24-hour clock time is used in computers\\, military\\, public safety
\\, and transport. In many Asian\\, European and Latin American countries people use it
 to write the time. Many European people use it in speaking."
 }
 },
 "score": 25.013729095458986
 }

.vectors.topKByEmbedding 282

Neptune Analytics Neptune Analytics User Guide

]
}

.vectors.topKByEmbedding 283

Neptune Analytics Neptune Analytics User Guide

.vectors.topKByNode algorithm

The .vectors.topKByNode algorithm finds the topK nearest neighbors of a node based on the
distance of their vector embeddings from the node.

.vectors.topKByNode syntax

CALL neptune.algo.vectors.topKByNode(
 [a list of one or more nodes (required)],
 {
 topK: the number of result nodes to return (optional, default: 10),
 concurrency: the number of cores to use to run the algorithm (optional)
 }
)
YIELD node, score
RETURN node, score

.vectors.topKByNode input

• a list of one or more source nodes (required) – type: Node[] or NodeId[].

If the source-node list is empty then the query result is also empty.

• topK (optional) type: a positive integer; default: 10.

The number of result nodes to return.

• concurrency (optional) – type: positive integer or 0; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If concurrency is set to 0 or is not specified, all the available compute cores will be used to run
algorithms concurrently. If the number is greater than the machine limit, it will be automatically
capped to the limit.

.vectors.topKByNode outputs

For each source node:

• source – The source node.

• node – A node whose embedding is at one of the topK nearest distances from the source
node's embedding.

.vectors.topKByNode 284

Neptune Analytics Neptune Analytics User Guide

• score – The distance between the source node's embedding and the embedding of the close
node.

.vectors.topKByNode query example

MATCH (n:airport {code: 'ANC'})
CALL neptune.algo.vectors.topKByNode(
 n,
 {
 topK: 10,
 concurrency: 1
 }
)
YIELD node, score
RETURN n, node, score

Warning

In queries like the one above, be careful to limit MATCH(n) so that it doesn't return a
large number of nodes. Keep in mind that every node in n invokes a separate run of
.vectors.topKByNode. Too many inputs can therefore result in very long runtimes. Use
LIMIT or put conditions on the MATCH clause to restrict its output appropriately.

Sample .vectors.topKByNode output

Here is an example of the output returned by .vectors.topKByNode when run against the
sample Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '0'})
 CALL neptune.algo.vectors.topKByNode(n, {topK: 3})
 YIELD node, score
 RETURN n, node, score" \
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {

.vectors.topKByNode 285

s3://neptune-benchmark-artifacts-us-east-1/data/CP/wiki/

Neptune Analytics Neptune Analytics User Guide

 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "score": 0.0
 },
 {
 "n": {

.vectors.topKByNode 286

Neptune Analytics Neptune Analytics User Guide

 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "2",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 2,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "However\\, the US military prefers not to say 24:00 - they do not
 like to have two names for the same thing\\, so they always say \"23:59\"\\, which is
 one minute before midnight."
 }
 },
 "score": 24.000200271606447
 },
 {
 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",

.vectors.topKByNode 287

Neptune Analytics Neptune Analytics User Guide

 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "3",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 3,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "24-hour clock time is used in computers\\, military\\, public safety
\\, and transport. In many Asian\\, European and Latin American countries people use it
 to write the time. Many European people use it in speaking."
 }
 },
 "score": 25.013729095458986
 }
]
}

.vectors.topKByNode 288

Neptune Analytics Neptune Analytics User Guide

.vectors.upsert algorithm

The .vectors.upsert algorithm is used to add a new embedding or update an existing one for a
node.

.vectors.upsert syntax

CALL neptune.algo.vectors.upsert(
 "a target node (required)",
 [the embedding to upsert for the target node (required)]
)
YIELD node, embedding, success
RETURN node, embedding, success

.vectors.upsert input

• a target node (required) – type: Node or NodeId.

The node for which you want to upsert an embedding.

• an embedding (required) – type: a list of floating-point values.

The embedding that you want to upsert for the target node.

If the node has an existing embedding, this must match the dimension of the existing one or an
exception is thrown.

.vectors.upsert outputs

If the target node already has an existing embedding then .vectors.upsert replaces it with the
one supplied. Otherwise .vectors.upsert adds the supplied embedding for the target node.

• node – The target node.

• embedding – The embedding that was supplied to be upserted.

• success – A Boolean value: true indicates that the upsert succeded, and false that it failed.

.vectors.upsert query examples

CALL neptune.algo.vectors.upsert(
 "person933",

.vectors.upsert 289

Neptune Analytics Neptune Analytics User Guide

 [0.1, 0.2, 0.3, ..]
)
YIELD node, embedding, success
RETURN node, embedding, success

UNWIND [
 {id: "933", embedding: [1,2,3,4]},
 {id: "934", embedding: [-1,-2,-3,-4]}
] as entry
MATCH (n:person) WHERE id(n)=entry.id WITH n, entry.embedding as embedding
CALL neptune.algo.vectors.upsert(n, embedding)
YIELD success
RETURN n, embedding, success

Sample .vectors.upsert output

Here is an example of the output returned by .vectors.upsert when run against the sample
Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n{\`~id\`:\"0\"})
 CALL neptune.algo.vectors.get(n)
 YIELD embedding AS vector
 MATCH (m{`~id`: '1'})
 CALL neptune.algo.vectors.upsert(m, vector)
 YIELD node, embedding, success
 RETURN node, embedding, success"
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "1",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,

.vectors.upsert 290

s3://neptune-benchmark-artifacts-us-east-1/data/CP/wiki/
s3://neptune-benchmark-artifacts-us-east-1/data/CP/wiki/

Neptune Analytics Neptune Analytics User Guide

 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }
 },
 "embedding": [
 0.07711287587881088,
 0.3197174072265625,
 -0.2051590085029602,
 0.6302579045295715,
 0.032093219459056857,
 0.200703963637352,
 0.16665680706501008,
 -0.31295087933540347,
 0.17575109004974366,
 0.5308129191398621,
 -0.37528499960899355,
 0.3338659405708313,
 -0.046272162348032,
 0.07841536402702332,
 -0.3490406274795532,
 0.27182886004447939,
 0.3073517680168152,
 -0.08306130766868592,
 0.5035958886146545,
 0.254621684551239,
 -0.40407684445381167,
 0.28878292441368105,
 -0.22588828206062318,
 -0.13185778260231019,
 -0.21559733152389527,
 0.4900434613227844,
 0.03866531699895859,
 0.507415771484375,
 -0.3067346513271332,
 0.10740984976291657,
 0.08998646587133408,

.vectors.upsert 291

Neptune Analytics Neptune Analytics User Guide

 -0.2652775049209595,
 -0.28492602705955508,
 0.33600345253944399,
 -0.27227747440338137,
 0.3691731095314026,
 -0.2815995514392853,
 0.0856710895895958,
 -0.13187488913536073,
 0.4753035008907318,
 -0.2241700142621994,
 0.20263174176216126,
 0.4390721619129181,
 0.06424559652805329,
 0.2463042289018631,
 -0.39631763100624087,
 0.2971232533454895,
 0.2415716052055359,
 -0.02803819440305233,
 0.32105034589767458,
 -0.02222033031284809,
 -0.008510420098900795,
 -0.00032598740654066205,
 0.031057516112923623,
 -0.5332233309745789,
 0.45022767782211306,
 -0.6829474568367004,
 1.3313145637512208,
 0.19445496797561646,
 -0.15697629749774934,
 -0.09996363520622254,
 -0.2786232829093933,
 -0.09833164513111115,
 -0.17644722759723664,
 0.11717787384986878,
 0.2820119559764862,
 0.029635537415742875,
 0.5247654914855957,
 0.5323811173439026,
 -0.06254086643457413,
 -0.05274389684200287,
 0.3877565860748291,
 0.43260684609413149,
 0.5207982063293457,
 -0.27160540223121645,

