Table of Contents

What is AWS User Notifications? ... 1
How User Notifications works .. 1
Supported Regions for User Notifications ... 1
 Opt-in Regions .. 2
Accessing User Notifications ... 2
Getting started .. 3
 Step 1: Configuring AWS User Notifications 3
 Configuring notifications across accounts ... 5
 Step 2: Viewing notifications ... 5
Next steps ... 6
Common use cases .. 6
 JSON samples for common use cases ... 6
Using the EventBridge console's rule builder 7
Notification hubs ... 8
 Adding or removing a notification hub .. 8
 Opting-in or out of Regions ... 8
 Opting-out of a notification hub ... 9
Managing notification configurations ... 10
 Prerequisites .. 10
 Editing a notification configurations ... 10
 Deleting a notification configurations ... 10
 Viewing notifications in the Notification Center 11
Managing delivery channels .. 12
 Adding delivery channels .. 12
 Viewing delivery channel details .. 13
 Removing delivery channels from notification configurations 13
 Deleting email addresses ... 14
Tagging your resources .. 16
Tagging restrictions ... 16
Security ... 17
 Data protection ... 17
 Data encryption .. 18
 Identity and access management ... 18
 Audience ... 19
 Authenticating with identities ... 19
 Managing access using policies ... 21
 How AWS User Notifications works with IAM 22
 Identity-based policy examples ... 25
 Resource-level permissions ... 27
 Using Service-Linked Roles .. 30
 AWS managed policies ... 33
Troubleshooting .. 34
Compliance validation .. 35
Resilience ... 36
Infrastructure security ... 36
Monitoring ... 37
 Monitoring with CloudWatch .. 37
 Enabling CloudWatch Metrics .. 37
 Available metrics and dimensions .. 37
 Viewing User Notifications metrics ... 38
CloudTrail logs ... 38
 User Notifications information in CloudTrail 39
 Understanding User Notifications log file entries 39
Troubleshooting .. 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotas</td>
<td>43</td>
</tr>
<tr>
<td>Service quotas</td>
<td>43</td>
</tr>
<tr>
<td>Glossary</td>
<td>45</td>
</tr>
<tr>
<td>Document history</td>
<td>46</td>
</tr>
</tbody>
</table>
What is AWS User Notifications?

AWS User Notifications is an AWS service that acts as a central location for your AWS notifications in the AWS Management Console. This includes notifications such as Amazon CloudWatch alarms, AWS Support case updates, and communications from other services. You can use User Notifications to set up delivery channels to notify you about events of interest. You receive a notification when an event matches a rule that you specify. You can receive notifications for events through multiple channels, including email, AWS Chatbot chat notifications, or AWS Console Mobile App push notifications.

You can use the User Notifications Notification Center to filter and view AWS notifications to your specifications. You can filter your notifications by service and view them across accounts, AWS Regions, and services. The Notification Center displays a detailed notification view with direct links to relevant console resource pages. To receive notifications, you must choose at least one notification hub and then create notification configurations.

How User Notifications works

User Notifications uses Amazon EventBridge to send notifications about events from AWS services to the AWS Management Console Notifications Center and your chosen delivery channels.

Supported Regions for User Notifications

User Notifications is available in the following AWS Regions:

- US East (Ohio)
- US East (N. Virginia)
- US West (N. California)
- US West (Oregon)
- Asia Pacific (Mumbai)
- Asia Pacific (Osaka)
- Asia Pacific (Seoul)
- Asia Pacific (Singapore)
- Asia Pacific (Sydney)
- Asia Pacific (Tokyo)
- Canada (Central)
- Europe (Frankfurt)
- Europe (Ireland)
- Europe (London)
- Europe (Paris)
- Europe (Stockholm)
- South America (São Paulo)
Opt-in Regions

Opt-in Regions aren’t enabled by default. You must manually enable these Regions to use them with User Notifications. For more information about AWS Regions, see Managing AWS Regions. The following opt-in Regions are supported:

- Africa (Cape Town)
- Asia Pacific (Hong Kong)
- Asia Pacific (Hyderabad)
- Asia Pacific (Jakarta)
- Asia Pacific (Melbourne)
- Europe (Milan)
- Europe (Spain)
- Europe (Zurich)
- Israel (Tel Aviv)
- Middle East (Bahrain)
- Middle East (UAE)

Accessing User Notifications

You can access User Notifications through the AWS Management Console.
Getting started with AWS User Notifications

To get started using User Notifications to help manage your notifications, use the following steps to set up a notification configuration.

Topics
- Step 1: Configuring AWS User Notifications (p. 3)
- Step 2: Viewing notifications (p. 5)
- Next steps (p. 6)
- Using customized JSON event patterns - Common use cases (p. 6)

Step 1: Configuring AWS User Notifications

To receive AWS notifications, you must first create notification configurations. A notification configuration is a container of your selected services and event rules that you want to be notified about. An event rule specifies what events generate a notification in the AWS Management Console and which delivery channels to use.

Note
You must select a notification hub in the following procedure. A notification hub is where User Notifications stores your notification data. For more information about notification hubs, see Notification hubs (p. 8).

To create a notification configuration

1. Open User Notifications in the AWS Management Console:
 a. Choose the bell icon in the top navigation bar or locate the service with the search bar or services list.
 b. Choose See all notifications.
 c. Choose Create notification configuration.
 d. Select at least one notification hub.

2. Add a name and description:
 a. Enter a name for your configuration.
 b. (Optional) Enter a description for your configuration.

3. Create an Event Rule:
 a. For AWS service name, select the name of an AWS service to use as the event source.
 b. For Event type, select event types.
 c. For Regions, select the AWS Regions where your service data is located.

 Note
 You can filter event rules further by using the code editor under Advance filter (optional). To view examples of Event Patterns that you can use, see Using customized JSON event patterns - Common use cases (p. 6).
4. **Define aggregation settings:**

 Tip
 Aggregation settings reduce the number of notifications that you receive by combining multiple events into fewer notifications based on the option you choose. Aggregation settings are turned on by default. We recommend you use aggregation settings.

 - Choose if you would like to **Receive fewer notifications** or if you would like to **Reduce notifications delivery time**.

 Tip
 Choose **Receive fewer notifications** for low priority notifications. Choose **Reduce notifications delivery time** for high priority notifications.

5. **(Optional) Add delivery channels:**

 - Select your delivery channels. We recommend that you view an event before adding additional recipients.

 Email

 Note
 A verification email is sent to newly added email addresses once you create the notification configuration. You can generate another verification email for pending addresses by choosing **Reverify**.

 a. Choose **Add emails**.
 b. For **Recipient**, enter or choose the recipient's email address.
 c. For **Name**, enter the recipient's name.
 d. (Optional) Choose **Add another recipient** to add more recipients.
 e. Choose **Add emails**.

 AWS Chatbot

 1. For **Channel**, add a new channel or select the existing channels you want to send notifications to.

 Note
 For more information about AWS Chatbot, see [What is AWS Chatbot?](#) in the AWS Chatbot Administrator Guide.

 AWS Console Mobile Application

 Note
 Before you add a mobile device as a delivery channel, you must:

 - Add the appropriate IAM permissions to make mobile device available in the User Notifications console. For more information, see [IAM permissions for listing mobile devices as delivery channels](#) in the AWS Console Mobile Application User Guide.

 - Install the AWS Console Mobile Application on to your device with push notifications enabled. Note that the notifications you receive are push notifications, not Short Message Service (SMS). For more information, see [Step 1: Get started with push notifications](#) in the AWS Console Mobile Application User Guide.

 1. For **Device**, select the devices you want to send notifications to.
6. **(Optional) Manage tags:**

 Tip
 A tag is a label that you assign to an AWS resource. Tags help you organize your resources. For more information, see Tagging your resources (p. 16).

 a. For **Key**, enter the key name you want to use.
 b. (Optional) For **Value**, enter a value for the specified key.
 c. (Optional) Choose **Add new tag** to add more tags.

