
User Guide

AWS OpsWorks

API Version 2013-02-18

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS OpsWorks User Guide

AWS OpsWorks: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS OpsWorks User Guide

Table of Contents

What Is AWS OpsWorks? ... 1
AWS OpsWorks Services ... 1

AWS OpsWorks for Puppet Enterprise ... 4
Region Support for OpsWorks for Puppet Enterprise .. 5
End of Life FAQs ... 6

How will existing customers be affected by this End of Life? ... 6
What happens to my servers if I don’t take any action? .. 7
Is AWS OpsWorks for Puppet Enterprise accepting new customers? ... 7
Will the End of Life affect all AWS Regions at the same time? ... 7
What level of technical support is available for AWS OpsWorks for Puppet Enterprise? 7
I am a current customer of OpsWorks for Puppet Enterprise and I need to launch a server
in an account which was not using the service previously. Am I able to do this? 7
Will there be any new feature releases for AWS OpsWorks for Puppet Enterprise? 8

Getting Started ... 8
Prerequisites ... 8
Create a Puppet Master ... 13
Finish Configuration ... 25
Add Nodes to Manage ... 29
Sign in to the Puppet Enterprise Console ... 32
Optional: Use CodeCommit .. 37

Create a Puppet Master in CloudFormation ... 44
Prerequisites ... 45
Create a Puppet Enterprise Master in AWS CloudFormation ... 45

Update a Server to Use a Custom Domain .. 51
Prerequisites ... 52
Limitations .. 52
Update a Server to Use a Custom Domain ... 53
See Also .. 57

Work with Tags ... 57
How Tags Work in AWS OpsWorks for Puppet Enterprise ... 58
Add and Manage Tags in OpsWorks for Puppet Enterprise (Console) 59
Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI) .. 62
See Also .. 67

Back Up and Restore Servers .. 67

API Version 2013-02-18 iii

AWS OpsWorks User Guide

Back Up an OpsWorks for Puppet Enterprise Server .. 68
Restore an OpsWorks for Puppet Enterprise Server ... 71

System Maintenance .. 73
Configuring system maintenance .. 74
Starting system maintenance on demand .. 76
Restoring custom configurations and files after maintenance .. 77

Add Nodes Automatically ... 77
Step 1: Create an IAM Role to Use as Your Instance Profile .. 78
Step 2: Create Instances by Using an Unattended Association Script .. 79

Remove Nodes .. 80
See Also .. 81

Delete a Puppet Master .. 81
Step 1: Disassociate Managed Nodes ... 82
Step 2: Delete the Server ... 82
See Also .. 83

Migrate a Puppet Server to Amazon EC2 ... 83
Step 1: Contact Puppet to purchase a license .. 84
Step 2: Get details about your OpsWorks for Puppet Enterprise server 84
Step 3: Make a backup of your OpsWorks for Puppet Enterprise server 85
Step 4: Launch a new EC2 instance .. 85
Step 5: Install Puppet Enterprise on the new EC2 instance ... 87
Step 6: Restore the backup on the new EC2 instance .. 87
Step 7: Configure your Puppet license ... 88
Step 8: Migrate your nodes .. 88
Step 9: Delete your OpsWorks for Puppet Enterprise server .. 90

Using AWS CloudTrail .. 91
OpsWorks for Puppet Enterprise Information in CloudTrail .. 92
Understanding OpsWorks for Puppet Enterprise Log File Entries .. 93

Troubleshooting .. 95
General troubleshooting tips ... 95
Troubleshooting specific errors .. 96
Additional help and support .. 100

AWS OpsWorks for Chef Automate .. 102
Region Support for AWS OpsWorks for Chef Automate ... 105
End of Life FAQs .. 106

How will existing users be affected by this End of Life? .. 106

API Version 2013-02-18 iv

AWS OpsWorks User Guide

What happens to my servers if I don’t take any action? .. 107
What alternatives can I transition to? .. 107
Is the service still accepting new customers? ... 107
Will the End of Life affect all AWS Regions at the same time? .. 107
What level of technical support is available? ... 107
I am a current customer of OpsWorks for Chef Automate and I need to launch a server in
an account which was not using the service previously. Am I able to do this? 108
Will there be any major feature releases over the next year? .. 108

Upgrade to Chef Automate 2 ... 108
Prerequisites for Upgrading to Chef Automate 2 .. 108
About the Upgrade Process ... 109
Upgrade to Chef Automate 2 (Console) .. 109
Upgrade to Chef Automate 2 (CLI) ... 110
Roll Back an AWS OpsWorks for Chef Automate Server to Chef Automate 1 (CLI) 111
See Also .. 112

Getting Started .. 112
Prerequisites .. 113
Create a Chef Automate Server .. 115
Finish configuration and upload cookbooks ... 129
Add nodes to manage ... 138
Sign in to the Chef Automate dashboard ... 145

Create a Chef Automate Server in CloudFormation ... 148
Prerequisites .. 149
Create a Chef Automate Server in AWS CloudFormation .. 150

Update a Server to Use a Custom Domain .. 157
Prerequisites .. 157
Limitations .. 52
Update a Server to Use a Custom Domain ... 53
See Also .. 57

Regenerate the starter kit ... 163
Regenerate the AWS OpsWorks for Chef Automate starter kit with the AWS CLI 163

Work with Tags .. 164
How Tags Work in AWS OpsWorks for Chef Automate .. 166
Add and Manage Tags in AWS OpsWorks for Chef Automate (Console) 167
Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI) ... 169
See Also .. 174

API Version 2013-02-18 v

AWS OpsWorks User Guide

Back up and restore servers .. 175
Back Up an AWS OpsWorks for Chef Automate Server ... 175
Restore an AWS OpsWorks for Chef Automate Server ... 178

System Maintenance ... 179
Ensuring nodes trust the AWS OpsWorks Certification Authority .. 181
Configuring system maintenance .. 182
Starting system maintenance on demand .. 184
Restoring custom configurations and files after maintenance ... 184

Compliance Scans .. 185
Compliance in Chef Automate 2.0 .. 186
Compliance in Chef Automate 1.x .. 194
Updates to Compliance ... 200
Community and Custom Compliance Profiles .. 200
See Also .. 200

Remove nodes .. 201
Related Topics ... 202

Delete a Chef Automate server .. 202
Step 1: Disassociate Managed Nodes ... 203
Step 2: Delete the Server ... 203

Reset Chef credentials .. 203
Using AWS CloudTrail ... 205

AWS OpsWorks for Chef Automate Information in CloudTrail ... 205
Understanding AWS OpsWorks for Chef Automate Log File Entries 206

Troubleshooting ... 208
General troubleshooting tips ... 209
Troubleshooting specific errors ... 209
Additional help and support .. 216

Security in AWS OpsWorks Configuration Management (CM) .. 218
Data Protection .. 219

Integration with AWS Secrets Manager ... 220
Data Encryption ... 221

Encryption at Rest .. 221
Encryption in Transit .. 221
Key Management .. 221

Identity and Access Management .. 221
Audience ... 222

API Version 2013-02-18 vi

AWS OpsWorks User Guide

Authenticating With Identities ... 222
Managing Access Using Policies .. 226
How AWS OpsWorks CM Works with IAM ... 228
Identity-Based Policy Examples ... 233
Troubleshooting .. 237
AWS managed policies .. 239
Cross-service confused deputy prevention in AWS OpsWorks CM ... 247

Internetwork Traffic Privacy .. 250
Logging and Monitoring ... 251
Compliance Validation .. 251
Resilience ... 252
Infrastructure Security .. 252
Configuration and Vulnerability Analysis ... 253
Security Best Practices .. 253

AWS OpsWorks Stacks .. 255
Stacks .. 258
Layers .. 259
Recipes and LifeCycle Events .. 259
Instances .. 260
Apps .. 261
Customizing your Stack .. 262
Resource Management .. 263
Security and Permissions ... 263
Monitoring and Logging ... 263
CLI, SDK, and AWS CloudFormation Templates .. 264
End of Life FAQs .. 264

How will existing customers be affected by this End of Life? ... 265
Is AWS OpsWorks Stacks accepting new customers? .. 265
Where should I migrate my existing stacks to? ... 265
Will the End of Life affect all AWS Regions at the same time? .. 266
What level of technical support is available for AWS OpsWorks Stacks? 266
Will there be any new feature releases for AWS OpsWorks Stacks? .. 266

Migrating your applications to Systems Manager Application Manager 266
How the script works ... 267
Prerequisites .. 267
Limitations .. 268

API Version 2013-02-18 vii

AWS OpsWorks User Guide

Getting started .. 269
FAQ .. 284
Troubleshooting .. 296

Getting Started .. 297
Region Support ... 298
Getting Started: Sample ... 299
Getting Started: Linux ... 319
Getting Started: Windows .. 350
Getting Started: Cookbooks ... 384

Best Practices .. 418
Root Device Storage .. 418
Optimizing the Number of Servers .. 421
Managing Permissions ... 423
Managing and Deploying Apps and Cookbooks .. 426
Packaging Cookbook Dependencies Locally ... 435

Stacks .. 440
Migrate stacks from EC2-Classic ... 441
Create a New Stack .. 444
Running a Stack in a VPC ... 452
Update a Stack .. 463
Clone a Stack ... 464
Run Stack Commands .. 466
Using Custom JSON ... 469
Delete a Stack ... 472

Layers .. 476
OpsWorks Layer Basics .. 477
Elastic Load Balancing Layer .. 493
Amazon RDS Service Layer ... 498
ECS Cluster Layers .. 504
Custom Layers ... 510
Per-layer Package Installations .. 511

Instances .. 513
Using AWS OpsWorks Stacks Instances ... 514
Using Computing Resources Created Outside of AWS OpsWorks Stacks 574
Editing the Instance Configuration ... 620
Deleting AWS OpsWorks Stacks Instances .. 622

API Version 2013-02-18 viii

AWS OpsWorks User Guide

Logging In with SSH .. 624
Logging In with RDP .. 627

Apps .. 632
Adding Apps .. 633
Deploying Apps ... 640
Editing Apps .. 644
Connecting to a Database .. 645
Using Environment Variables ... 647
Passing Data to Applications ... 649
Using Git Repository SSH Keys .. 652
Using Custom Domains ... 653
Using SSL ... 656

Cookbooks and Recipes .. 664
Cookbook Repositories .. 665
Chef Versions ... 669
Ruby Versions .. 687
Installing Custom Cookbooks .. 689
Updating Custom Cookbooks .. 692
Executing Recipes ... 695

Resource Management .. 703
Registering Resources with a Stack .. 705
Attaching and Moving Resources .. 710
Detaching Resources .. 716
Deregistering Resources .. 718

Tags ... 721
Setting Tags at the Stack Level .. 722
Setting Tags at the Layer Level ... 724
Managing Tags with the AWS CLI ... 726
Tag Limitations .. 727

Monitoring ... 728
Using Amazon CloudWatch .. 728
Using AWS CloudTrail .. 740
Using Amazon CloudWatch Logs .. 743
Using Amazon CloudWatch Events ... 748

Security and Permissions ... 749
Managing User Permissions ... 751

API Version 2013-02-18 ix

AWS OpsWorks User Guide

Allowing AWS OpsWorks Stacks to Act on Your Behalf ... 775
Confused deputy prevention .. 780
Specifying Permissions for Apps Running on EC2 instances ... 784
Managing SSH Access .. 788
Managing Security Updates ... 796
Using Security Groups ... 798

Chef 12 Linux ... 801
Overview ... 801
Moving to Chef 12 ... 802
Supported Operating Systems .. 804
Supported Instance Types .. 804
More Information ... 804
Moving to Data Bags ... 805

Previous Chef Versions ... 807
Chef 11.10 and Earlier Versions for Linux ... 807

Using AWS OpsWorks Stacks with Other AWS Services .. 1235
Using a Back-end Data Store ... 1236
ElastiCache Redis .. 1245
Using an Amazon S3 Bucket .. 1259
Using AWS CodePipeline with AWS OpsWorks Stacks ... 1273

Using the AWS OpsWorks Stacks CLI .. 1335
Create an Instance ... 1337
Deploy an App .. 1340
List Apps ... 1342
List Commands ... 1343
List Deployments .. 1344
List Elastic IP Addresses .. 1346
List Instances ... 1347
List Stacks .. 1348
List Layers .. 1350
Execute a Recipe ... 1354
Install Dependencies .. 1355
Update the Stack Configuration ... 1356

Debugging and Troubleshooting Guide .. 1357
Debugging Recipes ... 1358
Common Debugging and Troubleshooting Issues ... 1376

API Version 2013-02-18 x

AWS OpsWorks User Guide

AWS OpsWorks Stacks Agent CLI .. 1386
agent_report .. 1388
get_json ... 1389
instance_report ... 1393
list_commands ... 1394
run_command .. 1395
show_log ... 1396
stack_state ... 1397

AWS OpsWorks Stacks Data Bag Reference .. 1400
App Data Bag (aws_opsworks_app) ... 1404
Command Data Bag (aws_opsworks_command) ... 1408
Amazon ECS Cluster Data Bag (aws_opsworks_ecs_cluster) ... 1410
Elastic Load Balancing Data Bag (aws_opsworks_elastic_load_balancer) 1411
Instance Data Bag (aws_opsworks_instance) .. 1412
Layer Data Bag (aws_opsworks_layer) ... 1417
Amazon RDS Data Bag (aws_opsworks_rds_db_instance) ... 1419
Stack Data Bag (aws_opsworks_stack) .. 1421
User Data Bag (aws_opsworks_user) .. 1423

OpsWorks Agent Changes ... 1425
Chef 12 Agent Releases .. 1425
Chef 11.10 Agent Releases .. 1428

Resources .. 1434
Reference Guides, Tools, and Support Resources ... 1434
AWS Software Development Kits ... 1435
Open Source Software ... 1436

AWS OpsWorks document history ... 1437
Earlier updates ... 1444

API Version 2013-02-18 xi

AWS OpsWorks User Guide

What Is AWS OpsWorks?

AWS OpsWorks is a configuration management service that helps you configure and operate
applications in a cloud enterprise by using Puppet or Chef. AWS OpsWorks Stacks and AWS
OpsWorks for Chef Automate let you use Chef cookbooks and solutions for configuration
management, while OpsWorks for Puppet Enterprise lets you configure a Puppet Enterprise master
server in AWS. Puppet offers a set of tools for enforcing the desired state of your infrastructure,
and automating on-demand tasks.

AWS OpsWorks Services

AWS OpsWorks for Puppet Enterprise

OpsWorks for Puppet Enterprise lets you create AWS-managed Puppet master servers. A
Puppet master server manages nodes in your infrastructure, stores facts about those nodes, and
serves as a central repository for your Puppet modules. Modules are reusable, shareable units
of Puppet code that contain instructions about how your infrastructure should be configured.
You can download community modules from the Puppet Forge, or use the Puppet Development
Kit to create your own custom modules, then manage their deployment with Puppet Code
Manager.

OpsWorks for Puppet Enterprise provides a fully-managed Puppet master, a suite of
automation tools that enable you to inspect, deliver, operate, and future-proof your
applications, and access to a user interface that lets you view information about your nodes
and Puppet activities. OpsWorks for Puppet Enterprise lets you use Puppet to automate how
nodes are configured, deployed, and managed, whether they are Amazon EC2 instances or on-
premises devices. An OpsWorks for Puppet Enterprise master provides full-stack automation
by handling tasks such as software and operating system configurations, package installations,
database setups, change management, policy enforcement, monitoring, and quality assurance.

Because OpsWorks for Puppet Enterprise manages Puppet Enterprise software, your server can
be backed up automatically at a time that you choose, is always running the most current AWS-
compatible version of Puppet, and always has the most current security updates applied. You
can use Amazon EC2 Auto Scaling groups to associate new Amazon EC2 nodes with your server
automatically.

AWS OpsWorks Services API Version 2013-02-18 1

https://www.chef.io
https://puppet.com/products/puppet-enterprise
https://forge.puppet.com/

AWS OpsWorks User Guide

AWS OpsWorks for Chef Automate

AWS OpsWorks for Chef Automate lets you create AWS-managed Chef servers that include Chef
Automate premium features, and use the Chef DK and other Chef tooling to manage them. A
Chef server manages nodes in your environment, stores information about those nodes, and
serves as a central repository for your Chef cookbooks. The cookbooks contain recipes that are
run by the Chef Infra client (chef-client) agent on each node that you manage by using Chef.
You can use Chef tools like knife and Test Kitchen to manage nodes and cookbooks on a Chef
server in the AWS OpsWorks for Chef Automate service.

Chef Automate is an included server software package that provides automated workflow for
continuous deployment and compliance checks. AWS OpsWorks for Chef Automate installs and
manages Chef Automate, Chef Infra, and Chef InSpec by using a single Amazon Elastic Compute
Cloud instance. With AWS OpsWorks for Chef Automate, you can use community-authored or
custom Chef cookbooks without making AWS OpsWorks-specific changes.

Because AWS OpsWorks for Chef Automate manages Chef Automate components on a single
instance, your server can be backed up automatically at a time that you choose, is always
running the most current minor version of Chef, and always has the most current security
updates applied. You can use Amazon EC2 Auto Scaling groups to associate new Amazon EC2
nodes with your server automatically.

AWS OpsWorks Stacks

Cloud-based computing usually involves groups of AWS resources, such as EC2 instances and
Amazon Relational Database Service (RDS) instances. For example, a web application typically
requires application servers, database servers, load balancers, and other resources. This group
of instances is typically called a stack.

AWS OpsWorks Stacks, the original service, provides a simple and flexible way to create
and manage stacks and applications. AWS OpsWorks Stacks lets you deploy and monitor
applications in your stacks. You can create stacks that help you manage cloud resources in
specialized groups called layers. A layer represents a set of EC2 instances that serve a particular
purpose, such as serving applications or hosting a database server. Layers depend on Chef
recipes to handle tasks such as installing packages on instances, deploying apps, and running
scripts.

Unlike AWS OpsWorks for Chef Automate, AWS OpsWorks Stacks does not require or create
Chef servers; AWS OpsWorks Stacks performs some of the work of a Chef server for you.
AWS OpsWorks Stacks monitors instance health, and provisions new instances for you, when

AWS OpsWorks Services API Version 2013-02-18 2

https://www.chef.io/automate/
https://www.chef.io/automate/
https://downloads.chef.io/chef-dk/
https://docs.chef.io/knife.html
http://kitchen.ci/
http://docs.chef.io/recipes.html
http://docs.chef.io/recipes.html

AWS OpsWorks User Guide

necessary, by using Auto Healing and Auto Scaling. A simple application server stack might look
something like the following diagram.

AWS OpsWorks Services API Version 2013-02-18 3

AWS OpsWorks User Guide

AWS OpsWorks for Puppet Enterprise

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

OpsWorks for Puppet Enterprise lets you launch a Puppet Enterprise master in minutes, and lets
AWS OpsWorks handle its operations, backups, restorations, and software upgrades. OpsWorks
for Puppet Enterprise frees you to focus on core configuration management tasks, instead of
managing a Puppet master. By using OpsWorks for Puppet Enterprise, you can use the same
configurations to manage both your on-premises and cloud infrastructure, helping you to
efficiently scale your operations in a hybrid environment. Management of your Puppet master
server is simplified by the Puppet Enterprise console, the AWS Management Console, and the AWS
CLI.

A Puppet master manages the configuration of nodes in your environment by serving configuration
catalogs for specific nodes to the puppet-agent software, and serves as a central repository for
your Puppet modules. A Puppet master in OpsWorks for Puppet Enterprise deploys puppet-agent
to your managed nodes, and provides premium features of Puppet Enterprise.

An OpsWorks for Puppet Enterprise master runs on an Amazon Elastic Compute Cloud instance.
OpsWorks for Puppet Enterprise servers are configured to run the newest version of Amazon Linux
(Amazon Linux 2), and the most current version of Puppet Enterprise Master, version 2019.8.5. For
more information about changes in Puppet Enterprise 2019.8.5, see the Puppet Enterprise Release
Notes.

When new versions of Puppet software become available, system maintenance is designed to
update the version of Puppet Enterprise on the server automatically, as soon as it passes AWS
testing. AWS performs extensive testing to verify that Puppet upgrades are production-ready and
do not disrupt existing customer environments.

API Version 2013-02-18 4

https://puppet.com/products/puppet-enterprise
https://docs.puppet.com/puppet/4.9/about_agent.html
https://puppet.com/docs/pe/2019.8/release_notes_pe_index.html
https://puppet.com/docs/pe/2019.8/release_notes_pe_index.html

AWS OpsWorks User Guide

You can connect any on-premises computer or EC2 instance that is running a supported operating
system and has network access to an OpsWorks for Puppet Enterprise master. The puppet agent
software is installed by the Puppet master on nodes that you want to manage.

Topics

• Region Support for OpsWorks for Puppet Enterprise

• AWS OpsWorks for Puppet Enterprise End of Life FAQs

• Getting Started with OpsWorks for Puppet Enterprise

• Create an AWS OpsWorks for Puppet Enterprise Master by using AWS CloudFormation

• Update an OpsWorks for Puppet Enterprise Server to Use a Custom Domain

• Working with Tags on AWS OpsWorks for Puppet Enterprise Resources

• Back Up and Restore an OpsWorks for Puppet Enterprise Server

• System Maintenance in OpsWorks for Puppet Enterprise

• Adding Nodes Automatically in OpsWorks for Puppet Enterprise

• Disassociate a Node from an OpsWorks for Puppet Enterprise Server

• Delete an OpsWorks for Puppet Enterprise Server

• How to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2)

• Logging OpsWorks for Puppet Enterprise API Calls with AWS CloudTrail

• Troubleshooting OpsWorks for Puppet Enterprise

Region Support for OpsWorks for Puppet Enterprise

The following regional endpoints support OpsWorks for Puppet Enterprise masters. OpsWorks for
Puppet Enterprise creates resources that are associated with your Puppet masters, such as instance
profiles, users, and service roles, in the same regional endpoint as your Puppet master. Your Puppet
master must be in a VPC. You can use a VPC that you create or already have, or use the default
VPC.

• US East (Ohio) Region

• US East (N. Virginia) Region

• US West (N. California) Region

• US West (Oregon) Region

Region Support for OpsWorks for Puppet Enterprise API Version 2013-02-18 5

https://docs.puppet.com/puppet/4.9/about_agent.html

AWS OpsWorks User Guide

• Asia Pacific (Tokyo) Region

• Asia Pacific (Singapore) Region

• Asia Pacific (Sydney) Region

• Europe (Frankfurt) Region

• Europe (Ireland) Region

AWS OpsWorks for Puppet Enterprise End of Life FAQs

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible.
For information about how to migrate your existing Puppet Enterprise servers, see How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

Topics

• How will existing customers be affected by this End of Life?

• What happens to my servers if I don’t take any action?

• Is AWS OpsWorks for Puppet Enterprise accepting new customers?

• Will the End of Life affect all AWS Regions at the same time?

• What level of technical support is available for AWS OpsWorks for Puppet Enterprise?

• I am a current customer of OpsWorks for Puppet Enterprise and I need to launch a server in an
account which was not using the service previously. Am I able to do this?

• Will there be any new feature releases for AWS OpsWorks for Puppet Enterprise?

How will existing customers be affected by this End of Life?

Existing customers will be unaffected until March 31, 2024, the End of Life date for OpsWorks for
Puppet Enterprise. After the End of Life date, customers will no longer be able to manage their
servers using the OpsWorks console or API.

End of Life FAQs API Version 2013-02-18 6

https://docs.aws.amazon.com/opsworks/latest/userguide/opspup-migrate-ec2.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opspup-migrate-ec2.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opspup-migrate-ec2.html

AWS OpsWorks User Guide

What happens to my servers if I don’t take any action?

Starting March 31, 2024, you will no longer be able to manage your servers using the OpsWorks
console or API. At that time, we will stop performing any ongoing management functions for
your servers such as backups or maintenance. To limit impact to customers, we will leave the EC2
instances running that back up Puppet Enterprise servers, but their licenses will no longer be valid
as usage is no longer covered (or billed for) under the OpsWorks for Puppet Enterprise service
agreement. If you want to continue managing your infrastructure with Puppet Enterprise, see How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud (Amazon
EC2).

Is AWS OpsWorks for Puppet Enterprise accepting new customers?

No. AWS OpsWorks for Puppet Enterprise is no longer accepting new customers and only existing
customers are able to launch new servers at this time.

Will the End of Life affect all AWS Regions at the same time?

Yes. the API and Console will reach End of Life and be unusable as of March 31, 2024 in all Regions.
For a list of AWS Regions where AWS OpsWorks for Puppet Enterprise is available, see AWS
Regional Services List.

What level of technical support is available for AWS OpsWorks for
Puppet Enterprise?

AWS will continue to provide the same level of support for AWS OpsWorks for Puppet Enterprise
that customers have today up until the End of Life date. If you have questions or concerns, you can
contact the AWS Support Team on AWS re:Post or through AWS Premium Support.

I am a current customer of OpsWorks for Puppet Enterprise and I
need to launch a server in an account which was not using the service
previously. Am I able to do this?

Generally not, unless there are exceptional circumstances to do so. If you have a special situation,
reach out to the AWS Support Team on AWS re:Post or through AWS Premium Support with the
details and justification for this and we will review your request.

What happens to my servers if I don’t take any action? API Version 2013-02-18 7

https://docs.aws.amazon.com/opsworks/latest/userguide/opspup-migrate-ec2.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opspup-migrate-ec2.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opspup-migrate-ec2.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://repost.aws/
https://aws.amazon.com/support
https://repost.aws/
https://aws.amazon.com/support

AWS OpsWorks User Guide

Will there be any new feature releases for AWS OpsWorks for Puppet
Enterprise?

No. As the service is reaching End of Life, we will not release any new features. However, we will
continue to make security improvements and manage servers as expected until the End of Life
date.

Getting Started with OpsWorks for Puppet Enterprise

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

OpsWorks for Puppet Enterprise lets you run a Puppet Enterprise server in AWS. You can provision
a Puppet Enterprise master server in about 15 minutes.

Starting May 3, 2021, OpsWorks for Puppet Enterprise stores some Puppet Enterprise server
attributes in AWS Secrets Manager. For more information, see Integration with AWS Secrets
Manager.

The following walkthrough helps you create your first Puppet master in OpsWorks for Puppet
Enterprise.

Prerequisites

Before you begin, you must complete the following prerequisites.

Topics

• Install the Puppet Development Kit

• Install the Puppet Enterprise Client Tools

• Set Up a Git Control Repository

Will there be any new feature releases for AWS OpsWorks for Puppet Enterprise? API Version 2013-02-18 8

https://puppet.com/products/puppet-enterprise

AWS OpsWorks User Guide

• Set Up a VPC

• Set Up an EC2 Key Pair (Optional)

• Prerequisites for Using a Custom Domain (Optional)

Install the Puppet Development Kit

1. From the Puppet website, download the Puppet Development Kit that matches your local
computer's operating system.

2. Install the Puppet Development Kit.

3. Add the Puppet Development Kit to your local computer's PATH variable.

• On a Linux or macOS operating system, you can add the Puppet Development Kit to your
PATH variable by running the following command in a Bash shell.

echo 'export PATH=/opt/puppetlabs/pdk/bin/pdk:$PATH' >> ~/.bash_profile && source
 ~/.bash_profile

• On a Windows-based operating system, you can add the Puppet Development Kit to your
PATH variable by using the following .NET Framework command in a PowerShell session, or
in the Environment Variables dialog box accessible from System Properties. You may need
to run your PowerShell session as an administrator to run the following command.

[Environment]::SetEnvironmentVariable("Path","new path value","Machine")

Install the Puppet Enterprise Client Tools

Puppet Enterprise (PE) client tools are a set of command-line tools that let you access Puppet
Enterprise services from your workstation. The tools can be installed on many different operating
systems, and they can also be installed on nodes that you are managing by using Puppet. For
information about supported operating systems for the tools, and how to install them, see
Installing PE client tools in the Puppet Enterprise documentation.

Set Up a Git Control Repository

Before you can launch a Puppet master, you must have a control repository configured in Git
to store and change-manage your Puppet modules and classes. A URL to a Git repository and
HTTPS or SSH account information to access the repository are required in the steps to launch your

Prerequisites API Version 2013-02-18 9

https://puppet.com/download-puppet-development-kit
https://puppet.com/docs/pe/2019.8/installing_pe_client_tools.html

AWS OpsWorks User Guide

Puppet Enterprise master server. For more information about how to set up a control repository
that your Puppet Enterprise master will use, see Setting up a control repository. You can also find
control repository setup instructions in the readme for Puppet's control-repo sample repository
on GitHub. The structure of the control repository resembles the following.

LICENSE
Puppetfile
README.md
environment.conf
hieradata
common.yaml
nodes
example-node.yaml
manifests
site.pp
scripts
code_manager_config_version.rb
config_version.rb
config_version.sh
site
 ### profile
 # ### manifests
 # ### base.pp
 # ### example.pp
 ### role
 ### manifests
 ### database_server.pp
 ### example.pp
 ### webserver.pp

Setting up a repository by using CodeCommit

You can create a new repository by using CodeCommit. For more information about how to use
CodeCommit to create your control repository, see the section called “Optional: Use CodeCommit”
in this guide. For more information about how to get started with Git on CodeCommit, see Getting
started with AWS CodeCommit. To authorize your OpsWorks for Puppet Enterprise server for your
repository, attach the AWSCodeCommitReadOnly policy to your IAM instance profile role.

Set Up a VPC

Your OpsWorks for Puppet Enterprise master must operate in an Amazon Virtual Private Cloud.
You can add it to an existing VPC, use the default VPC, or create a new VPC to contain the server.

Prerequisites API Version 2013-02-18 10

https://puppet.com/docs/pe/2019.8/control_repo.html
https://github.com/puppetlabs/control-repo
https://github.com/puppetlabs/control-repo
http://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html
http://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html

AWS OpsWorks User Guide

For information about Amazon VPC and how to create a new VPC, see the Amazon VPC Getting
Started Guide.

If you create your own VPC, or use an existing one, the VPC should have the following settings or
properties.

• The VPC should have at least one subnet.

If your OpsWorks for Puppet Enterprise master will be publicly accessible, make the subnet
public, and enable Auto-assign public IP.

• DNS resolution should be enabled.

• On the subnet, enable Auto-assign public IP.

If you are unfamiliar with creating VPCs or running your instances in them, you can run the
following AWS CLI command to create a VPC with a single public subnet, by using an AWS
CloudFormation template that AWS OpsWorks provides for you. If you prefer to use the AWS
Management Console, you can also upload the template to the AWS CloudFormation console.

aws cloudformation create-stack --stack-name OpsWorksVPC --template-url https://
s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-vpc.yaml

Set Up an EC2 Key Pair (Optional)

An SSH connection is not necessary or recommended for typical management of the Puppet
server; you can use the AWS Management Console and AWS CLI commands to perform many
management tasks on your Puppet server.

An EC2 key pair is required to connect to your server by using SSH in the event that you lose or
want to change the sign-in password for the Puppet Enterprise web-based console. You can use an
existing key pair, or create a new key pair. For more information about how to create a new EC2 key
pair, see Amazon EC2 Key Pairs.

If you don't need an EC2 key pair, you are ready to create a Puppet Enterprise master.

Prerequisites for Using a Custom Domain (Optional)

You can set up your Puppet Enterprise master on your own domain, specifying a public endpoint in
a custom domain to use as the endpoint of your server. When you use a custom domain, all of the
following are required, as described in detail in this section.

Prerequisites API Version 2013-02-18 11

https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-vpc.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

Topics

• Set Up a Custom Domain

• Get a Certificate

• Get a Private Key

Set Up a Custom Domain

To run your Puppet Enterprise master on your own custom domain, you will need a public endpoint
of a server, such as https://aws.my-company.com. If you specify a custom domain, you must
also provide a certificate and a private key, as described in the preceding sections.

To access the server after you create it, add a CNAME DNS record in your preferred DNS service.
This record must point the custom domain to the endpoint (the value of the server's Endpoint
attribute) that is generated by the Puppet master creation process. You cannot access the server by
using the generated Endpoint value if the server is using a custom domain.

Get a Certificate

To set up your Puppet master on your own custom domain, you need A PEM-formatted HTTPS
certificate. This can be be a single, self-signed certificate, or a certificate chain. As you complete the
Create a Puppet Enterprise Master workflow, if you specify this certificate, you must also provide a
custom domain and a private key.

The following are requirements for the certificate value:

• You can provide either a self-signed, custom certificate, or the full certificate chain.

• The certificate must be a valid X509 certificate, or a certificate chain in PEM format.

• The certificate must be valid at the time of upload. A certificate can't be used before its validity
period begins (the certificate's NotBefore date), or after it expires (the certificate's NotAfter
date).

• The certificate’s common name or subject alternative names (SANs), if present, must match the
custom domain value.

• The certificate must match the value of the Custom private key field.

Prerequisites API Version 2013-02-18 12

AWS OpsWorks User Guide

Get a Private Key

To set up your Puppet master on your own custom domain, you need a private key in PEM format
for connecting to the server by using HTTPS. The private key must not be encrypted; it cannot be
protected by a password or passphrase. If you specify a custom private key, you must also provide a
custom domain and a certificate.

Create a Puppet Enterprise Master

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

You can create a Puppet master by using the OpsWorks for Puppet Enterprise console, or the AWS
CLI.

Topics

• Create a Puppet Enterprise Master by using the AWS Management Console

• Create a Puppet Enterprise Master by using the AWS CLI

Create a Puppet Enterprise Master by using the AWS Management Console

1. Sign in to the AWS Management Console and open the AWS OpsWorks console at https://
console.aws.amazon.com/opsworks/.

2. On the AWS OpsWorks home page, choose Go to OpsWorks for Puppet Enterprise.

Create a Puppet Master API Version 2013-02-18 13

https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

3. On the OpsWorks for Puppet Enterprise home page, choose Create Puppet Enterprise server.

4. On the Set name, region, and type page, specify a name for your server. Puppet master
names can be a maximum of 40 characters, must start with a letter, and can contain only
alphanumeric characters and dashes. Select a supported region, and then choose an instance
type that supports the number of nodes that you want to manage. You can change the
instance type after your server has been created, if needed. For this walkthrough, we are
creating a m5.xlarge instance type in the US West (Oregon) Region. Choose Next.

Create a Puppet Master API Version 2013-02-18 14

AWS OpsWorks User Guide

5. On the Configure server page, leave the default selection in the SSH key drop-down list,
unless you want to specify a key pair name. In the r10k remote field of the Configure Puppet
Code Manager area, specify a valid SSH or HTTPS URL of your Git remote. In the r10k private
key field, paste in the SSH private key that AWS OpsWorks can use to access the r10k remote
repository. This is provided by Git when you create a private repository, but not required if you
are using HTTPS authentication to access your control repository. Choose Next.

Create a Puppet Master API Version 2013-02-18 15

AWS OpsWorks User Guide

6. For Specify server endpoint, leave the default, Use an automatically-generated endpoint
and then choose Next, unless you want your server on a custom domain of your own. To
configure a custom domain, go on to the next step.

7. To use a custom domain, for Specify server endpoint, choose Use a custom domain from the
drop-down list.

a. For Fully qualified domain name (FQDN), specify an FQDN. You must own the domain
name that you want to use.

b. For SSL certificate, paste in the entire PEM-formatted certificate, beginning with –––--
BEGIN CERTIFICATE----- and ending with –––--END CERTIFICATE-----. The SSL
certificate subject must match the FQDN you entered in the preceding step. Remove any
extra lines before and after the certificate.

c. For SSL private key, paste in the entire RSA private key, beginning with –––--BEGIN
RSA PRIVATE KEY----- and ending with –––--END RSA PRIVATE KEY-----. The
SSL private key must match the public key in the SSL certificate that you entered in the
preceding step. Remove any extra lines before and after the private key. Choose Next.

8. On the Configure advanced settings page, in the Network and security area, choose a VPC,
subnet, and one or more security groups. AWS OpsWorks can generate a security group,
service role, and instance profile for you, if you do not already have ones that you want to use.
Your server can be a member of multiple security groups. You cannot change network and
security settings for the Puppet master after you have left this page.

Create a Puppet Master API Version 2013-02-18 16

AWS OpsWorks User Guide

9. In the System maintenance section, set the day and hour that you want system maintenance
to begin. Because you should expect the server to be offline during system maintenance,
choose a time of low server demand within regular office hours.

The maintenance window is required. You can change the start day and time later by using the
AWS Management Console, AWS CLI, or the APIs.

10. Configure backups. By default, automatic backups are enabled. Set a preferred frequency and
hour for automatic backup to start, and set the number of backup generations to store in
Amazon Simple Storage Service. A maximum of 30 backups can be kept; when the maximum
is reached, OpsWorks for Puppet Enterprise deletes the oldest backups to make room for new
ones.

11. (Optional) In Tags, add tags to the server and related resources, such as the EC2 instance,
Elastic IP address, security group, S3 bucket, and backups. For more information about tagging
an OpsWorks for Puppet Enterprise server, see Working with Tags on AWS OpsWorks for
Puppet Enterprise Resources.

12. When you are finished configuring advanced settings, choose Next.

13. On the Review page, review your choices. When you are ready to create the server, choose
Launch.

Create a Puppet Master API Version 2013-02-18 17

AWS OpsWorks User Guide

While you are waiting for AWS OpsWorks to create your Puppet master, go on to Configure the
Puppet Master Using the Starter Kit and download the Starter Kit and the Puppet Enterprise
console credentials. Do not wait until your server is online to download these items.

When server creation is finished, your Puppet master is available on the OpsWorks for
Puppet Enterprise home page, with a status of online. After the server is online, the Puppet
Enterprise console is available on the server's domain, at a URL in the following format:
https://your_server_name-randomID.region.opsworks-cm.io.

Create a Puppet Enterprise Master by using the AWS CLI

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

Creating an OpsWorks for Puppet Enterprise master server by running AWS CLI commands differs
from creating a server in the console. In the console, AWS OpsWorks creates a service role and
security group for you, if you do not specify existing ones that you want to use. In the AWS CLI,
AWS OpsWorks can create a security group for you if you do not specify one, but it does not
automatically create a service role; you must provide a service role ARN as part of your create-
server command. In the console, while AWS OpsWorks is creating your Puppet master, you
download the starter kit and the sign-in credentials for the Puppet Enterprise console. Because
you cannot do this when you create an OpsWorks for Puppet Enterprise master by using the AWS
CLI, you use a JSON processing utility to get the sign-in credentials and the starter kit from the
results of the create-server command after your new OpsWorks for Puppet Enterprise master is
online.

If your local computer is not already running the AWS CLI, download and install the AWS CLI by
following installation instructions in the AWS Command Line Interface User Guide. This section
does not describe all parameters that you can use with the create-server command. For more
information about create-server parameters, see create-server in the AWS CLI Reference.

Create a Puppet Master API Version 2013-02-18 18

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference/opsworks-cm/create-server.html

AWS OpsWorks User Guide

1. Be sure to complete the Prerequisites. To create your Puppet master, you need a subnet ID, so
you must have a VPC.

2. Create a service role and an instance profile. AWS OpsWorks provides an AWS CloudFormation
template that you can use to create both. Run the following AWS CLI command to create an
AWS CloudFormation stack that creates the service role and instance profile for you.

aws cloudformation create-stack --stack-name OpsWorksCMRoles --template-url
 https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-
cm-roles.yaml --capabilities CAPABILITY_NAMED_IAM

3. After AWS CloudFormation finishes creating the stack, find and copy the ARNs of service roles
in your account.

aws iam list-roles --path-prefix "/service-role/" --no-paginate

In the results of the list-roles command, look for service role ARN entries that resemble
the following. Make a note of the service role ARNs. You need these values to create your
Puppet Enterprise master.

{
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROZZZZZZZZZZQG6R22HC",
 "CreateDate": "2018-01-05T20:42:20Z",
 "RoleName": "aws-opsworks-cm-ec2-role",
 "Path": "/service-role/",
 "Arn": "arn:aws:iam::000000000000:role/service-role/aws-opsworks-cm-ec2-role"
},
{
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",

Create a Puppet Master API Version 2013-02-18 19

AWS OpsWorks User Guide

 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks-cm.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROZZZZZZZZZZZZZZZ6QE",
 "CreateDate": "2018-01-05T20:42:20Z",
 "RoleName": "aws-opsworks-cm-service-role",
 "Path": "/service-role/",
 "Arn": "arn:aws:iam::000000000000:role/service-role/aws-opsworks-cm-service-
role"
}

4. Find and copy the ARNs of instance profiles in your account.

aws iam list-instance-profiles --no-paginate

In the results of the list-instance-profiles command, look for instance profile ARN
entries that resemble the following. Make a note of the instance profile ARNs. You need these
values to create your Puppet Enterprise master.

{
 "Path": "/",
 "InstanceProfileName": "aws-opsworks-cm-ec2-role",
 "InstanceProfileId": "EXAMPLEDC6UR3LTUW7VHK",
 "Arn": "arn:aws:iam::123456789012:instance-profile/aws-opsworks-cm-ec2-role",
 "CreateDate": "2017-01-05T20:42:20Z",
 "Roles": [
 {
 "Path": "/service-role/",
 "RoleName": "aws-opsworks-cm-ec2-role",
 "RoleId": "EXAMPLEE4STNUQG6R22HC",
 "Arn": "arn:aws:iam::123456789012:role/service-role/aws-opsworks-cm-
ec2-role",
 "CreateDate": "2017-01-05T20:42:20Z",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",

Create a Puppet Master API Version 2013-02-18 20

AWS OpsWorks User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
]
},

5. Create the OpsWorks for Puppet Enterprise master by running the create-server command.

• The --engine value is Puppet, --engine-model is Monolithic, and --engine-
version can be 2019 or 2017.

• The server name must be unique within your AWS account, within each region. Server names
must start with a letter; then letters, numbers, or hyphens (-) are allowed, up to a maximum
of 40 characters.

• Use the instance profile ARN and service role ARN that you copied in Steps 3 and 4.

• Valid instance types are m5.xlarge, c5.2xlarge, or c5.4xlarge. For more information
about the specifications of these instance types, see Instance Types in the Amazon EC2 User
Guide.

• The --engine-attributes parameter is optional; if you don't specify a Puppet
administrator password, the server creation process generates one for you. If you add --
engine-attributes, specify a PUPPET_ADMIN_PASSWORD, an administrator password for
signing in to the Puppet Enterprise console webpage. The password must use between 8 and
32 ASCII characters.

• An SSH key pair is optional, but can help you connect to your Puppet master if you need to
reset the console administrator password. For more information about creating an SSH key
pair, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide.

• To use a custom domain, add the following parameters to your command. Otherwise, the
Puppet master creation process automatically generates an endpoint for you. All three
parameters are required to configure a custom domain. For information about additional
requirements for using these parameters, see CreateServer in the AWS OpsWorks CM API
Reference.

Create a Puppet Master API Version 2013-02-18 21

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html

AWS OpsWorks User Guide

• --custom-domain - An optional public endpoint of a server, such as https://aws.my-
company.com.

• --custom-certificate - A PEM-formatted HTTPS certificate. The value can be be a
single, self-signed certificate, or a certificate chain.

• --custom-private-key - A private key in PEM format for connecting to the server
by using HTTPS. The private key must not be encrypted; it cannot be protected by a
password or passphrase.

• Weekly system maintenance is required. Valid values must be specified in the following
format: DDD:HH:MM. The specified time is in coordinated universal time (UTC). If you do not
specify a value for --preferred-maintenance-window, the default value is a random,
one-hour period on Tuesday, Wednesday, or Friday.

• Valid values for --preferred-backup-window must be specified in one of the following
formats: HH:MM for daily backups, or DDD:HH:MM for weekly backups. The specified time is
in UTC. The default value is a random, daily start time. To opt out of automatic backups, add
the parameter --disable-automated-backup instead.

• For --security-group-ids, enter one or more security group IDs, separated by a space.

• For --subnet-ids, enter a subnet ID.

aws opsworks-cm create-server --engine "Puppet" --engine-model "Monolithic"
 --engine-version "2019" --server-name "server_name" --instance-profile-arn
 "instance_profile_ARN" --instance-type "instance_type" --engine-attributes
 '{"PUPPET_ADMIN_PASSWORD":"ASCII_password"}' --key-pair "key_pair_name" --
preferred-maintenance-window "ddd:hh:mm" --preferred-backup-window "ddd:hh:mm"
 --security-group-ids security_group_id1 security_group_id2 --service-role-arn
 "service_role_ARN" --subnet-ids subnet_ID

The following is an example.

aws opsworks-cm create-server --engine "Puppet" --engine-model
 "Monolithic" --engine-version "2019" --server-name "puppet-02" --
instance-profile-arn "arn:aws:iam::111122223333:instance-profile/aws-
opsworks-cm-ec2-role" --instance-type "m5.xlarge" --engine-attributes
 '{"PUPPET_ADMIN_PASSWORD":"zZZzDj2DLYXSZFRv1d"}' --key-pair "amazon-test"
 --preferred-maintenance-window "Mon:08:00" --preferred-backup-window
 "Sun:02:00" --security-group-ids sg-b00000001 sg-b0000008 --service-role-arn

Create a Puppet Master API Version 2013-02-18 22

AWS OpsWorks User Guide

 "arn:aws:iam::111122223333:role/service-role/aws-opsworks-cm-service-role" --
subnet-ids subnet-383daa71

The following example creates a Puppet master that uses a custom domain.

aws opsworks-cm create-server \
 --engine "Puppet" \
 --engine-model "Monolithic" \
 --engine-version "2019" \
 --server-name "puppet-02" \
 --instance-profile-arn "arn:aws:iam::111122223333:instance-profile/aws-
opsworks-cm-ec2-role" \
 --instance-type "m5.xlarge" \
 --engine-attributes '{"PUPPET_ADMIN_PASSWORD":"zZZzDj2DLYXSZFRv1d"}' \
 --custom-domain "my-puppet-master.my-corp.com" \
 --custom-certificate "-----BEGIN CERTIFICATE----- EXAMPLEqEXAMPLE== -----END
 CERTIFICATE-----" \
 --custom-private-key "-----BEGIN RSA PRIVATE KEY----- EXAMPLEqEXAMPLE= -----END
 RSA PRIVATE KEY-----" \
 --key-pair "amazon-test"
 --preferred-maintenance-window "Mon:08:00" \
 --preferred-backup-window "Sun:02:00" \
 --security-group-ids sg-b00000001 sg-b0000008 \
 --service-role-arn "arn:aws:iam::111122223333:role/service-role/aws-opsworks-
cm-service-role" \
 --subnet-ids subnet-383daa71

The following example creates a Puppet master that adds two tags: Stage: Production
and Department: Marketing. For more information about adding and managing tags on
OpsWorks for Puppet Enterprise servers, see Working with Tags on AWS OpsWorks for Puppet
Enterprise Resources in this guide.

aws opsworks-cm create-server \
 --engine "Puppet" \
 --engine-model "Monolithic" \
 --engine-version "2019" \
 --server-name "puppet-02" \
 --instance-profile-arn "arn:aws:iam::111122223333:instance-profile/aws-
opsworks-cm-ec2-role" \
 --instance-type "m5.xlarge" \
 --engine-attributes '{"PUPPET_ADMIN_PASSWORD":"zZZzDj2DLYXSZFRv1d"}' \
 --key-pair "amazon-test"

Create a Puppet Master API Version 2013-02-18 23

AWS OpsWorks User Guide

 --preferred-maintenance-window "Mon:08:00" \
 --preferred-backup-window "Sun:02:00" \
 --security-group-ids sg-b00000001 sg-b0000008 \
 --service-role-arn "arn:aws:iam::111122223333:role/service-role/aws-opsworks-
cm-service-role" \
 --subnet-ids subnet-383daa71 \
 --tags [{\"Key\":\"Stage\",\"Value\":\"Production\"},{\"Key\":\"Department\",
\"Value\":\"Marketing\"}]

6. OpsWorks for Puppet Enterprise takes about 15 minutes to create a new server. Do not dismiss
the output of the create-server command or close your shell session, because the output
can contain important information that is not shown again. To get passwords and the starter
kit from the create-server results, go on to the next step.

If you are using a custom domain with the server, in the output of the create-server
command, copy the value of the Endpoint attribute. The following is an example.

"Endpoint": "puppet-07-exampleexample.opsworks-cm.us-east-1.amazonaws.com"

7. If you opted to have OpsWorks for Puppet Enterprise generate a password for you, you can
extract it in a usable format from the create-server results by using a JSON processor
such as jq. After you install jq, you can run the following commands to extract the Puppet
administrator password and starter kit. If you did not provide your own password in Step 3, be
sure to save the extracted administrator password in a convenient but secure location.

#Get the Puppet password:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "PUPPET_ADMIN_PASSWORD") | .Value'

#Get the Puppet Starter Kit:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "PUPPET_STARTER_KIT") | .Value' | base64 -D > starterkit.zip

Note

You cannot regenerate a new Puppet master starter kit in the AWS Management
Console. When you create a Puppet master by using the AWS CLI, run the preceding jq
command to save the base64-encoded starter kit in the create-server results as a
ZIP file.

Create a Puppet Master API Version 2013-02-18 24

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

AWS OpsWorks User Guide

8. If you are not using a custom domain, go on to the next step. If you are using a custom domain
with the server, create a CNAME entry in your enterprise's DNS management tool to point your
custom domain to the OpsWorks for Puppet Enterprise endpoint that you copied in step 6. You
cannot reach or sign in to a server with a custom domain until you complete this step.

9. Go on to the next section, the section called “Finish Configuration”.

Configure the Puppet Master Using the Starter Kit

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

While Puppet master creation is still in progress, the server's Properties page opens in the
OpsWorks for Puppet Enterprise console. The first time that you work with a new Puppet master,
the Properties page prompts you to download two required items. Download these items before
your Puppet server is online; the download buttons are not available after a new server is online.

Finish Configuration API Version 2013-02-18 25

AWS OpsWorks User Guide

Finish Configuration API Version 2013-02-18 26

AWS OpsWorks User Guide

• Sign-in credentials for the Puppet master. You will use these credentials to sign in to the
Puppet Enterprise console, where you perform most node management. AWS OpsWorks
does not save these credentials; this is the last time that they are available for viewing and
downloading. If necessary, you can change the password that is provided with these credentials
after you sign in.

• Starter Kit. The Starter Kit contains a README file with information and examples describing
how to finish setup, and administrator credentials for the Puppet Enterprise console. New
credentials are generated—and the old credentials invalidated—each time you download the
Starter Kit.

Prerequisites

1. While server creation is still in progress, download the sign-in credentials for the Puppet
master, and save them in a secure but convenient location.

2. Download the Starter Kit, and unzip the Starter Kit .zip file into your workspace directory. Do
not share your sign-in credentials. If other users will be managing the Puppet master, add
them as administrators in the Puppet Enterprise console later. For more information about
how to add users to the Puppet master, see Creating and managing users and user roles in the
Puppet Enterprise documentation.

Install the Puppet Master Certificate

To work with your Puppet master and add nodes to manage, you'll need to install its certificate.
Install it by running the following AWS CLI command. You cannot perform this task in the AWS
Management Console.

aws --region region opsworks-cm describe-servers --server-name server_name --query
 "Servers[0].EngineAttributes[?Name=='PUPPET_API_CA_CERT'].Value" --output text
 > .config/ssl/cert/ca.pem

Generate a Short-term Token

To use the Puppet API, you must create a short-term token for yourself. This step is not required to
use the Puppet Enterprise console. Generate the token by running the following command.

The default token lifetime is five minutes, but you can change this default.

Finish Configuration API Version 2013-02-18 27

https://docs.puppet.com/pe/latest/rbac_user_roles.html#add-a-user-to-a-user-role

AWS OpsWorks User Guide

puppet-access login --config-file .config/puppetlabs/client-tools/puppet-access.conf --
lifetime 8h

Note

Because the default token lifetime is five minutes, the preceding example command adds
the --lifetime parameter to extend the token lifetime for a longer period. You can set
the token lifetime for a period of up to 10 years (10y). For more information about how to
change the default token lifetime, see Change the token's default lifetime in the Puppet
Enterprise documentation.

Set Up the Starter Kit Apache Example

After you download and unzip the Starter Kit, you can use the example branch in the included,
sample control-repo-example folder to configure an Apache web server on your managed
nodes.

The Starter Kit includes two control-repo folders: control-repo, and control-repo-
example. The control-repo folder includes a production branch that is unchanged from what
you would see in the Puppet GitHub repository. The control-repo-example folder also has a
production branch that includes example code to set up an Apache server with a test website.

1. Push the control-repo-example production branch to your Git remote (the
r10k_remote URL of your Puppet master). In your Starter Kit root directory, run the
following, replacing r10kRemoteUrl with your r10k_remote URL.

cd control-repo-example
git remote add origin r10kRemoteUrl
git push origin production

Puppet's Code Manager uses Git branches as environments. By default, all nodes are in the
production environment.

Finish Configuration API Version 2013-02-18 28

https://puppet.com/docs/pe/2019.8/rbac_token_auth_intro.html#change_the_token_s_default_lifetime
https://github.com/puppetlabs/control-repo

AWS OpsWorks User Guide

Important

Do not push to a master branch. The master branch is reserved for the Puppet
master.

2. Deploy the code in the control-repo-example branch to your Puppet master. This lets the
Puppet Master download your Puppet code from your Git repository (r10k_remote). In your
Starter Kit root directory, run the following.

puppet-code deploy --all --wait --config-file .config/puppet-code.conf

For more information about how you can apply the sample Apache configuration to managed
nodes that you create in Amazon EC2, see Step 2: Create Instances by Using an Unattended
Association Script in this guide.

Add Nodes for the Puppet Master to Manage

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

Topics

• Run associateNode() API calls

• Considerations for Adding On-premises Nodes

• More Information

The recommended way to add nodes is by using the AWS OpsWorks associateNode() API.
The Puppet Enterprise master server hosts a repository that you use to install the Puppet agent
software on nodes that you want to manage, whether nodes are on-premises physical computers

Add Nodes to Manage API Version 2013-02-18 29

AWS OpsWorks User Guide

or virtual machines. Puppet agent software for some operating systems is installed on the
OpsWorks for Puppet Enterprise server as part of the launch process. The following table shows
the operating system agents that are available on your OpsWorks for Puppet Enterprise server at
launch.

Preinstalled operating system agents

Supported operating system Versions

Ubuntu 16.04, 18.04, 20.04

Red Hat Enterprise Linux (RHEL) 6, 7, 8

Windows 64-bit editions of all Puppet-supported
Windows releases

You can add puppet-agent to your server for other operating systems. Be aware that system
maintenance will delete agents that you have added to your server after launch. Although most
existing attached nodes that are already running the deleted agent continue to check in, nodes
running Debian operating systems can stop reporting. We recommend that you manually install
puppet-agent on nodes that are running operating systems for which the agent software is not
preinstalled on your OpsWorks for Puppet Enterprise server. For detailed information about how
to make puppet-agent available on your server for nodes with other operating systems, see
Installing agents in the Puppet Enterprise documentation.

For information about how to associate nodes with your Puppet master automatically by
populating EC2 instance user data, see Adding Nodes Automatically in OpsWorks for Puppet
Enterprise.

Run associateNode() API calls

After you add nodes by installing puppet-agent, nodes send certificate signing requests (CSRs)
to the OpsWorks for Puppet Enterprise server. You can view the CSRs in the Puppet console; for
more information about node CSRs, see Managing certificate signing requests in the Puppet
Enterprise documentation. Running the OpsWorks for Puppet Enterprise associateNode() API
call processes node CSRs, and associates the node with your server. The following is an example of
how to use this API call in the AWS CLI to associate a single node. You will need the PEM-formatted
CSR that the node sends; you can get this from the Puppet console.

Add Nodes to Manage API Version 2013-02-18 30

https://puppet.com/docs/pe/2019.8/supported_operating_systems.html#agent-platforms
https://puppet.com/docs/pe/2019.8/installing_agents.html
https://puppet.com/docs/pe/2019.8/adding_and_removing_nodes.html#managing_CSRs

AWS OpsWorks User Guide

aws opsworks-cm associate-node --server-name "test-puppet-
server" --node-name "node or instance ID" --engine-attributes
 "Name=PUPPET_NODE_CSR,Value='PEM_formatted_CSR_from_the_node'

For more information about how to add nodes automatically by using associateNode(), see
Adding Nodes Automatically in OpsWorks for Puppet Enterprise.

Considerations for Adding On-premises Nodes

After you have installed puppet-agent on your on-premises computers or virtual machines,
you can use either of two ways to associate on-premises nodes with your OpsWorks for Puppet
Enterprise master.

• If a node supports installation of the AWS SDK, AWS CLI, or AWS Tools for PowerShell, you can
use the recommended method for associating a node, which is to run an associateNode() API
call. The starter kit that you download when you first create an OpsWorks for Puppet Enterprise
master shows how to assign roles to nodes by using tags. You can apply tags at the same time
that you are associating nodes with the Puppet master by specifying trusted facts in the CSR. For
example, the demo control repository that is included with the starter kit is configured to use the
tag pp_role to assign roles to Amazon EC2 instances. For more information about how to add
tags to a CSR as trusted facts, see Extension requests (permanent certificate data) in the Puppet
platform documentation.

• If the node cannot run AWS management or development tools, you can still register it with your
OpsWorks for Puppet Enterprise master the same way you would register it with any unmanaged
Puppet Enterprise master. As mentioned in this topic, installing puppet-agent sends a CSR
to the OpsWorks for Puppet Enterprise master. An authorized Puppet user can sign the CSR
manually, or configure automatic signing of CSRs by editing the autosign.conf file that is
stored on the Puppet master. For more information about configuring autosigning and editing
autosign.conf, see SSL configuration: autosigning certificate requests in the Puppet platform
documentation.

To associate on-premises nodes with a Puppet master and allow the Puppet master to accept all
CSRs, do the following in the Puppet Enterprise console. The parameter that controls the behavior
is puppet_enterprise::profile::master::allow_unauthenticated_ca.

Add Nodes to Manage API Version 2013-02-18 31

https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/
https://puppet.com/docs/puppet/5.1/ssl_attributes_extensions.html#extension-requests-permanent-certificate-data)
https://puppet.com/docs/puppet/5.3/ssl_autosign.html

AWS OpsWorks User Guide

Important

Enabling the Puppet master to accept self-signed CSRs or all CSRs is not recommended
for security reasons. By default, allowing unauthenticated CSRs makes a Puppet master
accessible to the world. Setting the upload of certificate requests to be enabled by default
can make your Puppet master vulnerable to denial of service (DoS) attacks.

1. Sign in to the Puppet Enterprise console.

2. Choose Configure, choose Classification, choose PE Master, and then choose the
Configuration tab.

3. On the Classification tab, locate the class puppet_enterprise::profile::master.

4. Set the value of the allow_unauthenticated_ca parameter to true.

5. Save your changes. Your changes are applied during the next Puppet run. You can allow 30
minutes for changes to take effect (and on-premises nodes to be added), or you can initiate a
Puppet run manually in the Run section of the PE console.

More Information

Visit the Learn Puppet tutorial site to learn more about using OpsWorks for Puppet Enterprise
servers and Puppet Enterprise console features.

Sign in to the Puppet Enterprise Console

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

After you have downloaded the sign-in credentials from the Puppet master's Properties page, and
the server is online, sign in to the Puppet Enterprise console. In this walkthrough, we instructed

Sign in to the Puppet Enterprise Console API Version 2013-02-18 32

https://learn.puppet.com/

AWS OpsWorks User Guide

you to specify your control repository that contains your modules, and add at least one node to
manage. This allows you to see information about the agent and nodes in the console.

When you attempt to connect to the Puppet Enterprise console webpage, certificate warnings
appear in your browser until you install an AWS OpsWorks-specific, CA-signed SSL certificate on
the client computer that you are using to manage your Puppet server. If you prefer not to see the
warnings before you continue to the dashboard webpage, install the SSL certificate before you sign
in.

To install the AWS OpsWorks SSL certificate

• Choose the certificate that matches your system.

• For Linux or MacOS-based systems, download the file with the PEM filename extension from
the following Amazon S3 location: https://s3.amazonaws.com/opsworks-cm-us-east-1-
prod-default-assets/misc/opsworks-cm-ca-2016-root.pem.

Note

Additionally, download a newer PEM file from the following location: https://
s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-
cm-ca-2020-root.pem. Because OpsWorks for Puppet Enterprise is currently
renewing its root certificates, you must trust both old and new certificates.

For more information about how to manage SSL certificates on MacOS, see Get information
about a certificate in Keychain Access on Mac on the Apple Support website.

• For Windows-based systems, download the file with the P7B filename extension from the
following Amazon S3 location: https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-
default-assets/misc/opsworks-cm-ca-2016-root.p7b.

For more information about how to install an SSL certificate on Windows, see Manage
Trusted Root Certificates on Microsoft TechNet.

Note

Additionally, download a newer P7B file from the following location: https://
s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-

Sign in to the Puppet Enterprise Console API Version 2013-02-18 33

https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2016-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2016-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem
https://support.apple.com/guide/keychain-access/get-information-about-a-certificate-kyca15178/11.0/mac/11.0
https://support.apple.com/guide/keychain-access/get-information-about-a-certificate-kyca15178/11.0/mac/11.0
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2016-root.p7b
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2016-root.p7b
https://technet.microsoft.com/en-us/library/cc754841.aspx
https://technet.microsoft.com/en-us/library/cc754841.aspx
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.p7b
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.p7b

AWS OpsWorks User Guide

cm-ca-2020-root.p7b. Because OpsWorks for Puppet Enterprise is currently
renewing its root certificates, you must trust both old and new certificates.

After you have installed the client-side SSL certificate, you can sign in to the Puppet Enterprise
console without seeing warning messages.

To sign in to the Puppet Enterprise console

1. Unzip and open the Puppet Enterprise credentials that you downloaded in Prerequisites. You
will need these credentials to sign in.

2. In the AWS Management Console, open the Properties page for your Puppet server.

3. At the upper right of the Properties page, choose Open Puppet Enterprise console.

4. Sign in using the credentials from Step 1.

Sign in to the Puppet Enterprise Console API Version 2013-02-18 34

https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.p7b

AWS OpsWorks User Guide

5. In the Puppet Enterprise console, you can view detailed information about the nodes you're
managing, module run progress and events, the compliance level of nodes, and much more.
For more information about the features of the Puppet Enterprise console and how to use
them, see Managing nodes in the Puppet Enterprise documentation.

Sign in to the Puppet Enterprise Console API Version 2013-02-18 35

https://puppet.com/docs/pe/2019.8/managing_nodes.html

AWS OpsWorks User Guide

Group and Classify Nodes

Before you specify the desired configuration of your nodes by applying classes to them, group the
nodes according to their roles in your enterprise or their common characteristics. Grouping and
classifying nodes involves the following high-level tasks. You can complete these tasks by using the
PE console. For detailed information about how to group and classify your nodes, see Grouping and
classifying nodes in the Puppet Enterprise documentation.

1. Create node groups.

2. Add nodes to groups manually or automatically by applying rules that you create.

3. Assign classes to node groups.

Reset Administrator and User Passwords

For information about how to change the password that you use to sign in to the Puppet Enterprise
console, see Reset the console administrator password in the Puppet Enterprise documentation.

By default, after ten sign-in attempts, users are locked out of the Puppet console. For more
information about how to reset user passwords in the event of a lockout, see Password endpoints
in the Puppet Enterprise documentation.

Sign in to the Puppet Enterprise Console API Version 2013-02-18 36

https://puppet.com/docs/pe/2019.8/grouping_and_classifying_nodes.html
https://puppet.com/docs/pe/2019.8/grouping_and_classifying_nodes.html
https://puppet.com/docs/pe/2019.8/console_accessing.html#reset_the_admin_password
https://puppet.com/docs/pe/2019.8/rbac_api_v1_password.html#post_users_sid_password_reset

AWS OpsWorks User Guide

Optional: Use AWS CodeCommit as a Puppet r10k Remote Control
Repository

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

You can create a new repository by using AWS CodeCommit, and use it as your r10k remote control
repository. To complete steps in this section, and work with a CodeCommit repository, you need a
user that has the permissions provided by the AWSCodeCommitReadOnly managed policy.

Topics

• Step 1: Use CodeCommit as a Repository with an HTTPS connection type

• Step 2: (Optional) Use CodeCommit as a Repository with an SSH connection type

Step 1: Use CodeCommit as a Repository with an HTTPS connection type

1. In the CodeCommit console, create a new repository.

Optional: Use CodeCommit API Version 2013-02-18 37

AWS OpsWorks User Guide

2. Choose Skip to skip setting up an Amazon SNS topic.

3. On the Code page, choose Connect to your repository.

4. On the Connect to your repository page, choose HTTPS as the Connection type, and choose
your operating system.

Optional: Use CodeCommit API Version 2013-02-18 38

AWS OpsWorks User Guide

In the Steps to clone your repository area, your git clone URL should resemble the
following: https://git-codecommit.region.amazonaws.com/v1/repos/control-
repo. Copy this URL to a convenient place for use in Puppet server setup.

5. Close the Connect to your repository page, and return to the OpsWorks for Puppet Enterprise
server setup.

6. Paste the URL that you copied in Step 4 in the r10k remote string box in the Configure
credentials page of the Puppet master setup wizard. Leave the r10k private key box empty.
Finish creating and launching your Puppet master.

Optional: Use CodeCommit API Version 2013-02-18 39

AWS OpsWorks User Guide

7. In the IAM console, attach the AWSCodeCommitReadOnly policy to the instance profile role
of your Puppet master. For more information about how to add a permissions policy to an IAM
role, see Adding IAM identity permissions (console) in the IAM User Guide.

8. Follow the steps in Setup for HTTPS users using Git credentials in the AWS CodeCommit User
Guide to push your existing control-repo content to the new CodeCommit repository.

9. Now, you can continue by following the instructions in the section called “Finish
Configuration”, and use the Starter Kit to deploy code to your Puppet master. The following
command is an example.

puppet-code deploy --all --wait --config-file .config/puppet-code.conf

Step 2: (Optional) Use CodeCommit as a Repository with an SSH connection type

You can configure an AWS CodeCommit r10k remote control repository to use SSH key pair
authentication. The following prerequisites must be completed before you start this procedure.

• You must have launched your OpsWorks for Puppet Enterprise server with an HTTPS control
repository as described in the preceding section, the section called “Step 1: Use CodeCommit as a
Repository with an HTTPS connection type”. This must be completed first so you can upload the
required configuration to the Puppet master.

• Be sure you have an user with the AWSCodeCommitReadOnly managed policy attached. For
more information about how to create a user, see Creating an IAM user in your AWS account in
the IAM User Guide.

• Create and associate an SSH key with your user. Follow instructions for creating a public/private
key pair with ssh-keygen in Step 3: Configure credentials on Linux, macOS, or Unix in the AWS
CodeCommit User Guide.

1. In an AWS CLI session, run the following command to upload the private key file contents to
AWS Systems Manager Parameter Store. Your OpsWorks for Puppet Enterprise server queries
this parameter to get a required certificate file. Replace private_key_file with the path to
your SSH private key file.

aws ssm put-parameter --name puppet_user_pk --type String --value
 "`cat private_key_file`"

2. Add Systems Manager Parameter Store permissions to your Puppet master.

Optional: Use CodeCommit API Version 2013-02-18 40

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html#setting-up-ssh-unixes-keys

AWS OpsWorks User Guide

a. Open the IAM console at https://console.aws.amazon.com/iam/.

b. In the left navigation pane, choose Roles.

c. Choose aws-opsworks-cm-ec2-role.

d. On the Permissions tab, choose Attach policies.

e. In the Search bar, enter AmazonSSMManagedInstanceCore.

f. In the search results, choose AmazonSSMManagedInstanceCore.

g. Choose Attach policy.

3. Create the configuration file manifest. If you are using the control-repo-example
repository provided in the starter kit, create the following files in the locations shown in
the example repository. Otherwise, create them according to your own control repository
structure. Replace the IAM_USER_SSH_KEY value with the SSH key ID you created in the
prerequisites for this procedure.

control-repo-example/site/profile/manifests/codecommit.pp

class profile::codecommit {
 $configfile = @(CONFIGFILE)
 Host git-codecommit.*.amazonaws.com
 User IAM_USER_SSH_KEY
 IdentityFile /etc/puppetlabs/puppetserver/ssh/codecommit.rsa
 StrictHostKeyChecking=no
 | CONFIGFILE

 # Replace REGION with the correct region for your server.
 $command = @(COMMAND)
 aws ssm get-parameters \
 --region REGION \
 --names puppet_user_pk \
 --query "Parameters[0].Value" \
 --output text >| /etc/puppetlabs/puppetserver/ssh/codecommit.rsa
 | COMMAND

 $dirs = [
 '/opt/puppetlabs/server/data/puppetserver/.ssh',
 '/etc/puppetlabs/puppetserver/ssh',
]

 file { $dirs:

Optional: Use CodeCommit API Version 2013-02-18 41

https://console.aws.amazon.com/iam/

AWS OpsWorks User Guide

 ensure => 'directory',
 group => 'pe-puppet',
 owner => 'pe-puppet',
 mode => '0750',
 }

 file { 'ssh-config':
 path => '/opt/puppetlabs/server/data/puppetserver/.ssh/config',
 require => File[$dirs],
 content => $configfile,
 group => 'pe-puppet',
 owner => 'pe-puppet',
 mode => '0600',
 }

 exec { 'download-codecommit-certificate':
 command => $command,
 require => File[$dirs],
 creates => '/etc/puppetlabs/puppetserver/ssh/codecommit.rsa',
 path => '/bin',
 cwd => '/etc/puppetlabs',
 }

 file { 'private-key-permissions':
 subscribe => Exec['download-codecommit-certificate'],
 path => '/etc/puppetlabs/puppetserver/ssh/codecommit.rsa',
 group => 'pe-puppet',
 owner => 'pe-puppet',
 mode => '0600',
 }
}

4. Push your control repository to CodeCommit. Run the following commands to push the new
manifest file to your repository.

git add ./site/profile/manifests/codecommit.pp
git commit -m 'Configuring for SSH connection to CodeCommit'
git push origin production

5. Deploy the manifest files. Run the following commands to deploy the updated configuration
to your OpsWorks for Puppet Enterprise server. Replace STARTER_KIT_DIRECTORY with the
path to your Puppet configuration files.

Optional: Use CodeCommit API Version 2013-02-18 42

AWS OpsWorks User Guide

cd STARTER_KIT_DIRECTORY

puppet-access login --config-file .config/puppetlabs/client-tools/puppet-
access.conf

puppet-code deploy --all --wait \
--config-file .config/puppet-code.conf \
--token-file .config/puppetlabs/token

6. Update the OpsWorks for Puppet Enterprise server's classification. By default, the Puppet
agent runs on nodes (including the master) every 30 minutes. To avoid waiting, you can
manually run the agent on the Puppet master. Running the agent picks up the new manifest
file.

a. Sign in to the Puppet Enterprise console.

b. Choose Classification.

c. Expand PE Infrastructure.

d. Choose PE Master.

e. On the Configuration tab, enter profile::codecommit in Add new class.

The new class, profile::codecommit, might not appear immediately after running
puppet-code deploy. Choose Refresh on this page if it does not appear.

f. Choose Add class, and then choose Commit 1 change.

g. Manually run the Puppet agent on the OpsWorks for Puppet Enterprise server. Choose
Nodes, choose your server in the list, choose Run Puppet, and then choose Run.

7. In the Puppet Enterprise console, change the repository URL to use SSH instead of HTTPS. The
configuration you perform in these steps is saved during the OpsWorks for Puppet Enterprise
backup and restoration process, so you do not need to manually change the repository
configuration after maintenance activities.

a. Choose Classification.

b. Expand PE Infrastructure.

c. Choose PE Master.

d. On the Configuration tab, find the puppet_enterprise::profile::master class.

e. Choose Edit next to the r10k_remote parameter.

Optional: Use CodeCommit API Version 2013-02-18 43

AWS OpsWorks User Guide

f. Replace the HTTPS URL with the SSH URL for your repository, and then choose Commit 1
change.

g. Manually run the Puppet agent on the OpsWorks for Puppet Enterprise server. Choose
Nodes, choose your server in the list, choose Run Puppet, and then choose Run.

Create an AWS OpsWorks for Puppet Enterprise Master by
using AWS CloudFormation

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

AWS OpsWorks for Puppet Enterprise lets you run a Puppet Enterprise server in AWS. You can
provision a Puppet Enterprise master server in about 15 minutes.

Starting May 3, 2021, OpsWorks for Puppet Enterprise stores some Puppet Enterprise server
attributes in AWS Secrets Manager. For more information, see Integration with AWS Secrets
Manager.

The following walkthrough helps you create a Puppet master in OpsWorks for Puppet Enterprise by
creating a stack in AWS CloudFormation.

Topics

• Prerequisites

• Create a Puppet Enterprise Master in AWS CloudFormation

Create a Puppet Master in CloudFormation API Version 2013-02-18 44

https://puppet.com/products/puppet-enterprise

AWS OpsWorks User Guide

Prerequisites

Before you create a new Puppet master, create the resources outside of OpsWorks for Puppet
Enterprise that you'll need to access and manage your Puppet master. For more information, see
Prerequisites in the Getting Started section of this guide.

If you are creating a server that uses a custom domain, you need a custom domain, certificate,
and private key. You must specify values for all three of these parameters in your AWS
CloudFormation template. For more information about requirements for the CustomDomain,
CustomCertificate, and CustomPrivateKey parameters, see CreateServer in the AWS
OpsWorks CM API Reference.

Review the OpsWorks-CM section of the AWS CloudFormation User Guide Template Reference to
learn about the supported and required values in the AWS CloudFormation template that you use
to create your server.

Create a Puppet Enterprise Master in AWS CloudFormation

This section describes how to use an AWS CloudFormation template to build a stack that creates an
OpsWorks for Puppet Enterprise master server. You can do this by using the AWS CloudFormation
console or the AWS CLI. An example AWS CloudFormation template is available for you to use to
build an OpsWorks for Puppet Enterprise server stack. Be sure to update the example template
with your own server name, IAM roles, instance profile, server description, backup retention count,
maintenance options, and optional tags. If your server will use a custom domain, you must specify
values for the CustomDomain, CustomCertificate, and CustomPrivateKey parameters in
your AWS CloudFormation template. For more information about these options, see the section
called “Create a Puppet Enterprise Master by using the AWS Management Console” in the Getting
Started section of this guide.

Topics

• Create a Puppet Enterprise Master by using AWS CloudFormation (Console)

• Create a Puppet Enterprise Master by using AWS CloudFormation (CLI)

Create a Puppet Enterprise Master by using AWS CloudFormation (Console)

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

Prerequisites API Version 2013-02-18 45

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-opsworkscm-server.html
samples/opsworkscm-puppet-server.zip
https://console.aws.amazon.com/cloudformation/

AWS OpsWorks User Guide

2. On the AWS CloudFormation home page, choose Create stack.

3. In Prerequisite - Prepare template, if you are using the example AWS CloudFormation
template, choose Template is ready.

4. In Specify template, choose the source of your template. For this walkthrough, choose
Upload a template file, and upload an AWS CloudFormation template that creates a Puppet
Enterprise server. Browse for your template file, and then choose Next.

An AWS CloudFormation template can be in either YAML or JSON format. An example AWS
CloudFormation template is available for you to use; be sure to replace example values with
your own. You can use the AWS CloudFormation template designer to build a new template or
validate an existing one. For more information about how to do this, see AWS CloudFormation
Designer Interface Overview in the AWS CloudFormation User Guide.

5. On the Specify stack details page, enter a name for your stack. This won't be the same as the
name of your server, it is only a stack name. In the Parameters area, enter an administrator
password for signing in to the Puppet Enterprise console webpage. The password must use
between 8 and 32 ASCII characters. Choose Next.

Create a Puppet Enterprise Master in AWS CloudFormation API Version 2013-02-18 46

samples/opsworkscm-puppet-server.zip
samples/opsworkscm-puppet-server.zip
samples/opsworkscm-puppet-server.zip
samples/opsworkscm-puppet-server.zip
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer-overview.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer-overview.html

AWS OpsWorks User Guide

6. On the Options page, you can add tags to the server you're creating with the stack, and
choose an IAM role for creating resources if you have not already specified an IAM role to use
in your template. When you're finished specifying options, choose Next. For more information
about advanced options such as rollback triggers, see Setting AWS CloudFormation Stack
Options in the AWS CloudFormation User Guide.

7. On the Review page, review your choices. When you are ready to create the server stack,
choose Create.

While you are waiting for AWS CloudFormation to create the stack, view the stack creation
status. If stack creation fails, review the error messages shown in the console to help you
resolve the issues. For more information about troubleshooting errors in AWS CloudFormation
stacks, see Troubleshooting Errors in the AWS CloudFormation User Guide.

When server creation is finished, your Puppet master is available on the OpsWorks for
Puppet Enterprise home page, with a status of online. After the server is online, the Puppet
Enterprise console is available on the server's domain, at a URL in the following format:
https://your_server_name-randomID.region.opsworks-cm.io.

Note

If you specified a custom domain, certificate, and private key for your server, create
a CNAME entry in your enterprise's DNS management tool that maps your custom
domain to the endpoint that OpsWorks for Puppet Enterprise automatically generated

Create a Puppet Enterprise Master in AWS CloudFormation API Version 2013-02-18 47

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html#troubleshooting-errors

AWS OpsWorks User Guide

for the server. You cannot manage the server or connect to the Puppet Enterprise
management website for the server until you map the generated endpoint to your
custom domain value.
To get the generated endpoint value, run the following AWS CLI command after your
server is online:

aws opsworks describe-servers --server-name server_name

Create a Puppet Enterprise Master by using AWS CloudFormation (CLI)

If your local computer is not already running the AWS CLI, download and install the AWS CLI by
following installation instructions in the AWS Command Line Interface User Guide. This section
does not describe all parameters that you can use with the create-stack command. For more
information about create-stack parameters, see create-stack in the AWS CLI Reference.

1. Be sure to complete the Prerequisites for creating an OpsWorks for Puppet Enterprise master.

2. Create a service role and an instance profile. AWS OpsWorks provides an AWS CloudFormation
template that you can use to create both. Run the following AWS CLI command to create an
AWS CloudFormation stack that creates the service role and instance profile for you.

aws cloudformation create-stack --stack-name OpsWorksCMRoles --template-url
 https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-
cm-roles.yaml --capabilities CAPABILITY_NAMED_IAM

After AWS CloudFormation finishes creating the stack, find and copy the ARNs of service roles
in your account.

aws iam list-roles --path-prefix "/service-role/" --no-paginate

In the results of the list-roles command, look for service role and instance profile entries
that resemble the following. Make a note of the ARNs of the service role and instance profile,
and add them to the AWS CloudFormation template that you are using to create your Puppet
master server stack.

{
 "AssumeRolePolicyDocument": {

Create a Puppet Enterprise Master in AWS CloudFormation API Version 2013-02-18 48

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/create-stack.html

AWS OpsWorks User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROZZZZZZZZZZQG6R22HC",
 "CreateDate": "2018-01-05T20:42:20Z",
 "RoleName": "aws-opsworks-cm-ec2-role",
 "Path": "/service-role/",
 "Arn": "arn:aws:iam::000000000000:role/service-role/aws-opsworks-cm-ec2-role"
},
{
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks-cm.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROZZZZZZZZZZZZZZZ6QE",
 "CreateDate": "2018-01-05T20:42:20Z",
 "RoleName": "aws-opsworks-cm-service-role",
 "Path": "/service-role/",
 "Arn": "arn:aws:iam::000000000000:role/service-role/aws-opsworks-cm-service-
role"
}

3. Create the OpsWorks for Puppet Enterprise master by running the create-stack command
again.

Create a Puppet Enterprise Master in AWS CloudFormation API Version 2013-02-18 49

AWS OpsWorks User Guide

• Replace stack_name with the name of your stack. This is the name of the AWS
CloudFormation stack, not your Puppet master. The Puppet master name is the value of
ServerName in your AWS CloudFormation template.

• Replace template with the path to your template file, and the extension yaml or json
with .yaml or .json as appropriate.

• The values for --parameters correspond to EngineAttributes from the CreateServer
API. For Puppet, the following are user-provided engine attributes to create a server.
r10k engine attributes connect your Puppet master to a code repository to manage the
server’s environment configuration. For more information about r10k engine attributes, see
Managing code with r10k in the Puppet Enterprise documentation.

• PUPPET_ADMIN_PASSWORD, an administrator password for signing in to the Puppet
Enterprise console webpage. The password must use between 8 and 32 ASCII characters,
and requires at least one upper case letter, one lower case letter, one number, and one
special character.

• PUPPET_R10K_REMOTE, the URL of your control repository (for example, ssh://
git@your.git-repo.com:user/control-repo.git). Specifying an r10k remote opens TCP port
8170.

• PUPPET_R10K_PRIVATE_KEY. If you are using a private Git repository, add
PUPPET_R10K_PRIVATE_KEY to specify an SSH URL and a PEM-encoded private SSH key.

aws cloudformation create-stack --stack-name stack_name
 --template-body file://template.yaml or json --parameters
 ParameterKey=AdminPassword,ParameterValue="password"

The following is an example.

aws cloudformation create-stack --stack-name "OpsWorksCMPuppetServerStack"
 --template-body file://opsworkscm-puppet-server.json --parameters
 ParameterKey=AdminPassword,ParameterValue="09876543210Ab#"

The following example specifies r10k engine attributes as parameters, when they are not
provided in the AWS CloudFormation template. An example template that includes the r10k
engine attributes, puppet-server-param-attributes.yaml, is included in the example
AWS CloudFormation templates.

Create a Puppet Enterprise Master in AWS CloudFormation API Version 2013-02-18 50

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-opsworkscm-server.html#cfn-opsworkscm-server-engineattributes
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://puppet.com/docs/pe/2019.8/r10k.html
samples/opsworkscm-puppet-server.zip
samples/opsworkscm-puppet-server.zip

AWS OpsWorks User Guide

aws cloudformation create-stack --stack-name MyPuppetStack --
template-body file://puppet-server-param-attributes.yaml --parameters
 ParameterKey=AdminPassword,ParameterValue="superSecret1%3"
 ParameterKey=R10KRemote,ParameterValue="https://www.yourRemote.com"
 ParameterKey=R10KKey,ParameterValue="$(cat puppet-r10k.pem)"

The following example specifies r10k engine attributes and their values in the AWS
CloudFormation template; the command only needs to point to the template file. The
template specified as the value of --template-body, puppet-server-in-file-
attributes.yaml, is included in the example AWS CloudFormation templates.

aws cloudformation create-stack --stack-name MyPuppetStack --template-body file://
puppet-server-in-file-attributes.yaml

4. (Optional) To get stack creation status, run the following command.

aws cloudformation describe-stacks --stack-name stack_name

5. When stack creation has finished, go on to the next section, the section called “Finish
Configuration”. If stack creation fails, review the error messages shown in the console to
help you resolve the issues. For more information about troubleshooting errors in AWS
CloudFormation stacks, see Troubleshooting Errors in the AWS CloudFormation User Guide.

Update an OpsWorks for Puppet Enterprise Server to Use a
Custom Domain

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

Update a Server to Use a Custom Domain API Version 2013-02-18 51

samples/opsworkscm-puppet-server.zip
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html#troubleshooting-errors

AWS OpsWorks User Guide

This section describes how to update an existing OpsWorks for Puppet Enterprise server to use a
custom domain and certificate by using a backup of the server to create a new server. Essentially,
you are copying an existing OpsWorks for Puppet Enterprise 2.0 server by creating a new server
from a backup, then configuring the new server to use a custom domain, certificate, and private
key.

Topics

• Prerequisites

• Limitations

• Update a Server to Use a Custom Domain

• See Also

Prerequisites

The following are requirements for updating an existing OpsWorks for Puppet Enterprise server to
use a custom domain and certificate.

• The server that you want to update (or copy) must be running Puppet Enterprise 2019.8.5.

• Decide which backup you want to use to create a new server. You must have at least one
backup available of the server that you want to update. For more information about backups in
OpsWorks for Puppet Enterprise, see Back Up an OpsWorks for Puppet Enterprise Server.

• Have ready the service role and instance profile ARNs that you used to create the existing server
that is the source of your backup.

• Be sure that you are running the most current release of the AWS CLI. For more information
about updating your AWS CLI tools, see Installing the AWS CLI in the AWS Command Line
Interface User Guide.

Limitations

When you update an existing server by creating a new server from a backup, the new server cannot
be exactly the same as the existing OpsWorks for Puppet Enterprise server.

• You can only complete this procedure by using the AWS CLI or one of the AWS SDKs. You cannot
create a new server from a backup by using the AWS Management Console.

Prerequisites API Version 2013-02-18 52

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/#sdks

AWS OpsWorks User Guide

• The new server cannot use the same name as the existing server within an account, and within
an AWS Region. The name must be different from the existing server that you used as the source
of the backup.

• Nodes that were attached to the existing server are not managed by the new server. You must do
one of the following.

• Attach different nodes, because nodes cannot be managed by more than one Puppet master.

• Migrate the nodes from the existing server (the source of the backup) to the new server and
the new custom domain endpoint. For more information about how to migrate nodes, see the
Puppet Enterprise documentation.

Update a Server to Use a Custom Domain

To update an existing Puppet master, you make a copy of it by running the create-server
command, adding parameters to specify a backup, a custom domain, a custom certificate, and a
custom private key.

1. If you do not have service role or instance profile ARNs available to specify in your create-
server command, follow steps 1-5 in Create a Chef Automate server by using the AWS CLI to
create a service role and instance profile that you can use.

2. If you have not already done so, find the backup of the existing Puppet master on which
you want to base a new server with a custom domain. Run the following command to show
information about all OpsWorks for Puppet Enterprise backups in your account, and in a
region. Be sure to note the ID of the backup that you want to use.

aws opsworks-cm --region region name describe-backups

3. Create the OpsWorks for Puppet Enterprise server by running the create-server command.

• The --engine value is Puppet, --engine-model is Monolithic, and --engine-
version is 2019 or 2017.

• The server name must be unique within your AWS account, within each region. Server names
must start with a letter; then letters, numbers, or hyphens (-) are allowed, up to a maximum
of 40 characters.

• Use the instance profile ARN and service role ARN that you copied in Steps 3 and 4.

Update a Server to Use a Custom Domain API Version 2013-02-18 53

https://puppet.com/docs/pe/2019.8/backing_up_and_restoring_pe.html

AWS OpsWorks User Guide

• Valid instance types are c4.large, c4.xlarge, or c4.2xlarge. For more information
about the specifications of these instance types, see Instance Types in the Amazon EC2 User
Guide.

• The --engine-attributes parameter is optional; if you don't specify a Puppet
administrator password, the server creation process generates one for you. If you add --
engine-attributes, specify a PUPPET_ADMIN_PASSWORD, an administrator password for
signing in to the Puppet Enterprise console webpage. The password must use between 8 and
32 ASCII characters.

• An SSH key pair is optional, but can help you connect to your Puppet master if you need to
reset the console administrator password. For more information about creating an SSH key
pair, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide.

• To use a custom domain, add the following parameters to your command. Otherwise, the
Puppet master creation process automatically generates an endpoint for you. All three
parameters are required to configure a custom domain. For information about additional
requirements for using these parameters, see CreateServer in the AWS OpsWorks CM API
Reference.

• --custom-domain - An optional public endpoint of a server, such as https://aws.my-
company.com.

• --custom-certificate - A PEM-formatted HTTPS certificate. The value can be be a
single, self-signed certificate, or a certificate chain.

• --custom-private-key - A private key in PEM format for connecting to the server
by using HTTPS. The private key must not be encrypted; it cannot be protected by a
password or passphrase.

• Weekly system maintenance is required. Valid values must be specified in the following
format: DDD:HH:MM. The specified time is in coordinated universal time (UTC). If you do not
specify a value for --preferred-maintenance-window, the default value is a random,
one-hour period on Tuesday, Wednesday, or Friday.

• Valid values for --preferred-backup-window must be specified in one of the following
formats: HH:MM for daily backups, or DDD:HH:MM for weekly backups. The specified time is
in UTC. The default value is a random, daily start time. To opt out of automatic backups, add
the parameter --disable-automated-backup instead.

• For --security-group-ids, enter one or more security group IDs, separated by a space.

• For --subnet-ids, enter a subnet ID.