.vectors.upsert 292

Neptune Analytics Neptune Analytics User Guide

 -0.06000519543886185,
 -0.032806672155857089,
 -0.3594319522380829,
 0.4218965470790863,
 -0.3766363263130188,
 0.44727250933647158,
 -0.04586323723196983,
 0.06902860850095749,
 0.3030509352684021,
 0.18945887684822083,
 0.21681705117225648,
 -0.014492596499621868,
 -0.38649576902389529,
 -0.1129651814699173,
 0.050081491470336917,
 -0.01697717048227787,
 0.1415158063173294,
 -0.3284287750720978,
 -0.02309800498187542,
 -0.2051207274198532,
 -0.017861712723970414,
 -0.07372242212295532,
 -0.12263767421245575,
 0.21828559041023255,
 -0.36898064613342287,
 0.3558262288570404,
 -0.16924124956130982,
 -0.31757786870002749,
 0.5452765226364136,
 0.24666202068328858,
 -0.08289600908756256,
 -0.14674079418182374,
 -0.18049933016300202,
 0.3646247982978821,
 0.42489132285118105,
 0.0909421369433403,
 -0.1764664500951767,
 0.22471413016319276,
 0.049531541764736179,
 -0.022898104041814805,
 0.08607156574726105,
 0.14532636106014253,
 -0.205774188041687,
 -0.3457978069782257,

.vectors.upsert 293

Neptune Analytics Neptune Analytics User Guide

 -1.2771626710891724,
 0.2826114892959595,
 0.2066900134086609,
 -0.3884444832801819,
 -0.3564482629299164,
 -0.25118574500083926,
 -0.728326141834259,
 0.5217206478118897,
 -0.43305152654647829,
 0.3510914444923401,
 0.5106240510940552,
 -0.11594267934560776,
 0.43993058800697329,
 0.25412991642951968,
 0.4275965392589569,
 0.1463870108127594,
 0.3510439395904541,
 0.1619710624217987,
 0.11160195618867874,
 -0.22760489583015443,
 -0.23652249574661256,
 0.05374380201101303,
 0.7251803278923035,
 -0.13991153240203858,
 0.9363659024238586,
 -0.05858418717980385,
 0.5233941674232483,
 0.12388131022453308,
 0.6248424649238586,
 -0.11751417070627213,
 0.09689709544181824,
 0.7467237710952759,
 0.2247271090745926,
 -0.6747357845306397,
 -0.16039365530014039,
 -0.41555172204971316,
 -0.04566565155982971,
 0.21260707080364228,
 0.2549103796482086,
 0.24795542657375337,
 0.5625612735748291,
 0.8036459684371948,
 0.15800043940544129,
 0.04797195643186569,

.vectors.upsert 294

Neptune Analytics Neptune Analytics User Guide

 -0.15839435160160066,
 -0.06506697088479996,
 -0.2577322721481323,
 0.3262946903705597,
 0.5458049178123474,
 0.616370439529419,
 -0.35092639923095705,
 0.048758912831544879,
 0.11522434651851654,
 0.04175107553601265,
 -0.12269306182861328,
 0.1227836161851883,
 0.4020257890224457,
 0.07093577086925507,
 -0.1880340874195099,
 0.5334663391113281,
 0.46888044476509097,
 0.18104688823223115,
 0.30756646394729617,
 0.29316428303718569,
 -0.10604366660118103,
 0.44999250769615176,
 0.18227706849575044,
 0.5962150692939758,
 0.38278165459632876,
 -0.40461188554763796,
 0.17775404453277589,
 -0.16349074244499207,
 0.06950787454843521,
 0.7547341585159302,
 -0.4842711389064789,
 0.4062837064266205,
 0.09000574052333832,
 0.03859427571296692,
 0.24143263697624207,
 -0.3383118510246277,
 0.3363209366798401,
 0.10778547078371048,
 0.3429640233516693,
 -0.20395530760288239,
 0.011477324180305004,
 0.6145590543746948,
 -0.5488739609718323,
 -0.26194247603416445,

.vectors.upsert 295

Neptune Analytics Neptune Analytics User Guide

 -0.09723474085330963,
 -0.19020821154117585,
 -0.18068274855613709,
 0.1601778119802475,
 0.038950759917497638,
 0.6372026205062866,
 -0.12897184491157533,
 0.10720998793840409,
 0.13482464849948884,
 -0.07540713250637055,
 -0.0881727784872055,
 0.5626690983772278,
 -0.31975486874580386,
 -0.029084375128149987,
 0.43618619441986086,
 0.32975345849990847,
 -0.4053913652896881,
 0.15788795053958894,
 -0.3212168216705322,
 -0.20272433757781983,
 -0.8973743319511414,
 0.060059018433094028,
 -0.014103145338594914,
 -0.3387225568294525,
 -0.49839726090431216,
 -0.011007139459252358,
 -0.16101065278053285,
 -0.20850643515586854,
 0.4891682267189026,
 0.33551496267318728,
 -0.23595896363258363,
 -0.4257577359676361,
 -0.48884832859039309,
 0.48760101199150088,
 0.34031161665916445,
 0.1722799688577652,
 -0.35575979948043826,
 0.629051923751831,
 -0.8014369010925293,
 0.575096607208252,
 0.421142578125,
 -0.2668846547603607,
 -0.046029768884181979,
 0.2791147530078888,

.vectors.upsert 296

Neptune Analytics Neptune Analytics User Guide

 -0.22112232446670533,
 0.02008579671382904,
 0.22087614238262177,
 -0.17961964011192323,
 0.4235396981239319,
 0.295818567276001,
 -0.18260923027992249,
 0.3227207660675049,
 0.11412205547094345,
 0.04591478034853935,
 0.5127033591270447,
 0.428005576133728,
 0.20718106627464295,
 0.18405631184577943,
 -0.22416146099567414,
 0.4277373254299164,
 0.5384698510169983,
 0.04109276458621025,
 0.5105301141738892,
 0.473961740732193,
 -0.6853302717208862,
 -0.16557902097702027,
 -0.12704522907733918,
 0.0026600745040923359,
 0.5272349715232849,
 0.12121742218732834,
 0.427141010761261,
 -0.3047095239162445,
 0.5948843359947205,
 0.335798442363739,
 0.35749775171279909,
 -0.18497343361377717,
 0.26501506567001345,
 0.1564970314502716,
 0.4210122525691986,
 -0.1915784478187561,
 0.057152874767780307,
 -0.28498271107673647,
 0.04969947412610054,
 0.7697478532791138,
 0.5546697974205017,
 0.0958070456981659,
 -0.3533228933811188,
 0.4784282147884369,

.vectors.upsert 297

Neptune Analytics Neptune Analytics User Guide

 0.624963104724884,
 0.2151053100824356,
 0.17361000180244447,
 0.22527147829532624,
 -0.12481484562158585,
 0.4212929904460907,
 -0.2926572859287262,
 0.2562543749809265,
 0.38751208782196047,
 0.1340814083814621,
 0.0680900365114212,
 0.2952287793159485,
 0.12217980623245239,
 -0.2869758605957031,
 0.15682946145534516,
 -0.022066200152039529,
 -0.09002991020679474,
 -0.2826828360557556,
 0.84619140625,
 0.7544476985931397,
 0.5953861474990845,
 0.6517565250396729,
 -0.07932830601930618,
 0.22802823781967164,
 -0.135965958237648,
 -0.8263510465621948,
 -0.6325801610946655,
 -0.5928561091423035,
 0.4108763635158539,
 0.0964483916759491,
 -0.5045000910758972,
 -0.06772734969854355,
 -0.79107666015625,
 0.060380879789590839,
 0.015578197315335274,
 0.32540079951286318,
 -0.044692762196063998,
 -0.17132098972797395,
 -0.19123415648937226,
 0.17911623418331147,
 0.3269428014755249,
 -0.22874118387699128,
 0.4686919152736664,
 -0.15749554336071015,