7. Review your configuration and confirm its details.

8. Choose **Create notification configuration**.

Configuring notifications across accounts

If you want to receive notifications from multiple accounts, follow the instructions in Sending and receiving Amazon EventBridge events between AWS accounts. Once set up a receiver account, create a notification configuration that reacts to events by following the previous instructions.

Step 2: Viewing notifications

Once you create your notification configurations in your account, any events matching an event rule generate a notification in the AWS Management Console. You can view notifications from the console Navigation bar and in the **Console Notification Center**. You can also view notifications from your chosen delivery channels.

To view notifications from the Navigation bar

 Note
 The bell icon in the console Navigation bar shows a red badge when new notifications are available.

1. Choose the bell icon to view notifications related to your account.
2. To view additional details about a notification, select the notification.

To view notifications in the Console Notification Center

2. View the list of **Notifications** available in the account.
3. To view additional details about a notification, select the notification.

To view notifications sent to your email

1. Open your email.
2. To view additional details about a notification email, select and open the email in your inbox.

To view notifications in the AWS Console Mobile Application

 Note
 The bell icon in the tab menu of the app shows a blue badge when new notifications are available.

1. Open the Console Mobile Application.
2. Choose **Notifications** from the tab menu at the bottom of your device.
3. To view additional details about a notification, select the notification in your inbox.

To view notifications in your chat channel

1. Open your chat client.
2. Open the chat channel that you selected when you set up your delivery channels.
3. View the notifications available in the chat channel.

Tip
If you're not seeing any notifications, see Troubleshooting AWS User Notifications (p. 41)

Next steps

After you create a notification configuration, you can explore some of the following topics:

- Using customized JSON event patterns - Common use cases (p. 6)
- Managing notification configurations (p. 10)

Using customized JSON event patterns - Common use cases

You can further filter event rules by customizing event patterns. This topic includes JSON samples for commonly used event patterns and additional information on the EventBridge console's rule builder.

Topics

- JSON samples for common use cases (p. 6)
- Using the EventBridge console's rule builder (p. 7)

JSON samples for common use cases

CloudWatch alarm that specifies that alarmName must exist

```json
{
    "detail": {
        "alarmName": [ { "exists": true } ]
    }
}
```

Amazon EC2 instance state changed to "terminated", "stopping", "stopped", or "shutting-down."

```json
{
    "detail": {
        "state": ["terminated", "stopping", "stopped", "shutting-down"]
    }
}
```
Using the EventBridge console's rule builder

For more help building rules, you can use the EventBridge console's rule builder when creating Event Patterns. Use the Event Pattern Builder and the in-place tester to try out your patterns.

Note

You can test rules in the Pattern Builder without creating them.

While testing, remove the **source** and **detail type** fields from the event pattern you create.
Notification hubs

Notification hubs are an account-level setting that identifies the AWS Regions where you store, process, and replicate notifications. You must select at least one notification hub before you create any notification configurations. If you have no notification hubs, the console prompts you to choose at least one before you create a notification configuration. You can also edit notification hubs from Notification hubs in the navigation pane. Currently, you can select up to three Regions.

Note
If you want to manage notification hubs, ensure you have the appropriate permissions. For more information, see Resource-level permissions (p. 27).

Important
User Notifications uses Amazon Simple Email Service (Amazon SES) API endpoints to deliver email notifications. Amazon SES API endpoints aren't available in all Regions. For a list of Regions that support Amazon SES API endpoints, see Amazon Simple Email Service endpoints and quotas in the Amazon Web Services General Reference. User Notifications routes emails about events originating from Regions that aren't supported as Amazon SES API endpoints through US East (N. Virginia). If wanted, you can turn off the receipt of notification for events that originate in Regions that Amazon SES API endpoints don't support. To do so, don't configure emails for notification configurations that contain events in these Regions.

Important
Notification hubs only set the Regional boundaries of notifications. User Notifications stores the notification configuration's data in the default Region, US East (N. Virginia). This data is also stored in individual Regions that you have configured rules for. For example, say that you create a configuration that receives Amazon CloudWatch Alarm notifications about events in Europe (Milan) and Europe (Frankfurt). User Notifications creates the notification configuration in US East (N. Virginia). It then replicates the configuration to Europe (Milan) and Europe (Frankfurt).

Adding or removing a notification hub

You can add or remove a notification hub using the AWS Management Console. When you add a new notification hub, User Notifications replicates new notifications into that Region. User Notifications doesn't backfill earlier notifications. When you remove a notification hub, User Notifications stops replicating new notifications into that Region. User Notifications doesn't remove previous notifications from that Region. However, notifications expire 90 days after they are generated.

To add or remove notification hubs
 - In the navigation pane, choose Notification hubs.
2. Choose Edit.
3. Either add Regions by selecting them or remove Regions by choosing the × next to a Region.
4. Choose Update.

Opting-in or out of Regions

Opting in or out of Regions may impact your notifications experience.
Opting-out of a notification hub

You must have a notification hub configured to create notification configurations. If you opt out of a Region that contains your only notification hub, you can't create new notification configurations. You also can't access previous notifications until you opt in to the Region or create a new notification hub.

Choosing a notification hub that you aren't opted-in to

You must opt in to a Region to use a notification hub you create in that Region. If you don't opt in to the Region, your notification hub remains inactive. You can't create notification configurations or view notifications until you opt in to that Region on your account or select a new notification hub.
Managing notification configurations

This topic covers how to manage your notification configurations from the AWS User Notifications Console. You can use the console to edit, delete, and view your notification configurations.

Topics

- Prerequisites (p. 10)
- Editing a notification configurations (p. 10)
- Deleting a notification configurations (p. 10)
- Viewing notifications in the Notification Center (p. 11)

Prerequisites

Before you begin, you must create at least one notification configuration. To create a notification configuration, follow the steps in Getting started with AWS User Notifications (p. 3).

Editing a notification configurations

You can change which configurations create notifications by editing your notification configurations.

To edit a configuration

1. Open AWS User Notifications in the AWS Management Console.
2. In the navigation pane, choose Notification configurations.
3. Select the configuration you want to edit.
4. Choose Edit.
5. Edit your configuration.

Note
You can edit the name, description, event rules, aggregation settings, delivery channels, and tags of your notification configuration.
6. Choose Update notification configuration.

Deleting a notification configurations

You can stop receiving notifications by deleting notification configurations.

To delete a configuration

1. Open AWS User Notifications in the AWS Management Console.
2. In the navigation pane, choose Notification configurations.
3. Select the configuration you want to delete.
4. Choose Delete.
5. In the Delete notification configuration? dialog box, choose Delete again.
Viewing notifications in the Notification Center

You can view notifications from either the console Navigation bar or the Console Notification Center.

To view notifications from the Navigation bar

Note
User Notifications indicates that you have new notifications with a red badge next to the bell icon in the Navigation bar.

1. Choose the bell icon in the console Navigation bar to view notifications related to your account.
2. Select a notification to navigate to the Notifications Center for more information.

To view notifications in the Console Notification Center

2. View the list of Notifications available in your account.
3. Select a notification to view additional details.

Tip
If you don’t see your notifications, see Troubleshooting AWS User Notifications (p. 41)
Managing delivery channels

This topic covers how to manage your delivery channels. Delivery channels are locations where you can send notifications.

Topics
- Adding delivery channels (p. 12)
- Viewing delivery channel details (p. 13)
- Deleting email addresses (p. 14)

Adding delivery channels

You can add delivery channels from the console to have your notifications sent to other locations.

Emails

To add delivery channels

2. In the navigation panel, choose Delivery channels.
3. Choose Emails.

 Note
 A verification email is sent to newly added email addresses. You can generate another verification email for pending addresses by choosing Reverify. Verified emails have a green checkmark next to the email address when added as a Recipient.