Update a Server to Use a Custom Domain API Version 2013-02-18 54

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html

AWS OpsWorks User Guide

aws opsworks-cm create-server --engine "Puppet" --engine-model "Monolithic"
 --engine-version "2019" --server-name "server_name" --instance-profile-arn
 "instance_profile_ARN" --instance-type "instance_type" --engine-attributes
 '{"PUPPET_ADMIN_PASSWORD":"ASCII_password"}' --key-pair "key_pair_name" --
preferred-maintenance-window "ddd:hh:mm" --preferred-backup-window "ddd:hh:mm"
 --security-group-ids security_group_id1 security_group_id2 --service-role-arn
 "service_role_ARN" --subnet-ids subnet_ID

The following example creates a Puppet master that uses a custom domain.

aws opsworks-cm create-server \
 --engine "Puppet" \
 --engine-model "Monolithic" \
 --engine-version "2019" \
 --server-name "puppet-02" \
 --instance-profile-arn "arn:aws:iam::1019881987024:instance-profile/aws-
opsworks-cm-ec2-role" \
 --instance-type "c4.large" \
 --engine-attributes '{"PUPPET_ADMIN_PASSWORD":"zZZzDj2DLYXSZFRv1d"}' \
 --custom-domain "my-puppet-master.my-corp.com" \
 --custom-certificate "-----BEGIN CERTIFICATE----- EXAMPLEqEXAMPLE== -----END
 CERTIFICATE-----" \
 --custom-private-key "-----BEGIN RSA PRIVATE KEY----- EXAMPLEqEXAMPLE= -----END
 RSA PRIVATE KEY-----" \
 --key-pair "amazon-test"
 --preferred-maintenance-window "Mon:08:00" \
 --preferred-backup-window "Sun:02:00" \
 --security-group-ids sg-b00000001 sg-b0000008 \
 --service-role-arn "arn:aws:iam::044726508045:role/service-role/aws-opsworks-
cm-service-role" \
 --subnet-ids subnet-383daa71

4. OpsWorks for Puppet Enterprise takes about 15 minutes to create a new server. In the output
of the create-server command, copy the value of the Endpoint attribute. The following is
an example.

"Endpoint": "puppet-2019-exampleexample.opsworks-cm.us-east-1.amazonaws.com"

Update a Server to Use a Custom Domain API Version 2013-02-18 55

AWS OpsWorks User Guide

Do not dismiss the output of the create-server command or close your shell session,
because the output can contain important information that is not shown again. To get
passwords and the starter kit from the create-server results, go on to the next step.

5. If you opted to have OpsWorks for Puppet Enterprise generate a password for you, you can
extract it in a usable format from the create-server results by using a JSON processor
such as jq. After you install jq, you can run the following commands to extract the Puppet
administrator password and starter kit. If you did not provide your own password in Step 3, be
sure to save the extracted administrator password in a convenient but secure location.

#Get the Puppet password:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "PUPPET_ADMIN_PASSWORD") | .Value'

#Get the Puppet Starter Kit:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "PUPPET_STARTER_KIT") | .Value' | base64 -D > starterkit.zip

Note

You cannot regenerate a new Puppet master starter kit in the AWS Management
Console. When you create a Puppet master by using the AWS CLI, run the preceding jq
command to save the base64-encoded starter kit in the create-server results as a
ZIP file.

6. Optionally, if you did not extract the starter kit from create-server command results, you
can download a new starter kit from the server's Properties page in the OpsWorks for Puppet
Enterprise console.

7. If you are not using a custom domain, go on to the next step. If you are using a custom domain
with the server, create a CNAME entry in your enterprise's DNS management tool to point your
custom domain to the OpsWorks for Puppet Enterprise endpoint that you copied in step 4. You
cannot reach or sign in to a server with a custom domain until you complete this step.

8. When the server creation process is finished, go on to Configure the Puppet Master Using the
Starter Kit.

Update a Server to Use a Custom Domain API Version 2013-02-18 56

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

AWS OpsWorks User Guide

See Also

• Create a Puppet Enterprise Master by using the AWS CLI

• Back Up and Restore an OpsWorks for Puppet Enterprise Server

• CreateServer in the AWS OpsWorks CM API Reference

• create-server in the AWS CLI Command Reference

Working with Tags on AWS OpsWorks for Puppet Enterprise
Resources

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

Tags are words or phrases that act as metadata for identifying and organizing your AWS resources.
In OpsWorks for Puppet Enterprise, a resource can have up to 50 user-applied tags. Each tag
consists of a key and one optional value. You can apply tags to the following resources in
OpsWorks for Puppet Enterprise:

• OpsWorks for Puppet Enterprise servers

• Backups of OpsWorks for Puppet Enterprise servers

Tags on AWS resources can help you track costs, control access to resources, group resources for
automating tasks, or organize resources by purpose or lifecycle stage. For more information about
the benefits of tags, see AWS Tagging Strategies in AWS Answers and Using Cost Allocation Tags in
the AWS Billing and Cost Management User Guide.

To use tags to control access to OpsWorks for Puppet Enterprise servers or backups, create or
edit policy statements in AWS Identity and Access Management (IAM). For more information,

See Also API Version 2013-02-18 57

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/cli/latest/reference/opsworks-cm/create-server.html
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

AWS OpsWorks User Guide

see Controlling Access to AWS Resources Using Resource Tags in the AWS Identity and Access
Management User Guide.

When you apply tags to an OpsWorks for Puppet Enterprise master, the tags are also applied
to the master's backups, the Amazon S3 bucket that stores the backups, the master's Amazon
EC2 instance, secrets for the master that are stored in AWS Secrets Manager, and the Elastic IP
address used by the master. Tags are not propagated to the AWS CloudFormation stack that AWS
OpsWorks uses to create your Puppet master.

Topics

• How Tags Work in AWS OpsWorks for Puppet Enterprise

• Add and Manage Tags in OpsWorks for Puppet Enterprise (Console)

• Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI)

• See Also

How Tags Work in AWS OpsWorks for Puppet Enterprise

In this release, you can add and manage tags by using the AWS OpsWorks CM API or the AWS
Management Console. AWS OpsWorks CM also attempts to add tags that you add to a server to
the AWS resources that are associated with the server, including the EC2 instance, secrets in Secrets
Manager, Elastic IP address, security group, S3 bucket, and backups.

The following table provides an overview of how you add and manage tags in OpsWorks for
Puppet Enterprise.

Action What to use

Add tags to a new OpsWorks for Puppet
Enterprise server or a backup that you are
creating manually.

• Choose Create Puppet Enterprise server
and add tags on the Configure advanced
settings page.

• Choose Create backup on the Backups page
for an existing server, and add tags on the
Create a backup of your Puppet Enterprise
server page.

• Add a Tags parameter to the CreateSer
ver or CreateBackup commands.

How Tags Work in AWS OpsWorks for Puppet Enterprise API Version 2013-02-18 58

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateBackup.html

AWS OpsWorks User Guide

Action What to use

View tags on a resource. • On the details page for your server, choose
Tags in the navigation pane.

• On the Backups page for your server, select
a backup, and then choose Edit backup.

• Run the ListTagsForResource
command.

Add tags to an existing OpsWorks for Puppet
Enterprise server or a backup, regardless of
whether the backup was created manually or
automatically.

• On the details page for your server, choose
Tags in the navigation pane, and then
choose Edit.

• On the Backups page for your server, select
a backup, and then choose Edit backup.

• Run the TagResource command.

Delete tags from a resource. • On the details page for your server, choose
Tags in the navigation pane, and then
choose Edit. Choose X next to tags that you
want to delete.

• On the Backups page for your server, select
a backup, and then choose Edit backup.
Choose X next to tags that you want to
delete.

• Run the UntagResource command.

DescribeServers and DescribeBackups responses do not include tag information. To show
tags, use the ListTagsForResource API.

Add and Manage Tags in OpsWorks for Puppet Enterprise (Console)

Procedures in this section are performed in the AWS Management Console.

If you add tags, a tag key cannot be empty. The key can be a maximum of 127 characters, and can
contain only Unicode letters, numbers, or separators, or the following special characters: + - = .
_ : / @ A tag value is optional. You can add a tag that has a key, but no value. The value can be a

Add and Manage Tags in OpsWorks for Puppet Enterprise (Console) API Version 2013-02-18 59

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_UntagResource.html

AWS OpsWorks User Guide

maximum of 255 characters, and can contain only Unicode letters, numbers, or separators, or the
following special characters: + - = . _ : / @

Topics

• Add Tags to a New OpsWorks for Puppet Enterprise Server (Console)

• Add Tags to a New Backup (Console)

• Add or View Tags on an Existing Server (Console)

• Add or View Tags on an Existing Backup (Console)

• Delete Tags from a Server (Console)

• Delete Tags from a Backup (Console)

Add Tags to a New OpsWorks for Puppet Enterprise Server (Console)

1. Be sure to complete any prerequisites for creating an OpsWorks for Puppet Enterprise master.

2. Follow steps 1-8 in Create a Puppet Enterprise Master by using the AWS Management Console.

3. After you specify automated backup settings, add tags in the Tags area of the Configure
advanced settings page. You can add a maximum of 50 tags. When you are finished adding
tags, choose Next.

4. Go on to step 11 of Create a Puppet Enterprise Master by using the AWS Management
Console, and review settings you have chosen for the new server.

Add Tags to a New Backup (Console)

1. On the OpsWorks for Puppet Enterprise home page, choose an existing Puppet master.

2. From the server's details page, choose Backups in the navigation pane.

3. On the Backups page, choose Create backup.

4. Add tags. Choose Create when you are finished adding tags.

Add or View Tags on an Existing Server (Console)

1. On the OpsWorks for Puppet Enterprise home page, choose an existing Puppet master to open
its details page.

2. Choose Tags in the navigation pane, or at the bottom of the details page, choose View all
tags.

Add and Manage Tags in OpsWorks for Puppet Enterprise (Console) API Version 2013-02-18 60

AWS OpsWorks User Guide

3. On the Tags page, choose Edit.

4. Add or edit tags on the server. Choose Save when you are finished.

Note

Be aware that changing tags on your Puppet master also changes tags on resources
that are associated with the server, such as the EC2 instance, Elastic IP address, security
group, S3 bucket, and backups.

Add or View Tags on an Existing Backup (Console)

1. On the OpsWorks for Puppet Enterprise home page, choose an existing Puppet master to open
its details page.

2. Choose Backups in the navigation pane, or in the Recent backups area of the details page,
choose View all backups.

3. On the Backups page, choose a backup to manage, and then choose Edit backup.

4. Add or edit tags on the backup. Choose Update when you are finished.

Delete Tags from a Server (Console)

1. On the OpsWorks for Puppet Enterprise home page, choose an existing Puppet master to open
its details page.

2. Choose Tags in the navigation pane, or at the bottom of the details page, choose View all
tags.

3. On the Tags page, choose Edit.

4. Choose X next to a tag to delete the tag. Choose Save when you are finished.

Note

Be aware that changing tags on your Puppet master also changes tags on resources
that are associated with the server, such as the EC2 instance, Elastic IP address, security
group, S3 bucket, and backups.

Add and Manage Tags in OpsWorks for Puppet Enterprise (Console) API Version 2013-02-18 61

AWS OpsWorks User Guide

Delete Tags from a Backup (Console)

1. On the OpsWorks for Puppet Enterprise home page, choose an existing Puppet master to open
its details page.

2. Choose Backups in the navigation pane, or in the Recent backups area of the details page,
choose View all backups.

3. On the Backups page, choose a backup to manage, and then choose Edit backup.

4. Choose X next to a tag to delete the tag. Choose Update when you are finished.

Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI)

Procedures in this section are performed in the AWS CLI. Be sure that you are running the latest
release of the AWS CLI before you start working with tags. For more information about installing or
updating the AWS CLI, see Installing the AWS CLI in the AWS Command Line Interface User Guide.

If you add tags, a tag key cannot be empty. The key can be a maximum of 127 characters, and can
contain only Unicode letters, numbers, or separators, or the following special characters: + - = .
_ : / @ A tag value is optional. You can add a tag that has a key, but no value. The value can be
a maximum of 255 characters, and contain only Unicode letters, numbers, or separators, or the
following special characters: + - = . _ : / @

Topics

• Add Tags to a New OpsWorks for Puppet Enterprise Server (CLI)

• Add Tags to a New Backup (CLI)

• Add Tags to Existing Servers or Backups (CLI)

• List Resource Tags (CLI)

• Delete Tags from a Resource (CLI)

Add Tags to a New OpsWorks for Puppet Enterprise Server (CLI)

You can use the AWS CLI to add tags when you create an OpsWorks for Puppet Enterprise server.
This procedure does not describe in full how to create a server. For detailed information about how
to create an OpsWorks for Puppet Enterprise server by using the AWS CLI, see Create a Puppet
Enterprise Master by using the AWS CLI in this guide. You can add up to 50 tags to a server.

1. Be sure to complete any prerequisites for creating an OpsWorks for Puppet Enterprise server.

Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI) API Version 2013-02-18 62

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS OpsWorks User Guide

2. Complete steps 1-4 of Create a Puppet Enterprise Master by using the AWS CLI.

3. For step 5, when you run the create-server command, add the --tags parameter to the
command, as shown in the following example.

aws opsworks-cm create-server ... --tags Key=Key1,Value=Value1
 Key=Key2,Value=Value2

The following is an example showing only the tags portion of the create-server command.

aws opsworks-cm create-server ... --tags Key=Stage,Value=Production
 Key=Department,Value=Marketing

4. Complete the remaining steps in Create a Puppet Enterprise Master by using the AWS CLI. To
verify that your tags were added to the new server, follow steps in List Resource Tags (CLI) in
this topic.

Add Tags to a New Backup (CLI)

You can use the AWS CLI to add tags when you create a new, manual backup of an OpsWorks for
Puppet Enterprise server. This procedure does not describe in full how to create a manual backup.
For detailed information about how to create a manual backup, see "To perform a manual backup
in the AWS CLI" in Back Up an OpsWorks for Puppet Enterprise Server. You can add up to 50 tags to
a backup. If a server has tags, new backups are automatically tagged with the server's tags.

By default, when you create a new OpsWorks for Puppet Enterprise server, automated backups
are enabled. You can add tags to an automated backup by running the tag-resource command,
described in Add Tags to Existing Servers or Backups (CLI) in this topic.

• To add tags to a manual backup as you're creating the backup, run the following command.
Only the tags portion of the command is shown. For an example of the full create-backup
command, see "To perform a manual backup in the AWS CLI" in Back Up an OpsWorks for
Puppet Enterprise Server.

aws opsworks-cm create-backup ... --tags Key=Key1,Value=Value1
 Key=Key2,Value=Value2

The following example shows only the tags portion of the create-backup command.

Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI) API Version 2013-02-18 63

AWS OpsWorks User Guide

aws opsworks-cm create-backup ... --tags Key=Stage,Value=Production
 Key=Department,Value=Marketing

Add Tags to Existing Servers or Backups (CLI)

You can run the tag-resource command to add tags to existing OpsWorks for Puppet Enterprise
servers or backups (whether the backups were created automatically or manually). Specify the
Amazon Resource Number (ARN) of a target resource to add tags to it.

1. To get the ARN of the resource to which you want to apply tags:

• For a server, run describe-servers --server-name server_name. The results of the
command show the server ARN.

• For a backup, run describe-backups --backup-id backup_ID. The results of the
command show the backup ARN. You can also run describe-backups --server-name
server_name to show information about all backups for a specific OpsWorks for Puppet
Enterprise server.

The following example shows only the ServerArn in results of a describe-servers --
server-name opsworks-cm-test command. The ServerArn value is added to a tag-
resource command to add tags to the server.

{
 "Servers": [
 {
 ...
 "ServerArn": "arn:aws:opsworks-cm:us-west-2:123456789012:server/
opsworks-cm-test/EXAMPLEd-66b0-4196-8274-d1a2bEXAMPLE"
 }
]
}

2. Run the tag-resource command with the ARN that you returned in step 1.

aws opsworks-cm tag-resource --resource-arn "server_or_backup_ARN" --tags
 Key=Key1,Value=Value1 Key=Key2,Value=Value2

Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI) API Version 2013-02-18 64

AWS OpsWorks User Guide

The following is an example.

aws opsworks-cm tag-resource --resource-arn "arn:aws:opsworks-cm:us-
west-2:123456789012:server/opsworks-cm-test/EXAMPLEd-66b0-4196-8274-d1a2bEXAMPLE"
 --tags Key=Stage,Value=Production Key=Department,Value=Marketing

3. To verify that tags were added successfully, go on to the next procedure, List Resource Tags
(CLI).

List Resource Tags (CLI)

You can run the list-tags-for-resource command to show the tags that are attached to
OpsWorks for Puppet Enterprise servers or backups. Specify the ARN of a target resource to view
its tags.

1. To get the ARN of the resource for which you want to list tags:

• For a server, run describe-servers --server-name server_name. The results of the
command show the server ARN.

• For a backup, run describe-backups --backup-id backup_ID. The results of the
command show the backup ARN. You can also run describe-backups --server-name
server_name to show information about all backups for a specific OpsWorks for Puppet
Enterprise server.

2. Run the list-tags-for-resource command with the ARN that you returned in step 1.

aws opsworks-cm list-tags-for-resource --resource-arn "server_or_backup_ARN"

The following is an example.

aws opsworks-cm tag-resource --resource-arn "arn:aws:opsworks-cm:us-
west-2:123456789012:server/opsworks-cm-test/EXAMPLEd-66b0-4196-8274-d1a2bEXAMPLE"

If there are tags on the resource, the command returns results like the following.

{
 "Tags": [
 {
 "Key": "Stage",

Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI) API Version 2013-02-18 65

AWS OpsWorks User Guide

 "Value": "Production"
 },
 {
 "Key": "Department",
 "Value": "Marketing"
 }
]
}

Delete Tags from a Resource (CLI)

You can run the untag-resource command to delete tags from OpsWorks for Puppet Enterprise
servers or backups. If the resource is deleted, tags on the resource are also deleted. Specify the
Amazon Resource Number (ARN) of a target resource to remove tags from it.

1. To get the ARN of the resource from which you want to remove tags:

• For a server, run describe-servers --server-name server_name. The results of the
command show the server ARN.

• For a backup, run describe-backups --backup-id backup_ID. The results of the
command show the backup ARN. You can also run describe-backups --server-name
server_name to show information about all backups for a specific OpsWorks for Puppet
Enterprise server.

2. Run the untag-resource command with the ARN that you returned in step 1. Specify only
the tags that you want to delete.

aws opsworks-cm untag-resource --resource-arn "server_or_backup_ARN" --tags
 Key=Key1,Value=Value1 Key=Key2,Value=Value2

In this example, the untag-resource command removes only the tag with a key of Stage
and a value of Production.

aws opsworks-cm untag-resource --resource-arn "arn:aws:opsworks-cm:us-
west-2:123456789012:server/opsworks-cm-test/EXAMPLEd-66b0-4196-8274-d1a2bEXAMPLE"
 --tags Key=Stage,Value=Production

3. To verify that tags were deleted successfully, follow steps in List Resource Tags (CLI) in this
topic.

Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI) API Version 2013-02-18 66

AWS OpsWorks User Guide

See Also

• Create a Puppet Enterprise Master by using the AWS CLI

• Back Up an OpsWorks for Puppet Enterprise Server

• AWS Tagging Strategies

• Controlling Access to AWS Resources Using Resource Tags in the AWS Identity and Access
Management User Guide

• Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide

• CreateBackup in the AWS OpsWorks CM API Reference

• CreateServer in the AWS OpsWorks CM API Reference

• TagResource in the AWS OpsWorks CM API Reference

• ListTagsForResource in the AWS OpsWorks CM API Reference

• UntagResource in the AWS OpsWorks CM API Reference

Back Up and Restore an OpsWorks for Puppet Enterprise Server

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

This section describes how to back up and restore an OpsWorks for Puppet Enterprise server.

Topics

• Back Up an OpsWorks for Puppet Enterprise Server

• Restore an OpsWorks for Puppet Enterprise Server from a Backup

See Also API Version 2013-02-18 67

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateBackup.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_UntagResource.html

AWS OpsWorks User Guide

Back Up an OpsWorks for Puppet Enterprise Server

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

You can define a daily or weekly recurring OpsWorks for Puppet Enterprise server backup, and
have the service store the backups in Amazon Simple Storage Service (Amazon S3) on your behalf.
Alternatively, you can make manual backups on demand.

Because backups are stored in Amazon S3, they incur additional fees. You can define a backup
retention period of up to 30 generations. You can submit a service request to have that limit
changed by using AWS support channels. Content delivered to Amazon S3 buckets might contain
customer content. For more information about removing sensitive data, see How Do I Empty an S3
Bucket? or How Do I Delete an S3 Bucket?.

You can add tags to backups of an OpsWorks for Puppet Enterprise master. If you have added tags
to an OpsWorks for Puppet Enterprise master, automated backups of the Puppet master inherit
those tags. For more information about how to add and manage tags on backups, see Working
with Tags on AWS OpsWorks for Puppet Enterprise Resources in this guide.

Topics

• Automated Backups

• Manual Backups

• Delete backups

Automated Backups

When you configure your OpsWorks for Puppet Enterprise server, you choose either automated
or manual backups. OpsWorks for Puppet Enterprise starts automated backups during the hour
and on the day that you choose in the Automated backup section of the Configure advanced

Back Up an OpsWorks for Puppet Enterprise Server API Version 2013-02-18 68

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

settings page of the setup wizard. After your server is online, you can change backup settings by
performing the following steps on the server's properties page.

To change automated backup settings

1. On the server's properties page, choose More settings.

2. To turn off automated backups, choose No for the Enable automated backups option. Save
your changes; you do not need to go on to the next step.

3. In the Automated Backup section, change the frequency, start time, or generations to keep.
Save your changes.

Back Up an OpsWorks for Puppet Enterprise Server API Version 2013-02-18 69

AWS OpsWorks User Guide

Manual Backups

You can start a manual backup at any time in the AWS Management Console, or by running
the AWS CLI create-backup command. Manual backups are not included in the maximum 30
generations of automated backups that are stored. A maximum of 10 manual backups are stored,
and must be manually deleted from Amazon S3.

To perform a manual backup in the AWS Management Console

1. On the Puppet Enterprise servers page, choose the server that you want to back up.

2. On the properties page for the server, in the left navigation pane, choose Backups.

3. Choose Create backup.

4. The manual backup is finished when the page shows a green check mark in the backup's
Status column.

To perform a manual backup in the AWS CLI

You can add tags when you create a new, manual backup of an OpsWorks for Puppet Enterprise
server. For more information about how to add tags when you create a manual backup, see Add
Tags to a New Backup (CLI).

• To start a manual backup, run the following AWS CLI command.

aws opsworks-cm --region region name create-backup --server-name "Puppet server
 name" --description "optional descriptive string"

Delete backups

Deleting a backup permanently deletes it from the S3 bucket in which backups are stored.

To delete a backup in the AWS Management Console

1. On the Puppet Enterprise servers page, choose the server that you want to back up.

2. On the properties page for the server, in the left navigation pane, choose Backups.

3. Choose the backup that you want to delete, and then choose Delete backup. You can select
only one backup at a time.

Back Up an OpsWorks for Puppet Enterprise Server API Version 2013-02-18 70

http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateBackup.html

AWS OpsWorks User Guide

4. When you are prompted to confirm the deletion, fill the check box for Delete the backup,
which is stored in an S3 bucket, and then choose Yes, Delete.

To delete a backup in the AWS CLI

• To delete a backup, run the following AWS CLI command, replacing the value of --backup-id
with the ID of the backup that you want to delete. Backup IDs are in the format ServerName-
yyyyMMddHHmmssSSS. For example, puppet-server-20171218132604388.

aws opsworks-cm --region region name delete-backup --backup-id ServerName-
yyyyMMddHHmmssSSS

Restore an OpsWorks for Puppet Enterprise Server from a Backup

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

After browsing through your available backups, you can easily choose a point in time from which
to restore your OpsWorks for Puppet Enterprise server. Server backups contain configuration-
management software persistent data such as modules, classes, node associations, database
information (including reports, facts, etc.). Performing an in-place restoration of a server (that is,
restoring the existing OpsWorks for Puppet Enterprise server to a new EC2 instance) reregisters
nodes that were registered at the time of the backup that you use to restore the server, and
switches traffic to the new instance if restoration is successful, and the restored OpsWorks for
Puppet Enterprise server state is Healthy. Restoring to a newly-created OpsWorks for Puppet
Enterprise server does not maintain node connections. Restoring a server does not update the
version of Puppet software; it applies the same Puppet versions and configuration-management
data that are available in the backup that you choose.

Restore an OpsWorks for Puppet Enterprise Server API Version 2013-02-18 71

AWS OpsWorks User Guide

Restoring a server typically takes more time than creating a new server; the time depends on the
size of the backup you choose. After restoration is complete, the old EC2 instance remains in a
Running or Stopped state, but only temporarily. It is eventually terminated.

In this release, you can use the AWS CLI to restore a Puppet master in OpsWorks for Puppet
Enterprise.

Note

You can also run the restore-server command to change the current instance type, or to
restore or set your SSH key if it is lost or compromised.

To restore a server from a backup

1. In the AWS CLI, run the following command to return a list of available backups and their
IDs. Make a note of the ID of the backup that you want to use. Backup IDs are in the format
myServerName-yyyyMMddHHmmssSSS.

aws opsworks-cm --region region name describe-backups

2. Run the following command.

aws opsworks-cm --region region name restore-server --backup-id "myServerName-
yyyyMMddHHmmssSSS" --instance-type "Type of instance" --key-pair "name of your EC2
 key pair" --server-name "name of Puppet master"

The following is an example.

aws opsworks-cm --region us-west-2 restore-server --backup-id
 "MyPuppetServer-20161120122143125" --server-name "MyPuppetServer"

3. Wait until restoration is complete.

Restore an OpsWorks for Puppet Enterprise Server API Version 2013-02-18 72

http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_RestoreServer.html

AWS OpsWorks User Guide

System Maintenance in OpsWorks for Puppet Enterprise

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

Mandatory system maintenance ensures that the latest AWS-tested versions of Puppet Server,
including security updates, are always running on an OpsWorks for Puppet Enterprise server.
System maintenance is required a minimum of once a week. By using the AWS CLI, you can
configure daily automatic maintenance, if desired. You can also use the AWS CLI to perform system
maintenance on demand, in addition to scheduled system maintenance.

When new versions of Puppet software become available, system maintenance is designed to
update the version of Puppet Server on the server automatically, as soon as it passes AWS testing.
AWS performs extensive testing to verify that Puppet upgrades are production-ready and do not
disrupt existing customer environments, so there can be lags between Puppet software releases
and their availability for application to existing OpsWorks for Puppet Enterprise servers. To update
available versions of Puppet software on demand, see Starting system maintenance on demand in
this topic.

System maintenance launches a new instance from a backup that is performed as part of the
maintenance process, which helps reduce risk from degraded or impaired Amazon EC2 instances
that undergo periodic maintenance.

Important

System maintenance deletes any files or custom configuration that you have added to
the OpsWorks for Puppet Enterprise server. For more information about how to repair
configuration or file loss, see Restoring custom configurations and files after maintenance
in this topic.

System Maintenance API Version 2013-02-18 73

AWS OpsWorks User Guide

Topics

• Configuring system maintenance

• Starting system maintenance on demand

• Restoring custom configurations and files after maintenance

Configuring system maintenance

When you create a new OpsWorks for Puppet Enterprise server, you can configure a weekday and
time, in Coordinated Universal Time (UTC), for system maintenance to start. Maintenance starts
during the hour that you specify. Because you should expect the server to be offline during system
maintenance, choose a time of low server demand within regular office hours. The server status is
UNDER_MAINTENANCE while maintenance is in progress.

You can also change the system maintenance settings on an existing OpsWorks for Puppet
Enterprise server, by changing settings in the System maintenance area of the Settings page for
your server, as shown in the following screenshot.

Configuring system maintenance API Version 2013-02-18 74

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

AWS OpsWorks User Guide

In the System maintenance section, set the day and hour that you want system maintenance to
begin.

Configuring system maintenance by using the AWS CLI

You can also configure the system maintenance automatic start time by using the AWS CLI.
The AWS CLI lets you configure daily automatic maintenance, if desired, by omitting the three-
character weekday prefix.

Configuring system maintenance API Version 2013-02-18 75

AWS OpsWorks User Guide

In a create-server command, add the --preferred-maintenance-window parameter to
your command, after specifying the requirements for creating the server instance (such as instance
type, instance profile ARN, and service role ARN). In the following create-server example, --
preferred-maintenance-window is set to Mon:08:00, meaning that you've set maintenance to
start every Monday morning at 8:00 a.m. UTC.

aws opsworks-cm create-server --engine "Puppet" --engine-model "Monolithic"
 --engine-version "2017" --server-name "puppet-06" --instance-profile-arn
 "arn:aws:iam::1119001987000:instance-profile/aws-opsworks-cm-ec2-role"
 --instance-type "c4.large" --key-pair "amazon-test" --service-role-arn
 "arn:aws:iam::044726508045:role/aws-opsworks-cm-service-role" --preferred-maintenance-
window "Mon:08:00"

In an update-server command, you can update the --preferred-maintenance-window
value alone, if desired. In the following example, the maintenance window is set to Friday night at
6:15 p.m. UTC.

aws opsworks-cm update-server --server-name "puppet-06" --preferred-maintenance-window
 "Fri:18:15"

To change the start time of the maintenance window to 6:15 p.m. UTC every day, omit the three-
character weekday prefix, as shown in the following example.

aws opsworks-cm update-server --server-name "puppet-06" --preferred-maintenance-window
 "18:15"

For more information about setting the preferred system maintenance window by using the AWS
CLI, see create-server and update-server.

Starting system maintenance on demand

To start system maintenance on demand, outside of your configured weekly or daily automatic
maintenance, run the following AWS CLI command. You cannot start on-demand maintenance in
the AWS Management Console.

aws opsworks-cm start-maintenance --server-name server_name

For more information about this command, see start-maintenance.

Starting system maintenance on demand API Version 2013-02-18 76

http://docs.aws.amazon.com/cli/latest/reference/opsworkscm/update-server.html
http://docs.aws.amazon.com/cli/latest/reference/opsworkscm/update-server.html
http://docs.aws.amazon.com/cli/latest/reference/opsworkscm/start-maintenance.html

AWS OpsWorks User Guide

Restoring custom configurations and files after maintenance

System maintenance can delete or change custom files or configurations that you have added to
your OpsWorks for Puppet Enterprise server.

If, after a maintenance run, your Puppet master is missing files or settings that you added by using
RunCommand or SSH, you can use an Amazon Machine Image (AMI) to launch a new Amazon EC2
instance. AMIs are available that are built from a server's pre-maintenance configuration.

The new instance is in the same state that the Puppet master was before maintenance, and should
include your missing files and settings.

Important

You cannot use the new instance to restore your server; the instance cannot be run as
a Puppet master. You can use the instance only to recover your files and configuration
settings.

To launch an EC2 instance from an AMI, in the Amazon EC2 console, open the Launch wizard,
choose My AMIs, and then choose the AMI that has your server name. Follow Amazon EC2 wizard
steps as you would for any other instance launch.

Adding Nodes Automatically in OpsWorks for Puppet
Enterprise

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

This topic describes how to add Amazon Elastic Compute Cloud (Amazon EC2) nodes to your
OpsWorks for Puppet Enterprise server automatically. In Add Nodes for the Puppet Master to

Restoring custom configurations and files after maintenance API Version 2013-02-18 77

AWS OpsWorks User Guide

Manage, you learned how to use the associate-node command to add one node at a time to
your Puppet Enterprise server. The code in this topic shows how to add nodes automatically using
the unattended method. The recommended method of unattended (or automatic) association
of new nodes is to configure the Amazon EC2 user data. By default, an OpsWorks for Puppet
Enterprise server already has puppet-agent available for for Ubuntu, Amazon Linux, and RHEL
node operating systems.

For information about how to disassociate a node, see Disassociate a Node from an OpsWorks for
Puppet Enterprise Server in this guide, and disassociate-node in the OpsWorks for Puppet
Enterprise API documentation.

Step 1: Create an IAM Role to Use as Your Instance Profile

Create an AWS Identity and Access Management (IAM) role to use as your EC2 instance profile,
and attach the following policy to the IAM role. This policy allows the opsworks-cm API to
communicate with the EC2 instance during node registration. For more information about instance
profiles, see Using Instance Profiles in the Amazon EC2 documentation. For information about how
to create an IAM role, see Creating an IAM Role in the Console in the Amazon EC2 documentation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "opsworks-cm:AssociateNode",
 "opsworks-cm:DescribeNodeAssociationStatus",
 "opsworks-cm:DescribeServers",
 "ec2:DescribeTags"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

AWS OpsWorks provides an AWS CloudFormation template that you can use to create the IAM role
with the preceding policy statement. The following AWS CLI command creates the instance profile
role for you by using this template. You can omit the --region parameter if you want to create
the new AWS CloudFormation stack in your default region.

Step 1: Create an IAM Role to Use as Your Instance Profile API Version 2013-02-18 78

https://puppet.com/docs/pe/2019.8/installing_agents.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DisassociateNode.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#create-iam-role-console

AWS OpsWorks User Guide

aws cloudformation --region region ID create-stack --stack-name myPuppetinstanceprofile
 --template-url https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/
misc/owpe/opsworks-cm-nodes-roles.yaml --capabilities CAPABILITY_IAM

Step 2: Create Instances by Using an Unattended Association Script

To create EC2 instances, you can copy the user data script that is included in the Starter Kit to
the userdata section of EC2 instance instructions, Amazon EC2 Auto Scaling group launch
configurations, or an AWS CloudFormation template. The script is supported only for EC2 instances
running Ubuntu and Amazon Linux operating systems. For more information about adding
scripts to user data, see Running Commands on Your Linux Instance at Launch in the Amazon EC2
documentation. The easiest way to create a new node is to use the Amazon EC2 instance launch
wizard. This walkthrough uses the Apache web server example module setup described in Getting
Started with OpsWorks for Puppet Enterprise.

1. The user data script in the Starter Kit runs the opsworks-cm API associate-node command
to associate a new node with your Puppet master. In this release, it also installs the current
version of the AWS CLI on the node for you, in case it is not already running the most up-to-
date version. Save this script to a convenient location as userdata.sh.

By default, the name of the new registered node is the instance ID.

2. Follow the procedure in Launching an Instance in the EC2 documentation, with modifications
here. In the EC2 instance launch wizard, choose an Amazon Linux AMI.

3. On the Configure Instance Details page, select myPuppetinstanceprofile, the role you
created in Step 1: Create an IAM Role to Use as Your Instance Profile, as your IAM role.

4. In the Advanced Details area, upload the userdata.sh script that you created in Step 1.

5. No changes are needed on the Add Storage page. Go on to Add Tags.

By applying tags to your EC2 instance, you can customize the behavior of userdata.sh. For
this example, apply the role apache_webserver to your node by adding the following tag:
pp_role, with the value apache_webserver.

Setting the pp_role value on the node sets data values that are permanently stored in the
node's agent certificate, enabling trusted classification of the node. For more information, see
Extension requests (permanent certificate data) in the Puppet platform documentation.

6. On the Configure Security Group page, choose Add Rule, and then choose the type HTTP to
open port 8080 for the Apache web server in this example.

Step 2: Create Instances by Using an Unattended Association Script API Version 2013-02-18 79

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_AssociateNode.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
https://puppet.com/docs/puppet/5.1/ssl_attributes_extensions.html#extension-requests-permanent-certificate-data)

AWS OpsWorks User Guide

7. Choose Review and Launch, and then choose Launch. When your new node starts, it applies
the Apache configuration of the sample module you set up in Set Up the Starter Kit Apache
Example.

8. When you open the webpage linked to the public DNS of your new node, you should see a
website that is hosted by your Puppet-managed Apache web server.

Disassociate a Node from an OpsWorks for Puppet Enterprise
Server

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

This section describes how to disassociate, or remove, a managed node from management by an
OpsWorks for Puppet Enterprise server. This operation is performed on the command line or in the
Puppet Enterprise console; you cannot disassociate nodes in the OpsWorks for Puppet Enterprise
management console. Currently, the OpsWorks for Puppet Enterprise API does not allow for batch
removal of multiple nodes. The command in this section disassociates one node at a time.

We recommend that you disassociate nodes from a Puppet master before you delete the server,
so that the nodes continue to operate without trying to reconnect with the server. To do this, run
the disassociate-node AWS CLI command. To completely remove a node from PE, you must
disassociate the node and revoke its certificate, so that the node does not continuously attempt to
check in with the Puppet master. You should also uninstall puppet-agent from nodes when you
no longer want to manage them by using the Puppet master.

To disassociate nodes

1. In the AWS CLI, run the following command to disassociate nodes. Node_name is the name
of the node that you want to disassociate; for Amazon EC2 instances, this is the instance
ID.Server_name is the name of the Puppet master from which you want to disassociate the

Remove Nodes API Version 2013-02-18 80

http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DisassociateNode.html
https://puppet.com/docs/pe/2017.3/installing/uninstalling.html#uninstall-agents

AWS OpsWorks User Guide

node. Both parameters are required. The --region parameter is not required unless you want
to disassociate a node from a Puppet master that is not in your default region.

aws opsworks-cm --region Region_name disassociate-node --node-name Node_name --
server-name Server_name

The following command is an example.

aws opsworks-cm --region us-west-2 disassociate-node --node-name
 i-0010zzz00d66zzz90 --server-name opsworkstest

2. Wait until a response message indicates that the disassociation is finished.

For more information about how to delete an OpsWorks for Puppet Enterprise server, see Delete an
OpsWorks for Puppet Enterprise Server.

See Also

• Remove nodes in the Puppet Enterprise documentation

Delete an OpsWorks for Puppet Enterprise Server

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

This section describes how to delete an OpsWorks for Puppet Enterprise server. Deleting a server
also deletes its events, logs, and any modules that were stored on the server. Supporting resources
(Amazon Elastic Compute Cloud instance, Amazon Elastic Block Store volume, etc.) are deleted
also, along with all automated backups.

See Also API Version 2013-02-18 81

https://puppet.com/docs/pe/2017.3/managing_nodes/adding_and_removing_nodes.html#remove-nodes

AWS OpsWorks User Guide

Although deleting a server does not delete nodes, they are no longer managed by the deleted
server, and will continuously attempt to reconnect. For this reason, we recommend disassociating
managed nodes before you delete a Puppet master. In this release, you can disassociate nodes by
running an AWS CLI command.

Step 1: Disassociate Managed Nodes

Disassociate nodes from the Puppet master before you delete the server, so that the
nodes continue to operate without trying to reconnect with the server. To do this, run the
disassociate-node AWS CLI command.

To disassociate nodes

1. In the AWS CLI, run the following command to disassociate nodes. Server_name is the name
of the Puppet master from which you want to disassociate the node. The value of --node-
name can be an instance ID.

aws opsworks-cm --region Region_name disassociate-node --node-name Node_name --
server-name Server_name

2. Wait until a response message indicates that the disassociation is finished.

Step 2: Delete the Server

1. On the server’s tile on the dashboard, expand the Actions menu.

2. Choose Delete Puppet Enterprise server.

3. When you are prompted to confirm the deletion, fill in the check box to delete associated roles
and resources, and then choose Yes, Delete.

Step 1: Disassociate Managed Nodes API Version 2013-02-18 82

http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DisassociateNode.html

AWS OpsWorks User Guide

See Also

• Disassociate a Node from an OpsWorks for Puppet Enterprise Server

How to migrate an OpsWorks for Puppet Enterprise server to
Amazon Elastic Compute Cloud (Amazon EC2)

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

The instructions below describe how to migrate existing Puppet Enterprise servers to Amazon EC2,
in case you want to continue using Puppet Enterprise for your configuration management needs
outside of OpsWorks.

Topics

• Step 1: Contact Puppet to purchase a license

• Step 2: Get details about your OpsWorks for Puppet Enterprise server

• Step 3: Make a backup of your OpsWorks for Puppet Enterprise server

• Step 4: Launch a new EC2 instance

• Step 5: Install Puppet Enterprise on the new EC2 instance

• Step 6: Restore the backup on the new EC2 instance

• Step 7: Configure your Puppet license

• Step 8: Migrate your nodes

• Step 9: Delete your OpsWorks for Puppet Enterprise server

See Also API Version 2013-02-18 83

AWS OpsWorks User Guide

Step 1: Contact Puppet to purchase a license

When you migrate your servers to EC2, the new instance does not come with a Puppet license. To
purchase a license key, follow the instructions on the Puppet website.

Step 2: Get details about your OpsWorks for Puppet Enterprise server

Find and save the values for your OpsWorks for Puppet Enterprise server.

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Copy the name of the existing Amazon S3 bucket for your OpsWorks for Puppet Enterprise
server. The bucket name has the format: aws-opsworks-cm-server-name-random-
string

2. Run the aws opsworks-cm describe-servers command to get the configuration for your
OpsWorks for Puppet Enterprise server.

aws opsworks-cm describe-servers \
 --server-name server-name \
 --region region

Store the values for InstanceType, KeyPair, SubnetIds, SecurityGroupIds,
InstanceProfileArn, and Endpoint from the response.

3. Use SSH to connect to the existing OpsWorks for Puppet Enterprise server. You can use Session
Manager in the EC2 console instead of SSH.

Run the following command.

rpm -qa | grep opsworks-cm-puppet-enterprise | cut -d '-' -f 5

The response provides the Puppet Enterprise version (for example, 2019.8.10). Store this
value.

You will use SSH or Session manager for the next step.

Step 1: Contact Puppet to purchase a license API Version 2013-02-18 84

https://www.puppet.com/docs/pe/2021.1/purchasing_and_installing_a_license_key.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS OpsWorks User Guide

Step 3: Make a backup of your OpsWorks for Puppet Enterprise server

1. Run the following commands to make a local backup.

mkdir /tmp/puppet-backup/
sudo /opt/puppetlabs/bin/puppet-backup create --dir=/tmp/puppet-backup/

2. Run the following command to store the name for the backup.

ls /tmp/puppet-backup/
PUPPET_BACKUP=$(ls /tmp/puppet-backup/)

3. Run the following command to upload your backup to an S3 bucket. Replace S3-Bucket with
the value from step 1 in Step 2: Get details about your OpsWorks for Puppet Enterprise server.

aws s3 cp /tmp/puppet-backup/PUPPET_BACKUP s3://S3_Bucket/tmp/puppet-backup/

Store the PUPPET_BACKUP and S3_BUCKET values. You will import those values to the new
EC2 instance.

You can exit the SSH or Session Manager session.

Step 4: Launch a new EC2 instance

Launch a new EC2 instance from the EC2 console at https://console.aws.amazon.com/ec2/ using
the same configuration as the OpsWorks for Puppet Enterprise server.

Parameter name Value

OS Amazon Linux 2

Instance type The InstanceType value from step 2 of Step 2: Get details
about your OpsWorks for Puppet Enterprise server.

Key pair name The KeyPair value from step 2 of Step 2: Get details about
your OpsWorks for Puppet Enterprise server.

VPC The VPC of the SubnetIds from step 2 of Step 2: Get details
about your OpsWorks for Puppet Enterprise server.

Step 3: Make a backup of your OpsWorks for Puppet Enterprise server API Version 2013-02-18 85

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://console.aws.amazon.com/ec2/

AWS OpsWorks User Guide

Parameter name Value

Subnet The SubnetIds from step 2 of Step 2: Get details about your
OpsWorks for Puppet Enterprise server.

Select existing security
group -> Common security
groups

The SecurityGroupIds from step 2 of Step 2: Get details
about your OpsWorks for Puppet Enterprise server.

Storage At least 120 GB.

IAM instance profile The InstanceProfileArn from step 2 of Step 2: Get
details about your OpsWorks for Puppet Enterprise server.

If you want to create and attach an Elastic IP to the new instance, copy the instance ID of the new
instance, and complete the steps in (Optional) Step 4.1: Create and attach an Elastic IP.

(Optional) Step 4.1: Create and attach an Elastic IP

By using an Elastic IP address, you can mask the failure of an instance or software by rapidly
remapping the address to another instance in your account.

To create and associate an Elastic IP address

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. Choose Elastic IPs.

3. Choose Allocate Elastic IP address.

4. From the Allocate Elastic IP address page, choose Allocate. This creates a Public IPv4 address.

5. Copy the Allocated IPv4 address.

6. From Actions, choose Associate Elastic IP address.

7. For Instance, enter the instance ID for the new instance.

8. Choose Associate.

Step 4: Launch a new EC2 instance API Version 2013-02-18 86

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

AWS OpsWorks User Guide

Step 5: Install Puppet Enterprise on the new EC2 instance

Use SSH to connect to the new EC2 instance. You can use Session Manager in the EC2 console
instead of SSH.

switch to sudo user
sudo -i

Setup environment variables
PUPPET_ENTERPRISE_VERSION=Puppet Enterprise version from step 2.3
hostname Public IPv4 DNS or Custom Domain if available

Install Puppet Enterprise
curl -JLO https://pm.puppetlabs.com/puppet-enterprise/$PUPPET_ENTERPRISE_VERSION/
puppet-enterprise-$PUPPET_ENTERPRISE_VERSION-el-7-x86_64.tar.gz
tar -xf puppet-enterprise-$PUPPET_ENTERPRISE_VERSION-el-7-x86_64.tar.gz

./puppet-enterprise-$PUPPET_ENTERPRISE_VERSION-el-7-x86_64/puppet-enterprise-installer

You can keep your SSH or Session Manager session open for the next step.

Step 6: Restore the backup on the new EC2 instance

Setup environment variables
S3_BUCKET=S3 bucket name from step 2.1
PUPPET_BACKUP=Puppet backup file name from step 3.2

download backup
aws s3 cp s3://$S3_BUCKET/tmp/puppet-backup/$PUPPET_BACKUP

Prepare Puppet Enterprise backup to remove OpsWorks metadata
mkdir output
tar -xf $PUPPET_BACKUP -C output/
cd output/
rm -f opt/puppetlabs/facter/facts.d/opsworks.json
tar -cf ../$PUPPET_BACKUP *
cd ..
rm -rf output/

Restore from backup
PATH=$PATH:/opt/puppetlabs/puppet/bin/
puppet-backup restore $PUPPET_BACKUP

Step 5: Install Puppet Enterprise on the new EC2 instance API Version 2013-02-18 87

AWS OpsWorks User Guide

puppet agent -t

You can access the Puppet console for the restored EC2 instance at https://Public IPv4 of the
instance. You can find the Public IPv4 DNS on the instance's details page in the EC2 console. The
login credentials are the same credentials you use to access your OpsWorks for Puppet Enterprise
server.

You can keep your SSH or Session Manager session open for the next step.

Step 7: Configure your Puppet license

Follow the steps on the Puppet website to configure your license.

You can keep your SSH or Session Manager session open for the next step.

Step 8: Migrate your nodes

There are two types of domains supported by the OpsWorks for Puppet Enterprise servers:

• BYODC (Bring Your Own Domain and Certificate)

• OpsWorks endpoint

Step 8.1: For BYODC (Bring Your Own Domain and Certificate)

For these nodes, all you need to do is point the Custom Domain in your DNS provider to the Public
IPv4 DNS or Public IPv4 address of the new EC2 instance.

Step 8.2: For OpsWorks endpoint

For an OpsWorks endpoint, the Puppet documentation recommends to uninstall the Puppet agent
on the node and then install the Puppet agent using the newly restored Puppet Enterprise server.

Note

While Puppet doesn’t have an automated procedure to move an agent node, there are
a few modules that Puppet community members have published on the Puppet Forge
website to accomplish automated node migration. These modules include the pe_migrate
module and a second migrate module by a different author. The modules on the Puppet
Forge website are not supported by Puppet or OpsWorks unless explicitly noted within

Step 7: Configure your Puppet license API Version 2013-02-18 88

https://www.puppet.com/docs/pe/2021.1/purchasing_and_installing_a_license_key.html#install_a_license_key
https://www.puppet.com/docs/pe/2019.8/uninstalling.html#uninstall_agents
https://www.puppet.com/docs/pe/2019.8/installing_agents.html
https://forge.puppet.com/
https://forge.puppet.com/
https://forge.puppet.com/modules/coreymbe/pe_migrate/readme
https://forge.puppet.com/modules/ffalor/migrate

AWS OpsWorks User Guide

the Forge module. We recommend using caution with these modules and testing them
before using widely.

The following sections provide the steps to uninstall and reinstall Puppet agents on Linux
instances.

Topics

• Step 8.2.1: Copy the uninstaller from the Puppet server

• Step 8.2.2: Download the uninstaller and run it on a node

• Step 8.2.3: Reinstall the Puppet agent on a node

Step 8.2.1: Copy the uninstaller from the Puppet server

Before you uninstall the agent, be sure the node's IAM instance profile provides S3 ReadOnly
permissions.

Run the following command to copy the uninstaller from the Puppet server to the S3 bucket.

aws s3 cp \
 /opt/puppetlabs/bin/puppet-enterprise-uninstaller \
 s3://$S3_BUCKET/tmp/puppet-enterprise-uninstaller

After running the command, you can log out of the Puppet server's SSH or Session Manager
session.

Step 8.2.2: Download the uninstaller and run it on a node

Use SSH to connect to the node. You can use Session Manager in the EC2 console instead of SSH if
the node is an EC2 instance.

sudo -i

S3_BUCKET=aws-opsworks-cm-abcdefg-uuhtyn6messn
aws s3 cp s3://$S3_BUCKET/tmp/puppet-enterprise-uninstaller /opt/puppetlabs/bin/
chmod 700 /opt/puppetlabs/bin/puppet-enterprise-uninstaller
/opt/puppetlabs/bin/puppet-enterprise-uninstaller

You can keep your SSH or Session Manager session open for the next step.

Step 8: Migrate your nodes API Version 2013-02-18 89

AWS OpsWorks User Guide

Step 8.2.3: Reinstall the Puppet agent on a node

Complete the following steps to reinstall the Puppet agent on a node.

Topics

• Step 8.2.3.1: Install the Puppet agent with the correct configuration

• Step 8.2.3.2: Accept the certificate in the Puppet console

• Step 8.2.3.3: Check the node into the Puppet Enterprise server

Step 8.2.3.1: Install the Puppet agent with the correct configuration

Run the following command to install the Puppet agent.

curl -k https://Public_IPv4_DNS:8140/packages/current/install.bash | bash

You can keep your SSH or Session Manager session open for step 8.2.2.3.

Step 8.2.3.2: Accept the certificate in the Puppet console

1. Go to the Puppet server's console at https://Public_IPv4_DNS.

2. Choose Certificates, and then Unsigned certificates.

3. Choose Accept to sign the Puppet agent's certificate.

Step 8.2.3.3: Check the node into the Puppet Enterprise server

Run the following command on the node to check it into the server.

puppet agent -t

The node should now be visible in the Puppet server's console.

Step 9: Delete your OpsWorks for Puppet Enterprise server

You can use either the OpsWorks console or AWS CLI to delete your OpsWorks for Puppet
Enterprise server.

To delete your server using the OpsWorks console

Step 9: Delete your OpsWorks for Puppet Enterprise server API Version 2013-02-18 90

AWS OpsWorks User Guide

1. Sign in to the AWS Management Console and open the AWS OpsWorks console at https://
console.aws.amazon.com/opsworks/.

2. Choose Puppet Enterprise servers from the navigation pane.

3. On the Puppet Enterprise servers page, choose the server you want to delete.

4. From Actions, choose Delete Puppet Enterprise server.

To delete your server using the AWS CLI

Run the following command.

aws opsworks-cm delete-server \
 --server-name server-name \
 --region region

Logging OpsWorks for Puppet Enterprise API Calls with AWS
CloudTrail

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

OpsWorks for Puppet Enterprise is integrated with AWS CloudTrail, a service that provides a
record of actions taken by a user, role, or an AWS service in OpsWorks for Puppet Enterprise.
CloudTrail captures all API calls for OpsWorks for Puppet Enterprise as events, including calls from
the OpsWorks for Puppet Enterprise console and from code calls to the OpsWorks for Puppet
Enterprise APIs. If you create a trail, you can enable continuous delivery of CloudTrail events to an
Amazon S3 bucket, including events for OpsWorks for Puppet Enterprise. If you don't configure a
trail, you can still view the most recent events in the CloudTrail console in Event history. Using the
information collected by CloudTrail, you can determine the request that was made to OpsWorks for

Using AWS CloudTrail API Version 2013-02-18 91

https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Puppet Enterprise, the IP address from which the request was made, who made the request, when
it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

OpsWorks for Puppet Enterprise Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
OpsWorks for Puppet Enterprise, that activity is recorded in a CloudTrail event along with other
AWS service events in Event history. You can view, search, and download recent events in your
AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for OpsWorks for Puppet
Enterprise, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By
default, when you create a trail in the console, the trail applies to all regions. The trail logs events
from all regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All OpsWorks for Puppet Enterprise actions are logged by CloudTrail and are documented in
the OpsWorks for Puppet Enterprise API Reference. For example, calls to the CreateServer,
CreateBackup, and DescribeServers actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

OpsWorks for Puppet Enterprise Information in CloudTrail API Version 2013-02-18 92

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateBackup.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DescribeServers.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS OpsWorks User Guide

Understanding OpsWorks for Puppet Enterprise Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry for the OpsWorks for Puppet Enterprise
CreateServer action.

{"eventVersion":"1.05",
"userIdentity":{
 "type":"AssumedRole",
 "principalId":"ID number:OpsWorksCMUser",
 "arn":"arn:aws:sts::831000000000:assumed-role/Admin/OpsWorksCMUser",
 "accountId":"831000000000","accessKeyId":"ID number",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2017-01-05T22:03:47Z"
 },
 "sessionIssuer":{
 "type":"Role",
 "principalId":"ID number",
 "arn":"arn:aws:iam::831000000000:role/Admin",
 "accountId":"831000000000",
 "userName":"Admin"
 }
 }
 },
"eventTime":"2017-01-05T22:18:23Z",
"eventSource":"opsworks-cm.amazonaws.com",
"eventName":"CreateServer",
"awsRegion":"us-west-2",
"sourceIPAddress":"101.25.190.51",
"userAgent":"console.amazonaws.com",
"requestParameters":{
 "serverName":"test-puppet-server",
 "engineModel":"Single",
 "engine":"Puppet",

Understanding OpsWorks for Puppet Enterprise Log File Entries API Version 2013-02-18 93

AWS OpsWorks User Guide

 "instanceProfileArn":"arn:aws:iam::831000000000:instance-profile/aws-opsworks-cm-
ec2-role",
 "backupRetentionCount":3,"serviceRoleArn":"arn:aws:iam::831000000000:role/service-
role/aws-opsworks-cm-service-role",
 "engineVersion":"12",
 "preferredMaintenanceWindow":"Fri:21:00",
 "instanceType":"t2.medium",
 "subnetIds":["subnet-1e111f11"],
 "preferredBackupWindow":"Wed:08:00"
 },
"responseElements":{
 "server":{
 "endpoint":"test-puppet-server-xxxx8u4390xo6pd9.us-west-2.opsworks-cm.io",
 "createdAt":"Jan 5, 2017 10:18:22 PM",
 "serviceRoleArn":"arn:aws:iam::831000000000:role/service-role/aws-opsworks-cm-
service-role",
 "preferredBackupWindow":"Wed:08:00",
 "status":"CREATING",
 "subnetIds":["subnet-1e111f11"],
 "engine":"Puppet",
 "instanceType":"t2.medium",
 "serverName":"test-puppet-server",
 "serverArn":"arn:aws:opsworks-cm:us-west-2:831000000000:server/test-puppet-
server/8ezz7f6z-e91f-4z10-89z5-8c6219zzz09f",
 "engineModel":"Single",
 "backupRetentionCount":3,
 "engineAttributes":[
 {"name":"PUPPET_ADMIN_PASSWORD","value":"*** Redacted ***"},
 {"name":"PUPPET_API_CA_CERT","value":"*** Redacted ***"},
],
 "engineVersion":"12.11.1",
 "instanceProfileArn":"arn:aws:iam::831000000000:instance-profile/aws-opsworks-
cm-ec2-role",
 "preferredMaintenanceWindow":"Fri:21:00"
 }
 },
"requestID":"de7z64z9-d394-12ug-8081-7zz0386fbcb6",
"eventID":"8z7z18dz-6z90-47bz-87cf-e8346428zzz3",
"eventType":"AwsApiCall",
"recipientAccountId":"831000000000"
}

Understanding OpsWorks for Puppet Enterprise Log File Entries API Version 2013-02-18 94

AWS OpsWorks User Guide

Troubleshooting OpsWorks for Puppet Enterprise

Important

AWS OpsWorks for Puppet Enterprise is not accepting new customers. Existing customers
will be unaffected until March 31, 2024 at which time the service will become unavailable.
We recommend that existing customers migrate to other solutions as soon as possible. For
more information, see AWS OpsWorks for Puppet Enterprise End of Life FAQs and How
to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud
(Amazon EC2).

This topic contains some common OpsWorks for Puppet Enterprise issues, and suggested solutions
for those issues.

Topics

• General troubleshooting tips

• Troubleshooting specific errors

• Additional help and support

General troubleshooting tips

If you are unable to create or work with a Puppet master, you can view error messages or logs to
help you troubleshoot the issue. The following tasks describe general places to start when you are
troubleshooting a Puppet master issue. For information about specific errors and solutions, see the
Troubleshooting specific errors section of this topic.

• Use the OpsWorks for Puppet Enterprise console to view error messages if a Puppet master
fails to start. On the Puppet master properties page, error messages related to launching and
running the server are shown at the top of the page. Errors can come from OpsWorks for Puppet
Enterprise, AWS CloudFormation, or Amazon EC2, services that are used to create a Puppet
master. On the properties page, you can also view events that occur on a running server, which
can contain failure event messages.

• To help resolve EC2 issues, connect to your server's instance by using SSH, and view logs. EC2
instance logs are stored in the /var/log/aws/opsworks-cm directory. These logs capture
command outputs while OpsWorks for Puppet Enterprise launches a Puppet master.

Troubleshooting API Version 2013-02-18 95

AWS OpsWorks User Guide

Troubleshooting specific errors

Topics

• Server is in a Connection lost state

• Server creation fails with "requested configuration is currently not supported" message

• Unable to create the server's Amazon EC2 instance

• Service role error prevents server creation

• Elastic IP address limit exceeded

• Unattended node association fails

• System maintenance fails

Server is in a Connection lost state

Problem: A server's status shows as Connection lost.

Cause: This most commonly occurs when an entity outside of AWS OpsWorks makes changes to
an OpsWorks for Puppet Enterprise server or its supporting resources. AWS OpsWorks cannot
connect to Puppet Enterprise servers in Connection lost states to handle maintenance tasks
such as creating backups, applying operating system patches, or updating Puppet. As a result,
your server might be missing important updates, susceptible to security issues, or otherwise not
operating as expected.

Solution: Try the following steps to restore the server's connection.

1. Be sure that your service role has all required permissions.

a. On the Settings page for your server, in Network and security, choose the link for the
service role that the server is using. This opens the service role for viewing in the IAM
console.

b. On the Permissions tab, verify that AWSOpsWorksCMServiceRole is in the Permissions
policies list. If it isn't listed, add the AWSOpsWorksCMServiceRole managed policy
manually to the role.

c. On the Trust relationships tab, verify that the service role has a trust policy that trusts
the opsworks-cm.amazonaws.com service to assume roles on your behalf. For more
information about how to use trust policies with roles, see Modifying a role (console), or
the AWS Security Blog post, How to use trust policies with IAM roles.

Troubleshooting specific errors API Version 2013-02-18 96

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/

AWS OpsWorks User Guide

2. Be sure that your instance profile has all required permissions.

a. On the Settings page for your server, in Network and security, choose the link for the
instance profile that the server is using. This opens the instance profile for viewing in the
IAM console.

b. On the Permissions tab, verify that AmazonEC2RoleforSSM and
AWSOpsWorksCMInstanceProfileRole are both in the Permissions policies list. If one
or both aren't listed, add these managed policies manually to the role.

c. On the Trust relationships tab, verify that the service role has a trust policy that trusts
the ec2.amazonaws.com service to assume roles on your behalf. For more information
about how to use trust policies with roles, see Modifying a role (console), or the AWS
Security Blog post, How to use trust policies with IAM roles.

3. In the Amazon EC2 console, be sure that you are in the same region as the region of the
OpsWorks for Puppet Enterprise server, and then restart the EC2 instance that your server is
using.

a. Choose the EC2 instance that is named aws-opsworks-cm-instance-server-name.

b. On the Instance state menu, choose Reboot instance.

c. Allow up to 15 minutes for your server to restart and be fully online.

4. In the OpsWorks for Puppet Enterprise console, on the server details page, verify that the
server status is now healthy.

If the server status is still Connection lost after performing the preceding steps, try one of the
following.

• Replace the server by creating a new one and deleting the original. If data on the current server
is important to you, restore the server from a recent backup, and verify the data is up to date
before deleting the original, unresponsive server.

• Contact AWS support.

Troubleshooting specific errors API Version 2013-02-18 97

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/

AWS OpsWorks User Guide

Server creation fails with "requested configuration is currently not supported"
message

Problem: You are trying to create a Puppet Enterprise server, but server creation fails with an error
message that is similar to "The requested configuration is currently not supported. Please check
the documentation for supported configurations."

Cause: An unsupported instance type might have been specified for the Puppet master. If you
choose to create the Puppet server in a VPC that has a non-default tenancy, such as one for
dedicated instances, all instances inside the specified VPC must also be of dedicated or host
tenancy. Because some instance types, such as t2, are available only with default tenancy, the
Puppet master instance type might not be supportable by the specified VPC, and server creation
fails.

Solution: If you choose a VPC that has a non-default tenancy, use an m4 instance type, which can
support dedicated tenancy.

Unable to create the server's Amazon EC2 instance

Problem: Server creation failed with an error message similar to the following: "The following
resource(s) failed to create: [EC2Instance]. Failed to receive 1 resource signal(s) within the specified
duration."

Cause: This is most likely because the EC2 instance doesn’t have network access.

Solution: Ensure the instance has outbound Internet access, and the AWS service agent is able to
issue commands. Be sure that your VPC (a VPC with a single public subnet) has DNS resolution
enabled, and that your subnet has the Auto-assign Public IP setting enabled.

Service role error prevents server creation

Problem: Server creation fails with an error message that states, "Not authorized to perform
sts:AssumeRole."

Cause: This can occur when the service role you are using lacks adequate permissions to create a
new server.

Solution: Open the OpsWorks for Puppet Enterprise console; use the console to generate a new
service role and an instance profile role. If you would prefer to use your own service role, attach
the AWSOpsWorksCMServiceRole policy to the role. Verify that opsworks-cm.amazonaws.com is

Troubleshooting specific errors API Version 2013-02-18 98

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html

AWS OpsWorks User Guide

listed among services in the role's Trust relationships. Verify that the service role that is associated
with the Puppet master has the AWSOpsWorksCMServiceRole managed policy attached.

Elastic IP address limit exceeded

Problem: Server creation fails with an error message that states, "The following resource(s) failed
to create: [EIP, EC2Instance]. Resource creation cancelled, the maximum number of addresses has
been reached."

Cause: This occurs when your account has used the maximum number of Elastic IP (EIP) addresses.
The default EIP address limit is five.

Solution: You can either release existing EIP addresses or delete ones that your account is not
actively using, or you can contact AWS Customer Support to increase the limit of EIP addresses that
is associated with your account.

Unattended node association fails

Problem: Unattended, or automatic, association of new Amazon EC2 nodes is failing. Nodes
that should have been added to the Puppet master are not showing up in the Puppet Enterprise
dashboard.

Cause: This can occur when you do not have an IAM role set up as an instance profile that permits
opsworks-cm API calls to communicate with new EC2 instances.

Solution: Attach a policy to your EC2 instance profile that allows the AssociateNode and
DescribeNodeAssociationStatus API calls to work with EC2, as described in Adding Nodes
Automatically in OpsWorks for Puppet Enterprise.

System maintenance fails

AWS OpsWorks CM performs weekly system maintenance to ensure that the latest AWS-tested
versions of Puppet Server, including security updates, are always running on an OpsWorks for
Puppet Enterprise server. If, for any reason, system maintenance fails, AWS OpsWorks CM notifies
you of the failure. For more information about system maintenance, see System Maintenance in
OpsWorks for Puppet Enterprise.

This section describes possible reasons for failure and suggests solutions.

Topics

• Service role or instance profile error prevents system maintenance

Troubleshooting specific errors API Version 2013-02-18 99

AWS OpsWorks User Guide

Service role or instance profile error prevents system maintenance

Problem: System maintenance fails with an error message that states, "Not authorized to perform
sts:AssumeRole", or a similar error message about permissions.

Cause: This can occur when either the service role or instance profile you are using lacks adequate
permissions to perform system maintenance on the server.

Solution: Be sure that your service role and instance profile have all required permissions.

1. Be sure that your service role has all required permissions.

a. On the Settings page for your server, in Network and security, choose the link for the
service role that the server is using. This opens the service role for viewing in the IAM
console.

b. On the Permissions tab, verify that AWSOpsWorksCMServiceRole is attached to the
service role. If AWSOpsWorksCMServiceRole is not listed, add this policy to the role.

c. Verify that opsworks-cm.amazonaws.com is listed among services in the role's Trust
relationships. For more information about how to use trust policies with roles, see
Modifying a role (console), or the AWS Security Blog post, How to use trust policies with
IAM roles.

2. Be sure that your instance profile has all required permissions.

a. On the Settings page for your server, in Network and security, choose the link for the
instance profile that the server is using. This opens the instance profile for viewing in the
IAM console.

b. On the Permissions tab, verify that AmazonEC2RoleforSSM and
AWSOpsWorksCMInstanceProfileRole are both in the Permissions policies list. If one
or both aren't listed, add these managed policies manually to the role.

c. On the Trust relationships tab, verify that the service role has a trust policy that trusts
the ec2.amazonaws.com service to assume roles on your behalf. For more information
about how to use trust policies with roles, see Modifying a role (console), or the AWS
Security Blog post, How to use trust policies with IAM roles.

Additional help and support

If you do not see your specific problem described in this topic, or you have tried the suggestions in
this topic and are still having problems, visit the AWS OpsWorks forums.

Additional help and support API Version 2013-02-18 100

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/
https://forums.aws.amazon.com/forum.jspa?forumID=153&start=0

AWS OpsWorks User Guide

You can also visit the AWS Support Center. The AWS Support Center is the hub for creating
and managing AWS Support cases. The AWS Support Center also includes links to other helpful
resources, such as forums, technical FAQs, service health status, and AWS Trusted Advisor.

Additional help and support API Version 2013-02-18 101

https://console.aws.amazon.com/support/home#/

AWS OpsWorks User Guide

AWS OpsWorks for Chef Automate

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

AWS OpsWorks for Chef Automate lets you run a Chef Automate server in AWS. You can provision
a Chef server within minutes, and let AWS OpsWorks for Chef Automate handle its operations,
backups, restorations, and software upgrades. AWS OpsWorks for Chef Automate frees you to
focus on core configuration management tasks, instead of managing a Chef server.

A Chef Automate server manages the configuration of nodes in your environment by instructing
chef-client which Chef recipes to run on the nodes, stores information about nodes, and serves
as a central repository for your Chef cookbooks. AWS OpsWorks for Chef Automate provides Chef
servers that include premium features of Chef Automate: Chef Infra and Chef InSpec.

An AWS OpsWorks for Chef Automate server runs on an Amazon Elastic Compute Cloud instance.
AWS OpsWorks for Chef Automate servers are configured to run the newest version of Amazon
Linux (Amazon Linux 2). For information about what has changed in this version of Chef Automate,
see the Chef Automate Release Notes. The following table describes the Chef components that are
installed on an AWS OpsWorks for Chef Automate server.

Component name Description Version installed on AWS
OpsWorks for Chef Automate
server

Chef Automate Chef Automate is an
enterprise server software
package that provides
automated workflow for
continuous deployment,
and insights about managed
nodes in a web-based

2.0

API Version 2013-02-18 102

https://www.chef.io/automate/
https://docs.chef.io/chef_client.html
https://automate.chef.io/release-notes/?v=20190415203801

AWS OpsWorks User Guide

Component name Description Version installed on AWS
OpsWorks for Chef Automate
server

management console.
Chef Automate delivers
infrastructure automatio
n by including Chef Infra,
security and compliance
information and enforceme
nt by including Chef InSpec,
and automated deployment
by including Chef Habitat.

For more information about
Chef Automate, see Chef
Automate on the Chef
website.

Chef Infra Formerly called Chef Server,
Chef Infra Server uses the
Chef Infra Client (chef-clie
nt) agent to continuou
sly apply configurations to
managed nodes to maintain
a desired state.

For more information about
Infra, see Chef Infra on the
Chef website.

12.x

API Version 2013-02-18 103

https://www.chef.io/products/automate/
https://www.chef.io/products/automate/
https://www.chef.io/products/chef-infra/

AWS OpsWorks User Guide

Component name Description Version installed on AWS
OpsWorks for Chef Automate
server

Chef InSpec Chef InSpec describes
security and compliance
rules that can be shared
between software engineers
, operations, and security
engineers. Compliance,
security, and other policy
requirements form the
framework for automated
tests that the chef-clie
nt agent can run against
managed nodes, ensuring
consistent enforcement of
standards.

For more information about
InSpec, see Chef InSpec on
the Chef website.

3.9.0

The minimum supported version of chef-client on nodes associated with an AWS OpsWorks for
Chef Automate server is 13.x. We recommend running at least 14.10.9, or the most current, stable
chef-client version.

When new minor versions of Chef software become available, system maintenance is designed
to update the minor version of Chef Automate and Chef Server on the server automatically,
as soon as it passes AWS testing. AWS performs extensive testing to verify that Chef upgrades
are production-ready and do not disrupt existing customer environments, so there can be lags
between Chef software releases and their availability for application to existing OpsWorks for Chef
Automate servers. System maintenance also upgrades your server to the newest version of Amazon
Linux.

You can connect any on-premises computer or EC2 instance that is running a supported operating
system and has network access to an AWS OpsWorks for Chef Automate server. For a list of

API Version 2013-02-18 104

https://www.chef.io/products/chef-inspec/
https://downloads.chef.io/chef/stable
https://downloads.chef.io/chef/stable

AWS OpsWorks User Guide

supported operating systems for nodes that you want to manage, see the Chef website. The chef-
client agent software is installed on nodes that you want to manage with a Chef server.

Topics

• Region Support for AWS OpsWorks for Chef Automate

• AWS OpsWorks for Chef Automate End of Life FAQs

• Upgrade an AWS OpsWorks for Chef Automate Server to Chef Automate 2

• Getting Started with AWS OpsWorks for Chef Automate

• Create an AWS OpsWorks for Chef Automate Server by using AWS CloudFormation

• Update an AWS OpsWorks for Chef Automate Server to Use a Custom Domain

• Regenerate the starter kit for an AWS OpsWorks for Chef Automate server

• Working with Tags on AWS OpsWorks for Chef Automate Resources

• Back Up and Restore an AWS OpsWorks for Chef Automate Server

• System Maintenance in AWS OpsWorks for Chef Automate

• Compliance Scans in AWS OpsWorks for Chef Automate

• Disassociate a Node from an AWS OpsWorks for Chef Automate Server

• Delete an AWS OpsWorks for Chef Automate Server

• Reset Chef Automate Dashboard Credentials

• Logging AWS OpsWorks for Chef Automate API Calls with AWS CloudTrail

• Troubleshooting AWS OpsWorks for Chef Automate

Region Support for AWS OpsWorks for Chef Automate

The following regional endpoints support AWS OpsWorks for Chef Automate servers. AWS
OpsWorks for Chef Automate creates resources that are associated with your Chef servers, such as
instance profiles, users, and service roles, in the same regional endpoint as your Chef server. Your
Chef server must be in a VPC. You can use a VPC that you create or already have, or use the default
VPC.

• US East (Ohio) Region

• US East (N. Virginia) Region

• US West (N. California) Region

Region Support for AWS OpsWorks for Chef Automate API Version 2013-02-18 105

https://docs.chef.io/platforms.html
https://docs.chef.io/chef_client.html
https://docs.chef.io/chef_client.html

AWS OpsWorks User Guide

• US West (Oregon) Region

• Asia Pacific (Tokyo) Region

• Asia Pacific (Singapore) Region

• Asia Pacific (Sydney) Region

• Europe (Frankfurt) Region

• Europe (Ireland) Region

AWS OpsWorks for Chef Automate End of Life FAQs

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution.

Topics

• How will existing users be affected by this End of Life?

• What happens to my servers if I don’t take any action?

• What alternatives can I transition to?

• Is the service still accepting new customers?

• Will the End of Life affect all AWS Regions at the same time?

• What level of technical support is available?

• I am a current customer of OpsWorks for Chef Automate and I need to launch a server in an
account which was not using the service previously. Am I able to do this?

• Will there be any major feature releases over the next year?

How will existing users be affected by this End of Life?

Existing customers will be unaffected until May 5, 2024, the End of Life date for OpsWorks for Chef
Automate. After the End of Life date, customers will no longer be able to manage their servers
using the OpsWorks console or API.

End of Life FAQs API Version 2013-02-18 106

AWS OpsWorks User Guide

What happens to my servers if I don’t take any action?

Starting May 5, 2024, you will no longer be able to manage your servers using the OpsWorks
console or API. At that time, we will stop performing any ongoing management functions for your
servers such as backups or maintenance. To limit the impact to customers, we will leave any EC2
instances running that are backing up Chef Automate servers, but their licenses will no longer be
valid as usage is no longer covered (or billed for) under the OpsWorks for Chef Automate service
agreement with Chef. You will need to contact Chef to obtain a new license. When you contact
Chef, be sure to tell them you are an existing OpsWorks for Chef Automate customer and you are
transitioning from OpsWorks.

What alternatives can I transition to?

AWS and Progress Chef recommend you migrate to their new Chef SaaS offering so that you
can continue to benefit from a fully-managed Chef Automate service. To get started with Chef
SaaS, you can contact Chef to obtain documentation about how to setup a Chef SaaS account and
transition your data and nodes.

If Chef SaaS will not meet your needs because you prefer to run Chef Automate on EC2 instances
in AWS accounts you control, Chef provides multiple options including an AWS Marketplace Bring
Your Own License (BYOL) model and self-hosting on EC2. You can contact Progress Chef for more
information about how to execute such a transition.

Is the service still accepting new customers?

No. AWS OpsWorks for Chef Automate is no longer accepting new customers and only existing
customers are able to launch new servers at this time.

Will the End of Life affect all AWS Regions at the same time?

Yes. The API and Console will reach End of Life and be unusable as of May 5, 2024 in all AWS
Regions. For information about the AWS Regions where AWS OpsWorks for Chef Automate is
available, see AWS Regional Services List.

What level of technical support is available?

AWS will continue to provide the same level of support for OpsWorks for Chef Automate that
customers have today up until the End of Life date. If you have questions or concerns, you can

What happens to my servers if I don’t take any action? API Version 2013-02-18 107

https://www.chef.io/products/chef-saas/aws-opsworks-support
https://www.chef.io/products/chef-saas/aws-opsworks-support
https://aws.amazon.com/marketplace/pp/prodview-r26bs6uknftps
https://aws.amazon.com/marketplace/pp/prodview-r26bs6uknftps
https://www.chef.io/products/chef-saas/aws-opsworks-support
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS OpsWorks User Guide

contact the AWS Support Team on AWS re:Post or through AWS Premium Support. For transition
support, we recommend that customers contact Progress Chef.

I am a current customer of OpsWorks for Chef Automate and I need
to launch a server in an account which was not using the service
previously. Am I able to do this?

Generally not, unless there are exceptional circumstances to do so. If you have a special situation,
reach out to the AWS Support Team on AWS re:Post or through AWS Premium Support with the
details and justification for this and we will review your request.

Will there be any major feature releases over the next year?

No. As the service is reaching End of Life, we will not release any new features. However, we will
continue to make security improvements and manage servers as expected until the End of Life
date.

Upgrade an AWS OpsWorks for Chef Automate Server to Chef
Automate 2

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

Prerequisites for Upgrading to Chef Automate 2

Before you get started, be sure you understand the new features that Chef Automate 2 adds, and
features that Chef Automate 2 does not support. For information about the new and unsupported
features in Chef Automate 2, see the Chef Automate 2 documentation on the Chef website.

A server running Chef Automate 1 must have had at least one successful maintenance run after
November 1, 2019 to be eligible for upgrade.

I am a current customer of OpsWorks for Chef Automate and I need to launch a server in an account
which was not using the service previously. Am I able to do this?

API Version 2013-02-18 108

https://repost.aws/
https://aws.amazon.com/support
https://www.chef.io/products/chef-saas/aws-opsworks-support
https://repost.aws/
https://aws.amazon.com/support
https://automate.chef.io/docs/upgrade/#considerations

AWS OpsWorks User Guide

As with any maintenance operation on your AWS OpsWorks for Chef Automate server, the server is
offline during the upgrade. You should plan for up to three hours of downtime during the upgrade
process.

You need the sign-in credentials for this server for the Chef Automate dashboard website. When
the upgrade is finished, you should sign in to the Chef Automate dashboard and verify that your
nodes and configuration information are not changed.

Important

When you are ready to upgrade your AWS OpsWorks for Chef Automate server to Chef
Automate 2, use only the instructions here to upgrade. Because AWS OpsWorks for Chef
Automate automates many of the upgrade processes, such as backup creation, do not
follow upgrade instructions on the Chef website.

About the Upgrade Process

During the upgrade process, your server is backed up before starting upgrade and after finishing
the upgrade. The following backups are created:

• A backup of the server when it's still running Chef Automate 1 (version 12.17.33).

• A backup of the server after upgrade is finished and the server is running Chef Automate 2
(version 2019-08).

The upgrade process terminates the Amazon EC2 instance that the server was using when it ran
Chef Automate 1. A new instance is created to run the Chef Automate 2 server.

Upgrade to Chef Automate 2 (Console)

1. Sign in to the AWS Management Console and open the AWS OpsWorks console at https://
console.aws.amazon.com/opsworks/.

2. In the left navigation pane, choose AWS OpsWorks for Chef Automate.

3. Choose a server to view its properties page. A blue banner at the top of the page should
indicate whether the server is eligible for upgrade to Chef Automate 2.

About the Upgrade Process API Version 2013-02-18 109

https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Note

A server running Chef Automate 1 must have had at least one successful maintenance
run after November 1, 2019 to be eligible for upgrade.

4. If the server is eligible for upgrade, choose Start upgrade.

5. Allow up to three hours for upgrade. During the upgrade process, the properties page displays
server status as Under maintenance.

6. When the upgrade is finished, the properties page displays the following two messages:
Successfully upgraded to Automate 2 and Maintenance completed successfully. The server
status should be HEALTHY.

7. Sign in to the Chef Automate dashboard with your existing credentials, and verify that your
nodes are reporting correctly.

Upgrade to Chef Automate 2 (CLI)

1. (Optional) If you aren't sure which of your AWS OpsWorks for Chef Automate servers are
eligible for upgrade, run the following command. Be sure to add the --region parameter if
you want to list AWS OpsWorks for Chef Automate servers in an AWS Region that is different
from your default AWS Region.

aws opsworks-cm describe-servers

In the results, look for the a value of true for the attribute
CHEF_MAJOR_UPGRADE_AVAILABLE. This indicates that the server is eligible for upgrade to
Chef Automate 2. Make a note of the names of AWS OpsWorks for Chef Automate servers that
are eligible for upgrade.

2. Run the following command, replacing server_name with the name of an AWS OpsWorks for
Chef Automate server. To upgrade to Chef Automate 2 instead of performing routine system
maintenance, add the CHEF_MAJOR_UPGRADE engine attribute, as shown in the command.
Add the --region parameter if the target server is not in your default AWS Region. You can
only upgrade one server per command.

aws opsworks-cm start-maintenance --server-name server_name --engine-attributes
 Name=CHEF_MAJOR_UPGRADE,Value=true --region region

Upgrade to Chef Automate 2 (CLI) API Version 2013-02-18 110

AWS OpsWorks User Guide

If AWS OpsWorks for Chef Automate cannot upgrade the server for any reason, this command
results in a validation exception.

3. Allow up to three hours for the upgrade. You can check the upgrade status periodically by
running the following command.

aws opsworks-cm describe-servers --server-name server_name

In the results, look for the Status value. A Status of UNDER_MAINTENANCE means that the
upgrade is still in progress. A successful upgrade returns messages similar to the following.

2019/10/24 00:27:56 UTC Successfully upgraded to Automate 2.
2019/10/23 23:50:38 UTC Upgrading Chef server from Automate 1 to Automate
 2

If the upgrade was unsuccessful, AWS OpsWorks for Chef Automate automatically rolls back
your server to Chef Automate 1.

If the upgrade was successful but the server is not functioning the same as before the upgrade
(for example, if managed nodes are not reporting), you can roll the server back manually. For
manual rollback information, see Roll Back an AWS OpsWorks for Chef Automate Server to
Chef Automate 1 (CLI).

Roll Back an AWS OpsWorks for Chef Automate Server to Chef
Automate 1 (CLI)

If the upgrade process fails, AWS OpsWorks for Chef Automate automatically rolls your server
back to Chef Automate 1. If the upgrade was successful but the server is not functioning the same
as before the upgrade, you can roll your AWS OpsWorks for Chef Automate server back to Chef
Automate 1 manually by using the AWS CLI.

1. Run the following command to show the BackupId of the last backup performed on your
server before you attempted the upgrade. Add the --region parameter if your server is in an
AWS Region that is different from your default AWS Region.

aws opsworks-cm describe-backups server_name

Roll Back an AWS OpsWorks for Chef Automate Server to Chef Automate 1 (CLI) API Version 2013-02-18 111

AWS OpsWorks User Guide

Backup IDs are in the format ServerName-yyyyMMddHHmmssSSS. Look for the following Chef
Automate 1 properties in the results.

"Engine": "Chef"
"EngineVersion": "12.17.33"

2. Run the following command, using the backup ID you returned in step 1 as the value of --
backup-id.

aws opsworks-cm restore-server --server-name server_name --backup-id ServerName-
yyyyMMddHHmmssSSS

Allow between 20 minutes and three hours to restore the server, depending on the amount
of data you stored on the server. During the restore operation, your server has a status of
RESTORING. This status is displayed on the server's properties page in the AWS Management
Console, and returned in the results of the describe-servers command.

3. After restoration is finished, the console displays the message, Restore completed
successfully. Your AWS OpsWorks for Chef Automate server is online, and the same as it was
before you started the upgrade process.

See Also

• System Maintenance in AWS OpsWorks for Chef Automate

• Restore an AWS OpsWorks for Chef Automate Server from a Backup

• DescribeServers in the AWS OpsWorks API Reference

• StartMaintenance in the AWS OpsWorks API Reference

Getting Started with AWS OpsWorks for Chef Automate

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become

See Also API Version 2013-02-18 112

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DescribeServers.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_StartMaintenance.html

AWS OpsWorks User Guide

unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

AWS OpsWorks for Chef Automate lets you run a Chef Automate server in AWS. You can provision a
Chef server in about 15 minutes.

Starting May 3, 2021, AWS OpsWorks for Chef Automate stores some Chef Automate server
attributes in AWS Secrets Manager. For more information, see Integration with AWS Secrets
Manager.

The following walkthrough helps you create your first Chef server in AWS OpsWorks for Chef
Automate.

Prerequisites

Before you begin, you must complete the following prerequisites.

Topics

• Set Up a VPC

• Prerequisites for Using a Custom Domain (Optional)

• Set Up an EC2 Key Pair (Optional)

Set Up a VPC

Your AWS OpsWorks for Chef Automate server must operate in an Amazon Virtual Private Cloud.
You can add it to an existing VPC, use the default VPC, or create a new VPC to contain the server.
For information about Amazon VPC and how to create a new VPC, see the Amazon VPC Getting
Started Guide.

If you create your own VPC, or use an existing one, the VPC should have the following settings or
properties.

• The VPC should have at least one subnet.

If your AWS OpsWorks for Chef Automate server will be publicly accessible, make the subnet
public, and enable Auto-assign public IP.

• DNS resolution should be enabled.

Prerequisites API Version 2013-02-18 113

https://www.chef.io/automate/
https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/

AWS OpsWorks User Guide

• On the subnet, enable Auto-assign public IP.

If you are unfamiliar with creating VPCs or running your instances in them, you can run the
following AWS CLI command to create a VPC with a single public subnet, by using an AWS
CloudFormation template that AWS OpsWorks provides for you. If you prefer to use the AWS
Management Console, you can also upload the template to the AWS CloudFormation console.

aws cloudformation create-stack --stack-name OpsWorksVPC --template-url https://
s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-vpc.yaml

Prerequisites for Using a Custom Domain (Optional)

You can set up your Chef Automate server on your own domain, specifying a public endpoint in a
custom domain to use as the endpoint of your server. When you use a custom domain, all of the
following are required, as described in detail in this section.

Topics

• Set Up a Custom Domain

• Get a Certificate

• Get a Private Key

Set Up a Custom Domain

To run your Chef Automate server on your own custom domain, you will need a public endpoint of
a server, such as https://aws.my-company.com. If you specify a custom domain, you must also
provide a certificate and a private key, as described in the preceding sections.

To access the server after you create it, add a CNAME DNS record in your preferred DNS service.
This record must point the custom domain to the endpoint (the value of the server's Endpoint
attribute) that is generated by the Chef Automate server creation process. You cannot access the
server by using the generated Endpoint value if the server is using a custom domain.

Get a Certificate

To set up your Chef Automate server on your own custom domain, you need A PEM-formatted
HTTPS certificate. This can be be a single, self-signed certificate, or a certificate chain. As you
complete the Create Chef Automate server workflow, if you specify this certificate, you must also
provide a custom domain and a private key.

Prerequisites API Version 2013-02-18 114

https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-vpc.yaml

AWS OpsWorks User Guide

The following are requirements for the certificate value:

• You can provide either a self-signed, custom certificate, or the full certificate chain.

• The certificate must be a valid X509 certificate, or a certificate chain in PEM format.

• The certificate must be valid at the time of upload. A certificate can't be used before its validity
period begins (the certificate's NotBefore date), or after it expires (the certificate's NotAfter
date).

• The certificate’s common name or subject alternative names (SANs), if present, must match the
custom domain value.

• The certificate must match the value of the Custom private key field.

Get a Private Key

To set up your Chef Automate server on your own custom domain, you need a private key in PEM
format for connecting to the server by using HTTPS. The private key must not be encrypted; it
cannot be protected by a password or passphrase. If you specify a custom private key, you must
also provide a custom domain and a certificate.

Set Up an EC2 Key Pair (Optional)

An SSH connection is not necessary or recommended for typical management of the Chef server;
you can use knife commands to perform most management tasks on your Chef server.

An EC2 key pair is required to connect to your server by using SSH in the event that you lose or
want to change the sign-in password for the Chef Automate dashboard. You can use an existing
key pair, or create a new key pair. For more information about how to create a new EC2 key pair,
see Amazon EC2 Key Pairs.

If you don't need an EC2 key pair, you are ready to create a Chef server.

Create a Chef Automate Server

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

Create a Chef Automate Server API Version 2013-02-18 115

https://docs.chef.io/knife.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

You can create a Chef server by using the AWS OpsWorks for Chef Automate console, or the AWS
CLI.

Topics

• Create a Chef Automate server in the AWS Management Console

• Create a Chef Automate server by using the AWS CLI

Create a Chef Automate server in the AWS Management Console

1. Sign in to the AWS Management Console and open the AWS OpsWorks console at https://
console.aws.amazon.com/opsworks/.

2. On the AWS OpsWorks home page, choose Go to OpsWorks for Chef Automate.

3. On the AWS OpsWorks for Chef Automate home page, choose Create Chef Automate server.

Create a Chef Automate Server API Version 2013-02-18 116

https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

4. On the Set name, region, and type page, specify a name for your server. Chef server names
can be a maximum of 40 characters, and can contain only alphanumeric characters and dashes.
Select a supported region, and then choose an instance type that supports the number of
nodes that you want to manage. You can change the instance type after your server has been
created, if needed. For this walkthrough, we are creating an m5.large instance type in the US
West (Oregon) Region. Choose Next.

5. On the Configure server page, leave the default selection in the SSH key drop-down list,
unless you want to specify a key pair name.

Create a Chef Automate Server API Version 2013-02-18 117

AWS OpsWorks User Guide

6. For Specify server endpoint, leave the default, Use an automatically-generated endpoint
and then choose Next, unless you want your server on a custom domain of your own. To
configure a custom domain, go on to the next step.

7. To use a custom domain, for Specify server endpoint, choose Use a custom domain from the
drop-down list.

Create a Chef Automate Server API Version 2013-02-18 118

AWS OpsWorks User Guide

a. For Fully qualified domain name (FQDN), specify an FQDN. You must own the domain
name that you want to use.

b. For SSL certificate, paste in the entire PEM-formatted certificate, beginning with –––--
BEGIN CERTIFICATE----- and ending with –––--END CERTIFICATE-----. The SSL
certificate subject must match the FQDN you entered in the preceding step.

c. For SSL private key, paste in the entire RSA private key, beginning with –––--BEGIN
RSA PRIVATE KEY----- and ending with –––--END RSA PRIVATE KEY-----. The
SSL private key must match the public key in the SSL certificate that you entered in the
preceding step. Choose Next.

8. On the Configure Advanced Settings page, in the Network and Security area, choose a VPC,
subnet, and one or more security groups. The following are requirements for your VPC:

• The VPC must have at least one public subnet.

• DNS resolution must be enabled.

• Auto-assign public IP must be enabled on public subnets.

AWS OpsWorks can generate a security group, service role, and instance profile for you, if
you do not already have ones that you want to use. Your server can be a member of multiple

Create a Chef Automate Server API Version 2013-02-18 119

AWS OpsWorks User Guide

security groups. You cannot change network and security settings for the Chef server after you
have left this page.