.vectors.upsert 298

Neptune Analytics Neptune Analytics User Guide

 -0.25185921788215639,
 -0.21561351418495179,
 -0.10132477432489395,
 -0.057977184653282168,
 0.09759098291397095,
 0.16202516853809358,
 0.01888692006468773,
 0.1724688857793808,
 -0.3449697196483612,
 0.4449881315231323,
 0.10185430943965912,
 -0.2976726293563843,
 0.06075461208820343,
 0.21909406781196595,
 -0.07409229874610901,
 0.6881160140037537,
 0.17447273433208466,
 -0.048471711575984958,
 0.5318611264228821,
 0.30954766273498537,
 -0.24350836873054505,
 0.14386573433876038,
 -0.10827953368425369,
 0.08575868606567383,
 0.14200334250926972,
 0.5095603466033936,
 -0.025056177750229837,
 0.24901045858860017,
 -0.23696841299533845,
 -0.03630203381180763,
 0.45206722617149355,
 0.5019969344139099,
 -0.21705971658229829,
 -0.08452687412500382,
 -0.10376924276351929,
 -0.3200875520706177,
 -0.2048267275094986,
 -0.2703971266746521,
 0.2925371825695038,
 0.3755778670310974,
 0.2522588074207306,
 0.22964833676815034,
 0.7995960116386414,
 0.12206973880529404,

.vectors.upsert 299

Neptune Analytics Neptune Analytics User Guide

 0.2896155118942261,
 0.04163726791739464,
 -0.12602514028549195,
 0.004978220444172621,
 0.3399927020072937,
 0.09124521911144257,
 -0.5452605485916138,
 0.2247130423784256,
 0.23503662645816804,
 0.06750215590000153,
 -0.2884872257709503,
 -0.2791622579097748,
 -0.1780446618795395,
 -0.44350507855415347,
 -0.1840016394853592,
 0.8970789909362793,
 -0.3687478303909302,
 0.36603569984436037,
 0.23560358583927155,
 0.020292289555072786,
 0.2446030080318451,
 4.3314642906188969,
 0.194863960146904,
 -0.10218192636966706,
 0.5695234537124634,
 0.016988292336463929,
 -0.15768325328826905,
 0.050476688891649249,
 0.09948820620775223,
 -0.06554386019706726,
 0.22301962971687318,
 -0.05468735471367836,
 0.29051196575164797,
 0.12100572139024735,
 0.4127441644668579,
 0.1667146235704422,
 0.0587792843580246,
 -0.09758614003658295,
 -0.20510408282279969,
 -0.21746976673603059,
 0.43335747718811037,
 -0.32159093022346499,
 0.6942153573036194,
 0.6173154711723328,

.vectors.upsert 300

Neptune Analytics Neptune Analytics User Guide

 0.3104712665081024,
 0.5751503109931946,
 0.4174514412879944,
 -0.2948107421398163,
 0.3532458245754242,
 0.4869029223918915,
 0.3115881681442261,
 0.28135108947753909,
 0.38450825214385989,
 0.016915690153837205,
 -0.11598393321037293,
 -0.32250434160232546,
 -0.06988134980201721,
 0.22417351603507996,
 -0.35582518577575686,
 0.2677224576473236,
 0.008019124157726765,
 -0.19177919626235963,
 0.5731900334358215,
 -0.03540642186999321,
 0.43302130699157717,
 0.1796148121356964,
 -0.005056577268987894,
 0.37953320145606997,
 0.13488957285881043,
 0.7240068912506104,
 -0.3088097870349884,
 0.5610846281051636,
 -0.29582735896110537,
 -0.20909856259822846,
 -0.2881403863430023,
 0.10329002141952515,
 0.49255961179733279,
 0.14558906853199006,
 0.41020694375038149,
 0.04002099484205246,
 -0.24476903676986695,
 -0.389543354511261,
 0.3901459574699402,
 0.6170359253883362,
 0.18917717039585114,
 -0.41235554218292239,
 -0.19313344359397889,
 -0.10294703394174576,

.vectors.upsert 301

Neptune Analytics Neptune Analytics User Guide

 0.5560699105262756,
 0.5773581266403198,
 -0.17282086610794068,
 0.28679269552230837,
 0.34322652220726015,
 -0.07227988541126251,
 -0.5244243741035461,
 -0.26529040932655337,
 -0.11131077259778977,
 -0.19524210691452027,
 0.4082769453525543,
 -0.009217939339578152,
 -0.1462743580341339,
 0.7264918684959412,
 -0.09149657934904099,
 -0.3374916911125183,
 -0.05742226541042328,
 -0.3913151025772095,
 0.7185215950012207,
 -0.3785516619682312,
 -0.00010882654169108719,
 0.6655824780464172,
 0.4194306433200836,
 0.3726831376552582,
 -0.014721312560141087,
 0.5345744490623474,
 0.33022087812423708,
 -0.06344814598560333,
 -0.1560882031917572,
 0.22698232531547547,
 -3.8697707653045656,
 0.06812435388565064,
 -0.4368731677532196,
 -0.07041455805301666,
 -0.015291529707610608,
 -0.41140303015708926,
 0.31612321734428408,
 0.2914712429046631,
 -0.3867192566394806,
 -0.026363473385572435,
 -0.08788029104471207,
 -0.10701339691877365,
 -0.2673511505126953,
 0.27538666129112246,

.vectors.upsert 302

Neptune Analytics Neptune Analytics User Guide

 -0.3661351501941681,
 0.5879861116409302,
 0.06352981925010681,
 0.15547777712345124,
 0.0863194614648819,
 -0.021183960139751436,
 0.428565114736557,
 0.04859453812241554,
 0.35721391439437868,
 -0.3864029347896576,
 -0.20986808836460114,
 0.15433000028133393,
 0.25567296147346499,
 0.25359275937080386,
 -0.4783596396446228,
 -0.010366495698690415,
 0.4777776598930359,
 -0.029405448585748674,
 0.3631121814250946,
 -0.18738743662834168,
 0.2193489819765091,
 0.7861229777336121,
 -0.01961355283856392,
 0.16653983294963838,
 -0.4193624258041382,
 0.3085209131240845,
 -0.03517897054553032,
 -0.035910699516534808,
 0.37241387367248537,
 -0.13769084215164185,
 -0.08015040308237076,
 0.4384872615337372,
 -0.12396809458732605,
 0.15661391615867616,
 -0.3919837176799774,
 -0.6586825251579285,
 0.5687432885169983,
 0.0396936871111393,
 -0.09660491347312927,
 0.05788198113441467,
 0.48911261558532717,
 0.5213083028793335,
 0.3355415165424347,
 -0.006735790055245161,

.vectors.upsert 303

Neptune Analytics Neptune Analytics User Guide

 -0.11381038278341294,
 0.09182903915643692,
 -0.11055094748735428,
 -0.28275448083877566,
 0.24975340068340302,
 0.11746659129858017,
 -0.42452141642570498,
 -0.2323901206254959,
 -0.38694220781326296,
 0.015501483343541623,
 0.6440262198448181,
 -0.3121536672115326,
 -0.08778296411037445,
 -0.14549347758293153,
 0.01749151013791561,
 -0.5398207902908325,
 0.4124368131160736,
 0.5154116749763489,
 -0.34769660234451296,
 0.5662841796875,
 0.4989481270313263,
 0.06761053949594498,
 0.014184223487973214,
 0.601079523563385,
 -0.3859538435935974,
 0.3446619212627411,
 2.190366744995117,
 0.4051366150379181,
 2.288928508758545,
 0.5293960571289063,
 -0.3505767583847046,
 0.5397417545318604,
 -0.6520821452140808,
 0.4239364266395569,
 0.2618080675601959,
 0.20174439251422883,
 0.030146604403853418,
 0.0610184520483017,
 0.062213074415922168,
 -0.11276254057884217,
 -0.1301877349615097,
 -0.19404706358909608,
 0.5268515348434448,
 -0.7370991706848145,