4. Choose Add emails.
5. For Recipient, choose or enter the recipient's email address.
6. For Name, enter the recipient's name.
7. (Optional) Choose Add another recipient to add more recipients.
8. (Optional) Add tags for this delivery channel. To add tags, do the following:

 Tip
 A tag is a label that you assign to an AWS resource. Tags help you organize your resources. For more information, see Tagging your resources (p. 16).

 a. Enter a key in Key.
 b. (Optional) Enter a value in Value.
 c. (Optional) Choose Add new tag to add more tags.

Mobile devices

Note
Before you add a mobile device as a delivery channel, you must do the following:

- Add the appropriate IAM permissions so that your mobile device is available in the User Notifications console. For more information, see IAM permissions for listing mobile devices as delivery channels in the AWS Console Mobile Application User Guide.
• Install the AWS Console Mobile Application to your device and enable push notifications from the app. Note that the notifications you receive are push notifications, not Short Message Service (SMS). For more information, see Step 1: Get started with push notifications in the AWS Console Mobile Application User Guide.

To add delivery channels

2. In the navigation panel, choose Delivery channels.
3. Choose Mobile devices.
4. Use the search box to find Mobile devices to add.

Chat channels

To add delivery channels

2. In the navigation panel, choose Delivery channels.
3. Choose Chat channels.
4. Select a chat client from the dropdown box.
5. Use the search box to find Chat channels to add.

Note
For more information about AWS Chatbot, see Getting started with AWS Chatbot in the AWS Chatbot Administrator Guide.

Viewing delivery channel details

You can view delivery channel details from the console.

Note
If you want to resend the verification email to an email listed in the email detail view, choose Resend verification.

To view a delivery channel's details

2. In the navigation panel, choose Delivery channels.
3. Choose a delivery channel type.
4. Choose the Name of the delivery channel.
5. View the delivery channel's details.

Removing delivery channels from notification configurations

You can remove delivery channels from notification configurations in a delivery channel's detail view. When you remove a delivery channel, your notification configurations stop sending notifications to that channel.
Deleting email addresses

You can delete emails used as delivery channels. When you delete an email address, it's removed from all associated notification configurations. If you delete an email address, you must verify it again if you add it back.
Note
You can't delete mobile devices and chat channels from the User Notifications console. You can only remove them from notification configurations.

To delete email addresses
2. In the navigation panel, choose Delivery channels.
3. Choose Emails
4. Select the email addresses that you want to delete.
5. Choose Delete.
6. Choose Delete again.
Tagging your AWS User Notifications resources

A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value, both of which you define. Tags help you manage, search for, and filter resources.

Tags help you categorize your AWS resources in different ways. For example, you can tag your resources by purpose, owner, or environment. This is useful when you have many resources of the same type. You can quickly identify a specific resource based on the tags you assigned to it. You can assign one or more tags to your AWS resources. Each tag has an associated value.

We recommend that you create a set of tag keys that meet your needs for each resource type. Use a consistent set of tags to more efficiently manage your AWS resources. You can search and filter the resources based on the tags you add.

Tags are interpreted strictly as a string of characters. They aren't automatically assigned to your resources. You can edit tag keys and values, as well as remove tags from a resource, at any time. You can set the value of a tag to an empty string. However, you can't set the value of a tag to null. If you add a tag that has the same key as an existing tag on that resource, the new value overwrites the previous value. If you delete a resource, any tags for the resource are also deleted.

Tagging restrictions

The following basic restrictions apply to tags.

<table>
<thead>
<tr>
<th>Restriction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of tags per resource</td>
<td>50</td>
</tr>
<tr>
<td>Maximum key length</td>
<td>128 Unicode characters in UTF-8</td>
</tr>
<tr>
<td>Maximum value length</td>
<td>256 Unicode characters in UTF-8</td>
</tr>
<tr>
<td>Prefix restriction</td>
<td>Don't use the aws: prefix in your tag names or values because it is reserved for AWS use. You can't edit or delete tag names or values with this prefix. Tags with this prefix don't count against the number of tags you can assign to a resource.</td>
</tr>
<tr>
<td>Character restrictions</td>
<td>Tags may only contain Unicode letters, digits, white space, or these symbols: _ . : / = + - @</td>
</tr>
</tbody>
</table>
Security in AWS User Notifications

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this as security of the cloud and security in the cloud:

- **Security of the cloud** – AWS is responsible for protecting the infrastructure that runs AWS services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To learn about the compliance programs that apply to User Notifications, see AWS Services in Scope by Compliance Program.

- **Security in the cloud** – Your responsibility is determined by the AWS service that you use. You are also responsible for other factors, including the sensitivity of your data, your company’s requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using AWS User Notifications. It shows you how to configure User Notifications to meet your security and compliance objectives. You also learn how to use other AWS services that help you to monitor and secure your User Notifications resources.

Contents
- Data protection in AWS User Notifications (p. 17)
- Identity and access management for AWS User Notifications (p. 18)
- Compliance validation for AWS User Notifications (p. 35)
- Resilience in AWS User Notifications (p. 36)
- Infrastructure security in AWS User Notifications (p. 36)

Data protection in AWS User Notifications

The AWS shared responsibility model applies to data protection in AWS User Notifications. As described in this model, AWS is responsible for protecting the global infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on this infrastructure. This content includes the security configuration and management tasks for the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM). That way, each user is given only the permissions necessary to fulfill their job duties. We also recommend that you secure your data in the following ways:

- Use multi-factor authentication (MFA) with each account.
- Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.
- Set up API and user activity logging with AWS CloudTrail.
- Use AWS encryption solutions, along with all default security controls within AWS services.
- Use advanced managed security services such as Amazon Macie, which assists in discovering and securing sensitive data that is stored in Amazon S3.
- If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints, see [Federal Information Processing Standard (FIPS) 140-2](#).

We strongly recommend that you never put confidential or sensitive information, such as your customers' email addresses, into tags or free-form text fields such as a Name field. This includes when you work with User Notifications or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not include credentials information in the URL to validate your request to that server.

Data encryption

Encryption at rest

User Notifications protects sensitive data by encrypting it at rest using AWS owned KMS keys. This key is owned by User Notifications. Encrypting data helps to ensure that sensitive data that is saved on disks isn't readable by any user or application without a valid key. For more information, see [How AWS services use AWS KMS](#) in the [AWS Key Management Service Developer Guide](#).

Data encrypted with AWS owned key

- Notification events
- Notification configurations
- Event rules
- Notification hubs
- Email contacts

Encryption in transit

All data sent to and from User Notifications is encrypted using standard TLS.

Identity and access management for AWS User Notifications

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely control access to AWS resources. IAM administrators control who can be authenticated (signed in) and authorized (have permissions) to use User Notifications resources. IAM is an AWS service that you can use with no additional charge.

Topics

- [Audience (p. 19)](#)
- [Authenticating with identities (p. 19)](#)
Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you do in User Notifications.

Service user – If you use the User Notifications service to do your job, then your administrator provides you with the credentials and permissions that you need. As you use more User Notifications features to do your work, you might need additional permissions. Understanding how access is managed can help you request the right permissions from your administrator. If you cannot access a feature in User Notifications, see Troubleshooting AWS User Notifications identity and access (p. 34).

Service administrator – If you're in charge of User Notifications resources at your company, you probably have full access to User Notifications. It's your job to determine which User Notifications features and resources your service users should access. You must then submit requests to your IAM administrator to change the permissions of your service users. Review the information on this page to understand the basic concepts of IAM. To learn more about how your company can use IAM with User Notifications, see How AWS User Notifications works with IAM (p. 22).

IAM administrator – If you’re an IAM administrator, you might want to learn details about how you can write policies to manage access to User Notifications. To view example User Notifications identity-based policies that you can use in IAM, see AWS User Notifications identity-based policy examples (p. 25).