9. In the System maintenance section, set the day and hour that you want system maintenance
to begin. Because you should expect the server to be offline during system maintenance,
choose a time of low server demand within regular office hours. Connected nodes enter a
pending-server state until maintenance is complete.

The maintenance window is required. You can change the start day and time later by using the
AWS Management Console, AWS CLI, or the APIs.

10. Configure backups. By default, automatic backups are enabled. Set a preferred frequency and
hour for automatic backup to start, and set the number of backup generations to store in
Amazon Simple Storage Service. A maximum of 30 backups are kept; when the maximum is
reached, AWS OpsWorks for Chef Automate deletes the oldest backups to make room for new
ones.

Create a Chef Automate Server API Version 2013-02-18 120

AWS OpsWorks User Guide

11. (Optional) In Tags, add tags to the server and related resources, such as the EC2 instance,
Elastic IP address, security group, S3 bucket, and backups. For more information about tagging
an AWS OpsWorks for Chef Automate server, see Working with Tags on AWS OpsWorks for
Chef Automate Resources.

12. When you are finished configuring advanced settings, choose Next.

13. On the Review page, review your choices. When you are ready to create the server, choose
Launch.

While you are waiting for AWS OpsWorks to create your Chef server, go on to Configure
the Chef Server Using the Starter Kit and download the Starter Kit and the Chef Automate
dashboard credentials. Do not wait until your server is online to download these items.

When server creation is finished, your Chef server is available on the AWS OpsWorks for
Chef Automate home page, with a status of online. After the server is online, the Chef
Automate dashboard is available on the server's domain, at a URL in the following format:
https://your_server_name-random.region.opsworks-cm.io.

Create a Chef Automate server by using the AWS CLI

Creating an AWS OpsWorks for Chef Automate server by running AWS CLI commands differs
from creating a server in the console. In the console, AWS OpsWorks creates a service role and
security group for you, if you do not specify existing ones that you want to use. In the AWS CLI,
AWS OpsWorks can create a security group for you if you do not specify one, but it does not
automatically create a service role; you must provide a service role ARN as part of your create-
server command. In the console, while AWS OpsWorks is creating your Chef Automate server,

Create a Chef Automate Server API Version 2013-02-18 121

AWS OpsWorks User Guide

you download the Chef Automate starter kit and the sign-in credentials for the Chef Automate
dashboard. Because you cannot do this when you create an AWS OpsWorks for Chef Automate
server by using the AWS CLI, you use a JSON processing utility to get the sign-in credentials and
the starter kit from the results of the create-server command after your new AWS OpsWorks
for Chef Automate server is online. Alternatively, you can generate a new set of sign-in credentials
and a new starter kit in the console after your new AWS OpsWorks for Chef Automate server is
online.

If your local computer is not already running the AWS CLI, download and install the AWS CLI by
following installation instructions in the AWS Command Line Interface User Guide. This section
does not describe all parameters that you can use with the create-server command. For more
information about create-server parameters, see create-server in the AWS CLI Reference.

1. Be sure to complete the prerequisites, especially Set Up a VPC, or be sure that you have an
existing VPC that you want to use. To create your Chef Automate server, you need a subnet ID.

2. Optionally, generate a Chef pivotal key by using OpenSSL, and save the key to a secure,
convenient file on your local computer. The pivotal key is automatically generated as part of
the server creation process if you do not provide one in the create-server command. If you
want to skip this step, you can instead get the Chef Automate pivotal key from the results of
the create-server command. If you choose to generate the pivotal key using the following
commands, be sure to include the -pubout parameter, because the Chef Automate pivotal key
value is the public half of the RSA key pair. For more information, see Step 6.

umask 077
openssl genrsa -out "pivotal" 2048
openssl rsa -in "pivotal" -pubout

3. Create a service role and an instance profile. AWS OpsWorks provides an AWS CloudFormation
template that you can use to create both. Run the following AWS CLI command to create an
AWS CloudFormation stack that creates the service role and instance profile for you.

aws cloudformation create-stack --stack-name OpsWorksCMRoles --template-url
 https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-
cm-roles.yaml --capabilities CAPABILITY_NAMED_IAM

4. After AWS CloudFormation finishes creating the stack, find and copy the ARNs of service roles
in your account.

Create a Chef Automate Server API Version 2013-02-18 122

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference/opsworks-cm/create-server.html
https://www.openssl.org/

AWS OpsWorks User Guide

aws iam list-roles --path-prefix "/service-role/" --no-paginate

In the results of the list-roles command, look for service role ARN entries that resemble
the following. Make a note of the service role ARNs. You need these values to create your Chef
Automate server.

{
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROZZZZZZZZZZQG6R22HC",
 "CreateDate": "2018-01-05T20:42:20Z",
 "RoleName": "aws-opsworks-cm-ec2-role",
 "Path": "/service-role/",
 "Arn": "arn:aws:iam::000000000000:role/service-role/aws-opsworks-cm-ec2-role"
},
{
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks-cm.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROZZZZZZZZZZZZZZZ6QE",
 "CreateDate": "2018-01-05T20:42:20Z",
 "RoleName": "aws-opsworks-cm-service-role",

Create a Chef Automate Server API Version 2013-02-18 123

AWS OpsWorks User Guide

 "Path": "/service-role/",
 "Arn": "arn:aws:iam::000000000000:role/service-role/aws-opsworks-cm-service-
role"
}

5. Find and copy the ARNs of instance profiles in your account.

aws iam list-instance-profiles --no-paginate

In the results of the list-instance-profiles command, look for instance profile ARN
entries that resemble the following. Make a note of the instance profile ARNs. You need these
values to create your Chef Automate server.

{
 "Path": "/",
 "InstanceProfileName": "aws-opsworks-cm-ec2-role",
 "InstanceProfileId": "EXAMPLEDC6UR3LTUW7VHK",
 "Arn": "arn:aws:iam::123456789012:instance-profile/aws-opsworks-cm-ec2-role",
 "CreateDate": "2017-01-05T20:42:20Z",
 "Roles": [
 {
 "Path": "/service-role/",
 "RoleName": "aws-opsworks-cm-ec2-role",
 "RoleId": "EXAMPLEE4STNUQG6R22HC",
 "Arn": "arn:aws:iam::123456789012:role/service-role/aws-opsworks-cm-
ec2-role",
 "CreateDate": "2017-01-05T20:42:20Z",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
]
},

Create a Chef Automate Server API Version 2013-02-18 124

AWS OpsWorks User Guide

6. Create the AWS OpsWorks for Chef Automate server by running the create-server
command.

• The --engine value is ChefAutomate, --engine-model is Single, and --engine-
version is 12.

• The server name must be unique within your AWS account, within each region. Server names
must start with a letter; then letters, numbers, or hyphens (-) are allowed, up to a maximum
of 40 characters.

• Use the instance profile ARN and service role ARN that you copied in Steps 4 and 5.

• Valid instance types are m5.large, r5.xlarge, or r5.2xlarge. For more information
about the specifications of these instance types, see Instance Types in the Amazon EC2 User
Guide.

• The --engine-attributes parameter is optional; if you don't specify one or both
values, the server creation process generates the values for you. If you add --engine-
attributes, specify either the CHEF_AUTOMATE_PIVOTAL_KEY value that you generated
in Step 2, a CHEF_AUTOMATE_ADMIN_PASSWORD, or both.

If you do not set a value for CHEF_AUTOMATE_ADMIN_PASSWORD, a password is generated
and returned as part of the create-server response. You can also download the starter
kit again in the console, which regenerates this password. The password length is a
minimum of eight characters, and a maximum of 32. The password can contain letters,
numbers, and special characters (!/@#$%^+=_). The password must contain at least one
lower case letter, one upper case letter, one number, and one special character.

• An SSH key pair is optional, but can help you connect to your Chef Automate server if you
need to reset the Chef Automate dashboard administrator password. For more information
about creating an SSH key pair, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide.

• To use a custom domain, add the following parameters to your command. Otherwise,
the Chef Automate server creation process automatically generates an endpoint for you.
All three parameters are required to configure a custom domain. For information about
additional requirements for using these parameters, see CreateServer in the AWS OpsWorks
CM API Reference.

• --custom-domain - An optional public endpoint of a server, such as https://aws.my-
company.com.

• --custom-certificate - A PEM-formatted HTTPS certificate. The value can be be a
single, self-signed certificate, or a certificate chain.

Create a Chef Automate Server API Version 2013-02-18 125

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html

AWS OpsWorks User Guide

• --custom-private-key - A private key in PEM format for connecting to the server
by using HTTPS. The private key must not be encrypted; it cannot be protected by a
password or passphrase.

• Weekly system maintenance is required. Valid values must be specified in the following
format: DDD:HH:MM. The specified time is in coordinated universal time (UTC). If you do not
specify a value for --preferred-maintenance-window, the default value is a random,
one-hour period on Tuesday, Wednesday, or Friday.

• Valid values for --preferred-backup-window must be specified in one of the following
formats: HH:MM for daily backups, or DDD:HH:MM for weekly backups. The specified time is
in UTC. The default value is a random, daily start time. To opt out of automatic backups, add
the parameter --disable-automated-backup instead.

• For --security-group-ids, enter one or more security group IDs, separated by a space.

• For --subnet-ids, enter a subnet ID.

aws opsworks-cm create-server --engine "ChefAutomate" --engine-model "Single"
 --engine-version "12" --server-name "server_name" --instance-profile-arn
 "instance_profile_ARN" --instance-type "instance_type" --engine-attributes
 '{"CHEF_AUTOMATE_PIVOTAL_KEY":"pivotal_key","CHEF_AUTOMATE_ADMIN_PASSWORD":"password"}'
 --key-pair "key_pair_name" --preferred-maintenance-window
 "ddd:hh:mm" --preferred-backup-window "ddd:hh:mm" --security-group-
ids security_group_id1 security_group_id2 --service-role-arn "service_role_ARN" --
subnet-ids subnet_ID

The following is an example.

aws opsworks-cm create-server --engine "ChefAutomate" --engine-
model "Single" --engine-version "12" --server-name "automate-06" --
instance-profile-arn "arn:aws:iam::12345678912:instance-profile/aws-
opsworks-cm-ec2-role" --instance-type "m5.large" --engine-attributes
 '{"CHEF_AUTOMATE_PIVOTAL_KEY":"MZZE...Wobg","CHEF_AUTOMATE_ADMIN_PASSWORD":"zZZzDj2DLYXSZFRv1d"}'
 --key-pair "amazon-test" --preferred-maintenance-window "Mon:08:00" --preferred-
backup-window "Sun:02:00" --security-group-ids sg-b00000001 sg-b0000008 --service-
role-arn "arn:aws:iam::12345678912:role/service-role/aws-opsworks-cm-service-role"
 --subnet-ids subnet-300aaa00

The following example creates a Chef Automate server that uses a custom domain.

Create a Chef Automate Server API Version 2013-02-18 126

AWS OpsWorks User Guide

aws opsworks-cm create-server --engine "ChefAutomate" --engine-model "Single" --
engine-version "12" \
 --server-name "my-custom-domain-server" \
 --instance-profile-arn "arn:aws:iam::12345678912:instance-profile/aws-opsworks-
cm-ec2-role" \
 --instance-type "m5.large" \
 --engine-attributes
 '{"CHEF_AUTOMATE_PIVOTAL_KEY":"MZZE...Wobg","CHEF_AUTOMATE_ADMIN_PASSWORD":"zZZzDj2DLYXSZFRv1d"}'
 \
 --custom-domain "my-chef-automate-server.my-corp.com" \
 --custom-certificate "-----BEGIN CERTIFICATE----- EXAMPLEqEXAMPLE== -----END
 CERTIFICATE-----" \
 --custom-private-key "-----BEGIN RSA PRIVATE KEY----- EXAMPLEqEXAMPLE= -----END
 RSA PRIVATE KEY-----" \
 --key-pair "amazon-test" \
 --preferred-maintenance-window "Mon:08:00" \
 --preferred-backup-window "Sun:02:00" \
 --security-group-ids sg-b00000001 sg-b0000008 \
 --service-role-arn "arn:aws:iam::12345678912:role/service-role/aws-opsworks-cm-
service-role" \
 --subnet-ids subnet-300aaa00

The following example creates a Chef Automate server that adds two tags: Stage:
Production and Department: Marketing. For more information about adding and
managing tags on AWS OpsWorks for Chef Automate servers, see Working with Tags on AWS
OpsWorks for Chef Automate Resources in this guide.

aws opsworks-cm create-server --engine "ChefAutomate" --engine-model "Single" --
engine-version "12" \
 --server-name "my-test-chef-server" \
 --instance-profile-arn "arn:aws:iam::12345678912:instance-profile/aws-opsworks-
cm-ec2-role" \
 --instance-type "m5.large" \
 --engine-attributes
 '{"CHEF_AUTOMATE_PIVOTAL_KEY":"MZZE...Wobg","CHEF_AUTOMATE_ADMIN_PASSWORD":"zZZzDj2DLYXSZFRv1d"}'
 \
 --key-pair "amazon-test" \
 --preferred-maintenance-window "Mon:08:00" \
 --preferred-backup-window "Sun:02:00" \
 --security-group-ids sg-b00000001 sg-b0000008 \

Create a Chef Automate Server API Version 2013-02-18 127

AWS OpsWorks User Guide

 --service-role-arn "arn:aws:iam::12345678912:role/service-role/aws-opsworks-cm-
service-role" \
 --subnet-ids subnet-300aaa00 \
 --tags [{\"Key\":\"Stage\",\"Value\":\"Production\"},{\"Key\":\"Department\",
\"Value\":\"Marketing\"}]

7. AWS OpsWorks for Chef Automate takes about 15 minutes to create a new server. Do not
dismiss the output of the create-server command or close your shell session, because the
output can contain important information that is not shown again. To get passwords and the
starter kit from the create-server results, go on to the next step.

If you are using a custom domain with the server, in the output of the create-server
command, copy the value of the Endpoint attribute. The following is an example.

"Endpoint": "automate-07-exampleexample.opsworks-cm.us-east-1.amazonaws.com"

8. If you opted to have AWS OpsWorks for Chef Automate generate a key and password for you,
you can extract them in usable formats from the create-server results by using a JSON
processor such as jq. After you install jq, you can run the following commands to extract the
pivotal key, Chef Automate dashboard administrator password, and starter kit. If you did not
provide your own pivotal key and password in Step 4, be sure to save the extracted pivotal key
and administrator password in convenient but secure locations.

#Get the Chef password:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "CHEF_AUTOMATE_ADMIN_PASSWORD") | .Value'

#Get the Chef Pivotal Key:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "CHEF_AUTOMATE_PIVOTAL_KEY") | .Value'

#Get the Chef Starter Kit:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "CHEF_STARTER_KIT") | .Value' | base64 -D > starterkit.zip

9. Optionally, if you did not extract the starter kit from create-server command results, you
can download a new starter kit from the server's Properties page in the AWS OpsWorks for
Chef Automate console. Downloading a new starter kit resets the Chef Automate dashboard
administrator password.

Create a Chef Automate Server API Version 2013-02-18 128

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

AWS OpsWorks User Guide

10. If you are not using a custom domain, go on to the next step. If you are using a custom domain
with the server, create a CNAME entry in your enterprise's DNS management tool to point your
custom domain to the AWS OpsWorks for Chef Automate endpoint that you copied in step 7.
You cannot reach or sign in to a server with a custom domain until you complete this step.

11. When the server creation process is finished, go on to the section called “Finish configuration
and upload cookbooks”.

Configure the Chef Server Using the Starter Kit

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

While Chef server creation is still in progress, open its Properties page in the AWS OpsWorks for
Chef Automate console. The first time that you work with a new Chef server, the Properties page
prompts you to download two required items. Download these items before your Chef server is
online; the download buttons are not available after a new server is online.

Finish configuration and upload cookbooks API Version 2013-02-18 129

AWS OpsWorks User Guide

• Sign-in credentials for the Chef server. You will use these credentials to sign in to the Chef
Automate dashboard, where you work with Chef Automate premium features, such as workflow
and compliance scans. AWS OpsWorks does not save these credentials; this is the last time that

Finish configuration and upload cookbooks API Version 2013-02-18 130

AWS OpsWorks User Guide

they are available for viewing and downloading. If necessary, you can change the password that
is provided with these credentials after you sign in.

• Starter Kit. The Starter Kit contains a README file with examples, a knife.rb configuration
file, and a private key for the primary, or pivotal, user. A new key pair is generated—and the old
key is reset—each time you download the Starter Kit.

In addition to the credentials that work only with the new server, the Starter Kit .zip file includes
a simple example of a Chef repository that works with any AWS OpsWorks for Chef Automate
server. In the Chef repository, you store cookbooks, roles, configuration files, and other artifacts for
managing your nodes with Chef. We recommend that you store this repository in a version control
system, such as Git, and treat it as source code. For information and examples that show how to set
up a Chef repository that is tracked in Git, see About the chef-repo in the Chef documentation.

Prerequisites

1. While server creation is still in progress, download the sign-in credentials for the Chef server,
and save them in a secure but convenient location.

2. Download the Starter Kit, and unzip the Starter Kit .zip file into your workspace directory. Do
not share the Starter Kit private key. If other users will be managing the Chef server, add them
as administrators in the Chef Automate dashboard later.

3. Download and install Chef Workstation (formerly known as the Chef Development Kit, or Chef
DK) on the computer you will use to manage your Chef server and nodes. The knife utility is
part of Chef Workstation. For instructions, see Install Chef Workstation on the Chef website.

Explore the Starter Kit Contents

The Starter Kit has the following contents.

• cookbooks/ - A directory for cookbooks that you create. The cookbooks/ folder contains the
opsworks-webserver cookbook, a wrapper cookbook that depends on the nginx cookbook
from the Chef Supermarket website. Policyfile.rb defaults to Chef supermarket as a
secondary source if cookbook dependencies are not available in the cookbooks/ directory.

• Policyfile.rb - A Ruby-based policy file that defines the cookbooks, dependencies, and
attributes that become the policy for your nodes.

Finish configuration and upload cookbooks API Version 2013-02-18 131

https://docs.chef.io/chef_repo.html
https://downloads.chef.io/products/workstation
https://docs.chef.io/knife.html
https://docs.chef.io/workstation/install_workstation/
https://supermarket.chef.io/cookbooks/nginx

AWS OpsWorks User Guide

• userdata.sh and userdata.ps1 - You can use user data files to associate nodes automatically
after launching your Chef Automate server. userdata.sh is for bootstrapping Linux-based
nodes, and userdata.ps1 is for Windows-based nodes.

• Berksfile - You can use this file if you prefer to use Berkshelf and berks commands to upload
cookbooks and their dependencies. In this walkthrough, we use Policyfile.rb and Chef
commands to upload cookbooks, dependencies, and attributes.

• README.md, a Markdown-based file that describes how to use the Starter Kit to set up your Chef
Automate server for the first time.

• .chef is a hidden directory that contains a knife configuration file (knife.rb) and a secret
authentication key file (.pem).

• .chef/knife.rb - A knife configuration file (knife.rb). The knife.rb file is configured so
that Chef's knife tool operations run against the AWS OpsWorks for Chef Automate server.

• .chef/ca_certs/opsworks-cm-ca-2020-root.pem - A certification authority (CA)-signed
SSL private key that is provided by AWS OpsWorks. This key allows the server to identify itself
to the Chef Infra client agent on nodes that your server manages.

Set Up Your Chef Repository

A Chef repository contains several directories. Each directory in the Starter Kit contains a README
file that describes the directory's purpose, and how to use it for managing your systems with Chef.
There are two ways to get cookbooks installed on your Chef server: running knife commands, or
running a Chef command to upload a policy file (Policyfile.rb) to your server that downloads
and installs specified cookbooks. This walkthrough uses Chef commands and Policyfile.rb to
install cookbooks on your server.

1. Create a directory on your local computer for storing cookbooks, such as chef-repo. After
you add cookbooks, roles, and other files to this repository, we recommend that you upload or
store it in a secure, versioned system, such as CodeCommit, Git, or Amazon S3.

2. In the chef-repo directory, create the following directories:

• cookbooks/ - Stores cookbooks.

• roles/ - Stores roles in .rb or .json formats.

• environments/ - Stores environments in .rb or .json formats.

Finish configuration and upload cookbooks API Version 2013-02-18 132

https://docs.chef.io/config_rb_knife.html
https://docs.chef.io/knife.html

AWS OpsWorks User Guide

Use Policyfile.rb to Get Cookbooks from a Remote Source

In this section, edit Policyfile.rb to specify cookbooks, then run a Chef command to upload
the file to your server and install cookbooks.

1. View Policyfile.rb in your Starter Kit. By default, Policyfile.rb includes the
opsworks-webserver wrapper cookbook , which depends on the nginx cookbook available
on the Chef Supermarket website. The nginx cookbook installs and configures a web server
on managed nodes. The required chef-client cookbook, which installs the Chef Infra client
agent on managed nodes, is also specified.

Policyfile.rb also points to the optional Chef Audit cookbook, which you can use to set
up compliance scans on nodes. For more information about setting up compliance scans
and getting compliance results for managed nodes, see Compliance Scans in AWS OpsWorks
for Chef Automate. If you do not want to configure compliance scans and auditing right
now, delete 'audit' from the run_list section, and do not specify the audit cookbook
attributes at the end of the file.

Policyfile.rb - Describe how you want Chef to build your system.

For more information about the Policyfile feature, visit

https://docs.chef.io/policyfile.html

A name that describes what the system you're building with Chef does.

name 'opsworks-demo-webserver'

The cookbooks directory is the preferred source for external cookbooks

default_source :chef_repo, "cookbooks/" do |s|

 s.preferred_for "nginx", "windows", "chef-client", "yum-epel", "seven_zip",
 "build-essential", "mingw", "ohai", "audit", "logrotate", "cron"

end
Alternative source
default_source :supermarket

Finish configuration and upload cookbooks API Version 2013-02-18 133

https://supermarket.chef.io/cookbooks/nginx

AWS OpsWorks User Guide

run_list: chef-client runs these recipes in the order specified.

run_list 'chef-client',
 'opsworks-webserver',
 'audit'
add 'ssh-hardening' to your runlist to fix compliance issues detected by the ssh-
baseline profile

Specify a custom source for a single cookbook:

cookbook 'opsworks-webserver', path: 'cookbooks/opsworks-webserver'

Policyfile defined attributes

Define audit cookbook attributes
default["opsworks-demo"]["audit"]["reporter"] = "chef-server-automate"
default["opsworks-demo"]["audit"]["profiles"] = [
 {
 "name": "DevSec SSH Baseline",
 "compliance": "admin/ssh-baseline"
 }
]

The following is an example of Policyfile.rb without the audit cookbook and attributes,
if you want to configure only the nginx web server for now.

Policyfile.rb - Describe how you want Chef to build your system.
#
For more information on the Policyfile feature, visit
https://docs.chef.io/policyfile.html

A name that describes what the system you're building with Chef does.
name 'opsworks-demo-webserver'

Where to find external cookbooks:
default_source :supermarket

run_list: chef-client will run these recipes in the order specified.
run_list 'chef-client',
 'opsworks-webserver'

Specify a custom source for a single cookbook:

Finish configuration and upload cookbooks API Version 2013-02-18 134

AWS OpsWorks User Guide

cookbook 'opsworks-webserver', path: 'cookbooks/opsworks-webserver'

If you make changes to Policyfile.rb, be sure to save the file.

2. Download and install the cookbooks defined in Policyfile.rb.

chef install

All cookbooks are versioned in the cookbook's metadata.rb file. Each time you change a
cookbook, you must raise the version of the cookbook that is in its metadata.rb.

3. If you have chosen to configure compliance scans, and kept the audit cookbook information
in the policy file, push the policy opsworks-demo to your server.

chef push opsworks-demo

4. If you completed step 3, verify the installation of your policy. Run the following command.

chef show-policy

The results should resemble the following:

opsworks-demo-webserver
=======================
* opsworks-demo: ec0fe46314

5. You are now ready to add or bootstrap nodes to your Chef Automate server. You can automate
the association of nodes by following steps in Add nodes automatically in AWS OpsWorks for
Chef Automate, or add nodes one at a time by following steps in Add nodes individually.

(Alternate) Use Berkshelf to Get Cookbooks from a Remote Source

Berkshelf is a tool for managing cookbooks and their dependencies. If you prefer to use Berkshelf
instead of Policyfile.rb to install cookbooks into local storage, use the procedure in this
section instead of the preceding section. You can specify which cookbooks and versions to use with
your Chef server and upload them. The Starter Kit contains a file named Berksfile that you can
use to list your cookbooks.

1. To get started, add the chef-client cookbook to the included Berksfile. The chef-client
cookbook configures the Chef Infra client agent software on each node that you connect to

Finish configuration and upload cookbooks API Version 2013-02-18 135

AWS OpsWorks User Guide

your Chef Automate server. To learn more about this cookbook, see Chef Client Cookbook in
the Chef Supermarket.

2. Using a text editor, append another cookbook to your Berksfile that installs a web server
application; for example, the apache2 cookbook, which installs the Apache web server. Your
Berksfile should resemble the following.

source 'https://supermarket.chef.io'
cookbook 'chef-client'
cookbook 'apache2'

3. Download and install the cookbooks on your local computer.

berks install

4. Upload the cookbook to the Chef server.

On Linux, run the following.

SSL_CERT_FILE='.chef/ca_certs/opsworks-cm-ca-2020-root.pem' berks upload

On Windows, run the following Chef Workstation command in a PowerShell session. Before
you run the command, be sure to set the execution policy in PowerShell to RemoteSigned.
Add chef shell-init to make Chef Workstation utility commands available to PowerShell.

$env:SSL_CERT_FILE="ca_certs\opsworks-cm-ca-2020-root.pem"
chef shell-init berks upload
Remove-Item Env:\SSL_CERT_FILE

5. Verify the installation of the cookbook by showing a list of cookbooks that are currently
available on the Chef Automate server. You can do this by running the following knife
command.

You are ready to add nodes to manage with the AWS OpsWorks for Chef Automate server.

knife cookbook list

Finish configuration and upload cookbooks API Version 2013-02-18 136

https://supermarket.chef.io/cookbooks/chef-client

AWS OpsWorks User Guide

(Optional) Configure knife to Work with a Custom Domain

If your Chef Automate server uses a custom domain, you might need to add the PEM certificate
of the root CA that signed your server's certificate chain, or your server PEM certificate if the
certificate is self-signed. ca_certs is a subdirectory in chef/ that contains certificate authorities
(CAs) that are trusted by the Chef knife utility.

You can skip this section if you aren't using a custom domain, or if your custom certificate is signed
by a root CA that is trusted by your operating system. Otherwise, configure knife to trust your
Chef Automate server SSL certificate, as described in the following steps.

1. Run the following command.

knife ssl check

If the results are similar to the following, skip the rest of this procedure, and go on to Add
Nodes for the Chef Server to Manage.

Connecting to host my-chef-automate-server.my-corp.com:443
 Successfully verified certificates from 'my-chef-automate-server.my-
corp.com'

If you get an error message similar to the following, go on to the next step.

Connecting to host my-chef-automate-server.my-corp.com:443
 ERROR: The SSL certificate of my-chef-automate-server.my-corp.com could
 not be verified.
 ...

2. Run knife ssl fetch to trust the certificates of your AWS OpsWorks for Chef Automate
server. Alternatively, you can manually copy the root CA PEM-formatted certificate of your
server to the directory that is the value of trusted_certs_dir in the output of knife
ssl check. By default, this directory is in .chef/ca_certs/ in the Starter Kit. Your output
should resemble the following:

WARNING: Certificates from my-chef-automate-server.my-corp.com will be fetched and
 placed in your trusted_cert
 directory (/Users/username/starterkit/.chef/../.chef/ca_certs).

Finish configuration and upload cookbooks API Version 2013-02-18 137

AWS OpsWorks User Guide

 Knife has no means to verify these are the correct certificates. You
 should
 verify the authenticity of these certificates after downloading.

 Adding certificate for my-chef-automate-server in /Users/users/
starterkit/.chef/../.chef/ca_certs/servv-aqtswxu20swzkjgz.crt
 Adding certificate for MyCorp_Root_CA in /Users/users/
starterkit/.chef/../.chef/ca_certs/MyCorp_Root_CA.crt

3. Run knife ssl check again. Your output should resemble the following:

Connecting to host my-chef-automate-server.my-corp.com:443
 Successfully verified certificates from 'my-chef-automate-server.my-
corp.com'

You are ready to use knife with your Chef Automate server.

Add Nodes for the Chef Server to Manage

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

The chef-client agent runs Chef recipes on physical or virtual computers, called nodes, that are
associated with the server. You can connect on-premises computers or instances to the Chef server
to manage, provided the nodes are running supported operating systems. Registering nodes with
the Chef server installs the chef-client agent software on those nodes.

You can use the following methods to add nodes:

• Add notes individually by running a knife command that adds, or bootstraps, an EC2 instance so
that the Chef server can manage it. For more information see Add nodes individually.

• Add nodes automatically by using a script to perform unattended association of nodes with
the Chef server. The code in the Starter Kit shows how to add nodes automatically using the

Add nodes to manage API Version 2013-02-18 138

https://docs.chef.io/chef_client.html

AWS OpsWorks User Guide

unattended method. For more information see, Add nodes automatically in AWS OpsWorks for
Chef Automate.

Topics

• Add nodes individually

• Add nodes automatically in AWS OpsWorks for Chef Automate

Add nodes individually

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

This section describes how to run a knife command that adds, or bootstraps, an EC2 instance so
that the Chef server can manage it.

The minimum supported version of chef-client on nodes associated with an AWS OpsWorks
for Chef Automate server is 13.x. We recommend running the most current, stable chef-client
version.

Topics

• (Optional) Specify the URL of your Chef Automate Server Root CA

• Supported Operating Systems

• Add Nodes with Knife

(Optional) Specify the URL of your Chef Automate Server Root CA

If your server is using a custom domain and certificate, you might need to edit the ROOT_CA_URL
variable in the userdata script with a public URL that you can use to get the root CA PEM-formatted
certificate of your server. The following AWS CLI commands upload your root CA to an Amazon S3
bucket, and generate a presigned URL that you can use for one hour.

Add nodes to manage API Version 2013-02-18 139

https://downloads.chef.io/chef/stable
https://downloads.chef.io/chef/stable

AWS OpsWorks User Guide

1. Upload the root CA PEM-formatted certificate to S3.

aws s3 cp ROOT_CA_PEM_FILE_PATH s3://bucket_name/

2. Generate a presigned URL that you can use for one hour (3600 seconds, in this example) to
download the root CA.

aws s3 presign s3://bucket_name/ROOT_CA_PEM_FILE_NAME --expires-in 3600

3. Edit the variable ROOT_CA_URL in the userdata script with the value of the pre-signed URL.

Supported Operating Systems

For the current list of supported operating systems for nodes, see the Chef website.

Add Nodes with Knife

The knife-ec2 plug-in is included with Chef Workstation. If you are more familiar with knife-
ec2, you can use it instead of knife bootstrap to provision and bootstrap new EC2instances.
Otherwise, launch a new EC2 instance, and then follow the steps in this section.

To add nodes to manage

1. Run the following knife bootstrap command. This command bootstraps an EC2 instance
to the nodes that your Chef server will manage. Note that you are instructing the Chef
server to run recipes from the nginx cookbook that you installed in the section called “Use
Policyfile.rb to Get Cookbooks from a Remote Source”. For more information about adding
nodes by running the knife bootstrap command, see Bootstrap a Node in the Chef
documentation.

The following table shows valid user names for node operating systems in the knife
command in this step. If neither root nor ec2-user works, check with your AMI provider. For
more information about connecting to Linux-based instances, see Connecting to Your Linux
Instance Using SSH in the AWS documentation.

Valid values for user names in node operating systems

Operating System Valid User Names

Amazon Linux ec2-user

Add nodes to manage API Version 2013-02-18 140

https://docs.chef.io/platforms.html
https://github.com/chef/knife-ec2
https://docs.chef.io/install_bootstrap.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html

AWS OpsWorks User Guide

Operating System Valid User Names

Red Hat Enterprise Linux 5 root or ec2-user

Ubuntu ubuntu

Fedora fedora or ec2-user

SUSE Linux root or ec2-user

knife bootstrap INSTANCE_IP_ADDRESS -N INSTANCE_NAME -x USER_NAME --sudo --run-list
 "recipe[nginx]"

2. Verify that the new node was added by running the following commands, replacing
INSTANCE_NAME with the name of the instance that you just added.

knife client show INSTANCE_NAME
knife node show INSTANCE_NAME

Add nodes automatically in AWS OpsWorks for Chef Automate

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

This topic describes how to add Amazon Elastic Compute Cloud (Amazon EC2) nodes to your Chef
server automatically. The code in the Starter Kit shows how to add nodes automatically using the
unattended method. The recommended method of unattended (or automatic) association of new
nodes is to configure the Chef Client Cookbook. You can use the userdata script in the Starter Kit,
and change either the run_list section of the userdata script, or your Policyfile.rb with
the cookbooks you want to apply to your nodes. Before you run the chef-client agent, install
the Chef Client cookbook on your Chef server, and then install the chef-client agent in service
mode with, for example, an HTTPD role, as shown in the following sample command.

Add nodes to manage API Version 2013-02-18 141

https://supermarket.chef.io/cookbooks/chef-client

AWS OpsWorks User Guide

chef-client -r "chef-client,role[httpd]"

To communicate with the Chef server, the chef-client agent software must have access to the
public key of the client node. You can generate a public-private key pair in Amazon EC2, and then
pass the public key to the AWS OpsWorks associate-node API call with the node name. The
script included in the Starter Kit gathers your organization name, server name, and server endpoint
for you. This ensures that the node is associated with the Chef server, and the chef-client agent
software that runs on the node can communicate with the server after matching the private key.

The minimum supported version of chef-client on nodes associated with an AWS OpsWorks
for Chef Automate server is 13.x. We recommend running the most current, stable chef-client
version.

For information about how to disassociate a node, see Disassociate a Node from an AWS OpsWorks
for Chef Automate Server in this guide, and disassociate-node in the AWS OpsWorks for Chef
Automate API documentation.

Topics

• Supported Operating Systems

• Step 1: Create an IAM Role to Use as Your Instance Profile

• Step 2: Install the Chef Client Cookbook

• Step 3: Create Instances by Using an Unattended Association Script

• Other Methods of Automating Repeated Runs of chef-client

• Related Topics

Supported Operating Systems

For the current list of supported operating systems for nodes, see the Chef website.

Step 1: Create an IAM Role to Use as Your Instance Profile

Create an AWS Identity and Access Management (IAM) role to use as your EC2 instance profile,
and attach the following policy to the IAM role. This policy allows the AWS OpsWorks for Chef
Automate (opsworks-cm) API to communicate with the EC2 instance during node registration.
For more information about instance profiles, see Using Instance Profiles in the Amazon EC2
documentation. For information about how to create an IAM role, see Creating an IAM Role in the
Console in the Amazon EC2 documentation.

Add nodes to manage API Version 2013-02-18 142

https://downloads.chef.io/chef/stable
https://downloads.chef.io/chef/stable
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DisassociateNode.html
https://docs.chef.io/platforms.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#create-iam-role-console
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#create-iam-role-console

AWS OpsWorks User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "opsworks-cm:AssociateNode",
 "opsworks-cm:DescribeNodeAssociationStatus",
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

AWS OpsWorks provides an AWS CloudFormation template that you can use to create the IAM role
with the preceding policy statement. The following AWS CLI command creates the instance profile
role for you by using this template. You can omit the --region parameter if you want to create
the new AWS CloudFormation stack in your default region.

aws cloudformation --region region ID create-stack --stack-
name myChefAutomateinstanceprofile --template-url https://s3.amazonaws.com/opsworks-
cm-us-east-1-prod-default-assets/misc/opsworks-cm-nodes-roles.yaml --capabilities
 CAPABILITY_IAM

Step 2: Install the Chef Client Cookbook

If you have not done so already, follow the steps in (Alternate) Use Berkshelf to Get Cookbooks
from a Remote Source to ensure that your Berksfile or Policyfile.rb file references the Chef
Client cookbook and installs the cookbook.

Step 3: Create Instances by Using an Unattended Association Script

1. To create EC2 instances, you can copy the userdata script from the Starter Kit to the
userdata section of EC2 instance instructions, Amazon EC2 Auto Scaling group launch
configurations, or an AWS CloudFormation template. For more information about adding
scripts to user data, see Running Commands on Your Linux Instance at Launch in the Amazon
EC2 documentation.

This script runs the opsworks-cm API associate-node command to associate a new node
with your Chef server.

Add nodes to manage API Version 2013-02-18 143

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_AssociateNode.html

AWS OpsWorks User Guide

By default, the name of the new registered node is the instance ID, but you can change the
name by modifying the value of the NODE_NAME variable in the userdata script. Because
changing the organization name in the Chef console UI is currently not possible, leave
CHEF_AUTOMATE_ORGANIZATION set to default.

2. Follow the procedure in Launching an Instance in the EC2 documentation, with modifications
here. In the EC2 instance launch wizard, choose an Amazon Linux AMI.

3. On the Configure Instance Details page, select the role you created in Step 1: Create an IAM
Role to Use as Your Instance Profile, as your IAM role.

4. In the Advanced Details area, upload the userdata.sh script that you created earlier in this
procedure.

5. No changes are needed on the Add Storage page. Go on to Add Tags.

6. On the Configure Security Group page, choose Add Rule, and then choose the type HTTP to
open port numbers 443 and 80 for the Apache web server in this example.

7. Choose Review and Launch, and then choose Launch. When your new node starts, it applies
the configurations specified by the recipes you have specified in the RUN_LIST parameter.

8. Optional: If you have added the nginx cookbook to your run list, when you open the webpage
linked to the public DNS of your new node, you should see a website that is hosted by your
nginx web server.

Other Methods of Automating Repeated Runs of chef-client

Although more difficult to achieve, and not recommended, you can run the script in this topic
solely as part of standalone instance user data, use a AWS CloudFormation template to add it
to new instance user data, configure a cron job to run the script regularly, or run chef-client
within a service. However, we recommend the Chef Client Cookbook method because there are
some disadvantages with other automation techniques.

For a complete list of parameters you can provide to chef-client, see the Chef documentation.

Related Topics

The following AWS blog posts offer more information about automatically associating nodes with
your Chef Automate server, by using Auto Scaling groups, or within multiple accounts.

• Using AWS OpsWorks for Chef Automate to Manage EC2 Instances with Auto Scaling

• OpsWorks for Chef Automate – Automatically Bootstrapping Nodes in Different Accounts

Add nodes to manage API Version 2013-02-18 144

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
https://docs.chef.io/ctl_chef_client.html
https://aws.amazon.com/blogs/mt/using-aws-opsworks-for-chef-automate-to-manage-ec2-instances-with-auto-scaling/
https://aws.amazon.com/blogs/mt/opsworks-for-chef-automate-automatically-bootstrapping-nodes-in-different-accounts/

AWS OpsWorks User Guide

Sign in to the Chef Automate dashboard

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

After you have downloaded the sign-in credentials from the Chef server's Properties page, and the
server is online, sign in to the Chef Automate dashboard. In this walkthrough, we instructed you to
first upload cookbooks and add at least one node to manage. This allows you to see information
about the cookbooks and nodes in the dashboard.

When you attempt to connect to the dashboard webpage, certificate warnings appear in your
browser until you install an AWS OpsWorks-specific, CA-signed SSL certificate on the client
computer that you are using to manage your Chef server. If you prefer not to see the warnings
before you continue to the dashboard webpage, install the SSL certificate before you sign in.

To install the AWS OpsWorks SSL certificate

• Choose the certificate that matches your system.

• For Linux or MacOS-based systems, download the file with the PEM filename extension from
the following Amazon S3 location: https://s3.amazonaws.com/opsworks-cm-us-east-1-
prod-default-assets/misc/opsworks-cm-ca-2016-root.pem.

Note

Additionally, download a newer PEM file from the following location: https://
s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-
cm-ca-2020-root.pem. Because AWS OpsWorks for Chef Automate is currently
renewing its root certificates, you must trust both old and new certificates.

For more information about how to manage SSL certificates on MacOS, see Get information
about a certificate in Keychain Access on Mac on the Apple Support website.

Sign in to the Chef Automate dashboard API Version 2013-02-18 145

https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2016-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2016-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem
https://support.apple.com/guide/keychain-access/get-information-about-a-certificate-kyca15178/11.0/mac/11.0
https://support.apple.com/guide/keychain-access/get-information-about-a-certificate-kyca15178/11.0/mac/11.0

AWS OpsWorks User Guide

• For Windows-based systems, download the file with the P7B filename extension from the
following Amazon S3 location: https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-
default-assets/misc/opsworks-cm-ca-2016-root.p7b.

Note

Additionally, download a newer P7B file from the following location: https://
s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-
cm-ca-2020-root.p7b. Because AWS OpsWorks for Chef Automate is currently
renewing its root certificates, you must trust both old and new certificates.

For more information about how to install an SSL certificate on Windows, see Manage
Trusted Root Certificates on Microsoft TechNet.

After you have installed the client-side SSL certificate, you can sign in to the Chef Automate
dashboard without seeing warning messages.

Note

Users of Google Chrome on Ubuntu and Linux Mint operating systems can have difficulty
signing in. We recommend that you use Mozilla Firefox or other browsers to sign in and
use the Chef Automate dashboard on those operating systems. No issues have been found
using Google Chrome on Windows or MacOS.

To sign in to the Chef Automate dashboard

1. Unzip and open the Chef Automate credentials that you downloaded in Prerequisites. You will
need these credentials to sign in.

2. Open the Properties page for your Chef server.

3. At the upper right of the Properties page, choose Open Chef Automate dashboard.

4. Sign in using the credentials from Step 1.

Sign in to the Chef Automate dashboard API Version 2013-02-18 146

https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2016-root.p7b
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2016-root.p7b
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.p7b
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.p7b
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.p7b
https://technet.microsoft.com/en-us/library/cc754841.aspx
https://technet.microsoft.com/en-us/library/cc754841.aspx

AWS OpsWorks User Guide

5. In the Chef Automate dashboard, you can view detailed information about the nodes you've
bootstrapped, cookbook run progress and events, the compliance level of nodes, and much
more. For more information about the features of the Chef Automate dashboard and how to
use them, see the Chef Automate Documentation.

Sign in to the Chef Automate dashboard API Version 2013-02-18 147

https://docs.chef.io/chef_automate.html

AWS OpsWorks User Guide

Note

For information about how to change the password that you use to sign in to the Chef
Automate dashboard, see Reset Chef Automate Dashboard Credentials.

Create an AWS OpsWorks for Chef Automate Server by using
AWS CloudFormation

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

Create a Chef Automate Server in CloudFormation API Version 2013-02-18 148

AWS OpsWorks User Guide

AWS OpsWorks for Chef Automate lets you run a Chef Automate server in AWS. You can provision a
Chef Automate server in about 15 minutes.

Starting May 3, 2021, AWS OpsWorks for Chef Automate stores some Chef Automate server
attributes in AWS Secrets Manager. For more information, see Integration with AWS Secrets
Manager.

The following walkthrough helps you create a server in AWS OpsWorks for Chef Automate by
creating a stack in AWS CloudFormation.

Topics

• Prerequisites

• Create a Chef Automate Server in AWS CloudFormation

Prerequisites

Before you create a new Chef Automate server, create the resources outside of AWS OpsWorks for
Chef Automate that you'll need to access and manage your Chef server. For more information, see
Prerequisites in the Getting Started section of this guide.

Review the OpsWorks-CM section of the AWS CloudFormation User Guide Template Reference to
learn about the supported and required values in the AWS CloudFormation template that you use
to create your server.

If you are creating a server that uses a custom domain, you need a custom domain, certificate,
and private key. You must specify values for all three of these parameters in your AWS
CloudFormation template. For more information about requirements for the CustomDomain,
CustomCertificate, and CustomPrivateKey parameters, see CreateServer in the AWS
OpsWorks CM API Reference.

Create a password value for the CHEF_AUTOMATE_ADMIN_PASSWORD engine attribute. The
password length is a minimum of eight characters, and a maximum of 32. The password can
contain letters, numbers, and special characters (!/@#$%^+=_). The password must contain
at least one lower case letter, one upper case letter, one number, and one special character.
You specify this password in your AWS CloudFormation template, or as the value of the
CHEF_AUTOMATE_ADMIN_PASSWORD parameter when you are creating your stack.

Generate a base64-encoded RSA key pair before you get started creating a Chef Automate server
in AWS CloudFormation. The pair’s public key is the value of CHEF_AUTOMATE_PIVOTAL_KEY,

Prerequisites API Version 2013-02-18 149

https://www.chef.io/automate/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-opsworkscm-server.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html

AWS OpsWorks User Guide

the Chef- specific EngineAttributes from the CreateServer API. This key is provided as the value of
Parameters in the AWS CloudFormation console, or in the create-stack command in the AWS CLI.
To generate this key, we suggest the following methods.

• On Linux-based computers, you can generate this key by running the following OpenSSL
command.

openssl genrsa -out pivotal_key_file_name.pem 2048

Then, export the RSA public key portion of the pair to a file. The public key becomes the value of
CHEF_AUTOMATE_PIVOTAL_KEY.

openssl rsa -in pivotal_key_file_name.pem -pubout -out public.pem -outform PEM

• On Windows-based computers, you can use the PuTTYgen utility to generate a base64-encoded
RSA key pair. For more information, see PuTTYgen - Key Generator for PuTTY on Windows on
SSH.com.

Create a Chef Automate Server in AWS CloudFormation

This section describes how to use an AWS CloudFormation template to build a stack that creates
an AWS OpsWorks for Chef Automate server. You can do this by using the AWS CloudFormation
console or the AWS CLI. An example AWS CloudFormation template is available for you to use to
build an AWS OpsWorks for Chef Automate server stack. Be sure to update the example template
with your own server name, IAM roles, instance profile, server description, backup retention count,
maintenance options, and optional tags. If your server will use a custom domain, you must specify
values for the CustomDomain, CustomCertificate, and CustomPrivateKey parameters in
your AWS CloudFormation template. You can specify the CHEF_AUTOMATE_ADMIN_PASSWORD and
CHEF_AUTOMATE_PIVOTAL_KEY engine attributes and their values in the AWS CloudFormation
template, or provide just the attributes, and then specify values for the attributes in the AWS
CloudFormation Create Stack wizard or create-stack command. For more information about these
attributes, see the section called “Create a Chef Automate server in the AWS Management Console”
in the Getting Started section of this guide.

Topics

• Create a Chef Automate Server by using AWS CloudFormation (Console)

• Create a Chef Automate Server by using AWS CloudFormation (CLI)

Create a Chef Automate Server in AWS CloudFormation API Version 2013-02-18 150

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-opsworkscm-server.html#cfn-opsworkscm-server-engineattributes
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://www.openssl.org/
https://www.ssh.com/ssh/putty/windows/puttygen
samples/opsworkscm-server.zip

AWS OpsWorks User Guide

Create a Chef Automate Server by using AWS CloudFormation (Console)

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

2. On the AWS CloudFormation home page, choose Create stack.

3. In Prerequisite - Prepare template, if you are using the example AWS CloudFormation
template, choose Template is ready.

4. In Specify template, choose the source of your template. For this walkthrough, choose Upload
a template file, and upload an AWS CloudFormation template that creates a Chef Automate
server. Browse for your template file, and then choose Next.

An AWS CloudFormation template can be in either YAML or JSON format. An example AWS
CloudFormation template is available for you to use; be sure to replace example values with
your own. You can use the AWS CloudFormation template designer to build a new template or
validate an existing one. For more information about how to do this, see AWS CloudFormation
Designer Interface Overview in the AWS CloudFormation User Guide.

Create a Chef Automate Server in AWS CloudFormation API Version 2013-02-18 151

https://console.aws.amazon.com/cloudformation/
samples/opsworkscm-server.zip
samples/opsworkscm-server.zip
samples/opsworkscm-server.zip
samples/opsworkscm-server.zip
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer-overview.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer-overview.html

AWS OpsWorks User Guide

5. On the Specify stack details page, enter a name for your stack. This won't be the same as the
name of your server, it is only a stack name. In the Parameters area, paste the values that you
created in the section called “Prerequisites”. Enter the password in Password.

Paste the contents of the RSA key file in PivotalKey. In the AWS CloudFormation console, you
must add newline (\n) characters at the end of each line of the pivotal key value, as shown in
the following screenshot. Choose Next.

6. On the Configure stack options page, you can add tags to the server you're creating with
the stack, and choose an IAM role for creating resources if you have not already specified
an IAM role to use in your template. When you're finished specifying options, choose Next.
For more information about advanced options such as rollback triggers, see Setting AWS
CloudFormation Stack Options in the AWS CloudFormation User Guide.

7. On the Review page, review your choices. When you are ready to create the server stack,
choose Create stack.

While you are waiting for AWS CloudFormation to create the stack, view the stack creation
status. If stack creation fails, review the error messages shown in the console to help you
resolve the issues. For more information about troubleshooting errors in AWS CloudFormation
stacks, see Troubleshooting Errors in the AWS CloudFormation User Guide.

When server creation is finished, your Chef Automate server is available on the AWS OpsWorks
for Chef Automate home page, with a status of online. Generate a new Starter Kit and the
Chef Automate dashboard credentials from the server's Properties page. After the server
is online, the Chef Automate dashboard is available on the server's domain, at a URL in the
following format: https://your_server_name-randomID.region.opsworks-cm.io.

Create a Chef Automate Server in AWS CloudFormation API Version 2013-02-18 152

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html#troubleshooting-errors

AWS OpsWorks User Guide

Note

If you specified a custom domain, certificate, and private key for your server, create
a CNAME entry in your enterprise's DNS management tool that maps your custom
domain to the endpoint that AWS OpsWorks for Chef Automate automatically
generated for the server. You cannot manage the server or connect to the Chef
Automate dashboard for the server until you map the generated endpoint to your
custom domain value.
To get the generated endpoint value, run the following AWS CLI command after your
server is online:

aws opsworks describe-servers --server-name server_name

Create a Chef Automate Server by using AWS CloudFormation (CLI)

If your local computer is not already running the AWS CLI, download and install the AWS CLI by
following installation instructions in the AWS Command Line Interface User Guide. This section
does not describe all parameters that you can use with the create-stack command. For more
information about create-stack parameters, see create-stack in the AWS CLI Reference.

1. Be sure to complete the Prerequisites for creating an AWS OpsWorks for Chef Automate server.

2. Create a service role and an instance profile. AWS OpsWorks provides an AWS CloudFormation
template that you can use to create both. Run the following AWS CLI command to create an
AWS CloudFormation stack that creates the service role and instance profile for you.

aws cloudformation create-stack --stack-name OpsWorksCMRoles --template-url
 https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-
cm-roles.yaml --capabilities CAPABILITY_NAMED_IAM

After AWS CloudFormation finishes creating the stack, find and copy the ARNs of service roles
in your account.

aws iam list-roles --path-prefix "/service-role/" --no-paginate

Create a Chef Automate Server in AWS CloudFormation API Version 2013-02-18 153

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/create-stack.html

AWS OpsWorks User Guide

In the results of the list-roles command, look for service role and instance profile entries
that resemble the following. Make a note of the ARNs of the service role and instance profile,
and add them to the AWS CloudFormation template that you are using to create your server
stack.

{
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROZZZZZZZZZZQG6R22HC",
 "CreateDate": "2018-01-05T20:42:20Z",
 "RoleName": "aws-opsworks-cm-ec2-role",
 "Path": "/service-role/",
 "Arn": "arn:aws:iam::000000000000:role/service-role/aws-opsworks-cm-ec2-role"
},
{
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks-cm.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROZZZZZZZZZZZZZZZ6QE",
 "CreateDate": "2018-01-05T20:42:20Z",
 "RoleName": "aws-opsworks-cm-service-role",
 "Path": "/service-role/",

Create a Chef Automate Server in AWS CloudFormation API Version 2013-02-18 154

AWS OpsWorks User Guide

 "Arn": "arn:aws:iam::000000000000:role/service-role/aws-opsworks-cm-service-
role"
}

3. Create the AWS OpsWorks for Chef Automate server by running the create-stack command
again.

• Replace stack_name with the name of your stack. This is the name of the AWS
CloudFormation stack, not your Chef Automate server. The Chef Automate server name is
the value of ServerName in your AWS CloudFormation template.

• Replace template with the path to your template file, and the extension yaml or json
with .yaml or .json as appropriate.

• The values for --parameters correspond to EngineAttributes from the
CreateServer API. For Chef, the user-provided engine attributes to create a server
are CHEF_AUTOMATE_PIVOTAL_KEY, a base64-encoded RSA public key that you
generate by using utilities described in the section called “Prerequisites”, and
CHEF_AUTOMATE_ADMIN_PASSWORD, a password of between eight and 32 characters
that you create. For more information about the CHEF_AUTOMATE_ADMIN_PASSWORD,
see Create a Chef Automate server by using the AWS CLI. You can provide a pointer to
the PEM file that contains your pivotal key as the value of the PivotalKey parameter,
as shown in the example. If the values for CHEF_AUTOMATE_ADMIN_PASSWORD and
CHEF_AUTOMATE_PIVOTAL_KEY are not specified in your template, you must provide the
values in your AWS CLI command.

aws cloudformation create-stack --stack-name stack_name
 --template-body file://template.yaml or json --parameters
 ParameterKey=PivotalKey,ParameterValue="base64_encoded_RSA_public_key_value"

The following is an example that includes sample values for the
CHEF_AUTOMATE_ADMIN_PASSWORD and CHEF_AUTOMATE_PIVOTAL_KEY attributes.
Run a similar command if you did not specify values for these attributes in your AWS
CloudFormation template.

aws cloudformation create-stack --stack-name "OpsWorksCMChefServerStack"
 --template-body file://opsworkscm-server.yaml --parameters
 ParameterKey=PivotalKey,ParameterValue="$(openssl rsa -in "pivotalKey.pem" -
pubout)" ParameterKey=Password,ParameterValue="SuPer\$ecret890"

Create a Chef Automate Server in AWS CloudFormation API Version 2013-02-18 155

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-opsworkscm-server.html#cfn-opsworkscm-server-engineattributes
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html

AWS OpsWorks User Guide

4. When the stack creation is finished, open the Properties page for the new server in the AWS
OpsWorks for Chef Automate console, and download a starter kit. Downloading a new starter
kit resets the Chef Automate dashboard administrator password.

5. If your server will use a custom domain, certificate, and private key, follow steps for
configuring knife.rb in (Optional) Configure knife to Work with a Custom Domain, and
then go on to step 7.

If you are not using a custom domain, download the root certificate authority (CA) certificate
from the following Amazon S3 bucket location: https://s3.amazonaws.com/opsworks-cm-us-
east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem. Save the certificate file in a
secure but convenient location. This certificate is required to configure knife.rb in the next
step.

6. To use knife commands on the new server, update Chef knife.rb configuration file settings.
An example knife.rb file is included with the starter kit. The following example shows
how to set up knife.rb on a server that does not use a custom domain. If you are using a
custom domain, see (Optional) Configure knife to Work with a Custom Domain for knife
configuration instructions.

• Replace ENDPOINT with the server's endpoint value. This is part of the output of the stack
creation operation. You can get the endpoint by running the following command.

aws cloudformation describe-stacks --stack-name stack_name

• Replace key_pair_file.pem in the client_key configuration with the name of the PEM
file that contains the CHEF_AUTOMATE_PIVOTAL_KEY that you used to create your server.

base_dir = File.join(File.dirname(File.expand_path(__FILE__)), '..')

log_level :info
log_location STDOUT
node_name 'pivotal'
client_key File.join(base_dir, '.chef', 'key_pair_file.pem')
syntax_check_cache_path File.join(base_dir, '.chef', 'syntax_check_cache')
cookbook_path [File.join(base_dir, 'cookbooks')]

chef_server_url 'ENDPOINT/organizations/default'
ssl_ca_file File.join(base_dir, '.chef', 'ca_certs', 'opsworks-cm-
ca-2020-root.pem')
trusted_certs_dir File.join(base_dir, '.chef', 'ca_certs')

Create a Chef Automate Server in AWS CloudFormation API Version 2013-02-18 156

https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem
https://s3.amazonaws.com/opsworks-cm-us-east-1-prod-default-assets/misc/opsworks-cm-ca-2020-root.pem

AWS OpsWorks User Guide

7. When the server creation process is finished, go on to the section called “Finish configuration
and upload cookbooks”. If stack creation fails, review the error messages shown in the console
to help you resolve the issues. For more information about troubleshooting errors in AWS
CloudFormation stacks, see Troubleshooting Errors in the AWS CloudFormation User Guide.

Update an AWS OpsWorks for Chef Automate Server to Use a
Custom Domain

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

This section describes how to update an existing AWS OpsWorks for Chef Automate server to use a
custom domain and certificate by using a backup of the server to create a new server. Essentially,
you are copying an existing AWS OpsWorks for Chef Automate 2.0 server by creating a new server
from a backup, then configuring the new server to use a custom domain, certificate, and private
key.

Topics

• Prerequisites

• Limitations

• Update a Server to Use a Custom Domain

• See Also

Prerequisites

The following are requirements for updating an existing AWS OpsWorks for Chef Automate server
to use a custom domain and certificate.

• The server that you want to update (or copy) must be running Chef Automate 2.0.

Update a Server to Use a Custom Domain API Version 2013-02-18 157

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html#troubleshooting-errors

AWS OpsWorks User Guide

• Decide which backup you want to use to create a new server. You must have at least one backup
available of the server that you want to update. For more information about backups in AWS
OpsWorks for Chef Automate, see Back Up an AWS OpsWorks for Chef Automate Server.

• Have ready the service role and instance profile ARNs that you used to create the existing server
that is the source of your backup.

• Be sure that you are running the most current release of the AWS CLI. For more information
about updating your AWS CLI tools, see Installing the AWS CLI in the AWS Command Line
Interface User Guide.

Limitations

When you update an existing server by creating a new server from a backup, the new server cannot
be exactly the same as the existing AWS OpsWorks for Chef Automate server.

• You can only complete this procedure by using the AWS CLI or one of the AWS SDKs. You cannot
create a new server from a backup by using the AWS Management Console.

• The new server cannot use the same name as the existing server within an account, and within
an AWS Region. The name must be different from the existing server that you used as the source
of the backup.

• Nodes that were attached to the existing server are not managed by the new server. You must do
one of the following.

• Attach different nodes, because nodes cannot be managed by more than one Chef Automate
server.

• Migrate the nodes from the existing server (the source of the backup) to the new server and
the new custom domain endpoint. For more information about how to migrate nodes, see in
the Chef documentation.

Update a Server to Use a Custom Domain

To update an existing Chef Automate 2.0 server, you make a copy of it by running the create-
server command, adding parameters to specify a backup, a custom domain, a custom certificate,
and a custom private key.

Limitations API Version 2013-02-18 158

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/#sdks

AWS OpsWorks User Guide

1. If you do not have service role or instance profile ARNs available to specify in your create-
server command, follow steps 1-5 in Create a Chef Automate server by using the AWS CLI to
create a service role and instance profile that you can use.

2. If you have not already done so, find the backup of the existing Chef Automate 2.0 server on
which you want to base a new server with a custom domain. Run the following command to
show information about all AWS OpsWorks for Chef Automate backups in your account, and in
a region. Be sure to note the ID of the backup that you want to use.

aws opsworks-cm --region region name describe-backups

3. Create the AWS OpsWorks for Chef Automate server by running the create-server
command.

• The --engine value is ChefAutomate, --engine-model is Single, and --engine-
version is 12.

• The server name must be unique within your AWS account, within each region. Server names
must start with a letter; then letters, numbers, or hyphens (-) are allowed, up to a maximum
of 40 characters.

• Use the instance profile ARN and service role ARN from step 1.

• Valid instance types are m5.large, r5.xlarge, or r5.2xlarge. For more information
about the specifications of these instance types, see Instance Types in the Amazon EC2 User
Guide.

• The --engine-attributes parameter is optional; if you don't specify one or both
values, the server creation process generates the values for you. If you add --engine-
attributes, specify either the CHEF_AUTOMATE_PIVOTAL_KEY value that you generated
in Step 2, a CHEF_AUTOMATE_ADMIN_PASSWORD, or both.

If you do not set a value for CHEF_AUTOMATE_ADMIN_PASSWORD, a password is generated
and returned as part of the create-server response. You can also download the starter
kit again in the console, which regenerates this password. The password length is a
minimum of eight characters, and a maximum of 32. The password can contain letters,
numbers, and special characters (!/@#$%^+=_). The password must contain at least one
lower case letter, one upper case letter, one number, and one special character.

• An SSH key pair is optional, but can help you connect to your Chef Automate server if you
need to reset the Chef Automate dashboard administrator password. For more information
about creating an SSH key pair, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide.

Update a Server to Use a Custom Domain API Version 2013-02-18 159

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

• To use a custom domain, add the following parameters to your command. Otherwise,
the Chef Automate server creation process automatically generates an endpoint for you.
All three parameters are required to configure a custom domain. For information about
additional requirements for using these parameters, see CreateServer in the AWS OpsWorks
CM API Reference.

• --custom-domain - An optional public endpoint of a server, such as https://aws.my-
company.com.

• --custom-certificate - A PEM-formatted HTTPS certificate. The value can be be a
single, self-signed certificate, or a certificate chain.

• --custom-private-key - A private key in PEM format for connecting to the server
by using HTTPS. The private key must not be encrypted; it cannot be protected by a
password or passphrase.

• Weekly system maintenance is required. Valid values must be specified in the following
format: DDD:HH:MM. The specified time is in coordinated universal time (UTC). If you do not
specify a value for --preferred-maintenance-window, the default value is a random,
one-hour period on Tuesday, Wednesday, or Friday.

• Valid values for --preferred-backup-window must be specified in one of the following
formats: HH:MM for daily backups, or DDD:HH:MM for weekly backups. The specified time is
in UTC. The default value is a random, daily start time. To opt out of automatic backups, add
the parameter --disable-automated-backup instead.

• For --security-group-ids, enter one or more security group IDs, separated by a space.

• For --subnet-ids, enter a subnet ID.

• For --backup-id, enter the ID of the backup that you copied in step 2.

aws opsworks-cm create-server --engine "ChefAutomate" --engine-model "Single"
 --engine-version "12" --server-name "server_name" --instance-profile-arn
 "instance_profile_ARN" --instance-type "instance_type" --engine-attributes
 '{"CHEF_AUTOMATE_PIVOTAL_KEY":"pivotal_key","CHEF_AUTOMATE_ADMIN_PASSWORD":"password"}'
 --key-pair "key_pair_name" --preferred-maintenance-window
 "ddd:hh:mm" --preferred-backup-window "ddd:hh:mm" --security-group-
ids security_group_id1 security_group_id2 --service-role-arn "service_role_ARN" --
subnet-ids subnet_ID --backup-id backup_ID

The following example creates a Chef Automate server that uses a custom domain.

Update a Server to Use a Custom Domain API Version 2013-02-18 160

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html

AWS OpsWorks User Guide

aws opsworks-cm create-server --engine "ChefAutomate" --engine-model "Single" --
engine-version "12" \
 --server-name "my-custom-domain-server" \
 --instance-profile-arn "arn:aws:iam::12345678912:instance-profile/aws-opsworks-
cm-ec2-role" \
 --instance-type "m5.large" \
 --engine-attributes
 '{"CHEF_AUTOMATE_PIVOTAL_KEY":"MZZE...Wobg","CHEF_AUTOMATE_ADMIN_PASSWORD":"zZZzDj2DLYXSZFRv1d"}'
 \
 --custom-domain "my-chef-automate-server.my-corp.com" \
 --custom-certificate "-----BEGIN CERTIFICATE----- EXAMPLEqEXAMPLE== -----END
 CERTIFICATE-----" \
 --custom-private-key "-----BEGIN RSA PRIVATE KEY----- EXAMPLEqEXAMPLE= -----END
 RSA PRIVATE KEY-----" \
 --key-pair "amazon-test" \
 --preferred-maintenance-window "Mon:08:00" \
 --preferred-backup-window "Sun:02:00" \
 --security-group-ids sg-b00000001 sg-b0000008 \
 --service-role-arn "arn:aws:iam::12345678912:role/service-role/aws-opsworks-cm-
service-role" \
 --subnet-ids subnet-300aaa00 \
 --backup-id MyChefServer-20191004122143125

4. AWS OpsWorks for Chef Automate takes about 15 minutes to create a new server. In the
output of the create-server command, copy the value of the Endpoint attribute. The
following is an example.

"Endpoint": "automate-07-exampleexample.opsworks-cm.us-east-1.amazonaws.com"

Do not dismiss the output of the create-server command or close your shell session,
because the output can contain important information that is not shown again. To get
passwords and the starter kit from the create-server results, go on to the next step.

5. If you opted to have AWS OpsWorks for Chef Automate generate a key and password for you,
you can extract them in usable formats from the create-server results by using a JSON
processor such as jq. After you install jq, you can run the following commands to extract the
pivotal key, Chef Automate dashboard administrator password, and starter kit. If you did not
provide your own pivotal key and password in Step 3, be sure to save the extracted pivotal key
and administrator password in convenient but secure locations.

Update a Server to Use a Custom Domain API Version 2013-02-18 161

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

AWS OpsWorks User Guide

#Get the Chef password:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "CHEF_AUTOMATE_ADMIN_PASSWORD") | .Value'

#Get the Chef Pivotal Key:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "CHEF_AUTOMATE_PIVOTAL_KEY") | .Value'

#Get the Chef Starter Kit:
cat resp.json | jq -r '.Server.EngineAttributes[] | select(.Name ==
 "CHEF_STARTER_KIT") | .Value' | base64 -D > starterkit.zip

6. Optionally, if you did not extract the starter kit from create-server command results, you
can download a new starter kit from the server's Properties page in the AWS OpsWorks for
Chef Automate console. Downloading a new starter kit resets the Chef Automate dashboard
administrator password.

7. Create a CNAME entry in your enterprise's DNS management tool to point your custom domain
to the AWS OpsWorks for Chef Automate endpoint that you copied in step 4. You cannot reach
or sign in to the server until you complete this step.

8. When the server creation process is finished, go on to the section called “Finish configuration
and upload cookbooks”.

See Also

• Create a Chef Automate server by using the AWS CLI

• Restore an AWS OpsWorks for Chef Automate Server from a Backup

• CreateServer in the AWS OpsWorks CM API Reference

• create-server in the AWS CLI Command Reference

See Also API Version 2013-02-18 162

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/cli/latest/reference/opsworks-cm/create-server.html

AWS OpsWorks User Guide

Regenerate the starter kit for an AWS OpsWorks for Chef
Automate server

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

The starter kit for AWS OpsWorks for Chef Automate contains a README file with examples, a
knife.rb configuration file, and a private key for the primary, or pivotal, user. A new key pair is
generated—and the old key is reset—each time you download the starter kit. You can regenerate
the starter kit for an AWS OpsWorks for Chef Automate server in one of two ways:

• In the AWS OpsWorks console, on the Actions menu of the details page for an AWS OpsWorks
for Chef Automate server. You are prompted to confirm whether you want to regenerate and
reset the old pivotal key.

• By running commands in the AWS CLI.

For more information about how to use the starter kit, see Configure the Chef Server Using the
Starter Kit.

Regenerate the AWS OpsWorks for Chef Automate starter kit with the
AWS CLI

Note

When you regenerate the starter kit, you also regenerate and reset the authentication key
pair for your Chef Automate server, and delete the current key pair.

Regenerate the starter kit by running the update-server-engine-attributes command. In an AWS
CLI session, run the following command. Specify your server name as the value of --server-

Regenerate the starter kit API Version 2013-02-18 163

https://docs.aws.amazon.com/cli/latest/reference/opsworks-cm/update-server-engine-attributes.html

AWS OpsWorks User Guide

name. To set a public key of your own as the value of CHEF_AUTOMATE_PIVOTAL_KEY, specify the
value of the public key in --attribute-value. Otherwise, set --attribute-value to null.

aws opsworks-cm update-server-engine-attributes \
 --server-name server_name \
 --attribute-name "CHEF_AUTOMATE_PIVOTAL_KEY" \
 --attribute-value your_public_key

The following command is an example that specifies a public key value that the server's
administrator wants to use.

aws opsworks-cm update-server-engine-attributes \
 --server-name your-test-server \
 --attribute-name "CHEF_AUTOMATE_PIVOTAL_KEY" \
 --attribute-value "-----BEGIN PUBLIC KEY-----ExamplePublicKey-----END PUBLIC
 KEY-----"

The following command is an example that lets AWS OpsWorks for Chef Automate regenerate the
public key.

aws opsworks-cm update-server-engine-attributes \
 --server-name your-test-server \
 --attribute-name "CHEF_AUTOMATE_PIVOTAL_KEY" \
 --attribute-value null

The output of this command is information about the server, and a base64-encoded ZIP file. The
ZIP file contains a Chef starter kit, which includes a README, a configuration file, and the required
RSA private key. Save this file, unzip it, and then change to the directory where you've unzipped the
file contents. From this directory, you can run knife commands.

Working with Tags on AWS OpsWorks for Chef Automate
Resources

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become

Work with Tags API Version 2013-02-18 164

AWS OpsWorks User Guide

unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

Tags are words or phrases that act as metadata for identifying and organizing your AWS resources.
In AWS OpsWorks for Chef Automate, a resource can have up to 50 user-applied tags. Each tag
consists of a key and one optional value. You can apply tags to the following resources in AWS
OpsWorks for Chef Automate:

• AWS OpsWorks for Chef Automate servers

• Backups of AWS OpsWorks for Chef Automate servers

Tags on AWS resources can help you track costs, control access to resources, group resources for
automating tasks, or organize resources by purpose or lifecycle stage. For more information about
the benefits of tags, see AWS Tagging Strategies in AWS Answers and Using Cost Allocation Tags in
the AWS Billing and Cost Management User Guide.

To use tags to control access to AWS OpsWorks for Chef Automate servers or backups, you create
or edit policy statements in AWS Identity and Access Management (IAM). For more information,
see Controlling Access to AWS Resources Using Resource Tags in the AWS Identity and Access
Management User Guide.

When you apply tags to an AWS OpsWorks for Chef Automate server, the tags are also applied
to the server's backups, the Amazon S3 bucket that stores the backups, the server's Amazon EC2
instance, secrets for the server that are stored in AWS Secrets Manager, and the Elastic IP address
used by the server. Tags are not propagated to the AWS CloudFormation stack that AWS OpsWorks
uses to create your server.

Topics

• How Tags Work in AWS OpsWorks for Chef Automate

• Add and Manage Tags in AWS OpsWorks for Chef Automate (Console)

• Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI)

• See Also

Work with Tags API Version 2013-02-18 165

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

AWS OpsWorks User Guide

How Tags Work in AWS OpsWorks for Chef Automate

In this release, you can add and manage tags by using the AWS OpsWorks CM API or the AWS
Management Console. AWS OpsWorks CM also attempts to add tags that you add to a server to
the AWS resources that are associated with the server, including the EC2 instance, secrets in Secrets
Manager, Elastic IP address, security group, S3 bucket, and backups. The following table provides
an overview of how you add and manage tags in AWS OpsWorks for Chef Automate.

Action What to use

Add tags to a new AWS OpsWorks for Chef
Automate server or a backup that you are
creating manually.

• Choose Create Chef Automate server
and add tags on the Configure advanced
settings page.

• Choose Create backup on the Backups page
for an existing server, and add tags on the
Create a backup of your Chef Automate 2
server page.

• Add a Tags parameter to the CreateSer
ver or CreateBackup commands.

View tags on a resource. • On the details page for your server, choose
Tags in the navigation pane.

• On the Backups page for your server, select
a backup, and then choose Edit backup.

• Run the ListTagsForResource
command.

Add tags to an existing AWS OpsWorks for
Chef Automate server or a backup, regardless
of whether the backup was created manually
or automatically.

• On the details page for your server, choose
Tags in the navigation pane, and then
choose Edit.

• On the Backups page for your server, select
a backup, and then choose Edit backup.

• Run the TagResource command.

Delete tags from a resource. • On the details page for your server, choose
Tags in the navigation pane, and then

How Tags Work in AWS OpsWorks for Chef Automate API Version 2013-02-18 166

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateBackup.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_TagResource.html

AWS OpsWorks User Guide

Action What to use

choose Edit. Choose X next to tags that you
want to delete.

• On the Backups page for your server, select
a backup, and then choose Edit backup.
Choose X next to tags that you want to
delete.

• Run the UntagResource command.

DescribeServers and DescribeBackups responses do not include tag information. To show
tags, use the ListTagsForResource API.

Add and Manage Tags in AWS OpsWorks for Chef Automate (Console)

Procedures in this section are performed in the AWS Management Console.

If you add tags, a tag key cannot be empty. The key can be a maximum of 127 characters, and can
contain only Unicode letters, numbers, or separators, or the following special characters: + - = .
_ : / @ A tag value is optional. You can add a tag that has a key, but no value. The value can be a
maximum of 255 characters, and can contain only Unicode letters, numbers, or separators, or the
following special characters: + - = . _ : / @

Topics

• Add Tags to a New AWS OpsWorks for Chef Automate Server (Console)

• Add Tags to a New Backup (Console)

• Add or View Tags on an Existing Server (Console)

• Add or View Tags on an Existing Backup (Console)

• Delete Tags from a Server (Console)

• Delete Tags from a Backup (Console)

Add Tags to a New AWS OpsWorks for Chef Automate Server (Console)

1. Be sure to complete any prerequisites for creating an AWS OpsWorks for Chef Automate
server.

Add and Manage Tags in AWS OpsWorks for Chef Automate (Console) API Version 2013-02-18 167

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_UntagResource.html

AWS OpsWorks User Guide

2. Follow steps 1-10 in Create a Chef Automate Server.

3. After you specify automated backup settings, add tags in the Tags area of the Configure
advanced settings page. You can add a maximum of 50 tags. When you are finished adding
tags, choose Next.

4. Go on to step 13 of Create a Chef Automate Server, and review settings you have chosen for
the new server.

Add Tags to a New Backup (Console)

1. On the AWS OpsWorks for Chef Automate home page, choose an existing Chef Automate
server.

2. From the server's details page, choose Backups in the navigation pane.

3. On the Backups page, choose Create backup.

4. Add tags. Choose Create when you are finished adding tags.

Add or View Tags on an Existing Server (Console)

1. On the AWS OpsWorks for Chef Automate home page, choose an existing Chef Automate
server to open its details page.

2. Choose Tags in the navigation pane, or at the bottom of the details page, choose View all
tags.

3. On the Tags page, choose Edit.

4. Add or edit tags on the server. Choose Save when you are finished.

Note

Be aware that changing tags on your Chef Automate server also changes tags on
resources that are associated with the server, such as the EC2 instance, Elastic IP
address, security group, S3 bucket, and backups.

Add or View Tags on an Existing Backup (Console)

1. On the AWS OpsWorks for Chef Automate home page, choose an existing Chef Automate
server to open its details page.

Add and Manage Tags in AWS OpsWorks for Chef Automate (Console) API Version 2013-02-18 168

AWS OpsWorks User Guide

2. Choose Backups in the navigation pane, or in the Recent backups area of the details page,
choose View all backups.

3. On the Backups page, choose a backup to manage, and then choose Edit backup.

4. Add or edit tags on the backup. Choose Update when you are finished.

Delete Tags from a Server (Console)

1. On the AWS OpsWorks for Chef Automate home page, choose an existing Chef Automate
server to open its details page.

2. Choose Tags in the navigation pane, or at the bottom of the details page, choose View all
tags.

3. On the Tags page, choose Edit.

4. Choose X next to a tag to delete the tag. Choose Save when you are finished.

Note

Be aware that changing tags on your Chef Automate server also changes tags on
resources that are associated with the server, such as the EC2 instance, Elastic IP
address, security group, S3 bucket, and backups.

Delete Tags from a Backup (Console)

1. On the AWS OpsWorks for Chef Automate home page, choose an existing Chef Automate
server to open its details page.

2. Choose Backups in the navigation pane, or in the Recent backups area of the details page,
choose View all backups.

3. On the Backups page, choose a backup to manage, and then choose Edit backup.

4. Choose X next to a tag to delete the tag. Choose Update when you are finished.

Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI)

Procedures in this section are performed in the AWS CLI. Be sure that you are running the latest
release of the AWS CLI before you start working with tags. For more information about installing or
updating the AWS CLI, see Installing the AWS CLI in the AWS Command Line Interface User Guide.

Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI) API Version 2013-02-18 169

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS OpsWorks User Guide

If you add tags, a tag key cannot be empty. The key can be a maximum of 127 characters, and can
contain only Unicode letters, numbers, or separators, or the following special characters: + - = .
_ : / @ A tag value is optional. You can add a tag that has a key, but no value. The value can be a
maximum of 255 characters, and can contain only Unicode letters, numbers, or separators, or the
following special characters: + - = . _ : / @

Topics

• Add Tags to a New AWS OpsWorks for Chef Automate Server (CLI)

• Add Tags to a New Backup (CLI)

• Add Tags to Existing Servers or Backups (CLI)

• List Resource Tags

• Delete Tags from a Resource

Add Tags to a New AWS OpsWorks for Chef Automate Server (CLI)

You can use the AWS CLI to add tags when you create an AWS OpsWorks for Chef Automate server.
This procedure does not describe in full how to create a server. For detailed information about
how to create an AWS OpsWorks for Chef Automate server by using the AWS CLI see Create a Chef
Automate server by using the AWS CLI in this guide. You can add up to 50 tags to a server.

1. Be sure to complete any prerequisites for creating an AWS OpsWorks for Chef Automate
server.

2. Complete steps 1-5 of Create a Chef Automate server by using the AWS CLI.

3. For step 6, when you run the create-server command, add the --tags parameter to the
command, as shown in the following example.

aws opsworks-cm create-server ... --tags Key=Key1,Value=Value1
 Key=Key2,Value=Value2

The following is an example showing only the tags portion of the create-server command.

aws opsworks-cm create-server ... --tags Key=Stage,Value=Production
 Key=Department,Value=Marketing

Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI) API Version 2013-02-18 170

AWS OpsWorks User Guide

4. Complete the remaining steps in Create a Chef Automate server by using the AWS CLI. To
verify that your tags were added to the new server, follow steps in List Resource Tags in this
topic.

Add Tags to a New Backup (CLI)

You can use the AWS CLI to add tags when you create a new, manual backup of an AWS OpsWorks
for Chef Automate server. This procedure does not describe in full how to create a manual backup.
For detailed information about how to create a manual backup, see "To perform a manual backup
in the AWS CLI" in Back Up an AWS OpsWorks for Chef Automate Server. You can add up to 50 tags
to a backup. If a server has tags, new backups are automatically tagged with the server's tags.

By default, when you create a new AWS OpsWorks for Chef Automate server, automated backups
are enabled. You can add tags to an automated backup by running the tag-resource command,
described in Add Tags to Existing Servers or Backups (CLI) in this topic.

• To add tags to a manual backup as you're creating the backup, run the following command.
Only the tags portion of the command is shown. For an example of the full create-backup
command, see "To perform a manual backup in the AWS CLI" in Back Up an AWS OpsWorks for
Chef Automate Server.

aws opsworks-cm create-backup ... --tags Key=Key1,Value=Value1
 Key=Key2,Value=Value2

The following example shows only the tags portion of the create-backup command.

aws opsworks-cm create-backup ... --tags Key=Stage,Value=Production
 Key=Department,Value=Marketing

Add Tags to Existing Servers or Backups (CLI)

You can run the tag-resource command to add tags to existing AWS OpsWorks for Chef
Automate servers or backups (whether the backups were created automatically or manually).
Specify the Amazon Resource Number (ARN) of a target resource to add tags to it.

1. To get the ARN of the resource to which you want to apply tags:

Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI) API Version 2013-02-18 171

AWS OpsWorks User Guide

• For a server, run describe-servers --server-name server_name. The results of the
command show the server ARN.

• For a backup, run describe-backups --backup-id backup_ID. The results of the
command show the backup ARN. You can also run describe-backups --server-name
server_name to show information about all backups for a specific AWS OpsWorks for Chef
Automate server.

The following example shows only the ServerArn in results of a describe-servers --
server-name opsworks-cm-test command. The ServerArn value is added to a tag-
resource command to add tags to the server.

{
 "Servers": [
 {
 ...
 "ServerArn": "arn:aws:opsworks-cm:us-west-2:123456789012:server/
opsworks-cm-test/EXAMPLEd-66b0-4196-8274-d1a2bEXAMPLE"
 }
]
}

2. Run the tag-resource command with the ARN that you returned in step 1.

aws opsworks-cm tag-resource --resource-arn "server_or_backup_ARN" --tags
 Key=Key1,Value=Value1 Key=Key2,Value=Value2

The following is an example.

aws opsworks-cm tag-resource --resource-arn "arn:aws:opsworks-cm:us-
west-2:123456789012:server/opsworks-cm-test/EXAMPLEd-66b0-4196-8274-d1a2bEXAMPLE"
 --tags Key=Stage,Value=Production Key=Department,Value=Marketing

3. To verify that tags were added successfully, go on to the next procedure, List Resource Tags.

Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI) API Version 2013-02-18 172

AWS OpsWorks User Guide

List Resource Tags

You can run the list-tags-for-resource command to show the tags that are attached to AWS
OpsWorks for Chef Automate servers or backups. Specify the ARN of a target resource to view its
tags.

1. To get the ARN of the resource for which you want to list tags:

• For a server, run describe-servers --server-name server_name. The results of the
command show the server ARN.

• For a backup, run describe-backups --backup-id backup_ID. The results of the
command show the backup ARN. You can also run describe-backups --server-name
server_name to show information about all backups for a specific AWS OpsWorks for Chef
Automate server.

2. Run the list-tags-for-resource command with the ARN that you returned in step 1.

aws opsworks-cm list-tags-for-resource --resource-arn "server_or_backup_ARN"

The following is an example.

aws opsworks-cm tag-resource --resource-arn "arn:aws:opsworks-cm:us-
west-2:123456789012:server/opsworks-cm-test/EXAMPLEd-66b0-4196-8274-d1a2bEXAMPLE"

If there are tags on the resource, the command returns results like the following.

{
 "Tags": [
 {
 "Key": "Stage",
 "Value": "Production"
 },
 {
 "Key": "Department",
 "Value": "Marketing"
 }
]
}

Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI) API Version 2013-02-18 173

AWS OpsWorks User Guide

Delete Tags from a Resource

You can run the untag-resource command to delete tags from AWS OpsWorks for Chef
Automate servers or backups. If the resource is deleted, the tags on the resource are also deleted.
Specify the Amazon Resource Number (ARN) of a target resource to remove tags from it.

1. To get the ARN of the resource from which you want to remove tags:

• For a server, run describe-servers --server-name server_name. The results of the
command show the server ARN.

• For a backup, run describe-backups --backup-id backup_ID. The results of the
command show the backup ARN. You can also run describe-backups --server-name
server_name to show information about all backups for a specific AWS OpsWorks for Chef
Automate server.

2. Run the untag-resource command with the ARN that you returned in step 1. Specify only
the tags that you want to delete.

aws opsworks-cm untag-resource --resource-arn "server_or_backup_ARN" --tags
 Key=Key1,Value=Value1 Key=Key2,Value=Value2

In this example, the untag-resource command removes only the tag with a key of Stage
and a value of Production.

aws opsworks-cm untag-resource --resource-arn "arn:aws:opsworks-cm:us-
west-2:123456789012:server/opsworks-cm-test/EXAMPLEd-66b0-4196-8274-d1a2bEXAMPLE"
 --tags Key=Stage,Value=Production

3. To verify that tags were deleted successfully, follow steps in List Resource Tags in this topic.

See Also

• Create a Chef Automate server by using the AWS CLI

• Back Up an AWS OpsWorks for Chef Automate Server

• AWS Tagging Strategies

• Controlling Access to AWS Resources Using Resource Tags in the AWS Identity and Access
Management User Guide

• Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide

See Also API Version 2013-02-18 174

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

AWS OpsWorks User Guide

• CreateBackup in the AWS OpsWorks CM API Reference

• CreateServer in the AWS OpsWorks CM API Reference

• TagResource in the AWS OpsWorks CM API Reference

• ListTagsForResource in the AWS OpsWorks CM API Reference

• UntagResource in the AWS OpsWorks CM API Reference

Back Up and Restore an AWS OpsWorks for Chef Automate
Server

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

This section describes how to back up and restore an AWS OpsWorks for Chef Automate server, and
how to delete backups.

Topics

• Back Up an AWS OpsWorks for Chef Automate Server

• Restore an AWS OpsWorks for Chef Automate Server from a Backup

Back Up an AWS OpsWorks for Chef Automate Server

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

Back up and restore servers API Version 2013-02-18 175

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateBackup.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_UntagResource.html

AWS OpsWorks User Guide

You can define a daily or weekly recurring AWS OpsWorks for Chef Automate server backup, and
have the service store the backups in Amazon Simple Storage Service (Amazon S3) on your behalf.
Alternatively, you can make manual backups on demand.

Because backups are stored in Amazon S3, they incur additional fees. You can define a backup
retention period of up to 30 generations. You can submit a service request to have that limit
changed by using AWS support channels. Content delivered to Amazon S3 buckets might contain
customer content. For more information about removing sensitive data, see How Do I Empty an S3
Bucket? or How Do I Delete an S3 Bucket?.

You can add tags to backups of an AWS OpsWorks for Chef Automate server. If you have added
tags to an AWS OpsWorks for Chef Automate server, automated backups of the server inherit those
tags. For more information about how to add and manage tags on backups, see Working with Tags
on AWS OpsWorks for Chef Automate Resources in this guide.

Topics

• Automated Backups

• Manual Backups

• Delete backups

Automated Backups

When you configure your AWS OpsWorks for Chef Automate server, you choose either automated
or manual backups. AWS OpsWorks for Chef Automate starts automated backups during the hour
and on the day that you choose in the Automated backup section of the Configure advanced
settings page of Setup. After your server is online, you can change backup settings by performing
the following steps, either from the server's tile on the Chef Automate servers home page, or on
the server's Properties page.

To change automated backup settings

1. In the Actions menu of the server's tile on the Chef servers home page, choose Change
settings

2. To turn off automated backups, choose No for the Enable automated backups option. Save
your changes; you do not need to go on to the next step.

3. In the Automated Backup section, change the frequency, start time, or generations to keep.
Save your changes.

Back Up an AWS OpsWorks for Chef Automate Server API Version 2013-02-18 176

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

Manual Backups

You can start a manual backup at any time in the AWS Management Console, or by running
the AWS CLI create-backup command. Manual backups are not included in the maximum 30
generations of automated backups that are stored; a maximum of 10 manual backups are stored,
and must be manually deleted from Amazon S3.

You can add tags when you create a new, manual backup of an AWS OpsWorks for Chef Automate
server. For more information about how to add tags when you create a manual backup, see Add
Tags to a New Backup (CLI).

To perform a manual backup in the AWS Management Console

1. On the Chef Automate servers page, choose the server that you want to back up.

2. On the properties page for the server, in the left navigation pane, choose Backups.

3. Choose Create backup.

4. The manual backup is finished when the page shows a green check mark in the backup's
Status column.

To perform a manual backup in the AWS CLI

• To start a manual backup, run the following AWS CLI command.

aws opsworks-cm --region region name create-backup --server-name "Chef server name"
 --description "optional descriptive string"

Delete backups

Deleting a backup permanently deletes it from the S3 bucket in which backups are stored.

To delete a backup in the AWS Management Console

1. On the Chef Automate servers page, choose the server that you want to back up.

2. On the properties page for the server, in the left navigation pane, choose Backups.

3. Choose the backup that you want to delete, and then choose Delete backup. You can select
only one backup at a time.

Back Up an AWS OpsWorks for Chef Automate Server API Version 2013-02-18 177

http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateBackup.html

AWS OpsWorks User Guide

4. When you are prompted to confirm the deletion, fill the check box for Delete the backup,
which is stored in an S3 bucket, and then choose Yes, Delete.

To delete a backup in the AWS CLI

• To delete a backup, run the following AWS CLI command, replacing --backup-id with
the ID of the backup that you want to delete. Backup IDs are in the format ServerName-
yyyyMMddHHmmssSSS. For example, test-chef-server-20171218132604388.

aws opsworks-cm --region region name delete-backup --backup-id ServerName-
yyyyMMddHHmmssSSS

Restore an AWS OpsWorks for Chef Automate Server from a Backup

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

After browsing through your available backups, you can choose a point in time from which to
restore your AWS OpsWorks for Chef Automate server. Server backups contain only configuration-
management software persistent data (cookbooks, registered nodes, etc.). Performing an in-place
restoration of a server (that is, restoring the existing AWS OpsWorks for Chef Automate server
to a new EC2 instance) reregisters nodes that were registered at the time of the backup that you
use to restore the server, and switches traffic to the new instance if restoration is successful, and
the restored AWS OpsWorks for Chef Automate server state is Healthy. Restoring to a newly-
created AWS OpsWorks for Chef Automate server does not maintain node connections. Restoring
a server does not update minor versions of Chef software; it applies the same Chef versions and
configuration-management data that are available in the backup that you choose.