.vectors.upsert 304

Neptune Analytics Neptune Analytics User Guide

 0.028712594881653787,
 -0.4024544954299927,
 0.18225152790546418,
 0.7267741560935974,
 -0.2734072208404541,
 0.1759040206670761,
 -0.2950340211391449,
 0.14166314899921418,
 0.6515365242958069,
 -0.29643580317497256,
 -0.06734377890825272,
 0.09662584215402603,
 -0.010966300964355469,
 -0.3204823136329651,
 0.6417866349220276,
 -0.051218003034591678,
 -0.008819818496704102,
 0.5098630785942078,
 -0.21459998190402986,
 4.437846660614014,
 -0.24779054522514344,
 0.018799694254994394,
 -0.01747281290590763,
 -0.0487254373729229,
 0.6121163964271545,
 0.4686623811721802,
 -0.22926479578018189,
 -0.03692511469125748,
 -0.4286654591560364,
 0.46073317527770998,
 0.16875289380550385,
 -0.014255600981414318,
 -0.07684683054685593,
 0.12223237752914429,
 -0.30599895119667055,
 0.39215049147605898,
 0.22453786432743073,
 0.5624862313270569,
 -0.011985340155661106,
 0.05180392041802406,
 0.030400553718209268,
 0.08391892164945603,
 0.10214067250490189,
 -0.4449590742588043,

.vectors.upsert 305

Neptune Analytics Neptune Analytics User Guide

 0.2225639522075653,
 0.3862999975681305,
 0.24732927978038789,
 -0.05571140721440315,
 -0.021564822643995286,
 0.28468334674835207,
 5.213898658752441,
 0.13289497792720796,
 -0.1400047093629837,
 -0.39865049719810488,
 0.12139834463596344,
 0.45539018511772158,
 -0.1865275651216507,
 -0.08270177245140076,
 -0.38520801067352297,
 0.08869948983192444,
 -0.05266271159052849,
 0.14364486932754517,
 -0.2860695719718933,
 0.4430652856826782,
 0.7777798771858215,
 0.21114271879196168,
 -0.358752578496933,
 -0.3664247989654541,
 0.6665846109390259,
 -0.40493687987327578,
 0.1747705042362213,
 -0.06670021265745163,
 0.20972059667110444,
 -0.19101694226264954,
 0.23892535269260407,
 -0.08149895817041397,
 0.018510373309254648,
 0.8112999796867371,
 0.07871513813734055,
 0.09570053964853287,
 0.5030911564826965,
 0.21463628113269807,
 -0.31457462906837466,
 0.3051794767379761,
 -0.39506298303604128,
 0.06605447828769684,
 0.6144300699234009,
 -0.4566810429096222,

.vectors.upsert 306

Neptune Analytics Neptune Analytics User Guide

 0.3146623373031616,
 0.1887989640235901,
 0.9544244408607483,
 0.5103438496589661,
 -0.4859951138496399,
 -0.32647767663002016,
 -0.07584235072135925,
 0.21474787592887879,
 -0.1920636147260666,
 -0.4472030997276306,
 0.08618132770061493,
 -0.17384092509746552,
 -0.20969024300575257,
 -0.1831870973110199,
 0.8782939314842224,
 -0.15720084309577943,
 0.37347128987312319,
 0.5088165998458862,
 0.29395583271980288,
 -0.3580363988876343,
 -0.17590023577213288,
 -0.508141279220581,
 0.4661521315574646,
 0.142064169049263,
 -0.05615571141242981,
 0.592810869216919,
 0.37807324528694155,
 -0.14052101969718934,
 -0.19951890408992768,
 -0.12800109386444093,
 0.748070478439331,
 0.13753947615623475,
 -0.08446942269802094,
 0.3747580945491791,
 -0.12847286462783814,
 -0.13892321288585664,
 0.08525972813367844,
 0.12516680359840394,
 0.5701874494552612,
 -0.24708901345729829,
 0.0679594948887825,
 0.10870008915662766,
 0.20561885833740235,
 -0.7872452139854431,

.vectors.upsert 307

Neptune Analytics Neptune Analytics User Guide

 0.07303950190544129,
 0.35694700479507449,
 0.245212584733963,
 0.3299793303012848,
 -0.010669616051018238,
 -0.12047348916530609,
 0.3540535271167755,
 0.32180890440940859,
 0.3066200911998749,
 0.021576205268502237,
 0.17679384350776673,
 -0.23050960898399354,
 0.1292697787284851,
 0.022921407595276834,
 0.5460971593856812,
 0.3612038493156433,
 0.1963733434677124,
 0.4622957706451416,
 0.16855642199516297,
 0.2564740478992462,
 -0.27637141942977908,
 -0.16345584392547608,
 0.08119463175535202,
 0.07851938903331757,
 -0.5181471109390259,
 -0.5290305614471436,
 0.5271350741386414,
 0.3391841650009155,
 0.501441240310669,
 0.740936279296875,
 -0.26713573932647707,
 0.030347898602485658,
 0.05174243822693825
],
 "success": true
 }
]
}

.vectors.upsert 308

Neptune Analytics Neptune Analytics User Guide

.vectors.remove algorithm

The .vectors.remove algorithm is used to remove the embedding from a node.

.vectors.remove syntax

CALL neptune.algo.vectors.remove(
 [a list of one or more nodes]
)
YIELD node, success
RETURN node, success

.vectors.remove input

• a target node list (required) – type: Node[] or NodeId[].

The node(s) from which you want to remove the embedding. If an empty list is supplied, the
result will be empty.

.vectors.remove outputs

The following outputs are returned for each target node, and if the node has an embedding, the
embedding is removed:

• node – The target node.

• success – A Boolean value: true indicates that the removal succeded for the node, and false
indicates that it failed.

.vectors.remove query examples

CALL neptune.algo.vectors.remove(["person933"])
YIELD node, success
RETURN node, success

MATCH (n: Student)
CALL neptune.algo.vectors.remove(n)
YIELD status
RETURN n, success

.vectors.remove 309

Neptune Analytics Neptune Analytics User Guide

Sample .vectors.remove output

Here is an example of the output returned by .vectors.remove when run against the sample
Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '1'})
 CALL neptune.algo.vectors.remove(n)
 YIELD node, success
 RETURN node, success" \
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "1",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }
 },
 "success": true
 }
]
}

.vectors.remove 310

s3://neptune-benchmark-artifacts-us-east-1/data/CP/wiki/
s3://neptune-benchmark-artifacts-us-east-1/data/CP/wiki/

Neptune Analytics Neptune Analytics User Guide

Best practices

The following are some general recommendations for working with Neptune Analytics. Use this
information as a reference to quickly find recommendations for maximizing performance while
using Neptune Analytics.

Contents

• openCypher query best practices

• Use the SET clause to remove multiple properties at once

• Use parameterized queries

• Use flattened maps instead of nested maps in UNWIND clause

• Place more restrictive nodes on the left side in Variable-Length Path (VLP) expressions

• Avoid redundant node label checks by using granular relationship names

• Specify edge labels where possible

• Avoid using the WITH clause when possible

• Place restrictive filters as early in the query as possible

• Explicitly check whether properties exist

• Do not use named path (unless it is required)

• Avoid COLLECT(DISTINCT())

• Prefer the properties function over individual property lookup when retrieving all property
values

• Perform static computations outside of the query

• Batch inputs using UNWIND instead of individual statements

• Prefer using custom IDs for node

• Avoid doing ~id computations in the query

openCypher query best practices

Use the SET clause to remove multiple properties at once

When using the openCypher language, REMOVE is used to remove properties from an entity. In
Neptune Analytics, each property being removed requires a separate operation, adding query openCypher query best practices 311

Neptune Analytics Neptune Analytics User Guide

latency. You can instead use SET with a map to set all property values to null, which in Neptune
Analytics is equivalent to removing properties. Neptune Analytics will have increased performance
when multiple properties on a single entity are required to be removed.