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on authentication, and your Google or Facebook credentials are examples of federated identities. When you sign in as a federated identity, your administrator previously set up identity federation using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a command line interface (CLI) to cryptographically sign your requests by using your credentials. If you don't use AWS tools, you must sign requests yourself. For more information about using the recommended method to sign requests yourself, see Signing AWS API requests in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional security information. For example, AWS recommends that you use multi-factor authentication (MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM User Guide.
AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to all AWS services and resources in the account. This identity is called the AWS account root user and is accessed by signing in with the email address and password that you used to create the account. We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your root user credentials and use them to perform the tasks that only the root user can perform. For the complete list of tasks that require you to sign in as the root user, see [Tasks that require root user credentials](#) in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person or application. Where possible, we recommend relying on temporary credentials instead of creating IAM users who have long-term credentials such as passwords and access keys. However, if you have specific use cases that require long-term credentials with IAM users, we recommend that you rotate access keys. For more information, see [Rotate access keys regularly for use cases that require long-term credentials](#) in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You can use groups to specify permissions for multiple users at a time. Groups make permissions easier to manage for large sets of users. For example, you could have a group named IAMAdmins and give that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but roles provide temporary credentials. To learn more, see [When to create an IAM user (instead of a role)](#) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information about methods for using roles, see [Using IAM roles](#) in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

- **Federated user access** – To assign permissions to a federated identity, you create a role and define permissions for the role. When a federated identity authenticates, the identity is associated with the role and is granted the permissions that are defined by the role. For information about roles for federation, see [Creating a role for a third-party Identity Provider](#) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control what your identities can access after they authenticate, IAM Identity Center correlates the permission set to a role in IAM. For information about permissions sets, see [Permission sets](#) in the AWS IAM Identity Center User Guide.

- **Temporary IAM user permissions** – An IAM user or role can assume an IAM role to temporarily take on different permissions for a specific task.

- **Cross-account access** – You can use an IAM role to allow someone (a trusted principal) in a different account to access resources in your account. Roles are the primary way to grant cross-account access. However, with some AWS services, you can attach a policy directly to a resource (instead of using a role as a proxy). To learn the difference between roles and resource-based policies for cross-account access, see [How IAM roles differ from resource-based policies](#) in the IAM User Guide.

- **Cross-service access** – Some AWS services use features in other AWS services. For example, when you make a call in a service, it’s common for that service to run applications in Amazon EC2 or store objects...
Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. A policy is an object in AWS that, when associated with an identity or resource, defines their permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes a request. Permissions in the policies determine whether the request is allowed or denied. Most policies are stored in AWS as JSON documents. For more information about the structure and contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on the resources that they need, an IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such as an IAM user, group of users, or role. These policies control what actions users and roles can perform, on which resources, and under what conditions. To learn how to create an identity-based policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies are embedded directly into a single user, group, or role. Managed policies are standalone policies that you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS
managed policies and customer managed policies. To learn how to choose between a managed policy or an inline policy, see Choosing between managed policies and inline policies in the IAM User Guide.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum permissions granted to you by the more common policy types.

- **Permissions boundaries** – A permissions boundary is an advanced feature in which you set the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role). You can set a permissions boundary for an entity. The resulting permissions are the intersection of an entity's identity-based policies and its permissions boundaries. Resource-based policies that specify the user or role in the Principal field are not limited by the permissions boundary. An explicit deny in any of these policies overrides the allow. For more information about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

- **Service control policies (SCPs)** – SCPs are JSON policies that specify the maximum permissions for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for grouping and centrally managing multiple AWS accounts that your business owns. If you enable all features in an organization, then you can apply service control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in member accounts, including each AWS account root user. For more information about Organizations and SCPs, see How SCPs work in the AWS Organizations User Guide.

- **Session policies** – Session policies are advanced policies that you pass as a parameter when you programmatically create a temporary session for a role or federated user. The resulting session's permissions are the intersection of the user or role's identity-based policies and the session policies. Permissions can also come from a resource-based policy. An explicit deny in any of these policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated to understand. To learn how AWS determines whether to allow a request when multiple policy types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS User Notifications works with IAM

Before you use IAM to manage access to User Notifications, you should understand what IAM features are available to use with User Notifications. To get a high-level view of how User Notifications and other AWS services work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Note

User Notifications uses resource-level permissions and managed policies to define what actions users can take.

Topics

- User Notifications Identity-based policies (p. 23)
User Notifications Identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources. You can also specify the conditions under which actions are allowed or denied. User Notifications supports specific actions, resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny access in a policy. Policy actions usually have the same name as the associated AWS API operation. There are some exceptions, such as permission-only actions that don't have a matching API operation. There are also some operations that require multiple actions in a policy. These additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in User Notifications use the following prefixes before the action:

- notifications-contacts: - Used for email or contact actions.
- notifications: - Used for all other actions.

For example, to grant someone permission to update notification configurations with the UpdateNotificationConfiguration API operation, you include the notifications:UpdateNotificationConfiguration action in their policy. Policy statements must include either an Action or NotAction element. User Notifications defines its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

```
"Action": [  
  "notifications:action1",  
  "notifications:action2"
]
```

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with the word Get, include the following action:

```
"Action": "notifications:Get*"
```

To see a list of actions for User Notifications and User Notifications Contacts, see Actions Defined by AWS User Notifications and Actions Defined by AWS User Notifications Contacts in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.
The Resource JSON policy element specifies the object or objects to which the action applies. Statements must include either a Resource or a NotResource element. As a best practice, specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support a specific resource type, known as resource-level permissions.

For actions that don’t support resource-level permissions, such as listing operations, use a wildcard (*) to indicate that the statement applies to all resources.

```
"Resource": "*"
```

For a list of resource types and their ARNs for User Notifications and User Notifications Contacts, see Resources Defined by AWS User Notifications and Resources Defined by AWS User Notifications Contacts in the IAM User Guide. To learn with which actions you can specify the ARN of each resource, see Actions Defined by AWS User Notifications.

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in effect. The Condition element is optional. You can create conditional expressions that use condition operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM user permission to access a resource only if it is tagged with their IAM user name. For more information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global condition keys, see AWS global condition context keys in the IAM User Guide.

User Notifications defines its own set of condition keys and also supports using some global condition keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User Guide.

To see a list of condition keys for User Notifications and User Notifications Contacts, see Condition Keys for AWS User Notifications and Condition Keys for AWS User Notifications Contacts in the IAM User Guide. To learn with which actions and resources you can use a condition key, see Actions Defined by AWS User Notifications and Actions Defined by AWS User Notifications Contacts.

Examples

To view examples of User Notifications identity-based policies, see AWS User Notifications identity-based policy examples (p. 25).

Authorization based on User Notifications tags

You can attach tags to User Notifications resources or pass tags in a request to User Notifications. To control access based on tags, you provide tag information in the condition element of a policy using
Identity-based policy examples

By default, IAM users and roles don't have permission to create or modify User Notifications resources. They also can't perform tasks using the AWS Management Console. An IAM administrator must create IAM policies that grant users and roles permission to perform specific API operations on the specified resources they need. The administrator must then attach those policies to the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

- Policy best practices (p. 25)
- Using the User Notifications console (p. 26)
- Allow users to view their own permissions (p. 26)
- Viewing User Notifications notification configurations based on tags (p. 27)

Policy best practices

Identity-based policies determine whether someone can create, access, or delete User Notifications resources in your account. These actions can incur costs for your AWS account. When you create or edit identity-based policies, follow these guidelines and recommendations:

- Get started with AWS managed policies and move toward least-privilege permissions – To get started granting permissions to your users and workloads, use the AWS managed policies that grant permissions for many common use cases. They are available in your AWS account. We recommend that you reduce permissions further by defining AWS customer managed policies that are specific to your use cases. For more information, see AWS managed policies or AWS managed policies for job functions in the IAM User Guide.