Restoring a server typically takes more time than creating a new server; the time depends on the
size of the backup you choose. After restoration is complete, the old EC2 instance remains in a
Running or Stopped state, but only temporarily. It is eventually terminated.

Restore an AWS OpsWorks for Chef Automate Server API Version 2013-02-18 178

AWS OpsWorks User Guide

In this release, you can use the AWS CLI to restore a Chef server in AWS OpsWorks for Chef
Automate.

Note

You can also run the restore-server command to change the current instance type, or to
restore or set your SSH key if it is lost or compromised.

To restore a server from a backup

1. In the AWS CLI, run the following command to return a list of available backups and their
IDs. Make a note of the ID of the backup that you want to use. Backup IDs are in the format
myServerName-yyyyMMddHHmmssSSS.

aws opsworks-cm --region region name describe-backups

2. Run the following command.

aws opsworks-cm --region region name restore-server --backup-id "myServerName-
yyyyMMddHHmmssSSS" --instance-type "Type of instance" --key-pair "name of your EC2
 key pair" --server-name "name of Chef server"

The following is an example.

aws opsworks-cm --region us-west-2 restore-server --backup-id
 "MyChefServer-20161120122143125" --server-name "MyChefServer"

3. Wait until restoration is complete.

System Maintenance in AWS OpsWorks for Chef Automate

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

System Maintenance API Version 2013-02-18 179

http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_RestoreServer.html

AWS OpsWorks User Guide

Mandatory system maintenance ensures that the latest minor versions of Chef Server and Chef
Automate Server, including security updates, are always running on an AWS OpsWorks for Chef
Automate server. System maintenance is required a minimum of once a week. By using the AWS
CLI, you can configure daily automatic maintenance, if desired. You can also use the AWS CLI to
perform system maintenance on demand, in addition to scheduled system maintenance.

When new minor versions of Chef software become available, system maintenance is designed
to update the minor version of Chef Automate and Chef Server on the server automatically,
as soon as it passes AWS testing. AWS performs extensive testing to verify that Chef upgrades
are production-ready and do not disrupt existing customer environments, so there can be lags
between Chef software releases and their availability for application to existing OpsWorks for Chef
Automate servers. To update available minor versions of Chef software on demand, see Starting
system maintenance on demand in this topic.

System maintenance launches a new instance from a backup that is performed as part of the
maintenance process, which helps reduce risk from degraded or impaired Amazon EC2 instances
that undergo periodic maintenance.

Important

System maintenance deletes any files or custom configuration that you have added to
the AWS OpsWorks for Chef Automate server. For more information about how to repair
configuration or file loss, see Restoring custom configurations and files after maintenance
in this topic.

Topics

• Ensuring nodes trust the AWS OpsWorks Certification Authority

• Configuring system maintenance

• Starting system maintenance on demand

• Restoring custom configurations and files after maintenance

System Maintenance API Version 2013-02-18 180

AWS OpsWorks User Guide

Ensuring nodes trust the AWS OpsWorks Certification Authority

Note

Steps in this section are not required if you are using a custom domain and certificate with
your AWS OpsWorks for Chef Automate server.

Nodes that you are managing with an AWS OpsWorks for Chef Automate server must authenticate
with the server by using certificates. During system maintenance, AWS OpsWorks replaces the
server instance, and regenerates new certificates through the AWS OpsWorks certificate authority
(CA). To restore communication automatically with your managed nodes after maintenance is
finished, nodes should trust the AWS OpsWorks CA that ships with the starter kit, and is hosted
in the regions that are supported by AWS OpsWorks for Chef Automate. When you use the AWS
OpsWorks CA to establish the trust between nodes and server, nodes reconnect to the new server
instance after maintenance. If you are adding EC2 nodes by using the EC2 userdata script
described in Add nodes automatically in AWS OpsWorks for Chef Automate, nodes are already
configured to trust the AWS OpsWorks CA.

• For Linux-based nodes, the S3 bucket location of the CA is https://opsworks-
cm-${REGION}-prod-default-assets.s3.amazonaws.com/misc/opsworks-cm-
ca-2020-root.pem. The AWS OpsWorks trusted CA must be stored in the path /etc/chef/
opsworks-cm-ca-2020-root.pem.

• For Windows-based nodes, the S3 bucket location of the CA is https://opsworks-
cm-$env:AWS_REGION-prod-default-assets.s3.amazonaws.com/misc/opsworks-
cm-ca-2020-root.pem. The AWS OpsWorks CA must be stored in the root Chef folder; for
example, C:\chef\opsworks-cm-ca-2020-root.pem

In both paths, the region variable resolves to one of the following.

• us-east-2

• us-east-1

• us-west-1

• us-west-2

• ap-northeast-1

• ap-southeast-1

Ensuring nodes trust the AWS OpsWorks Certification Authority API Version 2013-02-18 181

AWS OpsWorks User Guide

• ap-southeast-2

• eu-central-1

• eu-west-1

Configuring system maintenance

When you create a new AWS OpsWorks for Chef Automate server, you can configure a weekday and
time, in Coordinated Universal Time (UTC), for system maintenance to start. Maintenance starts
during the hour that you specify. Because you should expect the server to be offline during system
maintenance, choose a time of low server demand within regular office hours. The server status is
UNDER_MAINTENANCE while maintenance is in progress.

You can also change the system maintenance settings on an existing AWS OpsWorks for Chef
Automate server, by changing settings in the System maintenance area of the Settings page for
your server, as shown in the following screenshot.

Configuring system maintenance API Version 2013-02-18 182

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

AWS OpsWorks User Guide

In the System maintenance section, set the day and hour that you want system maintenance to
begin.

Configuring system maintenance by using the AWS CLI

You can also configure the system maintenance automatic start time by using the AWS CLI.
The AWS CLI lets you configure daily automatic maintenance, if desired, by omitting the three-
character weekday prefix.

In a create-server command, add the --preferred-maintenance-window parameter to
your command, after specifying the requirements for creating the server instance (such as instance
type, instance profile ARN, and service role ARN). In the following create-server example, --

Configuring system maintenance API Version 2013-02-18 183

AWS OpsWorks User Guide

preferred-maintenance-window is set to Mon:08:00, meaning that you've set maintenance to
start every Monday morning at 8:00 a.m. UTC.

aws opsworks-cm create-server --engine "Chef" --engine-model "Single" --
engine-version "12" --server-name "automate-06" --instance-profile-arn
 "arn:aws:iam::1019881987024:instance-profile/aws-opsworks-cm-ec2-role"
 --instance-type "t2.medium" --key-pair "amazon-test" --service-role-arn
 "arn:aws:iam::044726508045:role/aws-opsworks-cm-service-role" --preferred-maintenance-
window "Mon:08:00"

In an update-server command, you can update the --preferred-maintenance-window
value alone, if desired. In the following example, the maintenance window is set to Friday night at
6:15 p.m. UTC.

aws opsworks-cm update-server --server-name "shiny-kitchen" --preferred-maintenance-
window "Fri:18:15"

To change the start time of the maintenance window to 6:15 p.m. UTC every day, omit the three-
character weekday prefix, as shown in the following example.

aws opsworks-cm update-server --server-name "shiny-kitchen" --preferred-maintenance-
window "18:15"

For more information about setting the preferred system maintenance window by using the AWS
CLI, see create-server and update-server.

Starting system maintenance on demand

To start system maintenance on demand, outside of your configured weekly or daily automatic
maintenance, run the following AWS CLI command. You cannot start on-demand maintenance in
the AWS Management Console.

aws opsworks-cm start-maintenance --server-name server_name

For more information about this command, see start-maintenance.

Restoring custom configurations and files after maintenance

System maintenance can delete or change custom files or configurations that you have added to
your AWS OpsWorks for Chef Automate server.

Starting system maintenance on demand API Version 2013-02-18 184

http://docs.aws.amazon.com/cli/latest/reference/opsworkscm/update-server.html
http://docs.aws.amazon.com/cli/latest/reference/opsworkscm/update-server.html
http://docs.aws.amazon.com/cli/latest/reference/opsworkscm/start-maintenance.html

AWS OpsWorks User Guide

If, after a maintenance run, your Chef server is missing files or settings that you added by using
RunCommand or SSH, you can use an Amazon Machine Image (AMI) to launch a new Amazon EC2
instance. AMIs are available that are built from a server's pre-maintenance configuration.

The new instance is in the same state that the Chef server was before maintenance, and should
include your missing files and settings.

Important

You cannot use the new instance to restore your server; the instance cannot be run as a
Chef server. You can use the instance only to recover your files and configuration settings.

To launch an EC2 instance from an AMI, in the Amazon EC2 console, open the Launch wizard,
choose My AMIs, and then choose the AMI that has your server name. Follow Amazon EC2 wizard
steps as you would for any other instance launch.

Compliance Scans in AWS OpsWorks for Chef Automate

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

Compliance scans let you track the compliance of managed nodes in your infrastructure based on
predefined policies, also called rules. Compliance views let you regularly audit your applications
for vulnerabilities and noncompliant configurations. Chef offers over 100 predefined compliance
profiles—collections of rules that apply to specific node configurations—that you can use in your
compliance scans. You can also use the Chef InSpec language to create your own custom profiles.

If your server is not yet running Chef Automate 2.0, you can set up Chef Compliance manually, by
installing the Audit cookbook.

Compliance Scans API Version 2013-02-18 185

https://www.inspec.io/docs/
https://www.chef.io/solutions/compliance/

AWS OpsWorks User Guide

Note

The minimum supported version of the Chef Infra client agent software (chef-client) on
nodes associated with an AWS OpsWorks for Chef Automate server is 13.x. We recommend
running the most current, stable chef-client version, or at least 14.10.9.

Topics

• Compliance in Chef Automate 2.0

• Compliance in Chef Automate 1.x

• Updates to Compliance

• Community and Custom Compliance Profiles

• See Also

Compliance in Chef Automate 2.0

If your AWS OpsWorks for Chef Automate server is running Chef Automate 2.0, set up Chef
Compliance by using procedures in this section.

Running Compliance Scan Jobs with Chef Automate 2.0

Chef Automate 2.0 includes Chef InSpec compliance-scanning capability that formerly required
manual setup and cookbook configuration. You can run scan jobs on an AWS OpsWorks for Chef
Automate server that is running Chef Automate 2.0. Jobs can be run immediately (one time),
scheduled for a later time, or scheduled to run at specified intervals, such as daily or every two
hours. The results of a scan job are sent to compliance reporting. You can view and take actions on
compliance scan results in the Chef Automate dashboard. To open the Compliance tab and view
reports, on the Scan Jobs tab in the Chef Automate dashboard, choose Report at the right of a
managed node row.

To run scan jobs on managed nodes, you must have the following.

• At least one compliance profile installed in your namespace.

• At least one target node, either manually-added, or an EC2 instance added automatically.

In AWS OpsWorks for Chef Automate, scan jobs are supported on the following targets.

Compliance in Chef Automate 2.0 API Version 2013-02-18 186

https://downloads.chef.io/chef/stable

AWS OpsWorks User Guide

• Manually-added nodes

• aws-ec2 instances

• AWS Regions

For detailed instructions about how to run scan jobs, see Chef Automate Scan Jobs in the Chef
documentation.

(Optional, Chef Automate 2.0) Setting Up Compliance with the Audit Cookbook

You can configure compliance on any AWS OpsWorks for Chef Automate server. After you launch
an AWS OpsWorks for Chef Automate server, you can install profiles from the Chef Automate
dashboard, or add desired profiles to Audit cookbook attributes in the Policyfile.rb policy file.
A prefilled Policyfile.rb file is included in the starter kit.

After you edit Policyfile.rb with profiles as attributes of the Audit cookbook, run chef push
commands to upload the Audit cookbook and other cookbooks specified in Policyfile.rb to
your Chef Automate server. Installing the Audit cookbook also installs the gem for Chef InSpec,
an open-source testing and auditing framework produced by Chef. For Chef Automate 2.0, choose
version 7.1.0 or later of the Audit cookbook. The InSpec gem must be version 2.2.102 or later.

Instructions in this section show you how to implement the opsworks-audit cookbook. The
Audit cookbook downloads specified profiles from the Chef Automate server, assesses nodes
against the DevSec SSH Baseline profile, and reports the result of compliance scans on every
chef-client run.

To install compliance profiles

1. If you have not already done so, sign in to the Chef Automate web-based dashboard. Use
the credentials you received when you downloaded the Starter Kit as you created your AWS
OpsWorks for Chef Automate server.

2. In the Chef Automate dashboard, choose the Asset Store tab.

Compliance in Chef Automate 2.0 API Version 2013-02-18 187

https://automate.chef.io/docs/scan-jobs/
https://supermarket.chef.io/cookbooks/audit
https://www.inspec.io/
https://discourse.chef.io/t/automate-2-version-20190410001346-released/14930

AWS OpsWorks User Guide

3. Choose the Available tab to see predefined profiles.

4. Browse the list of profiles. Choose a profile that matches the operating system and
configuration of at least one of your managed nodes. To view details about the profile,
including a description of the profile's targeted violations and underlying rule code, choose
> at the right of the profile entry. You can choose multiple profiles. If you are setting up the
example in the Starter Kit, choose DevSec SSH Baseline.

Compliance in Chef Automate 2.0 API Version 2013-02-18 188

AWS OpsWorks User Guide

5. To install the selected profiles on your Chef Automate server, choose Get.

6. After you install profiles, they are shown in the Profiles tab of the Chef Automate dashboard.

To install cookbooks with Policyfile.rb

1. View Policyfile.rb in your Starter Kit to see that the attributes for the Audit cookbook
specify the ssh-baseline profile in ['profiles'].

Define audit cookbook attributes
default["opsworks-demo"]["audit"]["reporter"] = "chef-server-automate"
default["opsworks-demo"]["audit"]["profiles"] = [
 {
 "name": "DevSec SSH Baseline",
 "compliance": "admin/ssh-baseline"
 }
]

2. Download and install the cookbooks defined in Policyfile.rb.

chef install

Compliance in Chef Automate 2.0 API Version 2013-02-18 189

AWS OpsWorks User Guide

All cookbooks are versioned in the cookbook's metadata.rb file. Each time you change a
cookbook, you must raise the version of the cookbook that is in its metadata.rb.

3. Push the policy opsworks-demo, defined in Policyfile.rb, to your server.

chef push opsworks-demo

4. Verify the installation of your policy. Run the following command.

chef show-policy

The results should resemble the following:

opsworks-demo-webserver
=======================
* opsworks-demo: ec0fe46314

5. Add nodes to your server to manage, if you have not already done so. To connect your first
node to the AWS OpsWorks for Chef Automate server, use the userdata.sh script that is
included in this Starter Kit. It uses the AWS OpsWorks AssociateNode API to connect a node
to your server.

You can automate the association of nodes by following steps in Add nodes automatically
in AWS OpsWorks for Chef Automate, or add nodes one at a time by following steps in Add
nodes individually.

6. After you update the run list for your nodes, the chef-client agent runs your specified
recipes on its next run. By default, this occurs every 1800 seconds (30 minutes). After the run,
you can view and take actions on compliance results from the Compliance tab in the Chef
Automate dashboard.

Compliance in Chef Automate 2.0 API Version 2013-02-18 190

AWS OpsWorks User Guide

Running a Compliance Scan

You should see compliance scan results in the Chef Automate dashboard shortly after the first run
of the agent that occurs after you configure node run lists.

Compliance in Chef Automate 2.0 API Version 2013-02-18 191

AWS OpsWorks User Guide

In the Chef Automate dashboard, choose the Compliance tab. In the left navigation pane, choose
Reporting. Choose the Profiles tab, choose Scan Results, and then choose a node with scan
failures to learn more about the rules against which a node failed.

Typically, you see noncompliant scan results, because new nodes do not yet satisfy all rules in
the DevSec SSH Baseline profile. The DevSec Hardening Framework, a community-based project,
offers cookbooks to fix issues that violate the rules in the DevSec SSH Baseline profile.

Compliance in Chef Automate 2.0 API Version 2013-02-18 192

https://github.com/dev-sec

AWS OpsWorks User Guide

(Optional) Resolving Noncompliant Results

The starter kit includes an open-source cookbook, ssh-hardening, that you can run to fix
noncompliant results from runs against the DevSec SSH Baseline profile.

Note

The ssh-hardening cookbook makes changes to your nodes to comply with DevSec
SSH Baseline rules. Before running this cookbook on any production nodes, review details
about the DevSec SSH Baseline profile in the Chef Automate console to understand the
rule violations that the cookbook targets. Review information about the open-source ssh-
hardening cookbook before running it on any production nodes.

To run the ssh-hardening cookbook

1. In a text editor, append the ssh-hardening cookbook to the run list of Policyfile.rb. The
Policyfile.rb run list should match the following.

run_list 'chef-client', 'opsworks-webserver', 'audit', 'ssh-hardening'

2. Update Policyfile.rb, and push it to your AWS OpsWorks for Chef Automate server.

chef update Policyfile.rb
 chef push opsworks-demo

3. Nodes that are associated with the opsworks-demo policy update the run list automatically,
and apply the ssh-hardening cookbook on the next chef-client run.

Because you are using the chef-client cookbook, your node checks in at regular intervals
(by default, every 30 minutes). On the next check-in, the ssh-hardening cookbook runs, and
helps improve node security to meet the DevSec SSH Baseline profile's rules.

4. After the initial run of the ssh-hardening cookbook, wait 30 minutes for a compliance scan
to run again. View the results in the Chef Automate dashboard. The noncompliant results that
occurred in the initial run of the DevSec SSH Baseline scan should be resolved.

Compliance in Chef Automate 2.0 API Version 2013-02-18 193

https://github.com/dev-sec/chef-ssh-hardening
https://github.com/dev-sec/chef-ssh-hardening

AWS OpsWorks User Guide

Compliance in Chef Automate 1.x

If your AWS OpsWorks for Chef Automate server is running Chef Automate 1.x, set up Chef
Compliance by using procedures in this section.

(Optional, Chef Automate 1.x) Setting Up Chef Compliance

You can configure Chef Compliance on any AWS OpsWorks for Chef Automate server. After you
launch an AWS OpsWorks for Chef Automate server, choose profiles that you want to run from
the profiles in the Chef Automate dashboard. After you install profiles, run berks commands
to upload the Audit cookbook to your Chef Automate server. Installing the Audit cookbook also
installs the gem for InSpec, an open-source testing framework produced by Chef that lets you
integrate automated tests into any stage of your deployment pipeline. For Chef Automate 1.x,
choose version 5.0.1 or later of the Audit cookbook. The InSpec gem must be version 1.24.0 or
later.

The AWS OpsWorks for Chef Automate starter kit includes a wrapper cookbook, opsworks-audit,
that downloads and installs the right version of Chef's Audit cookbook for you. The opsworks-
audit cookbook also instructs the chef-client agent to assess nodes against the DevSec SSH
Baseline profile that you install from Chef's Compliance console later in this topic. You can set up
Compliance by using either cookbook to suit your preference. Instructions in this section show you
how to implement the opsworks-audit cookbook.

To install Compliance profiles

1. If you have not already done so, sign in to the Chef Automate web-based dashboard. Use
the credentials you received when you downloaded the Starter Kit as you created your AWS
OpsWorks for Chef Automate server.

2. In the Chef Automate dashboard, choose the Compliance tab.

Compliance in Chef Automate 1.x API Version 2013-02-18 194

https://supermarket.chef.io/cookbooks/audit
https://www.inspec.io/

AWS OpsWorks User Guide

3. In the left navigation bar, choose Profile Store, and then choose the Available tab to see
predefined profiles.

4. Browse the list of profiles. Choose a profile that matches the operating system and
configuration of at least one of your managed nodes. To view details about the profile,
including a description of the profile's targeted violations and underlying rule code, choose >
at the right of the profile entry. You can choose multiple profiles.

Compliance in Chef Automate 1.x API Version 2013-02-18 195

AWS OpsWorks User Guide

5. To install the selected profiles on your Chef Automate server, choose Get.

6. When the download is complete, go to the next procedure.

To install and set up the opsworks-audit cookbook

1. This step is optional, but it saves time in Step 6, when you are adding recipes to node run
lists. Edit the roles/opsworks-example-role.rb file that is included in the starter kit
you downloaded during the creation of your AWS OpsWorks for Chef Automate server. Add
the following lines. The last line is commented out, because adding the ssh-hardening
cookbook and recipe to resolve noncompliant nodes after your Compliance scan runs is
optional.

run_list(
 "recipe[chef-client]",
 "recipe[apache2]",
 "recipe[opsworks-audit]"
 # "recipe[ssh-hardening]"
)

2. Use a text editor to specify your desired cookbooks in your Berksfile. A sample Berksfile is
provided for you in the starter kit. In this example, we install the Chef Infra client (chef-
client) cookbook, the apache2 cookbook, and the opsworks-audit cookbook. Your
Berksfile should resemble the following.

source 'https://supermarket.chef.io
 cookbook 'chef-client'
 cookbook 'apache2', '~> 5.0.1'
 cookbook 'opsworks-audit', path: 'cookbooks/opsworks-audit', '~> 1.0.0'

All cookbooks are versioned in the cookbook's metadata.rb file. Each time you change a
cookbook, you must raise the version of the cookbook that is in its metadata.rb.

3. Run the following command to download and install the cookbooks to the cookbooks folder
on your local or working computer.

berks vendor cookbooks

4. Run the following command to upload the vendored cookbooks to your AWS OpsWorks for
Chef Automate server.

Compliance in Chef Automate 1.x API Version 2013-02-18 196

AWS OpsWorks User Guide

knife upload .

5. Run the following command to verify the installation of the opsworks-audit cookbook by
showing a list of cookbooks that are currently available on the server.

knife cookbook list

6. Add nodes to your server to manage, if you have not already done so. You can automate the
association of nodes by following steps in Add nodes automatically in AWS OpsWorks for
Chef Automate, or add nodes one at a time by following steps in Add nodes individually.
Edit the run list of your nodes to add the role you specified in Step 1, opsworks-example-
role. In this example, we edit the RUN_LIST attribute in the userdata script that you use to
automate the association of nodes.

RUN_LIST="role[opsworks-example-role]"

If you skipped Step 1, and did not set up the role, add the names of the individual recipes
to the run list. Save your changes, and follow steps in Step 3: Create Instances by Using an
Unattended Association Script to apply your userdata script to Amazon EC2 instances.

RUN_LIST="recipe[chef-client],recipe[apache2],recipe[opworks-audit]"

7. After you update the run list for your nodes, the chef-client agent runs your specified
recipes on its next run. By default, this occurs every 1800 seconds (30 minutes). After the run,
your Compliance results are visible in the Chef Automate dashboard.

Running a Compliance Scan

You should see compliance scan results in the Chef Automate dashboard shortly after the first run
of the agent daemon that occurs after you configure node run lists.

Compliance in Chef Automate 1.x API Version 2013-02-18 197

AWS OpsWorks User Guide

In the Chef Automate dashboard, choose the Compliance tab. In the left navigation pane, choose
Reporting. Choose the Profiles tab, choose Scan Results, and then choose a node with scan
failures to learn more about the rules against which a node failed.

Typically, you see noncompliant scan results, because new nodes do not yet satisfy all rules in
the DevSec SSH Baseline profile. The DevSec Hardening Framework, a community-based project,
offers cookbooks to fix issues that violate the rules in the DevSec SSH Baseline profile.

Compliance in Chef Automate 1.x API Version 2013-02-18 198

https://github.com/dev-sec

AWS OpsWorks User Guide

(Optional) Resolving Noncompliant Results

The starter kit includes an open-source cookbook, ssh-hardening, that you can run to fix
noncompliant results from runs against the DevSec SSH Baseline profile.

Note

The ssh-hardening cookbook makes changes to your nodes to comply with DevSec
SSH Baseline rules. Before running this cookbook on any production nodes, review details
about the DevSec SSH Baseline profile in the Chef Automate console to understand the
rule violations that the cookbook targets. Review information about the open-source ssh-
hardening cookbook before running it on any production nodes.

To run the ssh-hardening cookbook

1. In a text editor, append the ssh-hardening cookbook to your Berksfile. Your Berksfile should
resemble the following.

source 'https://supermarket.chef.io'
 cookbook 'chef-client'
 cookbook 'apache2', '~> 5.0.1'
 cookbook 'opsworks-audit', path: 'cookbooks/opsworks-audit', '~> 1.0.0' #
 optional
 cookbook 'ssh-hardening'

2. Run the following commands to download the ssh-hardening cookbook to your local
cookbooks folder, and then upload it to your AWS OpsWorks for Chef Automate server.

berks vendor cookbooks
knife upload .

3. Add the ssh-hardening recipe to your node run list as described in Steps 1 and 6 of To
install and set up the opsworks-audit cookbook.

If you update the opsworks-example-role.rb file, upload your changes to your server by
running the following command.

knife upload .

Compliance in Chef Automate 1.x API Version 2013-02-18 199

https://github.com/dev-sec/chef-ssh-hardening
https://github.com/dev-sec/chef-ssh-hardening

AWS OpsWorks User Guide

If you update the run list directly, upload changes by running the following command. The
node name is typically the instance ID.

knife node run_list add <node name> 'recipe[ssh-hardening]'

4. Because you are using the chef-client cookbook, your node checks in at regular intervals
(by default, every 30 minutes). On the next check-in, the ssh-hardening cookbook runs, and
helps improve node security to meet the DevSec SSH Baseline profile's rules.

5. After the initial run of the ssh-hardening cookbook, wait 30 minutes for a Compliance scan
to run again. View the results in the Chef Automate dashboard. The noncompliant results that
occurred in the initial run of the DevSec SSH Baseline scan should be resolved.

Updates to Compliance

On an AWS OpsWorks for Chef Automate server, compliance functionality is updated automatically
by your scheduled system maintenance. As updated releases of Chef Automate, Chef Infra Server,
and Chef InSpec become available for your AWS OpsWorks for Chef Automate server, you might
need to check and update the supported versions of the Audit cookbook and Chef InSpec gem that
are running on your server. Profiles that you have already installed on your AWS OpsWorks for Chef
Automate server are not updated as part of maintenance.

Community and Custom Compliance Profiles

Chef currently includes over 100 compliance scan profiles. You can add community and custom
profiles to the list, and then download and run compliance scans based on those profiles, just as
you would for included profiles. Community-based compliance profiles are available from the
Chef Supermarket. Custom profiles are Ruby-based programs that include a folder of controls that
specify your scan rules.

See Also

• Chef Compliance announcement blog post

• Chef Automate Compliance online training

• Chef InSpec website

• Chef InSpec Tutorials

Updates to Compliance API Version 2013-02-18 200

https://supermarket.chef.io/tools?q=&type=compliance_profile
https://blog.chef.io/2017/07/05/chef-automate-release-july-2017/
https://training.chef.io/instructor-led-training/chef-automate-compliance
https://www.inspec.io/
https://www.inspec.io/tutorials/

AWS OpsWorks User Guide

Disassociate a Node from an AWS OpsWorks for Chef Automate
Server

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

This section describes how to disassociate, or remove, a managed node from management by
an AWS OpsWorks for Chef Automate server. This operation is performed on the command line;
you cannot disassociate nodes in the AWS OpsWorks for Chef Automate management console.
Currently, the AWS OpsWorks for Chef Automate API does not allow for batch removal of multiple
nodes. The command in this section disassociates one node at a time.

We recommend that you disassociate nodes from a Chef server before you delete the server, so
that the nodes continue to operate without trying to reconnect with the server. To do this, run the
disassociate-node AWS CLI command.

To disassociate nodes

1. In the AWS CLI, run the following command to disassociate nodes. Node_name is the name
of the node that you want to disassociate; for Amazon EC2 instances, this is the instance ID.
Server_name is the name of the Chef server from which you want to disassociate the node.
--engine-attributes specifies your default CHEF_AUTOMATE_ORGANIZATION name. All
three of these parameters are required.

The --region parameter is not required unless you want to disassociate a node from a Chef
server that is not in your default region.

aws opsworks-cm --region Region_name disassociate-node --node-
name Node_name --server-name Server_name --engine-attributes
 "Name=CHEF_AUTOMATE_ORGANIZATION,Value='default'"

The following command is an example.

Remove nodes API Version 2013-02-18 201

http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DisassociateNode.html

AWS OpsWorks User Guide

aws opsworks-cm --region us-west-2 disassociate-node --node-name
 i-0010zzz00d66zzz90 --server-name opsworkstest --engine-attributes
 "Name=CHEF_AUTOMATE_ORGANIZATION,Value='default'"

2. Wait until a response message indicates that the disassociation is finished.

After you successfully disassociate a node from an AWS OpsWorks for Chef Automate server,
it might still be visible in the Chef Automate dashboard. By default, Chef enforces a retention
period for node state information, and purges the node automatically after a few days.

For more information about how to delete an AWS OpsWorks for Chef Automate server, see Delete
an AWS OpsWorks for Chef Automate Server.

Related Topics

The following AWS blog posts offer more information about automatically associating nodes with
your Chef Automate server, by using Auto Scaling groups, or within multiple accounts.

• Using AWS OpsWorks for Chef Automate to Manage EC2 Instances with Auto Scaling

• OpsWorks for Chef Automate – Automatically Bootstrapping Nodes in Different Accounts

Delete an AWS OpsWorks for Chef Automate Server

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

This section describes how to delete an AWS OpsWorks for Chef Automate server. Deleting a
server also deletes its events, logs, and any cookbooks that were stored on the server. Supporting
resources (Amazon Elastic Compute Cloud instance, Amazon Elastic Block Store volume, etc.) are
deleted also, along with all automated backups.

Related Topics API Version 2013-02-18 202

https://aws.amazon.com/blogs/mt/using-aws-opsworks-for-chef-automate-to-manage-ec2-instances-with-auto-scaling/
https://aws.amazon.com/blogs/mt/opsworks-for-chef-automate-automatically-bootstrapping-nodes-in-different-accounts/

AWS OpsWorks User Guide

Although deleting a server does not delete nodes, they are no longer managed by the deleted
server, and will continuously attempt to reconnect. For this reason, we recommend disassociating
managed nodes before you delete a Chef server. In this release, you can disassociate nodes by
running an AWS CLI command.

Step 1: Disassociate Managed Nodes

Disassociate nodes from the Chef server before you delete the server, so that the nodes continue to
operate without trying to reconnect with the server. To do this, run the disassociate-node AWS
CLI command.

To disassociate nodes

1. In the AWS CLI, run the following command to disassociate nodes. Server_name is the name
of the Chef server from which you want to disassociate the node.

aws opsworks-cm --region Region_name disassociate-node --node-name Node_name --
server-name Server_name

2. Wait until a response message indicates that the disassociation is finished.

Step 2: Delete the Server

1. On the server’s tile on the dashboard, expand the Actions menu.

2. Choose Delete server.

3. When you are prompted to confirm the deletion, choose Yes.

Reset Chef Automate Dashboard Credentials

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

Step 1: Disassociate Managed Nodes API Version 2013-02-18 203

http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DisassociateNode.html

AWS OpsWorks User Guide

Periodically, you might want to change the password with which you sign in to the Chef Automate
dashboard. You can also use the Amazon EC2 Systems Manager AWS CLI commands shown in
this section to change the Chef Automate dashboard password if you have lost it. The command
you use depends on whether your Chef Automate server is running version 1 or version 2 of Chef
Automate.

1. To return the instance ID of your Chef server, open the AWS Management Console to the
following page.

https://console.aws.amazon.com/ec2/v2/home?
region=region_of_your_server#Instances:search=aws-opsworks-cm-server_name

For example, for a Chef server named MyChefServer in the US West (Oregon) Region, the
console URL would be the following.

https://console.aws.amazon.com/ec2/v2/home?region=us-west-2#Instances:search=aws-
opsworks-cm-MyChefServer

Make a note of the instance ID that is displayed in the console; you will need it to change your
password.

2. To reset the Chef Automate dashboard sign-in password, run one of the following AWS CLI
commands, depending on whether your server is running Chef Automate 1 or Chef Automate
2. Replace enterprise_name with your enterprise or organization name, user_name with
the user name of an administrator on the server, new_password with the password you want
to use, andregion_name with the region in which your server is located. If you do not specify
an enterprise name, the enterprise name will be default. By default, enterprise_name is
default (this is the name of the organization that is always provisioned). For user_name,
AWS OpsWorks for Chef Automate only creates a user named admin. Make a note of the new
password, and store it in a safe but convenient location.

For Chef Automate 1:

aws ssm send-command --document-name "AWS-RunShellScript" --comment "reset admin
 password" --instance-ids "instance_id"
--parameters commands="sudo delivery-ctl reset-
password enterprise_name user_name new_password" --region region_name --output text

For Chef Automate 2:

Reset Chef credentials API Version 2013-02-18 204

AWS OpsWorks User Guide

aws ssm send-command --document-name "AWS-RunShellScript" --comment "reset admin
 password" --instance-ids "instance_id"
--parameters commands="sudo chef-automate iam admin-access restore new_password" --
region region_name --output text

3. Wait for output text (in this case, the command ID) to show that the password change is
finished.

Logging AWS OpsWorks for Chef Automate API Calls with AWS
CloudTrail

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

AWS OpsWorks for Chef Automate is integrated with AWS CloudTrail, a service that provides a
record of actions taken by an IAM identity, or an AWS service in AWS OpsWorks for Chef Automate.
CloudTrail captures all API calls for AWS OpsWorks for Chef Automate as events, including calls
from the AWS OpsWorks for Chef Automate console and from code calls to the AWS OpsWorks
for Chef Automate APIs. If you create a trail, you can enable continuous delivery of CloudTrail
events to an Amazon S3 bucket, including events for AWS OpsWorks for Chef Automate. If you
don't configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to AWS OpsWorks for Chef Automate, the IP address from which the request was made, who
made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS OpsWorks for Chef Automate Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS OpsWorks for Chef Automate, that activity is recorded in a CloudTrail event along with other

Using AWS CloudTrail API Version 2013-02-18 205

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS OpsWorks User Guide

AWS service events in Event history. You can view, search, and download recent events in your
AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS OpsWorks for Chef
Automate, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By
default, when you create a trail in the console, the trail applies to all regions. The trail logs events
from all regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All AWS OpsWorks for Chef Automate actions are logged by CloudTrail and are documented in
the AWS OpsWorks for Chef Automate API Reference. For example, calls to the CreateServer,
CreateBackup, and DescribeServers actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding AWS OpsWorks for Chef Automate Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

Understanding AWS OpsWorks for Chef Automate Log File Entries API Version 2013-02-18 206

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateServer.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_CreateBackup.html
http://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DescribeServers.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS OpsWorks User Guide

The following example shows a CloudTrail log entry for the AWS OpsWorks for Chef Automate
CreateServer action.

{"eventVersion":"1.05",
"userIdentity":{
 "type":"AssumedRole",
 "principalId":"ID number:OpsWorksCMUser",
 "arn":"arn:aws:sts::831000000000:assumed-role/Admin/OpsWorksCMUser",
 "accountId":"831000000000","accessKeyId":"ID number",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2017-01-05T22:03:47Z"
 },
 "sessionIssuer":{
 "type":"Role",
 "principalId":"ID number",
 "arn":"arn:aws:iam::831000000000:role/Admin",
 "accountId":"831000000000",
 "userName":"Admin"
 }
 }
 },
"eventTime":"2017-01-05T22:18:23Z",
"eventSource":"opsworks-cm.amazonaws.com",
"eventName":"CreateServer",
"awsRegion":"us-west-2",
"sourceIPAddress":"101.25.190.51",
"userAgent":"console.amazonaws.com",
"requestParameters":{
 "serverName":"OpsChef-test-server",
 "engineModel":"Single",
 "engine":"Chef",
 "instanceProfileArn":"arn:aws:iam::831000000000:instance-profile/aws-opsworks-cm-
ec2-role",
 "backupRetentionCount":3,"serviceRoleArn":"arn:aws:iam::831000000000:role/service-
role/aws-opsworks-cm-service-role",
 "engineVersion":"12",
 "preferredMaintenanceWindow":"Fri:21:00",
 "instanceType":"t2.medium",
 "subnetIds":["subnet-1e111f11"],
 "preferredBackupWindow":"Wed:08:00"
 },

Understanding AWS OpsWorks for Chef Automate Log File Entries API Version 2013-02-18 207

AWS OpsWorks User Guide

"responseElements":{
 "server":{
 "endpoint":"OpsChef-test-server-thohsgreckcnwgz3.us-west-2.opsworks-cm.io",
 "createdAt":"Jan 5, 2017 10:18:22 PM",
 "serviceRoleArn":"arn:aws:iam::831000000000:role/service-role/aws-opsworks-cm-
service-role",
 "preferredBackupWindow":"Wed:08:00",
 "status":"CREATING",
 "subnetIds":["subnet-1e111f11"],
 "engine":"Chef",
 "instanceType":"t2.medium",
 "serverName":"OpsChef-test-server",
 "serverArn":"arn:aws:opsworks-cm:us-west-2:831000000000:server/OpsChef-test-
server/8epp7f6z-e91f-4z10-89z5-8c6219cdb09f",
 "engineModel":"Single",
 "backupRetentionCount":3,
 "engineAttributes":[
 {"name":"CHEF_STARTER_KIT","value":"*** Redacted ***"},
 {"name":"CHEF_PIVOTAL_KEY","value":"*** Redacted ***"},
 {"name":"CHEF_DELIVERY_ADMIN_PASSWORD","value":"*** Redacted ***"}],
 "engineVersion":"12.11.1",
 "instanceProfileArn":"arn:aws:iam::831000000000:instance-profile/aws-opsworks-
cm-ec2-role",
 "preferredMaintenanceWindow":"Fri:21:00"
 }
 },
"requestID":"de7f64f9-d394-12ug-8081-7bb0386fbcb6",
"eventID":"8r7b18df-6c90-47be-87cf-e8346428cfc3",
"eventType":"AwsApiCall",
"recipientAccountId":"831000000000"
}

Troubleshooting AWS OpsWorks for Chef Automate

Important

AWS OpsWorks for Chef Automate is no longer accepting new customers. Existing
customers will be unaffected until May 5, 2024 at which time the service will become
unavailable. We recommend that existing customers migrate to Chef SaaS or an alternative
solution. For more information, see AWS OpsWorks for Chef Automate End of Life FAQs.

Troubleshooting API Version 2013-02-18 208

AWS OpsWorks User Guide

This topic contains some common AWS OpsWorks for Chef Automate issues, and suggested
solutions for those issues.

Topics

• General troubleshooting tips

• Troubleshooting specific errors

• Additional help and support

General troubleshooting tips

If you are unable to create or work with a Chef server, you can view error messages or logs to help
you troubleshoot the issue. The following tasks describe general places to start when you are
troubleshooting a Chef server issue. For information about specific errors and solutions, see the
Troubleshooting specific errors section of this topic.

• Use the AWS OpsWorks for Chef Automate console to view error messages if a Chef server
fails to start. On the Chef server detail page, error messages related to launching and running
the server are shown at the top of the page. Errors can come from AWS OpsWorks for Chef
Automate, AWS CloudFormation, or Amazon EC2, services that are used to create a Chef server.
On the detail page, you can also view events that occur on a running server, which can contain
failure event messages.

• To help resolve EC2 issues, connect to your server's instance by using SSH, and view logs. EC2
instance logs are stored in the /var/log/aws/opsworks-cm directory. These logs capture
command outputs while AWS OpsWorks for Chef Automate launches a Chef server.

Troubleshooting specific errors

Topics

• Server is in a Connection lost state

• Managed node shows up in the Chef Automate dashboard in the Missing column

• Cannot create a Chef vault; knife vault command fails with errors

• Server creation fails with "requested configuration is currently not supported" message

• Chef server doesn't recognize organization names added in the Chef Automate dashboard

• Unable to create the server's Amazon EC2 instance

General troubleshooting tips API Version 2013-02-18 209

AWS OpsWorks User Guide

• Service role error prevents server creation

• Elastic IP address limit exceeded

• Cannot sign into the Chef Automate dashboard

• Unattended node association fails

• System maintenance fails

Server is in a Connection lost state

Problem: A server's status shows as Connection lost.

Cause: This most commonly occurs when an entity outside of AWS OpsWorks makes changes to
an AWS OpsWorks for Chef Automate server or its supporting resources. AWS OpsWorks cannot
connect to Chef Automate servers in Connection lost states to handle maintenance tasks such
as creating backups, applying operating system patches, or updating Chef Automate. As a result,
your server might be missing important updates, susceptible to security issues, or otherwise not
operating as expected.

Solution: Try the following steps to restore the server's connection.

1. Be sure that your service role has all required permissions.

a. On the Settings page for your server, in Network and security, choose the link for the
service role that the server is using. This opens the service role for viewing in the IAM
console.

b. On the Permissions tab, verify that AWSOpsWorksCMServiceRole is in the Permissions
policies list. If it isn't listed, add the AWSOpsWorksCMServiceRole managed policy
manually to the role.

c. On the Trust relationships tab, verify that the service role has a trust policy that trusts
the opsworks-cm.amazonaws.com service to assume roles on your behalf. For more
information about how to use trust policies with roles, see Modifying a role (console), or
the AWS Security Blog post, How to use trust policies with IAM roles.

2. Be sure that your instance profile has all required permissions.

a. On the Settings page for your server, in Network and security, choose the link for the
instance profile that the server is using. This opens the instance profile for viewing in the
IAM console.

Troubleshooting specific errors API Version 2013-02-18 210

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/

AWS OpsWorks User Guide

b. On the Permissions tab, verify that AmazonEC2RoleforSSM and
AWSOpsWorksCMInstanceProfileRole are both in the Permissions policies list. If one
or both aren't listed, add these managed policies manually to the role.

c. On the Trust relationships tab, verify that the service role has a trust policy that trusts
the ec2.amazonaws.com service to assume roles on your behalf. For more information
about how to use trust policies with roles, see Modifying a role (console), or the AWS
Security Blog post, How to use trust policies with IAM roles.

3. In the Amazon EC2 console, be sure that you are in the same region as the region of the AWS
OpsWorks for Chef Automate server, and then restart the EC2 instance that your server is
using.

a. Choose the EC2 instance that is named aws-opsworks-cm-instance-server-name.

b. On the Instance state menu, choose Reboot instance.

c. Allow up to 15 minutes for your server to restart and be fully online.

4. In the AWS OpsWorks for Chef Automate console, on the server details page, verify that the
server status is now healthy.

If the server status is still Connection lost after performing the preceding steps, try one of the
following.

• Replace the server by creating a new one and deleting the original. If data on the current server
is important to you, restore the server from a recent backup, and verify the data is up to date
before deleting the original, unresponsive server.

• Contact AWS support.

Managed node shows up in the Chef Automate dashboard in the Missing column

Problem: A managed node is showing up in the Chef Automate dashboard's Missing column.

Cause: When a node doesn't connect to the Chef Automate server for more than 12 hours, and
chef-client cannot run on the node, the node changes from the state it was in before the 12-
hour period, and moves to the Missing column of the Chef Automate dashboard.

Solution: Verify that the node is online. Try running knife node show node_name --run-
list to see whether chef-client is able to run on the node, or knife node show -l

Troubleshooting specific errors API Version 2013-02-18 211

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/

AWS OpsWorks User Guide

node_name to display all information about the node. The node might be offline or disconnected
from the network.

Cannot create a Chef vault; knife vault command fails with errors

Problem: You are trying to create a vault on your Chef Automate server (such as a vault for storing
credentials for domain-joining Windows-based nodes) by running the knife vault command.
The command returns an error message similar to the following.

WARN: Auto inflation of JSON data is deprecated. Please pass in the class to inflate or
 use #edit_hash (CHEF-1)
at /opt/chefdk/embedded/lib/ruby/2.3.0/forwardable.rb:189:in `edit_data'.Please see
 https://docs.chef.io/deprecations_json_auto_inflate.html
for further details and information on how to correct this problem.
WARNING: pivotal not found in users, trying clients.
ERROR: ChefVault::Exceptions::AdminNotFound: FATAL: Could not find pivotal in users or
 clients!

The pivotal user is not returned when you run knife user list remotely, but you can see the
pivotal user in results when you run the chef-server-ctl user-show command locally on your
Chef Automate server. In other words, your knife vault command cannot find the pivotal user,
but you know it exists.

Cause: Though the pivotal user is considered the superuser in Chef, and has full permissions, it
is not a member of any organization, including the default organization that is used in AWS
OpsWorks for Chef Automate. The command knife user list returns all the users that are
in the current organization in your Chef configuration. The chef-server-ctl user-show
command returns all users regardless of organization, including the pivotal user.

Solution: To fix the problem, add the pivotal user to the default organization by running knife
opc.

First, you'll need to install the knife-opc plugin.

chef gem install knife-opc

After you install the plugin, run the following command to add the pivotal user to the default
organization.

knife opc org user add default pivotal

Troubleshooting specific errors API Version 2013-02-18 212

https://github.com/chef/knife-opc

AWS OpsWorks User Guide

You can verify that the pivotal user is part of the default organization by running knife user
list again. pivotal should be listed in the results. Then, try running knife vault again.

Server creation fails with "requested configuration is currently not supported"
message

Problem: You are trying to create a Chef Automate server, but server creation fails with an error
message that is similar to "The requested configuration is currently not supported. Please check
the documentation for supported configurations."

Cause: An unsupported instance type might have been specified for the Chef Automate server. If
you choose to create the Chef Automate server in a VPC that has a non-default tenancy, such as
one for dedicated instances, all instances inside the specified VPC must also be of dedicated or host
tenancy. Because some instance types, such as t2, are available only with default tenancy, the Chef
Automate server instance type might not be supportable by the specified VPC, and server creation
fails.

Solution: If you choose a VPC that has a non-default tenancy, use an m4 instance type, which can
support dedicated tenancy.

Chef server doesn't recognize organization names added in the Chef Automate
dashboard

Problem: You've added new Workflow organization names in the Chef Automate dashboard, or
specified a CHEF_AUTOMATE_ORGANIZATION value other than "default" in the unattended
node association script, but node association fails. Your AWS OpsWorks for Chef Automate server
does not recognize the new organization names.

Cause: Workflow organization names and Chef server organization names are not the same. You
can create new Workflow organizations in the web-based Chef Automate dashboard, but not
Chef server organization names. You can use the Chef Automate dashboard only to view existing
Chef server organizations. A new organization that you create in the Chef Automate dashboard
is a Workflow organization, and is not recognized by the Chef server. You cannot create new
organization names by specifying them in the node association script. Referring to an organization
name in a node association script when the organization has not first been added to the Chef
server will cause node association to fail.

Solution: To create new organizations that are recognized on the Chef server, use the knife opc
org create command, or run chef-server-ctl org-create.

Troubleshooting specific errors API Version 2013-02-18 213

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.chef.io/plugin_knife_opc.html#opc-org-create
https://docs.chef.io/plugin_knife_opc.html#opc-org-create
https://docs.chef.io/ctl_chef_server.html#organization-management

AWS OpsWorks User Guide

Unable to create the server's Amazon EC2 instance

Problem: Server creation failed with an error message similar to the following: "The following
resource(s) failed to create: [EC2Instance]. Failed to receive 1 resource signal(s) within the specified
duration."

Cause: This is most likely because the EC2 instance doesn’t have network access.

Solution: Ensure the instance has outbound Internet access, and the AWS service agent is able to
issue commands. Be sure that your VPC (a VPC with a single public subnet) has DNS resolution
enabled, and that your subnet has the Auto-assign Public IP setting enabled.

Service role error prevents server creation

Problem: Server creation fails with an error message that states, "Not authorized to perform
sts:AssumeRole."

Cause: This can occur when the service role you are using lacks adequate permissions to create a
new server.

Solution: Open the AWS OpsWorks for Chef Automate console; use the console to generate a new
service role and an instance profile role. If you would prefer to use your own service role, attach
the AWSOpsWorksCMServiceRole policy to the role. Verify that opsworks-cm.amazonaws.com is
listed among services in the role's Trust relationships. Verify that the service role that is associated
with the Chef server has the AWSOpsWorksCMServiceRole managed policy attached.

Elastic IP address limit exceeded

Problem: Server creation fails with an error message that states, "The following resource(s) failed
to create: [EIP, EC2Instance]. Resource creation cancelled, the maximum number of addresses has
been reached."

Cause: This occurs when your account has used the maximum number of Elastic IP (EIP) addresses.
The default EIP address limit is five.

Solution: You can either release existing EIP addresses or delete ones that your account is not
actively using, or you can contact AWS Customer Support to increase the limit of EIP addresses that
is associated with your account.

Troubleshooting specific errors API Version 2013-02-18 214

AWS OpsWorks User Guide

Cannot sign into the Chef Automate dashboard

Problem: The Chef Automate dashboard shows an error similar to the following: "Cross-Origin
Request Blocked: The Same Origin Policy disallows reading the remote resource at https://
myserver-name.region.opsworks-cm.io/api/v0/e/default/verify-token. (Reason: CORS header
'Access-Control-Allow-Origin' missing)". The error can also be similar to "The User Id / Password
combination entered is incorrect."

Cause: The Chef Automate dashboard explicity sets the FQDN, and does not accept relative URLs.
At this time, you cannot sign in by using the Chef server's IP address; you can only sign in by using
the DNS name of the server.

Solution: Sign in to the Chef Automate dashboard only by using the Chef server's DNS name entry,
not its IP address. You can also try resetting the Chef Automate dashboard credentials by running
an AWS CLI command, as described in Reset Chef Automate Dashboard Credentials.

Unattended node association fails

Problem: Unattended, or automatic, association of new Amazon EC2 nodes is failing. Nodes that
should have been added to the Chef server are not showing up in the Chef Automate dashboard,
and are not listed in results of the knife client show or knife node show commands.

Cause: This can occur when you do not have an IAM role set up as an instance profile that permits
opsworks-cm API calls to communicate with new EC2 instances.

Solution: Attach a policy to your EC2 instance profile that allows the AssociateNode and
DescribeNodeAssociationStatus API calls to work with EC2, as described in Add nodes
automatically in AWS OpsWorks for Chef Automate.

System maintenance fails

AWS OpsWorks CM performs weekly system maintenance to ensure that the latest minor versions
of Chef Server and Chef Automate Server, including security updates, are always running on
an AWS OpsWorks for Chef Automate server. If, for any reason, system maintenance fails, AWS
OpsWorks CM notifies you of the failure. For more information about system maintenance, see
System Maintenance in AWS OpsWorks for Chef Automate.

This section describes possible reasons for failure and suggests solutions.

Topics

• Service role or instance profile error prevents system maintenance

Troubleshooting specific errors API Version 2013-02-18 215

AWS OpsWorks User Guide

Service role or instance profile error prevents system maintenance

Problem: System maintenance fails with an error message that states, "Not authorized to perform
sts:AssumeRole", or a similar error message about permissions.

Cause: This can occur when either the service role or instance profile you are using lacks adequate
permissions to perform system maintenance on the server.

Solution: Be sure that your service role and instance profile have all required permissions.

1. Be sure that your service role has all required permissions.

a. On the Settings page for your server, in Network and security, choose the link for the
service role that the server is using. This opens the service role for viewing in the IAM
console.

b. On the Permissions tab, verify that AWSOpsWorksCMServiceRole is attached to the
service role. If AWSOpsWorksCMServiceRole is not listed, add this policy to the role.

c. Verify that opsworks-cm.amazonaws.com is listed among services in the role's Trust
relationships. For more information about how to use trust policies with roles, see
Modifying a role (console), or the AWS Security Blog post, How to use trust policies with
IAM roles.

2. Be sure that your instance profile has all required permissions.

a. On the Settings page for your server, in Network and security, choose the link for the
instance profile that the server is using. This opens the instance profile for viewing in the
IAM console.

b. On the Permissions tab, verify that AmazonEC2RoleforSSM and
AWSOpsWorksCMInstanceProfileRole are both in the Permissions policies list. If one
or both aren't listed, add these managed policies manually to the role.

c. On the Trust relationships tab, verify that the service role has a trust policy that trusts
the ec2.amazonaws.com service to assume roles on your behalf. For more information
about how to use trust policies with roles, see Modifying a role (console), or the AWS
Security Blog post, How to use trust policies with IAM roles.

Additional help and support

If you do not see your specific problem described in this topic, or you have tried the suggestions in
this topic and are still having problems, visit the AWS OpsWorks forums.

Additional help and support API Version 2013-02-18 216

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/
https://forums.aws.amazon.com/forum.jspa?forumID=153&start=0

AWS OpsWorks User Guide

You can also visit the AWS Support Center. The AWS Support Center is the hub for creating
and managing AWS Support cases. The AWS Support Center also includes links to other helpful
resources, such as forums, technical FAQs, service health status, and AWS Trusted Advisor.

Additional help and support API Version 2013-02-18 217

https://console.aws.amazon.com/support/home#/

AWS OpsWorks User Guide

Security in AWS OpsWorks Configuration Management
(CM)

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to AWS OpsWorks CM,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS OpsWorks CM. The following topics show you how to configure AWS OpsWorks CM to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your AWS OpsWorks CM resources.

Topics

• Data Protection in AWS OpsWorks CM

• Data Encryption

• Identity and Access Management for AWS OpsWorks CM

• Internetwork Traffic Privacy

• Logging and Monitoring in AWS OpsWorks CM

• Compliance Validation for AWS OpsWorks CM

• Resilience in AWS OpsWorks CM

• Infrastructure Security in AWS OpsWorks CM

• Configuration and Vulnerability Analysis in AWS OpsWorks CM

API Version 2013-02-18 218

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS OpsWorks User Guide

• Security Best Practices for AWS OpsWorks CM

Data Protection in AWS OpsWorks CM

The AWS shared responsibility model applies to data protection in AWS OpsWorks Configuration
Management. As described in this model, AWS is responsible for protecting the global
infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your
content that is hosted on this infrastructure. You are also responsible for the security configuration
and management tasks for the AWS services that you use. For more information about data
privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS
Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with OpsWorks CM or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

The names of OpsWorks CM servers are not encrypted.

Data Protection API Version 2013-02-18 219

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS OpsWorks User Guide

OpsWorks CM collects the following customer data in the course of creating and maintaining your
AWS OpsWorks for Chef Automate and AWS OpsWorks for Puppet Enterprise servers.

• For OpsWorks for Puppet Enterprise, we collect private keys that Puppet Enterprise uses to
enable communication between your Puppet master and managed nodes.

• For AWS OpsWorks for Chef Automate, we collect private keys for certificates that you attach
to the service if you are using a custom domain. The private key that you provide when you are
creating a Chef Automate server with a custom domain is passed through to your server.

OpsWorks CM servers store your configuration code, such as Chef cookbooks or Puppet Enterprise
modules. Though this code is stored in server backups, AWS does not have access to it. This content
is encrypted, and only administrators in your AWS account can access it. We recommend that you
secure your Chef or Puppet configuration code using recommended protocols for your source
repositories. For example, you can restrict permissions to repositories in AWS CodeCommit, or
follow guidelines on the GitHub website for securing GitHub repositories.

OpsWorks CM does not use customer-provided content to maintain the service, or keep customer
logs. Logs about your OpsWorks CM servers are stored in your account, in Amazon S3 buckets. IP
addresses of users who connect to your OpsWorks CM servers are logged by AWS.

Integration with AWS Secrets Manager

Starting May 3, 2021, when you create a new server in OpsWorks CM, OpsWorks CM stores secrets
for the server in AWS Secrets Manager. For new servers, the following attributes are stored as
secrets in Secrets Manager.

• Chef Automate server

• HTTPS private key (only servers that do not use a custom domain)

• Chef Automate administrative password (CHEF_AUTOMATE_ADMIN_PASSWORD)

• Puppet Enterprise master

• HTTPS private key (only servers that do not use a custom domain)

• Puppet administrative password (PUPPET_ADMIN_PASSWORD)

• Puppet r10k remote (PUPPET_R10K_REMOTE)

Integration with AWS Secrets Manager API Version 2013-02-18 220

https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control.html#auth-and-access-control-iam-access-control-identity-based
https://help.github.com/en/github/managing-security-vulnerabilities/adding-a-security-policy-to-your-repository

AWS OpsWorks User Guide

For existing servers that do not use a custom domain, the only secret stored in Secrets Manager,
for both Chef Automate and Puppet Enterprise servers, is the HTTPS private key, because this is
generated during automatic, weekly system maintenance.

OpsWorks CM stores secrets in Secrets Manager automatically, and this behavior is not user-
configurable.

Data Encryption

AWS OpsWorks CM encrypts server backups and communication between authorized AWS users
and their AWS OpsWorks CM servers. However, the root Amazon EBS volumes of AWS OpsWorks
CM servers are not encrypted.

Encryption at Rest

AWS OpsWorks CM server backups are encrypted. However, the root Amazon EBS volumes of AWS
OpsWorks CM servers are not encrypted. This is not user-configurable.

Encryption in Transit

AWS OpsWorks CM uses HTTP with TLS encryption. AWS OpsWorks CM defaults to self-signed
certificates to provision and manage servers, if no signed certificate is provided by users. We
recommend that you use a certificate signed by a certificate authority (CA).

Key Management

AWS Key Management Service customer managed keys and AWS managed keys are not currently
supported by AWS OpsWorks CM.

Identity and Access Management for AWS OpsWorks CM

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use OpsWorks CM resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating With Identities

Data Encryption API Version 2013-02-18 221

AWS OpsWorks User Guide

• Managing Access Using Policies

• How AWS OpsWorks CM Works with IAM

• AWS OpsWorks CM Identity-Based Policy Examples

• Troubleshooting AWS OpsWorks CM Identity and Access

• AWS managed policies for AWS OpsWorks Configuration Management

• Cross-service confused deputy prevention in AWS OpsWorks CM

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in OpsWorks CM.

Service user – If you use the OpsWorks CM service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more OpsWorks CM features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
OpsWorks CM, see Troubleshooting AWS OpsWorks CM Identity and Access.

Service administrator – If you're in charge of OpsWorks CM resources at your company, you
probably have full access to OpsWorks CM. It's your job to determine which OpsWorks CM features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
OpsWorks CM, see How AWS OpsWorks CM Works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to OpsWorks CM. To view example OpsWorks CM identity-
based policies that you can use in IAM, see AWS OpsWorks CM Identity-Based Policy Examples.

Authenticating With Identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.

Audience API Version 2013-02-18 222

AWS OpsWorks User Guide

When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM Users and Groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier

Authenticating With Identities API Version 2013-02-18 223

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

AWS OpsWorks User Guide

to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

Warning

IAM users have long-term credentials, which presents a security risk. To help mitigate this
risk, we recommend that you provide these users with only the permissions they require to
perform the task and that you remove these users when they are no longer needed.

IAM Roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource

Authenticating With Identities API Version 2013-02-18 224

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS OpsWorks User Guide

(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Authenticating With Identities API Version 2013-02-18 225

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AWS OpsWorks User Guide

Managing Access Using Policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-Based Policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

OpsWorks CM supports custom policies that you create in IAM and attach to users, roles, or groups.

Managing Access Using Policies API Version 2013-02-18 226

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

AWS OpsWorks User Guide

Resource-Based Policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

OpsWorks CM does not support resource-based policies.

Access Control Lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

OpsWorks CM does not use ACLs.

Other Policy Types

OpsWorks CM does not support the following other policy types.

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (user or role).
You can set a permissions boundary for an entity. The resulting permissions are the intersection
of entity's identity-based policies and its permissions boundaries. Resource-based policies that
specify the user or role in the Principal field are not limited by the permissions boundary. An
explicit deny in any of these policies overrides the allow. For more information about permissions
boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

Managing Access Using Policies API Version 2013-02-18 227

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS OpsWorks User Guide

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
Work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple Policy Types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS OpsWorks CM Works with IAM

Before you use IAM to manage access to AWS OpsWorks CM, you should understand what IAM
features are available to use with AWS OpsWorks CM. To get a high-level view of how AWS
OpsWorks CM and other AWS services work with IAM, see AWS services that work with IAM in the
IAM User Guide.

Topics

• AWS OpsWorks CM Identity-Based Policies

• AWS OpsWorks CM and Resource-Based Policies

• Authorization Based on AWS OpsWorks CM Tags

• AWS OpsWorks CM IAM Roles

AWS OpsWorks CM Identity-Based Policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. AWS OpsWorks CM supports specific

How AWS OpsWorks CM Works with IAM API Version 2013-02-18 228

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS OpsWorks User Guide

actions, resources, and condition keys. To learn about all of the elements that you use in a JSON
policy, see IAM JSON policy elements reference in the IAM User Guide.

In AWS OpsWorks CM, you can attach a custom policy statement to a user, role, or group.

Actions

The Action element of an IAM identity-based policy describes the specific action or actions
that will be allowed or denied by the policy. Policy actions usually have the same name as the
associated AWS API operation. The action is used in a policy to grant permissions to perform the
associated operation.

Policy actions in AWS OpsWorks CM use the following prefix before the action: opsworks-cm:.
For example, to grant someone permission to create an AWS OpsWorks CM server by using an API
operation, you include the opsworks-cm:CreateServer action in their policy. Policy statements
must include either an Action or NotAction element. AWS OpsWorks CM defines its own set of
actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "opsworks-cm:action1",
 "opsworks-cm:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "opsworks-cm:Describe*"

When you use wildcards to allow multiple actions in a policy statement, be careful that you are
allowing those actions only for authorized services or users.

To see a list of AWS OpsWorks CM actions, see Actions, Resources, and Condition Keys for AWS
OpsWorks in the IAM User Guide.

Resources

The Resource element specifies the object or objects to which the action applies. Statements
must include either a Resource or a NotResource element. You specify a resource using an ARN
or using the wildcard (*) to indicate that the statement applies to all resources.

How AWS OpsWorks CM Works with IAM API Version 2013-02-18 229

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsopsworks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsopsworks.html

AWS OpsWorks User Guide

You can get the Amazon Resource Number (ARN) of an AWS OpsWorks CM server or backup by
running the DescribeServers or DescribeBackups API operations, and base resource-level policies
on those resources.

An AWS OpsWorks CM server resource has an ARN in the following format:

arn:aws:opsworks-cm:{Region}:${Account}:server/${ServerName}/${UniqueId}

An AWS OpsWorks CM backup resource has an ARN in the following format:

arn:aws:opsworks-cm:{Region}:${Account}:backup/${ServerName}-{Date-and-Time-Stamp-of-
Backup}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
Service Namespaces.

For example, to specify the test-chef-automate Chef Automate server in your statement, use
the following ARN:

"Resource": "arn:aws:opsworks-cm:us-west-2:123456789012:server/test-chef-automate/
EXAMPLE-d1a2bEXAMPLE"

To specify all AWS OpsWorks CM servers that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:opsworks-cm:us-west-2:123456789012:server/*"

The following example specifies an AWS OpsWorks CM server backup as a resource:

"Resource": "arn:aws:opsworks-cm:us-west-2:123456789012:backup/test-chef-automate-
server-2018-05-20T19:06:12.399Z"

Some AWS OpsWorks CM actions, such as those for creating resources, cannot be performed on a
specific resource. In those cases, you must use the wildcard (*).

"Resource": "*"

Many API actions involve multiple resources. To specify multiple resources in a single statement,
separate the ARNs with commas.

How AWS OpsWorks CM Works with IAM API Version 2013-02-18 230

https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DescribeServers.html
https://docs.aws.amazon.com/opsworks-cm/latest/APIReference/API_DescribeBackups.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS OpsWorks User Guide

"Resource": [
 "resource1",
 "resource2"

To see a list of AWS OpsWorks CM resource types and their ARNs, see Actions, Resources, and
Condition Keys for AWS OpsWorks CM in the IAM User Guide. To learn with which actions you can
specify the ARN of each resource, see Actions, Resources, and Condition Keys for AWS OpsWorks
CM in the IAM User Guide.

Condition Keys

AWS OpsWorks CM does not have service-specific context keys that can be used in the Condition
element of policy statements. For the list of the global context keys that are available to all
services, see AWS global condition context keys in the IAM Policy Reference. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can build conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant a
user permission to access a resource only if it is tagged with the user's name. For more information,
see IAM policy elements: Variables and tags in the IAM User Guide.

Examples

To view examples of AWS OpsWorks CM identity-based policies, see AWS OpsWorks CM Identity-
Based Policy Examples.

AWS OpsWorks CM and Resource-Based Policies

AWS OpsWorks CM does not support resource-based policies.

Resource-based policies are JSON policy documents that specify what actions a specified principal
can perform on a resource and under what conditions.

How AWS OpsWorks CM Works with IAM API Version 2013-02-18 231

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsopsworksconfigurationmanagement.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsopsworksconfigurationmanagement.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsopsworksconfigurationmanagement.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsopsworksconfigurationmanagement.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html

AWS OpsWorks User Guide

Authorization Based on AWS OpsWorks CM Tags

You can attach tags to AWS OpsWorks CM resources or pass tags in a request to AWS OpsWorks
CM. To control access based on tags, you provide tag information in the condition element of
a policy using the aws:RequestTag/key-name, or aws:TagKeys condition keys. For more
information about tagging AWS OpsWorks CM resources, see Working with Tags on AWS OpsWorks
for Chef Automate Resources or Working with Tags on AWS OpsWorks for Puppet Enterprise
Resources in this guide.

AWS OpsWorks CM IAM Roles

An IAM role is an entity within your AWS account that has specific permissions.

AWS OpsWorks CM uses two roles:

• A service role that grants the AWS OpsWorks CM service permissions to work within a user's AWS
account. If you use the default service role provided by OpsWorks CM, the name of this role is
aws-opsworks-cm-service-role.

• An instance profile role that lets the AWS OpsWorks CM service call the OpsWorks CM API.
This role grants access to Amazon S3 and AWS CloudFormation to create the server and the S3
bucket for backups. If you use the default instance profile provided by OpsWorks CM, the name
of this instance profile role is aws-opsworks-cm-ec2-role.

AWS OpsWorks CM does not use service-linked roles.

Using Temporary Credentials with AWS OpsWorks CM

AWS OpsWorks CM supports using temporary credentials, and inherits that capability from AWS
Security Token Service.

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

Service-Linked Roles

AWS OpsWorks CM does not use service-linked roles.

Service-linked roles allow AWS services to access resources in other services to complete an action
on your behalf. Service-linked roles appear in your IAM account and are owned by the service. An
IAM administrator can view but not edit the permissions for service-linked roles.

How AWS OpsWorks CM Works with IAM API Version 2013-02-18 232

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS OpsWorks User Guide

Service Roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

AWS OpsWorks CM uses two roles:

• A service role that grants the AWS OpsWorks CM service permissions to work within a user's AWS
account. If you use the default service role provided by OpsWorks CM, the name of this role is
aws-opsworks-cm-service-role.

• An instance profile role that lets the AWS OpsWorks CM service call the OpsWorks CM API.
This role grants access to Amazon S3 and AWS CloudFormation to create the server and the S3
bucket for backups. If you use the default instance profile provided by OpsWorks CM, the name
of this instance profile role is aws-opsworks-cm-ec2-role.

Choosing an IAM Role in AWS OpsWorks CM

When you create a server in AWS OpsWorks CM, you must choose a role to allow AWS OpsWorks
CM to access Amazon EC2 on your behalf. If you have already created a service role, then AWS
OpsWorks CM provides you with a list of roles to choose from. OpsWorks CM can create the role
for you, if you do not specify one. It's important to choose a role that allows access to start and
stop Amazon EC2 instances. For more information, see Create a Chef Automate Server or Create a
Puppet Enterprise Master.

AWS OpsWorks CM Identity-Based Policy Examples

By default, users or roles don't have permission to create or modify AWS OpsWorks CM resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM
administrator must create IAM policies that grant IAM identities permission to perform specific API
operations on the specified resources they need. The administrator must then attach those policies
to the users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating IAM policies in the IAM User Guide.

Identity-Based Policy Examples API Version 2013-02-18 233

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS OpsWorks User Guide

In AWS OpsWorks CM, you can assign the AWSOpsWorksCMServiceRole policy to a user to let
the user create and manage Chef Automate or Puppet Enterprise servers using either the AWS
Management Console or AWS CLI.

Topics

• Policy Best Practices

• Allow Users to View Their Own Permissions

• Viewing AWS OpsWorks CM Servers Based on Tags

Policy Best Practices

Identity-based policies determine whether someone can create, access, or delete OpsWorks CM
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and

Identity-Based Policy Examples API Version 2013-02-18 234

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS OpsWorks User Guide

functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Allow Users to View Their Own Permissions

This example shows how you might create a policy that allows users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": [
 "arn:aws:iam::*:user/${aws:username}"
]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",

Identity-Based Policy Examples API Version 2013-02-18 235

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS OpsWorks User Guide

 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
 }

Viewing AWS OpsWorks CM Servers Based on Tags

You can use conditions in your identity-based policy to control access to AWS OpsWorks CM servers
and backups based on tags. This example shows how you might create a policy that allows viewing
a AWS OpsWorks CM server. However, permission is granted only if the AWS OpsWorks CM server
tag Owner has the value of that user's user name. This policy also grants the permissions necessary
to complete this action on the console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListServersInConsole",
 "Effect": "Allow",
 "Action": "opsworks-cm:DescribeServers",
 "Resource": "*"
 },
 {
 "Sid": "ViewServerIfOwner",
 "Effect": "Allow",
 "Action": "opsworks-cm:DescribeServers",
 "Resource": "arn:aws:opsworks-cm:region:master-account-ID:server/server-
name",
 "Condition": {
 "StringEquals": {"opsworks-cm:ResourceTag/Owner": "${aws:username}"}
 }
 }
]
}

You can attach this policy to the users in your account. If a user named richard-roe attempts
to view an AWS OpsWorks CM server, the server must be tagged Owner=richard-roe or

Identity-Based Policy Examples API Version 2013-02-18 236

AWS OpsWorks User Guide

owner=richard-roe. Otherwise he is denied access. The condition tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON policy elements: Condition in the IAM User Guide.

Troubleshooting AWS OpsWorks CM Identity and Access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with IAM. For troubleshooting information specific to AWS OpsWorks CM,
see Troubleshooting AWS OpsWorks for Chef Automate and Troubleshooting OpsWorks for Puppet
Enterprise.

Topics

• I Am Not Authorized to Perform an Action in AWS OpsWorks CM

• I Am Not Authorized to Perform iam:PassRole

• I Want to Allow People Outside of My AWS Account to Access My AWS OpsWorks CM Resources

I Am Not Authorized to Perform an Action in AWS OpsWorks CM

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your sign-in credentials.

The following example error occurs when user mateojackson tries to use the console to view
details about an AWS OpsWorks CM server, but does not have opsworks-cm:DescribeServers
permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 opsworks-cm:DescribeServers on resource: test-chef-automate-server

In this case, Mateo asks his administrator to update policies to allow him to access the test-
chef-automate-server resource using the opsworks-cm:DescribeServers action.

I Am Not Authorized to Perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, then you
must contact your administrator for assistance. Your administrator is the person that provided you
with your sign-in credentials. Ask that person to update your policies to allow you to pass a role to
OpsWorks CM.

Troubleshooting API Version 2013-02-18 237

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS OpsWorks User Guide

Some AWS services allow you to pass an existing role to that service, instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when a user named marymajor tries to use the console to
perform an action in OpsWorks CM. However, the action requires the service to have permissions
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

I Want to Allow People Outside of My AWS Account to Access My AWS OpsWorks
CM Resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• AWS OpsWorks CM supports granting users from more than one account access to manage an
AWS OpsWorks CM server.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Troubleshooting API Version 2013-02-18 238

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS OpsWorks User Guide

AWS managed policies for AWS OpsWorks Configuration Management

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: AWSOpsWorksCMServiceRole

You can attach AWSOpsWorksCMServiceRole to your IAM entities. OpsWorks CM also attaches
this policy to a service role that allows OpsWorks CM to perform actions on your behalf.

This policy grants administrative permissions that allow OpsWorks CM administrators to
create, manage, and delete OpsWorks CM servers and backups.

Permissions details

This policy includes the following permissions.

• opsworks-cm – Allows principals to delete existing servers, and start maintenance runs.

• acm – Allows principals to delete or import certificates from AWS Certificate Manager that let
users connect to an OpsWorks CM server.

• cloudformation – Allows OpsWorks CM to create and manage AWS CloudFormation stacks
when principals create, update, or delete OpsWorks CM servers.

AWS managed policies API Version 2013-02-18 239

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS OpsWorks User Guide

• ec2 – Allows OpsWorks CM to launch, provision, update, and terminate Amazon Elastic Compute
Cloud instances when principals create, update, or delete OpsWorks CM servers.

• iam – Allows OpsWorks CM to create service roles that are required for creating and managing
OpsWorks CM servers.

• tag – Allows principals to apply and remove tags from OpsWorks CM resources, including servers
and backups.

• s3 – Allows OpsWorks CM to create Amazon S3 buckets for storing server backups, manage
objects in S3 buckets on principal request (for example, deleting a backup), and delete buckets.

• secretsmanager – Allows OpsWorks CM to create and manage Secrets Manager secrets, and
apply or remove tags from secrets.

• ssm – Allows OpsWorks CM to use Systems Manager Run Command on the instances that are
OpsWorks CM servers.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::aws-opsworks-cm-*"
],
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteObject",
 "s3:DeleteBucket",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutBucketPolicy",
 "s3:PutObject",
 "s3:GetBucketTagging",
 "s3:PutBucketTagging"
]
 },
 {
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Action": [

AWS managed policies API Version 2013-02-18 240

AWS OpsWorks User Guide

 "tag:UntagResources",
 "tag:TagResources"
]
 },
 {
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Action": [
 "ssm:DescribeInstanceInformation",
 "ssm:GetCommandInvocation",
 "ssm:ListCommandInvocations",
 "ssm:ListCommands"
]
 },
 {
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "ssm:resourceTag/aws:cloudformation:stack-name": "aws-opsworks-cm-
*"
 }
 },
 "Action": [
 "ssm:SendCommand"
]
 },
 {
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ssm:*::document/*",
 "arn:aws:s3:::aws-opsworks-cm-*"
],
 "Action": [
 "ssm:SendCommand"
]
 },
 {
 "Effect": "Allow",
 "Resource": [

AWS managed policies API Version 2013-02-18 241

AWS OpsWorks User Guide

 "*"
],
 "Action": [
 "ec2:AllocateAddress",
 "ec2:AssociateAddress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateImage",
 "ec2:CreateSecurityGroup",
 "ec2:CreateSnapshot",
 "ec2:CreateTags",
 "ec2:DeleteSecurityGroup",
 "ec2:DeleteSnapshot",
 "ec2:DeregisterImage",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeAddresses",
 "ec2:DescribeImages",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeInstances",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSubnets",
 "ec2:DisassociateAddress",
 "ec2:ReleaseAddress",
 "ec2:RunInstances",
 "ec2:StopInstances"
]
 },
 {
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "ec2:ResourceTag/aws:cloudformation:stack-name": "aws-opsworks-cm-
*"
 }
 },
 "Action": [
 "ec2:TerminateInstances",
 "ec2:RebootInstances"
]
 },
 {

AWS managed policies API Version 2013-02-18 242

AWS OpsWorks User Guide

 "Effect": "Allow",
 "Resource": [
 "arn:aws:opsworks-cm:*:*:server/*"
],
 "Action": [
 "opsworks-cm:DeleteServer",
 "opsworks-cm:StartMaintenance"
]
 },
 {
 "Effect": "Allow",
 "Resource": [
 "arn:aws:cloudformation:*:*:stack/aws-opsworks-cm-*"
],
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStackEvents",
 "cloudformation:DescribeStackResources",
 "cloudformation:DescribeStacks",
 "cloudformation:UpdateStack"
]
 },
 {
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iam::*:role/aws-opsworks-cm-*",
 "arn:aws:iam::*:role/service-role/aws-opsworks-cm-*"
],
 "Action": [
 "iam:PassRole"
]
 },
 {
 "Effect": "Allow",
 "Resource": "*",
 "Action": [
 "acm:DeleteCertificate",
 "acm:ImportCertificate"
]
 },
 {
 "Effect": "Allow",

AWS managed policies API Version 2013-02-18 243

AWS OpsWorks User Guide

 "Resource": "arn:aws:secretsmanager:*:*:opsworks-cm!aws-opsworks-cm-
secrets-*",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:UpdateSecret",
 "secretsmanager:DeleteSecret",
 "secretsmanager:TagResource",
 "secretsmanager:UntagResource"
]
 },
 {
 "Effect": "Allow",
 "Action": "ec2:DeleteTags",
 "Resource": [
 "arn:aws:ec2:*:*:instance/*",
 "arn:aws:ec2:*:*:elastic-ip/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 }
]
}

AWS managed policy: AWSOpsWorksCMInstanceProfileRole

You can attach AWSOpsWorksCMInstanceProfileRole to your IAM entities. OpsWorks CM also
attaches this policy to a service role that allows OpsWorks CM to perform actions on your behalf.

This policy grants administrative permissions that allow the Amazon EC2 instances that are
used as OpsWorks CM servers to get information from AWS CloudFormation and AWS Secrets
Manager, and store server backups in Amazon S3 buckets.

Permissions details

This policy includes the following permissions.

• acm – Allows OpsWorks CM server EC2 instances to get certificates from AWS Certificate
Manager that let users connect to an OpsWorks CM server.

• cloudformation – Allows OpsWorks CM server EC2 instances to get information about AWS
CloudFormation stacks during the instance creation or update process, and send signals to AWS
CloudFormation about its status.

AWS managed policies API Version 2013-02-18 244

AWS OpsWorks User Guide

• s3 – Allows OpsWorks CM server EC2 instances to upload and store server backups in S3 buckets,
stop or roll back uploads if necessary, and delete backups from S3 buckets.

• secretsmanager – Allows OpsWorks CM server EC2 instances to get the values of OpsWorks
CM related Secrets Manager secrets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudformation:DescribeStackResource",
 "cloudformation:SignalResource"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 },
 {
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:ListMultipartUploadParts",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::aws-opsworks-cm-*",
 "Effect": "Allow"
 },
 {
 "Action": "acm:GetCertificate",
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "arn:aws:secretsmanager:*:*:opsworks-cm!aws-opsworks-cm-
secrets-*",
 "Effect": "Allow"
 }

AWS managed policies API Version 2013-02-18 245

AWS OpsWorks User Guide

]
}

OpsWorks CM updates to AWS managed policies

View details about updates to AWS managed policies for OpsWorks CM since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the OpsWorks CM Document history page.

Change Description Date

AWSOpsWorksCMInsta
nceProfileRole - Updated
managed policy

OpsWorks CM updated
the managed policy that
allows the EC2 instances
 used as OpsWorks CM
servers to share informati
on with CloudFormation
and Secrets Manager, and
manage backups. The change
adds opsworks-cm! to the
resource name for Secrets
Manager secrets, so that
OpsWorks CM is allowed to
own the secrets.

April 23, 2021

AWSOpsWorksCMServiceRole
- Updated managed policy

OpsWorks CM updated the
managed policy that allows
OpsWorks CM administr
ators to create, manage, and
delete OpsWorks CM servers
and backups. The change
adds opsworks-cm! to the
resource name for Secrets
Manager secrets, so that
OpsWorks CM is allowed to
own the secrets.

April 23, 2021

AWS managed policies API Version 2013-02-18 246

AWS OpsWorks User Guide

Change Description Date

OpsWorks CM started
tracking changes

OpsWorks CM started
tracking changes for its AWS
managed policies.

April 23, 2021

Cross-service confused deputy prevention in AWS OpsWorks CM

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS OpsWorks CM gives another service to
the resource. If the aws:SourceArn value does not contain the account ID, such as an Amazon
S3 bucket ARN, you must use both global condition context keys to limit permissions. If you use
both global condition context keys and the aws:SourceArn value contains the account ID, the
aws:SourceAccount value and the account in the aws:SourceArn value must use the same
account ID when used in the same policy statement. Use aws:SourceArn if you want only one
resource to be associated with the cross-service access. Use aws:SourceAccount if you want to
allow any resource in that account to be associated with the cross-service use.

The value of aws:SourceArn must be the ARN of an OpsWorks CM Chef or Puppet server.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the AWS OpsWorks CM
server. If you don't know the full ARN, or if you are specifying multiple server ARNs, use the
aws:SourceArn global context condition key with wildcards (*) for the unknown portions of the
ARN. For example, arn:aws:servicename:*:123456789012:*.

The following section shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in AWS OpsWorks CM to prevent the confused deputy problem.

Cross-service confused deputy prevention in AWS OpsWorks CM API Version 2013-02-18 247

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS OpsWorks User Guide

Prevent confused deputy exploits in AWS OpsWorks CM

This section describes how you can help prevent confused deputy exploits in AWS OpsWorks CM,
and includes examples of permissions policies that you can attach to the IAM role you are using to
access AWS OpsWorks CM. As a security best practice, we recommend adding the aws:SourceArn
and aws:SourceAccount condition keys to the trust relationships your IAM role has with other
services. The trust relationships allow AWS OpsWorks CM to assume a role to perform actions in
other services that are required to create or manage your AWS OpsWorks CM servers.

To edit trust relationships to add aws:SourceArn and aws:SourceAccount condition keys

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. In the Search box, search for the role that you use for access to AWS OpsWorks CM. The AWS
managed role is aws-opsworks-cm-service-role.

4. On the Summary page for the role, choose the Trust relationships tab.

5. On the Trust relationships tab, choose Edit trust relationship.

6. In the Policy document, add at least one of the aws:SourceArn or aws:SourceAccount
condition keys to the policy. Use aws:SourceArn to restrict the trust relationship between
cross services (such as AWS Certificate Manager and Amazon EC2) and AWS OpsWorks CM to
specific AWS OpsWorks CM servers, which is more restrictive. Add aws:SourceAccount to
restrict the trust relationship between cross services and AWS OpsWorks CM to servers in a
specific account, which is less restrictive. The following is an example. Note that if you use both
condition keys, the account IDs must be the same.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks-cm.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnEquals": {

Cross-service confused deputy prevention in AWS OpsWorks CM API Version 2013-02-18 248

https://console.aws.amazon.com/iam/

AWS OpsWorks User Guide

 "aws:SourceArn": "arn:aws:opsworks-cm:us-east-2:123456789012:server/my-
opsworks-server/EXAMPLEabcd-1234-efghEXAMPLE-ID"
 }
 }
 }
]
}

7. When you are finished adding condition keys, choose Update trust policy.

The following are additional examples of roles that limit access to AWS OpsWorks CM servers by
using aws:SourceArn and aws:SourceAccount.

Topics

• Example: Accessing AWS OpsWorks CM servers in a specific region

• Example: Adding more than one server ARN to aws:SourceArn

Example: Accessing AWS OpsWorks CM servers in a specific region

The following role trust relationship statement accesses any AWS OpsWorks CM servers in
the US East (Ohio) Region (us-east-2). Note that the region is specified in the ARN value of
aws:SourceArn, but the server ID value is a wildcard (*).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks-cm.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:opsworks-cm:us-east-2:123456789012:server/*"
 }
 }
 }

Cross-service confused deputy prevention in AWS OpsWorks CM API Version 2013-02-18 249

AWS OpsWorks User Guide

]
}

Example: Adding more than one server ARN to aws:SourceArn

The following example limits access to an array of two AWS OpsWorks CM servers in account ID
123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks-cm.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnEquals": {
 "aws:SourceArn": [
 "arn:aws:opsworks-cm:us-east-2:123456789012:server/my-chef-
server/unique_ID",
 "arn:aws:opsworks-cm:us-east-2:123456789012:server/my-puppet-
server/unique_ID"
]
 }
 }
 }
]
}

Internetwork Traffic Privacy

AWS OpsWorks CM uses the same transmission security protocols generally used by AWS: HTTPS,
or HTTP with TLS encryption.

Internetwork Traffic Privacy API Version 2013-02-18 250

AWS OpsWorks User Guide

Logging and Monitoring in AWS OpsWorks CM

AWS OpsWorks CM logs all API actions to CloudTrail. For more information, see the following
topics:

• Logging OpsWorks for Puppet Enterprise API Calls with AWS CloudTrail

• Logging AWS OpsWorks for Chef Automate API Calls with AWS CloudTrail

Compliance Validation for AWS OpsWorks CM

AWS OpsWorks CM supports the following compliance programs and regulations:

• Payment Card Industry (PCI)

• Health Insurance Portability and Accountability Act of 1996 (HIPAA)

• AWS System and Organization Controls (SOC) 1, 2, and 3

• General Data Protection Regulation (GDPR)

Third-party auditors assess the security and compliance of AWS OpsWorks CM as part of multiple
AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS OpsWorks CM is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. AWS
provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

Logging and Monitoring API Version 2013-02-18 251

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/

AWS OpsWorks User Guide

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in AWS OpsWorks CM

AWS OpsWorks CM enables daily backups of servers by default when you create a server. Backups
are encrypted and are stored in an Amazon S3 bucket. By default, this bucket is accessible only to
the account that created the server. You can add bucket access for other users or configure cross-
region backups in Amazon S3 at your discretion. Chef and Puppet support cross-region encryption,
because both products encrypt traffic between your AWS OpsWorks CM server and managed
nodes.

AWS OpsWorks CM does not support high availability (HA) configurations.

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about how to back up and restore servers in AWS OpsWorks CM, see the
following:

• Back Up and Restore an OpsWorks for Puppet Enterprise Server

• Back Up and Restore an AWS OpsWorks for Chef Automate Server

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure Security in AWS OpsWorks CM

As a managed service, AWS OpsWorks Configuration Management is protected by AWS
global network security. For information about AWS security services and how AWS protects
infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices

Resilience API Version 2013-02-18 252

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/

AWS OpsWorks User Guide

for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐Architected
Framework.

You use AWS published API calls to access OpsWorks CM through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

AWS OpsWorks CM does not support private link or VPC private endpoints.

AWS OpsWorks CM does not support resource-based policies. For more information, see AWS
Services that Work with IAM in the AWS Identity and Access Management User Guide.

Configuration and Vulnerability Analysis in AWS OpsWorks CM

AWS OpsWorks CM performs periodic kernel and security updates to the operating system that
is running on your AWS OpsWorks CM server. Users can set a window of time for automatic
updates to occur for up to two weeks from the current date. AWS OpsWorks CM pushes automatic
updates of Chef and Puppet Enterprise minor versions. For more information about configuring
updates for AWS OpsWorks for Chef Automate, see System Maintenance (Chef) in this guide. For
more information about configuring updates for OpsWorks for Puppet Enterprise, see System
Maintenance (Puppet) in this guide.

Security Best Practices for AWS OpsWorks CM

AWS OpsWorks CM, like all AWS services, offers security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Configuration and Vulnerability Analysis API Version 2013-02-18 253

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html#management_svcs
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html#management_svcs

AWS OpsWorks User Guide

• Secure your Starter Kit and downloaded login credentials. When you create a new AWS
OpsWorks CM server or download a new Starter Kit and credentials from the AWS OpsWorks CM
console, store these items in a secure location that requires at least one factor of authentication
at minimum. The credentials provide administrator-level access to your server.

• Secure your configuration code. Secure your Chef or Puppet configuration code (cookbooks
and modules) using recommended protocols for your source repositories. For example, you can
restrict permissions to repositories in AWS CodeCommit, or follow guidelines on the GitHub
website for securing GitHub repositories.

• Use CA-signed certificates to connect to nodes. Although you can use self-signed certificates
when you are registering or bootstrapping nodes on your AWS OpsWorks CM server, as a best
practice, use CA-signed certificates. We recommend that you use a certificate signed by a
certificate authority (CA).

• Do not share Chef or Puppet management console sign-in credentials with other users. An
administrator should create separate users for each user of the Chef or Puppet console websites.

• Manage Users in Chef Automate

• Manage Users in Puppet Enterprise

• Configure automatic backups and system maintenance updates. Configuring automatic
maintenance updates on your AWS OpsWorks CM server helps ensure that your server is running
the most current security-related operating system updates. Configuring automatic backups
helps ease disaster recovery and speed restoration time in the event of an incident or failure.
Limit access to the Amazon S3 bucket that stores your AWS OpsWorks CM server backups; do
not grant access to Everyone. Grant read or write access to other users individually as needed, or
create a security group in IAM for those users, and assign access to the security group.

• System Maintenance (Chef)

• System Maintenance (Puppet)

• Back Up and Restore an AWS OpsWorks for Chef Automate Server

• Back Up and Restore an OpsWorks for Puppet Enterprise Server

• Creating Your First IAM Delegated User and Group in the AWS Identity and Access Management
User Guide

• Security Best Practices for Amazon S3 in the Amazon Simple Storage Service Developer Guide

Security Best Practices API Version 2013-02-18 254

https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control.html#auth-and-access-control-iam-access-control-identity-based
https://help.github.com/en/github/managing-security-vulnerabilities/adding-a-security-policy-to-your-repository
https://help.github.com/en/github/managing-security-vulnerabilities/adding-a-security-policy-to-your-repository
https://automate.chef.io/docs/users/
https://puppet.com/docs/pe/2017.3/rbac_user_roles_intro.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/security-best-practices.html

AWS OpsWorks User Guide

AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Cloud-based computing usually involves groups of AWS resources, such as Amazon EC2 instances
and Amazon Relational Database Service (RDS) instances, which must be created and managed
collectively. For example, a web application typically requires application servers, database servers,
load balancers, and so on. This group of instances is typically called a stack; a simple application
server stack might look something like the following.