Use:

WITH {prop1: null, prop2: null, prop3: null} as propertiesToRemove
MATCH (n)
SET n += propertiesToRemove

Instead of:

MATCH (n)
REMOVE n.prop1, n.prop2, n.prop3

Use parameterized queries

It is recommended to always use parameterized queries when querying using openCypher. The
query engine can leverage repeated parameterized queries for features like query plan cache,
where repeated invocation of the same parameterized structure with different parameters can
leverage the cached plans. The query plan generated for parameterized queries is cached and
reused only when it completes within 100ms and the parameter types are either NUMBER,
BOOLEAN or STRING.

Use:

MATCH (n:foo) WHERE id(n) = $id RETURN n

With parameters:

parameters={"id": "first"}
parameters={"id": "second"}
parameters={"id": "third"}

Instead of:

MATCH (n:foo) WHERE id(n) = "first" RETURN n
MATCH (n:foo) WHERE id(n) = "second" RETURN n
MATCH (n:foo) WHERE id(n) = "third" RETURN n

Use parameterized queries 312

Neptune Analytics Neptune Analytics User Guide

You can determine if the query is using a cached plan by observing the plan cache hits: value
in the output of the openCypher explain endpoint.

Use flattened maps instead of nested maps in UNWIND clause

Deep nested structure can restrict the ability of the query engine to generate an optimal query
plan. To partially alleviate this issue, the following defined patterns will create optimal plans for
the following scenarios:

• Scenario 1: UNWIND with a list of cypher literals, which includes NUMBER, STRING and
BOOLEAN.

• Scenario 2: UNWIND with a list of flattened maps, which includes only cypher literals (NUMBER,
STRING, BOOLEAN) as values.

When writing a query containing UNWIND clause, use the above recommendation to improve
performance.

Scenario 1 example:

UNWIND $ids as x
MATCH(t:ticket {`~id`: x})

With parameters:

parameters={
 "ids": [1, 2, 3]
}

An example for Scenario 2 is to generate a list of nodes to CREATE or MERGE. Instead of issuing
multiple statements, use the following pattern to define the properties as a set of flattened maps:

UNWIND $props as p
CREATE(t:ticket {title: p.title, severity:p.severity})

With parameters:

parameters={
 "props": [

Use flattened maps instead of nested maps in UNWIND clause 313

https://docs.aws.amazon.com/neptune-analytics/latest/userguide/query-explain.html

Neptune Analytics Neptune Analytics User Guide

 {"title": "food poisoning", "severity": "2"},
 {"title": "Simone is in office", "severity": "3"}
]
}

Instead of nested node objects like:

UNWIND $nodes as n
CREATE(t:ticket n.properties)

With parameters:

parameters={
 "nodes": [
 {"id": "ticket1", "properties": {"title": "food poisoning", "severity": "2"}},
 {"id": "ticket2", "properties": {"title": "Simone is in office", "severity": "3"}}
]
}

Place more restrictive nodes on the left side in Variable-Length Path
(VLP) expressions

In Variable-Length Path (VLP) queries, the query engine optimizes the evaluation by choosing
to start the traversal on the left or right side of the expression. The decision is based on the
cardinality of the patterns on the left and right side. Cardinality is the number of nodes matching
the specified pattern.

• If the right pattern has a cardinality of one, then the right side will be the starting point.

• If the left and the right side have cardinality of one, the expansion is checked on both sides and
starts on the side with the smaller expansion. Expansion is the number of outgoing or incoming
edges for the node on the left and the node on the right side of the VLP expression. This part of
the optimization is only used if the VLP relationship is unidirectional and the relationship type is
provided.

• Otherwise, the left side will be the starting point.

For a chain of VLP expressions, this optimization can only be applied to the first expression. The
other VLPs are evaluated starting with the left side. As an example, let the cardinality of (a), (b) be
one, and the cardinality of (c) be greater than one.

Place more restrictive nodes on the left side in Variable-Length Path (VLP) expressions 314

Neptune Analytics Neptune Analytics User Guide

• (a)-[*1..]->(c): Evaluation starts with (a).

• (c)-[*1..]->(a): Evaluation starts with (a).

• (a)-[*1..]-(c): Evaluation starts with (a).

• (c)-[*1..]-(a): Evaluation starts with (a).

Now let the incoming edges of (a) be two, and the outgoing edges of (a) be three, the incoming
edges of (b) be four, and the outgoing edges of (b) be five.

• (a)-[*1..]->(b): Evaluation starts with (a) as the outgoing edges of (a) are less than the
incoming edges of (b).

• (a)<-[*1..]-(b): Evaluation starts with (a) as the incoming edges of (a) are less than the
outgoing edges of (b).

As a general rule, place the more restrictive pattern on the left side of a VLP expression.

Avoid redundant node label checks by using granular relationship
names

When optimizing for performance, using relationship labels that are exclusive to node patterns
allows the removal of label filtering on nodes. Consider a graph model where the relationship
likes is only used to define a relationship between two person nodes. We could write the
following query to find this pattern:

MATCH (n:person)-[:likes]->(m:person)
RETURN n, m

The person label check on n and m is redundant, as we defined the relationship to only appear
when both are of the type person. To optimize on performance, we can write the query as follows:

MATCH (n)-[:likes]->(m)
RETURN n, m

This pattern can also apply when properties are exclusive to a single node label. Assume that only
person nodes have the property email, therefore verifying the node label matches person is
redundant. Writing this query as:

Avoid redundant node label checks by using granular relationship names 315

Neptune Analytics Neptune Analytics User Guide

MATCH (n:person)
WHERE n.email = 'xxx@gmail.com'
RETURN n

Is less efficient than writing this query as:

MATCH (n)
WHERE n.email = 'xxx@gmail.com'
RETURN n

You should only adopt this pattern when performance is important and you have checks in your
modeling process to ensure these edge labels are not reused for patterns involving other node
labels. If you later introduce an email property on another node label such as company, then the
results will differ between these two versions of the query.

Specify edge labels where possible

It is recommended to provide an edge label where possible when specifying an edge in a pattern.
Consider the following example query, which is used to link all of the people living in a city with all
of the people who visited that city.

MATCH (person)-->(city {country: "US"})-->(anotherPerson)
RETURN person, anotherPerson

If your graph model links people to nodes other than just cities using multiple edge labels, by
not specifying the end label, Neptune will need to evaluate additional paths that will later be
discarded. In the above query, as an edge label was not given, the engine does more work first and
then filters out values to obtain the correct result. A better version of above query might be:

MATCH (person)-[:livesIn]->(city {country: "US"})-[:visitedBy]->(anotherPerson)
RETURN person, anotherPerson

This not only helps in evaluation, but enables the query planner to create better plans. You could
even combine this best practice with redundant node label checks to remove the city label check
and write the query as:

MATCH (person)-[:livesIn]->({country: "US"})-[:visitedBy]->(anotherPerson)

Specify edge labels where possible 316

Neptune Analytics Neptune Analytics User Guide

RETURN person, anotherPerson

Avoid using the WITH clause when possible

The WITH clause in openCypher acts as a boundary where everything before it executes, and then
the resulting values are passed to the remaining portions of the query. The WITH clause is needed
when you require interim aggregation or want to limit the number of results, but aside from that
you should try to avoid using the WITH clause. The general guidance is to remove these simple
WITH clauses (without aggregation, order by or limit) to enable the query planner to work on the
entire query to create a globally optimal plan. As an example, assume you wrote a query to return
all people living in India:

MATCH (person)-[:lives_in]->(city)
WITH person, city
MATCH (city)-[:part_of]->(country {name: 'India'})
RETURN collect(person) AS result

In the above version, the WITH clause restricts the placement of the pattern (city)-
[:part_of]->(country {name: 'India'}) (which is more restrictive) before (person)-
[:lives_in]->(city). This makes the plan sub-optimal. An optimization on this query would
be to remove the WITH clause and let the planner compute the best plan.