- Apply least-privilege permissions – When you set permissions with IAM policies, grant only the permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more information about using IAM to apply permissions, see Policies and permissions in IAM in the IAM User Guide.

- **Use conditions in IAM policies to further restrict access** – You can add a condition to your policies to limit access to actions and resources. For example, you can write a policy condition to specify that all requests must be sent using SSL. You can also use conditions to grant access to service actions if they are used through a specific AWS service, such as AWS CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM User Guide.

- **Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions** – IAM Access Analyzer validates new and existing policies so that the policies adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides more than 100 policy checks and actionable recommendations to help you author secure and functional policies. For more information, see IAM Access Analyzer policy validation in the IAM User Guide.

- **Require multi-factor authentication (MFA)** – If you have a scenario that requires IAM users or a root user in your AWS account, turn on MFA for additional security. To require MFA when API operations are called, add MFA conditions to your policies. For more information, see Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User Guide.

Using the User Notifications console

To access the AWS User Notifications console, you must have a minimum set of permissions. These permissions must allow you to list and view details about the User Notifications resources in your AWS account. If you create an identity-based policy that is more restrictive than the minimum required permissions, the console won't function as intended for entities (IAM users or roles) with that policy.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and managed policies that are attached to their user identity. This policy includes permissions to complete this action on the console or programmatically using the AWS CLI or AWS API.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "ViewOwnUserInfo",
      "Effect": "Allow",
      "Action": [
        "iam:GetUserPolicy",
        "iam:ListGroupsForUser",
        "iam:ListAttachedUserPolicies",
        "iam:GetUserPolicy",
        "iam:ListUserPolicies",
        "iam:GetPolicy",
        "arn:aws:iam::*:user/${aws:username}"
      ],
      "Resource": [
        "arn:aws:iam::*:user/${aws:username}"
      ]
    },
    {
      "Sid": "NavigateInConsole",
      "Effect": "Allow",
      "Action": [
        "iam:GetGroupPolicy",
        "iam:GetPolicyVersion",
        "iam:GetPolicy",
        "iam:ListAttachedGroupPolicies",
```
Viewing User Notifications notification configurations based on tags

You can use conditions in your identity-based policy to control access to User Notifications resources based on tags. This example shows how you can create a policy that allows viewing a notification configuration. However, permission is granted only if the notification configuration tag **Owner** has the value of that user's user name. This policy also grants the permissions necessary to complete this action on the console.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "ListNotificationConfigurationInConsole",
      "Effect": "Allow",
      "Action": "notifications:ListNotificationConfiguration",
      "Resource": "*"
    },
    {
      "Sid": "ViewNotificationConfigurationIfOwner",
      "Effect": "Allow",
      "Action": "notifications:GetNotificationConfiguration",
      "Resource": "arn:aws:notifications:*:*:configuration/*",
      "Condition": {
        "StringEquals": {"aws:ResourceTag/Owner": "${aws:username}"}
      }
    }
  ]
}
```

You can attach this policy to the IAM users in your account. If a user named **richard-roe** attempts to view an User Notifications notification configuration, the notification configuration must be tagged **Owner=richard-roe** or **owner=richard-roe**. Otherwise, he is denied access. The condition tag key **Owner** matches both **Owner** and **owner** because condition key names aren't case-sensitive. For more information, see IAM JSON Policy Elements: **Condition** in the IAM User Guide.

Resource-level permissions

Resource-level permissions define the AWS resources that you allow assigned entities (users, groups, and roles) to perform actions on. You specify the Amazon Resource Name (ARN) of one or more resources as part of an IAM policy. You can then attach this policy to IAM entities. When the action doesn't act on a named resource, or when you grant permission to perform the action on all resources, the value of the resource in the policy is a wildcard (*).

Note

AWS User Notifications doesn't support resource-based policies, which are directly attached to AWS resources. For more information about the differences between policies and permissions, see Identity-based policies and resource-based policies in the IAM User Guide.
Supported resource-level permissions for User Notifications API actions

This table describes the User Notifications API actions that currently support resource-level permissions, as well as the supported resources for each action, including their ARNs and ARN format.

<table>
<thead>
<tr>
<th>Resource</th>
<th>API action</th>
<th>Resource ARN format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification Configuration</td>
<td>CreateNotificationConfiguration</td>
<td>arn:aws:notifications::accountId:configuration/</td>
<td>arn:aws:notifications::123456789012:configuration/</td>
</tr>
<tr>
<td></td>
<td>UpdateNotificationConfiguration</td>
<td>arn:aws:notifications:*:accountId:configurationId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555</td>
</tr>
<tr>
<td></td>
<td>DeleteNotificationConfiguration</td>
<td>arn:aws:notifications:*:accountId:configurationId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555</td>
</tr>
<tr>
<td></td>
<td>GetNotificationConfiguration</td>
<td>arn:aws:notifications:*:accountId:configurationId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555</td>
</tr>
<tr>
<td></td>
<td>ListNotificationConfiguration</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Event Rule</td>
<td>CreateEventRule</td>
<td>arn:aws:notifications::accountId:configurationId/rule/</td>
<td>arn:aws:notifications::123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555/rule/</td>
</tr>
<tr>
<td></td>
<td>UpdateEventRule</td>
<td>arn:aws:notifications:*:accountId:configurationId/rule/eventRuleId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555/rule/a01gkn362610da5e7dckrt66666</td>
</tr>
<tr>
<td></td>
<td>DeleteEventRule</td>
<td>arn:aws:notifications:*:accountId:configurationId/rule/eventRuleId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555/rule/a01gkn362610da5e7dckrt66666</td>
</tr>
<tr>
<td></td>
<td>GetEventRule</td>
<td>arn:aws:notifications:*:accountId:configurationId/rule/eventRuleId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555/rule/a01gkn362610da5e7dckrt66666</td>
</tr>
<tr>
<td></td>
<td>ListEventRules</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Channel</td>
<td>AssociateChannel</td>
<td>arn:aws:notifications:*:accountId:configurationId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555</td>
</tr>
<tr>
<td></td>
<td>DisassociateChannel</td>
<td>arn:aws:notifications:*:accountId:configurationId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555</td>
</tr>
<tr>
<td></td>
<td>ListChannels</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Notification Event</td>
<td>GetNotificationEvent</td>
<td>arn:aws:notifications:*:accountId:configurationId/event/notificationEventId</td>
<td>arn:aws:notifications:*:123456789012:configuration/a01gkn2k10c7spt0a8x8nj55555/event/b01gaja54vlt6rr10dysk77777</td>
</tr>
<tr>
<td>Resource</td>
<td>API action</td>
<td>Resource ARN format</td>
<td>Example</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ListNotificationEvents</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Notification Hub</td>
<td>RegisterNotificationHub</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DeregisterNotificationHub</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ListNotificationHubs</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Email Contacts</td>
<td>ActivateEmailContact</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CreateEmailContact</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DeleteEmailContact</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GetEmailContact</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ListEmailContacts</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ListTagsForResource</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SendActivationCode</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TagResource</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UntagResource</td>
<td>arn:aws:notifications-contacts::accountId:emailcontactId/emailContactId</td>
<td></td>
</tr>
</tbody>
</table>

Example 1: Administrator access

This policy allows a user to call all available APIs.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "notifications:*",
        "notifications-contacts:*"
      ]
    }
  ]
}```
Example 2: ReadOnly access

This policy allows a user to use get and list API actions.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "notifications:Get***",
 "notifications:List***",
 "notifications-contacts:Get***",
 "notifications-contacts:List***"
],
 "Resource": "***"
 }
]
}
```

Example 3: Deny a user the ability to update a notification configuration

This policy denies a user the ability to update a notification configuration.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "notifications:UpdateNotificationConfiguration"
],
 "Resource": "arn:aws:notifications::123456789012:configuration/a01gkn2k10c7spt0a8x8nj555555"
 }
]
}
```

Using Service-Linked Roles for User Notifications

AWS User Notifications uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to User Notifications. Service-linked roles are predefined by User Notifications and include all the permissions that the service requires to call other AWS services on your behalf.