API Version 2013-02-18 255

AWS OpsWorks User Guide

In addition to creating the instances and installing the necessary packages, you typically need a
way to distribute applications to the application servers, monitor the stack's performance, manage
security and permissions, and so on.

AWS OpsWorks Stacks provides a simple and flexible way to create and manage stacks and
applications.

Here's how a basic application server stack might look with AWS OpsWorks Stacks. It consists
of a group of application servers running behind an Elastic Load Balancing load balancer, with a
backend Amazon RDS database server.

API Version 2013-02-18 256

AWS OpsWorks User Guide

Although relatively simple, this stack shows all the key AWS OpsWorks Stacks features. Here's how
it's put together.

Topics

• Stacks

• Layers

• Recipes and LifeCycle Events

• Instances

• Apps

• Customizing your Stack

• Resource Management

API Version 2013-02-18 257

AWS OpsWorks User Guide

• Security and Permissions

• Monitoring and Logging

• CLI, SDK, and AWS CloudFormation Templates

• AWS OpsWorks Stacks End of Life FAQs

• Migrating your AWS OpsWorks Stacks applications to AWS Systems Manager Application
Manager

• Getting Started with AWS OpsWorks Stacks

• AWS OpsWorks Stacks Best Practices

• Stacks

• Layers

• Instances

• Apps

• Cookbooks and Recipes

• Resource Management

• Tags

• Monitoring

• Security and Permissions

• AWS OpsWorks Stacks Support for Chef 12 Linux

• Support for Previous Chef Versions in AWS OpsWorks Stacks

• Using AWS OpsWorks Stacks with Other AWS Services

• Using the AWS OpsWorks Stacks CLI

• Debugging and Troubleshooting Guide

• AWS OpsWorks Stacks Agent CLI

• AWS OpsWorks Stacks Data Bag Reference

• OpsWorks Agent Changes

Stacks

The stack is the core AWS OpsWorks Stacks component. It is basically a container for AWS
resources—Amazon EC2 instances, Amazon RDS database instances, and so on—that have a
common purpose and should be logically managed together. The stack helps you manage these

Stacks API Version 2013-02-18 258

AWS OpsWorks User Guide

resources as a group and also defines some default configuration settings, such as the instances'
operating system and AWS region. If you want to isolate some stack components from direct user
interaction, you can run the stack in a VPC.

Layers

You define the stack's constituents by adding one or more layers. A layer represents a set of
Amazon EC2 instances that serve a particular purpose, such as serving applications or hosting a
database server.

You can customize or extend layers by modifying packages' default configurations, adding Chef
recipes to perform tasks such as installing additional packages, and more.

For all stacks, AWS OpsWorks Stacks includes service layers, which represent the following AWS
services.

• Amazon Relational Database Service

• Elastic Load Balancing

• Amazon Elastic Container Service

Layers give you complete control over which packages are installed, how they are configured, how
applications are deployed, and more.

Recipes and LifeCycle Events

Layers depend on Chef recipes to handle tasks such as installing packages on instances, deploying
apps, running scripts, and so on. One of the key AWS OpsWorks Stacks features is a set of lifecycle
events—Setup, Configure, Deploy, Undeploy, and Shutdown—which automatically run a specified
set of recipes at the appropriate time on each instance.

Each layer can have a set of recipes assigned to each lifecycle event, which handle a variety of tasks
for that event and layer. For example, after an instance that belongs to a web server layer finishes
booting, AWS OpsWorks Stacks does the following.

1. Runs the layer's Setup recipes, which could perform tasks such as installing and configuring a
web server.

2. Runs the layer's Deploy recipes, which deploy the layer's applications from a repository to the
instance and perform related tasks, such as restarting the service.

Layers API Version 2013-02-18 259

http://docs.chef.io/recipes.html

AWS OpsWorks User Guide

3. Runs the Configure recipes on every instance in the stack so each instance can adjust its
configuration as needed to accommodate the new instance.

For example, on an instance running a load balancer, a Configure recipe could modify the load
balancer's configuration to include the new instance.

If an instance belongs to multiple layers, AWS OpsWorks Stacks runs the recipes for each layer
so you can, for example, have an instance that supports a PHP application server and a MySQL
database server.

If you have implemented recipes, you can assign each recipe to the appropriate layer and event and
AWS OpsWorks Stacks automatically runs them for you at the appropriate time. You can also run
recipes manually, at any time.

Instances

An instance represents a single computing resource, such as an Amazon EC2 instance. It defines
the resource's basic configuration, such as operating system and size. Other configuration settings,
such as Elastic IP addresses or Amazon EBS volumes, are defined by the instance's layers. The
layer's recipes complete the configuration by performing tasks such as installing and configuring
packages and deploying apps.

You can use AWS OpsWorks Stacks to create instances and add them to a layer. When you start
the instance, AWS OpsWorks Stacks launches an Amazon EC2 instance using the configuration
settings specified by the instance and its layer. After the Amazon EC2 instance has finished booting,
AWS OpsWorks Stacks installs an agent that handles communication between the instance and the
service and runs the appropriate recipes in response to lifecycle events.

AWS OpsWorks Stacks supports the following instance types, which are characterized by how they
are started and stopped.

• 24/7 instances are started manually and run until you stop them.

• Time-based instances are run by AWS OpsWorks Stacks on a specified daily and weekly
schedule.

They allow your stack to automatically adjust the number of instances to accommodate
predictable usage patterns.

Instances API Version 2013-02-18 260

AWS OpsWorks User Guide

• Load-based instances are automatically started and stopped by AWS OpsWorks Stacks, based on
specified load metrics, such as CPU utilization.

They allow your stack to automatically adjust the number of instances to accommodate
variations in incoming traffic. Load-based instances are available only for Linux-based stacks.

AWS OpsWorks Stacks supports instance autohealing. If an agent stops communicating with the
service, AWS OpsWorks Stacks automatically stops and restarts the instance.

You can also incorporate Linux-based computing resources into a stack that was created outside of
AWS OpsWorks Stacks.

• Amazon EC2 instances that you created directly by using the Amazon EC2 console, CLI, or API.

• On-premises instances running on your own hardware, including instances running in virtual
machines.

After you have registered one of these instances, it becomes an AWS OpsWorks Stacks instance and
you can manage it in much the same way as instances that you create with AWS OpsWorks Stacks.

Apps

You store applications and related files in a repository, such as an Amazon S3 bucket. Each
application is represented by an app, which specifies the application type and contains the
information that is needed to deploy the application from the repository to your instances, such
as the repository URL and password. When you deploy an app, AWS OpsWorks Stacks triggers a
Deploy event, which runs the Deploy recipes on the stack's instances.

You can deploy apps in the following ways:

• Automatically—When you start instances, AWS OpsWorks Stacks automatically runs the
instance's Deploy recipes.

• Manually—If you have a new app or want to update an existing one, you can manually run the
online instances' Deploy recipes.

You typically have AWS OpsWorks Stacks run the Deploy recipes on the entire stack, which allows
the other layers' instances to modify their configuration appropriately. However, you can limit

Apps API Version 2013-02-18 261

AWS OpsWorks User Guide

deployment to a subset of instances if, for example, you want to test a new app before deploying it
to every app server instance.

Customizing your Stack

AWS OpsWorks Stacks provides a variety of ways to customize layers to meet your specific
requirements:

• You can modify how AWS OpsWorks Stacks configures packages by overriding attributes that
represent the various configuration settings, or by even overriding the templates used to create
configuration files.

• You can extend an existing layer by providing your own recipes to perform tasks such as running
scripts or installing and configuring nonstandard packages.

All stacks can include one or more layers, which start with only a minimal set of recipes. You add
functionality to the layer by implementing recipes to handle tasks such as installing packages,
deploying apps, and so on. You package your custom recipes and related files in one or more
cookbooks and store the cookbooks in a repository such Amazon S3 or Git.

You can run recipes manually, but AWS OpsWorks Stacks also lets you automate the process by
supporting a set of five lifecycle events:

• Setup occurs on a new instance after it successfully boots.

• Configure occurs on all of the stack's instances when an instance enters or leaves the online
state.

• Deploy occurs when you deploy an app.

• Undeploy occurs when you delete an app.

• Shutdown occurs when you stop an instance.

Each layer can have any number of recipes assigned to each event. When a lifecycle event occurs on
a layer's instance, AWS OpsWorks Stacks runs the associated recipes. For example, when a Deploy
event occurs on an app server instance, AWS OpsWorks Stacks runs the layer's Deploy recipes to
download the app or perform related tasks.

Customizing your Stack API Version 2013-02-18 262

AWS OpsWorks User Guide

Resource Management

You can incorporate other AWS resources, such as Elastic IP addresses, into your stack. You can
use the AWS OpsWorks Stacks console or API to register resources with a stack, attach registered
resources to or detach them from instances, and move resources from one instance to another.

Security and Permissions

AWS OpsWorks Stacks integrates with AWS Identity and Access Management (IAM) to provide
robust ways of controlling how users access AWS OpsWorks Stacks, including the following:

• How individual users can interact with each stack, such as whether they can create stack
resources such as layers and instances, or whether they can use SSH or RDP to connect to a
stack's Amazon EC2 instances.

• How AWS OpsWorks Stacks can act on your behalf to interact with AWS resources such as
Amazon EC2 instances.

• How apps that run on AWS OpsWorks Stacks instances can access AWS resources such as Amazon
S3 buckets.

• How to manage users' public SSH keys and RDP passwords and connect to an instance.

Monitoring and Logging

AWS OpsWorks Stacks provides several features to help you monitor your stack and troubleshoot
issues with your stack and any recipes. For all stacks:

• AWS OpsWorks Stacks provides a set of custom CloudWatch metrics for Linux stacks, which are
summarized for your convenience on the Monitoring page.

AWS OpsWorks Stacks supports the standard CloudWatch metrics for Windows stacks. You can
monitor them with the CloudWatch console.

• CloudTrail logs, which record API calls made by or on behalf of AWS OpsWorks Stacks in your
AWS account.

• An event log, which lists all events in your stack.

• Chef logs that detail what transpired for each lifecycle event on each instance, such as which
recipes were run and which errors occurred.

Resource Management API Version 2013-02-18 263

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

AWS OpsWorks User Guide

Linux-based stacks can also include a Ganglia master layer, which you can use to collect and display
detailed monitoring data for the instances in your stack.

CLI, SDK, and AWS CloudFormation Templates

In addition to the console, AWS OpsWorks Stacks also supports a command-line interface (CLI) and
SDKs for multiple languages that can be used to perform any operation. Consider these features:

• The AWS OpsWorks Stacks CLI is part of the AWS CLI, and can be used to perform any operation
from the command-line.

The AWS CLI supports multiple AWS services and can be installed on Windows, Linux, or OS X
systems.

• AWS OpsWorks Stacks is included in AWS Tools for Windows PowerShell and can be used to
perform any operation from a Windows PowerShell command line.

• The AWS OpsWorks Stacks SDK is included in the AWS SDKs, which can be used by applications
implemented in: Java, JavaScript (browser-based and Node.js), .NET, PHP, Python (boto), or
Ruby.

You can also use AWS CloudFormation templates to provision stacks. For some examples, see AWS
OpsWorks Snippets.

AWS OpsWorks Stacks End of Life FAQs

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible.

Topics

• How will existing customers be affected by this End of Life?

• Is AWS OpsWorks Stacks accepting new customers?

CLI, SDK, and AWS CloudFormation Templates API Version 2013-02-18 264

http://aws.amazon.com/documentation/cli/
http://aws.amazon.com/documentation/powershell/
http://aws.amazon.com/documentation/sdkforjava/
http://aws.amazon.com/documentation/sdkforjavascript/
http://aws.amazon.com/documentation/sdkfornet/
http://aws.amazon.com/documentation/sdkforphp/
http://boto.readthedocs.org/en/latest/
http://aws.amazon.com/documentation/sdkforruby/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-opsworks.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-opsworks.html

AWS OpsWorks User Guide

• Where should I migrate my existing stacks to?

• Will the End of Life affect all AWS Regions at the same time?

• What level of technical support is available for AWS OpsWorks Stacks?

• Will there be any new feature releases for AWS OpsWorks Stacks?

How will existing customers be affected by this End of Life?

Existing customers will be unaffected until May 26, 2024, the End of Life date for AWS OpsWorks
Stacks. After May 26, 2024, customers will be unable to use the OpsWorks console, API, CLI, and
CloudFormation resources.

Is AWS OpsWorks Stacks accepting new customers?

No. AWS OpsWorks Stacks is no longer accepting new customers and only existing customers are
able to create new stacks at this time.

Where should I migrate my existing stacks to?

We recommend AWS OpsWorks Stacks customers migrate their workloads to AWS Systems
Manager where they can take advantage of the following features:

• Modern Chef versions

• SSM Agent

• Application Load Balancers

• Enhanced scaling features via Auto Scaling groups

• Ability to define desired host characteristics using EC2 launch templates

• Newer instance types

• Newer EBS volume types

For information about Systems Manager, see the AWS Systems Manager User Guide. For
information about migrating to AWS Systems Manager, see Migrating your AWS OpsWorks Stacks
applications to AWS Systems Manager Application Manager

How will existing customers be affected by this End of Life? API Version 2013-02-18 265

https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html

AWS OpsWorks User Guide

Will the End of Life affect all AWS Regions at the same time?

Yes. The OpsWorks console, API, CLI, and CloudFormation resources will be discontinued in all AWS
Regions simultaneously on May 26, 2024. For a list of AWS Regions where AWS OpsWorks Stacks is
available, see AWS Regional Services List.

What level of technical support is available for AWS OpsWorks Stacks?

AWS will continue to provide the same level of support for AWS OpsWorks Stacks that customers
have today up until the End of Life date. If you have questions or concerns, you can contact the
AWS Support Team on AWS re:Post or through AWS Premium Support.

Will there be any new feature releases for AWS OpsWorks Stacks?

No. As the service is reaching End of Life, we will not release any new features. However, we will
continue to make security improvements and manage Amazon EC2 instances as expected until the
End of Life date.

Migrating your AWS OpsWorks Stacks applications to AWS
Systems Manager Application Manager

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs.

You can now migrate your AWS OpsWorks Stacks applications to Application Manager, a capability
of AWS Systems Manager, using a migration script. Migrating your Stacks applications to Systems
Manager Application Manager allows you to use AWS features that are not available in AWS
OpsWorks Stacks, such as new Amazon EC2 instance types like Graviton, new Amazon Elastic Block
Store (EBS) volumes like gp3, new operating systems, integrations with Auto Scaling groups, and
application load balancers.

Will the End of Life affect all AWS Regions at the same time? API Version 2013-02-18 266

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://repost.aws/
https://aws.amazon.com/support
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

AWS OpsWorks User Guide

With this release, you can now monitor and run operations on your migrated instances using a new
Instances tab available from Systems Manager Application Manager. You can use the Instances
tab to view multiple AWS instances in one place. Using this tab, you can view information about
instance health and troubleshoot issues. For more information about working with the Instances
tab, see Working with your application instances in the AWS Systems Manager User Guide.

Topics

• How the script works

• Prerequisites

• Limitations

• Getting started

• FAQ

• Troubleshooting

How the script works

AWS OpsWorks provides a script that you can run to migrate your AWS OpsWorks Stacks
applications to Systems Manager Application Manager using a CloudFormation template. The
script gets information about an existing OpsWorks layer and depending on the value of the --
provision-application parameter for the script, either provisions a clone of your application,
or provides a starter CloudFormation template that you can modify using AWS CloudFormation.

Prerequisites

• Be sure that the AWS CLI is installed and configured. For more information about installing the
AWS CLI, see Installing or updating the latest version of the AWS CLI in the AWS Command Line
Interface User Guide.

Note

If you do not want to configure the AWS CLI, you can also run commands using AWS
CloudShell. For more information about working with CloudShell, see Working with AWS
CloudShell in the AWS CloudShell User Guide.

• Be sure that Python version 3.6 or newer is installed or comes with the Amazon Machine Image
(AMI).

How the script works API Version 2013-02-18 267

https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager-working-instances.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/working-with-cloudshell.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/working-with-cloudshell.html

AWS OpsWorks User Guide

• Be sure that your operating system is supported. You can download and run the migration script
on the following operating systems.

• Amazon Linux and Amazon Linux 2

• Ubuntu 18.04 LTS, 20.04 LTS, 22.04 LTS

• Red Hat Enterprise Linux 8

• Windows Server 2019, Windows 10 Enterprise

Note

Windows Server 2022 is not supported.

Limitations

The new OpsWorks architecture differs from the architecture for AWS OpsWorks Stacks. This
section describes the known limitations of this architecture.

The following are not supported by the new OpsWorks architecture.

• Running Chef recipes on Windows and CentOS instances

• Built-in Chef 11 layers

• Chef attributes and data bags

• On-premises instances

• Instances imported from EC2

• No support for installing a user specified list of operating system packages

• Apps are not supported or migrated

The following are supported with limitations.

• The migration script clones EBS volume information, but excludes mount points and actual data
contained in the volumes.

• Time-based and load-based scaled instances are migrated, but any scaling rules associated with
these instances are not migrated. You can modify the Auto Scaling group to achieve similar
results.

Limitations API Version 2013-02-18 268

AWS OpsWorks User Guide

• IAM entities defined in the stack's Permissions page in the OpsWorks console are not created or
generated.

• The migration script is only capable of provisioning single layer applications in Systems Manager.
For example, if you run the script twice for two layers in the same stack, you get two different
applications in Systems Manager.

Getting started

The migration script, stack_exporter.py, is a Python script that you can run locally, or on
an EC2 instance. Before running the script, be sure all prerequisites are met. For more about the
prerequisites, see Prerequisites.

The steps in the following sections show you how to migrate your OpsWorks stacks to Systems
Manager Application Manager.

Topics

• Step 1: Prepare your environment for running the script

• Step 2: Download the migration script

• Step 3: Set up your environment to run the script

• Step 4: Run the script

• Step 5: Provision a CloudFormation stack

• Step 6: Review the provisioned resources

• Step 7: Start an instance

• Step 8: Review the instance

• Step 9: Monitor and run operations on your instances using Systems Manager Application
Manager

Step 1: Prepare your environment for running the script

Prepare your environment by running the appropriate commands for your operating system.

Topics

• Amazon Linux 2

• Amazon Linux

Getting started API Version 2013-02-18 269

AWS OpsWorks User Guide

• Ubuntu 18.04, 20.04, 22.04

• Red Hat Enterprise Linux 8

• Windows Server 2019, Windows 10 Enterprise

Amazon Linux 2

sudo su
python3 -m pip install pipenv
PATH="$PATH:/usr/local/bin"
yum update
yum install git

Amazon Linux

sudo su
PATH="$PATH:/usr/local/bin"
export LC_ALL=en_US.utf-8
export LANG=en_US.utf-8
yum update
yum list | grep python3
yum install python36 // Any python version
yum install git

For Python version 3.6, also run:

python3 -m pip install pipenv==2022.4.8

For Python version 3.7 and newer, also run:

python3 -m pip install pipenv

Ubuntu 18.04, 20.04, 22.04

sudo su
export PATH="${HOME}/.local/bin:$PATH"
apt-get update
apt install python3-pip
apt-get install git // if git is not installed
python3 -m pip install --user pipenv==2022.4.8

Getting started API Version 2013-02-18 270

AWS OpsWorks User Guide

Red Hat Enterprise Linux 8

sudo su
sudo dnf install python3
PATH="$PATH:/usr/local/bin"
yum update
yum install git
python3 -m pip install pipenv==2022.4.8

Windows Server 2019, Windows 10 Enterprise

Note

For Windows Server 2019, install Python version 3.6.1 or newer.

pip install pipenv

If Git is not already installed, download and install Git.

If you use Git as a cookbook source, add your Git server to a known_hosts file before running the
script on Windows. You can use PowerShell to create the following function.

function add_to_known_hosts($server){
 $new_host=$(ssh-keyscan $server 2> $null)
 $existing_hosts=''
 if (!(test-path "$env:userprofile\.ssh")) {
 md "$env:userprofile\.ssh"
 }
 if ((test-path "$env:userprofile\.ssh\known_hosts")) {
 $existing_hosts=Get-Content "$env:userprofile\.ssh\known_hosts"
 }
 $host_added=0
 foreach ($line in $new_host) {
 if (!($existing_hosts -contains $line)) {
 Add-Content -Path "$env:userprofile\.ssh\known_hosts" -Value $line
 $host_added=1
 }
 }
 if ($host_added) {
 echo "$server has been added to known_hosts."

Getting started API Version 2013-02-18 271

https://git-scm.com/download/win

AWS OpsWorks User Guide

 } else {
 echo "$server already exists in known_hosts."
 }
}

You can then provide your Git server (for example, github.com, git-
codecommit.repository_region.amazonaws.com) when you run the function.

add_to_known_hosts "myGitServer"

Step 2: Download the migration script

Download the zip file containing the migration script and all relevant files by running the following
command.

aws s3api get-object \
 --bucket export-opsworks-stacks-bucket-prod-us-east-1 \
 --key export_opsworks_stacks_script.zip export_opsworks_stacks_script.zip

If you are using Linux, install the unzip utility using the following commands.

sudo apt-get install unzip
sudo yum install unzip

Unzip the files using the appropriate command for your operating system.

For Linux, use the following command.

unzip export_opsworks_stacks_script.zip

For Windows, use the Expand-Archive command in PowerShell.

Expand-Archive -LiteralPath PathToZipFile -DestinationPath PathToDestination

After the file is unzipped, the following directories and files are available.

• README.md

• LICENSE

• NOTICE

Getting started API Version 2013-02-18 272

AWS OpsWorks User Guide

• requirements.txt

• templates/

• OpsWorksCFNTemplate.yaml

• MountEBSVolumes.yaml

• opsworks/

• cloudformation/

• instances_tab/

• cfn_stack_deployer.py

• s3.py

• stack_exporter_context.py

• stack_exporter.py

Step 3: Set up your environment to run the script

Set up your environment to the run the script by using the following command.

pipenv install -r requirements.txt
pipenv shell

Note

Currently, the script can only provision single-layer applications in Application Manager. For
example, if you run the script twice for two layers in the same stack, the script creates two
different applications in Application Manager.

After setting up your environment, review the script parameters. You can view the available
options for the migration script by running the python3 stack_exporter.py --help
command.

Parameter Description Required Type Default value

--layer-
id

Exports a CloudFormation
template for this OpsWorks layer
ID.

Yes string

Getting started API Version 2013-02-18 273

AWS OpsWorks User Guide

Parameter Description Required Type Default value

--region The AWS Region for the
OpsWorks stack. If your
OpsWorks stack Region and API
endpoint Region are different
, use the stack Region. This is
the same Region as the other
resources part of your OpsWorks
stack (for example, EC2 instances
and subnets).

No string us-east-1

--
provisi
on-
applic
ation

By default, the script provisions
the application exported by the
CloudFormation template. Pass
this parameter into the script
with a value of FALSE to skip
provisioning of the CloudForm
ation template.

No Boolean TRUE

Getting started API Version 2013-02-18 274

AWS OpsWorks User Guide

Parameter Description Required Type Default value

--
launch-
template

This parameter defines whether
to use an existing launch
template, or create a new launch
template. You can create a new
launch template that uses the
recommended instance propertie
s, or that uses instance propertie
s that match an online instance.

Valid values include:

• RECOMMENDED - Uses
instance characteristics
from the latest AMI for the
OpsWorks stack's OS and a
c5.large instance size.

• MATCH_LAST_INSTANCE
- Uses latest available online
instance characteristics.

• LaunchTemplateID /
[LaunchTemplateVers
ion] - Uses an existing
launch template. Optionally,
you can provide a template
version. If you do not provide
a template version, the script
uses the default version.

No string RECOMMENDED

Getting started API Version 2013-02-18 275

AWS OpsWorks User Guide

Parameter Description Required Type Default value

--
system-
updates

Defines whether to perform
kernel and package updates
when the instance boots.

Valid values include:

• ALL_UPDATES - Performs
system updates for the kernel
and packages when the
instance boots.

• NO_UPDATES - Does not
perform system updates when
the instance boots.

• MATCH_LAYER_SETTINGS
- Uses the OpsWorks layer's
or instance's InstallUp
datesOnBoot property to
determine whether to install
system updates.

No string ALL_UPDATES

--http-
us
ername

The name of the Systems
Manager SecureString
parameter which stores the user
name used to authenticate to the
HTTP archive that contains the
custom cookbooks.

No string

--http-
pa
ssword

The name of the Systems
Manager SecureString
parameter which stores the
password used to authenticate to
the HTTP archive that contains
the custom cookbooks.

No string

Getting started API Version 2013-02-18 276

AWS OpsWorks User Guide

Parameter Description Required Type Default value

--repo-
pr
ivate-
key

The name of the Systems
Manager SecureString
parameter which stores the
SSH key used to authenticate
to the repository that contains
the custom cookbooks. If the
repository is on GitHub, you must
generate a new Ed25519 SSH
key. If you do not generate a new
Ed25519 SSH key, the connectio
n to the GitHub repository fails.

No string

--lb-
type

The type of load balancer, if any,
to create when migrating your
existing load balancer.

Valid values include:

• ALB (Application Load
Balancer)

• Classis (Classic Load
Balancer)

• None (if you do not want to
create a load balancer)

No string ALB

Getting started API Version 2013-02-18 277

AWS OpsWorks User Guide

Parameter Description Required Type Default value

--lb-
access-
logs-p
ath

The path to an existing S3 bucket
and prefix for storing the load
balancer access logs. The S3
bucket and load balancer must
be in the same Region. If you do
not provide a value and the --
lb-type parameter value is set
to None, the script creates a new
S3 bucket and prefix. Be sure
there is an appropriate bucket
policy for this prefix.

No string

--
enable-
instance-
protectio
n

If set to TRUE , the script creates
a custom termination policy
(Lambda function) for your Auto
Scaling group. EC2 instances
with a protected_instance

 tag are protected from scale-
in events. Add a protected
_instance tag to each EC2
instance that you want to protect
from scale-in events.

No Boolean FALSE

--
command
-logs-
bucket

The name of an existing S3
bucket to store the AWSApplyC
hefRecipe and MountEBSV
olumes logs. If you do not
provide a value, the script creates
a new S3 bucket.

No string aws-opswo
rks-appli
cation-ma
nager-log
s- account-i
d

Getting started API Version 2013-02-18 278

AWS OpsWorks User Guide

Parameter Description Required Type Default value

--
custom-
json-
bucket

The name of an existing S3
bucket to store custom JSON. If
you do not provide a value, the
script creates a new S3 bucket.

No string aws-apply
-chef-app
lication-
manager-t
ransition-
data-account-
id

Notes:

• If you use a private GitHub repository, you must create a new Ed25519 host key for SSH. This
is because GitHub changed which keys are supported in SSH and removed the unencrypted Git
protocol. For more information about the Ed25519 host key, see the GitHub blog post Improving
Git protocol security on GitHub. After you generate a new Ed25519 host key, create a Systems
Manager SecureString parameter for the SSH key and use the SecureString parameter
name as the value for the --repo-private-key parameter. For more information about how
to create a Systems Manager SecureString parameter, see Create a SecureString parameter
(AWS CLI) or Create a Systems Manager parameter (console) in the AWS Systems Manager User
Guide.

• The --http-username, --http-password and --http-password parameters refer to
the name of a Systems Manager SecureString parameter. The migration script uses these
parameters when you run the AWS-ApplyChefRecipes document.

• The --http-username parameter requires that you also specify a value for the --http-
password parameter.

• The --http-password parameter requires that you also specify a value for the --http-
username parameter.

• Do not set values for both --http-password and --repo-private-key. Provide either a
Systems Manager SecureString parameter name of an SSH key (--repo-private-key), or a
repository user name (--http-username) and password (--http-password).

Getting started API Version 2013-02-18 279

https://github.blog/2021-09-01-improving-git-protocol-security-github/
https://github.blog/2021-09-01-improving-git-protocol-security-github/
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html#param-create-cli-securestring
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html#param-create-cli-securestring
https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-create-console.html

AWS OpsWorks User Guide

Step 4: Run the script

When you run python3 stack_exporter.py, you can either provision the application, or create
a starter template by setting the value of the --provision-application parameter to FALSE.

Example 1: Provision a Systems Manager Application Manager application

The following command gets information about an existing OpsWorks layer, and provisions
an application using the newer OpsWorks architecture, which achieves a result similar to the
Chef version configured for the stack. The script provisions all required resources, such as Auto
Scaling groups by using CloudFormation, and then registers the application in Systems Manager
Application Manager.

Replace stack-region and layer-id with the values for your OpsWorks stack and layer.

python3 stack_exporter.py \
 --layer-id layer-id \
 --region stack-region

Example 2: Generate a template

The following command gets information about an existing OpsWorks layer and generates a
CloudFormation template. The template, if provisioned, achieves a result similar to using Chef
14. In this example, no resources are provisioned, because the --provision-application
parameter is set to FALSE.

Replace stack-region and layer-id with the values for your OpsWorks stack and layer.

python3 stack_exporter.py \
 --layer-id layer-id \
 --region stack-region \
 --provision-application FALSE

After running the command, you can review the template in the Application Manager template
library in Systems Manager, and you can also provision the template. For more information about
viewing the template library, see Working with the template library in the AWS Systems Manager
User Guide.

Getting started API Version 2013-02-18 280

https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager-working-templates-overview.html#application-manager-working-stacks-template-library-working

AWS OpsWorks User Guide

Step 5: Provision a CloudFormation stack

Note

You only need to complete this step if you set the --provision-application parameter
for the script to FALSE.

When you specify the --provision-application parameter with a value of FALSE, the script
output provides the name and URL for the CloudFormation template. This template represents a
proposed replacement for your existing OpsWorks stack and layer.

You can provision the template by using the Application Manager template library (recommended),
or by using CloudFormation. For more information about working with the template library, see
Working with the template library in the AWS Systems Manager User Guide.

Step 6: Review the provisioned resources

You are now ready to review the provisioned resources.

1. Review resources for the provisioned stack using the AWS CloudFormation console.

a. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation and choose Stacks.

b. On the Stacks page, choose the stack, and then choose the Resources tab.

c. On the Resources tab, review the listed resources for your stack. The list of resources
includes an EC2 Auto Scaling group, which you can review in the Auto Scaling console, or
AWS CLI.

2. Review the resources for the application using Systems Manager Application Manager.

a. Open the Systems Manager console at https://console.aws.amazon.com/systems-
manager/.

b. In the navigation pane, choose Application Manager.

c. In the Applications section, choose the custom application. Application Manager opens
the Overview tab.

d. Choose the Resources tab. The Resources tab shows all resources that were migrated for
your OpsWorks stack and layer. The application name includes the name of the OpsWorks
stack, and is formatted as app-stack-name-suffix where suffix represents the first

Getting started API Version 2013-02-18 281

https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager-working-templates-overview.html#application-manager-working-stacks-template-library-working
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/systems-manager/
https://console.aws.amazon.com/systems-manager/

AWS OpsWorks User Guide

six characters of the stack ID. For more information about viewing resources in Application
Manager, see Viewing application resources in the AWS Systems Manager User Guide.

Step 7: Start an instance

After you've provisioned an instance, you are ready to test the instance. At this point, there are no
instances running.

To take your instances online, adjust the Min, Max, and Desired capacity values for the Auto
Scaling group to a number that makes sense for your application. Initially, you may want to set
these values to 1, to bring a single instance online, and verify the instance performs all expected
actions including running your custom Chef recipes.

Step 8: Review the instance

After you've started an instance, verify it runs as expected.

1. Review the Chef startup and terminate logs located in the S3 bucket specified by the
script's --command-logs-bucket parameter. By default, the logs are stored in a bucket with
the name aws-opsworks-application-manager-logs-account-id.

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

b. Choose the bucket containing your logs.

c. Navigate to the ApplyChefRecipes prefix to view your logs.

2. Check Application Load Balancer connectivity and health.

Take the following steps to view the access logs for your load balancer. You can specify the
S3 bucket where you want to store the load balancer access logs by using the script's --lb-
access-logs-path parameter.

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

b. Choose your S3 bucket, and then navigate to the prefix containing your logs.

3. Verify the instance passes all Auto Scaling and Application Load Balancer health checks (if
you've configured any).

You can view information about Auto Scaling health on the new Instances tab.

Getting started API Version 2013-02-18 282

https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager-working-viewing-resources.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS OpsWorks User Guide

a. Open the Systems Manager console at https://console.aws.amazon.com/systems-
manager/.

b. In the navigation pane, choose Application Manager.

c. In the Applications section, choose Custom applications.

d. Choose the application in the list. Application Manager opens the Overview tab.

e. Choose the Instances tab to view information about Auto Scaling health.

After you verify that Chef recipes run successfully, you can decrease the Auto Scaling group
capacity to terminate the instance. If you have any custom termination recipes, verify the recipes
operate as expected.

Step 9: Monitor and run operations on your instances using Systems Manager
Application Manager

You can now monitor and run operations on your instances using a new Instances tab on the
Application Manager page. For more information about working with the Instances tab, see
Working with your application instances in the AWS Systems Manager User Guide.

You can use the Instances tab to view multiple AWS instances in one place. Using this tab, you can
view information about instance health and troubleshoot issues.

Getting started API Version 2013-02-18 283

https://console.aws.amazon.com/systems-manager/
https://console.aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager-working-instances.html

AWS OpsWorks User Guide

Take the following steps to view the Instances tab.

1. Open the Systems Manager console at https://console.aws.amazon.com/systems-manager/.

2. In the navigation pane, choose Application Manager.

3. In the Applications section, choose Custom applications.

4. Choose the application in the list. Application Manager opens the Overview tab.

5. Choose the Instances tab to view information about the status of your instance and EC2
health.

FAQ

The following FAQs provide answers to some common questions.

FAQ API Version 2013-02-18 284

https://console.aws.amazon.com/systems-manager/

AWS OpsWorks User Guide

Topics

• Which AWS OpsWorks Stacks versions can I migrate?

• Which Chef versions can my migrated instances use?

• Which repository types can I migrate?

• Can I continue using a private Git repository?

• What SSH keys can I use to access my instances?

• Why are my instances automatically scaling in and out?

• Can I turn off Auto Scaling?

• Can I perform kernel and package updates on launched EC2 instances?

• Why don't the EBS volumes in my instances contain any data?

• Why aren't the EBS volumes described in my launch template mounted?

• Where can I find Chef recipe and Mount EBS volume logs?

• Where can I find the debug log for the migration script?

• Does the migration script support CloudFormation template versioning?

• Can I migrate multiple layers?

• How do I create a SecureString parameter?

• How can I protect instances in the new Auto Scaling group from termination events?

• What load balancers are available with the migration script?

• Are custom cookbook configure recipes migrated?

• Can I run deploy and undeploy recipes on my newly created instances?

• Can I change what subnets my Auto Scaling group spans?

Which AWS OpsWorks Stacks versions can I migrate?

You can only migrate Chef 11.10 and Chef 12, Amazon Linux, Amazon Linux 2, Ubuntu, and Red
Hat Enterprise Linux 7 stacks.

Which Chef versions can my migrated instances use?

Migrated instances can use Chef versions 11 through 14.

FAQ API Version 2013-02-18 285

AWS OpsWorks User Guide

Note

Windows stack migration is not supported.

Which repository types can I migrate?

You can migrate S3, Git, and HTTP repository types.

Can I continue using a private Git repository?

Yes, you can continue to use a private Git repository.

If you use a private GitHub repository, you must create a new Ed25519 host key for SSH. This
is because GitHub changed which keys are supported in SSH and removed the unencrypted Git
protocol. For more information about the Ed25519 host key, see the GitHub blog post Improving
Git protocol security on GitHub. After you generate a new Ed25519 host key, create a Systems
Manager SecureString parameter for this SSH key and use the parameter name as the value
for the --repo-private-key parameter. For more information about how to create a Systems
Manager SecureString parameter, see Create a SecureString parameter (AWS CLI) in the AWS
Systems Manager User Guide.

For any other Git repository type, create a Systems Manager SecureString parameter for
this SSH key and use the parameter name as the value for the script's --repo-private-key
parameter.

What SSH keys can I use to access my instances?

When you run the script, the script migrates the SSH keys and instances configured in the stack.
You can use the SSH keys to access your instance. If SSH keys are provided for the stack and
instance, the script uses the keys from the stack. If you are not sure which SSH keys to use, view the
instances in the EC2 console (https://console.aws.amazon.com/ec2/). The Details page in the EC2
console shows the SSH keys for your instance.

Why are my instances automatically scaling in and out?

Auto Scaling scales instances based on the scaling rules for the Auto Scaling group. You can set the
Min, Max, and Desired capacity values for your group. The Auto Scaling group automatically scales
your capacity accordingly when you update these values.

FAQ API Version 2013-02-18 286

https://github.blog/2021-09-01-improving-git-protocol-security-github/
https://github.blog/2021-09-01-improving-git-protocol-security-github/
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html#param-create-cli-securestring
https://console.aws.amazon.com/ec2/

AWS OpsWorks User Guide

Can I turn off Auto Scaling?

You can turn off Auto Scaling by setting the Auto Scaling group's Min, Max, and Desired capacity
values to the same number. For example, if you want to always have ten instances, set the Min,
Max, and Desired capacity values to ten.

Can I perform kernel and package updates on launched EC2 instances?

By default, kernel and packages updates occur when the EC2 instance boots. Use the following
steps to perform kernel or package updates on a launched EC2 instance. For example, you may
want to apply updates after running deploy or configure recipes.

1. Connect to your EC2 instance.

2. Create the following perform_upgrade function and run it on your instance.

perform_upgrade() {
 #!/bin/bash
 if [-e '/etc/system-release'] || [-e '/etc/redhat-release']; then
 sudo yum -y update
 elif [-e '/etc/debian_version']; then
 sudo apt-get update
 sudo apt-get dist-upgrade -y
 fi
}
perform_upgrade

3. After the kernel and package updates, you may need to reboot your EC2 instance. To check
whether you a reboot is required, create the following reboot_if_required function and
run it on your EC2 instance.

reboot_if_required () {
 #!/bin/bash
 if [-e '/etc/debian_version']; then
 if [-f /var/run/reboot-required]; then
 echo "reboot is required"
 else
 echo "reboot is not required"
 fi
 elif [-e '/etc/system-release'] || [-e '/etc/redhat-release']; then
 export LC_CTYPE=en_US.UTF-8
 export LC_ALL=en_US.UTF-8

FAQ API Version 2013-02-18 287

AWS OpsWorks User Guide

 LATEST_INSTALLED_KERNEL=`rpm -q --last kernel | perl -X -pe 's/^kernel-(\S+).*/
$1/' | head -1`
 CURRENTLY_USED_KERNEL=`uname -r`
 if ["${LATEST_INSTALLED_KERNEL}" != "${CURRENTLY_USED_KERNEL}"];then
 echo "reboot is required"
 else
 echo "reboot is not required"
 fi
 fi
}
reboot_if_required

4. If running the reboot_if_required results in a reboot is required message, reboot
the EC2 instance. If you receive a reboot is not required message, you do not need to
reboot the EC2 instance.

Why don't the EBS volumes in my instances contain any data?

When you run the script, the script migrates the configuration of the EBS volumes, creating a
replacement architecture for your OpsWorks stack and layer. The script does not migrate actual
instances or the data contained in the instances. The script only migrates the configuration of EBS
volumes at the layer level and attaches the empty EBS volumes to launched EC2 instances.

Take the following steps to pull data from your previous instances' EBS volumes.

1. Take a snapshot of your previous instances EBS volumes. For more information about creating
a snapshot, see Create Amazon EBS snapshot in the Amazon EC2 User Guide.

2. Create a volume from your snapshot. For more information about creating a volume from a
snapshot, see Create a volume from a snapshot in the Amazon EC2 User Guide.

3. Attach the volume you created to the instances. For more information about attaching
volumes, see Attach an Amazon EBS volume to an instance in the Amazon EC2 User Guide.

Why aren't the EBS volumes described in my launch template mounted?

If you provide a launch template ID for the --launch-template parameter with EBS volumes,
the script attaches the EBS volumes, but does not mount the volumes. You can mount the attached
EBS volumes by running the MountEBSVolumes RunCommand document that the script created
for the launched EC2 instance.

FAQ API Version 2013-02-18 288

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-volume.html#ebs-create-volume-from-snapshot
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-attaching-volume.html

AWS OpsWorks User Guide

If you don't set --launch-template parameter, the script creates a template, and when the Auto
Scaling group launches a new EC2 instance, the Auto Scaling group automatically attaches the EBS
volumes and then runs the SetupAutomation command to mount the attached volumes to the
mount points configured in the layer settings.

Where can I find Chef recipe and Mount EBS volume logs?

OpsWorks delivers the logs to an S3 bucket that you can specify by providing a value for the --
command-logs-bucket parameter. The default S3 bucket name has the format: aws-opsworks-
stacks-application-manager-logs-account-id. Chef recipe logs are stored in the
ApplyChefRecipes prefix. Mount EBS volume logs are stored in the MountEBSVolumes prefix.
All layers that are migrated from a stack deliver logs to the same S3 bucket.

Note

• The S3 bucket's Lifecycle configuration includes a rule to delete the logs after 30 days.
If you want to keep the logs for more than 30 days, you must update the rule in the S3
bucket's Lifecycle configuration.

• Currently, OpsWorks only logs Chef setup and terminate recipes.

Where can I find the debug log for the migration script?

The script places debug logs in a bucket named aws-opsworks-stacks-transition-
logs-account-id. You can find the debug logs in the migration_script folder of the S3
bucket under folders that match the name of the layer you migrated.

Does the migration script support CloudFormation template versioning?

The script generates Systems Manager documents of type CloudFormation that create a
replacement for the layer or stack you want to migrate. Running the script again, even with the
same parameters, exports a new version of the previously-exported layer template. The template
versions are stored in the same S3 bucket as the script logs.

Can I migrate multiple layers?

The script's --layer-id parameter passes in a single layer. To migrate multiple layers, rerun the
script and pass in a different --layer-id.

FAQ API Version 2013-02-18 289

AWS OpsWorks User Guide

Layers that are part of the same OpsWorks stack are listed under the same application in
Application Manager.

1. Open the Systems Manager console at https://console.aws.amazon.com/systems-manager/.

2. In the navigation pane, choose Application Manager.

3. In the Applications section, choose Custom applications.

4. Choose your application. The application name begins with app-stack-name-first-six-
characters-stack-id.

5. The top level element starting with app, shows all components which correspond to your
OpsWorks stack. This includes components corresponding to your OpsWorks layer.

6. Choose the component corresponding to the layer to view the resources for the layer. The
components representing OpsWorks layers are also visible from the Custom applications
section as individual applications.

How do I create a SecureString parameter?

You can use Systems Manager to create a SecureString parameter. For more information about
how to create a Systems Manager SecureString parameter, see Create a SecureString parameter
(AWS CLI) or Create a Systems Manager parameter (console) in the AWS Systems Manager User
Guide.

You must provide a SecureString parameter as the value for the --http-username, --http-
password, or --repo-private-key parameters.

How can I protect instances in the new Auto Scaling group from termination
events?

You can protect instances by setting the --enable-instance-protection parameter to
TRUE and adding a protected_instance tag key to each EC2 instance you want to protect
from termination events. When you set the --enable-instance-protection parameter to
TRUE and add a protected_instance tag key, the script adds a custom termination policy to
your new Auto Scaling group and suspends the ReplaceUnhealthy process. Instances with the
protected_instance tag key are protected from the following termination events:

• Scale in events

• Instance refresh

• Rebalancing

FAQ API Version 2013-02-18 290

https://console.aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html#param-create-cli-securestring
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html#param-create-cli-securestring
https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-create-console.html

AWS OpsWorks User Guide

• Instance max lifetime

• Allow listing instance termination

• Termination and replacement of unhealthy instances

Note

You must set the protected_instance tag key on instances you want to protect. The tag
key is case sensitive. Any instance with that tag key is protected regardless of the tag value.
To reduce the run time of the custom termination policy, you can increase the default
number of instances the Lambda function uses to filter for protected instances by updating
the value for the default_sample_size function code variable. The default value is
15. If you increase the default_sample_size, you may need to increase the memory
allocated to the Lambda function, which would increase the cost of your Lambda function.
For information about AWS Lambda pricing, see AWS Lambda Pricing.

What load balancers are available with the migration script?

The script provides three load balancer options.

• (Recommended) Create a new Application Load Balancer. By default, the script creates a new
Application Load Balancer. You can also set the --lb-type parameter to ALB. For more
information about Application Load Balancers, see What is an Application Load Balancer? in the
Elastic Load Balancing User Guide.

• If an Application Load Balancer is not an option, create a Classic Load Balancer by setting the --
lb-type parameter to Classic. If you select this option, your existing Classic Load Balancer
attached to your OpsWorks layer is kept separate from your application. For more information
about Application Load Balancers, see What is a Classic Load Balancer? in the Elastic Load
Balancing: Classic Load Balancers User Guide.

• You can attach an existing load balancer by setting the --lb-type parameter to None.

Important

We recommend creating new Elastic Load Balancing load balancers for your AWS
OpsWorks Stacks layers. If you choose to use an existing Elastic Load Balancing load
balancer, you should first confirm that it is not being used for other purposes and

FAQ API Version 2013-02-18 291

https://aws.amazon.com/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/introduction.html

AWS OpsWorks User Guide

has no attached instances. After the load balancer is attached to the layer, OpsWorks
removes any existing instances and configures the load balancer to handle only the
layer's instances. Although it is technically possible to use the Elastic Load Balancing
console or API to modify a load balancer's configuration after attaching it to a layer, you
should not do so; the changes will not be permanent.

To attach your existing OpsWorks layer load balancer to your Auto Scaling group

1. Run the migration script with the --lb-type parameter set to None. When the value is set to
None, the script does not clone or create a load balancer.

2. After the script deploys the CloudFormation stack, update the Auto Scaling groups Min Max
and Desired capacity values, and then test your application.

3. Choose Link to the template shown in the script's output. If you closed your terminal,
take these steps to access the template.

a. Open the Systems Manager console at https://console.aws.amazon.com/systems-
manager/.

b. In the navigation pane, choose Application Manager.

c. Choose CloudFormation stacks and then choose Template library.

d. Choose Owned by me and locate your template.

4. From the CloudFormation template, choose Edit from the Actions menu.

5. Update the LabelBalancerNames property within the ApplicationAsg resource section of
the CloudFormation template.

ApplicationAsg:
 DependsOn: CustomTerminationLambdaPermission
 Properties:
 #(other properties in ApplicationAsg to remain unchanged)
 LoadBalancerNames:
 - load-balancer-name
 HealthCheckType: ELB

6. If you want your Auto Scaling group instances health check to also use the load balancer's
health check, remove the section below HealthCheckType and enter ELB. If you only require
EC2 health checks, you do not need to change the template.

FAQ API Version 2013-02-18 292

https://console.aws.amazon.com/systems-manager/
https://console.aws.amazon.com/systems-manager/

AWS OpsWorks User Guide

7. Save your changes. Saving creates a new default version of the template. If this is the first time
you've run the script for the layer and the first time you've saved changes in the console, the
newer version is 2.

8. From Actions , choose Provision stack.

9. Confirm that you want to use the default version of the template. Be sure Select an existing
stack is selected and choose the CloudFormation stack to update.

10. Choose Next for each of the subsequent pages until you see the Review and Provision page.
On the Review and Provision page, choose both I acknowledge that AWS CloudFormation
might create IAM resources with custom names and I understand that changes in the
selected template can cause AWS CloudFormation to update or remove existing AWS
resources.

11. Choose Provision stack.

If you need to roll back your updates, take the following steps.

1. Choose Actions and then choose Provision stack.

2. Choose Pick one of the existing versions and then choose the previous template version.

3. Choose Select an existing stack and then choose the CloudFormation stack to update.

Are custom cookbook configure recipes migrated?

Configure custom cookbooks are not supported to run during a setup event. The script migrates
custom cookbook configure recipes and creates a Systems Manager Automation runbook for you.
However, you must run the recipes manually.

Take the following steps to run your configure recipes.

1. Open the Systems Manager console at https://console.aws.amazon.com/systems-manager/.

2. In the navigation pane, choose Application Manager.

3. In the Applications section, choose Custom applications.

4. Choose your application. The application name begins with app-stack-name.

5. Choose Resources and then choose the configure runbook.

6. Choose Execute Automation.

7. Choose the instance IDs for which you want to run the configure recipes and then choose
Execute.

FAQ API Version 2013-02-18 293

https://console.aws.amazon.com/systems-manager/

AWS OpsWorks User Guide

Can I run deploy and undeploy recipes on my newly created instances?

The script can create three possible Automation runbooks depending on the configuration of your
layer.

• Setup

• Configure

• Terminate

The script can also create the following Systems Manager parameters that contain input values for
the AWS-ApplyChefRecipes Run Command document.

• Setup

• Deploy

• Configure

• Undeploy

• Terminate

When a scale-out event happens, the setup Automation runbook runs automatically. This includes
the setup and deploy custom cookbook recipes from your original OpsWorks layer. When a scale-in
event happens, the terminate Automation runbook runs automatically. The terminate Automation
runbook contains the shutdown recipes from your original OpsWorks layer.

If you want to run undeploy or configure recipes manually, take the following steps.

1. Open the Systems Manager console at https://console.aws.amazon.com/systems-manager/.

2. In the navigation pane, choose Application Manager.

3. In the Applications section, choose Custom applications.

4. Choose your application. The application name begins with app-stack-name-first-six-
characters-stack-id. Application Manager opens the Overview tab.

5. Choose Resources and then choose the configure Automation runbook.

6. Choose Execute Automation.

7. For the applyChefRecipesPropertiesParameter Automation runbook input parameter,
reference the correct Systems Manager parameter. The Systems Manager parameter name
follows the format /ApplyChefRecipes-Preset/OpsWorks-stack-name-OpsWorks-

FAQ API Version 2013-02-18 294

https://console.aws.amazon.com/systems-manager/

AWS OpsWorks User Guide

layer-name-first-six-characters-stack-id/event , where the value for event is
Configure, Deploy, or Undeploy depending on the recipes you want to run.

8. Choose the instance IDs where you want to run the recipes and choose Execute.

Can I change what subnets my Auto Scaling group spans?

By default, the Auto Scaling group spans all subnets in your OpsWorks stack VPC. To update which
subnets to span, take the following steps.

1. Choose Link to the template shown in the script's output. If you closed your terminal,
take these steps to access the template.

a. Open the Systems Manager console at https://console.aws.amazon.com/systems-
manager/.

b. In the navigation pane, choose Application Manager.

c. Choose CloudFormation stacks and then choose Template library.

d. Choose Owned by me and locate your template.

2. From Actions, choose Provision stack.

3. Confirm that you want to use the default template. Choose Select an existing stack and then
choose the CloudFormation stack to update.

Note

If you ran the script with the --provision-application parameter set to FALSE,
you must create a new CloudFormation stack.

4. For the SubnetIDs parameter, provide a comma separated list of the subnet IDs that you
want your Auto Scaling group to span.

5. Choose Next until you see the Review and Provision page.

6. On the Review and Provision page, choose I acknowledge that AWS CloudFormation might
create IAM resources with custom names and I understand that changes in the selected
template can cause AWS CloudFormation to update or remove existing AWS resources.

7. Choose Provision stack.

FAQ API Version 2013-02-18 295

https://console.aws.amazon.com/systems-manager/
https://console.aws.amazon.com/systems-manager/

AWS OpsWorks User Guide

Troubleshooting

This section contains some common issues, and suggested solutions for those issues.

Topics

• Provided principal is not valid

• Unable to delete CloudFormation stack when Auto Scaling group protected instances are
enabled

• Access denied error when providing existing S3 bucket and prefix

Provided principal is not valid

Problem: You receive an error message stating that the principal you provided is not valid.

Cause: This occurs because the Auto Scaling group doesn't have a service role.

Solution: Create an Auto Scaling group in the Region where the error occurred. Creating an Auto
Scaling group creates the necessary service-linked role for your custom termination policy.

Unable to delete CloudFormation stack when Auto Scaling group protected
instances are enabled

Problem: The --enable-instance-protection parameter is set to TRUE and some of your
Auto Scaling group's EC2 instances are protected with the protected_instance tag key, which
prevents your AWS CloudFormation stack from being completely deleted.

Cause: The EC2 instances have a protected_instance tag key which protects them from
termination events.

Solution: Remove the protected_instance tag key from the EC2 instances. This allows the Auto
Scaling group to scale down. After the Auto Scaling group scales down, you can delete the AWS
CloudFormation stack.

Access denied error when providing existing S3 bucket and prefix

Problem: You receive an AccessDenied error when you provide an existing S3 bucket and prefix.

Cause: The S3 bucket policy does not provide the necessary permissions to deliver the load
balancer logs to the bucket.

Troubleshooting API Version 2013-02-18 296

AWS OpsWorks User Guide

Solution: Update the S3 bucket policy to allow the script to deliver the load balancer access logs to
the bucket. For more information about how to update the bucket policy, see Enable access logs for
your Application Load Balancer in the Elastic Load Balancing: Application Load Balancers User Guide.

Getting Started with AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks provides a rich set of customizable components that you can mix and match
to create a stack that satisfies your specific purposes. The challenge for new users is understanding
how to assemble these components into a working stack and manage it effectively. Here's how you
can get started.

If you want to... Complete this walkthrough:

Create a sample stack as quick as possible Getting Started: Sample

Experiment with a Linux-based stack Getting Started: Linux

Experiment with a Windows-based stack Getting Started: Windows

Learn how to create your own Chef cookbooks Getting Started: Cookbooks

If you have existing computing resources—Amazon EC2 instances or even on-premises instances
that are running on your own hardware—you can incorporate them into a stack, along with
instances that you created with AWS OpsWorks Stacks. You can then use AWS OpsWorks Stacks to
manage all related instance as a group, regardless of how they were created.

Getting Started API Version 2013-02-18 297

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/enable-access-logging.html

AWS OpsWorks User Guide

Region Support

You can access AWS OpsWorks Stacks globally; you can also create and manage instances globally.
Users can configure AWS OpsWorks Stacks instances to be launched in any AWS region except
AWS GovCloud (US-West) and the China (Beijing) Region. To work with AWS OpsWorks Stacks,
instances must be able to connect to one of the following AWS OpsWorks Stacks instance service
API endpoints.

Resources can be managed only in the region in which they are created. Resources that are created
in one regional endpoint are not available, nor can they be cloned to, another regional endpoint.
You can launch instances in any of the following regions.

• US East (Ohio) Region

• US East (N. Virginia) Region

• US West (Oregon) Region

• US West (N. California) Region

• Canada (Central) Region (API only, not available for stacks created in the AWS Management
Console.)

• Asia Pacific (Mumbai) Region

• Asia Pacific (Singapore) Region

• Asia Pacific (Sydney) Region

• Asia Pacific (Tokyo) Region

• Asia Pacific (Seoul) Region

• Europe (Frankfurt) Region

• Europe (Ireland) Region

• Europe (London) Region

• Europe (Paris) Region

• South America (São Paulo) Region

Region Support API Version 2013-02-18 298

AWS OpsWorks User Guide

Getting Started with a Sample Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This walkthrough shows how to use AWS OpsWorks Stacks to quickly create a sample Node.js
application environment with just a few mouse clicks and without writing code. When you are
done, you have an Amazon Elastic Compute Cloud (Amazon EC2) instance running Chef 12, a
Node.js HTTP server, and a web app that you can use to interact with Twitter and leave comments
on a web page.

Note

Because completing this walkthrough automatically creates an instance with a type of
c3.large, you cannot use this walkthrough, or the Sample Stack creation tool in AWS
OpsWorks Stacks, in the AWS Free Tier. Although using the Sample Stack creation tool in a
VPC creates a t2.medium instance, VPCs are not currently available in the AWS Free Tier.

Step 1: Complete the Prerequisites

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Getting Started: Sample API Version 2013-02-18 299

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/free-tier-limits.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/free-tier-limits.html

AWS OpsWorks User Guide

You must complete the following setup steps before you can start the walkthrough. These setup
steps include signing up for an AWS account, creating an administrative user, and assigning access
permissions to AWS OpsWorks Stacks.

Topics

• Sign up for an AWS account

• Create an administrative user

• Assign Service Access Permissions

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

Getting Started: Sample API Version 2013-02-18 300

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/

AWS OpsWorks User Guide

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign Service Access Permissions

Enable access to the AWS OpsWorks Stacks service (and related services that AWS OpsWorks Stacks
relies on) by adding the AWSOpsWorks_FullAccess and AmazonS3FullAccess permissions to
your role or user.

For more information about adding permissions, see Adding IAM identity permissions (console).

You have now completed all of the setup steps and can start this walkthrough.

Getting Started: Sample API Version 2013-02-18 301

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

AWS OpsWorks User Guide

Step 2: Create a Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

In this step, you use the AWS OpsWorks Stacks console to create a stack. A stack is a collection of
instances (such as Amazon EC2 instances) and related AWS resources that have a common purpose
and that you want to manage together. (For more information, see Stacks.) There will be only one
instance for this walkthrough.

Before you begin this step, complete the prerequisites.

To create the stack

1. Sign in to the AWS Management Console and open the AWS OpsWorks console at https://
console.aws.amazon.com/opsworks/.

2. Do any of the following, if they apply:

• If the Welcome to AWS OpsWorks Stacks page is displayed, choose Add your first stack
or Add your first AWS OpsWorks Stacks stack (both choices do the same thing). The Add
stack page displays.

• If the OpsWorks Dashboard page is displayed, choose Add stack. The Add stack page
displays.

3. With the Add stack page displayed, choose Sample stack, if it is not already chosen for you.

4. With Linux already chosen for Operating system type, choose Create stack:

Getting Started: Sample API Version 2013-02-18 302

https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

5. AWS OpsWorks Stacks creates a stack named My Sample Stack (Linux). AWS OpsWorks Stacks
also adds all of the necessary components to deploy the app to the stack:

• A layer, which is a blueprint for a set of instances. It specifies things like the instance's
settings, resources, installed packages, and security groups. (For more information, see
Layers.) The layer is named Node.js App Server.

• An instance, which in this case is an Amazon Linux 2 EC2 instance. (For more information
about instances, see Instances.) The instance's hostname is nodejs-server1.

• An app, which is code to run on the instance. (For more information about apps, see Apps.)
The app is named Node.js Sample App.

6. After AWS OpsWorks Stacks creates the stack, choose Explore the sample stack to display the
My Sample Stack (Linux) page (if you complete this walkthrough multiple times, My Sample
Stack (Linux) may have a sequential number after it, such as 2 or 3):

Getting Started: Sample API Version 2013-02-18 303

AWS OpsWorks User Guide

In the next step, you will start the instance and deploy the app to the instance.

Step 3: Start the Instance and Deploy the App

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now that you have an instance and an app, start the instance and deploy the app to the instance.

To start the instance and deploy the app

1. Do one of the following:

Getting Started: Sample API Version 2013-02-18 304

AWS OpsWorks User Guide

• In the service navigation pane, choose Instances:

• On the My Sample Stack (Linux) page, choose Instances:

2. On the Instances page, for Node.js App Server, for nodejs-server1, choose start:

Getting Started: Sample API Version 2013-02-18 305

AWS OpsWorks User Guide

3. Do not proceed until the online circle is bright green. (If you see a failure message, consult the
Debugging and Troubleshooting Guide.)

4. As the instance is setting up, AWS OpsWorks Stacks deploys the app to the instance.

5. Your results should resemble the following screenshot before you continue (if you receive a
failure message, you may want to consult the Debugging and Troubleshooting Guide.):

You now have an instance with an app that has been deployed to the instance.

In the next step, you test the app on the instance.

Step 4: Test the Deployed App on the Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Getting Started: Sample API Version 2013-02-18 306

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Test the results of the app deployment on the instance.

To test the deployment on the instance

1. With the Instances page displayed from the previous step, for Node.js App Server, for nodejs-
server1, for Public IP, choose the IP address.

2. On the congratulatory web page, in the Leave a comment text box, type a comment, and then
choose Send to test the app. The app adds your comment to the web page. Continue leaving
comments and choosing Send as often as you want.

Getting Started: Sample API Version 2013-02-18 307

AWS OpsWorks User Guide

3. If you have a Twitter account, choose Tweet or Follow @AWSOpsWorks, and follow the on-
screen directions to tweet about the app or to follow @AWSOpsWorks.

You have now successfully tested the deployed app on the instance.

Getting Started: Sample API Version 2013-02-18 308

AWS OpsWorks User Guide

In the remaining steps, you can use the AWS OpsWorks Stacks console to explore settings of the
stack and its components. In the next step, you can start your exploration by examining the stack's
settings.

Step 5: Explore the Stack's Settings

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Examine how AWS OpsWorks Stacks set up the stack.

To display the stack's settings

1. In the service navigation bar, choose Stack. The My Sample Stack (Linux) page displays.

2. Choose Stack Settings. The Settings My Sample Stack (Linux) page displays:

Getting Started: Sample API Version 2013-02-18 309

AWS OpsWorks User Guide

To learn more about many of the settings, choose Edit, and then hover over each of the settings.
(Not all settings have on-screen descriptions.) For more information about these settings, see
Create a New Stack.

To explore the Chef cookbook used in this walkthrough, open the opsworks-linux-demo-
cookbooks-nodejs repository on GitHub.

In the next step, you can explore the layer's settings.

Step 6: Explore the Layer's Settings

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Examine how AWS OpsWorks Stacks set up the layer.

To display the layer's settings

1. In the service navigation pane, choose Layers. The Layers page is displayed.

2. Choose Node.js App Server. The Layer Node.js App Server page is displayed. To view the
layer's settings, choose General Settings, Recipes, Network, EBS Volumes, and Security:

Getting Started: Sample API Version 2013-02-18 310

https://github.com/awslabs/opsworks-linux-demo-cookbook-nodejs
https://github.com/awslabs/opsworks-linux-demo-cookbook-nodejs

AWS OpsWorks User Guide

To learn more about many of the settings, choose Edit, and then hover over each of the settings.
(Not all settings have on-screen descriptions.) For more information about these settings, see
Editing an OpsWorks Layer's Configuration.

In the next step, you can explore the instance's settings and logs.

Step 7: Explore the Instance's Settings and Logs

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Examine the settings that AWS OpsWorks Stacks used to launch the instance. You can also examine
the instance logs that AWS OpsWorks Stacks created.

To display the instance's settings and logs

1. In the service navigation pane, choose Instances. The Instances page displays.

2. For Node.js App Server, choose nodejs-server1. The instance's properties page is shown.

Getting Started: Sample API Version 2013-02-18 311

AWS OpsWorks User Guide

3. To explore the instance logs, in the Logs section, for Log, choose show.

4. AWS OpsWorks Stacks displays the log in a separate web browser tab.

Getting Started: Sample API Version 2013-02-18 312

AWS OpsWorks User Guide

To learn more about what some of the instance settings represent, return to the nodejs-server1
page, choose Stop, and when you see the confirmation message, choose Stop. Choose Edit after
Status changes from stopping to stopped, and then hover over each of the settings. (Not all
settings have on-screen descriptions.) For more information about these settings, see Adding an
Instance to a Layer.

When you have finished reviewing settings, choose Start to restart the instance, and wait until
Status changes to online. Otherwise, you won't be able to test the app later, because the instance
will remain stopped.

Note

If you want to log in to the instance to explore it further, you must first provide AWS
OpsWorks Stacks with information about your public SSH key (which you can create with
tools such as ssh-keygen or PuTTYgen), and then you must set permissions on the My
Sample Stack (Linux) stack to enable your user to log in to the instance. For instructions,
see Registering a User's Public SSH Key and Logging In with SSH.

In the next step, explore the app's settings.

Step 8: Explore the App's Settings

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Getting Started: Sample API Version 2013-02-18 313

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Examine the settings that AWS OpsWorks Stacks used for the app.

To display the app's settings

1. In the service navigation pane, choose Apps. The Apps page is displayed.

2. Choose Node.js Sample App. The App Node.js Sample App page displays:

To learn about what some of the settings represent, choose Edit, and then hover over each of
the settings. (Not all settings have on-screen descriptions.) For more information about these the
settings, see Adding Apps.

In the next step, you can explore layer monitoring reports.

Getting Started: Sample API Version 2013-02-18 314

AWS OpsWorks User Guide

Step 9: Explore Layer Monitoring Reports

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Examine reports that AWS OpsWorks Stacks generates about the layer's compute performance.

To display layer monitoring reports

1. In the service navigation pane, choose Monitoring. The Monitoring Layers page is displayed.

2. To explore additional views, choose the arrow next to CPU, Memory, Load, and time:

For information about these and other reports, see Using Amazon CloudWatch and Monitoring.

In the next step, you can explore additional stack settings.

Getting Started: Sample API Version 2013-02-18 315

AWS OpsWorks User Guide

Step 10: Explore Additional Stack Settings

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

In this step, you can examine additional stack settings.

AWS OpsWorks Stacks ran no separate deployments, provisioned no additional resources, and
adjusted no additional permissions as part of this stack, so there isn't much of interest on the
Deployments and Commands, Resources, and Permissions pages. If you want to see those
settings anyway, choose Deployments, Resources, and Permissions in the service navigation pane,
respectively. If you want more information about what these pages represent, see Deploying Apps,
Resource Management, and Managing User Permissions.

In the next step, you can clean up the AWS resources that you used for this walkthrough. This next
step is optional. You may want to keep using these AWS resources as you continue to learn more
about AWS OpsWorks Stacks. However, keeping these AWS resources around may result in some
ongoing charges to your AWS account. If you want to keep these AWS resources around for later
use, you have now completed this walkthrough, and you can skip ahead to Next Steps.

Step 11 (Optional): Clean Up

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Getting Started: Sample API Version 2013-02-18 316

AWS OpsWorks User Guide

To prevent incurring additional charges to your AWS account, you can delete the app and the AWS
resources that were used for this walkthrough, including the instance and the AWS OpsWorks
Stacks stack. (For more information, see AWS OpsWorks Pricing.) However, you might want to keep
using these AWS resources as you continue to learn more about AWS OpsWorks Stacks. If you want
to keep these AWS resources available, you have now completed this walkthrough, and you can
skip to Next Steps.

Content stored in the resources that you created for this walkthrough can contain personally-
identifying information. If you no longer want this information to be stored by AWS, follow steps in
this topic.

To delete the app from the stack

1. In the service navigation pane, choose Apps. The Apps page displays.

2. For Node.js Sample App, for Actions, choose delete. When you see the confirmation message,
choose Delete. When the app is deleted, you see the No apps message.

To delete the instance for the stack

1. In the service navigation pane, choose Instances. The Instances page displays.

2. For Node.js App Server, for nodejs-server1, for Actions, choose stop. When you see the
confirmation message, choose Stop.

This process can take a few minutes. When AWS OpsWorks Stacks is finished, the following
results are shown.

Getting Started: Sample API Version 2013-02-18 317

http://aws.amazon.com/opsworks/pricing/

AWS OpsWorks User Guide

3. For Actions, choose delete. When you see the confirmation message, choose Delete. The
instance is deleted, and the No instances message is displayed.

To delete the stack

1. In the service navigation pane, choose Stack. The My Sample Stack (Linux) page is displayed.

2. Choose Delete Stack. When you see the confirmation message, choose Delete. The stack is
deleted, and the OpsWorks Dashboard page is displayed.

Optionally, you can delete the user and Amazon EC2 key pair that you used for this walkthrough, if
you don't want to reuse them for access to other AWS services and EC2 instances. For instructions,
see Deleting an IAM user and Amazon EC2 key pairs and Linux instances.

You have now completed this walkthrough. For more information, see Next Steps.

Next Steps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Getting Started: Sample API Version 2013-02-18 318

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_deleting
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#delete-key-pair

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now that you have completed this walkthrough, you can learn more about using AWS OpsWorks
Stacks:

• Practice manually recreating this stack by yourself using AWS OpsWorks Stacks. See Getting
Started: Linux.

• Explore the cookbook and the app that AWS OpsWorks Stacks used for this walkthrough. See
Learning More: Explore the Cookbook Used in This Walkthrough and Learning More: Explore the
App Used in This Walkthrough in the companion Getting Started: Linux walkthrough.

• Practice using AWS OpsWorks Stacks with Windows instances. See Getting Started: Windows.

• Learn more about stacks by learning how to Create a New Stack.

• Learn more about layers by Editing an OpsWorks Layer's Configuration.

• Learn more about instances by Adding an Instance to a Layer.

• Learn more about apps by Deploying Apps.

• Learn more about Cookbooks and Recipes.

• Create your own cookbooks. See Getting Started: Cookbooks.

• Learn about controlling access to stacks with Security and Permissions.

Getting Started with Linux Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

In this walkthrough, you will learn how to use AWS OpsWorks Stacks to create a Node.js application
environment. When you are done, you will have an Amazon Elastic Compute Cloud (Amazon EC2)

Getting Started: Linux API Version 2013-02-18 319

AWS OpsWorks User Guide

instance running Chef 12, a Node.js HTTP server, and a web app that you can use to interact with
Twitter and leave comments on a web page.

Chef is a third-party framework for configuring and maintaining servers, such as EC2 instances,
and how apps are deployed and maintained on those servers. If you aren't familiar with Chef, after
completing this walkthrough, we recommend that you learn more about Chef so that you can take
full advantage of all that AWS OpsWorks Stacks has to offer. (For more information, see the Learn
Chef website.)

AWS OpsWorks Stacks supports four Linux distributions: Amazon Linux, Ubuntu Server, CentOS,
and Red Hat Enterprise Linux. For this walkthrough, we use Ubuntu Server. AWS OpsWorks Stacks
also works with Windows Server. Although we have an equivalent walkthrough for Windows Server
stacks, we recommend that you complete this walkthrough first to learn basic concepts about AWS
OpsWorks Stacks and Chef that are not repeated there. After you complete this walkthrough, see
the Getting Started: Windows walkthrough.

Topics

• Step 1: Complete the Prerequisites

• Step 2: Create a Stack

• Step 3: Add a Layer to the Stack

• Step 4: Specify the App to Deploy to the Instance

• Step 5: Launch an Instance

• Step 6: Deploy the App to the Instance

• Step 7: Test the Deployed App on the Instance

• Step 8 (Optional): Clean Up

• Next Steps

• Learning More: Explore the Cookbook Used in This Walkthrough

• Learning More: Explore the App Used in This Walkthrough

Step 1: Complete the Prerequisites

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Getting Started: Linux API Version 2013-02-18 320

https://learn.chef.io/
https://learn.chef.io/

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Complete the following setup steps before you can start the walkthrough. These setup steps
include signing up for an AWS account, creating an administrative user, and assigning access
permissions to AWS OpsWorks Stacks.

If you have already completed the Getting Started: Sample walkthrough, then you have met the
prerequisites for this walkthrough, and you can skip ahead to Step 2: Create a Stack.

Topics

• Sign up for an AWS account

• Create an administrative user

• Assign Service Access Permissions

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Getting Started: Linux API Version 2013-02-18 321

http://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-intro.html
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

AWS OpsWorks User Guide

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Getting Started: Linux API Version 2013-02-18 322

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

AWS OpsWorks User Guide

Assign Service Access Permissions

Enable access to the AWS OpsWorks Stacks service (and related services that AWS OpsWorks Stacks
relies on) by adding the AWSOpsWorks_FullAccess and AmazonS3FullAccess permissions to
your role or user.

For more information about adding permissions, see Adding IAM identity permissions (console).

You have now completed all of the setup steps and can start this walkthrough.

Step 2: Create a Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You will use the AWS OpsWorks Stacks console to create a stack. A stack is a collection of instances
and related AWS resources that have a common purpose and that you want to manage together.
(For more information, see Stacks.) For this walkthrough, there is only one instance.

Before you begin, complete the prerequisites if you haven't already.

To create the stack

1. Sign in to the AWS Management Console and open the AWS OpsWorks console at https://
console.aws.amazon.com/opsworks/.

2. Do any of the following, if they apply:

• If the Welcome to AWS OpsWorks Stacks page is displayed, choose Add your first stack
or Add your first AWS OpsWorks Stacks stack (both choices do the same thing). The Add
stack page is displayed.

• If the OpsWorks Dashboard page is displayed, choose Add stack. The Add stack page is
displayed.

3. With the Add stack page displayed, choose Chef 12 stack if it is not already chosen for you.

Getting Started: Linux API Version 2013-02-18 323

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

4. In the Stack name box, type a name, for example MyLinuxDemoStack. (You can type
a different name, but be sure to substitute it for MyLinuxDemoStack throughout this
walkthrough.)

5. For Region, choose US West (Oregon).

6. For VPC, do one of the following:

• If a VPC is available, choose it. (For more information, see Running a Stack in a VPC.)

• Otherwise, choose No VPC.

7. For Default operating system, choose Linux and Ubuntu 18.04 LTS.

8. For Use custom Chef cookbooks, choose Yes.

9. For Repository type, choose Http Archive.

10. For Repository URL, type https://s3.amazonaws.com/opsworks-demo-assets/
opsworks-linux-demo-cookbooks-nodejs.tar.gz

11. Leave the defaults for the following:

• Default Availability Zone (us-west-2a)

• Default SSH key (Do not use a default SSH key)

• User name (blank)

• Password (blank)

• Stack color (dark blue)

12. Choose Advanced.

13. For IAM role, do one of the following (for more information, see Allowing AWS OpsWorks
Stacks to Act on Your Behalf):

• If aws-opsworks-service-role is available, choose it.

• If aws-opsworks-service-role is not available, choose New IAM role.

14. For Default IAM instance profile, do one of the following (for more information, see
Specifying Permissions for Apps Running on EC2 instances):

• If aws-opsworks-ec2-role is available, choose it.

• If aws-opsworks-ec2-role is not available, choose New IAM instance profile.

15. For API endpoint region, choose the regional API endpoint with which you want the stack to
be associated. If you want the stack to be in the US West (Oregon) Region within the US East
(N. Virginia) regional endpoint, choose us-east-1. If you want the stack to be both in the US

Getting Started: Linux API Version 2013-02-18 324

AWS OpsWorks User Guide

West (Oregon) Region and associated with the US West (Oregon) regional endpoint, choose us-
west-2.

Note

The US East (N. Virginia) regional endpoint includes older AWS Regions for backward
compatibility, but it is a best practice to choose the regional endpoint that is closest to
where you manage AWS. For more information, see Region Support.

16. Leave the defaults for the following:

• Default root device type (EBS backed)

• Hostname theme (Layer Dependent)

• OpsWorks Agent version (most recent version)

• Custom JSON (blank)

• Use OpsWorks security groups (Yes)

17. Your results should match the following screenshots except for perhaps VPC, IAM role, and
Default IAM instance profile:

Getting Started: Linux API Version 2013-02-18 325

AWS OpsWorks User Guide

Getting Started: Linux API Version 2013-02-18 326

AWS OpsWorks User Guide

18. Choose Add Stack. AWS OpsWorks Stacks creates the stack and displays the
MyLinuxDemoStack page.

You now have a stack with the correct settings for this walkthrough.

In the next step, you will add a layer to the stack.

Getting Started: Linux API Version 2013-02-18 327

AWS OpsWorks User Guide

Step 3: Add a Layer to the Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A layer is a blueprint for a set of instances, such as Amazon EC2 instances. It specifies information
such as the instance's settings, resources, installed packages, and security groups. Next, add a layer
to the stack. (For more information about layers, see Layers.)

To add the layer to the stack

1. With the MyLinuxDemoStack page displayed from the previous step, for Layers, choose Add a
layer:

2. The Add Layer page is displayed. On the OpsWorks tab, for Name, type MyLinuxDemoLayer.
(You can type a different name, but be sure to substitute it for MyLinuxDemoLayer
throughout this walkthrough.)

3. For Short name, type demo (you can type a different value, but be sure to substitute it for
demo throughout this walkthrough):

Getting Started: Linux API Version 2013-02-18 328

AWS OpsWorks User Guide

4. Choose Add layer. AWS OpsWorks Stacks creates the layer and displays the Layers page.

5. On the Layers page, for MyLinuxDemoLayer, choose Network.

6. On the Network tab, under Automatically Assign IP Addresses, verify that Public IP
addresses is set to yes. If you've made changes, choose Save.

7. On the Layers page, choose Security:

Getting Started: Linux API Version 2013-02-18 329

AWS OpsWorks User Guide

8. The Layer MyLinuxDemoLayer page is displayed with the Security tab open. For Security
groups, choose AWS-OpsWorks-WebApp, and then choose Save:

9. The AWS-OpsWorks-WebApp security group is added to the layer. (This security group enables
users to connect to the app on the instance later in this walkthrough. Without this security
group, users will receive a message in their web browser that they cannot connect to the
instance.)

You now have a layer with the correct settings for this walkthrough.

In the next step, you will specify the app to deploy to the instance.

Step 4: Specify the App to Deploy to the Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Getting Started: Linux API Version 2013-02-18 330

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Tell AWS OpsWorks Stacks about the app that you will deploy to the instance later in this
walkthrough. In this context, AWS OpsWorks Stacks defines an app as code you want to run on an
instance. (For more information, see Apps.)

The procedure in this section applies to Chef 12 and newer stacks. For information about how to
add apps to layers in Chef 11 stacks, see Step 2.4: Create and Deploy an App - Chef 11.

To specify the app to deploy

1. In the service navigation pane, choose Apps:

2. The Apps page is displayed. Choose Add an app. The Add App page is displayed.

3. For Settings, for Name, type MyLinuxDemoApp. (You can type a different name, but be sure to
substitute it for MyLinuxDemoApp throughout this walkthrough.)

Getting Started: Linux API Version 2013-02-18 331

AWS OpsWorks User Guide

4. For Application Source, for Repository URL, type https://github.com/awslabs/
opsworks-windows-demo-nodejs.git

5. Leave the defaults for the following:

• Settings, Document root (blank)

• Data Sources, Data source type (None)

• Repository type (Git)

• Repository SSH key (blank)

• Branch/Revision (blank)

• Environment Variables (blank KEY, blank VALUE, unchecked Protected Value)

• Add Domains, Domain Name (blank)

• SSL Settings, Enable SSL (No)

Getting Started: Linux API Version 2013-02-18 332

AWS OpsWorks User Guide

6. Choose Add App. AWS OpsWorks Stacks adds the app and displays the Apps page.

You now have an app with the correct settings for this walkthrough.

In the next step, you will launch the instance.

Step 5: Launch an Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use AWS OpsWorks Stacks to start up an Ubuntu Server Amazon EC2 instance. This instance
uses the settings that you defined in the layer you created earlier in this walkthrough. (For more
information, see Instances.)

Getting Started: Linux API Version 2013-02-18 333

AWS OpsWorks User Guide

To launch the instance

1. In the service navigation pane, choose Instances. The Instances page is displayed.

2. For MyLinuxDemoLayer, choose Add an instance.

3. On the New tab, leave the defaults for the following:

• Hostname (demo1)

• Size (c3.large)

• Subnet (IP address us-west-2a)

4. Choose Advanced.

5. Leave the defaults for the following:

• Scaling type (24/7)

• SSH key (Do not use a default SSH key)

• Operating system (Ubuntu 18.04 LTS)

• OpsWorks Agent version (Inherit from stack)

• Tenancy (Default - Rely on VPC settings)

• Root device type (EBS backed)

• Volume type (General Purpose (SSD))

• Volume size (8)

6. Your results will be similar to the following screenshot:

Getting Started: Linux API Version 2013-02-18 334

AWS OpsWorks User Guide

7. Choose Add Instance. AWS OpsWorks Stacks adds the instance to the layer and displays the
Instances page.

8. For MyLinuxDemoLayer, for demo1, for Actions, choose start:

9. Over the course of several minutes, the following occurs:

• The setting up circle changes from 0 to 1.

Getting Started: Linux API Version 2013-02-18 335

AWS OpsWorks User Guide

• Status turns from stopped to requested, to pending, to booting, to running_setup, and
then finally to online. Note that this process can take several minutes.

• After Status changes to online, the setting up circle indicator changes from 1 to 0, and the
online circle changes from 0 to 1 and changes to bright green. Do not proceed until the
online circle changes to bright green, and shows 1 instance online.

10. Your results must match the following screenshot before you continue (if you receive a failure
message, you may want to consult the Debugging and Troubleshooting Guide):

You now have an instance that is ready for the app to be deployed to it.

Note

If you want to log in to the instance to explore it further, you must first provide AWS
OpsWorks Stacks with information about your public SSH key (which you can create
with tools such as ssh-keygen or PuTTYgen), and then you must set permissions on the
MyLinuxDemoStack stack to enable your user to log in to the instance. For instructions,
see Registering a User's Public SSH Key and Logging In with SSH. If you plan to use SSH to
connect to instances through PuTTY, see Connecting to Your Linux Instance from Windows
Using PuTTY in the AWS documentation.

In the next step, you will deploy the app to the instance.

Getting Started: Linux API Version 2013-02-18 336

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

AWS OpsWorks User Guide

Step 6: Deploy the App to the Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

In this step, you will deploy the app from GitHub to the running instance. (For more information,
see Deploying Apps.) Before you deploy the app, you must specify the recipe to use to coordinate
the deployment. A recipe is a Chef concept. Recipes are instructions, written with Ruby language
syntax, that specify the resources to use and the order in which those resources are applied. (For
more information, go to About Recipes on the Learn Chef website.)

To specify the recipe to use to deploy the app to the instance

1. In the service navigation pane, choose Layers. The Layers page is displayed.

2. For MyLinuxDemoLayer, choose Recipes:

The Layer MyLinuxDemoLayer page is displayed with the Recipes tab open.

3. For Custom Chef Recipes, for Deploy, type nodejs_demo::default, and then press Enter.
nodejs_demo is the name of the cookbook and default is the name of the target recipe

Getting Started: Linux API Version 2013-02-18 337

https://docs.chef.io/recipes.html
https://learn.chef.io/

AWS OpsWorks User Guide

within the cookbook. (To explore the recipe's code, see Learning More: Explore the Cookbook
Used in This Walkthrough.) Your results must match the following screenshot:

4. Choose Save. AWS OpsWorks Stacks adds the recipe to the layer's Deploy lifecycle event.

To deploy the app to the instance

1. In the service navigation pane, choose Apps. The Apps page displays.

2. For MyLinuxDemoApp, for Actions, choose deploy, as displayed in the following screen shot:

Getting Started: Linux API Version 2013-02-18 338

AWS OpsWorks User Guide

3. On the Deploy App page, leave the defaults for the following:

• Command (Deploy)

• Comment (blank)

• Settings, Advanced, Custom Chef JSON (blank)

• Instances, Advanced (checked Select all, checked MyLinuxDemoLayer, checked demo1)

4. Your results must match the following screenshot:

5. Choose Deploy. The Deployment MyLinuxDemoApp – deploy page is displayed. Status
changes from running to successful. A spinning circle displays next to demo1, which then
changes to a green check mark. Note that this process can take several minutes. Do not
proceed until you see both a Status of successful and the green check mark icon.

Getting Started: Linux API Version 2013-02-18 339

AWS OpsWorks User Guide

6. Your results must match the following screenshot except of course for Created at, Completed
at, Duration, and User. If status is failed, then to troubleshoot, for Log, choose show to get
details about the failure:

You have now successfully deployed the app to the instance.

In the next step, you will test the deployed app on the instance.

Step 7: Test the Deployed App on the Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now, test the app deployment on the instance.

To test the deployment on the instance

1. In the service navigation pane, choose Instances. The Instances page is displayed.

2. For MyLinuxDemoLayer, for demo1, for Public IP, choose the IP address:

Getting Started: Linux API Version 2013-02-18 340

AWS OpsWorks User Guide

A new web browser tab displays the app.

3. On the congratulatory web page, in the Leave a comment text box, type a comment, and then
choose Send to test the app. The app adds your comment to the web page. Continue leaving
comments and choosing Send as often as you want:

Getting Started: Linux API Version 2013-02-18 341

AWS OpsWorks User Guide

4. If you have a Twitter account, choose Tweet or Follow @AWSOpsWorks, and follow the on-
screen directions to tweet about the app or to follow @AWSOpsWorks.

You have now successfully tested the deployed app on the instance.

In the next step, you can clean up the AWS resources that you used for this walkthrough. This next
step is optional. You may want to keep using these AWS resources as you continue to learn more
about AWS OpsWorks Stacks. However, keeping these AWS resources around may result in some
ongoing charges to your AWS account. If you want to keep these AWS resources around for later
use, you have now completed this walkthrough, and you can skip ahead to Next Steps.

Getting Started: Linux API Version 2013-02-18 342

AWS OpsWorks User Guide

Step 8 (Optional): Clean Up

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To prevent incurring additional charges to your AWS account, you can delete the AWS resources
that were used for this walkthrough. These AWS resources include the AWS OpsWorks Stacks
stack and the stack's components. (For more information, see AWS OpsWorks Pricing.) However,
you might want to keep using these AWS resources as you continue to learn more about AWS
OpsWorks Stacks. If you want to keep these AWS resources available, you have now completed this
walkthrough, and you can skip to Next Steps.

Content stored in the resources that you created for this walkthrough can contain personally-
identifying information. If you no longer want this information to be stored by AWS, follow steps in
this topic.

To delete the app from the stack

1. In the AWS OpsWorks Stacks console, in the service navigation pane, choose Apps. The Apps
page is displayed.

2. For MyLinuxDemoApp, for Actions, choose delete. When the confirmation message is
displayed, choose Delete. AWS OpsWorks Stacks deletes the app.

To delete the instance for the stack

1. In the service navigation pane, choose Instances. The Instances page is displayed.

2. For MyLinuxDemoLayer, for demo1, for Actions, choose stop. When you see the confirmation
message, choose Stop. The following happens.

• Status changes from online to stopping, and eventually to stopped.

• online changes from 1 to 0.

Getting Started: Linux API Version 2013-02-18 343

http://aws.amazon.com/opsworks/pricing/

AWS OpsWorks User Guide

• shutting down changes from 0 to 1, and eventually back to 0.

• stopped eventually changes from 0 to 1.

This process can take a few minutes. When AWS OpsWorks Stacks is finished, the following
results are shown.

3. For Actions, choose delete. When you see the confirmation message, choose Delete. AWS
OpsWorks Stacks deletes the instance and displays the No instances message.

To delete the stack

1. In the service navigation pane, choose Stack. The MyLinuxDemoStack page is displayed.

2. Choose Delete Stack. When you see the confirmation message, choose Delete. AWS OpsWorks
Stacks deletes the stack and displays the OpsWorks Dashboard page.

Optionally, you can delete the user and Amazon EC2 key pair that you used for this walkthrough, if
you don't want to reuse them for access to other AWS services and EC2 instances. For instructions,
see Deleting an IAM user and Amazon EC2 key pairs and Linux instances.

You have now completed this walkthrough. For more information, see Next Steps.

Getting Started: Linux API Version 2013-02-18 344

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_deleting
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#delete-key-pair

AWS OpsWorks User Guide

Next Steps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now that you have completed this walkthrough, you can learn more about using AWS OpsWorks
Stacks:

• Explore the cookbook and the app that you used for this walkthrough. See Learning More:
Explore the Cookbook Used in This Walkthrough and Learning More: Explore the App Used in
This Walkthrough.

• Practice using AWS OpsWorks Stacks with Windows instances. See Getting Started: Windows.

• Learn more about stacks by learning how to Create a New Stack.

• Learn more about layers by Editing an OpsWorks Layer's Configuration.

• Learn more about instances by Adding an Instance to a Layer.

• Learn more about apps by Deploying Apps.

• Learn more about Cookbooks and Recipes.

• Create your own cookbooks. See Getting Started: Cookbooks.

• Learn about controlling access to stacks with Security and Permissions.

Learning More: Explore the Cookbook Used in This Walkthrough

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Getting Started: Linux API Version 2013-02-18 345

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This topic describes the cookbook that AWS OpsWorks Stacks used for the walkthrough.

A cookbook is a Chef concept. Cookbooks are archive files that contain configuration information,
such as recipes, attribute values, files, templates, libraries, definitions, and custom resources.
A recipe is also a Chef concept. Recipes are instructions, written with Ruby language syntax,
that specify the resources to use and the order in which those resources are applied. For more
information, go to About Cookbooks and About Recipes on the Learn Chef website.

To see the contents of the cookbook used in this walkthrough, extract the contents of the
opsworks-linux-demo-cookbooks-nodejs.tar.gz file to an empty directory on your local
workstation. (You can also log in to the instance that you deployed the cookbook to and explore
the contents of the /var/chef/cookbooks directory.)