MATCH (person)-[:lives_in]->(city)
MATCH (city)-[:part_of]->(country {name: 'India'})
RETURN collect(person) AS result

Place restrictive filters as early in the query as possible

In all scenarios, early placement of filters in the query helps in reducing the intermediate solutions
a query plan must consider. This means less memory and fewer compute resources are needed to
execute the query.

The following example helps you understand these impacts. Suppose you write a query to return
all of the people who live in India. One version of the query could be:

MATCH (n)-[:lives_in]->(city)-[:part_of]->(country)
WITH country, collect(n.firstName + " " + n.lastName) AS result
WHERE country.name = 'India'

Avoid using the WITH clause when possible 317

Neptune Analytics Neptune Analytics User Guide

RETURN result

The above version of the query is not the most optimal way to achieve this use case. The filter
country.name = 'India' appears later in the query pattern. It will first collect all persons and
where they live, and group them by country, then filter for only the group for country.name =
India. The optimal way to query for only people living in India and then perform the collect
aggregation.

MATCH (n)-[:lives_in]->(city)-[:part_of]->(country)
WHERE country.name = 'India'
RETURN collect(n.firstName + " " + n.lastName) AS result

A general rule is to place a filter as soon as possible after the variable is introduced.

Explicitly check whether properties exist

Based on openCypher semantics, when a property is accessed it is equivalent to an optional join
and must retain all rows even if the property does not exist. If you know based on your graph
schema that a particular property will always exist for that entity, explicitly checking that property
for existence allows the query engine to create optimal plans and improve performance.

Consider a graph model where nodes of type person always have a property name. Instead of
doing this:

MATCH (n:person)
RETURN n.name

Explicitly verify the property existence in the query with an IS NOT NULL check:

MATCH (n:person)
WHERE n.name IS NOT NULL
RETURN n.name

Do not use named path (unless it is required)

Named path in a query always comes at an additional cost, which can add penalties in terms of
higher latency and memory usage. Consider the following query:

MATCH p = (n)-[:commentedOn]->(m)

Explicitly check whether properties exist 318

Neptune Analytics Neptune Analytics User Guide

WITH p, m, n, n.score + m.score as total
WHERE total > 100
MATCH (m)-[:commentedON]->(o)
WITH p, m, n, distinct(o) as o1
RETURN p, m.name, n.name, o1.name

In the above query, assuming we only want to know the properties of the nodes, the use of path
“p” is unnecessary. By specifying the named path as a variable, the aggregation operation using
DISTINCT will get expensive both in terms of time and memory usage. A more optimized version of
above query could be:

MATCH (n)-[:commentedOn]->(m)
WITH m, n, n.score + m.score as total
WHERE total > 100
MATCH (m)-[:commentedON]->(o)
WITH m, n, distinct(o) as o1
RETURN m.name, n.name, o1.name

Avoid COLLECT(DISTINCT())

COLLECT(DISTINCT()) is used whenever a list is to be formed containing distinct values. COLLECT
is an aggregation function, and grouping is done based on additional keys being projected in the
same statement. When distinct is used, the input is split in multiple chunks where each chunk
denotes one group for reduction. Performance will be impacted as the number of groups increases.
In Neptune Analytics, it is much more efficient to perform DISTINCT before actually collecting/
forming the list. This allows grouping to be done directly on the grouping keys for the whole
chunk.

Consider the following query:

MATCH (n:Person)-[:commented_on]->(p:Post)
WITH n, collect(distinct(p.post_id)) as post_list
RETURN n, post_list

A more optimal way of writing this query is:

MATCH (n:Person)-[:commented_on]->(p:Post)
WITH DISTINCT n, p.post_id as postId
WITH n, collect(postId) as post_list
RETURN n, post_list

Avoid COLLECT(DISTINCT()) 319

Neptune Analytics Neptune Analytics User Guide

Prefer the properties function over individual property lookup when
retrieving all property values

The properties() function is used to return a map containing all properties for an entity, and is
much more efficient than returning properties individually.

Assuming your Person nodes contain 5 properties, firstName, lastName, age, dept, and
company, the following query would be preferred:

MATCH (n:Person)
WHERE n.dept = 'AWS'
RETURN properties(n) as personDetails

Rather than using:

MATCH (n:Person)
WHERE n.dept = 'AWS'
RETURN n.firstName, n.lastName, n.age, n.dept, n.company

=== OR ===

MATCH (n:Person)
WHERE n.dept = 'AWS'
RETURN {firstName: n.firstName, lastName: n.lastName, age: n.age,
department: n.dept, company: n.company} as personDetails

Perform static computations outside of the query

It is recommended to resolve static computations (simple mathematical/string operations) on the
client-side. Consider this example where you want to find all people one year older or less than the
author:

MATCH (m:Message)-[:HAS_CREATOR]->(p:person)
WHERE p.age <= ($age + 1)
RETURN m

Here, $age is injected into the query via parameters, and is then added to a fixed value. This value
is then compared with p.age. Instead, a better approach would be doing the addition on the
client-side and passing the calculated value as a parameter $ageplusone. This helps the query

Prefer the properties function over individual property lookup when retrieving all property values 320

Neptune Analytics Neptune Analytics User Guide

engine to create optimized plans, and avoids static computation for each incoming row. Following
these guidelines, a more efficient verson of the query would be:

MATCH (m:Message)-[:HAS_CREATOR]->(p:person)
WHERE p.age <= $ageplusone
RETURN m

Batch inputs using UNWIND instead of individual statements

Whenever the same query needs to be executed for different inputs, instead of executing one
query per input, it would be much more performant to run a query for a batch of inputs.

If you want to merge on a set of nodes, one option is to run a merge query per input:

MERGE (n:Person {`~id`: $id})
SET n.name = $name, n.age = $age, n.employer = $employer

With parameters:

params = {id: '1', name: 'john', age: 25, employer: 'Amazon'}

The above query needs to be executed for every input. While this approach works, it may require
many queries to be executed for a large set of input. In this scenario, batching may help reduce the
number of queries executed on the server, as well as improve the overall throughput.

Use the following pattern:

UNWIND $persons as person
MERGE (n:Person {`~id`: person.id})
SET n += person

With parameters:

params = {persons: [{id: '1', name: 'john', age: 25, employer: 'Amazon'},
{id: '2', name: 'jack', age: 28, employer: 'Amazon'},
{id: '3', name: 'alice', age: 24, employer: 'Amazon'}...]}

Experimentation with different batch sizes is recommended to determine what works best for your
workload.

Batch inputs using UNWIND instead of individual statements 321

Neptune Analytics Neptune Analytics User Guide

Prefer using custom IDs for node

Neptune Analytics allows users to explicitly assign IDs on nodes. The ID must be globally unique in
the dataset and deterministic to be useful. A deterministic ID can be used as a lookup or a filtering
mechanism just like properties; however, using an ID is much more optimized from query execution
perspective than using properties. There are several benefits to using custom IDs -

• Properties can be null for an existing entity, but the ID must exist. This allows the query engine
to use an optimized join during execution.

• When concurrent mutation queries are executed, the chances of concurrent modification
exceptions (CMEs) are reduced significantly when IDs are used to access nodes because fewer
locks are taking on IDs than properties due to their enforced uniqueness.

• Using IDs avoids the chance of creating duplicate data as Neptune enforces uniqueness on IDs,
unlike properties.

The following query example uses a custom ID:

Note

The property ~id is used to specify the ID, whereas id is just stored as any other property.

CREATE (n:Person {`~id`: '1', name: 'alice'})

Without using a custom ID:

CREATE (n:Person {id: '1', name: 'alice'})

If using the latter mechanism, there is no uniqueness enforcement and you could later execute the
query:

CREATE (n:Person {id: '1', name: 'john'})

This creates a second node with id=1 named john. In this scenario, you would now have two
nodes with id=1, each having a different name - (alice and john).