A service-linked role streamlines setting up User Notifications because you don’t have to manually add the necessary permissions. User Notifications defines the permissions of its service-linked roles. Unless defined otherwise, only User Notifications can assume its roles. The defined permissions include the trust policy and the permissions policy. That permissions policy can’t be attached to any other IAM entity.
For information about other services that support service-linked roles, see AWS Services That Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link to view the service-linked role documentation for that service.

Service-Linked Role Permissions for User Notifications

User Notifications uses the service-linked role named AWSServiceRoleForAWSUserNotifications. This role allows User Notifications to call AWS services on your behalf. It also allows the role to publish metrics in the AWS/Notifications namespace.

The AWSServiceRoleForAWSUserNotifications service-linked role trusts the following services to assume the role:

- notifications.amazon.com

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in the IAM User Guide.

When you create a notification hub or a notification configuration, it creates the AWSUserNotificationsServiceLinkedRolePolicy. For more information, see AWS managed policy: AWSUserNotificationsServiceLinkedRolePolicy (p. 33)

You don't need to take any action to support this role beyond using User Notifications.

Creating a Service-Linked Role for User Notifications

You don't need to manually create a service-linked role. When you create a notification hub or a notification configuration in the AWS Management Console, User Notifications creates the service-linked role for you.

If you delete this service-linked role and need to create it again later, you can use the same process to recreate the role in your account. When you create a notification hub or a notification configuration, User Notifications creates the service-linked role for you again.

Editing a Service-Linked Role for User Notifications

User Notifications doesn't allow you to edit the AWSServiceRoleForAWSUserNotifications service-linked role. After you create a service-linked role, you can't change the name of the role. This is because various entities might reference the role. However, you can edit the description of the role using IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Manually deleting a Service-Linked Role for User Notifications

Under specific circumstances, you can manually delete the AWSServiceRoleForAWSUserNotifications service-linked role. To delete the User Notifications service-linked role, you must first delete all notification configurations in the account. You can delete all User Notifications notification configurations using the User Notifications console. You then use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForAWSUserNotifications service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Note

If the User Notifications service is using the role when you try to delete the resources, the deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete notification configurations

• In the navigation pane, choose Notification configurations.
2. Select the configuration you want to delete.
3. Choose Delete.

Supported Regions for User Notifications Service-Linked Roles

User Notifications supports using service-linked roles in all of the Regions where the service is available. For more information, see AWS Regions and Endpoints.

User Notifications doesn't support using service-linked roles in every Region where the service is available. You can use the AWSServiceRoleForAWSUserNotifications role in the following Regions.

<table>
<thead>
<tr>
<th>Region name</th>
<th>Region identity</th>
<th>Support in User Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>US East (N. Virginia)</td>
<td>us-east-1</td>
<td>Yes</td>
</tr>
<tr>
<td>US East (Ohio)</td>
<td>us-east-2</td>
<td>Yes</td>
</tr>
<tr>
<td>US West (N. California)</td>
<td>us-west-1</td>
<td>Yes</td>
</tr>
<tr>
<td>US West (Oregon)</td>
<td>us-west-2</td>
<td>Yes</td>
</tr>
<tr>
<td>Africa (Cape Town)</td>
<td>af-south-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Hong Kong)</td>
<td>ap-east-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Hyderabad)</td>
<td>ap-east-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Jakarta)</td>
<td>ap-southeast-3</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Melbourne)</td>
<td>ap-southeast-4</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Mumbai)</td>
<td>ap-south-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Osaka)</td>
<td>ap-northeast-3</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Seoul)</td>
<td>ap-northeast-2</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Singapore)</td>
<td>ap-southeast-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Sydney)</td>
<td>ap-southeast-2</td>
<td>Yes</td>
</tr>
<tr>
<td>Asia Pacific (Tokyo)</td>
<td>ap-northeast-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada (Central)</td>
<td>ca-central-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe (Frankfurt)</td>
<td>eu-central-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe (Ireland)</td>
<td>eu-west-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe (London)</td>
<td>eu-west-2</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe (Milan)</td>
<td>eu-south-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe (Paris)</td>
<td>eu-west-3</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe (Spain)</td>
<td>eu-south-2</td>
<td>Yes</td>
</tr>
</tbody>
</table>
AWS User Notifications User Guide
AWS managed policies

<table>
<thead>
<tr>
<th>Region name</th>
<th>Region identity</th>
<th>Support in User Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe (Stockholm)</td>
<td>eu-north-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe (Zurich)</td>
<td>eu-central-2</td>
<td>Yes</td>
</tr>
<tr>
<td>Israel (Tel Aviv)</td>
<td>il-central-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Middle East (Bahrain)</td>
<td>me-south-1</td>
<td>Yes</td>
</tr>
<tr>
<td>Middle East (UAE)</td>
<td>me-central-1</td>
<td>Yes</td>
</tr>
<tr>
<td>South America (São Paulo)</td>
<td>sa-east-1</td>
<td>Yes</td>
</tr>
<tr>
<td>AWS GovCloud (US)</td>
<td>us-gov-west-1</td>
<td>No</td>
</tr>
</tbody>
</table>

AWS managed policies for AWS User Notifications

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS managed policies are designed to provide permissions for many common use cases so that you can start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your specific use cases because they're available for all AWS customers to use. We recommend that you reduce permissions further by defining customer managed policies that are specific to your use cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the permissions defined in an AWS managed policy, the update affects all principal identities (users, groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed policy when a new AWS service is launched or new API operations become available for existing services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy:
AWSUserNotificationsServiceLinkedRolePolicy

You can't attach AWSUserNotificationsServiceLinkedRolePolicy to your IAM entities. This policy is attached to AWSServiceRoleForAWSUserNotifications, a service-linked role that allows User Notifications to call AWS services on your behalf and publish Amazon CloudWatch metrics. For more information, see Using Service-Linked Roles for User Notifications (p. 30).

Permissions details

User Notifications attaches this policy to AWSServiceRoleForAWSUserNotifications, a service-linked role that allows User Notifications to create, read, update, and delete Amazon EventBridge managed rules in your account. For example, when you create an event rule for your notification configuration, a managed rule is created in EventBridge. This policy also enables the role to publish Amazon CloudWatch metrics within the AWS/Notifications namespace.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["*"]
 }
]
}
```
User Notifications updates to AWS managed policies

View details about updates to AWS managed policies for User Notifications since this service began tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the Document history for the AWS User Notifications User Guide (p. 46) page.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWSUserNotificationsServiceLinkedRolePolicy</td>
<td>- New policy Allows User Notifications to create, read, update, and delete managed rules in the account. Allows User Notifications to publish Amazon CloudWatch metrics within the AWS/Notifications namespace.</td>
<td>April 20, 2023</td>
</tr>
<tr>
<td>User Notifications started tracking changes</td>
<td>User Notifications started tracking changes for its AWS managed policies.</td>
<td>April 10, 2023</td>
</tr>
</tbody>
</table>

Troubleshooting AWS User Notifications identity and access

Use the following information to help you diagnose and fix common issues that you might encounter when working with User Notifications and IAM.

Topics

- I Am Not Authorized to Perform an Action in User Notifications (p. 35)
- I’m an Administrator and Want to Allow Others to Access User Notifications (p. 35)
- I Want to Allow People Outside of My AWS Account to Access My User Notifications Resources (p. 35)
I Am Not Authorized to Perform an Action in User Notifications

If the AWS Management Console tells you that you're not authorized to perform an action, then you must contact your administrator for assistance. Your administrator is the person that provided you with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to view details about a notification configuration, but does not have notifications: `GetNotificationConfiguration` permissions.