The default.rb file in the cookbooks/nodejs_demo/recipes directory is where the cookbook
runs its code:

app = search(:aws_opsworks_app).first
app_path = "/srv/#{app['shortname']}"

package "git" do
 options "--force-yes" if node["platform"] == "ubuntu" && node["platform_version"] ==
 "18.04"
end

application app_path do
 javascript "4"
 environment.update("PORT" => "80")

 git app_path do
 repository app["app_source"]["url"]
 revision app["app_source"]["revision"]
 end

 link "#{app_path}/server.js" do
 to "#{app_path}/index.js"
 end

Getting Started: Linux API Version 2013-02-18 346

https://docs.chef.io/cookbooks.html
https://docs.chef.io/recipes.html
https://learn.chef.io/
https://s3.amazonaws.com/opsworks-demo-assets/opsworks-linux-demo-cookbooks-nodejs.tar.gz

AWS OpsWorks User Guide

 npm_install
 npm_start
end

Here's what the file does:

• search(:aws_opsworks_app).first uses Chef search to look up information about the
app that will eventually be deployed to the instance. This information includes settings such
as the app's short name and its source repository details. Because only one app was deployed
in this walkthrough, Chef search gets these settings from the first item of information within
the aws_opsworks_app search index on the instance. Whenever an instance is launched, AWS
OpsWorks Stacks stores this and other related information as a set of data bags on the instance
itself, and you get the data bag contents through Chef search. Although you can hard code these
settings into this recipe, using data bags and Chef search is a more robust approach. For more
information about data bags, see the AWS OpsWorks Stacks Data Bag Reference. See also About
Data Bags on the Learn Chef website. For more information about Chef search, go to About
Search on the Learn Chef website.

• The package resource installs Git on the instance.

• The application resource describes and deploys web applications:

• javascript is the version of the JavaScript runtime to install.

• environment sets an environment variable.

• git gets the source code from the specified repository and branch.

• app_path is the path to clone the repository to. If the path doesn't exist on the instance, AWS
OpsWorks Stacks creates it.

• link creates a symbolic link.

• npm_install installs Node Package Manager, the default package manager for Node.js.

• npm_start runs Node.js.

Although AWS OpsWorks Stacks created the cookbook used for this walkthrough, you can create
your own cookbooks. To learn how, see Getting Started: Cookbooks. Also, go to About Cookbooks,
About Recipes, and Learn the Chef Basics on Ubuntu on the Learn Chef website, and the "Our first
Chef cookbook" section in First steps with Chef on the Getting started with Chef website.

Getting Started: Linux API Version 2013-02-18 347

https://docs.chef.io/data_bags.html
https://docs.chef.io/data_bags.html
https://learn.chef.io/
https://docs.chef.io/chef_search.html
https://docs.chef.io/chef_search.html
https://learn.chef.io/
https://docs.chef.io/cookbooks.html
https://docs.chef.io/recipes.html
https://learn.chef.io/modules/learn-the-basics/ubuntu#/
https://learn.chef.io/
http://gettingstartedwithchef.com/first-steps-with-chef.html
http://gettingstartedwithchef.com/

AWS OpsWorks User Guide

Learning More: Explore the App Used in This Walkthrough

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This topic describes the app that AWS OpsWorks Stacks deploys to the instance for this
walkthrough.

To see the app's source code, extract the contents of the opsworks-windows-demo-nodejs GitHub
repository to an empty directory on your local workstation. You can also log in to the instance that
you deployed the cookbook to and explore the contents of the /srv/mylinuxdemoapp directory.

The index.js file contains the most significant code for the app:

var express = require('express');
var app = express();
var path = require('path');
var os = require('os');
var bodyParser = require('body-parser');
var fs = require('fs');

var add_comment = function(comment) {
 var comments = get_comments();
 comments.push({"date": new Date(), "text": comment});
 fs.writeFileSync('./comments.json', JSON.stringify(comments));
};

var get_comments = function() {
 var comments;
 if (fs.existsSync('./comments.json')) {
 comments = fs.readFileSync('./comments.json');
 comments = JSON.parse(comments);
 } else {
 comments = [];

Getting Started: Linux API Version 2013-02-18 348

https://github.com/awslabs/opsworks-windows-demo-nodejs

AWS OpsWorks User Guide

 }
 return comments;
};

app.use(function log (req, res, next) {
 console.log([req.method, req.url].join(' '));
 next();
});
app.use(express.static('public'));
app.use(bodyParser.urlencoded({ extended: false }))

app.set('view engine', 'jade');
app.get('/', function(req, res) {
 var comments = get_comments();
 res.render("index",
 { agent: req.headers['user-agent'],
 hostname: os.hostname(),
 nodeversion: process.version,
 time: new Date(),
 admin: (process.env.APP_ADMIN_EMAIL || "admin@unconfigured-value.com"),
 comments: get_comments()
 });
});

app.post('/', function(req, res) {
 var comment = req.body.comment;
 if (comment) {
 add_comment(comment);
 console.log("Got comment: " + comment);
 }
 res.redirect("/#form-section");
});

var server = app.listen(process.env.PORT || 3000, function() {
 console.log('Listening on %s', process.env.PORT);
});

Here's what the file does:

• require loads modules that contain some dependent code that this web app needs to run as
expected.

• The add_comment and get_comments functions write information to, and read information
from, the comments.json file.

Getting Started: Linux API Version 2013-02-18 349

AWS OpsWorks User Guide

• For information about app.get, app.listen, app.post, app.set, and app.use, see the
Express API Reference.

To learn how to create and package your app for deployment, see Application Source.

Getting Started with Windows Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Cloud-based applications usually require a group of related resources—application servers,
database servers, and so on—that must be created and managed collectively. This collection of
instances is called a stack. A simple application stack might look something like the following.

Getting Started: Windows API Version 2013-02-18 350

http://expressjs.com/4x/api.html

AWS OpsWorks User Guide

The basic architecture consists of the following:

• An Elastic IP address to receive user requests.

• A load balancer to distribute incoming requests evenly across the application servers.

• A set of application server instances, as many as needed to handle the traffic.

In addition, you typically need a way to distribute applications to the application servers, manage
user permissions, and so on.

AWS OpsWorks Stacks provides a simple and straightforward way to create and manage stacks and
their associated applications and resources. This chapter introduces the basics of AWS OpsWorks
Stacks—along with some of its more sophisticated features—by walking you through the process
of creating the application server stack in the diagram. It uses an incremental development model
that AWS OpsWorks Stacks makes easy to follow: Set up a basic stack and, after it's working
correctly, add components until you arrive at a full-featured implementation.

• Step 1: Complete the Prerequisites shows how to get set up to start the walkthrough.

Getting Started: Windows API Version 2013-02-18 351

AWS OpsWorks User Guide

• Step 2: Create a Basic Application Server Stack shows how to create a basic stack to support
Internet Information Services (IIS) and deploy an app to the server.

• Step 3: Scale Out IISExample shows how to scale out a stack to handle increased load by adding
more application servers, a load balancer to distribute incoming traffic, and an Elastic IP address
to receive incoming requests.

Topics

• Step 1: Complete the Prerequisites

• Step 2: Create a Basic Application Server Stack

• Step 3: Scale Out IISExample

• Next Steps

Step 1: Complete the Prerequisites

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Complete the following setup steps before you can start the walkthrough. These setup steps
include signing up for an AWS account, creating an administrative user, and assigning access
permissions to AWS OpsWorks Stacks.

If you have already completed the Getting Started: Sample or Getting Started: Linux walkthroughs,
then you have met the prerequisites for this walkthrough, and you can skip ahead to Step 2: Create
a Basic Application Server Stack.

Topics

• Sign up for an AWS account

• Create an administrative user

Getting Started: Windows API Version 2013-02-18 352

AWS OpsWorks User Guide

• Assign Service Access Permissions

• Ensure AWS OpsWorks Stacks Users are Added to Your Domain

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

Getting Started: Windows API Version 2013-02-18 353

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial

AWS OpsWorks User Guide

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign Service Access Permissions

Enable access to the AWS OpsWorks Stacks service (and related services that AWS OpsWorks Stacks
relies on) by adding the AWSOpsWorks_FullAccess and AmazonS3FullAccess permissions to
your role or user.

For more information about adding permissions, see Adding IAM identity permissions (console).

Ensure AWS OpsWorks Stacks Users are Added to Your Domain

In a Chef 12.2 stack, the included aws_opsworks_users cookbook creates users that have SSH
and Remote Desktop Protocol (RDP) access to Windows-based instances. When you join Windows
instances in your stack to an Active Directory domain, this cookbook run can fail if the AWS
OpsWorks Stacks users do not exist in Active Directory. If the users are not recognized in Active
Directory, instances can enter a setup failed state when you restart them after joining them to

Getting Started: Windows API Version 2013-02-18 354

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

AWS OpsWorks User Guide

a domain. For domain-joined Windows instances, it is not sufficient to grant AWS OpsWorks Stacks
users SSH/RDP access on the user permissions page.

Before you join Windows instances in a Chef 12.2 stack to an Active Directory domain, be sure all
AWS OpsWorks Stacks users of the Windows-based stack are members of the domain. The best
way to do this is to configure federated identity with IAM before creating your Windows-based
stack, and then import federated users into AWS OpsWorks Stacks before joining instances in your
stack to a domain. For more information about how to do this, see Enabling Federation to AWS
Using Windows Active Directory, ADFS, and SAML 2.0 in the AWS Security Blog, and Federating
Existing Users in the IAM User Guide.

Step 2: Create a Basic Application Server Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A basic application server stack consists of a single application server instance with a public IP
address to receive user requests. Application code and any related files are stored in a separate
repository and deployed from there to the server. The following diagram illustrates such a stack.

Getting Started: Windows API Version 2013-02-18 355

https://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0/
https://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_identity-management.html#intro-identity-federation
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_identity-management.html#intro-identity-federation

AWS OpsWorks User Guide

The stack has the following components:

• A layer, which represents a group of instances and specifies how they are to be configured.

The layer in this example represents a group of IIS instances.

• An instance, which represents an Amazon EC2 instance.

In this case, the layer configures a single instance to run IIS, but layers can have any number of
instances.

• An app, which contains the information required to install an application on the instance.

• A cookbook, which contains custom Chef recipes that support the custom IIS layer. The cookbook
and app code are stored in remote repositories, such as an archive file in an Amazon S3 bucket or
a Git repository.

The following sections describe how to use the AWS OpsWorks Stacks console to create the stack
and deploy the application.

Topics

• Step 2.1: Create the Stack

• Step 2.2: Authorize RDP Access

Getting Started: Windows API Version 2013-02-18 356

AWS OpsWorks User Guide

• Step 2.3: Implement a Custom Cookbook

• Step 2.4: Add an IIS Layer

• Step 2.5: Deploy an App

Step 2.1: Create the Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You start an AWS OpsWorks Stacks project by creating a stack, which acts as a container for your
instances and other resources. The stack configuration specifies some basic settings, such as the
AWS region and the default operating system, that are shared by all the stack's instances.

To create a new stack

1. Add a Stack

If you haven't done so already, sign in to the AWS OpsWorks Stacks console.

• If the account has no existing stacks, you will see the Welcome to AWS OpsWorks page;
choose Add your first stack.

• Otherwise, you will see the AWS OpsWorks Stacks dashboard, which lists your account's
stacks; choose Add Stack.

2. Configure the Stack

On the Add Stack page, choose Chef 12 stack and specify the following settings:

Stack name

Enter a name for your stack, which can contain alphanumeric characters (a–z, A–Z, and 0–
9), and hyphens (-). The example stack for this walkthrough is named IISWalkthrough.

Getting Started: Windows API Version 2013-02-18 357

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Region

Select US West (Oregon) as the stack's region.

You can create a stack in any region, but we recommend US West (Oregon) for tutorials.

Default operating system

Choose Windows, and then specify Microsoft Windows Server 2022 Base, which is the
default setting.

Use custom Chef cookbooks

For the purposes of this walkthrough, specify No for this option.

3. Choose Advanced to confirm that you have an IAM role and the default IAM instance profile
selected.

IAM role

Specify the stack's IAM (AWS Identity and Access Management) role. AWS OpsWorks
Stacks needs to access other AWS services to perform tasks such as creating and managing
Amazon EC2 instances. IAM role specifies the role that AWS OpsWorks Stacks assumes
to work with other AWS services on your behalf. For more information, see Allowing AWS
OpsWorks Stacks to Act on Your Behalf.

• If your account has an existing AWS OpsWorks Stacks IAM role, you can select it from the
list.

If the role was created by AWS OpsWorks Stacks, it will be named aws-opsworks-
service-role.

• Otherwise, select New IAM Role to direct AWS OpsWorks Stacks to create a new role for
you with the correct permissions.

Note: If you have AWS OpsWorks Stacks Full Access permissions, creating a new role
requires several additional IAM permissions. For more information, see Example Policies.

4. Accept the default values for the other settings and choose Add Stack. For more information
on the various stack settings, see Create a New Stack.

Getting Started: Windows API Version 2013-02-18 358

AWS OpsWorks User Guide

Step 2.2: Authorize RDP Access

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now that you have created a stack, you will create a layer and add a Windows instance to the layer.
However, before you can do so, you must configure the stack to allow you to use RDP to connect to
the custom layer's instances. To do so, you must do the following:

• Add an inbound rule to the security group that controls RDP access.

• Set your AWS OpsWorks Stacks permissions for this stack to allow RDP access.

When you create the first stack in a region, AWS OpsWorks Stacks creates a set of security groups.
They include one named something like AWS-OpsWorks-RDP-Server, which AWS OpsWorks
Stacks attaches to all Windows instances to allow RDP access. However, by default, this security
group does not have any rules, so you must add an inbound rule to allow RDP access to your
instances.

To allow RDP access

1. Open the Amazon EC2 console, set it to the stack's region, and choose Security Groups from
the navigation pane.

2. Choose AWS-OpsWorks-RDP-Server, choose the Inbound tab, and choose Edit.

3. Choose Add Rule and specify the following settings:

• Type – RDP.

• Source – The permissible source IP addresses.

You typically allow inbound RDP requests from your IP address or a specified IP address
range (typically your corporate IP address range). For learning purposes, it's often sufficient
to specify 0.0.0.0/0, which allows RDP access from any IP address.

Getting Started: Windows API Version 2013-02-18 359

https://console.aws.amazon.com/ec2/v2/

AWS OpsWorks User Guide

The security group allows the instance to receive RDP connection requests, but that's only half
the story. An ordinary user will log into the instance using a password provided by AWS OpsWorks
Stacks. To have AWS OpsWorks Stacks generate that password, you must explicitly authorize RDP
access for the user.

To authorize RDP for a user

1. In the AWS OpsWorks Stacks dashboard, choose the IISWalkthrough stack.

2. In the navigation pane for the stack, choose Permissions.

3. On the Permissions page, choose Edit.

4. In the list of users, select the checkbox for SSH/RDP for the user to whom you want to grant
necessary permissions. If you want the user to also have administrator permissions, select
sudo/admin as well.

5. Choose Save.

The user can then get a password and use it to log in to the instance, as described later.

Note

You also can log in as Administrator. For more information, see Logging in As
Administrator.

Step 2.3: Implement a Custom Cookbook

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Getting Started: Windows API Version 2013-02-18 360

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Although a stack is basically a container for instances, you don't add instances directly to a stack.
You add one or more layers, each of which represents a group of related instances, and then add
instances to the layers.

A layer is basically a blueprint that AWS OpsWorks Stacks uses to create a set of Amazon EC2
instances with the same configuration. An instance starts with a base version of the operating
system, and the instance's layer performs a variety of tasks on the instance to implement that
blueprint, which can include:

• Creating directories and files

• Managing users

• Installing and configuring software

• Starting or stopping servers

• Deploying application code and related files.

A layer performs tasks on instances by running Chef recipes—recipes for short. A recipe is a Ruby
application that uses Chef's domain-specific language (DSL) to describe the final state of the
instance. With AWS OpsWorks Stacks, each recipe is usually assigned to one of the layer's lifecycle
events: Setup, Configuration, Deploy, Undeploy, and Shutdown. When a lifecycle event occurs on
an instance, AWS OpsWorks Stacks runs the event's recipes to perform the appropriate tasks. For
example, the Setup event occurs after an instance finishes booting. AWS OpsWorks Stacks then
runs the Setup recipes, which typically perform tasks such as installing and configuring server
software and starting related services.

AWS OpsWorks Stacks provides each layer with a set of built-in recipes that perform standard
tasks. You can extend a layer's functionality by implementing custom recipes to perform additional
tasks and assigning them to the layer's lifecycle events. Windows stacks support custom layers,
which have a minimal set of recipes that perform only a few basic tasks. To add functionality
to your Windows instances, you must implement custom recipes to install software, deploy
applications, and so on. This topic describes how to create a simple custom layer to support IIS
instances.

Getting Started: Windows API Version 2013-02-18 361

https://docs.chef.io/recipes.html

AWS OpsWorks User Guide

Topics

• A Quick Introduction to Cookbooks and Recipes

• Implement a Recipe to Install and Start IIS

• Enable the Custom Cookbook

A Quick Introduction to Cookbooks and Recipes

A recipe defines one or more aspects of an instance's expected state: what directories it should
have, what software packages should be installed, what apps should be deployed, and so on.
Recipes are packaged in a cookbook, which typically contains one or more related recipes, plus
associated files such as templates for creating configuration files.

This topic is a very basic introduction to recipes, just enough to show you how to implement a
cookbook to support a simple custom IIS layer. For a more general introduction to cookbooks, see
Cookbooks and Recipes. For a detailed tutorial introduction to implementing cookbooks, including
some Windows-specific topics, see Cookbooks 101.

Chef recipes are technically Ruby applications, but most, if not all, of the code is in the Chef DSL.
The DSL consists largely of a set of resources, which you can use to declaratively specify an aspect
of the instances state. For example, a directory resource defines a directory to be added to the
system. The following example defines a C:\data directory with full-control rights that belongs to
the specified user and does not inherit rights from the parent directory.

directory 'C:\data' do
 rights :full_control, 'WORKGROUP\username'
 inherits false
 action :create
end

When Chef runs a recipe, it executes each resource by passing the data to an associated provider,
a Ruby object that handles the details of modifying the instance state. In this case, the provider
creates a new directory with the specified configuration.

The custom cookbook for the custom IIS layer must perform the following tasks:

• Install the IIS feature and start the service.

You typically perform this task during setup, right after the instance finished booting.

• Deploy an app to the instance, a simple HTML page for this example.

Getting Started: Windows API Version 2013-02-18 362

https://docs.chef.io/chef/resources.html#directory

AWS OpsWorks User Guide

You typically perform this task during setup. However, apps usually need to be updated
regularly, so you also need to deploy updates while the instance is online.

You could have a single recipe perform all of these tasks. However, the preferred approach is to
have separate recipes for setup and deployment tasks. That way, you can deploy app updates at
any time without also running setup code. The following describes how to set up a cookbook to
support a custom IIS layer. Subsequent topics will show how to implement the recipes.

To get started

1. Create a directory named iis-cookbook in a convenient location on your workstation.

2. Add a metadata.rb file with the following content to iis-cookbook.

name "iis-cookbook"
version "0.1.0"

This example uses a minimal metadata.rb. For more information on how you can use this
file, see metadata.rb.

3. Add a recipes directory to iis-cookbook.

This directory, which must be named recipes, contains the cookbook's recipes.

In general, cookbooks can contain a variety of other directories. For example, if a recipe uses a
template to create a configuration file, the template usually goes in the templates\default
directory. The cookbook for this example consists entirely of recipes, so it needs no other
directories. Also, this example uses a single cookbook, but you can use as many as you need;
multiple cookbooks are often preferable for complex projects. For example, you could have
separate cookbooks for setup and deployment tasks. For more cookbook examples, see Cookbooks
and Recipes.

Implement a Recipe to Install and Start IIS

IIS is a Windows feature, one of a set of optional system components that you can install on
Windows Server. You can have a recipe install IIS in either of the following ways:

• By using a powershell_script resource to run the Install-WindowsFeature cmdlet.

• By using the Chef windows cookbook windows_feature resource.

Getting Started: Windows API Version 2013-02-18 363

https://docs.chef.io/config_rb_metadata.html
https://docs.chef.io/chef/resources.html#powershell-script
https://docs.microsoft.com/en-us/powershell/module/servermanager/install-windowsfeature?view=winserver2012-ps
https://github.com/opscode-cookbooks/windows

AWS OpsWorks User Guide

The windows cookbook contains a set of resources whose providers use Deployment Image
Servicing and Management (DISM) to perform a variety of tasks on Windows instances, including
feature installation.

Note

powershell_script is among the most useful resources for Windows recipes. You can
use it to perform a variety of tasks on an instance by running a PowerShell script or cmdlet.
It's especially useful for tasks that aren't supported by a Chef resource.

This example runs a PowerShell script to install and start Web Server (IIS). The windows cookbook
is described later. For an example of how to use windows_feature to install IIS, see Installing a
Windows Feature: IIS.

Add a recipe named install.rb with the following contents to the cookbook's recipes
directory.

powershell_script 'Install IIS' do
 code 'Install-WindowsFeature Web-Server'
 not_if "(Get-WindowsFeature -Name Web-Server).Installed"
end

service 'w3svc' do
 action [:start, :enable]
end

The recipe contains two resources.

powershell_script

powershell_script runs the specified PowerShell script or cmdlet. The example has the
following attribute settings:

• code – The PowerShell cmdlets to run.

This example runs an Install-WindowsFeature cmdlet, which installs Web Server (IIS). In
general, the code attribute can have any number of lines, so you can run as many cmdlets as
you need.

Getting Started: Windows API Version 2013-02-18 364

https://technet.microsoft.com/en-us/library/dd744256%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/dd744256%28v=ws.10%29.aspx

AWS OpsWorks User Guide

• not-if – A guard attribute that ensures that the recipe installs IIS only if it has not yet been
installed.

You generally want recipes to be idempotent, so they do not waste time performing the same
task more than once.

Every resource has an action, which specifies the action the provider is to take. There is no
explicit action for this example, so the provider takes the default :run action, which runs the
specified PowerShell script. For more information, see Running a Windows PowerShell Script.

service

A service manages a service, the Web Server IIS service (W3SVC) in this case. The example
uses default attributes and specifies two actions, :start and :enable, which start and enable
IIS.

Note

If you want to install software that uses a package installer, such as MSI, you can use a
windows_package resource. For more information, see Installing a Package.

Enable the Custom Cookbook

AWS OpsWorks Stacks runs recipes from a local cache on each instance. To run your custom
recipes, you must do the following:

• Store the cookbook in a remote repository.

AWS OpsWorks Stacks downloads the cookbooks from this repository to each instance's local
cache.

• Edit the stack to enable custom cookbooks.

Custom cookbooks are disabled by default, so you must enable custom cookbooks for the stack
and provide the repository URL and related information.

AWS OpsWorks Stacks supports S3 archives and Git repositories for custom cookbooks; this
example uses an S3 archive. For more information, see Cookbook Repositories.

Getting Started: Windows API Version 2013-02-18 365

https://docs.chef.io/chef/resources.html#guards
https://docs.chef.io/chef/resources.html#service

AWS OpsWorks User Guide

To use an S3 archive

1. Create a .zip archive of the iis-cookbook directory.

AWS OpsWorks Stacks also supports .tgz (gzip compressed tar) archives for Windows stacks.

2. Upload the archive to an S3 bucket in the US West (N. California) region, and make the file
public. You can also use private S3 archives, but public archives are sufficient for this example
and somewhat simpler to work with.

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

b. If you do not already have a bucket in us-west-1, choose Create Bucket and create a
bucket in the US West (N. California) region.

c. In the buckets list, choose the name of bucket to which you want to upload the file, and
then choose Upload.

d. Choose Add Files.

e. Select the archive file to upload, and then choose Open.

f. At the bottom of the Upload - Select Files and Folders dialog, choose Set Details.

g. At the bottom of the Set Details dialog, choose Set Permissions.

h. In the Set Permissions dialog, choose Make everything public.

i. At the bottom of the Set Permissions dialog, choose Start Upload. When the upload
finishes, the iis-cookbook.zip file appears in your bucket.

j. Choose the bucket, and then choose the Properties tab for the bucket. Next to Link,
record the archive file's URL for later use.

For more information about uploading files to an Amazon S3 bucket, see How Do I Upload
Files and Folders to an S3 Bucket? in the Amazon S3 Console User Guide.

Important

Up to this point, the walkthrough has cost you only a little time; the AWS OpsWorks Stacks
service itself is free. However, you must pay for any AWS resources that you use, such as
Amazon S3 storage. As soon as you upload the archive you begin incurring charges. For
more information, see AWS Pricing.

Getting Started: Windows API Version 2013-02-18 366

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://aws.amazon.com/pricing/

AWS OpsWorks User Guide

To enable custom cookbooks for the stack

1. In the AWS OpsWorks Stacks console, choose Stack in the navigation pane, and then choose
Stack Settings on the upper right.

2. On the upper right of the Settings page, choose Edit.

3. On the Settings page, set Use custom Chef cookbooks to Yes and enter the following
information:

• Repository type – S3 Archive.

• Repository URL – The S3 URL of the cookbook archive file that you recorded earlier.

4. Choose Save to update the stack configuration.

AWS OpsWorks Stacks installs your custom cookbook on all new instances. Note that AWS
OpsWorks Stacks does not automatically install or update custom cookbooks on online instances.
You can do that manually, as described later.

Step 2.4: Add an IIS Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Your cookbook has one recipe that just installs and starts IIS. This is enough to create the layer and
verify that you have a working IIS instance. Later, you will add application deployment functionality
to the layer.

Create a Layer

You start by adding a layer to the stack. You then add functionality to that layer by assigning
custom recipes to the appropriate lifecycle events.

Getting Started: Windows API Version 2013-02-18 367

AWS OpsWorks User Guide

To add an IIS layer to the stack

1. Choose Layers in the navigation pane and then choose Add a layer.

2. Configure the layer as follows:

• Name– IISExample

• Short name – iisexample

AWS OpsWorks Stacks uses the short name to identify the layer internally. You also use the
short name to identify the layer in recipes, although this example does not do so. You can
specify any short name, but it can consist only of lowercase alphanumeric characters and a
small number of punctuation marks. For more information, see Custom Layers.

3. Choose Add Layer.

If you were to add an instance to IISWalkthrough at this point and start it, AWS OpsWorks Stacks
would automatically install the cookbooks but it would not run install.rb. After an instance
is online, you can run recipes manually by using the Execute Recipes stack command. However, a
better approach is to assign the recipe to one of the layer's lifecycle events. AWS OpsWorks Stacks
then automatically runs the recipe at the appropriate point in the instance's lifecycle.

Install and start IIS as soon as the instance finishes booting. To do this, assign install.rb to the
layer's Setup event.

To assign the recipe to a lifecycle event

1. Choose Layers in the navigation pane

2. In the box for the IISExample layer, choose Recipes.

3. On the upper right, choose Edit.

4. Under Custom Chef Recipes, in the Setup recipes box, type iis-cookbook::install.

Note

Use cookbook-name::recipe-name to identify recipes, where you omit the recipe
name's .rb suffix.

5. Choose + to add the recipe to the layer. A red x appears next to the recipe to make it easy to
remove later.

Getting Started: Windows API Version 2013-02-18 368

AWS OpsWorks User Guide

6. Choose Save to save the new configuration. The custom Setup recipes should now include
iis-cookbook::install.

Add an Instance to the Layer and Start It

You can try the recipe out by adding an instance to the layer and starting the instance. AWS
OpsWorks Stacks automatically installs the cookbooks and runs install.rb during setup, as soon
as the instance finishes booting.

To add an instance to a layer and start it

1. In the AWS OpsWorks Stacks navigation pane, choose Instances.

2. Under IISExample layer, choose Add an instance.

3. Select the appropriate size. t2.micro (or the smallest size available to you) should be sufficient
for the example.

4. Choose Add Instance. By default, AWS OpsWorks Stacks generates instance names by
appending an integer to the layer's short name, so the instance should be named iisexample1.

5. Choose start in the instance's Actions column to start the instance. AWS OpsWorks Stacks
will then launch an EC2 instance and run the Setup recipes to configure it. If the layer had any
Deploy recipes at this point, AWS OpsWorks Stacks would run them after the Setup recipes
have finished.

The process may take a number of minutes, during which the Status column displays a series
of status states. When you get to online status, the setup process is complete and the instance
is ready for use.

Confirm that IIS is Installed and Running

You can use RDP to connect to the instance and verify that your Setup recipe worked correctly.

To verify that IIS is installed and running

1. Choose Instances in the navigation pane and choose rdp in the iisexample1 instance's Actions
column. AWS OpsWorks Stacks automatically generates an RDP password for you that expires
after a specified time period.

2. Set Session valid for to 2 hours and choose Generate Password.

Getting Started: Windows API Version 2013-02-18 369

AWS OpsWorks User Guide

3. AWS OpsWorks Stacks displays the password and also, for your convenience, the instance's
public DNS name and user name. Copy all three and click Acknowledge and close.

4. Open your RDP client and use the data from Step 3 to connect to the instance.

5. On the instance, open Windows Explorer and examine the C: drive. It should have a C:
\inetpub directory, which was created by the IIS installation.

6. Open the Control Panel Administrative Tools application, and then open Services. You should
see the IIS service near the bottom of the list. It is named World Wide Web Publishing Service,
and the status should be running.

7. Return to the AWS OpsWorks Stacks console and choose the iisexample1 instance's public IP
address. Be sure you do this in AWS OpsWorks Stacks, and not in the Amazon EC2 console.
This automatically sends an HTTP request to the address, which should open the default IIS
Welcome page.

The next topic discusses how to deploy an app to the instance, a simple static HTML page for this
example. However, if you would like to take a break, choose stop in the iisexample1 instance's
Actions column to stop the instance and avoid incurring unnecessary charges. You can restart the
instance when you are ready to continue.

Step 2.5: Deploy an App

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The IIS installation creates an C:\inetpub\wwwroot directory for your application's code and
related files. The next step is to install an app in that directory. For this example, you will install
a static HTML home page, default.html, in C:\inetpub\wwwroot. You can easily extend the
general approach to handle more complex scenarios, such as ASP.NET applications.

You could include the application's files in your cookbook and have install.rb copy them to C:
\inetpub\wwwroot. For examples of how to do this, see Example 6: Creating Files. However, this

Getting Started: Windows API Version 2013-02-18 370

AWS OpsWorks User Guide

approach is not very flexible or efficient, and it is usually better to separate cookbook development
from application development.

The preferred solution is to implement a separate deployment recipe that retrieves the
application's code and related files from a repository—any repository you prefer, not just the
cookbook repository—and installs it on each IIS server instance. This approach separates cookbook
development from application development and, when you need to update your app, it allows you
to just run the deployment recipe again without having to update your cookbooks.

This topic shows how to implement a simple deployment recipe that deploys default.htm to
your IIS server. You can readily extend this example to more complex applications.

Topics

• Create the Application and Store It in a Repository

• Implement a Recipe to Deploy the Application

• Update the Instance's Cookbooks

• Add the Recipe to the Custom IIS Layer

• Add an App

• Deploy the App and Open the Application

Create the Application and Store It in a Repository

You can use any repository you prefer for your applications. For simplicity, this example stores
default.htm in a public S3 bucket.

To create the application

1. Create a directory named iis-application in a convenient location on your workstation.

2. Add a default.htm file to iis-application with the following content.

<!DOCTYPE html>
<html>
 <head>
 <title>IIS Example</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 </body>

Getting Started: Windows API Version 2013-02-18 371

AWS OpsWorks User Guide

</html>

3. Create an S3 bucket, upload default.htm to the bucket, and record the URL for later use. For
simplicity, make the file public.

Note

This is a very simple application, but you can extend the basic principles to handle
production-level applications.

• For more complex applications with multiple files, it is usually simpler to create a .zip
archive of iis-application and upload it to your S3 bucket.

You can then download the .zip file and extract the contents to the appropriate
directory. There's no need to download multiple files, create a directory structure, or
so on.

• For a production application, you will probably want to keep your files private. For an
example of how to have a recipe download files from a private S3 bucket, see Using
the SDK for Ruby on an AWS OpsWorks Stacks Windows Instance.

• You can store your application in any suitable repository.

You typically download the application by using a repository's public API. This
example uses the Amazon S3 API. If, for example, you store your application on
GitHub, you can use the GitHub API.

Implement a Recipe to Deploy the Application

Add a recipe named deploy.rb to the iis-cookbook recipes directory, with the following
contents.

chef_gem "aws-sdk-s3" do
 compile_time false
 action :install
end

ruby_block "download-object" do
 block do
 require 'aws-sdk-s3'

Getting Started: Windows API Version 2013-02-18 372

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html
https://developer.github.com/guides/getting-started/

AWS OpsWorks User Guide

 #1
 # Aws.config[:ssl_ca_bundle] = 'C:\ProgramData\Git\bin\curl-ca-bundle.crt'
 Aws.use_bundled_cert!

 #2
 query = Chef::Search::Query.new
 app = query.search(:aws_opsworks_app, "type:other").first
 s3region = app[0][:environment][:S3REGION]
 s3bucket = app[0][:environment][:BUCKET]
 s3filename = app[0][:environment][:FILENAME]

 #3
 s3_client = Aws::S3::Client.new(region: s3region)
 s3_client.get_object(bucket: s3bucket,
 key: s3filename,
 response_target: 'C:\inetpub\wwwroot\default.htm')
 end
 action :run
end

This example uses SDK for Ruby v2 to download the file. However, AWS OpsWorks Stacks does not
install this SDK on Windows instances, so the recipe starts with chef_gem resource, which handles
that task.

Note

The chef_gem resource installs gems into Chef's dedicated Ruby version, which is the
version that recipes use. If you want to install a gem for a system-wide Ruby version, use
the gem_package resource.

The bulk of the recipe is a ruby_block resource, which runs a block of Ruby code that uses the
SDK for Ruby to download default.htm. The code in the ruby_block can be divided into the
following sections, which correspond to the numbered comments in the code example.

1: Specify a Certificate Bundle

Amazon S3 uses SSL, so you need an appropriate certificate to download objects from an S3
bucket. SDK for Ruby v2 does not include a certificate bundle, so you must provide one and
configure the SDK for Ruby to use it. AWS OpsWorks Stacks does not install a certificate bundle
directly, but it does install Git, which includes a certificate bundle (curl-ca-bundle.crt). For

Getting Started: Windows API Version 2013-02-18 373

http://docs.aws.amazon.com/sdkforruby/api/index.html
https://docs.chef.io/chef/resources.html#chef-gem
https://docs.chef.io/chef/resources.html#gem-package
https://docs.chef.io/chef/resources.html#ruby-block

AWS OpsWorks User Guide

convenience, this example configures the SDK for Ruby to use the Git certificate bundle for SSL.
You also can install your own bundle and configure the SDK accordingly.

2: Retrieve the Repository Data

To download an object from Amazon S3, you need the AWS region, bucket name, and key
name. As described later, this example provides this information by associating a set of
environment variables with the app. When you deploy an app, AWS OpsWorks Stacks adds a
set of attributes to the instance's node object. These attributes are essentially a hash table that
contains the app configuration, including the environment variables. The app attributes for this
application will look something like the following, in JSON format.

{
 "app_id": "8f71a9b5-de7f-451c-8505-3f35086e5bb3",
 "app_source": {
 "password": null,
 "revision": null,
 "ssh_key": null,
 "type": "other",
 "url": null,
 "user": null
 },
 "attributes": {
 "auto_bundle_on_deploy": true,
 "aws_flow_ruby_settings": {},
 "document_root": null,
 "rails_env": null
 },
 "data_sources": [{"type": "None"}],
 "domains": ["iis_example_app"],
 "enable_ssl": false,
 "environment": {
 "S3REGION": "us-west-2",
 "BUCKET": "windows-example-app",
 "FILENAME": "default.htm"
 },
 "name": "IIS-Example-App",
 "shortname": "iis_example_app",
 "ssl_configuration": {
 "certificate": null,
 "private_key": null,
 "chain": null
 },

Getting Started: Windows API Version 2013-02-18 374

AWS OpsWorks User Guide

 "type": "other",
 "deploy": true
}

The app's environment variables are stored in the [:environment] attribute. To
retrieve them, use a Chef search query to retrieve the app's hash table, which is under the
aws_opsworks_app node. This app will be defined as the other type, so the query searches
for apps of that type. The recipe takes advantage of the fact that there is only one app on this
instance, so the hash table of interest is just app[0]. For convenience, the recipe then assigns
the region, bucket, and file names to variables.

For more information about how to use Chef search, see .Obtaining Attribute Values with Chef
Search

3: Download the file

The third part of the recipe creates an S3 client object and uses its get_object method to
download default.htm to the instance's C:\inetpub\wwwroot directory.

Note

A recipe is a Ruby application, so Ruby code doesn't necessarily have to be in a
ruby_block. However, the code in the body of the recipe runs first, followed by the
resources, in order. For this example, if you put the download code in the recipe body, it
would fail because the chef_gem resource wouldn't have installed the SDK for Ruby yet.
The code in the ruby_block resource executes when the resource executes, after the
chef_gem resource has installed the SDK for Ruby.

Update the Instance's Cookbooks

AWS OpsWorks Stacks automatically installs custom cookbooks on new instances. However, you
are working with an existing instance, so you must update your cookbook manually.

To update the instance's cookbooks

1. Create a .zip archive of iis-cookbook, and upload it to the S3 bucket.

This overwrites the existing cookbook, but the URL stays the same, so you don't need to
update the stack configuration.

Getting Started: Windows API Version 2013-02-18 375

http://docs.aws.amazon.com/sdkforruby/api/Aws/S3/Client.html
http://docs.aws.amazon.com/sdkforruby/api/Aws/S3/Client.html#get_object-instance_method

AWS OpsWorks User Guide

2. If your instance is not online, restart it.

3. After the instance is online, choose Stack in the navigation pane, and then choose Run
Command.

4. For Command, choose Update Custom Cookbooks. This command installs the updated
cookbook on the instance.

5. Choose Update Custom Cookbooks. The command might take a few minutes to finish.

Add the Recipe to the Custom IIS Layer

As with install.rb, the preferred way to handle deployment is to assign deploy.rb to the
appropriate lifecycle event. You usually assign deployment recipes to the Deploy event, and they
are referred to collectively as Deploy recipes. Assigning a recipe to the Deploy event does not
trigger the event. Instead:

• For new instances, AWS OpsWorks Stacks automatically runs the Deploy recipes after the Setup
recipes have finished, so new instances automatically have the current application version.

• For online instances, you use a deploy command to manually install new or updated applications.

This command triggers a Deploy event on the stack's instances, which runs the Deploy recipes.

To assign deploy.rb to the layer's Deploy event

1. Choose Layers in the navigation pane, and then choose Recipes under Layer IISExample.

2. Under Custom Chef Recipes, add iis-cookbook::deploy to the Deploy recipes box and
choose + to add the recipe to the layer.

3. Choose Save to save the new configuration. The custom Deploy recipes should now include
iis-cookbook::deploy.

Add an App

The final task is to add an app to the stack to represent your application in the AWS OpsWorks
Stacks environment. An app includes metadata such as the application's display name, and the data
that is required to download the app from its repository.

To add the app to the stack

1. Choose Apps in the navigation pane, and then choose Add an app.

Getting Started: Windows API Version 2013-02-18 376

AWS OpsWorks User Guide

2. Configure the app with the following settings.

• Name – IIIS-Example-App

• Repository Type – Other

• Environment Variables – Add the following three environment variables:

• S3REGION – The bucket's region (in this case, us-west-1).

• BUCKET – The bucket name, such as windows-example-app.

• FILENAME – The file name: default.htm.

3. Accept default values for the remaining settings, and then choose Add App to add the app to
the stack.

Note

This example uses environment variables to provide the download data. An alternative
approach is to use an S3 Archive repository type and provide the file's URL. AWS OpsWorks
Stacks adds the information, along with optional data, such as your AWS credentials, to the
app's app_source attribute. Your deploy recipe must get the URL from the app attributes
and parse it to extract the region, bucket name, and file name.

Deploy the App and Open the Application

AWS OpsWorks Stacks automatically deploys apps to new instances, but not to online instances.
Because your instance is already running, you must deploy the app manually.

To deploy the app

1. Choose Apps in the navigation pane, and then choose deploy in the app's Actions column.

2. Command should be set to Deploy. Choose Deploy at the lower right of the Deploy App page.
The command might take a few minutes to finish.

After deployment is finished, you return to the Apps page. The Status indicator shows
successful in green, and the app name has a green check mark next to it to indicate a
successful deployment.

Getting Started: Windows API Version 2013-02-18 377

AWS OpsWorks User Guide

Note

Windows apps are always the Other app type, so deploying the app does the following:

• Adds the app's data to the stack configuration and deployment attributes, as described
earlier.

• Triggers a Deploy event on the stack's instances, which runs your custom Deploy recipes.

Note

For more information about how to troubleshoot failed deployments or applications, see
Debugging Recipes.

The app is now installed. You can open it by choosing Instances in the Navigation pane, and then
choosing the instance's public IP address. This sends an HTTP request to the instance, and you
should see something like the following in your browser.

Step 3: Scale Out IISExample

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If your incoming user requests start to approach the limit of what you can handle with a single
t2.micro instance, you will need to increase your server capacity. You can move to a larger instance,

Getting Started: Windows API Version 2013-02-18 378

AWS OpsWorks User Guide

but that has limits. A more flexible approach is to add instances to your stack, and put them behind
a load balancer. The basic architecture looks something like the following.

Among other advantages, this approach is much more robust than a single large instance.

• If one of your instances fails, the load balancer will distribute incoming requests to the remaining
instances, and your application will continue to function.

• If you put instances in different Availability Zones (the recommended practice), your application
will continue to function even if an Availability Zone encounters problems.

AWS OpsWorks Stacks makes it easy to scale out stacks. This section describes the basics of how
to scale out a stack by adding a second 24/7 PHP App Server instance to IISExample and putting
both instances behind an Elastic Load Balancing load balancer. You can easily extend the procedure
to add an arbitrary number of 24/7 instances, or you can use time-based instances to have AWS
OpsWorks Stacks scale your stack automatically. For more information, see Managing load with
time-based and load-based instances.

Getting Started: Windows API Version 2013-02-18 379

AWS OpsWorks User Guide

Add a Load Balancer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Elastic Load Balancing is an AWS service that automatically distributes incoming application traffic
across multiple Amazon EC2 instances. A load balancer can serve two purposes. The obvious one
is to equalize the load on your application servers. Many sites prefer to isolate their application
servers and databases from direct user access. In addition to distributing traffic, Elastic Load
Balancing does the following:

• Detects unhealthy Amazon EC2 instances.

It reroutes traffic to the remaining healthy instances until the unhealthy instances have been
restored.

• Automatically scales request handling capacity in response to incoming traffic.

Note

AWS OpsWorks Stacks does not support Application Load Balancer. You can only use Classic
Load Balancer with AWS OpsWorks Stacks.

Although Elastic Load Balancing is often referred to as a layer, it works a bit differently than the
other built-in layers. Instead of creating a layer and adding instances to it, you create an Elastic
Load Balancing load balancer by using the Amazon EC2 console and then attach it to one of
your existing layers, usually an application server layer. AWS OpsWorks Stacks then registers the
layer's existing instances with the service and automatically adds any new instances. The following
procedure describes how to add a load balancer.

Getting Started: Windows API Version 2013-02-18 380

AWS OpsWorks User Guide

To attach a load balancer to the custom IIS layer

1. Use the Amazon EC2 console to create a new load balancer for IISExample. For more
information, see Getting Started with Elastic Load Balancing. When you run the Create Load
Balancer wizard, configure the load balancer as follows:

1: Define Load Balancer

Assign the load balancer an easily recognizable name, like IIS-LB, to make it easier to locate
in the AWS OpsWorks Stacks console. Accept the defaults for the remaining settings, and
then choose Next: Assign Security Groups.

2: Assign Security Groups

If your account supports default VPC, the wizard displays this page to determine the load
balancer's security group. It does not display this page for EC2 Classic.

For this walkthrough, specify default VPC security group, and then choose Next:
Configure Security Settings.

3: Configure Security Settings

This walkthrough does require your load balancer to use a secure listener (that is, HTTPS or
SSL on its front-end connection), so choose Next: Configure Health Check to continue.

4: Configure Health Check

Set the ping path to /. Accept the defaults for the remaining settings, and then choose
Next: Add EC2 Instances.

5: Add EC2 Instances

AWS OpsWorks Stacks automatically takes care of registering instances with the load
balancer. Choose Next Add Tags to continue.

6: Add Tags

You won't be using tags for this example. Choose Review and Create.

7: Review

Review your choices and choose Create and then Close, which launches the load balancer.

Getting Started: Windows API Version 2013-02-18 381

http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/load-balancer-getting-started.html

AWS OpsWorks User Guide

2. If your account supports default VPC, after you launch the load balancer you must ensure that
its security group has appropriate inbound rules. The default rule does not accept any inbound
traffic.

1. Choose Security Groups in the Amazon EC2 navigation pane.

2. Choose default VPC security group

3. On the Inbound tab, choose Edit .

4. For this walkthrough, set Source to Anywhere, which directs the load balancer to accept
incoming traffic from any IP address.

5. Click Save.

3. Return to the AWS OpsWorks Stacks console. On the Layers page, choose Network.

4. Under Elastic Load Balancing, select the IIS-LB load balancer that you created in Step 1, and
then click Save.

After you have attached the load balancer to the layer, AWS OpsWorks Stacks automatically
registers the layer's current instances and adds new instances as they come online.

5. On the Layers page, click the load balancer's name to open its details page. A green check
next to the instance on the load balancer page indicates that the instance has passed a health
check.

You can now run IIS-Example-App by sending a request to the load balancer.

To run IIS-Example-App through the load balancer

1. Choose Layers. The IIS-ELB load balancer should be listed as a layer and the Health column
should have one instance in green, which indicates a healthy instance.

2. Choose the load balancer's DNS name to run IIS-Example-App. It should be listed
under the load balancer's name and look something like IIS-LB-1802910859.us-
west-2.elb.amazonaws.com. The load balancer forwards the request to the instance and
returns the response, which should look exactly the same as the response you get when you
click the instance's public IP address.

You have only one instance at this point, so the load balancer isn't really adding much. However,
you can now add additional instances to the layer.

Getting Started: Windows API Version 2013-02-18 382

AWS OpsWorks User Guide

To add an instance to the layer

1. Choose Instances and then + instance to add another instance to the layer.

2. Start the instance.

Because they are new instances, AWS OpsWorks Stacks automatically installs the current custom
cookbooks and deploys the current app version during setup. When the instance comes online,
AWS OpsWorks Stacks automatically adds it to the load balancer, so your instance will immediately
start handling requests. To verify that the application is still working, you can choose the load
balancer's DNS name again .

Next Steps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This walkthrough took you through the basics of setting up a simple Windows application server
stack. Here are some suggestions for what to do next.

• If you would like to know more, Getting Started: Cookbooks provides a tutorial introduction to
implementing cookbooks, and includes a number of AWS OpsWorks Stacks-specific examples.

• You can add an Amazon Relational Database Service (Amazon RDS) layer to the stack to use
as a backend database server. For information about how to connect your application to the
database, see Using a Custom Recipe.

Getting Started: Windows API Version 2013-02-18 383

AWS OpsWorks User Guide

Getting Started with Cookbooks in AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A production-level AWS OpsWorks Stacks stack typically requires some customization, which
often means implementing a custom Chef cookbook. A cookbook is a package file that contains
configuration information, including instructions called recipes. A recipe is a set of one or more
instructions, written with Ruby language syntax, that specifies the resources to use and the order
in which those resources are applied. A resource, as used in Chef, is a statement of configuration
policy. This walkthrough provides a basic introduction to implementing Chef cookbooks for AWS
OpsWorks Stacks. To learn more about Chef, cookbooks, recipes, and resources, see the links in
Next Steps.

This walkthrough mostly describes how to create your own cookbooks. You can also use
community-provided cookbooks available on websites like the Chef Supermarket. To help you get
started with community cookbooks, we include instructions for using a community cookbook from
the Chef Supermarket later in the walkthrough.

Before you start this walkthrough, complete a few setup steps. If you have already completed any
of the other walkthroughs in this chapter, such as Getting Started: Sample, then you have met the
prerequisites for this walkthrough and can skip to start this walkthrough. Otherwise, be sure to
complete the prerequisites, and then return to this walkthrough.

Topics

• Step 1: Create the Cookbook

• Step 2: Create the Stack and its Components

• Step 3: Run and Test the Recipe

• Step 4: Update the Cookbook to Install a Package

• Step 5: Update the Cookbook on the Instance and Run the Recipe

Getting Started: Cookbooks API Version 2013-02-18 384

https://supermarket.chef.io

AWS OpsWorks User Guide

• Step 6: Update the Cookbook to Add a User

• Step 7: Update the Cookbook to Create a Directory

• Step 8: Update the Cookbook to Create and Copy Files

• Step 9: Update the Cookbook to Run a Command

• Step 10: Update the Cookbook to Run a Script

• Step 11: Update the Cookbook to Manage a Service

• Step 12: Update the Cookbook to Use Custom JSON

• Step 13: Update the Cookbook to Use Data Bags

• Step 14: Update the Cookbook to Use Iteration

• Step 15: Update the Cookbook to Use Conditional Logic

• Step 16: Update the Cookbook to Use Community Cookbooks

• Step 17: (Optional) Clean Up

• Next Steps

Step 1: Create the Cookbook

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Start by creating a cookbook. This cookbook won't do much to start, but it serves as a foundation
for the rest of this walkthrough.

Note

This step demonstrates how to create a cookbook manually. You can create a cookbook in
less time with the Chef development kit (Chef DK) by running the command chef generate

Getting Started: Cookbooks API Version 2013-02-18 385

https://docs.chef.io/#chef-dk-title
https://docs.chef.io/ctl_chef.html#chef-generate-cookbook

AWS OpsWorks User Guide

cookbook on your local workstation. However, this command creates several folders and
files that you won't need for this walkthrough.

To create the cookbook

1. On your local workstation, create a directory named opsworks_cookbook_demo. You can use
a different name, but be sure to substitute it for opsworks_cookbook_demo throughout this
walkthrough.

2. In the opsworks_cookbook_demo directory, create a file named metadata.rb using a text
editor. Add the following code to specify the cookbook's name. For more information about
metadata.rb, see metadata.rb on the Chef website.

name "opsworks_cookbook_demo"

3. In the opsworks_cookbook_demo directory, create a subdirectory named recipes. This
subdirectory contains all of the recipes that you create for this walkthrough's cookbook.

4. In the recipes directory, create a file named default.rb. This file contains a recipe with the
same name as the file, but without the file extension: default. Add the following single line
of code to the default.rb file. This code is a one-line recipe that displays a simple message
in the log when the recipe runs:

Chef::Log.info("********** Hello, World! **********")

5. At the terminal or command prompt, use the tar command to create a file named
opsworks_cookbook_demo.tar.gz, which contains the opsworks_cookbook_demo
directory and its contents. For example:

tar -czvf opsworks_cookbook_demo.tar.gz opsworks_cookbook_demo/

You can use a different file name, but be sure to substitute it for
opsworks_cookbook_demo.tar.gz throughout this walkthrough.

Note

When you create the tar file on Windows, the top directory must be the parent
directory of the cookbook. This walkthrough has been tested on Linux with the tar
command provided by the tar package and on Windows with the tar command

Getting Started: Cookbooks API Version 2013-02-18 386

https://docs.chef.io/ctl_chef.html#chef-generate-cookbook
https://docs.chef.io/config_rb_metadata.html

AWS OpsWorks User Guide

provided by Git Bash. Using other commands or programs to create a compressed TAR
(.tar.gz) file may not work as expected.

6. Create an S3 bucket, or use an existing bucket. For more information, see Create a Bucket.

7. Upload the opsworks_cookbook_demo.tar.gz file to the S3 bucket. For more information,
see Add an Object to a Bucket.

You now have a cookbook that you will use throughout this walkthrough.

In the next step, you create an AWS OpsWorks Stacks stack that you will use later to upload your
cookbook and to run the cookbook's recipes.

Step 2: Create the Stack and its Components

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Create an AWS OpsWorks Stacks stack and its components, which include a layer and an instance.
In later steps, you upload your cookbook to the instance and then run the cookbook's recipes on
that instance.

To create the stack

1. Sign in to the AWS OpsWorks Stacks console at https://console.aws.amazon.com/opsworks.

2. Do one of the following, if they apply:

• If the Welcome to AWS OpsWorks Stacks page is displayed, choose Add your first stack
or Add your first AWS OpsWorks Stacks stack (both choices do the same thing). The Add
stack page is displayed.

• If the OpsWorks Dashboard page is displayed, choose Add stack. The Add Stack page is
displayed.

Getting Started: Cookbooks API Version 2013-02-18 387

https://git-for-windows.github.io/
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
https://console.aws.amazon.com/opsworks

AWS OpsWorks User Guide

3. Choose Chef 12 stack.

4. In the Stack name box, type the stack's name, for example MyCookbooksDemoStack. You can
type a different name, but be sure to substitute it for MyCookbooksDemoStack throughout
this walkthrough.

5. For Region, choose US West (Oregon).

6. For VPC, do one of the following:

• If a VPC is available, choose it. For more information, see Running a Stack in a VPC.

• Otherwise, choose No VPC.

7. For Use custom Chef cookbooks, choose Yes.

8. For Repository type, choose S3 Archive.

Note

In the Getting Started: Linux walkthrough, you chose Http Archive. Be sure to choose
S3 Archive here instead.

9. For Repository URL, type the path to your opsworks_cookbook_demo.tar.gz file in S3.
To get the path, in the S3 console, select the opsworks_cookbook_demo.tar.gz file. On
the Properties pane, copy the value of the Link field. (It should be similar to this: https://
s3.amazonaws.com/opsworks-demo-bucket/opsworks_cookbook_demo.tar.gz.)

10. If your S3 bucket is private, which is the default, then for Access key ID and Secret access
key, type the access key ID and secret access key of the IAM user that you are using for this
walkthrough. For more information, see Editing Object Permissions and Share an Object with
Others.

11. Leave the defaults for the following:

• Default Availability Zone (us-west-2a)

• Default operating system (Linux and Amazon Linux 2016.09)

• Default SSH key (Do not use a default SSH key)

• Stack color (dark blue)

12. Choose Advanced.

13. For IAM role, do one of the following:

• If aws-opsworks-service-role is available, choose it.

Getting Started: Cookbooks API Version 2013-02-18 388

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/EditingPermissionsonanObject.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html

AWS OpsWorks User Guide

• If aws-opsworks-service-role is not available, choose New IAM role.

14. For Default IAM instance profile, do one of the following:

• If aws-opsworks-ec2-role is available, choose it.

• If aws-opsworks-ec2-role is not available, choose New IAM instance profile.

15. Leave the defaults for the following:

• Default root device type (EBS backed)

• Hostname theme (Layer Dependent)

• OpsWorks Agent version (most recent version)

• Custom Chef JSON (blank)

• Security, Use OpsWorks security groups (Yes)

16. Choose Add stack. AWS OpsWorks Stacks creates the stack and displays the
MyCookbooksDemoStack page.

To create the layer

1. In the service navigation pane, choose Layers. The Layers page is displayed.

2. Choose Add a layer.

3. On the OpsWorks tab, for Name, type MyCookbooksDemoLayer. You can type a different
name, but be sure to substitute it for MyCookbooksDemoLayer throughout this walkthrough.

4. For Short name, type cookbooks-demo. You can type a different name, but be sure to
substitute it for cookbooks-demo throughout this walkthrough.

5. Choose Add layer. AWS OpsWorks Stacks adds the layer and displays the Layers page.

To create and start the instance

1. In the service navigation pane, choose Instances. The Instances page is displayed.

2. Choose Add an instance.

3. On the New tab, choose Advanced.

4. Leave the defaults for the following:

• Hostname (cookbooks-demo1)

• Size (c3.large)

Getting Started: Cookbooks API Version 2013-02-18 389

AWS OpsWorks User Guide

• Subnet (IP address us-west-2a)

• Scaling type (24/7)

• SSH key (Do not use a default SSH key)

• Operating system (Amazon Linux 2016.09)

• OpsWorks Agent version (Inherit from stack)

• Tenancy (Default - Rely on VPC settings)

• Root device type (EBS backed)

• Volume type (General Purpose (SSD))

• Volume size (8)

5. Choose Add instance.

6. For MyCookbooksDemoLayer, for cookbooks-demo1, for Actions, choose start. Do not
proceed until Status changes to online. This process might take several minutes, so be patient.

You now have a stack, a layer, and an instance to which the cookbook was automatically copied
from your S3 bucket. In the next step, you will run and test the default recipe from within the
cookbook on the instance.

Step 3: Run and Test the Recipe

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Run and test the default recipe from within the cookbook that AWS OpsWorks Stacks copied to
the instance. As you'll recall, this is the one-line recipe that displays a simple message in the log
when the recipe runs.

Getting Started: Cookbooks API Version 2013-02-18 390

AWS OpsWorks User Guide

To run the recipe

1. In the service navigation pane, choose Stack. The MyCookbooksDemoStack page is displayed.

2. Choose Run Command. The Run Command page is displayed.

3. For Command, choose Execute Recipes.

4. For Recipes to execute, type opsworks_cookbook_demo::default.

opsworks_cookbook_demo is the name of the cookbook as defined in the metadata.rb
file. default is the name of the recipe to run, that is, the name of the default.rb file in the
cookbook's recipes subdirectory, without the file extension.

5. Leave the following default settings:

• Comment (blank)

• Advanced, Custom Chef JSON (blank)

• Instances (Select all checked, MyCookbooksDemoLayer checked, cookbooks-demo1
checked)

6. Choose Execute Recipes. The Running command execute_recipes page is displayed. Do not
proceed until Status changes to successful. This process might take a few minutes, so be
patient.

To check the recipe's results

1. With the Running command execute_recipes page displayed, for cookbooks-demo1, for Log,
choose show. The execute_recipes log page is displayed.

2. Scroll down the log and find an entry that looks similar to the following:

[2015-11-13T19:14:39+00:00] INFO: ********** Hello, World! **********

You have successfully run your first recipe! In the next step, you will update your cookbook by
adding a recipe that installs a package on the instance.

Getting Started: Cookbooks API Version 2013-02-18 391

AWS OpsWorks User Guide

Step 4: Update the Cookbook to Install a Package

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that installs on the instance a package that contains the
popular text editor GNU Emacs.

Although you can just as easily log in to the instance and install the package once, writing a recipe
enables you to run the recipe from AWS OpsWorks Stacks once to install multiple packages on
multiple instances in a stack simultaneously.

To update the cookbook to install a package

1. Back on your local workstation, in the recipes subdirectory in the
opsworks_cookbook_demo directory, create a file named install_package.rb with the
following code:

package "Install Emacs" do
 package_name "emacs"
end

This recipe installs the emacs package on the instance. (For more information, go to package.)

Note

You can give a recipe any file name you want. Just be sure to specify the correct recipe
name whenever you want AWS OpsWorks Stacks to run the recipe.

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

Getting Started: Cookbooks API Version 2013-02-18 392

https://docs.chef.io/resource_package.html

AWS OpsWorks User Guide

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

This new recipe runs when you update the cookbook on the instance and then run the new recipe
from within the updated cookbook. The next step describes how to do this.

After you complete the next step, you will be able to log in to the instance and then type emacs
from the command prompt to launch GNU Emacs. (For more information, see Connect to Your
Linux Instance.) To exit GNU Emacs, press Ctrl+X, then Ctrl+C.

Important

To log in to the instance, you must first provide AWS OpsWorks Stacks with information
about your public SSH key (which you can create with tools such as ssh-keygen or
PuTTYgen), and then you must set permissions on the MyCookbooksDemoStack stack to
enable your user to log in to the instance. For instructions, see Registering a User's Public
SSH Key and Logging In with SSH.

Step 5: Update the Cookbook on the Instance and Run the Recipe

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update the cookbook on the instance and then run the recipe from within the updated cookbook
on the instance. Throughout the rest of this walkthrough, you repeat this step every time you
update the cookbook by adding a new recipe.

To update the cookbook on the instance

1. In the service navigation pane, choose Stack. The MyCookbooksDemoStack page is displayed.

2. Choose Run Command. The Run Command page is displayed.

Getting Started: Cookbooks API Version 2013-02-18 393

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS OpsWorks User Guide

3. For Command, choose Update Custom Cookbooks.

4. Leave the following default settings:

• Comment (blank)

• Advanced, Custom Chef JSON (blank)

• Advanced, Instances (Select all checked, MyCookbooksDemoLayer checked, cookbooks-
demo1 checked)

5. Choose Update Custom Cookbooks. The Running command update_custom_cookbooks
page is displayed. Do not proceed until Status changes to successful. This process might take
several minutes, so be patient.

To run the recipe

1. In the service navigation pane, choose Stack. The MyCookbooksDemoStack page is displayed.

2. Choose Run Command. The Run Command page is displayed.

3. For Command, choose Execute Recipes.

4. For Recipes to execute, type the name of the recipe to run. The first time you do this, the
recipe is named opsworks_cookbook_demo::install_package.

Note

As you repeat this procedure later, type the name of the cookbook
(opsworks_cookbook_demo), followed by two colons (::), followed by the name of
the recipe (the recipe's file name, without the .rb file extension).

5. Leave the following default settings:

• Comment (blank)

• Advanced, Custom Chef JSON (blank)

• Instances Select all checked, MyCookbooksDemoLayer checked, cookbooks-demo1
checked)

6. Choose Execute Recipes. The Running command execute_recipes page is displayed. Do not
proceed until Status changes to successful. This process might take a few minutes, so be
patient.

Getting Started: Cookbooks API Version 2013-02-18 394

AWS OpsWorks User Guide

Note

You don't have to manually run recipes. You can assign recipes to a layer's lifecycle events,
such as the Setup and Configure events, and AWS OpsWorks Stacks will run those recipes
automatically when the event occurs. For more information, see AWS OpsWorks Stacks
Lifecycle Events.

In the next step, you will update the cookbook to add a user to the instance.

Step 6: Update the Cookbook to Add a User

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that adds a local user to the instance and sets the user's
home directory and shell. This is similar to running the Linux adduser or useradd commands or the
Windows net user command. You add a local user to an instance, for example, when you want to
control access to the instance's files and directories.

You can also manage users without using cookbooks. For more information, see Managing Users.

To update the cookbook on the instance and to run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named add_user.rb with the following code (for more information, go
to user):

user "Add a user" do
 home "/home/jdoe"
 shell "/bin/bash"
 username "jdoe"

Getting Started: Cookbooks API Version 2013-02-18 395

https://docs.chef.io/resource_user.html

AWS OpsWorks User Guide

end

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::add_user.

To test the recipe

1. Log in to the instance, if you have not done so already.

2. From the command prompt, run the following command to confirm that the new user was
added:

grep jdoe /etc/passwd

Information similar to the following is displayed about the user, including details such as the
user's name, ID number, group ID number, home directory, and shell:

jdoe:x:501:502::/home/jdoe:/bin/bash

In the next step, you will update the cookbook to create a directory on the instance.

Step 7: Update the Cookbook to Create a Directory

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Getting Started: Cookbooks API Version 2013-02-18 396

AWS OpsWorks User Guide

Update your cookbook by adding a recipe that adds a directory to the instance. This is similar to
running the Linux mkdir command or the Windows md or mkdir commands.

To update the cookbook on the instance and to run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named create_directory.rb with the following code. For more
information, go to directory:

directory "Create a directory" do
 group "root"
 mode "0755"
 owner "ec2-user"
 path "/tmp/create-directory-demo"
end

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::create_directory.

To test the recipe

1. Log in to the instance, if you have not done so already.

2. From the command prompt, run the following command to confirm that the new directory
was added:

ls -la /tmp/create-directory-demo

Information about the newly-added directory is displayed, including information such as
permissions, owner name, and group name:

drwxr-xr-x 2 ec2-user root 4096 Nov 18 00:35 .
drwxrwxrwt 6 root root 4096 Nov 24 18:17 ..

Getting Started: Cookbooks API Version 2013-02-18 397

https://docs.chef.io/resource_directory.html

AWS OpsWorks User Guide

In the next step, you will update the cookbook to create a file on the instance.

Step 8: Update the Cookbook to Create and Copy Files

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that adds two files to the instance. The first resource in
the recipe creates a file completely with recipe code. This is similar to running the Linux cat, echo,
or touch commands or the Windows echo or fsutil commands. This technique is useful for a few,
small, or simple files. The second resource in the recipe copies a file in the cookbook to another
directory on the instance. This is similar to running the Linux cp command or the Windows copy
command.This technique is useful for many, large, or complex files.

Before you start this step, complete Step 7: Update the Cookbook to Create a Directory to make
sure that the files' parent directory already exists.

To update the cookbook on the instance and run the new recipe

1. On your local workstation, in the opsworks_cookbook_demo directory, create a subdirectory
named files.

2. In the files subdirectory, create a file named hello.txt with the following text: Hello,
World!

3. In the recipes subdirectory in the opsworks_cookbook_demo directory, create a file
named create_files.rb with the following code. For more information, go to file and
cookbook_file.

file "Create a file" do
 content "<html>This is a placeholder for the home page.</html>"
 group "root"
 mode "0755"
 owner "ec2-user"

Getting Started: Cookbooks API Version 2013-02-18 398

https://docs.chef.io/resource_file.html
https://docs.chef.io/resource_cookbook_file.html

AWS OpsWorks User Guide

 path "/tmp/create-directory-demo/index.html"
end

cookbook_file "Copy a file" do
 group "root"
 mode "0755"
 owner "ec2-user"
 path "/tmp/create-directory-demo/hello.txt"
 source "hello.txt"
end

The file resource creates a file in the specified path. The cookbook_file resource copies
the file from the files directory that you just created in the cookbook (Chef expects to find
a standard-named subdirectory named files that it can copy files from) to another directory
on the instance.

4. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

5. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

6. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::create_files.

To test the recipe

1. Log in to the instance, if you have not done so already.

2. From the command prompt, run the following commands, one at a time, to confirm that the
new files were added:

sudo cat /tmp/create-directory-demo/index.html

sudo cat /tmp/create-directory-demo/hello.txt

The files' contents are displayed:

<html>This is a placeholder for the home page.</html>

Hello, World!

Getting Started: Cookbooks API Version 2013-02-18 399

AWS OpsWorks User Guide

In the next step, you will update the cookbook to run a command on the instance.

Step 9: Update the Cookbook to Run a Command

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that runs a command that creates an SSH key on the
instance.

To update the cookbook on the instance and run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named run_command.rb with the following code. For more
information, go to execute.

execute "Create an SSH key" do
 command "ssh-keygen -f /tmp/my-key -N fLyC3jbY"
end

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::run_command.

To test the recipe

1. Log in to the instance, if you have not done so already.

Getting Started: Cookbooks API Version 2013-02-18 400

https://docs.chef.io/resource_execute.html

AWS OpsWorks User Guide

2. From the command prompt, run the following commands, one at a time, to confirm that the
SSH key was created:

sudo cat /tmp/my-key

sudo cat /tmp/my-key.pub

The SSH private and public key's contents are displayed:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,DEF7A09C...541583FA
A5p9dCuo...wp0YYH1c
-----END RSA PRIVATE KEY-----

ssh-rsa AAAAB3N...KaNogZkT root@cookbooks-demo1

In the next step, you will update the cookbook to run a script on the instance.

Step 10: Update the Cookbook to Run a Script

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that runs a script on the instance. This recipe creates
a directory and then creates a file in that directory. Writing a recipe to run a script that contains
multiple commands is easier than running those commands one at a time.

Getting Started: Cookbooks API Version 2013-02-18 401

AWS OpsWorks User Guide

To update the cookbook on the instance and run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named run_script.rb with the following code. For more information,
go to script.

script "Run a script" do
 interpreter "bash"
 code <<-EOH
 mkdir -m 777 /tmp/run-script-demo
 touch /tmp/run-script-demo/helloworld.txt
 echo "Hello, World!" > /tmp/run-script-demo/helloworld.txt
 EOH
end

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::run_script.

To test the recipe

1. Log in to the instance, if you have not done so already.

2. From the command prompt, run the following command to confirm that the new file was
added:

sudo cat /tmp/run-script-demo/helloworld.txt

The file's contents are displayed:

Hello, World!

In the next step, you will update the cookbook to manage a service on the instance.

Getting Started: Cookbooks API Version 2013-02-18 402

https://docs.chef.io/resource_script.html

AWS OpsWorks User Guide

Step 11: Update the Cookbook to Manage a Service

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that manages a service on the instance. This is
similar to running the Linux service command or the Windows net stop, net start, and similar
commands.This recipe stops the crond service on the instance.

To update the cookbook on the instance and run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named manage_service.rb with the following code. For more
information, go to service.

service "Manage a service" do
 action :stop
 service_name "crond"
end

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::manage_service.

To test the recipe

1. Log in to the instance, if you have not done so already.

Getting Started: Cookbooks API Version 2013-02-18 403

https://docs.chef.io/resource_service.html

AWS OpsWorks User Guide

2. From the command prompt, run the following command to confirm that the crond service is
stopped:

service crond status

The following is displayed:

crond is stopped

3. To restart the crond service, run the following command:

sudo service crond start

The following is displayed:

Starting crond: [OK]

4. To confirm that the crond service has started, run the following command again:

service crond status

Information similar to the following is displayed:

crond (pid 3917) is running...

In the next step, you will update the cookbook to reference information stored as custom JSON on
the instance.

Step 12: Update the Cookbook to Use Custom JSON

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Getting Started: Cookbooks API Version 2013-02-18 404

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that references custom JSON that is stored on the
instance.

You can specify information in custom JSON format whenever you create, update, or clone a stack
or when you run a deployment or stack command. This is useful, for example, for making a small,
unchanging portion of data available to your recipes on the instance instead of getting this data
from a database. For more information, see Using Custom JSON.

For this walkthrough, you will use custom JSON to provide some fictitious information about a
customer invoice. The custom JSON is described later in this step.

To update the cookbook on the instance and run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named custom_json.rb that contains the following recipe code:

Chef::Log.info("********** For customer '#{node['customer-id']}' invoice
 '#{node['invoice-number']}' **********")
Chef::Log.info("********** Invoice line number 1 is a '#{node['line-items']
['line-1']}' **********")
Chef::Log.info("********** Invoice line number 2 is a '#{node['line-items']
['line-2']}' **********")
Chef::Log.info("********** Invoice line number 3 is a '#{node['line-items']
['line-3']}' **********")

This recipe displays messages in the log about values in the custom JSON.

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::custom_json. For
Advanced, Custom Chef JSON, type the following custom JSON:

Getting Started: Cookbooks API Version 2013-02-18 405

AWS OpsWorks User Guide

{
 "customer-id": "0123",
 "invoice-number": "9876",
 "line-items": {
 "line-1": "tractor",
 "line-2": "passenger car",
 "line-3": "trailer"
 }
}

To test the recipe

1. With the Running command execute_recipes page displayed from the previous procedures,
for cookbooks-demo1, for Log, choose show. The execute_recipes log page is displayed.

2. Scroll down through the log to find entries that look similar to the following:

[2015-11-14T14:18:30+00:00] INFO: ********** For customer '0123' invoice '9876'

[2015-11-14T14:18:30+00:00] INFO: ********** Invoice line number 1 is a 'tractor'

[2015-11-14T14:18:30+00:00] INFO: ********** Invoice line number 2 is a 'passenger
 car' **********
[2015-11-14T14:18:30+00:00] INFO: ********** Invoice line number 3 is a 'trailer'

These entries display information from the custom JSON that was typed in the Advanced,
Custom Chef JSON box.

In the next step, you will update the cookbook to get information from data bags, which are
collections of stack settings that AWS OpsWorks Stacks stores on each instance.

Step 13: Update the Cookbook to Use Data Bags

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Getting Started: Cookbooks API Version 2013-02-18 406

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that references stack settings that AWS OpsWorks Stacks
stores on the instance in a set of data bags. This recipe displays messages in the log about specific
stack settings that are stored on the instance. For more information, see the AWS OpsWorks Stacks
Data Bag Reference.

To update the cookbook on the instance and to run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named data_bags.rb that contains the following code:

instance = search("aws_opsworks_instance").first
layer = search("aws_opsworks_layer").first
stack = search("aws_opsworks_stack").first

Chef::Log.info("********** This instance's instance ID is
 '#{instance['instance_id']}' **********")
Chef::Log.info("********** This instance's public IP address is
 '#{instance['public_ip']}' **********")
Chef::Log.info("********** This instance belongs to the layer '#{layer['name']}'
 **********")
Chef::Log.info("********** This instance belongs to the stack '#{stack['name']}'
 **********")
Chef::Log.info("********** This stack gets its cookbooks from
 '#{stack['custom_cookbooks_source']['url']}' **********")

This recipe displays messages in the log about specific stack settings that are stored on the
instance.

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::data_bags.

Getting Started: Cookbooks API Version 2013-02-18 407

AWS OpsWorks User Guide

To test the recipe

1. With the Running command execute_recipes page displayed from the previous procedure, for
cookbooks-demo1, for Log, choose show. The execute_recipes log page is displayed.

2. Scroll down through the log and find entries that look similar to the following:

[2015-11-14T14:39:06+00:00] INFO: ********** This instance's instance ID is
 'f80fa119-81ab-4c3c-883d-6028e52c89EX' **********
[2015-11-14T14:39:06+00:00] INFO: ********** This instance's public IP address is
 '192.0.2.0' **********
[2015-11-14T14:39:06+00:00] INFO: ********** This instance belongs to the layer
 'MyCookbooksDemoLayer' **********
[2015-11-14T14:39:06+00:00] INFO: ********** This instance belongs to the stack
 'MyCookbooksDemoStack' **********
[2015-11-14T14:39:06+00:00] INFO: ********** This stack gets its cookbooks from
 'https://s3.amazonaws.com/opsworks-demo-bucket/opsworks_cookbook_demo.tar.gz'

This recipe displays messages about specific stack settings that are stored on the instance.

In the next step, you will update the cookbook to run recipe code multiple times.

Step 14: Update the Cookbook to Use Iteration

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Update your cookbook by adding a recipe that uses iteration, a technique that repeats recipe code
multiple times. This recipe displays messages in the log for a data bag item that contains multiple
contents.

Getting Started: Cookbooks API Version 2013-02-18 408

AWS OpsWorks User Guide

To update the cookbook on the instance and to run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named iteration_demo.rb that contains the following code:

stack = search("aws_opsworks_stack").first
Chef::Log.info("********** Content of 'custom_cookbooks_source' **********")

stack["custom_cookbooks_source"].each do |content|
 Chef::Log.info("********** '#{content}' **********")
end

Note

Writing the preceding recipe code is shorter, more flexible, and less error-prone than
writing the following recipe code that does not use iteration:

stack = search("aws_opsworks_stack").first
Chef::Log.info("********** Content of 'custom_cookbooks_source' **********")

Chef::Log::info("********** '[\"type\", \"#{stack['custom_cookbooks_source']
['type']}\"]' **********")
Chef::Log::info("********** '[\"url\", \"#{stack['custom_cookbooks_source']
['url']}\"]' **********")
Chef::Log::info("********** '[\"username\",
 \"#{stack['custom_cookbooks_source']['username']}\"]' **********")
Chef::Log::info("********** '[\"password\",
 \"#{stack['custom_cookbooks_source']['password']}\"]' **********")
Chef::Log::info("********** '[\"ssh_key\",
 \"#{stack['custom_cookbooks_source']['ssh_key']}\"]' **********")
Chef::Log::info("********** '[\"revision\",
 \"#{stack['custom_cookbooks_source']['revision']}\"]' **********")

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

Getting Started: Cookbooks API Version 2013-02-18 409

AWS OpsWorks User Guide

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::iteration_demo.

To test the recipe

1. With the Running command execute_recipes page displayed from the previous procedures,
for cookbooks-demo1, for Log, choose show. The execute_recipes log page is displayed.

2. Scroll down through the log and find entries that look similar to the following:

[2015-11-16T19:56:56+00:00] INFO: ********** Content of 'custom_cookbooks_source'

[2015-11-16T19:56:56+00:00] INFO: ********** '["type", "s3"]' **********
[2015-11-16T19:56:56+00:00] INFO: ********** '["url", "https://s3.amazonaws.com/
opsworks-demo-bucket/opsworks_cookbook_demo.tar.gz"]' **********
[2015-11-16T19:56:56+00:00] INFO: ********** '["username", "secret-key-value"]'

[2015-11-16T19:56:56+00:00] INFO: ********** '["password", "secret-access-key-
value"]' **********
[2015-11-16T19:56:56+00:00] INFO: ********** '["ssh_key", nil]' **********
[2015-11-16T19:56:56+00:00] INFO: ********** '["revision", nil]' **********

This recipe displays messages in the log for a data bag item that contains multiple contents.
The data bag item is in the aws_opsworks_stack data bag. The data bag item has content
named custom_cookbooks_source. Inside of this content are six contents named type,
url, username, password, ssh_key, and revision; their values are also displayed.

In the next step, you will update the cookbook to run recipe code only if certain conditions are met.

Step 15: Update the Cookbook to Use Conditional Logic

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Getting Started: Cookbooks API Version 2013-02-18 410

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now update your cookbook by adding a recipe that uses conditional logic, a technique that runs
code only if certain conditions are met. For more information, go to if Statements and case
Statements.

This recipe does two things based on data bag content: displays a message in the log identifying
the operating system that the instance is running on and, only if the operating system is Linux,
installs a package by using the correct package manager for the given Linux distribution. This
package is named tree; it is a simple app for visualizing directory lists.

To update the cookbook on the instance and to run the new recipe

1. On your local workstation, in the recipes subdirectory in the opsworks_cookbook_demo
directory, create a file named conditional_logic.rb that contains the following code:

instance = search("aws_opsworks_instance").first
os = instance["os"]

if os == "Red Hat Enterprise Linux 7"
 Chef::Log.info("********** Operating system is Red Hat Enterprise Linux.
 **********")
elsif os == "Ubuntu 14.04 LTS" || os == "Ubuntu 16.04 LTS" || os == "Ubuntu 18.04
 LTS"
 Chef::Log.info("********** Operating system is Ubuntu. **********")
elsif os == "Microsoft Windows Server 2012 R2 Base"
 Chef::Log.info("********** Operating system is Windows. **********")
elsif os == "Amazon Linux 2015.03" || os == "Amazon Linux 2015.09" || os == "Amazon
 Linux 2016.03" || os == "Amazon Linux 2016.09" || os == "Amazon Linux 2017.03"
 || os == "Amazon Linux 2017.09" || os == "Amazon Linux 2018.03" || os == "Amazon
 Linux 2"
 Chef::Log.info("********** Operating system is Amazon Linux. **********")
elsif os == "CentOS Linux 7"
 Chef::Log.info("********** Operating system is CentOS 7. **********")
else
 Chef::Log.info("********** Cannot determine operating system. **********")
end

case os
when "Ubuntu 14.04 LTS", "Ubuntu 16.04 LTS", "Ubuntu 18.04 LTS"

Getting Started: Cookbooks API Version 2013-02-18 411

https://docs.chef.io/dsl_recipe.html#if-statements
https://docs.chef.io/dsl_recipe.html#case-statements
https://docs.chef.io/dsl_recipe.html#case-statements

AWS OpsWorks User Guide

 apt_package "Install a package with apt-get" do
 package_name "tree"
 end
when "Amazon Linux 2015.03", "Amazon Linux 2015.09", "Amazon Linux 2016.03",
 "Amazon Linux 2016.09", "Amazon Linux 2017.03", "Amazon Linux 2017.09", "Amazon
 Linux 2018.03", "Amazon Linux 2", "Red Hat Enterprise Linux 7", "CentOS Linux 7"
 yum_package "Install a package with yum" do
 package_name "tree"
 end
else
 Chef::Log.info("********** Cannot determine operating system type, or operating
 system is not Linux. Package not installed. **********")
end

2. At the terminal or command prompt, use the tar command create a new version of the
opsworks_cookbook_demo.tar.gz file, which contains the opsworks_cookbook_demo
directory and its updated contents.

3. Upload the updated opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::conditional_logic.

To test the recipe

1. With the Running command execute_recipes page displayed from the previous procedures,
for cookbooks-demo1, for Log, choose show. The execute_recipes log page is displayed.

2. Scroll down through the log and find an entry that looks similar to the following:

[2015-11-16T19:59:05+00:00] INFO: ********** Operating system is Amazon Linux.

Because the instance's operating system is Amazon Linux 2016.09, only the preceding entry (of
the five possible entries in the recipe's code) will be displayed in the log.

3. If the operating system is Linux, the recipe installs the tree package. To see a visualization of a
directory's contents, type tree at the command prompt from the desired directory or with the
desired directory's path (for example, tree /var/chef/runs).

Getting Started: Cookbooks API Version 2013-02-18 412

AWS OpsWorks User Guide

In the next step, you will update the cookbook to use functionality from an external cookbook
provided by the Chef community.

Step 16: Update the Cookbook to Use Community Cookbooks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Finally, update the cookbook to use functionality provided in an external cookbook provided by
the Chef community. The external cookbook that you will use for this walkthrough is available
through the Chef Supermarket, a popular location for accessing external Chef cookbooks. This
external cookbook provides a custom resource that lets you download and install applications,
similar to what you did in Step 4: Update the Cookbook to Install a Package. However, this resource
can install web applications and other application types in addition to packages.

When a cookbook depends on another cookbook, you must specify a dependency on the other
cookbook. To declare and manage cookbook dependencies, we recommend that you use a tool
called Berkshelf. For more information about how to install Berkshelf on your local workstation,
see About Berkshelf on the Chef website.

After you install Berkshelf, follow these procedures to declare the cookbook dependency and then
create a recipe that calls the resource in the external cookbook:

To declare the cookbook dependency

1. On your local workstation, in the opsworks_cookbook_demo directory, add the following
line at the end of the metadata.rb file:

depends "application", "5.0.0"

This declares a dependency on a cookbook named application, version 5.0.0.

Getting Started: Cookbooks API Version 2013-02-18 413

https://supermarket.chef.io/
https://docs.chef.io/berkshelf.html

AWS OpsWorks User Guide

2. From the root of the opsworks_cookbook_demo directory, run the following command. The
period at the end of the command is intentional.

berks init .

Berkshelf creates a number of folders and files that you can use later for more advanced
scenarios. The only file that we need for this walkthrough is the file named Berksfile.

3. Add the following line at the end of the Berksfile file:

cookbook "application", "5.0.0"

This informs Berkshelf that you want to use application cookbook version 5.0.0, which
Berkshelf downloads from the Chef Supermarket.

4. At the terminal or command prompt, run the following command from the root of the
opsworks_cookbook_demo directory:

berks install

Berkshelf creates a list of the dependencies for both your cookbook and the application
cookbook. Berkshelf uses this list of dependencies in the next procedure.

To update the cookbook on the instance and to run the new recipe

1. In the recipes subdirectory in the opsworks_cookbook_demo directory, create a file named
dependencies_demo.rb that contains the following code:

application "Install NetHack" do
 package "nethack.x86_64"
end

This recipe depends on the application resource from the application cookbook to install the
popular text-based adventure game NetHack on the instance. (You can, of course, subtitute
any other package name you want, provided the package is readily available to the package
manager on the instance.)

2. From the root of the opsworks_cookbook_demo directory, run the following command:

Getting Started: Cookbooks API Version 2013-02-18 414

https://supermarket.chef.io/cookbooks/application/versions/5.0.0

AWS OpsWorks User Guide

berks package

Berkshelf uses the list of dependencies from the previous procedure to create a file named
cookbooks-timestamp.tar.gz, which contains the opsworks_cookbook_demo directory
and its updated contents, including the cookbook's dependent cookbooks. Rename this file
opsworks_cookbook_demo.tar.gz.

3. Upload the updated, renamed opsworks_cookbook_demo.tar.gz file to your S3 bucket.

4. Follow the procedures in Step 5: Update the Cookbook on the Instance and Run the Recipe
to update the cookbook on the instance and to run the recipe. In the "To run the recipe"
procedure, for Recipes to execute, type opsworks_cookbook_demo::dependencies_demo.

5. After you run the recipe, you should be able to log in to the instance and then type nethack
at the command prompt to begin playing. (For more information about the game, see NetHack
and the NetHack Guidebook.)

In the next step, you can clean up the AWS resources that you used for this walkthrough. This next
step is optional. You may want to keep using these AWS resources as you continue to learn more
about AWS OpsWorks Stacks. However, keeping these AWS resources around may result in some
ongoing charges to your AWS account. If you want to keep these AWS resources around for later
use, you have now completed this walkthrough, and you can skip ahead to Next Steps.

Step 17: (Optional) Clean Up

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To prevent incurring additional charges to your AWS account, you can delete the AWS resources
that were used for this walkthrough. These AWS resources include the S3 bucket, the AWS
OpsWorks Stacks stack, and the stack's components. (For more information, see AWS OpsWorks

Getting Started: Cookbooks API Version 2013-02-18 415

https://en.wikipedia.org/wiki/NetHack
http://www.nethack.org/v343/Guidebook.html
http://aws.amazon.com/opsworks/pricing/

AWS OpsWorks User Guide

Pricing.) However, you might want to keep using these AWS resources as you continue to learn
more about AWS OpsWorks Stacks. If you want to keep these AWS resources available, you have
now completed this walkthrough, and you can skip to Next Steps.

Content stored in the resources that you created for this walkthrough can contain personally-
identifying information. If you no longer want this information to be stored by AWS, follow steps in
this topic.

To delete the S3 bucket

• See Delete the Amazon S3 Bucket.

To delete the instance for the stack

1. In the AWS OpsWorks Stacks console, in the service navigation pane, choose Instances. The
Instances page is displayed.

2. For MyCookbooksDemoLayer, for cookbooks-demo1, for Actions, choose stop. When you see
the confirmation message, choose Stop.

3. The following changes occur over several minutes. Do not proceed until all of the following
have finished.

• Status changes from online to stopping and eventually to stopped.

• online changes from 1 to 0.

• shutting down changes from 0 to 1 and eventually back to 0.

• stopped eventually changes from 0 to 1.

4. For Actions, choose delete. When you see the confirmation message, choose Delete. AWS
OpsWorks Stacks deletes the instance and displays No instances.

To delete the stack

1. In the service navigation pane, choose Stack. The MyCookbooksDemoStack page is displayed.

2. Choose Delete Stack. When you see the confirmation message, choose Delete. AWS OpsWorks
Stacks deletes the stack and displays the Dashboard page.

Getting Started: Cookbooks API Version 2013-02-18 416

http://aws.amazon.com/opsworks/pricing/
https://docs.aws.amazon.com/gettingstarted/latest/swh/getting-started-cleanup-s3.html

AWS OpsWorks User Guide

Optionally, you can delete the IAM user and Amazon EC2 key pair that you used for this
walkthrough, if you don't want to reuse them for access to other AWS services and EC2 instances.
For instructions, see Deleting an IAM user and Amazon EC2 key pairs and Linux instances.

You have now completed this walkthrough. For more information, see Next Steps.

Next Steps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now that you have completed this walkthrough, you can learn more about AWS OpsWorks Stacks
support for Chef cookbooks by reviewing the following resources:

• Cookbooks and Recipes – Describes the versions of Chef and Ruby that AWS OpsWorks Stacks
currently supports. Also demonstrates how to install and update custom cookbooks on instances
and how to run recipes on instances.

• Learn Chef – Provides links to Chef tutorials, a Chef skills library, complete Chef documentation,
and Chef training classes.

• All about Chef – Provides complete Chef documentation. Specific topics of interest include:

• About Cookbooks – Describes key cookbook components such as attributes, recipes, files,
metadata, and templates.

• About Recipes – Describes the fundamentals of recipes such as how to work with data bags,
include other recipes, and use Ruby code in recipes.

• Resources – Describes how to use all of the built-in Chef resources, such as apt_package,
cookbook_file, directory, execute, file, and package.

• About the Recipe DSL – Describes how to write code for Chef recipes with statements such as
if, case, data_bag, data_bag_item, and search.

• About Templates – Describes how to use Embedded Ruby (ERB) templates to dynamically
generate static text files, such as configuration files.

Getting Started: Cookbooks API Version 2013-02-18 417

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_deleting
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#delete-key-pair
https://learn.chef.io/
https://docs.chef.io/
https://docs.chef.io/cookbooks.html
https://docs.chef.io/recipes.html
https://docs.chef.io/resources.html#resources
https://docs.chef.io/dsl_recipe.html
https://docs.chef.io/templates.html

AWS OpsWorks User Guide

• Learning Tracks – Describes how to use Chef to manage an instance, manage a basic web app,
develop and test infrastructure code, use Chef analytics, and more.

• Learning Chef – An introduction to Chef. Published by O'Reilly Media.

• Learning Chef code examples – Provides code examples to accompany the book Learning Chef
published by O'Reilly Media.

AWS OpsWorks Stacks Best Practices

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Strategies, techniques, and suggestions in this section can help you get the maximum benefit and
optimal outcomes from AWS OpsWorks Stacks.

Topics

• Best Practices: Root Device Storage for Instances

• Best Practices: Optimizing the Number of Application Servers

• Best Practices: Managing Permissions

• Best Practices: Managing and Deploying Apps and Cookbooks

• Packaging Cookbook Dependencies Locally

Best Practices: Root Device Storage for Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Best Practices API Version 2013-02-18 418

https://learn.chef.io/tracks
http://shop.oreilly.com/product/0636920032397.do
https://github.com/learningchef/learningchef-code

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This topic does not apply to Windows instances, which must be Amazon Elastic Block Store-
backed.