Prefer using custom IDs for node 322

https://docs.aws.amazon.com/neptune/latest/userguide/transactions-exceptions.html
https://docs.aws.amazon.com/neptune/latest/userguide/transactions-exceptions.html

Neptune Analytics Neptune Analytics User Guide

Avoid doing ~id computations in the query

When using custom IDs in the queries, always perform static computations outside the queries and
provide these values in the parameters. When static values are provided, the engine is better able
to optimize lookups and avoid scanning and filtering these values.

If you want to create edges between nodes that are existing in the database, one option could be:

UNWIND $sections as section
MATCH (s:Section {`~id`: 'Sec-' + section.id})
MERGE (s)-[:IS_PART_OF]->(g:Group {`~id`: 'g1'})

With parameters:

parameters={sections: [{id: '1'}, {id: '2'}]}

In the query above, the id of the section is being computed in the query. Since the computation is
dynamic, the engine cannot statically inline ids and ends up scanning all section nodes. The engine
then performs post-filtering for required nodes. This can be costly if there are many section nodes
in the database.

A better way to achieve this is to have Sec- prepended in the ids being passed into the database:

UNWIND $sections as section
MATCH (s:Section {`~id`: section.id})
MERGE (s)-[:IS_PART_OF]->(g:Group {`~id`: 'g1'})

With parameters:

parameters={sections: [{id: 'Sec-1'}, {id: 'Sec-2'}]}

Avoid doing ~id computations in the query 323

Neptune Analytics Neptune Analytics User Guide

Limits for Neptune Analytics

Regions

Neptune Analytics is available in the following AWS Regions:

• US East (N. Virginia): us-east-1

• US East (Ohio): us-east-2

• US West (Oregon): us-west-2

• Asia Pacific (Singapore): ap-southeast-1

• Asia Pacific (Tokyo): ap-northeast-1

• Europe (Ireland): eu-west-1

• Europe (London): eu-west-2

• Europe (Frankfurt): eu-central-1

Quotas

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and
other quotas cannot be increased.

To view the quotas for Neptune Analytics, open the Service Quotas console. In the navigation pane,
choose AWS services and select Neptune Analytics.

To request a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide. If
the quota is not yet available in Service Quotas, use the limit increase form.

Vertex enumeration is not memory bounded

The following quotas and limits apply to Neptune Analytics:

The current implementation of vertex enumeration and counting is not memory bounded. As a
consequence, queries such as MATCH (n) RETURN count(n) will require a significant amount of
memory and, depending on the chosen capacity and dataset shape, may run into out-of-memory
exceptions.

Regions 324

https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Neptune Analytics Neptune Analytics User Guide

Where possible, we recommend replacing such queries with queries that operate on a per-
label basis. For instance, a query such as MATCH (n : Person) RETURN count(n) will be
significantly more efficient, both in terms of memory consumption and memory utilization.

Parameterized openCypher queries not supported for
algorithms

Neptune Analytics supports parameterized openCypher queries with the limitation that parameters
are not allowed inside algorithms.

For instance, a query such as CALL neptune.algo.degree($id) where $id is passed in as a
parameter is currently not supported.

Size limits on properties, labels and strings

The maximum length of the strings supported is 1,048,062 bytes. The limit would be lower for
strings with unicode characters since some unicode characters are represented using multiple
bytes.

No parameterized algorithm calls 325

https://docs.aws.amazon.com/neptune/latest/userguide/opencypher-parameterized-queries.html

Neptune Analytics Neptune Analytics User Guide

API reference

The Neptune Analytics API reference is available for more information.

326

https://docs.aws.amazon.com/neptune-analytics/latest/apiref/Welcome.html

	Neptune Analytics
	Table of Contents
	What is Neptune Analytics?
	Features
	Pricing
	Getting started
	When to use Neptune Analytics and when to use Neptune Database

	Changes and updates to Neptune Analytics
	Getting started
	Create an empty Neptune graph
	Create a Neptune graph from existing sources

	Using notebooks with Neptune Analytics
	Take advantage of all the sample notebooks
	Creating a new Neptune Analytics notebook using an AWS CloudFormation template
	Creating a new Neptune Analytics notebook using the AWS Management Console
	Create an IAM role for a Neptune Analytics notebook
	Next, create the Neptune Analytics notebook in SageMaker
	Hosting a Neptune Analytics graph-notebook on your local machine

	Creating a new Neptune Analytics graph using the AWS Management Console
	Loading data into a Neptune Analytics graph
	Data format for loading from Amazon S3 into Neptune Analytics
	Batch load
	Request syntax
	Response syntax

	Bulk import data into a graph
	Create a graph from Amazon S3, a Neptune cluster, or a snapshot
	Creating a Neptune Analytics graph from Amazon S3
	Copy the data files to an Amazon S3 bucket
	Create your IAM role for Amazon S3 access
	Use CreateGraphUsingImportTask API to import from Amazon S3

	Creating a Neptune Analytics graph from Neptune cluster or snapshot
	Obtain the ARN of your Neptune cluster or snapshot
	Create an IAM role with permissions to export from Neptune to Neptune Analytics

	Bulk import data into an existing Neptune Analytics graph
	Checking the details and progress of an import task
	Canceling an import task
	Troubleshooting

	Security in Neptune Analytics
	Data protection in Neptune Analytics
	Identity and access management for Neptune Analytics
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Neptune Analytics works with IAM
	Identity-based policies for Neptune Analytics
	Identity-based policy examples for Neptune Analytics

	Resource-based policies within Neptune Analytics
	Policy actions for Neptune Analytics
	Policy resources for Neptune Analytics
	Policy condition keys for Neptune Analytics
	ACLs in Neptune Analytics
	ABAC with Neptune Analytics
	Using temporary credentials with Neptune Analytics
	Cross-service principal permissions for Neptune Analytics
	Service roles for Neptune Analytics
	Service-linked roles for Neptune Analytics

	Identity-based policy examples for Neptune Analytics
	Policy best practices
	Using the Neptune Analytics console
	Allow users to view their own permissions

	Troubleshooting Neptune Analytics identity and access
	I am not authorized to perform an action in Neptune Analytics
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Neptune Analytics resources

	Compliance validation for Neptune Analytics
	Resilience in Neptune Analytics
	Infrastructure Security in Neptune Analytics
	Cross-service confused deputy prevention
	Using service-linked roles (SLRs) in Neptune Analytics
	Service-linked role permissions for Neptune Analytics Graphs
	Creating a service-linked role for Neptune Analytics
	Editing a service-linked role for Neptune Analytics
	Deleting a service-linked role

	Querying Neptune Analytics
	Query APIs
	ExecuteQuery
	ExecuteQuery inputs
	ExecuteQuery examples
	ExecuteQuery output
	Parameterized queries
	

	ListQueries
	ListQueries syntax
	ListQueries inputs
	ListQueries outputs
	ListQueries Examples

	GetQuery
	GetQuery inputs
	GetQuery outputs
	GetQuery examples

	CancelQuery
	CancelQuery inputs
	CancelQuery outputs
	CancelQuery examples

	GraphSummary
	GetGraphSummary inputs
	GetGraphSummary outputs
	GetGraphSummary examples

	IAM role mappings
	

	Query plan cache
	

	Query explain
	
	Explain inputs
	Explain outputs
	Explain examples

	Statistics
	

	Exceptions
	

	Neptune Analytics openCypher data model
	
	What is a vertex?