```
User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: notifications:GetNotificationConfiguration on resource: my-example-notificationconfiguration
```

In this case, Mateo asks his administrator to update his policies to allow him to access the `my-example-notificationconfiguration` resource using the `GetNotificationConfiguration` action.

I'm an Administrator and Want to Allow Others to Access User Notifications

To allow others to access User Notifications, you must create an IAM entity (user or role) for the person or application that needs access. They will use the credentials for that entity to access AWS. You must then attach a policy to the entity that grants them the correct permissions in User Notifications.

To get started right away, see Creating your first IAM delegated user and group in the IAM User Guide.

I Want to Allow People Outside of My AWS Account to Access My User Notifications Resources

You can create a role that users in other accounts or people outside of your organization can use to access your resources. You can specify who is trusted to assume the role. For services that support resource-based policies or access control lists (ACLs), you can use those policies to grant people access to your resources.

To learn more, consult the following:

- To learn whether User Notifications supports these features, see How AWS User Notifications works with IAM (p. 22).
- To learn how to provide access to your resources across AWS accounts that you own, see Providing access to an IAM user in another AWS account that you own in the IAM User Guide.
- To learn how to provide access to your resources to third-party AWS accounts, see Providing access to AWS accounts owned by third parties in the IAM User Guide.
- To learn how to provide access through identity federation, see Providing access to externally authenticated users (identity federation) in the IAM User Guide.
- To learn the difference between using roles and resource-based policies for cross-account access, see How IAM roles differ from resource-based policies in the IAM User Guide.

Compliance validation for AWS User Notifications

To learn whether an AWS service is within the scope of specific compliance programs, see AWS services in Scope by Compliance Program and choose the compliance program that you are interested in. For general information, see AWS Compliance Programs.
You can download third-party audit reports using AWS Artifact. For more information, see Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your data, your company’s compliance objectives, and applicable laws and regulations. AWS provides the following resources to help with compliance:

- **Security and Compliance Quick Start Guides** – These deployment guides discuss architectural considerations and provide steps for deploying baseline environments on AWS that are security and compliance focused.
- **Architecting for HIPAA Security and Compliance on Amazon Web Services** – This whitepaper describes how companies can use AWS to create HIPAA-eligible applications.

  **Note**
  Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible Services Reference.

- **AWS Compliance Resources** – This collection of workbooks and guides might apply to your industry and location.
- **Evaluating Resources with Rules** in the AWS Config Developer Guide – The AWS Config service assesses how well your resource configurations comply with internal practices, industry guidelines, and regulations.
- **AWS Security Hub** – This AWS service provides a comprehensive view of your security state within AWS. Security Hub uses security controls to evaluate your AWS resources and to check your compliance against security industry standards and best practices. For a list of supported services and controls, see Security Hub controls reference.
- **AWS Audit Manager** – This AWS service helps you continuously audit your AWS usage to simplify how you manage risk and compliance with regulations and industry standards.

**Resilience in AWS User Notifications**

The AWS global infrastructure is built around AWS Regions and Availability Zones. Regions provide multiple physically separated and isolated Availability Zones. These Availability Zones are connected through low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can design and operate applications and databases that automatically fail over between zones without interruption. Availability Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

**Infrastructure security in AWS User Notifications**

As a managed service, AWS global network security procedures protect User Notifications as described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access User Notifications through the network. Clients must support Transport Layer Security (TLS) 1.2. Clients must also support cipher suites with perfect forward secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems, including Java 7 and later, support these modes.

Requests must be signed using an access key ID and a secret access key that is associated with an IAM principal. You can also use the AWS Security Token Service (AWS STS) to generate temporary security credentials to sign requests.
Monitoring AWS User Notifications

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS User Notifications and your other AWS solutions. AWS provides the following monitoring tools to watch User Notifications, report problems, and take automatic actions when appropriate:

- **Amazon CloudWatch** monitors your AWS resources and the applications that you run on AWS in real time. You can collect and track metrics, and create customized dashboards. You can also set alarms that notify you or act automatically when a specified metric reaches a threshold that you specify. For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances. When demand on your instances reaches a set threshold, CloudWatch can automatically launch new instances as needed. For more information, see the [Amazon CloudWatch User Guide](#).

- **AWS CloudTrail** captures API calls and related events made by or on behalf of your AWS account. It then delivers these log files to an Amazon S3 bucket that you specify. You can identify which users and accounts called AWS, the source IP address that the calls were made from, and when the calls occurred. For more information, see the [AWS CloudTrail User Guide](#).

Monitoring AWS User Notifications with Amazon CloudWatch

You can monitor AWS User Notifications using CloudWatch, which collects raw data and processes it into readable, near real-time metrics. CloudWatch keeps these statistics for 15 months so that you can access historical information and gain perspective on how your web application or service performs. You can also set alarms that watch for certain thresholds, and send notifications or take actions when those thresholds are met. For more information, see the [Amazon CloudWatch User Guide](#).

Enabling CloudWatch Metrics

Amazon CloudWatch metrics are enabled by default.

Available metrics and dimensions

The following are the metrics and dimensions that User Notifications sends to Amazon CloudWatch.

The AWS/Notifications namespace includes the following metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServiceEventsThrottled</td>
<td>The number of throttled events.</td>
</tr>
<tr>
<td><strong>Units</strong>: Count</td>
<td></td>
</tr>
</tbody>
</table>

User Notifications sends the following dimensions to CloudWatch.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service, EventType</td>
<td>This dimension filters the data you request by service and event type.</td>
</tr>
</tbody>
</table>
Viewing User Notifications metrics

You can view metrics in the CloudWatch console. The console provides a fine-grained and customizable display of your resources, as well as the number of running tasks in a service.

Viewing User Notifications metrics in the CloudWatch console

You can see a detailed view of User Notifications metrics in the CloudWatch console. You can tailor your view in the CloudWatch console to suit your needs. For more information about CloudWatch, see the Amazon CloudWatch User Guide.

To view metrics in the CloudWatch console

2. In the Metrics section in the left navigation, choose Notifications.
3. Choose the metrics to view.

Logging AWS User Notifications API calls using AWS CloudTrail

AWS User Notifications integrates with AWS CloudTrail, a service that records actions taken by users, roles, or AWS services in User Notifications. CloudTrail captures all API calls for User Notifications as events. The calls captured include calls from the User Notifications console and code calls to User Notifications API operations. If you create a trail, you can receive continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for User Notifications. If you don't configure a trail, you can still view the most recent events in the CloudTrail console in Event history. With the information collected by CloudTrail, you can identify the following details:

- The request made to User Notifications.
- The IP address that sent the request.
- The identity that sent the request.
- The time and date when the request was made.
- Additional, request-specific details.

For more information, see Viewing Events with CloudTrail Event History.

To learn more about CloudTrail, including how to turn on and configure it, see the AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for User Notifications, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure other AWS services to analyze further and act upon the event data collected in CloudTrail logs. For more information, see the following:

- Overview for creating a trail
- CloudTrail supported services and integrations
- Configuring Amazon SNS notifications for CloudTrail
- Receiving CloudTrail log files from multiple Regions
User Notifications information in CloudTrail

CloudTrail logs all actions from User Notifications. For example, calls to the AssociateChannel, ListChannels and CreateNotificationConfiguration actions generate entries in your CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity information helps you determine the following:

- Whether the request was made with root or AWS Identity and Access Management (IAM) user credentials.
- Whether the request was made with temporary security credentials for a role or federated user.
- Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

**Note**

Sensitive fields are automatically redacted by CloudTrail. Contact names and activation codes are always considered sensitive. Email addresses are considered sensitive except upon creation.

Understanding User Notifications log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you specify. CloudTrail log files contain one or more log entries. An event represents a single request from any source. It includes information about the requested action, including the date and time of the action and request parameters. CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the AssociateChannel action.