Amazon Elastic Compute Cloud (Amazon EC2) Linux instances have the following root-device
storage options.

• Instance store-backed instances – The root device is temporary.

If you stop the instance, the data on the root device vanishes and cannot be recovered. For more
information, see Amazon EC2 Instance Store.

• Amazon EBS-backed instances – The root device is an Amazon EBS volume.

If you stop the instance, the Amazon EBS volume persists. If you restart the instance, the volume
is automatically remounted, restoring the instance state and any stored data. You can also
mount the volume on a different instance. For more information, see Amazon Elastic Block Store
(Amazon EBS).

Consider the following when deciding which root device storage option to use.

Boot Time

After the initial start, Amazon EBS instances generally restart faster.

The initial startup time is approximately the same for either storage type. Both types must
perform a full setup, which includes relatively time-consuming tasks such as installing packages
from remote repositories. However, note these distinctions when you subsequently restart an
instance:

• Instance store-backed instances perform the same setup tasks that they did for the initial
start, including package installation.

A restart takes about the same time as the initial start.

Root Device Storage API Version 2013-02-18 419

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

AWS OpsWorks User Guide

• Amazon EBS-back instances remount the root volume and run the Setup recipes.

The restart is usually significantly faster than the initial start, because the Setup recipes don't
have to perform tasks such as reinstalling packages that are already installed on the root
volume.

Cost

Amazon EBS-backed instances are more costly:

• With an instance-store backed instance, you pay only when the instance is running.

• With Amazon EBS-backed instances, you pay for the Amazon EBS volume whether the
instance is running or not.

For more information, see Amazon EBS Pricing.

Logging

Amazon EBS-backed instances automatically retain logs:

• With instance store-backed instance, the logs disappear when the instance stops.

You must either retrieve the logs before you stop the instance or use a service such as
CloudWatch Logs to store selected logs remotely.

• With an Amazon EBS-backed instance, the logs are stored on the Amazon EBS volume.

You can view them by restarting the instance, or by mounting the volume on another
instance.

Dependencies

The two storage types have different dependencies:

• Instance-store backed instances depend on Amazon S3.

When you start the instance, it must download the AMI from Amazon S3.

• Amazon EBS-backed instances depend on Amazon EBS.

When you start the instance, it must mount the Amazon EBS root volume.

Recommendation: If you aren't certain which storage type is best suited for your requirements, we
recommend starting with Amazon EBS instances. Although you will incur a modest expense for the
Amazon EBS volumes, there is less risk of unintended data loss.

Root Device Storage API Version 2013-02-18 420

http://aws.amazon.com/ebs/pricing/

AWS OpsWorks User Guide

Best Practices: Optimizing the Number of Application Servers

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A production stack commonly includes multiple application servers distributed across multiple
Availability Zones. However the number of incoming requests can vary substantially depending
on time of day or day of the week. You could just run enough servers to handle the maximum
anticipated load, but then much of the time you will end up paying for more server capacity than
you need. To run your site efficiently, the recommended practice is to match the number of servers
to the current request volume.

AWS OpsWorks Stacks provides three ways to manage the number of server instances.

• 24/7 instances are started manually and run until they are manually stopped.

• Time-based instances are automatically started and stopped by AWS OpsWorks Stacks on a user-
specified schedule.

• Load-based instances are automatically started and stopped by AWS OpsWorks Stacks when
they cross a threshold for a user-specified load metric such as CPU or memory utilization.

Note

After you have created and configured your stack's time and load-based instances, AWS
OpsWorks Stacks automatically starts and stops them based on the specified configuration.
You don't have to touch them again unless you decide to change the configuration or
number of instances.

Recommendation: If you are managing stacks with more than a few application server instances,
we recommend using a mix of all three instance types. The following is an example of how to

Optimizing the Number of Servers API Version 2013-02-18 421

AWS OpsWorks User Guide

manage a stack's server capacity to handle a variable daily request volume with the following
characteristics.

• The average request volume varies sinusoidally over the day.

• The minimum average request volume requires five application server instances.

• The maximum average request volume requires sixteen application server instances.

• Spikes in request volume can usually be handled by one or two application server instances.

This is a convenient model for the purposes of discussion, but you can easily adapt it to any
variation in request volume and also extend it to handle weekly variations. The following diagram
shows how to use the three instance types to manage this request volume.

This example has the following characteristics:

Optimizing the Number of Servers API Version 2013-02-18 422

AWS OpsWorks User Guide

• The stack has three 24/7 instances, which are always on and handle the base load.

• The stack has 12 time-based instances, which are configured to handle the average daily
variation.

One runs from 10 PM to 2 AM, two more run from 8 PM to 10 PM and 2 AM to 4 AM, and so on.
For simplicity, the diagram modifies the number of time-based instances every two hours, but
you can modify the number every hour if you want finer-grained control.

• The stack has enough load-based instances to handle traffic spikes that exceed what can be
handled by the 24/7 and time-based instances.

AWS OpsWorks Stacks starts load-based instances only when the load across all of the
currently running servers exceeds the specified metrics. The cost for nonrunning instances is
minimal (Amazon EBS-backed instances) or nothing (instance store-backed instances), so the
recommended practice is to create enough of them to comfortably handle your maximum
anticipated request volumes. For this example, the stack should have at least three load-based
instances.

Note

Make sure you have all three instance types distributed across multiple Availability Zones to
mitigate the impact of any service disruptions.

Best Practices: Managing Permissions

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You must have some form of AWS credentials to access your account's resources. The following are
some general guidelines for providing access to your employees.

Managing Permissions API Version 2013-02-18 423

AWS OpsWorks User Guide

• First and foremost, we recommend that you do not use your account's root credentials to access
AWS resources.

Instead, create IAM Identities for your employees and add permissions that provide appropriate
access. Each employee can then use their credentials to access resources.

• Employees should have permissions to access only those resources that they need to perform
their jobs.

For example, application developers need to access only the stacks that run their applications.

• Employees should have permissions to use only those actions that they need to perform their
jobs.

An application developer might need full permissions for a development stack and permissions
to deploy their apps to the corresponding production stack. They probably do not need
permissions to start or stop instances on the production stack, create or delete layers, and so on.

For more general information on managing permissions, see AWS Security Credentials.

You can use AWS OpsWorks Stacks or IAM to manage user permissions. Note that the two options
are not mutually exclusive; it is sometimes desirable to use both.

AWS OpsWorks Stacks Permissions Management

Each stack has a Permissions page that you can use to grant users permission to access the
stack and specify what actions they can take. You specify a user's permissions by setting one of
the following permissions levels. Each level represents an IAM policy that grants permissions for
a standard set of actions.

• Deny denies permission to interact with the stack in any way.

• Show grants permissions view the stack configuration but not modify the stack state in any
way.

• Deploy includes the Show permissions and also grants the user permissions to deploy apps.

• Manage includes the Deploy permissions and also allows the user to perform a variety of
stack management actions, such as creating or deleting instances and layers.

Managing Permissions API Version 2013-02-18 424

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

AWS OpsWorks User Guide

Note

The Manage permissions level does not grant permissions for a small number of high-
level AWS OpsWorks Stacks actions, including creating or cloning stacks. You must use
an IAM policy to grant those permissions.

In addition to setting permissions levels, you can also use a stack's Permissions page to specify
whether users have SSH/RDP and sudo/admin privileges on the stack's instances. For more
information about AWS OpsWorks Stacks permissions management, see Granting Per-Stack
Permissions. For more information about managing SSH access, see Managing SSH Access.

IAM Permissions Management

With IAM permissions management, you use the IAM console, API, or CLI to attach a JSON-
formatted policy to a user that explicitly specifies their permissions. For more information
about IAM permissions management, see What is IAM?.

Recommendation: Start with AWS OpsWorks Stacks Permissions management. If you need to
fine tune a user's permissions, or grant a user permissions that aren't included in the Manage
permissions levels, you can combine the two approaches. AWS OpsWorks Stacks then evaluates
both policies to determine the user's permissions.

Important

If a user has multiple policies with conflicting permissions, denial always wins. For example,
suppose that you attach an IAM policy to a user that allows access to a particular stack but
also use the stack's Permissions page to assign the user a Deny permissions level. The Deny
permissions level takes precedence, and the user will not be able to access the stack. For
more information, see IAM policy evaluation logic.

For example, suppose you want a user to be able to perform most operations on a stack, except for
adding or deleting layers.

• Specify a Manage permissions level, which allows the user to perform most stack management
actions, including creating and deleting layers.

Managing Permissions API Version 2013-02-18 425

https://docs.aws.amazon.com/IAM/latest/UserGuide/Introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS OpsWorks User Guide

• Attach the following customer-managed policy to the user, which denies permissions to use the
CreateLayer and DeleteLayer actions on that stack. You identify the stack by its Amazon Resource
Name (ARN), which can be found on the stack's Settings page.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "opsworks:CreateLayer",
 "opsworks:DeleteLayer"
],
 "Resource": "arn:aws:opsworks:*:*:stack/2f18b4cb-4de5-4429-a149-ff7da9f0d8ee/"
 }
]
}

For more information, including example policies, see Managing AWS OpsWorks Stacks Permissions
by Attaching an IAM Policy.

Note

Another way to use IAM policy is to set a condition that limits stack access to employees
with a specified IP address or address range. For example, to ensure that employees access
stacks only from inside your corporate firewall, set a condition that limits access to your
corporate IP address range. For more information, see Conditions.

Best Practices: Managing and Deploying Apps and Cookbooks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 426

https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateLayer.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_DeleteLayer.html
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#ARN
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#ARN
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks deploys apps and cookbooks to each new instance from a remote
repository. During an instance's lifetime, you often must update the apps or cookbooks on the
stack's online instances to add features, fix bugs, and so on. There are a variety of ways to manage
a stack's apps and cookbooks, but the approach you use should satisfy the following general
requirements:

• All production stack instances should have the same application and custom cookbook code,
with limited exceptions for purposes such as A/B testing.

• Deploying an update should not interrupt the site's operation, even if something goes wrong.

This section describes recommended practices for managing and deploying apps and custom
cookbooks.

Topics

• Maintaining Consistency

• Deploying Code to Online Instances

Maintaining Consistency

In general, you need to maintain tight control over the app or cookbook code that runs on
your production stack. Typically, all instances should run the currently approved version of the
code. Exceptions occur when updating your apps or cookbooks, as described later, and when
accommodating special cases, such as performing A/B testing.

App and cookbook code is deployed from a specified source repository to your stack's instances in
two ways:

• When you start an instance, AWS OpsWorks Stacks automatically deploys the current app and
cookbook code to the instance.

• For online instances, you must manually deploy the current app or cookbook code by running a
Deploy command (for apps) or an Update Custom Cookbooks command (for cookbooks).

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 427

AWS OpsWorks User Guide

Because there are two deployment mechanisms, it's critical that you manage your source code
carefully to avoid unintentionally running different code on different instances. For example, if you
deploy apps or cookbooks from a Git master branch, AWS OpsWorks Stacks deploys what is in that
branch at the time. If you update the code in the master branch and then start a new instance, that
instance will have a more recent version of the code than older instances. The more recent version
might not even be approved for production.

Recommendation: Amazon S3 Archives

To ensure that all your instances have the approved code version, we recommend deploying
your apps and cookbooks from an Amazon Simple Storage Service (Amazon S3) archive. This
guarantees that the code is a static artifact—a .zip or other archive file—that must be explicitly
updated. In addition, Amazon S3 is highly reliable, so you will rarely, if ever, be unable to access
the archive. To further ensure consistency, explicitly version each archive file by using a naming
convention or by using Amazon S3 versioning, which provides an audit trail and an easy way to
revert to an earlier version.

For example, you could create a deployment pipeline using a tool such as Jenkins. After the
code that you want to deploy has been committed and tested, create an archive file and upload
it to Amazon S3. All app deployments or cookbook updates will install the code in that archive
file and every instance will have the same code.

Recommendation: Git or Subversion Repositories

If you prefer to use a Git or Subversion repository, don't deploy from the master branch.
Instead, tag the approved version and specify that version as the app or cookbook source.

Deploying Code to Online Instances

AWS OpsWorks Stacks does not automatically deploy updated code to online instances. You must
perform that operation manually, which poses the following challenges:

• Deploying the update efficiently without compromising the site's ability to handle customer
requests during the deployment process.

• Handling an unsuccessful deployment, either because of problems with the deployed app or
cookbooks or problems with the deployment process itself.

The simplest approach is to run a default Deploy command (for apps) or Update Custom
Cookbooks command (for cookbooks), which deploys the update to every instance concurrently.

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 428

http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://jenkins.io/index.html

AWS OpsWorks User Guide

This approach is simple and fast, but there is no margin for error. If the deployment fails or the
updated code has any issues, every instance in your production stack could be affected, potentially
disrupting or disabling your site until you can fix the problem or roll back to the previous version.

Recommendation: Use a robust deployment strategy, which allows instances running the old
version of code to continue handling requests until you have verified that deployment was
successful and can confidently transfer all incoming traffic to the new version.

The following sections provide two examples of robust deployment strategies, followed by a
discussion of how to manage a backend database during deployment. For brevity, they describe
app updates, but you can use similar strategies for cookbooks.

Topics

• Using a Rolling Deployment

• Using Separate Stacks

• Managing a Backend Database

Using a Rolling Deployment

A rolling deployment updates an application on a stack's online application server instances in
multiple phases. With each phase, you update a subset of the online instances and verify that the
update is successful before starting the next phase. If you encounter problems, the instances that
are still running the old app version can continue to handle incoming traffic until you resolve the
issues.

The following example assumes that you are using the recommended practice of distributing your
stack's application server instances across multiple Availability Zones.

To perform a rolling deployment

1. On the Deploy App page, choose Advanced, choose a single application server instance, and
deploy the app to that instance.

If you want to be cautious, you can remove the instance from the load balancer before
deploying the app. This ensures that users won't encounter the updated application until you
have verified that it is working correctly. If you use Elastic Load Balancing, remove the instance
from the load balancer by using the Elastic Load Balancing console, CLI, or an SDK.

2. Verify that the updated app is working correctly and that the instance has acceptable
performance metrics.

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 429

http://docs.aws.amazon.com/opsworks/latest/userguide/load-balancer-elb.html

AWS OpsWorks User Guide

If you removed the instance from an Elastic Load Balancing load balancer, use the Elastic Load
Balancing console, CLI, or an SDK to restore it. The updated app version is now handling user
requests.

3. Deploy the update to the remainder of the instances in the Availability Zone and verify that
they are working correctly and have acceptable metrics.

4. Repeat step 3 for the stack's other Availability Zones, one zone at a time. If you want to be
especially cautious, repeat steps 1 – 3.

Note

If you use an Elastic Load Balancing load balancer, you can use its health check to verify
that the deployment was successful. However, set the ping path to an application that
checks dependencies and verifies that everything is working correctly, not a static file that
simply confirms that the application server is running.

Using Separate Stacks

Another approach to managing applications is to use a separate stack for each phase of the
application's lifecycle. The different stacks are sometimes referred to as environments. This
arrangement allows you to do development and testing on stacks that are not publicly accessible.
When you are ready to deploy an update, switch user traffic from the stack that hosts the current
application version to the stack that hosts the updated version.

Topics

• Using Development, Staging, and Production Stacks

• Using a Blue-Green Deployment Strategy

Using Development, Staging, and Production Stacks

The most common approach uses the following stacks.

Development Stack

Use a development stack for tasks such as implementing new features or fixing bugs. A
development stack is essentially a prototype production stack, with the same layers, apps,

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 430

http://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health-checks.html

AWS OpsWorks User Guide

resources, and so on that are included on your production stack. Because the development stack
usually does not have to handle the same load as the production stack, you typically can use
fewer or smaller instances.

Development stacks are not public facing; you control access as follows:

• Restrict network access by configuring the application server's or load balancer's security
group inbound rules to accept incoming requests only from specified IP addresses or address
ranges.

For example, limit HTTP, HTTPS, and SSH access to addresses in your corporate address
range.

• Control access to AWS OpsWorks Stacks stack management functionality by using the stack's
Permissions page.

For example, grant a Manage permissions level to the development team, and Show
permissions to all other employees.

Staging Stack

Use a staging stack to test and finalize candidates for an updated production stack. When you
have completed development, create a staging stack by cloning the development stack. Then
run your test suite on the staging stack and deploy updates to that stack to fix issues that arise.

Staging stacks also are not public facing; you control stack and network access the same way
you do for the development stack. Note that when you clone a development stack to create
a staging stack, you can clone the permissions granted by AWS OpsWorks Stacks permissions
management. However, cloning does not affect permissions granted by users' IAM policies. You
must use the IAM console, CLI, or an SDK to modify those permissions. For more information,
see Managing User Permissions.

Production Stack

The production stack is the public-facing stack that supports your current application. When
the staging stack has passed testing, you promote it to production and retire the old production
stack. For an example of how to do this, see Using a Blue-Green Deployment Strategy.

Note

Instead of using the AWS OpsWorks Stacks console to create stacks manually, create an
AWS CloudFormation template for each stack. This approach has the following advantages:

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 431

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

AWS OpsWorks User Guide

• Speed and convenience – When you launch the template, AWS CloudFormation
automatically creates the stack, including all the required instances.

• Consistency – Store the template for each stack in your source repository to ensure that
developers use the same stack for the same purpose.

Using a Blue-Green Deployment Strategy

A blue-green deployment strategy is one common way to efficiently use separate stacks to deploy
an application update to production.

• The blue environment is the production stack, which hosts the current application.

• The green environment is the staging stack, which hosts the updated application.

When you are ready to deploy the updated app to production, you switch user traffic from the blue
stack to the green stack, which becomes the new production stack. You then retire the old blue
stack.

The following example describes how to perform a blue-green deployment with AWS OpsWorks
Stacks stacks, in conjunction with Route 53 and a pool of Elastic Load Balancing load balancers.
Prior to making the switch, you should ensure the following:

• The application update on the green stack has passed testing and is ready for production.

• The green stack is identical to the blue stack except that it includes the updated app and is not
public facing.

Both stacks have the same permissions, the same number and type of instances in each layer, the
same time-based and load-based configuration, and so on.

• All of the green stack's 24/7 instances and scheduled time-based instances are online.

• You have a pool of Elastic Load Balancing load balancers that can be dynamically attached to a
layer in either stack and can be pre-warmed to handle the expected traffic volume.

• You have used the Route 53 weighted routing feature to create a record set in a hosted zone that
includes your pooled load balancers.

• You have assigned a nonzero weight to the load balancer that is attached to your blue stack's
application server layer and zero weight to the unused load balancers. This ensures that the blue
stack's load balancer handles all incoming traffic.

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 432

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro.html
https://aws.amazon.com/articles/1636185810492479#pre-warming
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html

AWS OpsWorks User Guide

To switch users to the green stack

1. Attach one of the pool's unused load balancers to the green stack's application server layer. In
some scenarios, such as when you expect flash traffic, or if you cannot configure a load test to
gradually increase traffic, pre-warm the load balancer to handle the expected traffic.

2. After all of the green stack's instances have passed the Elastic Load Balancing health check,
change the weights in the Route 53 record set so that the green stack's load balancer has a
nonzero weight and the blue stack's load balancer has a correspondingly reduced weight. We
recommend that you start by having the green stack handle a small percentage of requests,
perhaps 5%, with the blue stack handling the rest. You now have two production stacks, with
the green stack handling some of the incoming requests and the blue stack handling the
remainder.

3. Monitor the green stack's performance metrics. If they are acceptable, increase the green
stack's weight so that it handles perhaps 10% of the incoming traffic.

4. Repeat Step 3 until the green stack is handling approximately half of the incoming traffic. Any
issues should have surfaced by this point, so if the green stack is performing acceptably, you
can complete the process by reducing the blue stack's weight to zero. The green stack is now
the new blue stack and is handling all incoming traffic.

5. Detach the load balancer from the old blue stack's application server layer and return it to the
pool.

6. Although the old blue stack is no longer handling user requests, we recommend retaining it
for a while in case there are problems with the new blue stack. In that case, you can roll back
the update by reversing the procedure to direct incoming traffic back to the old blue stack.
When you are confident that the new blue stack is operating acceptably, shut down the old
blue stack.

Managing a Backend Database

If your application depends on a backend database, you will need to transition from the old
application to the new. AWS OpsWorks Stacks supports the following database options.

Amazon RDS Layer

With an Amazon Relational Database Service (Amazon RDS) layer, you create the RDS DB
instance separately and then register it with your stack. You can register an RDS DB instance
with only one stack at a time, but you can switch an RDS DB instance from one stack to another.

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 433

https://aws.amazon.com/articles/1636185810492479#pre-warming

AWS OpsWorks User Guide

AWS OpsWorks Stacks installs a file with the connection data on your application servers in a
format that easily can be used by your application. AWS OpsWorks Stacks also adds the database
connection information to the stack configuration and deployment attributes, which can be
accessed by recipes. You also can use JSON to provide connection data to applications. For more
information, see Connecting to a Database.

Updating an application that depends on a database poses two basic challenges:

• Ensuring that every transaction is properly recorded during the transition while also avoiding
race conditions between the new and old application versions.

• Performing the transition in a way that limits the impact on your site's performance and
minimizes or eliminates downtime.

When you use the deployment strategies described in this topic, you can't simply detach the
database from the old application and reattach it to the new one. Both versions of the application
run in parallel during the transition and must have access to the same data. The following
describes two approaches to managing the transition, both of which have advantages and
challenges.

Approach 1: Have both applications connect to the same database

Advantages

• There is no downtime during the transition.

One application gradually stops accessing the database while the other gradually takes
over.

• You don't have to synchronize data between two databases.

Challenges

• Both applications access the same database, so you must manage access to prevent data
loss or corruption.

• If you need to migrate to a new database schema, the old application version must be able
to use the new schema.

If you are using separate stacks, this approach is probably best suited to Amazon RDS because
the instance is not permanently tied to a particular stack and can be accessed by applications
running on different stacks. However, you can't register an RDS DB instance with more than one
stack at a time, so you must provide connection data to both applications, for example by using
JSON. For more information, see Using a Custom Recipe.

Managing and Deploying Apps and Cookbooks API Version 2013-02-18 434

AWS OpsWorks User Guide

If you use a rolling upgrade, the old and new application versions are hosted on the same stack,
so you can use either an Amazon RDS or MySQL layer.

Approach 2: Provide each application version with its own database

Advantages

• Each version has its own database, so the schemas don't have to be compatible.

Challenges

• Synchronizing the data between the two databases during the transition without losing or
corrupting data.

• Ensuring that your synchronization procedure doesn't cause significant downtime or
significantly degrade the site's performance.

If you are using separate stacks, each one has its own database. If you are using a rolling
deployment, you can attach two databases to the stack, one for each application. If the old and
updated applications do not have compatible database schemas, this approach is better.

Recommendation: In general, we recommend using an Amazon RDS layer as an application's
backend database because it is more flexible and can be used for any transition scenario. For more
information about how to handle transitions, see the Amazon RDS User Guide.

Packaging Cookbook Dependencies Locally

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can use Berkshelf to package your cookbook dependencies locally, upload the package to
Amazon S3, and modify your stack to use the package on Amazon S3 as a cookbook source.
Content delivered to Amazon S3 buckets might contain customer content. For more information
about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3
Bucket?.

Packaging Cookbook Dependencies Locally API Version 2013-02-18 435

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

The following walkthroughs describe how to pre-package your cookbooks and their dependencies
into a .zip file, and then use the .zip file as your cookbook source for Linux instances in AWS
OpsWorks Stacks. The first walkthrough describes how to package one cookbook. The second
walkthrough describes how to package multiple cookbooks.

Before you begin, install the Chef Development Kit (also known as Chef DK), which is an
assortment of tools built by the Chef community. You will need this to use the chef command-line
tool.

Packaging Dependencies Locally in Chef 12

In Chef 12 Linux, Berkshelf is no longer installed by default on stack instances. We recommend
that you install and use Berkshelf on a local development computer to package your cookbook
dependencies locally. Upload your package, with the dependencies included, to Amazon S3. Finally,
modify your Chef 12 Linux stack to use the uploaded package as a cookbook source. Be aware of
the following differences when you are packaging cookbooks in Chef 12.

1. On the local computer, create a cookbook by running the chef command line tool.

chef generate cookbook "server-app"

This command creates a cookbook, a Berksfile, a metadata.rb file, and a recipe directory,
and places them in a folder that has the same name as the cookbook. The following example
shows the structure of what is created.

server-app <-- the cookbook you've just created
 ### Berksfile
 ### metadata.rb
 ### recipes

2. In a text editor, edit the Berksfile to point to cookbooks on which the server-app cookbook
will depend. In our example, we want server-app to depend on the java cookbook from the
Chef Supermarket. We are specifying the version 1.50.0 or newer minor version, but you can
enter any published version in the single quotation marks. Save your changes and close the
file.

source 'https://supermarket.chef.io'
cookbook 'java', '~> 1.50.0'

3. Edit the metadata.rb file to add the dependency. Save your changes and close the file.

Packaging Cookbook Dependencies Locally API Version 2013-02-18 436

https://downloads.chef.io/chef-dk/
https://supermarket.chef.io/cookbooks/java

AWS OpsWorks User Guide

depends 'java' , '~> 1.50.0'

4. Change to the server-app cookbook directory that Chef created for you, and then run
the package command to create a tar file of the cookbook. If you are packaging multiple
cookbooks, you want to run this command at the root directory in which all cookbooks are
stored. To package a single cookbook, run this command at the cookbook directory level. In
this example, we run this command in the server-app directory.

berks package cookbooks.tar.gz

The output resembles the following. The tar.gz file is created in your local directory.

Cookbook(s) packaged to /Users/username/tmp/berks/cookbooks.tar.gz

5. In the AWS CLI, upload the package you just created to Amazon S3. Make a note of the new
URL of the cookbook package after you have uploaded it to S3; you'll need this URL for your
stack settings.

aws s3 cp cookbooks.tar.gz s3://bucket-name/

The output resembles the following.

upload: ./cookbooks.tar.gz to s3://bucket-name/cookbooks.tar.gz

6. In AWS OpsWorks Stacks, modify your stack to use the package that you uploaded as the
cookbook source.

a. Set the Use custom Chef cookbooks setting to Yes.

b. Set Repository type to S3 Archive.

c. In Repository URL, paste the URL of the cookbook package that you uploaded in step 5.

Save your stack changes.

Packaging Dependencies Locally for One Cookbook

1. On the local computer, create a cookbook by using the chef command line tool:

Packaging Cookbook Dependencies Locally API Version 2013-02-18 437

https://docs.aws.amazon.com/opsworks/latest/userguide/workingcookbook-installingcustom-enable.html

AWS OpsWorks User Guide

chef generate cookbook "server-app"

This command creates a cookbook and a Berksfile, and places them in a folder that has the
same name as the cookbook.

2. Change to the cookbook directory that Chef created for you, and then package everything by
running the following command:

berks package cookbooks.tar.gz

The output looks like this:

Cookbook(s) packaged to /Users/username/tmp/berks/cookbooks.tar.gz

3. In the AWS CLI, upload the package you just created to Amazon S3:

aws s3 cp cookbooks.tar.gz s3://bucket-name/

The output looks like this:

upload: ./cookbooks.tar.gz to s3://bucket-name/cookbooks.tar.gz

4. In AWS OpsWorks Stacks, modify your stack to use the package that you uploaded as the
cookbook source.

Packaging Dependencies Locally for Multiple Cookbooks

This example creates two cookbooks and packages the dependencies for them.

1. On the local computer, run the following chef commands to generate two cookbooks:

chef generate cookbook "server-app"
chef generate cookbook "server-utils"

In this example, the server-app cookbook performs Java configurations, so we need to add a
dependency on Java.

2. Edit server-app/metadata.rb to add a dependency on the community Java cookbook:

Packaging Cookbook Dependencies Locally API Version 2013-02-18 438

https://docs.aws.amazon.com/opsworks/latest/userguide/workingcookbook-installingcustom-enable.html

AWS OpsWorks User Guide

maintainer "The Authors"
maintainer_email "you@example.com"
license "all_rights"
description "Installs/Configures server-app"
long_description "Installs/Configures server-app"
version "0.1.0"
depends "java"

3. Tell Berkshelf what to package by editing the Berksfile file in the cookbook root directory as
follows:

source "https://supermarket.chef.io"
cookbook "server-app", path: "./server-app"
cookbook "server-utils", path: "./server-utils"

Your file structure now looks like this:

 ..
 ### Berksfile
 ### server-app
 ### server-utils

4. Finally, create a zip package, upload it to Amazon S3, and modify your AWS OpsWorks Stacks
stack to use the new cookbook source. To do this, follow steps 2 through 4 in Packaging
Dependencies Locally for One Cookbook.

Additional resources

For more information about packaging cookbook dependencies, see the following.

• How to Package Cookbook Dependencies Locally with Berkshelf on the AWS DevOps Blog

• Linux Chef 12 with Berkshelf on the AWS OpsWorks forums

• Berkshelf in Chef 12 on the AWS OpsWorks forums

• Installing Custom Cookbooks in this guide

• Cookbook Repositories in this guide

Packaging Cookbook Dependencies Locally API Version 2013-02-18 439

https://aws.amazon.com/blogs/devops/how-to-package-cookbook-dependencies-locally-with-berkshelf/
https://forums.aws.amazon.com/thread.jspa?threadID=221131
https://forums.aws.amazon.com/message.jspa?messageID=694464

AWS OpsWorks User Guide

Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The stack is the top-level AWS OpsWorks Stacks entity. It represents a set of instances that you
want to manage collectively, typically because they have a common purpose such as serving PHP
applications. In addition to serving as a container, a stack handles tasks that apply to the group of
instances as a whole, such as managing applications and cookbooks.

For example, a stack whose purpose is to serve web applications might look something like the
following:

• A set of application server instances, each of which handles a portion of the incoming traffic.

• A load balancer instance, which takes incoming traffic and distributes it across the application
servers.

• A database instance, which serves as a back-end data store for the application servers.

A common practice is to have multiple stacks that represent different environments. A typical set
of stacks consists of:

• A development stack to be used by developers to add features, fix bugs, and perform other
development and maintenance tasks.

• A staging stack to verify updates or fixes before exposing them publicly.

• A production stack, which is the public-facing version that handles incoming requests from users.

This section describes the basics of working with stacks.

Topics

Stacks API Version 2013-02-18 440

AWS OpsWorks User Guide

• Migrating stacks from Amazon EC2-Classic to a VPC

• Create a New Stack

• Running a Stack in a VPC

• Update a Stack

• Clone a Stack

• Run AWS OpsWorks Stacks Stack Commands

• Using Custom JSON

• Delete a Stack

Migrating stacks from Amazon EC2-Classic to a VPC

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This topic describes how to migrate an AWS OpsWorks Stacks stack from the Amazon EC2 Classic
network platform to an Amazon Virtual Private Cloud (Amazon VPC) network.

If you created your AWS account before 2013-12-04, you might have support for EC2-Classic in
some AWS Regions. Some Amazon EC2 resources and features, such as enhanced networking and
newer instance types, require a virtual private cloud (VPC). Some resources can be shared between
EC2-Classic and a VPC, while some can't. To avoid disruptions to your service, we recommend that
you migrate your AWS OpsWorks Stacks stacks to a VPC.

Topics

• Prerequisites

• Migrate an AWS OpsWorks Stacks stack to a VPC

• See also

Migrate stacks from EC2-Classic API Version 2013-02-18 441

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS OpsWorks User Guide

Prerequisites

Before you begin, you must have a VPC that meets AWS OpsWorks Stacks configuration
requirements. To configure private subnets in your VPC for AWS OpsWorks Stacks, see Running a
Stack in a VPC in this guide. You can create a custom VPC by using the Amazon VPC management
console. For more information, see Amazon VPC console wizard configurations and VPCs and
subnets in the Amazon Virtual Private Cloud User Guide.

To continue with migration, you'll need the VPC ID and the subnet ID that you want to use.

Migrate an AWS OpsWorks Stacks stack to a VPC

First, clone an existing EC2-Classic stack by using the AWS OpsWorks Stacks console or API. Then,
move the existing stack's resources to the new stack. Start the new instances in the cloned stack,
and deploy apps. Verify that the new stack is working. Finally, delete the EC2-Classic resources
from the EC2-Classic stack, and then delete the old stack.

1. Clone your existing EC2-Classic stack into your VPC. Cloning the stack copies stack settings,
layers, apps, users, and user permissions to the new stack. For more information about how to
clone a stack, see Clone a Stack in this guide.

You can also clone a stack by using the AWS OpsWorks Stacks API. When you clone a stack by
using the AWS CLI or AWS SDKs, set the value of the VpcId parameter to the ID of the VPC
that you created in Prerequisites. For more information, see CloneStack in the AWS OpsWorks
Stacks API Reference.

2. Create new instances in the layers of the cloned stack. Be sure to specify the ID of the subnet
you created in Prerequisites. For more information about how to create instances in a stack,
see Adding an Instance to a Layer in this guide.

3. Migrate your classic resources, such as EC2 security groups, Elastic Load Balancing load
balancers, and Elastic IP addresses to your VPC, and then associate them with the cloned stack.
For more information, see Migrate your resources to a VPC in the Amazon EC2 User Guide.

4. Register Amazon EBS volumes and Amazon RDS instances with the cloned stack. For more
information about registering resources with a stack, see Registering Resources with a Stack in
this guide.

Amazon EBS volumes aren't associated with a VPC, and you can use them across instances in
both EC2-Classic stacks and stacks in a VPC. You can register Amazon RDS instances in EC2-
Classic with both EC2-Classic stacks and stacks in a VPC.

Migrate stacks from EC2-Classic API Version 2013-02-18 442

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_wizard.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_wizard.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_wizard.html
https://docs.aws.amazon.com/opsworks/latest/APIReference/API_CloneStack.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html#full-migrate

AWS OpsWorks User Guide

5. Start instances in the cloned stack, and then move a small percentage of your workloads to
the cloned stack. For example, move a small percentage of traffic to the Elastic Load Balancing
load balancers in the cloned stack. If you are using Amazon Route 53, see Routing traffic to an
ELB load balancer in the Amazon Route 53 Developer Guide.

Route only a small percentage of traffic until you are sure that the new stack is functional and
supports your applications. Let the new stack work with a small percentage of traffic for a trial
period, such as a week. After you verify that the new stack is working, route remaining traffic
to the stack.

6. After you are sure the cloned stack is working, move the remainder of your production
traffic or workloads to the cloned stack. You can now stop instances in the EC2-Classic stack.
We recommend that you keep the old stack available for several weeks, so you can move
workloads back to the old stack if any issues occur with the new stack in the weeks after the
migration.

7. When the new stack has been working for several weeks, delete instances in the EC2-Classic
stack. For more information about how to delete instances, see Deleting AWS OpsWorks Stacks
Instances in this guide.

Important

Do not use the Amazon EC2 console or API to stop or delete AWS OpsWorks instances.

8. Delete apps in the EC2-Classic stack. For more information about how to delete apps, see To
delete the app from the stack in this guide.

9. Delete the EC2-Classic stack. For more information about how to delete a stack, see Delete a
Stack in this guide.

See also

• Migrating from EC2-Classic to a VPC

• Debugging and Troubleshooting Guide

• Running a Stack in a VPC

Migrate stacks from EC2-Classic API Version 2013-02-18 443

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-elb-load-balancer.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-elb-load-balancer.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html#full-migrate

AWS OpsWorks User Guide

Create a New Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To create a new stack, on the AWS OpsWorks Stacks dashboard, click Add stack. You can then use
the Add Stack page to configure the stack. When you are finished, click Add Stack.

Topics

• Choose the Type of Stack to Create

• Basic Options

• Advanced Options

Choose the Type of Stack to Create

Before you create a stack, you must decide the type of stack that you want to create. For help, see
the following table.

If you want to create... Create this type of stack if
you want to...

To learn how, follow these
instructions:

A sample stack Explore the basics of AWS
OpsWorks with a Linux-based
Chef 12 stack and a sample
Node.js app.

Getting Started: Sample

A Linux-based Chef 12 stack Create a Linux-based stack
that uses the latest version
of Chef that AWS OpsWorks

Getting Started: Linux

Create a New Stack API Version 2013-02-18 444

AWS OpsWorks User Guide

If you want to create... Create this type of stack if
you want to...

To learn how, follow these
instructions:

supports. Choose this option
if you are an advanced
Chef user who would like
to benefit from the large
selection of community
 cookbooks or write your own
custom cookbooks. For more
information, see Chef 12
Linux.

A Windows-based Chef 12.2
stack

Create a Windows-based
stack.

Getting Started: Windows

A Linux-based Chef 11.10
stack

Create this stack if your
organization requires the use
of Chef 11.10 with Linux for
backward compatibility.

Getting Started with Chef 11
Linux Stacks

Basic Options

The Add Stack page has the following basic options.

Stack name

(Required) A name that is used to identify the stack in the AWS OpsWorks Stacks console. The
name does not need to be unique. AWS OpsWorks Stacks also generates a stack ID, which is a
GUID that uniquely identifies the stack. For example, with AWS CLI commands such as update-
stack, you use the stack ID to identify the particular stack. After you have created a stack, you
can find it's ID by choosing Stack in the navigation pane and then choosing Stack Settings. The
ID is labelled OpsWorks ID.

Region

(Required) The AWS region where the instances will be launched.

Create a New Stack API Version 2013-02-18 445

http://aws.amazon.com/documentation/cli/
http://docs.aws.amazon.com/cli/latest/reference/opsworks/update-stack.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/update-stack.html

AWS OpsWorks User Guide

VPC

(Optional) The ID of the VPC that the stack is to be launched into. All instances will be launched
into this VPC, and you cannot change the ID later.

• If your account supports EC2 Classic, you can specify No VPC (the default value) if you don't
want to use a VPC.

For more information about EC2 Classic, see Supported Platforms.

• If your account does not support EC2 Classic, you must specify a VPC.

The default setting is Default VPC, which combines the ease of use of EC2 Classic with the
benefits of VPC networking features. If you want to run your stack in a regular VPC, you must
create it by using the VPC console, API, or CLI. For more information on how to create a VPC
for an AWS OpsWorks Stacks stack, see Running a Stack in a VPC. For general information,
see Amazon Virtual Private Cloud.

Default Availability Zone/Default subnet

(Optional) This setting depends on whether you are creating your stack in a VPC:

• If your account supports EC2 Classic and you set VPC to No VPC, this setting is labeled
Default Availability Zone, which specifies the default AWS Availability Zone where the
instances will be launched.

• If your account does not support EC2 Classic or you choose to specify a VPC, this field is
labeled Default subnet, which specifies the default subnet where the instances will be
launched. You can launch an instance in other subnets by overriding this value when you
create the instance. Each subnet is associated with one Availability Zone.

You can have AWS OpsWorks Stacks launch an instance in a different Availability Zone or subnet
by overriding this setting when you create the instance.

For more information about how to run a stack in a VPC, see Running a Stack in a VPC.

Default operating system

(Optional) The operating system that is installed by default on each instance. You have the
following options:

• One of the built-in Linux operating systems.

• Microsoft Windows Server 2012 R2.

• A custom AMI based on one of the supported operating systems.

Create a New Stack API Version 2013-02-18 446

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://console.aws.amazon.com/vpc/
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/Welcome.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html

AWS OpsWorks User Guide

If you select Use custom AMI, the operating system is determined by a custom AMI that you
specify when you create instances. For more information, see Using Custom AMIs.

For more information on the available operating systems, see AWS OpsWorks Stacks operating
systems.

Note

You can override the default operating system when you create an instance. However,
you cannot override a Linux operating system to specify Windows, or Windows to
specify a Linux operating system.

Default SSH key

(Optional) An Amazon EC2 key pair from the stack's region. The default value is none. If you
specify a key pair, AWS OpsWorks Stacks installs the public key on the instance.

• With Linux instances, you can use the private key with an SSH client to log in to the stack's
instances.

For more information, see Logging In with SSH.

• With Windows instances, you can use the private key with the Amazon EC2 console or CLI to
retrieve an instance's Administrator password.

You can then use that password with an RDP client to log in to the instance as Administrator.
For more information, see Logging In with RDP.

For more information on how to manage SSH keys, see Managing SSH Access.

Note

You can override this setting by specifying a different key pair, or no key pair, when you
create an instance.

Chef version

This shows the Chef version that you have chosen.

Create a New Stack API Version 2013-02-18 447

AWS OpsWorks User Guide

For more information on Chef versions, see Chef Versions.

Use custom Chef cookbooks

Whether to install your custom Chef cookbooks on the stack's instances.

For Chef 12, the default setting is Yes. For Chef 11, The default setting is No. The Yes option
displays several additional settings that provide AWS OpsWorks Stacks with the information it
needs to deploy the custom cookbooks from their repository to the stack's instances, such as
the repository URL. The details depend on which repository you use for your cookbooks. For
more information, see Installing Custom Cookbooks.

Stack color

(Optional) The hue used to represent the stack on the AWS OpsWorks Stacks console. You can
use different colors for different stacks to help distinguish, for example, among development,
staging, and production stacks.

Stack tags

You can apply tags at the stack and layer level. When you create a tag, you are applying the
tag to every resource within the tagged structure. For example, if you apply a tag to a stack,
you are applying the tag to every layer, and within each layer, to every instance, Amazon EBS
volume, or Elastic Load Balancing load balancer in the layer. For more information about how to
activate your tags and use them to track and manage the costs of your AWS OpsWorks Stacks
resources, see Using Cost Allocation Tags and Activating User-Defined Cost Allocation Tags
in the Billing and Cost Management User Guide. For more information about tagging in AWS
OpsWorks Stacks, see Tags.

Advanced Options

For advanced settings, click Advanced >> to display the Advanced options and Security sections.

The Advanced options section has the following options:

Default root device type

Determines the type of storage to be used for the instance's root volume. For more information,
see Storage.

• Linux stacks use an Amazon EBS-backed root volume by default but you can also specify an
instance store-backed root volume.

Create a New Stack API Version 2013-02-18 448

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/activating-tags.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html

AWS OpsWorks User Guide

• Windows stacks must use an Amazon EBS-backed root volume.

IAM role

(Optional) The stack's AWS Identity and Access Management (IAM) role, which AWS OpsWorks
Stacks uses to interact with AWS on your behalf.

Default IAM instance profile

(Optional) The default IAM role to be associated with the stack's Amazon EC2 instances. This
role grants permissions to applications running on the stack's instances to access AWS resources
such as S3 buckets.

• To grant specific permissions to applications, choose an existing instance profile (role) that
has the appropriate policies.

• Initially, the profile's role grants no permissions, but you can use the IAM console, API, or CLI
to attach appropriate policies. For more information, see Specifying Permissions for Apps
Running on EC2 instances.

API endpoint region

This setting takes its value from the region that you choose in the stack's basic settings. You can
choose from the following regional endpoints.

• US East (N. Virginia) Region

• US East (Ohio) Region

• US West (Oregon) Region

• US West (N. California) Region

• Canada (Central) Region (API only; not available for stacks created in the AWS Management
Console

• Asia Pacific (Mumbai) Region

• Asia Pacific (Singapore) Region

• Asia Pacific (Sydney) Region

• Asia Pacific (Tokyo) Region

• Asia Pacific (Seoul) Region

• Europe (Frankfurt) Region

• Europe (Ireland) Region

• Europe (London) Region

• Europe (Paris) Region

Create a New Stack API Version 2013-02-18 449

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html

AWS OpsWorks User Guide

• South America (São Paulo) Region

Stacks that are created in one API endpoint are not available in another API endpoint. Because
AWS OpsWorks Stacks users are also region-specific, if you want AWS OpsWorks Stacks users in
one of these endpoint regions to manage stacks in another endpoint region, you must import
the users to the endpoint with which the stacks are associated. For more information about
importing users, see Importing Users into AWS OpsWorks Stacks.

Hostname theme

(Optional) A string that is used to generate a default hostname for each instance. The default
value is Layer Dependent, which uses the short name of the instance's layer and appends a
unique number to each instance. For example, the role-dependent Load Balancer theme root is
"lb". The first instance you add to the layer is named "lb1", the second "lb2", and so on.

OpsWorks Agent version

(Optional) Whether to automatically update the AWS OpsWorks Stacks agent when a new
version is available, or use a specified agent version and manually update it. This feature is
available on Chef 11.10 and Chef 12 stacks. The default setting is Manual update, set to the
latest agent version.

AWS OpsWorks Stacks installs an agent on each instance that communicates with the service
and handles tasks such as initiating Chef runs in response to lifecycle events. This agent is
regularly updated. You have two options for specifying the agent version for your stack.

• Auto-update – AWS OpsWorks Stacks automatically installs each new agent version on the
stack's instances as soon as the update is available.

• Manual update – AWS OpsWorks Stacks installs the specified agent version on the stack's
instances.

AWS OpsWorks Stacks posts a message on the stack page when a new agent version is
available, but does not update the stack's instances. To update the agent, you must manually
update the stack settings to specify a new agent version and AWS OpsWorks Stacks will then
update the stack's instances.

You can override the default OpsWorks Agent Version setting for a particular instance by
updating its configuration. In that case, the instance's setting takes precedence. For example,
suppose that the default setting is Auto-update but you specify Manual update for a particular
instance. When AWS OpsWorks Stacks releases a new agent version, it will automatically update
all of the stack's instances except for the one that is set to Manual update. To install a new

Create a New Stack API Version 2013-02-18 450

http://docs.aws.amazon.com/opsworks/latest/userguide/opsworks-security-users-manage-import.html

AWS OpsWorks User Guide

agent version on that instance, you must manually update its configuration and specify a new
version.

Note

The console displays abbreviated agent version numbers. To see full version numbers,
call the AWS CLI describe-agent-versions command or the equivalent API or SDK
methods. They return the full version numbers for the available agent versions.

Custom JSON

(Optional) One or more custom attributes, formatted as a JSON structure. These attributes
are merged into the stack configuration and deployment attributes that are installed on every
instance and can be used by recipes. You can use custom JSON, for example, to customize
configuration settings by overriding the built-in attributes that specify the default settings. For
more information, see Using Custom JSON.

Security has one option, Use OpsWorks security groups, which allows you to specify whether to
associate the AWS OpsWorks Stacks built-in security groups with the stack's layers.

AWS OpsWorks Stacks provides a standard set of built-in security groups—one for each layer—
which are associated with layers by default. Use OpsWorks security groups allows you to instead
provide your own custom security groups. For more information, see Using Security Groups.

Use OpsWorks security groups has the following settings:

• Yes - AWS OpsWorks Stacks automatically associates the appropriate built-in security group with
each layer (default setting).

You can associate additional security groups with a layer after you create it but you cannot
delete the built-in security group.

• No - AWS OpsWorks Stacks does not associate built-in security groups with layers.

You must create appropriate EC2 security groups and associate a security group with each layer
that you create. However, you can still manually associate a built-in security group with a layer
on creation; custom security groups are required only for those layers that need custom settings.

Note the following:

Create a New Stack API Version 2013-02-18 451

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-agent-versions.html

AWS OpsWorks User Guide

• If Use OpsWorks security groups is set to Yes, you cannot restrict a default security group's
port access settings by adding a more restrictive security group to a layer. With multiple security
groups, Amazon EC2 uses the most permissive settings. In addition, you cannot create more
restrictive settings by modifying the built-in security group configuration. When you create a
stack, AWS OpsWorks Stacks overwrites the built-in security groups' configurations with the
standard settings, so any changes that you make will be lost the next time you create a stack. If
a layer requires more restrictive security group settings than the built-in security group, set Use
OpsWorks security groups to No, create custom security groups with your preferred settings,
and assign them to the layers on creation.

• If you accidentally delete an AWS OpsWorks Stacks security group and want to recreate it,
it must an exact duplicate of the original, including the group name's capitalization. Instead
of recreating the group manually, we recommend having AWS OpsWorks Stacks perform the
task for you. Just create a new stack in the same AWS region—and VPC, if present—and AWS
OpsWorks Stacks will automatically recreate all the built-in security groups, including the one
that you deleted. You can then delete the stack if you don't have any further use for it; the
security groups will remain.

Running a Stack in a VPC

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can control user access to a stack's instances by creating it in a virtual private cloud (VPC). For
example, you might not want users to have direct access to your stack's app servers or databases
and instead require that all public traffic be channeled through an elastic load balancer.

The basic procedure for running a stack in a VPC is:

1. Create an appropriately configured VPC, by using the Amazon VPC console or API, or an AWS
CloudFormation template.

Running a Stack in a VPC API Version 2013-02-18 452

AWS OpsWorks User Guide

2. Specify the VPC ID when you create the stack.

3. Launch the stack's instances in the appropriate subnet.

The following briefly describes how VPCs work in AWS OpsWorks Stacks.

Important

If you use the VPC Endpoint feature, be aware that that each instance in the stack must be
able to complete the following actions from Amazon Simple Storage Service (Amazon S3):

• Install the instance agent.

• Install assets, such as Ruby.

• Upload Chef run logs.

• Retrieve stack commands.

To enable these actions, you must ensure that the stack's instances have access to the
following buckets that match the stack's region. Otherwise, the preceding actions will fail.
For Chef 12 Linux and Chef 12.2 Windows, the buckets are as follows.

Agent Buckets Asset Buckets Log Buckets DNA Buckets

• opsworks-
instance-agent-
sa-east-1

• opsworks-
instance-agent-
ap-south-1

• opsworks-
instance-agent-
ap-northeast-1

• opsworks-
instance-agent-
ap-northeast-2

• opsworks-
instance-assets-
us-east-2

• opsworks-
instance-assets-
us-east-1

• opsworks-
instance-assets-
ap-south-1

• opsworks-
instance-assets-
ap-northeast-1

• opsworks-us-
east-2-log

• opsworks-us-
east-1-log

• opsworks-ap-
south-1-log

• opsworks-ap-
northeast-1-log

• opsworks-ap-
northeast-2-log

• opsworks-ap-
southeast-1-log

• opsworks-ap-
southeast-2-log

• opsworks-us-
east-2-dna

• opsworks-us-
east-1-dna

• opsworks-ap-
south-1-dna

• opsworks-ap-
northeast-1-dna

• opsworks-ap-
northeast-2-dna

• opsworks-ap-
southeast-1-dna

• opsworks-ap-
southeast-2-dna

Running a Stack in a VPC API Version 2013-02-18 453

AWS OpsWorks User Guide

Agent Buckets Asset Buckets Log Buckets DNA Buckets

• opsworks-
instance-agent-
ap-southeast-1

• opsworks-
instance-agent-
ap-southeast-2

• opsworks-
instance-agent-
ca-central-1

• opsworks-
instance-agent-
eu-central-1

• opsworks-
instance-agent-
eu-west-1

• opsworks-
instance-agent-
eu-west-2

• opsworks-
instance-agent-
eu-west-3

• opsworks-
instance-agent-
us-east-1

• opsworks-
instance-agent-
us-east-2

• opsworks-
instance-agent-
us-west-1

• opsworks-
instance-assets-
ap-northeast-2

• opsworks-
instance-assets-
ap-southeast-1

• opsworks-
instance-assets-
ap-southeast-2

• opsworks-
instance-assets-
ca-central-1

• opsworks-
instance-assets-
eu-central-1

• opsworks-
instance-assets-
eu-west-1

• opsworks-
instance-assets-
eu-west-2

• opsworks-
instance-assets-
eu-west-3

• opsworks-
instance-assets-
sa-east-1

• opsworks-
instance-assets-
us-west-1

• opsworks-ca-
central-1-log

• opsworks-eu-
central-1-log

• opsworks-eu-
west-1-log

• opsworks-eu-
west-2-log

• opsworks-eu-
west-3-log

• opsworks-sa-
east-1-log

• opsworks-us-
west-1-log

• opsworks-us-
west-2-log

• opsworks-ca-
central-1-dna

• opsworks-eu-
central-1-dna

• opsworks-eu-
west-1-dna

• opsworks-eu-
west-2-dna

• opsworks-eu-
west-3-dna

• opsworks-sa-
east-1-dna

• opsworks-us-
west-1-dna

• opsworks-us-
west-2-dna

Running a Stack in a VPC API Version 2013-02-18 454

AWS OpsWorks User Guide

Agent Buckets Asset Buckets Log Buckets DNA Buckets

• opsworks-
instance-agent-
us-west-2

• opsworks-
instance-assets-
us-west-2

For Chef 11.10 and earlier versions for Linux, the buckets are as follows. Chef 11.4 stacks
are not supported in regional endpoints outside the US East (N. Virginia) Region.

Running a Stack in a VPC API Version 2013-02-18 455

AWS OpsWorks User Guide

Agent Buckets Asset Buckets Log Buckets DNA Buckets

• opsworks-
instance-agent-
us-east-2

• opsworks-
instance-agent-
us-east-1

• opsworks-
instance-agent-
ap-south-1

• opsworks-
instance-agent-
ap-northeast-1

• opsworks-
instance-agent-
ap-northeast-2

• opsworks-
instance-agent-
ap-southeast-1

• opsworks-
instance-agent-
ap-southeast-2

• opsworks-
instance-agent-
ca-central-1

• opsworks-
instance-agent-
eu-central-1

• opsworks-
instance-agent-
eu-west-1

• opsworks-
instance-assets-
us-east-2

• opsworks-
instance-assets-
us-east-1

• opsworks-
instance-assets-
ap-south-1

• opsworks-
instance-assets-
ap-northeast-1

• opsworks-
instance-assets-
ap-northeast-2

• opsworks-
instance-assets-
ap-southeast-1

• opsworks-
instance-assets-
ap-southeast-2

• opsworks-
instance-assets-
ca-central-1

• opsworks-
instance-assets-
eu-central-1

• opsworks-
instance-assets-
eu-west-1

• prod_stage-log • prod_stage-dna

Running a Stack in a VPC API Version 2013-02-18 456

AWS OpsWorks User Guide

Agent Buckets Asset Buckets Log Buckets DNA Buckets

• opsworks-
instance-agent-
eu-west-2

• opsworks-
instance-agent-
eu-west-3

• opsworks-
instance-agent-
us-east-1

• opsworks-
instance-agent-
us-west-1

• opsworks-
instance-agent-
us-west-2

• opsworks-
instance-assets-
eu-west-2

• opsworks-
instance-assets-
eu-west-3

• opsworks-
instance-assets-
sa-east-1

• opsworks-
instance-assets-
us-west-1

• opsworks-
instance-assets-
us-west-2

For more information, see VPC Endpoints.

Note

For AWS OpsWorks Stacks to connect to the VPC endpoints that you enable, you must also
configure routing for your NAT or public IP, as the AWS OpsWorks Stacks agent still requires
access to the public endpoint.

Topics

• VPC Basics

• Create a VPC for an AWS OpsWorks Stacks Stack

Running a Stack in a VPC API Version 2013-02-18 457

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html

AWS OpsWorks User Guide

VPC Basics

For a detailed discussion of VPCs, see Amazon Virtual Private Cloud. Briefly, a VPC consists of one
or more subnets, each of which contains one or more instances. Each subnet has an associated
routing table that directs outbound traffic based on its destination IP address.

• Instances within a VPC can communicate with each other by default, regardless of their subnet.
However, changes to network access control lists (ACLs), security group policies, or using static IP
addresses can break this communication.

• Subnets whose instances can communicate with the Internet are referred to as public subnets.

• Subnets whose instances can communicate only with other instances in the VPC and cannot
communicate directly with the Internet are referred to as private subnets.

AWS OpsWorks Stacks requires the VPC to be configured so that every instance in the stack,
including instances in private subnets, has access to the following endpoints:

• One of the AWS OpsWorks Stacks service endpoints listed in the "Region Support" section of
Getting Started with AWS OpsWorks Stacks.

• One of the following instance service endpoints, used by the AWS OpsWorks Stacks agent. The
agent runs on managed customer instances to exchange data with the service.

• opsworks-instance-service.us-east-2.amazonaws.com

• opsworks-instance-service.us-east-1.amazonaws.com

• opsworks-instance-service.us-west-1.amazonaws.com

• opsworks-instance-service.us-west-2.amazonaws.com

• opsworks-instance-service.ap-south-1.amazonaws.com

• opsworks-instance-service.ap-northeast-1.amazonaws.com

• opsworks-instance-service.ap-northeast-2.amazonaws.com

• opsworks-instance-service.ap-southeast-1.amazonaws.com

• opsworks-instance-service.ap-southeast-2.amazonaws.com

• opsworks-instance-service.ca-central-1.amazonaws.com

• opsworks-instance-service.eu-central-1.amazonaws.com

• opsworks-instance-service.eu-west-1.amazonaws.com

• opsworks-instance-service.eu-west-2.amazonaws.com

• opsworks-instance-service.eu-west-3.amazonaws.com

Running a Stack in a VPC API Version 2013-02-18 458

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html

AWS OpsWorks User Guide

• Amazon S3

• Any package repositories that your operating system depends on, such as the Amazon Linux or
Ubuntu Linux repositories.

• Your app and custom cookbook repositories.

There are a variety of ways to configure a VPC to provide this connectivity. The following is a
simple example of how you could configure a VPC for an AWS OpsWorks Stacks app server stack.

This VPC has several components:

Subnets

The VPC has two subnets, one public and one private.

• The public subnet contains a load balancer and a network address translation (NAT) device,
which can communicate with external addresses and with the instances in the private subnet.

Running a Stack in a VPC API Version 2013-02-18 459

AWS OpsWorks User Guide

• The private subnet contains the application servers, which can communicate with the NAT
and load balancer in the public subnet but cannot communicate directly with external
addresses.

Internet gateway

The Internet gateway allows instances with public IP addresses, such as the load balancer, to
communicate with addresses outside the VPC.

Load balancer

The Elastic Load Balancing load balancer takes incoming traffic from users, distributes it to the
app servers in the private subnet, and returns the responses to users.

NAT

The (NAT) device provides the app servers with limited Internet access, which is typically used
for purposes such as downloading software updates from an external repository. All AWS
OpsWorks Stacks instances must be able to communicate with AWS OpsWorks Stacks and with
the appropriate Linux repositories. One way to handle this issue is to put a NAT device with
an associated Elastic IP address in a public subnet. You can then route outbound traffic from
instances in the private subnet through the NAT.

Note

A single NAT instance creates a single point of failure in your private subnet's outbound
traffic. You can improve reliability by configuring the VPC with a pair of NAT instances
that take over for each other if one fails. For more information, see High Availability for
Amazon VPC NAT Instances. You can also use a NAT gateway. For more information, see
NAT in the Amazon VPC User Guide.

The optimal VPC configuration depends on your AWS OpsWorks Stacks stack. The following are
a few examples of when you might use certain VPC configurations. For examples of other VPC
scenarios, see Scenarios for Using Amazon VPC.

Working with one instance in a public subnet

If you have a single-instance stack with no associated private resources—such as an Amazon
RDS instance that should not be publicly accessible—you can create a VPC with one public
subnet and put the instance in that subnet. If you are not using a default VPC, you must have

Running a Stack in a VPC API Version 2013-02-18 460

http://aws.amazon.com/articles/6079781443936876
http://aws.amazon.com/articles/6079781443936876
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat.html
https://docs.aws.amazon.com/vpc/latest/userguide/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenarios.html

AWS OpsWorks User Guide

the instance's layer assign an Elastic IP address to the instance. For more information, see
OpsWorks Layer Basics.

Working with private resources

If you have resources that should not be publicly accessible, you can create a VPC with one
public subnet and one private subnet. For example, in a load-balanced automatic scaling
environment, you can put all the Amazon EC2 instances in the private subnet and the load
balancer in a public subnet. That way the Amazon EC2 instances cannot be directly accessed
from the Internet; all incoming traffic must be routed through the load balancer.

The private subnet isolates the instances from Amazon EC2 direct user access, but they must
still send outbound requests to AWS and the appropriate Linux package repositories. To allow
such requests you can, for example, use a network address translation (NAT) device with its own
Elastic IP address and then route the instances' outbound traffic through the NAT. You can put
the NAT in the same public subnet as the load balancer, as shown in the preceding example.

• If you are using a back-end database such as an Amazon RDS instance, you can put those
instances in the private subnet. For Amazon RDS instances, you must specify at least two
different subnets in different Availability Zones.

• If you require direct access to instances in a private subnet—for example, you want to use
SSH to log in to an instance—you can put a bastion host in the public subnet that proxies
requests from the Internet.

Extending your own network into AWS

If you want to extend your own network into the cloud and also directly access the Internet
from your VPC, you can create a VPN gateway. For more information, see Scenario 3: VPC with
Public and Private Subnets and Hardware VPN Access.

Create a VPC for an AWS OpsWorks Stacks Stack

This section shows how to create a VPC for an AWS OpsWorks Stacks stack by using an example
AWS CloudFormation template. You can download the template in the OpsWorksVPCtemplates.zip
file. For more information on how to manually create a VPC like the one discussed in this topic, see
Scenario 2: VPC with Public and Private Subnets. For details on how to configure routing tables,
security groups, and so on, see the example template.

Running a Stack in a VPC API Version 2013-02-18 461

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario3.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario3.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
samples/OpsWorksVPCtemplates.zip
samples/OpsWorksVPCtemplates.zip
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

AWS OpsWorks User Guide

Note

By default, AWS OpsWorks Stacks displays subnet names by concatenating their CIDR range
and Availability Zone, such as 10.0.0.1/24 - us-east-1b. To make the names more
readable, create a tag for each subnet with Key set to Name and Value set to the subnet
name. AWS OpsWorks Stacks then appends the subnet name to the default name. For
example, the private subnet in the following example has a tag with Name set to Private,
which OpsWorks displays as 10.0.0.1/24 us-east - 1b - Private.

You can launch a VPC template using the AWS CloudFormation console with just a few steps. The
following procedure uses the example template to create a VPC in US East (N. Virginia) Region. For
directions on how to use the template to create a VPC in other regions, see the note that follows
the procedure.

To create the VPC

1. Open the AWS CloudFormation console, select the US East (N. Virginia) region, and choose
Create Stack.

2. On the Select Template page, select Upload a template. Browse for the
OpsWorksinVPC.template file that you downloaded in the OpsWorksVPCtemplates.zip
file.Choose Continue.

Running a Stack in a VPC API Version 2013-02-18 462

https://console.aws.amazon.com/cloudformation/
samples/OpsWorksVPCtemplates.zip
samples/OpsWorksVPCtemplates.zip

AWS OpsWorks User Guide

You can also launch this stack by opening AWS CloudFormation Sample Templates, locating
the AWS OpsWorks Stacks VPC template, and choosing Launch Stack.

3. On the Specify Parameters page, accept the default values and choose Continue.

4. On the Add Tags page, create a tag with Key set to Name and Value set to the VPC name. This
tag will make it easier to identify your VPC when you create an AWS OpsWorks Stacks stack.

5. Choose Continue and then Close to launch the stack.

Note: You can create the VPC in other regions by using either of the following approaches.

• Go to Using Templates in Different Regions, choose the appropriate region, locate the AWS
OpsWorks Stacks VPC template, and then choose Launch Stack.

• Copy the template file to your system, select the appropriate region in the AWS CloudFormation
console, and use the Create Stack wizard's Upload a template to Amazon S3 option to upload
the template from your system.

The example template includes outputs that provide the VPC, subnet, and load balancer IDs
that you will need to create the AWS OpsWorks Stacks stack. You can see them by choosing the
Outputs tab at the bottom of the AWS CloudFormation console window.

Update a Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Update a Stack API Version 2013-02-18 463

http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/#regions
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After you have created a stack, you can update the configuration at any time. On the Stack page,
click Stack Settings, and then click Edit, which displays the Settings page. Make the changes that
you want and click Save.

The settings are the same as those discussed in Create a New Stack. Refer to that topic for details.
However, note the following:

• You cannot modify the region or VPC ID.

• If your stack is running in a VPC, the settings include a Default subnet setting, which lists the
VPC's subnets. If your stack is not running in a VPC, the setting is labeled Default Availability
Zones, and lists the region's Availability Zones.

• You can change the default operating system, but you cannot specify a Linux operating system
for a Windows stack, or Windows for a Linux stack.

• If you change any of the default instance settings, such as Hostname theme or Default SSH key,
the new values apply only to any new instances you create, not to existing instances.

• Changing the Name changes the name that is displayed by the console; it does not change the
underlying short name that AWS OpsWorks Stacks uses to identify the stack.

• Before you change Use OpsWorks security groups from Yes to No, each layer must have at least
one security group in addition to the layer's built-in security group. For more information, see
Editing an OpsWorks Layer's Configuration.

AWS OpsWorks Stacks then deletes the built-in security groups from every layer.

• If you change Use OpsWorks security groups from No to Yes, AWS OpsWorks Stacks adds the
appropriate built-in security group to each layer but does not delete the existing security groups.

Clone a Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Clone a Stack API Version 2013-02-18 464

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

It is sometimes useful to create multiple copies of a stack. For example, you might want to add
redundancy as a disaster recovery or prevention measure, or you might use an existing stack as
a starting point for a new stack. The simplest approach is to clone the source stack. On the AWS
OpsWorks Stacks dashboard, in the Actions column of the row for the stack that you want to clone,
choose clone, which opens the Clone stack page.

Initially, the settings for the cloned stack are identical to those for the source stack except that the
word "copy" is appended to the stack name. For information about these settings, see Create a New
Stack. There are also two additional, optional settings:

Permissions

If all permissions is selected (the default), the source stack permissions are applied to the
cloned stack.

Apps

Lists apps that are deployed on the source stack. For each app listed, if the corresponding check
box is selected (the default), the app is deployed to the cloned stack.

Clone a Stack API Version 2013-02-18 465

AWS OpsWorks User Guide

Note

You cannot clone a stack from one regional endpoint to another; for example, you cannot
clone a stack from the US West (Oregon) Region (us-west-2) to the Asia Pacific (Mumbai)
Region (ap-south-1).

When you have finalized the settings, choose Clone stack. AWS OpsWorks Stacks creates a new
stack that consists of the source stack's layers and optionally its apps and permissions. The layers
have the same configuration as the originals, subject to any modifications that you made. However,
cloning does not create any instances. You must add an appropriate set of instances to each layer
of the cloned stack and then start them. As with any stack, you can perform normal management
tasks on a cloned stack, such as adding, deleting, or modifying layers or adding and deploying
apps.

To make the cloned stack operational, start the instances. AWS OpsWorks Stacks sets up and
configures each instance according to its layer membership. It also deploys any applications, just as
it does with a new stack.

Run AWS OpsWorks Stacks Stack Commands

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks provides a set of stack commands, which you can use to perform a variety of
operations on a stack's instances. To run a stack command, click Run Command on the Stack page.
You then choose the appropriate command, specify any options, and press the button at the lower
right, which will be labeled with the command's name.

Run Stack Commands API Version 2013-02-18 466

AWS OpsWorks User Guide

Note

AWS OpsWorks Stacks also supports a set of deployment commands, which you use to
manage app deployment. For more information, see Deploying Apps.

You can run the following stack commands on any stack.

Update Custom Cookbooks

Updates the instances' custom cookbooks with the current version from the repository. This
command does not run any recipes. To run the updated recipes, you can use an Execute
Recipes, Setup, or Configure stack command, or redeploy your application to run the
Deploy recipes. For more information on custom cookbooks, see Cookbooks and Recipes.

Execute Recipes

Executes a specified set of recipes on the instances. For more information, see Manually
Running Recipes.

Setup

Runs the instances' Setup recipes.

Configure

Runs the instances' Configure recipes.

Note

To use Setup or Configure to run recipes on an instance, the recipes must be assigned
to the corresponding lifecycle event for the instance's layer. For more information, see
Executing Recipes.

You can run the following stack commands only on Linux-based stacks.

Install Dependencies

Installs the instances' packages. Starting in Chef 12, this command is not available.

Run Stack Commands API Version 2013-02-18 467

AWS OpsWorks User Guide

Update Dependencies

(Linux only. Starting in Chef 12, this command is not available.) Installs regular operating
system updates and package updates. The details depend on the instances' operating system.
For more information, see Managing Security Updates.

Use the Upgrade Operating System command to upgrade instances to a new Amazon Linux
version.

Upgrade Operating System

(Linux only) Upgrades the instances' Amazon Linux operating systems to the latest version. For
more information, see AWS OpsWorks Stacks operating systems.

Important

After running Upgrade Operating System, we recommend that you also run Setup. This
ensures that services are correctly restarted.

Stack commands have the following options, some of which appear only for certain commands.

Comment

(Optional) Enter any custom remarks you care to add.

Recipes to execute

(Required) This setting appears only if you select the Execute Recipes command. Enter the
recipes to be executed using the standard cookbook_name::recipe_name format, separated
by commas. If you specify multiple recipes, AWS OpsWorks Stacks executes them in the listed
order.

Allow reboot

(Optional) This setting appears only if you select the Upgrade Operating System command.
The default value is Yes, which directs AWS OpsWorks Stacks to reboot the instances after
installing the upgrade.

Custom Chef JSON

(Optional) Choose Advanced to display this option, which allows you to specify custom JSON
attributes to be incorporated into the stack configuration and deployment attributes.

Run Stack Commands API Version 2013-02-18 468

AWS OpsWorks User Guide

Instances

(Optional) Specify the instances on which to execute the command. All online instances are
selected by default. To run the command on a subset of instances, select the appropriate layers
or instances.

Note

You might see execute_recipes executions that you did not run listed on the Deployment
and Commands pages. This is usually the result of a permissions change, such as granting
or removing SSH permissions for a user. When you make such a change, AWS OpsWorks
Stacks uses execute_recipes to update permissions on the instances.

Using Custom JSON

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Several AWS OpsWorks Stacks actions allow you to specify custom JSON, which AWS OpsWorks
Stacks installs on instances and can be used by recipes.

You can specify custom JSON in the following situations:

• When you create, update, or clone a stack.

AWS OpsWorks Stacks installs the custom JSON on all instances for all subsequent lifecycle
events.

• When you run a deployment or stack command.

AWS OpsWorks Stacks passes the custom JSON to instances only for that event.

Using Custom JSON API Version 2013-02-18 469

AWS OpsWorks User Guide

Custom JSON must be represented by, and formatted as, a valid JSON object. For example:

{
 "att1": "value1",
 "att2": "value2"
 ...
}

AWS OpsWorks Stacks stores custom JSON in the following locations:

On Linux instances:

• /var/chef/runs/run-ID/attribs.json

• /var/chef/runs/run-ID/nodes/hostname.json

On Windows instances:

• drive:\chef\runs\run-ID\attribs.json

• drive:\chef\runs\run-ID\nodes\hostname.json

Note

In Chef 11.10 and earlier versions for Linux, the custom JSON is located in the
following path on Linux instances, Windows instances are not available, and there is no
attribs.json file. The logs are stored in the same folder or directory as the JSON. For
more information about custom JSON in Chef 11.10 and earlier versions for Linux, see
Overriding Attributes with Custom JSON and Chef Logs.
/var/lib/aws/opsworks/chef/hostname.json

In the preceding paths, run-ID is a unique ID that AWS OpsWorks Stacks assigns to each Chef run
on an instance, and hostname is the instance's hostname.

To access custom JSON from Chef recipes, use standard Chef node syntax.

For example, suppose that you want to define simple settings for an app that you want to deploy,
such as whether the app is initially visible and the app's initial foreground and background colors.
Suppose you define these app settings with a JSON object as follows:

Using Custom JSON API Version 2013-02-18 470

http://docs.aws.amazon.com/opsworks/latest/userguide/workingcookbook-json-override.html
https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-debug-log.html#troubleshoot-debug-log-instance

AWS OpsWorks User Guide

{
 "state": "visible",
 "colors": {
 "foreground": "light-blue",
 "background": "dark-gray"
 }
}

To declare the custom JSON for a stack:

1. On the stack page, choose Stack Settings, and then choose Edit.

2. For Custom Chef JSON, type the JSON object, and then choose Save.

Note

You can declare custom JSON at the deployment, layer, and stack levels. You may want
to do this if you want some custom JSON to be visible only to an individual deployment
or layer. Or, for example, you may want to temporarily override custom JSON declared at
the stack level with custom JSON declared at the layer level. If you declare custom JSON
at multiple levels, custom JSON declared at the deployment level overrides any custom
JSON declared at both the layer and stack levels. Custom JSON declared at the layer level
overrides any custom JSON declared only at the stack level.
To use the AWS OpsWorks Stacks console to specify custom JSON for a deployment, on the
Deploy App page, choose Advanced. Type the custom JSON in the Custom Chef JSON box,
and then choose Save.
To use the AWS OpsWorks Stacks console to specify custom JSON for a layer, on the Layers
page, choose Settings for the desired layer. Type the custom JSON in the Custom JSON
box, and then choose Save.
For more information, see Editing an OpsWorks Layer's Configuration and Deploying Apps.

When you run a deployment or stack command, recipes can retrieve these custom values by using
standard Chef node syntax, which maps directly to the hierarchy in the custom JSON object. For
example, the following recipe code writes messages to the Chef log about the preceding custom
JSON values:

Chef::Log.info("********** The app's initial state is '#{node['state']}' **********")

Using Custom JSON API Version 2013-02-18 471

AWS OpsWorks User Guide

Chef::Log.info("********** The app's initial foreground color is '#{node['colors']
['foreground']}' **********")
Chef::Log.info("********** The app's initial background color is '#{node['colors']
['background']}' **********")

This approach can be useful for passing data to recipes. AWS OpsWorks Stacks adds that data to
the instance, and recipes can retrieve the data by using standard Chef node syntax.

Note

Custom JSON is limited to 120 KB. If you need more capacity, we recommend storing some
of the data on Amazon Simple Storage Service (Amazon S3). Your custom recipes can then
use the AWS CLI or the AWS SDK for Ruby to download the data from the Amazon S3
bucket to your instance.

Delete a Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If you no longer need a stack, you can delete it. Only empty stacks can be deleted; you must first
delete all instances, apps, and layers in the stack.

To delete a stack

1. On the AWS OpsWorks Stacks dashboard, choose the stack that you want to shut down and
delete.

2. In the navigation pane, choose Instances.

3. On the Instances page, choose Stop all Instances.

Delete a Stack API Version 2013-02-18 472

http://aws.amazon.com/documentation/cli/
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/

AWS OpsWorks User Guide

4. After the instances have stopped, for each instance in the layer, choose delete in the Actions
column. When prompted to confirm, choose Yes, Delete.

5. When all the instances are deleted, in the navigation pane, choose Layers.

6. On the Layers page, for each layer in the stack, choose delete. On the confirmation prompt,
choose Yes, Delete.

7. When all layers are deleted, in the navigation pane, choose Apps.

8. On the Apps page, for each app in the stack, choose delete in the Actions column. On the
confirmation prompt, choose Yes, Delete.

Delete a Stack API Version 2013-02-18 473

AWS OpsWorks User Guide

9. When all apps are deleted, in the navigation pane, choose Stack.

10. On the stack page, choose Delete stack. On the confirmation prompt, choose Yes, Delete.

Deleting Other AWS Resources Used by a Stack

You use other AWS resources with AWS OpsWorks Stacks to create and manage your stacks. As you
delete a stack, consider also deleting resources that worked with with the stack, if another stack is
not using them, and resources outside AWS OpsWorks Stacks are not using them. The following are
suggested reasons for cleaning up external AWS resources that you used with a stack.

• External AWS resources can continue to accrue charges on your AWS account.

• Resources such as Amazon S3 buckets can contain personally-identifying, sensitive, or
confidential information.

Important

Do not delete these resources if they are in use by other stacks. Note that IAM roles and
security groups are global, so stacks in other regions might be using these same resources.

Delete a Stack API Version 2013-02-18 474

AWS OpsWorks User Guide

The following are other AWS resources that stacks use, and links to information about how to
delete them.

Service roles and instance profiles

When you create a stack, you specify an IAM role and an instance profile that AWS OpsWorks
Stacks uses to create allowed resources on your behalf. AWS OpsWorks creates the role and
instance profile for you if you do not choose existing ones. The role and instance profile
that AWS OpsWorks creates for you are named aws-opsworks-service-role and aws-
opsworks-ec2-role, respectively. If no other stacks in your account are using the IAM role
and instance profile, it is safe to delete these resources. For information about how to delete
IAM roles and instance profiles, see Deleting roles or instance profiles in the IAM User Guide.

Security groups

In AWS OpsWorks Stacks, you can specify user-defined security groups at the layer level. You
create security groups by using the Amazon EC2 console or API. Stacks and layers in other
regions can use the same security groups, because security groups are global. You can delete
a security group if it's not in use by other AWS resources. For more information about how to
delete a security group, see Delete a security group in the Amazon EC2 User Guide for Linux
Instances.

Amazon EBS volumes

In AWS OpsWorks Stacks, you add EBS volumes at the layer level, and they are attached to
instances in the layer. You create EBS volumes by using the Amazon EC2 service console or API,
then attach them to AWS OpsWorks Stacks instances at the layer level. EBS volumes are specific
to an availability zone. If you are no longer using an EBS volume in any stacks in a specific
region and availability zone, you can delete the volume. For more information about how to
delete an Amazon EBS volume, see Deleting an Amazon EBS Volume in the Amazon EC2 User
Guide.

Amazon Simple Storage Service (Amazon S3) buckets

In AWS OpsWorks Stacks, you can use Amazon S3 buckets for the following. Content delivered
to Amazon S3 buckets might contain customer content. For more information about removing
sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3 Bucket?.

• Storing app code

• Storing cookbooks and recipes

• CloudTrail logs, if you have enabled CloudTrail logging in AWS OpsWorks Stacks

Delete a Stack API Version 2013-02-18 475

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#deleting-security-group
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-deleting-volume.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

• Amazon CloudWatch Logs streams, if you have enabled them in AWS OpsWorks Stacks

Elastic IP addresses

If you registered Elastic IP addresses with AWS OpsWorks Stacks, and you no longer need the
Elastic IP addresses, you can release the Elastic IP address.

Elastic Load Balancing load balancers

If you no longer need an Elastic Load Balancing classic load balancer that you have been using
with layers in your stack, you can delete it. For more information, see Delete Your Load Balancer
in the User Guide for Classic Load Balancers.

Amazon Relational Database Service (Amazon RDS) instances

If you registered Amazon RDS database (DB) instances with AWS OpsWorks Stacks, and you no
longer need them, you can delete DB instances. For more information about how to delete DB
instances, see Deleting a DB Instance in the Amazon RDS User Guide.

Amazon Elastic Container Service (Amazon ECS) clusters

If your stack included ECS cluster layers, and you are no longer using the ECS cluster that was
registered with a layer, you can delete the ECS cluster. For more information about how to
delete an ECS cluster, see Deleting a Cluster in the Amazon ECS Developer Guide.

Layers

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Every stack contains one or more layers, each of which represents a stack component, such as a
load balancer or a set of application servers.

As you work with AWS OpsWorks Stacks layers, keep the following in mind:

Layers API Version 2013-02-18 476

https://docs.aws.amazon.com/opsworks/latest/userguide/resources-reg.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html#using-instance-addressing-eips-releasing
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-getting-started.html#delete-load-balancer
https://docs.aws.amazon.com/opsworks/latest/userguide/resources-reg.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DeleteInstance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/delete_cluster.html

AWS OpsWorks User Guide

• Each layer in a stack must have at least one instance and can optionally have multiple instances.

• Each instance in a stack must be a member of at least one layer, except for registered instances.

You cannot configure an instance directly, except for some basic settings such as the SSH key and
hostname. You must create and configure an appropriate layer, and add the instance to the layer.

Amazon EC2 instances can optionally be a member of multiple layers. In that case, AWS OpsWorks
Stacks runs the recipes to install and configure packages, deploy applications, and so on for each of
the instance's layers.

By assigning an instance to multiple layers, you could, for example do the following:

• Reduce expenses by hosting the database server and the load balancer on a single instance.

• Use one of your application servers for administration.

Create a custom administrative layer and add one of the application server instances to that
layer. The administrative layer's recipes configure that application server instance to perform
administrative tasks, and install any additional required software. The other application server
instances are just application servers.

This section describes how to work with layers.

Topics

• OpsWorks Layer Basics

• Elastic Load Balancing Layer

• Amazon RDS Service Layer

• ECS Cluster Layers

• Custom AWS OpsWorks Stacks Layers

• Per-layer Operating System Package Installations

OpsWorks Layer Basics

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

OpsWorks Layer Basics API Version 2013-02-18 477

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section describes how to perform operations that are common to all AWS OpsWorks Stacks
layers.

Topics

• Creating an OpsWorks Layer

• Editing an OpsWorks Layer's Configuration

• Using Auto Healing to Replace Failed Instances

• Deleting an OpsWorks Layer

Creating an OpsWorks Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When you create a new stack, you see the following page:

OpsWorks Layer Basics API Version 2013-02-18 478

AWS OpsWorks User Guide

To add the first OpsWorks layer

1. Click Add a Layer.

2. On the Add Layer page, select the appropriate layer, which displays the layer's configuration
options.

3. Configure the layer appropriately and click Add Layer to add it to the stack. The following
sections describe how to configure the various layers.

Note

The Add Layer page displays only the more commonly used configuration settings for
each layer. You can specify additional settings by editing the layer.

4. Add instances to the layer and start them.

Note

If an instance is a member of multiple layers, you must add it to all of them before you
start the instance. You cannot add an online instance to a layer.

To add more layers, open the Layers page and click + Layer to open the Add Layer page.

When you start an instance, AWS OpsWorks Stacks automatically runs the Setup and Deploy
recipes for each of the instance's layers to install and configure the appropriate packages and
deploy the appropriate applications. You can customize a layer's setup and configuration process
in a variety of ways, such as by assigning custom recipes to the appropriate lifecycle events.

OpsWorks Layer Basics API Version 2013-02-18 479

AWS OpsWorks User Guide

AWS OpsWorks Stacks runs custom recipes after the standard recipes for each event. For more
information, see Cookbooks and Recipes.

The following layer-specific sections describe how handle Steps 2 and 3 for the various AWS
OpsWorks Stacks layers. For more information how to add instances, see Adding an Instance to a
Layer.

Editing an OpsWorks Layer's Configuration

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After you create a layer, some properties (such as AWS region) are immutable, but you can change
most of the layer configuration at any time. Editing the layer also provides access to configuration
settings that are not available on the Add Layer page. The settings take effect as soon as you save
the new configuration.

To edit an OpsWorks layer

1. In the navigation pane, click Layers.

2. On the Layers page, choose a layer name to open the details page, which shows the current
configuration.

Note

Choosing one of the names under the layer name takes you directly to the associated
tab on the details page.

3. Click Edit and then select the appropriate tab: General Settings, Recipes, Network, EBS
Volumes, or Security.

OpsWorks Layer Basics API Version 2013-02-18 480

AWS OpsWorks User Guide

The following sections describe the settings on the various tabs that are available to all layers.
Some layers have additional layer-specific settings, which appear at the top of the page. In
addition, some settings are available only for Linux-based stacks, as noted.

Topics

• General Settings

• Recipes

• Network

• EBS Volumes

• Security

• CloudWatch Logs

• Tags

General Settings

All layers have the following settings:

Auto healing enabled

Whether auto healing is enabled for the layer's instances. The default setting is Yes.

Custom JSON

Data in JSON format that is passed to your Chef recipes for all instances in this layer. You can
use this, for example, to pass data to your own recipes. For more information, see Using Custom
JSON.

Note

You can declare custom JSON at the deployment, layer, and stack levels. You may want
to do this if you want some custom JSON to be visible across the stack or only to an
individual deployment. Or, for example, you may want to temporarily override custom
JSON declared at the layer level with custom JSON declared at the deployment level. If
you declare custom JSON at multiple levels, custom JSON declared at the deployment
level overrides any custom JSON declared at both the layer and stack levels. Custom
JSON declared at the layer level overrides any custom JSON declared only at the stack
level.

OpsWorks Layer Basics API Version 2013-02-18 481

AWS OpsWorks User Guide

To use the AWS OpsWorks Stacks console to specify custom JSON for a deployment, on
the Deploy App page, choose Advanced. Type the custom JSON in the Custom Chef
JSON box, and then choose Save.
To use the AWS OpsWorks Stacks console to specify custom JSON for a stack, on the
stack settings page, type the custom JSON in the Custom JSON box, and then choose
Save.
For more information, see Using Custom JSON and Deploying Apps.

Instance shutdown timeout

Specifies how long (in seconds) AWS OpsWorks Stacks waits after triggering a Shutdown
lifecycle event before stopping or terminating the Amazon EC2 instance. The default setting is
120 seconds. The purpose of the setting is to give the instance's Shutdown recipes enough time
to complete their tasks before terminating the instance. If your custom Shutdown recipes might
require more time, modify the setting accordingly. For more information on instance shutdown,
see Stopping an Instance.

The remaining settings on this tab vary with the type of layer and are identical to the settings on
the layer's Add Layer page.

Recipes

The Recipes tab includes the following settings.

Custom Chef recipes

You can assign custom Chef recipes to the layer's lifecycle events. For more information, see
Executing Recipes.

Network

The Network tab includes the following settings.

Elastic Load Balancing

You can attach an Elastic Load Balancing load balancer to any layer. AWS OpsWorks Stacks then
automatically registers the layer's online instances with the load balancer and deregisters them

OpsWorks Layer Basics API Version 2013-02-18 482

AWS OpsWorks User Guide

when they go offline. If you have enabled the load balancer's connection draining feature, you
can specify whether AWS OpsWorks Stacks supports it. For more information, see Elastic Load
Balancing Layer.

Automatically Assign IP Addresses

You can control whether AWS OpsWorks Stacks automatically assigns public or Elastic IP
addresses to the layer's instances. Here's what happens when you enable this option:

• For instance store-backed instances, AWS OpsWorks Stacks automatically assigns an address
each time the instance is started.

• For Amazon EBS-backed instances, AWS OpsWorks Stacks automatically assigns an address
when the instance is started for the first time.

• If an instance belongs to more than one layer, AWS OpsWorks Stacks automatically assigns an
address if you have enabled automatic assignment for at least one of the layers,

Note

If you enable automatic assignment of public IP addresses, it applies only to new
instances. AWS OpsWorks Stacks cannot update the public IP address for existing
instances.

If your stack is running in a VPC, you have separate settings for public and Elastic IP addresses.
The following table explains how these interact:

Note

Instances must have a way to communicate with the AWS OpsWorks Stacks service,
Linux package repositories, and cookbook repositories. If you specify no public or Elastic
IP address, your VPC must include a component such as a NAT that allows the layer's

OpsWorks Layer Basics API Version 2013-02-18 483

AWS OpsWorks User Guide

instances to communicate with external sites. For more information, see Running a
Stack in a VPC.

If your stack is not running in a VPC, Elastic IP addresses is your only setting:

• Yes: Instances receive an Elastic IP address when they are started for the first time, or a public
IP address if an Elastic IP address cannot be assigned.

• No: Instances receive a public IP address each time they are started.

EBS Volumes

The EBS Volumes tab includes the following settings.

EBS optimized instances

Whether the layer's instances should be optimized for Amazon Elastic Block Store (Amazon
EBS). For more information, see Amazon EBS-Optimized Instances.

Additional EBS Volumes

(Linux only) You can add Amazon EBS volumes to or remove them from the layer's instances.
When you start an instance, AWS OpsWorks Stacks automatically creates the volumes and
attaches them to the instances. You can use the Resources page to manage a stack's EBS
volumes. For more information, see Resource Management.

• Mount point – (Required) Specify the mount point or directory where the EBS volume will be
mounted.

• # Disks – (Optional) If you specified a RAID array, the number of disks in the array.

Each RAID level has a default number of disks, but you can select a larger number from the
list.

• Size total (GiB) – (Required) The volume's size, in GiB.

For a RAID array, this setting specifies the total array size, not the size of each disk.

The following table shows the minimum and maximum volume sizes allowed for each volume
type.

OpsWorks Layer Basics API Version 2013-02-18 484

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

AWS OpsWorks User Guide

Volume Type Minimum Size (GiB) Maximum Size (GiB)

Magnetic 1 1024

Provisioned IOPS (SSD) 4 16384

General Purpose (SSD) 1 16384

Throughput Optimized
(HDD)

500 16384

Cold HDD 500 16384

• Volume Type – (Optional) Specify whether to create a magnetic, General Purpose SSD,
Throughput Optimized HDD, Cold HDD, or PIOPS volume.

The default value is Magnetic.

• Encrypted– (Optional) Specify whether to encrypt the contents of the EBS volume.

• IOPS per disk – (Required for Provisioned IOPS SSD and General Purpose SSD volumes) If you
specify a Provisioned IOPS SSD or General Purpose SSD volume, you must also specify the
IOPS per disk.

For provisioned IOPS volumes, you can specify the IOPS rate when you create the volume.
The ratio of IOPS provisioned and the volume size requested can be a maximum of 30 (in
other words, a volume with 3000 IOPS must be at least 100 GB). General Purpose (SSD)
volume types have a baseline IOPS of volume size x 3 with a maximum of 10000 IOPS and
can burst up to 3000 IOPS for 30 minutes.

When you add volumes to or remove them from a layer, note the following:

• If you add a volume, every new instance gets the new volume, but AWS OpsWorks Stacks does
not update the existing instances.

• If you remove a volume, it applies only to new instances; the existing instances retain their
volumes.