	Neptune Analytics openCypher specification compliance
	
	Vertex and edge IDs

	Transaction isolation levels in Neptune Analytics

	Neptune Analytics algorithms
	Custom Algorithms
	Property graph information
	Inputs for graph.pg_info
	Outputs for graph.pg_info
	graph.pg_info query example
	graph.pg_info query integration
	Sample graph.pg_info output

	Path-finding algorithms in Neptune Analytics
	Breadth-first search (BFS) path finding algorithms
	Single-source shortest-path algorithms
	Standard breadth-first search (BFS) algorithm
	.bfs syntax
	.bfs inputs
	.bfs outputs
	.bfs query examples
	Sample .bfs output

	Parents breadth-first search (BFS) algorithm
	.bfs.parents syntax
	.bfs.parents inputs
	.bfs.parents outputs
	.bfs.parents query examples
	Sample .bfs.parents output

	Levels breadth-first search (BFS) algorithm
	.bfs.levels syntax
	.bfs.levels inputs
	.bfs.levels outputs
	.bfs.levels standalone query examples
	.bfs.levels query integration examples
	Sample .bfs.levels output

	Bellman-Ford single source shortest path (SSSP) algorithm
	.sssp.bellmanFord syntax
	.sssp.bellmanFord inputs
	Outputs for the .sssp.bellmanFord algorithm
	.sssp.bellmanFord query examples
	Sample .sssp.bellmanFord output

	Bellman-Ford single source shortest path (SSSP) parents algorithm
	.sssp.bellmanFord.parents syntax
	.sssp.bellmanFord.parents inputs
	Outputs for the .sssp.bellmanFord.parents algorithm
	.sssp.bellmanFord.parents query examples
	Sample .sssp.bellmanFord.parents output

	Delta-stepping single source shortest path (SSSP) algorithm
	.sssp.deltaStepping syntax
	.sssp.deltaStepping inputs
	Outputs for the sssp.deltaStepping algorithm
	.sssp.deltaStepping query examples
	Sample .sssp.deltaStepping output

	Delta-stepping aingle source shortest path (SSSP) parents algorithm
	.sssp.deltaStepping.parents syntax
	.sssp.deltaStepping.parents inputs
	Outputs for the sssp.deltaStepping.parents algorithm
	.sssp.deltaStepping.parents query examples
	Sample .sssp.deltaStepping.parents output

	TopK hop-limited single source (weighted) shortest path algorithm
	.topksssp syntax
	Inputs for the topksssp algorithm
	Outputs for the topksssp algorithm
	.topksssp query examples
	Sample .topksssp output

	Centrality algorithms in Neptune Analytics
	Degree centrality algorithm
	.degree syntax
	Inputs for the .degree algorithm
	.degree outputs
	Query examples for .degree
	Sample .degree output

	Degree mutate centrality algorithm
	.degree.mutate syntax
	.degree.mutate inputs
	Output of the .degree.mutate algorithm
	.degree.mutate query examples
	Sample output from .degree.mutate

	PageRank centrality algorithm
	.pageRank syntax
	.pageRank inputs
	Outputs for the .pageRank algorithm
	Query examples for .pageRank
	Sample .pageRank output

	PageRank mutate centrality algorithm
	pageRank.mutate inputs
	Outputs for the pageRank.mutate algorithm
	Query example for pageRank.mutate
	Sample .pageRank.mutate output

	Closeness centrality algorithm
	.closenessCentrality syntax
	Inputs for the .closenessCentrality algorithm
	Outputs for the .closenessCentrality algorithm
	.closenessCentrality query examples
	Sample .closenessCentrality output

	Closeness centrality mutatealgorithm
	.closenessCentrality.mutate syntax
	.closenessCentrality.mutate inputs
	.closenessCentrality.mutate outputs
	Query examples for .closenessCentrality.mutate
	Sample .closenessCentrality output

	Similarity algorithms in Neptune Analytics
	Common neighbors algorithm
	.neighbors.common syntax
	.neighbors.common inputs
	.neighbors.common outputs
	.neighbors.common query examples
	Sample .neighbors.common output

	Total neighbors algorithm
	.neighbors.total syntax
	Inputs for the .neighbors.total algorithm
	.neighbors.total outputs
	.neighbors.total query examples
	Sample .neighbors.total output

	Jaccard similarity algorithm
	.jaccardSimilarity syntax
	.jaccardSimilarity inputs
	Outputs for the .jaccardSimilarity algorithm
	.jaccardSimilarity query examples
	Sample .jaccardSimilarity output

	Overlap similarity algorithm
	.overlapSimilarity syntax
	.overlapSimilarity inputs
	.overlapSimilarity outputs
	.overlapSimilarity query examples
	Sample .overlapSimilarity output

	Clustering and community detection algorithms in Neptune Analytics
	Weakly connected components algorithm
	.wcc syntax
	.wcc inputs
	.wcc outputs
	.wcc query examples
	Sample .wcc output

	Weakly connected components mutate algorithm
	.wcc.mutate syntax
	.wcc.mutate inputs
	.wcc.mutate outputs
	.wcc.mutate query examples
	Sample .wcc.mutate output

	Label propagation algorithm (LPA)
	.labelPropagation syntax
	.labelPropagation inputs
	.labelPropagation outputs
	.labelPropagation query examples
	Sample .pageRank output

	Label propagation mutate algorithm
	.labelPropagation.mutate syntax
	.labelPropagation.mutate inputs
	Outputs for the .labelPropagation.mutate algorithm
	.labelPropagation.mutate query example
	Sample .labelPropagation.mutate output

	Strongly connected components algorithm
	.scc syntax
	.scc inputs
	.scc outputs
	.scc query examples
	Sample .scc output

	Strongly connected components mutate algorithm
	.scc.mutate syntax
	Inputs for the .scc.mutate algorithm
	Outputs for the .scc.mutate algorithm
	.scc.mutate query example
	Sample .scc.mutate output

	Working with vector similarity in Neptune Analytics
	Vector indexing in Neptune Analytics
	Loading vectors into a Neptune Analytics graph vector index
	Load the vectors from graph data files Amazon S3
	Using the vectors.upsert algorithm to load vectors for your graph

	Common errors you may encounter when loading embeddings
	Vector-search algorithms in Neptune Analytics

	Vector-similarity search (VSS) algorithms in Neptune Analytics
	The .vectors.distance algorithm
	.vectors.distance syntax
	.vectors.distance inputs
	.vectors.distance outputs
	.vectors.distance query example
	Sample .vectors.distance output

	The .vectors.get algorithm
	.vectors.get syntax
	.vectors.get input
	.vectors.get outputs
	.vectors.get query example
	Sample .vectors.get output

	.vectors.topKByEmbedding algorithm
	.vectors.topKByEmbedding syntax
	.vectors.topKByEmbedding input
	.vectors.topKByEmbedding outputs
	.vectors.topKByEmbedding query example
	Sample .vectors.topKByEmbedding output

	.vectors.topKByNode algorithm
	.vectors.topKByNode syntax
	.vectors.topKByNode input
	.vectors.topKByNode outputs
	.vectors.topKByNode query example
	Sample .vectors.topKByNode output

	.vectors.upsert algorithm
	.vectors.upsert syntax
	.vectors.upsert input
	.vectors.upsert outputs
	.vectors.upsert query examples
	Sample .vectors.upsert output

	.vectors.remove algorithm
	.vectors.remove syntax
	.vectors.remove input
	.vectors.remove outputs
	.vectors.remove query examples
	Sample .vectors.remove output

	Best practices
	openCypher query best practices
	Use the SET clause to remove multiple properties at once
	Use parameterized queries
	Use flattened maps instead of nested maps in UNWIND clause
	Place more restrictive nodes on the left side in Variable-Length Path (VLP) expressions
	Avoid redundant node label checks by using granular relationship names
	Specify edge labels where possible
	Avoid using the WITH clause when possible
	Place restrictive filters as early in the query as possible
	Explicitly check whether properties exist
	Do not use named path (unless it is required)
	Avoid COLLECT(DISTINCT())
	Prefer the properties function over individual property lookup when retrieving all property values
	Perform static computations outside of the query
	Batch inputs using UNWIND instead of individual statements
	Prefer using custom IDs for node
	Avoid doing ~id computations in the query

	Limits for Neptune Analytics
	Regions
	Quotas
	Vertex enumeration is not memory bounded
	Parameterized openCypher queries not supported for algorithms
	Size limits on properties, labels and strings

	API reference
	