```json
{
 "eventVersion" : "1.08",
 "userIdentity" : {
 "type" : "AssumedRole",
 "principalId" : "AIDACKCEVSQ6C2EXAMPLE:jdoe",
 "arn" : "arn:aws:sts::111122223333:assumed-role/user/jdoe",
 "accountId" : "111122223333",
 "accessKeyId" : "AKIAIOSFODNN7EXAMPLE",
 "sessionContext" : {
 "sessionIssuer" : {
 "type" : "Role",
 "principalId" : "AIDACKCEVSQ6C2EXAMPLE",
 "arn" : "arn:aws:iam::111122223333:role/user",
 "accountId" : "111122223333",
 "userName" : "jdoe"
 },
 "webIdFederationData" : { },
 "attributes" : {
 "creationDate" : "2022-12-09T23:48:51Z",
 "mfaAuthenticated" : "false"
 }
 },
 "sessionTime" : "2022-12-09T23:50:03Z",
 "eventSource" : "notifications.amazonaws.com",
 "eventName" : "AssociateChannel",
 "eventType" : "Success",
 "category" : "User Notification",
 "otpDevice" : "n/a",
 "requestParameters" : {
 "channelName" : "MyChannel"
 }
 },
 "eventTime" : "2022-12-09T23:50:03Z",
 "eventSource" : "notifications.amazonaws.com",
 "eventName" : "AssociateChannel",
 "userIdentityArn" : "arn:aws:sts::111122223333:assumed-role/user/jdoe",
 "requestParameters" : {
 "channelName" : "MyChannel"
 }
}
```
"awsRegion" : "us-east-1",
"sourceIPAddress" : "10.24.34.3",
"requestParameters" : {
  "notificationConfigurationArn" : "arn:aws:notifications::111122223333:configuration/a01gkmqqg71341mdc6ptedbxpad",
  "arn" : "arn%3Aaws%3Anotifications-contacts%3A%3A111122223333%3Aconfiguration%2Ff4u7r2ic"
},
"responseElements" : null,
"requestID" : "543db7ab-b4b2-11e9-8925-d139e92a1fe8",
"eventID" : "5b2805a5-3e06-4437-a7a2-b5f8b5cbb4e2",
"readOnly" : false,
"eventType" : "AwsApiCall",
"managementEvent" : true,
"recipientAccountId" : "111122223333",
"eventCategory" : "Management"}
Troubleshooting AWS User Notifications

In this section, you can find answers to some common questions and concerns.

I can't see any notifications.

- No notifications configured in the account.
  Verify that your notification configurations exist. From the navigation pane, choose Notification configurations to view a list of existing configurations in your account.
- Notification configuration error.
  Verify that the status of your notification configuration is Active. From the navigation pane, choose Notification configurations to view a list of existing configurations in your account. You can check the status of your notification configurations by viewing the list. You can also choose a notification configuration to navigate to its details page. If the notification configuration shows an error, choose Edit on the Notification Configuration page to fix the issue.
- Event not matching expected pattern.
  Verify that the created Event Rule matches the emitted AWS event. For more information, see Events from AWS services in the Amazon EventBridge User Guide.

My Event Rules are taking a long time (more than 5 mins) or failing to create.

- Permissions error - Contact your account administrator to discuss your permissions.
- System error - Try to create the rule again.

My notification isn't showing any details.

We're working with other AWS services to make sure User Notifications contain all relevant details. Your feedback helps us prioritize the notifications we should work on next. To send feedback, choose Feedback in the lower left menu of the User Notifications console.

I received an exception.

The following list includes exceptions that User Notifications can return. It also describes the HTTP status code associated with each exception.

- ValidationException
  HTTP Status Code: 400
I received an exception.

- **ResourceNotFoundException**
  HTTP Status Code: 404
- **ServiceQuotaExceededException**
  HTTP Status Code: 402
- **AccessDeniedException**
  HTTP Status Code: 403
- **ConflictException**
  HTTP Status Code: 409
- **ThrottlingException**
  HTTP Status Code: 429
- **InternalServerException**
  HTTP Status Code: 500
Quotas for AWS User Notifications

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless otherwise noted, each quota is Region-specific. You can request increases for some quotas, while other quotas can't be increased.

Your AWS account has the following quotas related to User Notifications.

## Service quotas

<table>
<thead>
<tr>
<th>Name</th>
<th>Default</th>
<th>Adjustable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification configurations total for an AWS account</td>
<td>50 notification configurations</td>
<td>No</td>
<td>The maximum number of notification configurations that you can create in an AWS account.</td>
</tr>
<tr>
<td>Notification configurations for a single Service</td>
<td>20 notification configurations for any specific service for an AWS account.</td>
<td>No</td>
<td>The maximum number of notification configurations that you can create for a given service in an AWS account.</td>
</tr>
<tr>
<td>Notification configurations per Service and Event type</td>
<td>10 notification configurations for each service and event type for an AWS account.</td>
<td>No</td>
<td>The maximum number of notification configurations by Service and Event type you can create for a given AWS account.</td>
</tr>
<tr>
<td>Event rules for a given notification configuration</td>
<td>10 event rules</td>
<td>No</td>
<td>The maximum number of event rules that you can create for each notification configuration in your AWS account.</td>
</tr>
<tr>
<td>Channels for a given notification configuration</td>
<td>50 channels (email, mobile devices, or chat channels) for each notification configuration.</td>
<td>No</td>
<td>The maximum number of channels for each notification configuration that you can create in your AWS account.</td>
</tr>
<tr>
<td>Email contacts</td>
<td>500 email contacts for each AWS account.</td>
<td>No</td>
<td>The maximum number of email contacts that you can add for each AWS account.</td>
</tr>
<tr>
<td>Notification hubs</td>
<td>3 hubs for each AWS account.</td>
<td>No</td>
<td>The maximum number of notification hubs you can add to each AWS account.</td>
</tr>
<tr>
<td>Name</td>
<td>Default</td>
<td>Adjustable</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Rate of source events for a given AWS account</td>
<td>1 per second.</td>
<td>No</td>
<td>The maximum number of source events per second you can receive in each AWS account.</td>
</tr>
</tbody>
</table>
## Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td>An event indicates a change in an environment. AWS User Notifications uses Amazon EventBridge events to generate notifications. For example, an Amazon EC2 instance state changed to failed.</td>
</tr>
<tr>
<td>Event pattern</td>
<td>An event pattern has the same structure as the events that they match. Rules use event patterns to select events and notify users. An event pattern either matches an event or it doesn't.</td>
</tr>
<tr>
<td>Event rule</td>
<td>A rule matches incoming events and generates a notification. When you create rules for events, User Notifications notifies you when it receives an event that matches the event pattern in the rule.</td>
</tr>
<tr>
<td>Notification Center</td>
<td>A dedicated user interface of the AWS Management Console where users can configure and view notifications.</td>
</tr>
<tr>
<td>Notification configuration</td>
<td>A logical container of event rules.</td>
</tr>
<tr>
<td>Notification hub</td>
<td>An account-level setting that you use to select the Regions where you want to store, process, and replicate your notifications.</td>
</tr>
</tbody>
</table>
# Document history for the AWS User Notifications User Guide

The following table describes the documentation releases for User Notifications.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managed policy added (p. 46)</td>
<td>Added the AWS managed policies for AWS User Notifications topic to describe the AWS managed policies for User Notifications and recent changes to those policies.</td>
<td>April 20, 2023</td>
</tr>
<tr>
<td>Initial release (p. 46)</td>
<td>Initial release of the User Notifications User Guide.</td>
<td>April 20, 2023</td>
</tr>
</tbody>
</table>