OpsWorks Layer Basics API Version 2013-02-18 485

AWS OpsWorks User Guide

Specifying a Mount Point

You can specify any mount point that you prefer. However, be aware that some mount points are
reserved for use by AWS OpsWorks Stacks or Amazon EC2 and should not be used for Amazon EBS
volumes. Do not use typical Linux system folders such as /home or /etc.

The following mount points are reserved for use by AWS OpsWorks Stacks.

• /srv/www

• /var/log/apache2 (Ubuntu)

• /var/log/httpd (Amazon Linux)

• /var/log/mysql

• /var/www

When an instance boots or reboots, autofs (an automounting daemon) uses ephemeral device
mount points such as /media/ephemeral0 for bind mounts. This operation takes place before
Amazon EBS volumes are mounted. To ensure that your Amazon EBS volume's mount point does
not conflict with autofs, do not specify an ephemeral device mount point. The possible ephemeral
device mount points depend on the particular instance type, and whether it is instance store–
backed or Amazon EBS–backed. To avoid a conflict with autofs, do the following:

• Verify the ephemeral device mount points for the particular instance type and backing store that
you want to use.

• Be aware that a mount point that works for an instance store–backed instance might conflict
with autofs if you switch to an Amazon EBS–backed instance, or vice versa.

Note

If you want to change the instance store block device mapping, you can create a custom
AMI. For more information, see Amazon EC2 Instance Store. For more information about
how to create a custom AMI for AWS OpsWorks Stacks, see Using Custom AMIs.

The following is an example of how to use a custom recipe to ensure that a volume's mount point
doesn't conflict with autofs. You can adapt it as needed for your particular use case.

OpsWorks Layer Basics API Version 2013-02-18 486

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

AWS OpsWorks User Guide

To avoid a conflicting mount point

1. Assign an Amazon EBS volume to desired layer but use a mount point such as /mnt/
workspace that will never conflict with autofs.

2. Implement the following custom recipe, which creates an application directory on the Amazon
EBS volume and links to it from /srv/www/. For more information on how to implement
custom recipes, see Cookbooks and Recipes and Customizing AWS OpsWorks Stacks.

mount_point = node['ebs']['raids']['/dev/md0']['mount_point'] rescue nil

if mount_point
 node[:deploy].each do |application, deploy|
 directory "#{mount_point}/#{application}" do
 owner deploy[:user]
 group deploy[:group]
 mode 0770
 recursive true
 end

 link "/srv/www/#{application}" do
 to "#{mount_point}/#{application}"
 end
 end
end

3. Add a depends 'deploy' line to the custom cookbook's metadata.rb file.

4. Assign this recipe to the layer's Setup event.

Security

The Security tab includes the following settings.

Security Groups

A layer must have at least one associated security group. You specify how to associate security
groups when you create or update a stack. AWS OpsWorks Stacks provides a standard set of
built-in security groups.

• The default option is to have AWS OpsWorks Stacks automatically associate the appropriate
built-in security group with each layer.

OpsWorks Layer Basics API Version 2013-02-18 487

AWS OpsWorks User Guide

• You can also choose to not automatically associate built-in security groups and instead
associate a custom security group with each layer when you create the layer.

For more information on security groups, see Using Security Groups.

After the layer has been created, you can use Security Groups to add more security groups
to the layer by selecting them from the Custom security groups list. After you add a security
group to a layer, AWS OpsWorks Stacks adds it to all new instances. (Note that instance-store
instances that are restarted will be brought up as new instances, so they will also have the new
security groups.) AWS OpsWorks Stacks does not add security groups to online instances.

You can delete existing security groups by clicking the x, as follows:

• If you chose to have AWS OpsWorks Stacks automatically associate built-in security groups,
you can delete custom security groups that you added earlier by clicking the x, but you
cannot delete the built-in group.

• If you chose to not automatically associate built-in security groups, you can delete any
existing security groups, including the original one, as long as the layer retains at least one
group.

After you remove a security group from a layer, AWS OpsWorks Stacks does not add it to any
new or restarted instances. AWS OpsWorks Stacks does not remove security groups from online
instances.

Note

If your stack is running in a VPC, including a default VPC, you can add or remove a
security group for an online instance by using the Amazon EC2 console, API, or CLI.
However, this security group will not be visible in the AWS OpsWorks Stacks console.
If you want to remove the security group, you must also use Amazon EC2. For more
information, see Security Groups.

Note the following:

• You cannot restrict a built-in security group's port access settings by adding a more restrictive
security group. When there are multiple security groups, Amazon EC2 uses the most
permissive settings.

OpsWorks Layer Basics API Version 2013-02-18 488

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-supported-platforms.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-network-security.html

AWS OpsWorks User Guide

• You should not modify a built-in security group's configuration. When you create a stack, AWS
OpsWorks Stacks overwrites the built-in security groups' configurations, so any changes that
you make will be lost the next time you create a stack.

If you discover that you need more restrictive security group settings for one or more layers
take these steps:

1. Create custom security groups with appropriate settings and add them to the appropriate
layers.

Every layer in your stack must have at least one security group in addition to the built-in
group, even if only one layer requires custom settings.

2. Edit the stack configuration and switch the Use OpsWorks security groups setting to No.

AWS OpsWorks Stacks automatically removes the built-in security group from every layer.

For more information on security groups, see Amazon EC2 Security Groups.

EC2 Instance Profile

You can change the EC2 profile for the layer's instances. For more information, see Specifying
Permissions for Apps Running on EC2 instances.

CloudWatch Logs

The CloudWatch Logs tab lets you enable or disable Amazon CloudWatch Logs. CloudWatch Logs
integration works with Chef 11.10 and Chef 12 Linux-based stacks. For more information about
enabling CloudWatch Logs integration and specifying the logs that you want to manage in the
CloudWatch Logs console, see Using Amazon CloudWatch Logs with AWS OpsWorks Stacks.

Tags

The Tags tab lets you apply cost allocation tags to your layer. After you add tags, you can activate
them in the AWS Billing and Cost Management console. When you create a tag, you are applying
the tag to every resource within the tagged structure. For example, if you apply a tag to a layer,
you are applying the tag to every instance, Amazon EBS volume, or Elastic Load Balancing load
balancer in the layer. For more information about how to activate your tags and use them to track
and manage the costs of your AWS OpsWorks Stacks resources, see Using Cost Allocation Tags and
Activating User-Defined Cost Allocation Tags in the Billing and Cost Management User Guide. For
more information about tagging in AWS OpsWorks Stacks, see Tags.

OpsWorks Layer Basics API Version 2013-02-18 489

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/activating-tags.html

AWS OpsWorks User Guide

Using Auto Healing to Replace Failed Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Every instance has an AWS OpsWorks Stacks agent that communicates regularly with the service.
AWS OpsWorks Stacks uses that communication to monitor instance health. If an agent does not
communicate with the service for more than approximately five minutes, AWS OpsWorks Stacks
considers the instance to have failed.

Auto healing is set at the layer level; you can change the auto healing setting by editing layer
settings, as shown in the following screenshot.

OpsWorks Layer Basics API Version 2013-02-18 490

AWS OpsWorks User Guide

Note

An instance can be a member of multiple layers. If any of those layers has auto healing
disabled, AWS OpsWorks Stacks does not heal the instance if it fails.

If a layer has auto healing enabled—the default setting—AWS OpsWorks Stacks automatically
replaces the layer's failed instances as follows:

Instance store-backed instance

1. Stops the Amazon EC2 instance, and verifies that it has shut down.

2. Deletes the data on the root volume.

3. Creates a new Amazon EC2 instance with the same host name, configuration, and layer
membership.

4. Reattaches any Amazon EBS volumes, including volumes that were attached after the old
instance was originally started.

5. Assigns a new public and private IP Address.

6. If the old instance was associated with an Elastic IP address, associates the new instance with
the same IP address.

Amazon EBS-backed instance

1. Stops the Amazon EC2 instance, and verifies that it has stopped.

2. Starts the EC2 instance.

After the auto-healed instance is back online, AWS OpsWorks Stacks triggers a Configure lifecycle
event on all of the stack's instances. The associated stack configuration and deployment attributes
include the instance's public and private IP addresses. Custom Configure recipes can obtain the new
IP addresses from the node object.

If you specify an Amazon EBS volume for a layer's instances, AWS OpsWorks Stacks creates a new
volume and attaches it to each instance when the instance is started. If you later want to detach
the volume from an instance, use the Resources page.

When AWS OpsWorks Stacks auto heals one of a layer's instances, it handles volumes in the
following way:

OpsWorks Layer Basics API Version 2013-02-18 491

AWS OpsWorks User Guide

• If the volume was attached to the instance when the instance failed, the volume and its data are
saved, and AWS OpsWorks Stacks attaches it to the new instance.

• If the volume was not attached to the instance when the instance failed, AWS OpsWorks Stacks
creates a new, empty volume with the configuration specified by the layer, and attaches that
volume to the new instance.

Auto healing is enabled by default for all layers, but you can edit the layer's General Settings to
disable it.

Important

If you have auto healing enabled, be sure to do the following:

• Use only the AWS OpsWorks Stacks console, CLI, or API to stop instances.

If you stop an instance in any other way, such as using the Amazon EC2 console, AWS
OpsWorks Stacks treats the instance as failed, and auto heals it.

• Use Amazon EBS volumes to store any data that you don't want to lose if the instance is
auto healed.

Auto healing stops the old Amazon EC2 instance, which destroys any data that is not
stored on an Amazon EBS volume. Amazon EBS volumes are reattached to the new
instance, which preserves any stored data.

Deleting an OpsWorks Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If you no longer need an AWS OpsWorks Stacks layer, you can delete it from your stack.

OpsWorks Layer Basics API Version 2013-02-18 492

AWS OpsWorks User Guide

To delete an OpsWorks layer

1. In the navigation pane, click Instances.

2. On the Instances page, under the name of the layer you want to delete, click stop in the
Actions column for each instance.

3. After each instance has stopped, click delete to remove it from the layer.

4. In the navigation pane, click Layers.

5. On the Layers page, choose Delete.

Elastic Load Balancing Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Elastic Load Balancing Layer API Version 2013-02-18 493

AWS OpsWorks User Guide

Elastic Load Balancing works somewhat differently than an AWS OpsWorks Stacks layer. Instead
of creating a layer and adding instances to it, you use the Elastic Load Balancing console or API to
create a load balancer and then attach it to an existing layer. In addition to distributing traffic to
the layer's instances, Elastic Load Balancing does the following:

• Detects unhealthy Amazon EC2 instances and reroutes traffic to the remaining healthy instances
until the unhealthy instances have been restored.

• Automatically scales request handling capacity in response to incoming traffic.

• If you enable connection draining, the load balancer stops sending new requests to instances
that are unhealthy or about to be deregistered but keeps the connection alive, up to a specified
timeout value, to allow the instance to complete any in-flight requests.

After you attach a load balancer to a layer, AWS OpsWorks Stacks does the following:

• Deregisters any currently registered instances.

• Automatically registers the layer's instances when they come online and deregisters instances
when they go offline, including load-based and time-based instances.

• Automatically starts routing requests to registered instances in their Availability Zones.

If you have enabled the load balancer's connection draining feature, you can specify whether AWS
OpsWorks Stacks supports it. If you enable connection draining support (the default setting), after
an instance is shut down, AWS OpsWorks Stacks does the following:

• Deregisters the instance from the load balancer.

The load balancer stops sending new requests and starts connection draining.

• Delays triggering a Shutdown lifecycle event until the load balancer has completed connection
draining.

If you don't enable connection draining support, AWS OpsWorks Stacks triggers the Shutdown
event as soon as the instance is shut down, even if the instance is still connected to the load
balancer.

To use Elastic Load Balancing with a stack, you must first create one or more load balancers in the
same region by using the Elastic Load Balancing console, CLI, or API. You should be aware of the
following:

Elastic Load Balancing Layer API Version 2013-02-18 494

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/config-conn-drain.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/config-conn-drain.html

AWS OpsWorks User Guide

• You can attach only one load balancer to a layer.

• Each load balancer can handle only one layer.

• AWS OpsWorks Stacks does not support Application Load Balancer. You can only use Classic Load
Balancer with AWS OpsWorks Stacks.

This means that you must create a separate Elastic Load Balancing load balancer for each layer in
each stack that you want to balance and use it only for that purpose. A recommended practice is
to assign a distinctive name to each Elastic Load Balancing load balancer that you plan to use with
AWS OpsWorks Stacks, such as MyStack1-RailsLayer-ELB, to avoid using a load balancer for more
than one purpose.

Important

We recommend creating new Elastic Load Balancing load balancers for your AWS OpsWorks
Stacks layers. If you choose to use an existing Elastic Load Balancing load balancer, you
should first confirm that it is not being used for other purposes and has no attached
instances. After the load balancer is attached to the layer, OpsWorks removes any existing
instances and configures the load balancer to handle only the layer's instances. Although
it is technically possible to use the Elastic Load Balancing console or API to modify a load
balancer's configuration after attaching it to a layer, you should not do so; the changes will
not be permanent.

To attach an Elastic Load Balancing load balancer to a layer

1. If you have not yet done so, use the Elastic Load Balancing console, API, or CLI to create a load
balancer in the stack's region. When you create the load balancer, do the following:

• Be sure to specify a health check ping path that is appropriate for your application.

The default ping path is /index.html, so if your application root does not include
index.html, you must specify an appropriate ping path or the health check will fail.

• If you want to use connection draining, ensure that the feature is enabled and has an
appropriate timeout value.

For more information, see Elastic Load Balancing.

2. Create the layer that you want to have balanced or edit an existing layer's Network settings.

Elastic Load Balancing Layer API Version 2013-02-18 495

https://console.aws.amazon.com/ec2/#s=LoadBalancers
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/config-conn-drain.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/Welcome.html

AWS OpsWorks User Guide

Note

You cannot attach a load balancer when you create a custom layer. You must edit the
layer's settings.

3. Under Elastic Load Balancing, select the load balancer that you want to attach to the layer
and specify whether you want AWS OpsWorks Stacks to support connection draining.

After you attach a load balancer to a layer, AWS OpsWorks Stacks triggers a Configure lifecycle
event on the stack's instances to notify them of the change. AWS OpsWorks Stacks also triggers a
Configure event when you detach a load balancer.

Note

After an instance has booted, AWS OpsWorks Stacks runs the Setup and Deploy recipes,
which install packages and deploy applications. After those recipes have finished, the
instance is in the online state and AWS OpsWorks Stacks registers the instance with Elastic
Load Balancing. AWS OpsWorks Stacks also triggers a Configure event after the instance
comes online. This means that Elastic Load Balancing registration and the Configure recipes
could run concurrently, and the instance might be registered before the Configure recipes
have finished. To ensure that a recipe finishes before an instance is registered with Elastic
Load Balancing, you should add the recipe to the layer's Setup or Deploy lifecycle events.
For more information, see Executing Recipes.

It is sometimes useful to remove an instance from a load balancer. For example, when you update
an app, we recommend that you deploy the app to a single instance and verify that the app is
working properly before deploying it to every instance. You typically remove that instance from the
load balancer, so it does not receive user requests until you have verified the update.

You must use the Elastic Load Balancing console or API to temporarily remove an online instance
from a load balancer. The following describes how to use the console.

To temporarily remove an instance from a load balancer

1. Open the Amazon EC2 console and choose Load Balancers.

2. Choose the appropriate load balancer and open the Instances tab.

Elastic Load Balancing Layer API Version 2013-02-18 496

https://console.aws.amazon.com/ec2/

AWS OpsWorks User Guide

3. Choose Remove from Load Balancer in the instance's Actions column.

4. When you have finished, choose Edit Instances, and return the instance to the load balancer.

Important

If you use the Elastic Load Balancing console or API to remove an instance from a load
balancer, you must also use Elastic Load Balancing to put it back. AWS OpsWorks Stacks is
not aware of operations that you perform with other service consoles or APIs, and it will
not return the instance to the load balancer for you. Sometimes, AWS OpsWorks Stacks can
add the instance back to the ELB, but this is not guaranteed behavior and does not occur in
all cases.

You can attach multiple load balancers to a particular set of instances as follows:

To attach multiple load balancers

1. Use the Elastic Load Balancing console, API, or CLI to create a set of load balancers.

2. Create a custom layer for each load balancer and attach one of the load balancers to it.
You don't need to implement any custom recipes for these layers; a default custom layer is
sufficient.

3. Add the set of instances to each custom layer.

You can examine a load balancer's properties by going to the Instances page and clicking the
appropriate load balancer name.

The ELB page shows the load balancer's basic properties, including its DNS name and the health
status of the associated instances. If the stack is running in a VPC, the page shows subnets rather

Elastic Load Balancing Layer API Version 2013-02-18 497

https://console.aws.amazon.com/ec2/#s=LoadBalancers

AWS OpsWorks User Guide

than Availibility Zones. A green check indicates a healthy instance. You can click on the name to
connect to a server, through the load balancer.

Amazon RDS Service Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

An Amazon RDS service layer represents an Amazon RDS instance. The layer can represent only
existing Amazon RDS instances, which you must create separately by using the Amazon RDS
console or API.

The basic procedure for incorporating an Amazon RDS service layer into your stack is as follows:

1. Use the Amazon RDS console, API, or CLI to create an instance.

Be sure to record the instance's ID, master user name, master password, and database name.

Amazon RDS Service Layer API Version 2013-02-18 498

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

AWS OpsWorks User Guide

2. To add an Amazon RDS layer to your stack, register the Amazon RDS instance with the stack.

3. Attach the layer to an app, which adds the Amazon RDS instance's connection information to the
app's deploy attributes.

4. Use the language-specific files or the information in the deploy attributes to connect the
application to the Amazon RDS instance.

For more information on how to connect an application to a database server, see the section
called “Connecting to a Database”

Warning

Be sure that the characters in the instance's master password and user name are
compatible with your application server. For example, with the Java App Server layer,
including & in either string causes an XML parsing error that prevents the Tomcat server
from starting up.

Topics

• Specifying Security Groups

• Registering an Amazon RDS Instance with a Stack

• Associating Amazon RDS Service Layers with Apps

• Removing an Amazon RDS Service Layer from a Stack

Specifying Security Groups

To use an Amazon RDS instance with AWS OpsWorks Stacks, the database or VPC security groups
must allow access from the appropriate IP addresses. For production use, a security group usually
limits access to only those IP addresses that need to access the database. It typically includes the
addresses of the systems that you use to manage the database and the AWS OpsWorks Stacks
instances that need to access the database. AWS OpsWorks Stacks automatically creates an
Amazon EC2 security group for each type of layer when you create your first stack in a region. A
simple way to provide access for AWS OpsWorks Stacks instances is to assign the appropriate AWS
OpsWorks Stacks security groups to the Amazon RDS instance or VPC.

Amazon RDS Service Layer API Version 2013-02-18 499

AWS OpsWorks User Guide

To specify security groups for an existing Amazon RDS instance

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. Click Instances in the navigation pane and select the appropriate Amazon RDS instance. Click
Instance Actions, Modify.

3. Select the following security groups from the Security Group list and then click Continue and
Modify DB Instance to update the instance.

• The AWS-OpsWorks-DB-Master-Server (security_group_id) security group.

• The security group for the app server layer whose instances will be connecting to the
database. The group name includes the layer name. For example, to provide database access
to PHP App Server instances, specify the AWS-OpsWorks-PHP-App-Server group.

If you are creating a new Amazon RDS instance, you can specify the appropriate AWS OpsWorks
Stacks security groups on the Launch DB Instance wizard's Configure Advanced Settings page.
For a description of how to use this wizard, see Creating a MySQL DB Instance and Connecting to a
Database on a MySQL DB Instance.

For information on how to specify VPC security groups, see Security Groups for Your VPC.

Registering an Amazon RDS Instance with a Stack

To add an Amazon RDS service layer in a stack, you must register an instance with the stack.

To register an Amazon RDS instance with a stack

1. In the AWS OpsWorks Stacks console, click Layer in the navigation pane, click + Layer or Add a
layer to open the Add Layer page, and then click the RDS tab.

2. If necessary, update the stack's service role, as described in Updating the Stack's Service Role.

3. Click the RDS tab to list the available Amazon RDS instances.

Note

If your account does not have any Amazon RDS instances, you can create one by
clicking Add an RDS instance on the RDS tab, which takes you to the Amazon RDS
console and starts the Launch a DB Instance wizard. You can also go directly to the
Amazon RDS console and click Launch a DB Instance, or use the Amazon RDS API

Amazon RDS Service Layer API Version 2013-02-18 500

https://console.aws.amazon.com/rds/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.MySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.MySQL.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html
https://console.aws.amazon.com/rds/

AWS OpsWorks User Guide

or CLI. For more information on how to create an Amazon RDS instance, see Getting
Started with Amazon RDS.

4. Select the appropriate instance, set User and Password to the appropriate user and password
values and click Register to Stack.

Important

You must ensure that the user and password that you use to register the Amazon RDS
instance correspond to a valid user and password. If they do not, your applications will
not be able connect to the instance. However, you can edit the layer to provide valid
user and password values and then redeploy the app.

When you add an Amazon RDS service layer to a stack, AWS OpsWorks Stacks assigns it an ID
and adds the associated Amazon RDS configuration to the stack configuration and deployment
attribute's [:opsworks][:stack] attribute.

Amazon RDS Service Layer API Version 2013-02-18 501

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html

AWS OpsWorks User Guide

Note

If you change a registered Amazon RDS instance's password, you must manually update
the password in AWS OpsWorks Stacks and then redeploy your apps to update the stack
configuration and deployment attributes on the stack's instances.

Topics

• Updating the Stack's Service Role

Updating the Stack's Service Role

Every stack has an IAM service role that specifies what actions AWS OpsWorks Stacks can perform
on your behalf with other AWS services. To register an Amazon RDS instance with a stack, its
service role must grant AWS OpsWorks Stacks permissions to access Amazon RDS.

The first time you add an Amazon RDS service layer to one of your stacks, the service role might
lack the required permissions. If so, when you click the RDS tab on the Add Layer page, you will see
the following.

Click Update to have AWS OpsWorks Stacks update the service role's policy to the following.

{"Statement": [{"Action": ["ec2:*", "iam:PassRole",
 "cloudwatch:GetMetricStatistics",
 "elasticloadbalancing:*",
 "rds:*"],
 "Effect": "Allow",
 "Resource": ["*"] }]
}

Amazon RDS Service Layer API Version 2013-02-18 502

AWS OpsWorks User Guide

Note

You need to perform the update only once. The updated role is then automatically used by
all of your stacks.

Associating Amazon RDS Service Layers with Apps

After you add an Amazon RDS service layer, you can associate it with an app.

• You can associate an Amazon RDS layer to an app when you create the app, or later by editing
the app's configuration.

• To disassociate an Amazon RDS layer from an app, edit the app's configuration to specify a
different database server, or no server.

The Amazon RDS layer remains part of the stack, and can be associated with a different app.

After you associate an Amazon RDS instance with an app, AWS OpsWorks Stacks puts the database
connection information on the app's servers. The application on each server instance can then
use this information to connect to the database. For more information on how to connect to an
Amazon RDS instance, see the section called “Connecting to a Database”.

Removing an Amazon RDS Service Layer from a Stack

To remove an Amazon RDS service layer from a stack, you deregister it.

To deregister an Amazon RDS service layer

1. Click Layers in the navigation pane and click the Amazon RDS service layer's name.

2. Click Deregister and confirm that you want to deregister the layer.

This procedure removes the layer from the stack, but it does not delete the underlying Amazon
RDS instance. The instance and any databases remain in your account and can be registered with
other stacks. You must use the Amazon RDS console, API, or CLI to delete the instance. For more
information, see Deleting a DB Instance.

Amazon RDS Service Layer API Version 2013-02-18 503

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html#CHAP_GettingStarted.Deleting

AWS OpsWorks User Guide

ECS Cluster Layers

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The Amazon Elastic Container Service service (Amazon ECS) manages Docker containers on a
cluster of Amazon Elastic Compute Cloud (Amazon EC2) instances, known as container instances.
An ECS Cluster layer represents an Amazon ECS cluster, and simplifies cluster management by
providing features that include:

• Streamlined container instance provisioning and management

• Container instance operating system and package updates

• User permissions management

• Container instance performance monitoring

• Amazon Elastic Block Store (Amazon EBS) volume management

• Public and Elastic IP address management

• Security group management

The ECS Cluster layer has the following restrictions and requirements:

• The layer is available only for Chef 11.10 or Chef 12 Linux stacks running in a VPC, including a
default VPC.

• The layer's instances must be running one of the following operating systems.

• Amazon Linux 2

• Amazon Linux 2018.03

• Amazon Linux 2017.09

• Amazon Linux 2017.03

ECS Cluster Layers API Version 2013-02-18 504

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html

AWS OpsWorks User Guide

• Amazon Linux 2016.09

• Amazon Linux 2016.03

• Amazon Linux 2015.09

• Amazon Linux 2015.03

• Ubuntu 18.04 LTS

• Ubuntu 16.04 LTS

• Ubuntu 14.04 LTS

• Custom

• The AWS OpsWorks Stacks agent version on the layer's instances must be
3425-20150727112318 or later.

Topics

• Adding an ECS Cluster Layer to a Stack

• Managing the ECS Cluster

• Deleting an ECS Cluster Layer from a Stack

Adding an ECS Cluster Layer to a Stack

AWS OpsWorks Stacks simplifies the process of launching and maintaining container instances for
existing Amazon ECS clusters. To create or launch other Amazon ECS entities, such as clusters and
tasks, use the Amazon ECS console, command line interface (CLI), or API. (For more information,
see the Amazon Elastic Container Service Developer Guide.) You can then associate a cluster with a
stack by creating an ECS Cluster layer, which you can use to manage the cluster in AWS OpsWorks
Stacks.

You can associate clusters with stacks as follows:

• Each stack can have one ECS Cluster layer, which represents a single cluster.

• A cluster can be associated with only one stack.

Before you can add ECS Cluster layers to your stacks, you must update the AWS OpsWorks Stacks
AWS Identity and Access Management (IAM) service role, which is usually named aws-opsworks-
service-role, to allow AWS OpsWorks Stacks to interact with Amazon ECS on your behalf. For
more information on the service role, see Allowing AWS OpsWorks Stacks to Act on Your Behalf.

ECS Cluster Layers API Version 2013-02-18 505

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/

AWS OpsWorks User Guide

The first time you create an ECS Cluster layer, the console provides an Update button that you can
choose to direct AWS OpsWorks Stacks to update the role for you. AWS OpsWorks Stacks then
displays the Add Layer page so you can add the layer to the stack. You need to update the service
role only once. You can then use the updated role to add an ECS Cluster layer to any stack.

Note

If you prefer, you can manually update the service role's policy by adding ecs:* permission
to the existing policy, as follows:

{
 "Statement": [
 {
 "Action": [
 "ec2:*",
 "iam:PassRole",
 "cloudwatch:GetMetricStatistics",
 "elasticloadbalancing:*",
 "rds:*",
 "ecs:*"
],
 "Effect": "Allow",
 "Resource": ["*"]
 }
]
}

Associating a cluster with a stack requires two operations: registering the cluster with the stack and
then creating the associated layer. The AWS OpsWorks Stacks console combines these steps; layer
creation automatically registers the specified cluster. If you use the AWS OpsWorks Stacks API, CLI,
or SDK, you must use separate operations to register the cluster and create the associated layer. To
use the console to add an ECS Cluster layer to your stack, choose Layers, choose +Layer or Add a
Layer, and then chose the ECS Cluster layer type.

ECS Cluster Layers API Version 2013-02-18 506

AWS OpsWorks User Guide

The Add Layer page includes the following configuration options:

ECS Cluster

The Amazon ECS cluster that you want to register with the stack.

EC2 Instance profile

The cluster's Amazon Elastic Compute Cloud(Amazon EC2) instance profile. This profile grants
permission for applications running on the cluster's container instances to access other AWS
services, including Amazon ECS. When you create your first ECS Cluster layer, choose New
profile with ECS access to direct AWS OpsWorks Stacks to create the required profile, which is
named aws-opsworks-ec2-role-with-ecs. You can then use that profile for all subsequent
ECS Cluster layers. For more information on the instance profile, see Specifying Permissions for
Apps Running on EC2 instances.

You can specify other settings by editing the layer's configuration, including:

• Attaching an Elastic Load Balancing load balancer to the layer.

This approach might be suitable for some use cases, but Amazon ECS provides more
sophisticated options. For more information, see Service Load Balancing.

• Specifying whether to automatically assign public IP addresses or Elastic IP addresses to the
container instances.

ECS Cluster Layers API Version 2013-02-18 507

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-load-balancing.html

AWS OpsWorks User Guide

If you disable automatic assignment for both address types, the instance will not come online
unless the subnet has a properly configured NAT. For more information, see Running a Stack in a
VPC.

Managing the ECS Cluster

After you create an ECS Cluster layer, you can use AWS OpsWorks Stacks to manage the cluster as
follows:

Provision and manage container instances

Initially, an ECS Cluster layer does not include any container instances, even if the original
cluster did. One option is to manage the layer's instances by using an appropriate combination
of the following:

• Manually add 24/7 instances to the layer and delete them when they are no longer needed.

• Add or delete instances on a schedule by adding time-based instances to the layer.

• Add or delete instances based on AWS OpsWorks Stacks host metrics or CloudWatch alarms
by adding load-based instances to the layer.

Note

If Amazon ECS is not supported for the stack's default operating system, you must
explicitly specify a supported operating system—Amazon Linux 2, Amazon Linux
2018.03, Amazon Linux 2017.09, Amazon Linux 2017.03, Amazon Linux 2016.09,
Amazon Linux 2016.03, Amazon Linux 2015.09, Amazon Linux 2015.03, Ubuntu 18.04
LTS, Ubuntu 16.04 LTS, Ubuntu 14.04 LTS, or Custom—when you create the container
instances. Do not use the ECS Optimized AMI to create instances in an ECS layer,
because this AMI already includes the ECS agent. AWS OpsWorks Stacks also attempts
to install the ECS agent during the instance setup process, and the conflict can cause
setup to fail.

For more information, see Optimizing the Number of Servers. AWS OpsWorks Stacks assigns the
AWS-OpsWorks-ECS-Cluster security group to each instance. After each new instance finishes
booting, AWS OpsWorks Stacks converts it into a container instance by installing Docker and
the Amazon ECS agent, and then registering the instance with the cluster.

ECS Cluster Layers API Version 2013-02-18 508

AWS OpsWorks User Guide

If you prefer to use existing container instances, you can register them with the stack and assign
them to the ECS Cluster layer. Note that the instances must be running a supported operating
system, Amazon Linux 2015.03 or later, or Ubuntu 14.04 LTS or later.

Note

A container instance cannot belong to both an ECS Cluster layer and another built-in
layer. However, a container instance can belong to an ECS Cluster layer and one or more
custom layers.

Run operating system and package updates

After a new instance finishes booting, AWS OpsWorks Stacks installs the latest updates. You
can then use AWS OpsWorks Stacks to keep the container instances up to date. For more
information, see Managing Security Updates.

Manage user permissions

AWS OpsWorks Stacks provides a simple way to manage permissions on the container instances,
including managing users' SSH keys. For more information, see Managing User Permissions and
Managing SSH Access.

Monitor performance metrics

AWS OpsWorks Stacks provides a variety of ways to monitor performance metrics for the stack,
layer, or individual instances. For more information, see Monitoring.

You handle other management tasks, such as creating tasks or services, through Amazon ECS. For
more information, see the Amazon Elastic Container Service Developer Guide.

Note

To go directly to the cluster's page on the Amazon ECS console, choose Instances, and then
choose ECS Cluster, which is near the upper right corner of the ECS Cluster layer's section.

Deleting an ECS Cluster Layer from a Stack

When you no longer need the cluster, delete the ECS Cluster layer and deregister the associated
cluster. Removing a cluster from a stack requires two operations: deregistering the cluster and

ECS Cluster Layers API Version 2013-02-18 509

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/

AWS OpsWorks User Guide

then deleting the associated layer. The AWS OpsWorks Stacks console combines these steps; layer
deletion automatically deregisters the specified cluster. If you use the AWS OpsWorks Stacks API,
CLI, or SDK, you must use separate operations to deregister the cluster and delete the associated
layer.

To use the console to delete an ECS Cluster layer

1. If you want to control how tasks are shut down, use the Amazon ECS console, API, or CLI to
scale down and delete the cluster's services. For more information, see Cleaning Up Your
Amazon ECS Resources.

2. Stop the layer's instances, and then delete them. When you stop a container instance, AWS
OpsWorks Stacks automatically stops any running tasks, deregisters the instance from the
cluster, and terminates the instance.

Note

If you have registered existing container instances with the stack, you can unassign the
instances from the layer and then deregister them, which returns the instances to ECS
control.

3. Delete the layer. AWS OpsWorks Stacks deregisters the associated cluster, but does not delete
it. The cluster remains in Amazon ECS.

Custom AWS OpsWorks Stacks Layers

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A custom layer has only a minimal set of recipes. You then add appropriate functionality to the
layer by implementing custom recipes and assigning them to the layer's lifecycle events.

Custom Layers API Version 2013-02-18 510

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CleaningUp.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CleaningUp.html

AWS OpsWorks User Guide

The custom layer has the following configuration settings.

Note

AWS OpsWorks Stacks automatically installs Ruby on the layer's instances. If you want to
run Ruby code on the instance but don't want to use the default Ruby version, you can
use custom JSON or a custom attributes file to specify your preferred version. For more
information, see Ruby Versions.

The basic procedure for creating a custom layer has the following steps:

1. Implement a cookbook that contains the recipes and associated files required to install and
configure packages, handle configuration changes, deploy apps, and so on.

Depending on your requirements, you might also need recipes to handle undeployment and
shutdown tasks. For more information, see Cookbooks and Recipes.

2. Create a custom layer.

3. Assign your recipes to the appropriate lifecycle events.

You then add instances to the layer, start them, and deploy apps to those instances.

Important

To deploy apps to a custom layer's instances, you must implement recipes to handle the
deploy operation and assign them to the layer's Deploy event.

Per-layer Operating System Package Installations

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Per-layer Package Installations API Version 2013-02-18 511

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Starting with Chef 12, you must use custom recipes to install packages on layers that are running
different operating systems. This approach provides you with maximum flexibility and control over
package installations.

For example, suppose that you want to install Apache on layers that are running RedHat, Ubuntu,
and Amazon versions of the Linux operating system. The Apache package for RedHat and Amazon
Linux is called httpd, but on Ubuntu, it is called apache2.

To address the difference in package naming, you can use syntax similar to that in the following
example recipe. The recipe installs the Apache package appropriate for each operating system. This
example is based on the Chef documentation.

package "Install Apache" do
 case node[:platform]
 when "redhat", "amazon"
 package_name "httpd"
 when "ubuntu"
 package_name "apache2"
 end
end

For detailed information on how to use the package resource to manage packages, go to the
package page in the Chef documentation.

Alternatively, you can use the value_for_platform helper method from the Chef Recipe DSL
(domain-specific language), which accomplishes the same thing more succinctly:

package "Install Apache" do
 package_name value_for_platform(
 ["redhat", "amazon"] => { "default" => "httpd" },
 ["ubuntu"] => { "default" => "apache2" }
)
end

For information on using the value_for_platform helper method, go to About the Recipe DSL.

Per-layer Package Installations API Version 2013-02-18 512

https://docs.chef.io/
https://docs.chef.io/resource_package.html
https://docs.chef.io/dsl_recipe.html

AWS OpsWorks User Guide

Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

An instance represents a computing resource, such as an Amazon EC2 instance, which handles the
work of serving applications, balancing traffic, and so on. An instance's operating system can have
any of several Linux distributions, or Windows Server 2012 R2.

You can add instances to a stack in either of the following ways:

• Use AWS OpsWorks Stacks to add instances to a stack. The instances that you add represent
Amazon EC2 instances.

• For Linux-based stacks, you can register instances that were created elsewhere—including
instances that you created with Amazon EC2 and on-premises instances that are running on your
own hardware.

You can then use AWS OpsWorks Stacks to manage these instances in much the same way as
instances created with AWS OpsWorks Stacks

This section describes how to use AWS OpsWorks Stacks to create and manage instances.

Topics

• Using AWS OpsWorks Stacks Instances

• Using Computing Resources Created Outside of AWS OpsWorks Stacks

• Editing the Instance Configuration

• Deleting AWS OpsWorks Stacks Instances

• Using SSH to Log In to a Linux Instance

• Using RDP to Log In to a Windows Instance

Instances API Version 2013-02-18 513

AWS OpsWorks User Guide

Using AWS OpsWorks Stacks Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can use AWS OpsWorks Stacks to create instances and add them to the stack.

Topics

• AWS OpsWorks Stacks operating systems

• Adding an Instance to a Layer

• Using Custom AMIs

• Manually Starting, Stopping, and Rebooting 24/7 Instances

• Managing load with time-based and load-based instances

AWS OpsWorks Stacks operating systems

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks supports the 64-bit versions of several built-in operating systems, including
Amazon and Ubuntu Linux distributions, and Microsoft Windows Server. Some general notes:

• A stack's instances can run either Linux or Windows.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 514

AWS OpsWorks User Guide

A stack can have different Linux versions or distributions on different instances, but you cannot
mix Linux and Windows instances.

• You can use custom AMIs (Amazon Machine Images), but they must be based on one of the AWS
OpsWorks Stacks-supported AMIs that are described in topics in this section. While it might
be possible to create or register instances with other operating systems (such as CentOS 6.x)
that have been created from custom or community-generated AMIs, these are not officially
supported.

• Linux operating systems

• Microsoft Windows Server

• You can start and stop instances manually or have AWS OpsWorks Stacks automatically scale the
number of instances.

You can use time-based automatic scaling with any stack; Linux stacks also can use load-based
scaling.

• In addition to using AWS OpsWorks Stacks to create Amazon EC2 instances, you can also register
instances with a Linux stack that were created outside of AWS OpsWorks Stacks.

This includes Amazon EC2 instances and instances running on your own hardware. However, they
must be running one of the supported Linux distributions. You cannot register Amazon EC2 or
on-premises Windows instances.

You can run the AWS OpsWorks Stacks DescribeOperatingSystems API to return a list of
supported operating systems and their supported versions of Chef. The following is an example
command, using the AWS CLI.

aws opsworks describe-operating-systems

The following is an example response.

{
 "OperatingSystems": [
 {
 "Name": "Amazon Linux",
 "Id": "Amazon Linux",
 "Type": "Linux",
 "ConfigurationManagers": [
 {

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 515

https://docs.aws.amazon.com/opsworks/latest/APIReference/API_DescribeOperatingSystems.html

AWS OpsWorks User Guide

 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2014.03",
 "Supported": false
 },
 {
 "Name": "Amazon Linux 2",
 "Id": "Amazon Linux 2",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2"
 },
 {
 "Name": "Amazon Linux 2014.09",
 "Id": "Amazon Linux 2014.09",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 516

AWS OpsWorks User Guide

 "Version": "0.9"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2014.09",
 "Supported": false
 },
 {
 "Name": "Amazon Linux 2015.03",
 "Id": "Amazon Linux 2015.03",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2015.03",
 "Supported": false
 },
 {
 "Name": "Amazon Linux 2015.09",
 "Id": "Amazon Linux 2015.09",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 517

AWS OpsWorks User Guide

 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2015.09",
 "Supported": false
 },
 {
 "Name": "Amazon Linux 2016.03",
 "Id": "Amazon Linux 2016.03",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2016.03"
 },
 {
 "Name": "Amazon Linux 2016.09",
 "Id": "Amazon Linux 2016.09",
 "Type": "Linux",

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 518

AWS OpsWorks User Guide

 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2016.09"
 },
 {
 "Name": "Amazon Linux 2017.03",
 "Id": "Amazon Linux 2017.03",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
],
 "ReportedName": "amazon",

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 519

AWS OpsWorks User Guide

 "ReportedVersion": "2017.03"
 },
 {
 "Name": "Amazon Linux 2017.09",
 "Id": "Amazon Linux 2017.09",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2017.09"
 },
 {
 "Name": "Amazon Linux 2018.03",
 "Id": "Amazon Linux 2018.03",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 }
],
 "ReportedName": "amazon",
 "ReportedVersion": "2018.03"
 },

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 520

AWS OpsWorks User Guide

 {
 "Name": "CentOS Linux 7",
 "Id": "CentOS Linux 7",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 }
],
 "ReportedName": "CentOS Linux",
 "ReportedVersion": "7"
 },
 {
 "Name": "Microsoft Windows Server 2012 R2 Base",
 "Id": "Microsoft Windows Server 2012 R2 Base",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2012 r2 standard",
 "Supported": false
 },
 {
 "Name": "Microsoft Windows Server 2012 R2 with SQL Server Express",
 "Id": "Microsoft Windows Server 2012 R2 with SQL Server Express",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2012 r2 standard",
 "Supported": false
 },
 {
 "Name": "Microsoft Windows Server 2012 R2 with SQL Server Standard",
 "Id": "Microsoft Windows Server 2012 R2 with SQL Server Standard",

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 521

AWS OpsWorks User Guide

 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2012 r2 standard",
 "Supported": false
 },
 {
 "Name": "Microsoft Windows Server 2012 R2 with SQL Server Web",
 "Id": "Microsoft Windows Server 2012 R2 with SQL Server Web",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2012 r2 standard",
 "Supported": false
 },
 {
 "Name": "Microsoft Windows Server 2019 Base",
 "Id": "Microsoft Windows Server 2019 Base",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2019 datacenter"
 },
 {
 "Name": "Microsoft Windows Server 2019 with SQL Server Express",
 "Id": "Microsoft Windows Server 2019 with SQL Server Express",
 "Type": "Windows",
 "ConfigurationManagers": [
 {

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 522

AWS OpsWorks User Guide

 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2019 datacenter"
 },
 {
 "Name": "Microsoft Windows Server 2019 with SQL Server Standard",
 "Id": "Microsoft Windows Server 2019 with SQL Server Standard",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2019 datacenter"
 },
 {
 "Name": "Microsoft Windows Server 2019 with SQL Server Web",
 "Id": "Microsoft Windows Server 2019 with SQL Server Web",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2019 datacenter"
 },
 {
 "Name": "Microsoft Windows Server 2022 Base",
 "Id": "Microsoft Windows Server 2022 Base",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 523

AWS OpsWorks User Guide

 "ReportedVersion": "2022 datacenter"
 },
 {
 "Name": "Microsoft Windows Server 2022 with SQL Server Express",
 "Id": "Microsoft Windows Server 2022 with SQL Server Express",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2022 datacenter"
 },
 {
 "Name": "Microsoft Windows Server 2022 with SQL Server Standard",
 "Id": "Microsoft Windows Server 2022 with SQL Server Standard",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2022 datacenter"
 },
 {
 "Name": "Microsoft Windows Server 2022 with SQL Server Web",
 "Id": "Microsoft Windows Server 2022 with SQL Server Web",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
],
 "ReportedName": "microsoft windows server",
 "ReportedVersion": "2022 datacenter"
 },
 {
 "Name": "Red Hat Enterprise Linux 7",
 "Id": "Red Hat Enterprise Linux 7",

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 524

AWS OpsWorks User Guide

 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 }
],
 "ReportedName": "Red Hat Enterprise Linux",
 "ReportedVersion": "7"
 },
 {
 "Name": "Ubuntu 12.04 LTS",
 "Id": "Ubuntu 12.04 LTS",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
],
 "ReportedName": "ubuntu",
 "ReportedVersion": "12.04",
 "Supported": false
 },
 {
 "Name": "Ubuntu 14.04 LTS",
 "Id": "Ubuntu 14.04 LTS",
 "Type": "Linux",

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 525

AWS OpsWorks User Guide

 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 }
],
 "ReportedName": "ubuntu",
 "ReportedVersion": "14.04"
 },
 {
 "Name": "Ubuntu 16.04 LTS",
 "Id": "Ubuntu 16.04 LTS",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 }
],
 "ReportedName": "ubuntu",
 "ReportedVersion": "16.04"
 },
 {
 "Name": "Ubuntu 18.04 LTS",
 "Id": "Ubuntu 18.04 LTS",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 }
],
 "ReportedName": "ubuntu",
 "ReportedVersion": "18.04"
 },
 {
 "Name": "Ubuntu 20.04 LTS",
 "Id": "Ubuntu 20.04 LTS",
 "Type": "Linux",
 "ConfigurationManagers": [

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 526

AWS OpsWorks User Guide

 {
 "Name": "Chef",
 "Version": "12"
 }
],
 "ReportedName": "ubuntu",
 "ReportedVersion": "20.04"
 },
 {
 "Name": "Custom",
 "Id": "Custom",
 "Type": "Linux",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12"
 },
 {
 "Name": "Chef",
 "Version": "11.10"
 },
 {
 "Name": "Chef",
 "Version": "11.4"
 },
 {
 "Name": "Chef",
 "Version": "0.9"
 }
]
 },
 {
 "Name": "CustomWindows",
 "Id": "CustomWindows",
 "Type": "Windows",
 "ConfigurationManagers": [
 {
 "Name": "Chef",
 "Version": "12.2"
 }
]
 }
]

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 527

AWS OpsWorks User Guide

}

Topics

• Linux operating systems

• Microsoft Windows Server

Linux operating systems

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks supports the 64-bit versions of the following Linux operating systems.

• Amazon Linux and Amazon Linux 2 (see the AWS OpsWorks Stacks console for the currently
supported versions)

• Ubuntu 20.04 LTS

• CentOS 7

• Red Hat Enterprise Linux 7

You can also use custom AMIs based on these operating systems.

Some general notes on Linux instances:

Supported package versions

The supported versions and patch levels for packages, such as Ruby, depend on the operating
system and version as described in the following sections.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 528

http://aws.amazon.com/amazon-linux-ami/faqs/
https://aws.amazon.com/amazon-linux-2/
https://console.aws.amazon.com/opsworks/
https://wiki.ubuntu.com/FocalFossa/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes/CentOS7
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/

AWS OpsWorks User Guide

Updates

By default, AWS OpsWorks Stacks ensures that Linux instances have the latest security
patches by automatically calling yum update or apt-get update after an instance boots.
To disable automatic updates use the CreateInstance, UpdateInstance, CreateLayer, or
UpdateLayer actions—or the equivalent AWS SDK methods or AWS CLI commands— to set the
InstallUpdatesOnBoot parameter to false.

To avoid service interruptions, AWS OpsWorks Stacks does not automatically install updates
after an instance is online. You can manually update an online instance's operating system at
any time by running the Upgrade Operating System stack command. For more information on
how to manage security updates, see Managing Security Updates.

For more control over how AWS OpsWorks Stacks updates your instances, create a custom
AMI based on one of the supported operating systems. For example, with custom AMIs you
can specify which package versions are installed on an instance. Each Linux distribution has
different support timelines and package-merge policies, so you should consider which approach
best suits your requirements. For more information, see Using Custom AMIs.

Hosts file

Each online instance has a /etc/hosts file that maps IP addresses to host names. AWS
OpsWorks Stacks includes the public and private addresses for all of the stack's online instances
in each instance's hosts file. For example, suppose that you have a stack with two Node.js App
Server instances, nodejs-app1 and nodejs-app2, and one MySQL instance, db-master1. The
nodejs-app1 instance's hosts file will look something like the following example, and the other
instances' will have similar hosts files.

...
OpsWorks Layer State
192.0.2.0 nodejs-app1.localdomain nodejs-app1
10.145.160.232 db-master1
198.51.100.0 db-master1-ext
10.243.77.78 nodejs-app2
203.0.113.0 nodejs-app2-ext
10.84.66.6 nodejs-app1
192.0.2.0 nodejs-app1-ext

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 529

http://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateInstance.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateInstance.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateLayer.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateLayer.html
https://aws.amazon.com/tools/
http://aws.amazon.com/documentation/cli/

AWS OpsWorks User Guide

AWS OpsWorks Stacks agent proxy support

The AWS OpsWorks Stacks agent for Chef 11.10 and later stacks includes basic support for
proxy servers, which are typically used with isolated VPCs. To enable proxy server support,
an instance must have an /etc/environment file that provides the appropriate settings for
HTTP and HTTPS traffic. The file should look similar to the following, where you replace the
highlighted text with your proxy server's URL and port:

http_proxy="http://myproxy.example.com:8080/"
https_proxy="http://myproxy.example.com:8080/"
no_proxy="169.254.169.254"

To enable proxy support, we recommend creating a custom AMI that includes an appropriate /
etc/environment file and using that AMI to create your instances.

Note

We do not recommend using a custom recipe to create an /etc/environment file on
your instances. AWS OpsWorks Stacks needs the proxy server data early in the setup
process, before any custom recipes have executed.

Topics

• Amazon Linux

• Ubuntu LTS

• CentOS

• Red Hat Enterprise Linux

Amazon Linux

AWS OpsWorks Stacks supports the 64-bit versions of Amazon Linux and Amazon Linux 2. In
addition to regular updates and patches, Amazon Linux releases a new version approximately every
six months, which can involve significant changes. When you create a stack or a new instance, you
must specify which Amazon Linux version to use. When AWS releases a new version, your instances
continue to run the specified version until you explicitly change it. After a new Amazon Linux
version is released, there is a four-week migration period, during which AWS continues to provide

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 530

AWS OpsWorks User Guide

regular updates for the old version. After the migration period ends, your instances can continue to
run the old version, but AWS does not provide further updates. For more information, see Amazon
Linux AMI FAQs.

When a new Amazon Linux version is released, we recommend that you update to the new version
within the migration period so your instances continue to receive security updates. Before updating
your production stack's instances, we recommend you start a new instance and verify that your app
runs correctly on the new version. You can then update the production stack instances.

Note

By default, custom AMIs based on Amazon Linux are automatically updated to the new
version when it is released. The recommended practice is to lock your custom AMI to a
specific Amazon Linux version so you can defer the update until you have tested the new
version. For more information, see How do I lock my AMI to a specific version?.
If you use an AWS CloudFormation template to create stacks with instances running
Amazon Linux, the templates should explicitly specify an Amazon Linux version. In
particular, if your template specifies Amazon Linux, the instances will continue
to run version 2016.09. For more information, see AWS::OpsWorks::Stack and
AWS::OpsWorks::Instance.

To update an instance's Amazon Linux version, do one of the following:

• For online instances, run the Upgrade Operating System stack command.

When a new Amazon Linux version is available, the Instances and Stack pages display a notice
with a link that takes you to the Run Command page. You can then run Upgrade Operating
System to upgrade your instance.

• For offline Amazon Elastic Block Store-backed (EBS-backed) instances, start the instances and
run Upgrade Operating System, as described in the preceding statement.

• For offline instance store-backed instances, including time-based and load-based instances, edit
the instance's Operating system setting to specify the new version.

AWS OpsWorks Stacks automatically updates the instances to the new version when they are
restarted.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 531

http://aws.amazon.com/amazon-linux-ami/faqs/#lock
http://aws.amazon.com/amazon-linux-ami/faqs/#lock
http://aws.amazon.com/amazon-linux-ami/faqs/#lock
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-opsworks-stack.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-opsworks-instance.html

AWS OpsWorks User Guide

Amazon Linux: Supported Node.js Versions

Amazon Linux Version Node.js Versions

2 (Not applicable to operating systems
 that are available for Chef 12 and
 higher stacks only)

2018.03 0.12.18

2017.09 0.12.18

2017.03 0.12.18

2016.09 0.12.18
0.12.17
0.12.16
0.12.15

2016.03 0.12.18
0.12.17
0.12.16
0.12.15
0.12.14
0.12.13
0.12.12
0.12.10

Amazon Linux: Supported Chef Versions

Chef Version Supported Amazon Linux Versions

12 Amazon Linux 2
Amazon Linux 2018.03
Amazon Linux 2017.09
Amazon Linux 2017.03
Amazon Linux 2016.09

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 532

AWS OpsWorks User Guide

Chef Version Supported Amazon Linux Versions

Amazon Linux 2016.03

11.10 Amazon Linux 2018.03
Amazon Linux 2017.09
Amazon Linux 2017.03
Amazon Linux 2016.09
Amazon Linux 2016.03

11.4 (deprecated) Amazon Linux 2016.09
Amazon Linux 2016.03

Important

Before updating t1.micro instances, make sure they have a temporary swap file, /var/
swapfile. The t1.micro instances on Chef 0.9 stacks do not have a swap file. For Chef 11.4
and Chef 11.10 stacks, recent versions of the instance agent automatically create a swap
file for t1.micro instances. However, this change was introduced over a period of several
weeks, so you should check for the existence of /var/swapfile on instances created
before approximately Mar. 24, 2014.
For t1.micro instances that lack a swap file, you can create one as follows:

• For Chef 11.10 and later stacks, create new t1.micro instances, which automatically have
a swap file.

• For Chef 0.9 stacks, run the following commands on each instance as root user.

dd if=/dev/zero of=/var/swapfile bs=1M count=256
 mkswap /var/swapfile
 chown root:root /var/swapfile
 chmod 0600 /var/swapfile
 swapon /var/swapfile

You can also use these commands on Chef 11.10 and later stacks if you don't want to
create new instances.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 533

AWS OpsWorks User Guide

Ubuntu LTS

Ubuntu releases a new Ubuntu LTS version approximately every two years and supports each
release for approximately five years. Ubuntu provides security patches and updates for the
duration of the operating system support. For more information, see LTS - Ubuntu Wiki.

• You cannot update an existing Ubuntu instance to a newer release of Ubuntu.

You must create a new Ubuntu instance and delete the older instance.

• Ubuntu 20.04 LTS is supported only for Chef 12 and higher stacks.

CentOS

AWS OpsWorks Stacks supports the 64-bit version of CentOS 7. The initial supported version
is CentOS 7, and CentOS releases a new version approximately every two years. For more
information, see Questions about CentOS 7.

When you start a new instance in a CentOS stack, AWS OpsWorks Stacks automatically installs
the most current CentOS version. Because AWS OpsWorks Stacks does not automatically update
the operating system on existing instances when a new CentOS minor version is released, a newly
created instance might receive a more recent version than the stack's existing instances. To keep
versions consistent across your stack, you can update your existing instances to the current CentOS
version, as follows:

• For online instances, run the Upgrade Operating System stack command, which runs yum
update on the specified instances to update them to the current version.

When a new CentOS 7 minor version is available, the Instances and Stack pages display a notice
with a link that takes you to the Run Command page. You can then run Upgrade Operating
System to upgrade your instances.

• For offline Amazon EBS-backed instances, start the instances and run Upgrade Operating
System as described in the preceding list item.

• For offline instance store-backed instances, AWS OpsWorks Stacks automatically installs the new
version when the instances are restarted.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 534

https://wiki.ubuntu.com/LTS
https://wiki.centos.org/FrontPage
https://wiki.centos.org/FAQ/CentOS7

AWS OpsWorks User Guide

CentOS: Supported Chef Versions

Chef Version Supported CentOS Version

12 CentOS 7

11.10 (None supported)

11.4 (deprecated) (None supported)

Note

AWS OpsWorks Stacks supports Apache 2.4 for CentOS instances.

Red Hat Enterprise Linux

AWS OpsWorks Stacks supports the 64-bit version of Red Hat Enterprise Linux 7 (RHEL 7). The
initial supported version is RHEL 7.1 and Red Hat releases a new minor version approximately every
9 months. Minor versions should be compatible with RHEL 7.0. For more information, see Life Cycle
and Update Policies.

When you start a new instance, AWS OpsWorks Stacks automatically installs the current RHEL 7
version. Because AWS OpsWorks Stacks does not automatically update the operating system on
existing instances when a new RHEL 7 minor version is released, a newly created instance might
receive a more recent version than the stack's existing instances. To keep versions consistent across
your stack, you can update your existing instances to the current RHEL 7 version, as follows:

• For online instances, run the Upgrade Operating System stack command, which runs yum
update on the specified instances to update them to the current version.

When a new RHEL 7 version is available, the Instances and Stack pages display a notice with a
link that takes you to the Run Command page. You can then run Upgrade Operating System to
upgrade your instances.

• For offline Amazon EBS-backed instances, start the instances and run Upgrade Operating
System as described in the preceding list item.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 535

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/
https://access.redhat.com/support/policy/update_policies
https://access.redhat.com/support/policy/update_policies

AWS OpsWorks User Guide

• For offline instance store-backed instances, AWS OpsWorks Stacks automatically installs the new
version when the instances are restarted.

Red Hat Enterprise Linux: Supported Node.js Versions

RHEL Version Node.js Versions

7 (Node.js versions only apply to Chef 11.10
 stacks)
0.8.19
0.8.26
0.10.11
0.10.21
0.10.24
0.10.25
0.10.27
0.10.29
0.10.40
0.12.10
0.12.12
0.12.13
0.12.15

Red Hat Enterprise Linux: Supported Chef Versions

Chef Version Supported RHEL Version

12 Red Hat Enterprise Linux 7

11.10 Red Hat Enterprise Linux 7

11.4 (deprecated) (None supported)

All versions of Node.js that are older than 0.10.40 are deprecated. 0.12.7 and 0.12.9 are also
deprecated.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 536

AWS OpsWorks User Guide

Note

AWS OpsWorks Stacks supports Apache 2.4 for RHEL 7 instances.

Microsoft Windows Server

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The following notes describe AWS OpsWorks Stacks support for Windows instances. Windows
instances are available only for Chef 12.2 stacks. The exact version of Chef in a Windows stack is
12.22.

Currently, the AWS OpsWorks Stacks agent cannot be installed on—and AWS OpsWorks Stacks
cannot manage—Windows-based instances that use a system UI language other than English -
United States (en-US).

Versions

AWS OpsWorks Stacks supports the following Windows 64-bit versions:

• Microsoft Windows Server 2022 Base

• Microsoft Windows Server 2022 with SQL Server Express

• Microsoft Windows Server 2022 with SQL Server Standard

• Microsoft Windows Server 2022 with SQL Server Web

• Microsoft Windows Server 2019 Base

• Microsoft Windows Server 2019 with SQL Server Express

• Microsoft Windows Server 2019 with SQL Server Standard

• Microsoft Windows Server 2019 with SQL Server Web

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 537

AWS OpsWorks User Guide

Creating Instances

You create Windows instances with the AWS OpsWorks Stacks console, API, or CLI. Windows
instances are Amazon EBS-backed, but you cannot mount extra Amazon EBS volumes.

Windows stacks can use 24/7 instances, which you start and stop manually. They can also use
time-based automatic scaling, which automatically starts and stops instances based on a user-
specified schedule. Windows-based stacks cannot use load-based automatic scaling.

You cannot register Windows instances that were created outside of AWS OpsWorks Stacks with
a stack.

Updates

AWS updates Windows AMIs for each set of patches, so when you create an instance, it will have
the latest updates. However, AWS OpsWorks Stacks does not provide a way to apply updates to
online Windows instances. The simplest way to ensure that Windows is up to date is to replace
your instances regularly, so that they are always running the latest AMI.

Layers

To handle tasks such as installing and configuring software or deploying apps, you will need to
implement one or more custom layers with custom recipes.

Chef

Windows instances use Chef 12.22, and run chef-client in local mode, which launches a local in-
memory Chef server called chef-zero. The presence of this server enables custom recipes to use
Chef search and data bags.

Remote Login

AWS OpsWorks Stacks provides authorized IAM users with a password that they can use to log
in to Windows instances. This password expires after a specified time. Administrators can use
an SSH key pair to retrieve an instance's Administrator password, which provides unlimited RDP
access. For more information, see Logging In with RDP.

AWS SDK

AWS OpsWorks Stacks automatically installs the AWS SDK for .NET on each instance. This
package includes the AWS .NET libraries and AWS Tools for Windows, including the AWS Tools
for PowerShell. To use the Ruby SDK, you can have a custom recipe install the appropriate gem.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 538

https://docs.chef.io/ctl_chef_client.html#run-in-local-mode
https://docs.chef.io/ctl_chef_client.html#about-chef-zero
http://aws.amazon.com/sdk-for-net/
http://aws.amazon.com/powershell/
http://aws.amazon.com/powershell/

AWS OpsWorks User Guide

Monitoring and Metrics

Windows instances support the standard Amazon CloudWatch (CloudWatch) metrics, which you
can view in the CloudWatch console.

Ruby

The Chef 12.22 client that AWS OpsWorks Stacks installs on Windows instances comes with
Ruby 2.3.6. However, AWS OpsWorks Stacks does not add the executable's directory to the
PATH environment variable. To have your applications use this Ruby version, you can typically
find it in C:\opscode\chef\embedded\bin\.

AWS OpsWorks Stacks Agent CLI

The AWS OpsWorks Stacks agent on Windows instances does not expose a command-line
interface.

Proxy Support

Do the following to set up proxy support for Windows instances:

1. Modify machine.config to add the following, which adds proxy support to Windows
PowerShell (initial bootstrap) and .NET (AWS OpsWorks Stacks agent) applications:

<system.net>
 <defaultProxy>
 <proxy autoDetect="false" bypassonlocal="true"
 proxyaddress="http://10.100.1.91:3128" usesystemdefault="false" />
 <bypasslist>
 <add address="localhost" />
 <add address="169.254.169.254" />
 </bypasslist>
 </defaultProxy>
</system.net>

2. Run the following commands to set environment variables for later use by Chef and Git:

setx /m no_proxy "localhost,169.254.169.254"
setx /m http_proxy "http://10.100.1.91:3128"
setx /m https_proxy "http://10.100.1.91:3128"

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 539

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

AWS OpsWorks User Guide

Note

For more control over how AWS OpsWorks Stacks updates your instances, create a custom
AMI based on Microsoft Windows Server 2022 Base. For example, with custom AMIs you
can specify which software is installed on an instance, such as Web Server (IIS). For more
information, see Using Custom AMIs.

Adding an Instance to a Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After you create a layer, you usually add at least one instance. You can add more instances later,
if the current set can't handle the load. You can also use load-based or time-based instances to
automatically scale the number of instances.

You can add either new or existing instances to a layer:

• New–OpsWorks creates a new instance, configured to your specifications, and makes it a
member of the layer.

• Existing–You can add an existing instance from any compatible layer, but it must be in the offline
(stopped) state.

If an instance belongs to multiple layers, AWS OpsWorks Stacks runs the recipes for each of the
instance's layers when a lifecycle event occurs, or when you run a stack or deployment command.

You can also make an instance a member of multiple layers by editing its configuration. For more
information, see Editing the Instance Configuration.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 540

AWS OpsWorks User Guide

To add a new instance to a layer

1. On the Instances page, choose +Instance for the appropriate layer and (if necessary) choose
the New tab. If you want to configure more than just the Host name, Size, and Subnet
or Availability Zone, choose Advanced >> to see more options. The following shows the
complete set of options:

2. If desired, you can override the default configuration, most of which you specified when you
created the stack. For more information, see Create a New Stack.

Hostname

Identifies the instance on the network. By default, AWS OpsWorks Stacks generates each
instance's host name by using the Hostname theme you specified when you created the
stack. You can override this value and specify your preferred host name.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 541

AWS OpsWorks User Guide

Size

An Amazon EC2 instance type, which specifies the instance's resources, such as the amount
of memory or number of virtual cores. AWS OpsWorks Stacks specifies a default size for
each instance, which you can override with your preferred instance type.

The instance types supported by AWS OpsWorks Stacks depend on whether or not the
stack is in a VPC. Instance types are also limited if your account is using the AWS Free Tier.
The drop-down Size list shows the supported instance types for the Chef version that your
stack supports. Be aware that micro instances such as t1.micro might not have sufficient
resources to support some layers. For more information, see Instance Types.

Note

If you are using load-balanced instances, note that Configure lifecycle events
can produce a significant CPU load spike that might last a minute or longer. With
smaller instances this load spike can be enough to trigger upscaling, especially for
large load-balanced stacks with frequent Configure events. The following are some
ways to reduce the likelihood of a Configure event causing needless upscaling.

• Use larger instances, so that the additional load from a Configure event is not
enough to trigger upscaling.

• Don't use instance types such as T2 that share CPU resources.

This ensures that when a Configure event occurs, all of the instance's CPU
resources are immediately available.

• Make the exceeded threshold time significantly longer than the time required
to process a Configure event, perhaps 5 minutes.

For more information, see Using automatic load-based scaling.

Availability Zone/Subnet

If the stack is not in a VPC, this setting is labeled Availability Zone and lists the region's
zones. You can use this setting to override the default Availability Zone you specified when
you created the stack.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 542

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

AWS OpsWorks User Guide

If the stack is running in a VPC, this setting is labeled Subnet and lists the VPC's subnets.
You can use this setting to override the default subnet you specified when you created the
stack.

Note

By default, AWS OpsWorks Stacks lists the subnet's CIDR ranges. To make the list
more readable, use the VPC console or API to add a tag to each subnet with Key set
to Name and Value set to the subnet's name. AWS OpsWorks Stacks appends that
name to the CIDR range. In the preceding example, the subnet's Name tag is set to
Private.

Scaling Type

Determines how the instance is started and stopped.

• The default value is a 24/7 instance, which you start and stop manually.

• AWS OpsWorks Stacks starts and stops time-based instances based on a specified
schedule.

• (Linux only) AWS OpsWorks Stacks starts and stops load-based instances based on
specified load metrics.

Note

You do not start or stop load-based or time-based instances yourself. Instead, you
configure the instances, and AWS OpsWorks Stacks starts and stops them based on
the configuration. For more information, see Managing load with time-based and
load-based instances.

SSH key

An Amazon EC2 key pair. AWS OpsWorks Stacks installs the public key on the instance.

• For Linux instances, you can use the corresponding private key with an SSH client to log
in to the instance.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 543

AWS OpsWorks User Guide

• For Windows instances, you can use the corresponding private key to retrieve the
instance's Administrator password. You can then use that password with RDP to log into
the instance as Administrator.

Initially, this setting is the Default SSH key value that you specified when you created the
stack.

• If the default value is set to Do not use a default SSH key, you can specify one of your
account's Amazon EC2 keys.

• If the default value is set to an Amazon EC2 key, you can specify a different key or no key.

Operating system

Operating system specifies which operating system the instance is running. AWS OpsWorks
Stacks supports only 64-bit operating systems.

Initially, this setting is the Default operating system value that you specified when you
created the stack. You can override the default value to specify a different Linux operating
system or a custom Amazon Machine Image (AMI). However, you cannot switch from Linux
to Windows or from Windows to Linux.

If you select Use custom AMI, the page displays a list of custom AMIs instead of
Architecture and Root device type.

For more information, see Using Custom AMIs.

OpsWorks Agent version

OpsWorks Agent version specifies the version of the AWS OpsWorks Stacks agent that
you want to run on the instance. If you want AWS OpsWorks Stacks to update the agent
automatically, choose Inherit from stack. To install a specific version of the agent, and
manually update the agent on the instance, choose a version from the drop-down list.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 544

AWS OpsWorks User Guide

Note

Not all agent versions work with all operating system releases. If your instance is
running an agent–or you install an agent on an instance–that is not fully supported
on the instance operating system, the AWS OpsWorks Stacks console displays error
messages that instruct you to install a compatible agent.

Tenancy

Choose the tenancy option for your instance. You can choose to run your instances on
physical servers fully dedicated for your use.

• Default - Rely on VPC settings. No tenancy, or inherits tenancy settings from your VPC.

• Dedicated - Run a dedicated instance. Pay by the hour for instances that run on single-
tenant hardware. For more information, see Dedicated Instances in the Amazon VPC User
Guide, and Amazon EC2 Dedicated Instances.

• Dedicated host - Run this instance on a dedicated host. Pay for a physical host that is
fully dedicated to running your instances, and bring your existing per-socket, per-core,
or per-VM software licenses to reduce costs. For more information, see Dedicated Hosts
Overview in the Amazon EC2 documentation, and Amazon EC2 Dedicated Hosts.

Root device type

Specifies the instance's root device storage.

• Linux instances can be either Amazon EBS-backed or instance store-backed.

• Windows instances must be Amazon EBS-backed.

For more information, see Storage.

Note

After the initial boot, Amazon EBS-backed instances boot faster than instance
store-backed instances because AWS OpsWorks Stacks does not have to reinstall
the instance's software from scratch. For more information, see Root Device
Storage.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 545

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/dedicated-instance.html
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
https://aws.amazon.com/ec2/dedicated-hosts/
https://aws.amazon.com/ec2/dedicated-hosts/
https://aws.amazon.com/ec2/dedicated-hosts/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html

AWS OpsWorks User Guide

Volume type

Specifies the root device volume type: Magnetic, Provisioned IOPS (SSD), or General
Purpose (SSD). For more information, see Amazon EBS Volume Types.

Volume size

Specifies the root device volume size for the specified volume type. For more information,
see Amazon EBS Volume Types.

• General Purpose (SSD). Minimum allowed size is: 8 GiB; maximum size is 16384 GiB.

• Provisioned IOPS (SSD). Minimum allowed size is: 8 GiB; maximum size is 16384
GiB. You can set a minimum of 100 input/output operations per second (IOPS), and a
maximum of 240 IOPS.

• Magnetic. Minimum allowed size is 8 GiB; maximum size is 1024 GiB.

3. Choose Add Instance to create the new instance.

Note

You cannot override the stack's default agent version setting when you create an instance.
To specify a custom agent version setting, you must create the instance and then edit its
configuration.

To add an existing instance to a layer

1. On the Instances page, choose +Instance for the appropriate layer, and then open the Existing
tab.

Note

If you change your mind about using an existing instance, choose New to create a new
instance as described in the preceding procedure.

2. On the Existing tab, select an instance from the list.

3. Choose Add Instance to create the new instance.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 546

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

AWS OpsWorks User Guide

An instance represents an Amazon EC2 instance, but is basically just an AWS OpsWorks Stacks data
structure. An instance must be started to create a running Amazon EC2 instance, as described in
the following sections.

Important

If you launch instances into a default VPC, you must be careful about modifying the VPC
configuration. The instances must always be able to communicate with the AWS OpsWorks
Stacks service, Amazon S3, and package repositories. If, for example, you remove a default
gateway, the instances will lose their connection to the AWS OpsWorks Stacks service,
which will then treat the instances as failed and auto heal them. However, AWS OpsWorks
Stacks will not be able to install the instance agent on the healed instances. Without an
agent, the instances cannot communicate with the service, and the startup process will not
progress beyond the booting status. For more information on default VPC, see Supported
Platforms.

You can also incorporate Linux computing resources into a stack that were created outside of AWS
OpsWorks Stacks:

• Amazon EC2 instances that you created directly by using the Amazon EC2 console, CLI, or API.

• On-premises instances running on your own hardware, including instances running in virtual
machines.

For more information, see Using Computing Resources Created Outside of AWS OpsWorks Stacks.

Using Custom AMIs

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 547

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html

AWS OpsWorks User Guide

AWS OpsWorks Stacks supports two ways to customize instances: custom Amazon Machine Images
(AMIs) and Chef recipes. Both approaches give you control over which packages and package
versions are installed, how they are configured, and so on. However, each approach has different
advantages, so the best one depends on your requirements.

The following are the primary reasons to consider using a custom AMI:

• You want to prebundle specific packages instead of installing them after the instance boots.

• You want to control the timing of package updates to provide a consistent base image for your
layer.

• You want instances—load-based instances in particular—to boot as quickly as possible.

The following are the primary reasons to consider using Chef recipes:

• They are more flexible than custom AMIs.

• They are easier to update.

• They can perform updates on running instances.

In practice, the optimal solution might be a combination of both approaches. For more information
about recipes, see Cookbooks and Recipes.

Topics

• How Custom AMIs work with AWS OpsWorks Stacks

• Creating a Custom AMI for AWS OpsWorks Stacks

How Custom AMIs work with AWS OpsWorks Stacks

To specify a custom AMI for your instances, select Use custom AMI as the instance's operating
system when you create a new instance. AWS OpsWorks Stacks then displays a list of the custom
AMIs in the stack's region and you select the appropriate one from the list. For more information,
see Adding an Instance to a Layer.

Note

You cannot specify a particular custom AMI as a stack's default operating system. You
can set Use custom AMI as the stack's default operating system, but you can specify
a particular AMI only when you add new instances to layers. For more information, see

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 548

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

AWS OpsWorks User Guide

Adding an Instance to a Layer and Create a New Stack. While it might be possible to create
instances with other operating systems (such as CentOS 6.x) that have been created from
custom or community-generated AMIs, these are not officially supported.

This topic discusses some general issues that you should consider before creating or using a custom
AMI.

Topics

• Startup Behavior

• Choosing a Layer

• Handling Applications

Startup Behavior

When you start the instance, AWS OpsWorks Stacks uses the specified custom AMI to launch a new
Amazon EC2 instance. AWS OpsWorks Stacks then uses cloud-init to install the AWS OpsWorks
Stacks agent on the instance and the agent runs the instance's Setup recipes followed by the
Deploy recipes. After the instance is online, the agent runs the Configure recipes for every instance
in the stack, including the newly added instance.

Choosing a Layer

The AWS OpsWorks Stacks agent usually does not conflict with installed packages. However, the
instance must be a member of at least one layer. AWS OpsWorks Stacks always runs that layer's
recipes, which could cause problems. You should understand exactly what a layer's recipes do to an
instance before adding an instance with a custom AMI to that layer.

To see which recipes a particular layer type runs on your instance, open a stack that includes that
layer. Then click Layers in the navigation pane, and click Recipes for the layer of interest. To see the
actual code, click the recipe name.

Note

For Linux AMIs, one way to reduce the possibility of conflicts is to use AWS OpsWorks
Stacks to provision and configure the instance that is the basis for your custom AMI. For
more information, see Create a Custom Linux AMI from an AWS OpsWorks Stacks Instance.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 549

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonLinuxAMIBasics.html#included-aws-command-line-tools

AWS OpsWorks User Guide

Handling Applications

In addition to packages, you might also want to include an application in the AMI. If you have a
large complex application, including it in the AMI can shorten the instance's startup time. You can
include small applications in your AMI, but there is usually little or no time advantage relative to
having AWS OpsWorks Stacks deploy the application.

One option is to include the application in your AMI and also create an app that deploys the
application to the instances from a repository. This approach shortens your boot time but also
provides a convenient way to update the application after the instance is running. Note that Chef
recipes are idempotent, so the deployment recipes won't modify the application as long as the
version in the repository is the same as the one on the instance.

Creating a Custom AMI for AWS OpsWorks Stacks

To use a custom AMI with AWS OpsWorks Stacks, you must first create an AMI from a customized
instance. You can choose from two options:

• Use the Amazon EC2 console or API to create and customize an instance, based on a 64-bit
version of one of the AWS OpsWorks Stacks-supported AMIs.

• For Linux AMIs, use OpsWorks to create an Amazon EC2 instance, based on the configuration of
its associated layers.

Before you create a custom Linux AMI, disable noexec on the /tmp partition to allow AWS
OpsWorks Stacks to install its agent on custom Linux instances.

Note

Be aware that an AMI might not work with all instance types, so make sure that your
starting AMI is compatible with the instance types that you plan to use. In particular, the R3
instance types require a hardware-assisted virtualization (HVM) AMI.

You then use the Amazon EC2 console or API to create a custom AMI from the customized instance.
You can use your custom AMIs in any stack that is in the same region by adding an instance to a
layer and specifying your custom AMI. For more information on how to create an instance that uses
a custom AMI, see Adding an Instance to a Layer.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 550

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/r3-instances.html

AWS OpsWorks User Guide

Note

By default, AWS OpsWorks Stacks installs all Amazon Linux updates on boot, which
provides you with the latest release. In addition, Amazon Linux releases a new version
approximately every six months, which can involve significant changes. By default, custom
AMIs based on Amazon Linux are automatically updated to the new version when it is
released. The recommended practice is to lock your custom AMI to a specific Amazon Linux
version, which allows you to defer the update until you have tested the new version. For
more information, see How do I lock my AMI to a specific version?.

Topics

• Create a Custom AMI using Amazon EC2

• Create a Custom Linux AMI from an AWS OpsWorks Stacks Instance

• Create a Custom Windows AMI

Create a Custom AMI using Amazon EC2

The simplest way to create a custom AMI—and the only option for Windows AMIs—is to perform
the entire task by using the Amazon EC2 console or API. For more details about the following steps,
see Creating Your Own AMIs.

To create a custom AMI using Amazon EC2 console or API

1. Create an instance by using a 64-bit version of one of the AWS OpsWorks Stacks-supported
AMIs.

2. Customize the instance from Step 1 by configuring it, installing packages, and so on.
Remember that everything you install will be reproduced on every instance based on the AMI,
so don’t include items that should be specific to a particular instance.

3. Stop the instance and create a custom AMI.

Create a Custom Linux AMI from an AWS OpsWorks Stacks Instance

To use a customized AWS OpsWorks Stacks Linux instance to create an AMI, be aware that every
Amazon EC2 instance created by OpsWorks includes a unique identity. If you create a custom AMI
from such an instance, it includes that identity, and all instances based on the AMI have the same

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 551

http://aws.amazon.com/amazon-linux-ami/faqs/#lock
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami.html

AWS OpsWorks User Guide

identity. To ensure that the instances based on your custom AMI have a unique identity, you must
remove the identity from the customized instance before creating the AMI.

To create a custom AMI from an AWS OpsWorks Stacks instance

1. Create a Linux stack and add one or more layers to define the configuration of the customized
instance. You can use built-in layers, customized as appropriate, as well as fully custom layers.
For more information, see Customizing AWS OpsWorks Stacks.

2. Edit the layers and disable AutoHealing.

3. Add an instance with your preferred Linux distribution to the layer or layers and start it. We
recommend using an Amazon EBS-backed instance. Open the instance's details page and
record its Amazon EC2 ID for later.

4. When the instance is online, log in with SSH, and perform one of the next four steps,
depending upon your instance operating system.

5. For an Amazon Linux instance in either a Chef 11 or Chef 12 stack, or a Red Hat Enterprise
Linux 7 instance in a Chef 11 stack, do the following.

a. sudo /etc/init.d/monit stop

b. sudo /etc/init.d/opsworks-agent stop

c. sudo rm -rf /etc/aws/opsworks/ /opt/aws/opsworks/ /var/log/
aws/opsworks/ /var/lib/aws/opsworks/ /etc/monit.d/opsworks-
agent.monitrc /etc/monit/conf.d/opsworks-agent.monitrc /var/lib/
cloud/ /etc/chef

Note

For instances in a Chef 12 stack, add the following two folders to this command:

• /var/chef

• /opt/chef

d. sudo rpm -e opsworks-agent-ruby

e. sudo rpm -e chef

6. For an Ubuntu 16.04 LTS or 18.04 LTS instance in a Chef 12 stack, do the following.

a. sudo systemctl stop opsworks-agent

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 552

AWS OpsWorks User Guide

b. sudo rm -rf /etc/aws/opsworks/ /opt/aws/opsworks/ /var/log/
aws/opsworks/ /var/lib/aws/opsworks/ /etc/monit.d/opsworks-
agent.monitrc /etc/monit/conf.d/opsworks-agent.monitrc /var/lib/
cloud/ /var/chef /opt/chef /etc/chef

c. sudo apt-get -y remove chef

d. sudo dpkg -r opsworks-agent-ruby

e. systemctl stop apt-daily.timer

f. systemctl stop apt-daily-upgrade.timer

g. rm /var/lib/systemd/timers/stamp-apt-daily.timer

h. rm /var/lib/systemd/timers/stamp-apt-daily-upgrade.timer

7. For other supported Ubuntu versions in a Chef 12 stack, do the following.

a. sudo /etc/init.d/monit stop

b. sudo /etc/init.d/opsworks-agent stop

c. sudo rm -rf /etc/aws/opsworks/ /opt/aws/opsworks/ /var/log/
aws/opsworks/ /var/lib/aws/opsworks/ /etc/monit.d/opsworks-
agent.monitrc /etc/monit/conf.d/opsworks-agent.monitrc /var/lib/
cloud/ /var/chef /opt/chef /etc/chef

d. sudo apt-get -y remove chef

e. sudo dpkg -r opsworks-agent-ruby

8. For a Red Hat Enterprise Linux 7 instance in a Chef 12 stack, do the following.

a. sudo systemctl stop opsworks-agent

b. sudo rm -rf /etc/aws/opsworks/ /opt/aws/opsworks/ /var/log/
aws/opsworks/ /var/lib/aws/opsworks/ /etc/monit.d/opsworks-
agent.monitrc /etc/monit/conf.d/opsworks-agent.monitrc /var/lib/
cloud/ /etc/chef /var/chef

c. sudo rpm -e opsworks-agent-ruby

d. sudo rpm -e chef

9. This step depends on the instance type:

• For an Amazon EBS-backed instance, use the AWS OpsWorks Stacks console to stop the
instance and create the AMI as described in Creating an Amazon EBS-Backed Linux AMI..

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 553

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html

AWS OpsWorks User Guide

• For an instance store-backed instance, create the AMI as described in Creating an Instance
Store-Backed Linux AMI and then use the AWS OpsWorks Stacks console to stop the
instance.

When you create the AMI, be sure to include the certificate files. For example, you can call
the ec2-bundle-vol command with the -i argument set to -i $(find /etc /usr /
opt -name '*.pem' -o -name '*.crt' -o -name '*.gpg' | tr '\n' ','). Do
not remove the apt public keys when bundling. The default ec2-bundle-vol command
handles this task.

10. Clean up your stack by returning to the AWS OpsWorks Stacks console and deleting the
instance from the stack.

Create a Custom Windows AMI

The following procedures create custom AMIs for Windows Server 2022 Base. You can choose other
Windows Server operating systems in the Amazon EC2 management console.

Important

Currently, the AWS OpsWorks Stacks agent cannot be installed on—and AWS OpsWorks
Stacks cannot manage—Windows-based instances that use a system UI language other
than English - United States (en-US).

Topics

• Creating a Custom Windows AMI with Sysprep

• Creating a Custom Windows AMI Without Sysprep

• Adding a New Instance by Using a Custom Windows AMI

Creating a Custom Windows AMI with Sysprep

Creating custom Windows AMIs by using Sysprep typically results in a slower instance launch, but a
cleaner process. The first-time startup of an instance created from an image created with Sysprep
takes more time because of Sysprep activities, restarts, AWS OpsWorks Stacks provisioning, and
the first AWS OpsWorks Stacks run, including setup and configuration. Complete the steps for
creating a custom Windows AMI in the Amazon EC2 console.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 554

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-instance-store.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-instance-store.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/CLTRG-ami-bundle-vol.html

AWS OpsWorks User Guide

To create a custom Windows AMI with Sysprep

1. In the Amazon EC2 console, choose Launch Instance.

2. Find Microsoft Windows Server 2022 Base, and then choose Select.

3. Choose the instance type that you want, and then choose Configure Instance Details. Make
configuration changes to the AMI, including machine name, storage, and security group
settings. Choose Launch.

4. After the instance boot process finishes, get your password, and then connect to the instance
in a Windows Remote Desktop Connection window.

5. On the Windows Start screen, choose Start, and then begin typing ec2configservice until
the results show the EC2ConfigServiceSettings console. Open the console.

6. On the General tab, make sure that the Enable UserData execution check box is filled
(although this option is not required for Sysprep, it is required for AWS OpsWorks Stacks to
install its agent). Clear the check box for the Set the computer name of the instance... option,
because this option can cause a restart loop with AWS OpsWorks Stacks.

7. On the Image tab, set Administrator Password to either Random to allow Amazon EC2 to
automatically generate a password that you can retrieve with an SSH key, or Specify to specify
your own password. Sysprep saves this setting. If you specify your own password, store the
password in a convenient place. We recommend that you do not choose Keep Existing.

8. Choose Apply, and then choose Shutdown with Sysprep. When you are prompted to confirm,
choose Yes.

9. After the instance has stopped, in the Amazon EC2 console, right-click the instance in the
Instances list, choose Image, and then choose Create Image.

10. On the Create Image page, provide a name and description for the image, and specify the
volume configuration. When you have finished, choose Create Image.

11. Open the Images page, and wait for your image to change from the pending stage to
available. Your new AMI is ready to use.

Creating a Custom Windows AMI Without Sysprep

Complete the steps for creating a custom Windows AMI in the Amazon EC2 console.

To create a custom Windows AMI without Sysprep

1. In the Amazon EC2 console, choose Launch Instance.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 555

AWS OpsWorks User Guide

2. Find Microsoft Windows Server 2022 Base, and then choose Select.

3. Choose the instance type that you want, and then choose Configure Instance Details. Make
configuration changes to the AMI, including machine name, storage, and security group
settings. Choose Launch.

4. After the instance boot process finishes, get your password, and then connect to the instance
in a Windows Remote Desktop Connection window.

5. On the instance, open C:\Program Files\Amazon\Ec2ConfigService\Settings
\config.xml, change the following two settings, and then save and close the file:

• Ec2SetPassword to Enabled

• Ec2HandleUserData to Enabled

6. Disconnect from the Remote Desktop session, and return to the Amazon EC2 console.

7. In the Instances list, stop the instance.

8. After the instance has stopped, in the Amazon EC2 console, right-click the instance in the
Instances list, choose Image, and then choose Create Image.

9. On the Create Image page, provide a name and description for the image, and specify the
volume configuration. When you have finished, choose Create Image.

10. Open the Images page, and wait for your image to change from the pending stage to
available. Your new AMI is ready to use.

Adding a New Instance by Using a Custom Windows AMI

After your image changes to the available state, you can create new instances that are based on
your custom Windows AMI. When you choose Use custom Windows AMI from the Operating
system list, AWS OpsWorks Stacks displays a list of custom AMIs.

To add a new instance based on a custom Windows AMI

1. When your new AMI is available, go to the AWS OpsWorks Stacks console, open the Instances
page for a Windows stack, and choose + Instance near the bottom of the page to add a new
instance.

2. On the New tab, choose Advanced.

3. On the Operating system drop-down list, choose Use custom Windows AMI.

4. On the Custom AMI drop-down list, choose the AMI that you created, and then choose Add
Instance.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 556

AWS OpsWorks User Guide

You can now start and run the instance.

Manually Starting, Stopping, and Rebooting 24/7 Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

You can use 24/7 instances with both Linux and Windows stacks.

After you add a 24/7 instance to a layer, you must manually start the instance to launch the
corresponding Amazon Elastic Compute Cloud (Amazon EC2) instance and manually stop it
to terminate the Amazon EC2 instance. You can also manually reboot instances that are not
functioning properly. AWS OpsWorks Stacks automatically starts and stops time-based and load-
based instances. For more information, see Managing load with time-based and load-based
instances.

Important

AWS OpsWorks Stacks instances must be started, stopped, and restarted only in the AWS
OpsWorks console. AWS OpsWorks doesn't recognize start, stop, or restart operations
performed in the Amazon EC2 console.

Topics

• Starting or Restarting an Instance

• Stopping an Instance

• Rebooting an Instance

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 557

AWS OpsWorks User Guide

Starting or Restarting an Instance

To start a new instance, on the Instances page, click start in the instance's Actions column.

You can also create multiple instances and then start them all at the same time by clicking Start all
Instances.

After you start the instance, AWS OpsWorks Stacks launches an Amazon EC2 instance and boots
the operating system. The startup process usually takes a few minutes, and is typically somewhat
slower for Windows instances than for Linux instances. As startup progresses, the instance's Status
field displays the following series of values:

1. requested - AWS OpsWorks Stacks has called the Amazon EC2 service to create the Amazon EC2
instance.

2. pending - AWS OpsWorks Stacks is waiting for the Amazon EC2 instance to start.

3. booting - The Amazon EC2 instance is booting.

4. running_setup - AWS OpsWorks Stacks has triggered the Setup event and is running the layer's
Setup recipes, followed by its Deploy recipes. For more information, see Executing Recipes. If you
have added custom cookbooks to the stack, AWS OpsWorks Stacks installs the current version
from your repository before running the Setup and Deploy recipes.

5. online - The instance is ready for use.

When the Status changes to online, the instance is fully operational.

• If the layer has an attached load balancer, AWS OpsWorks Stacks adds the instance to it.

• AWS OpsWorks Stacks triggers a Configure event, which runs each instance's Configure recipes.

As needed, these recipes update the instance to accommodate the new instance.

• AWS OpsWorks Stacks replaces the instance's start action with stop, which you can use to stop
the instance.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 558

AWS OpsWorks User Guide

If the instance did not start successfully or the setup recipes failed, the status will be set to
start_failed or setup_failed, respectively. You can examine the logs to determine the cause. For
more information, see Debugging and Troubleshooting Guide.

A stopped instance remains part of the stack and retains all resources. For example, Amazon EBS
volumes and Elastic IP addresses are still associated with a stopped instance. You can restart a
stopped instance by choosing start in the instance's Actions column. Restarting a stopped instance
does the following:

• Instance store-backed instances – AWS OpsWorks Stacks launches a new Amazon EC2 instance
with the same configuration.

• Amazon EBS-backed instances – AWS OpsWorks Stacks restarts the Amazon EC2 instance, which
reattaches the root volume.

After the instance finishes booting, AWS OpsWorks Stacks installs operating system updates and
runs the Setup and Deploy recipes, just as with the initial start. AWS OpsWorks Stacks also does the
following for restarted instances, as appropriate.

• Reassociates Elastic IP addresses.

• Reattaches Amazon Elastic Block Store (Amazon EBS) volumes.

• For instance store-backed instances, installs the latest cookbook versions.

Amazon EBS-backed instances continue to use the custom cookbooks that were stored on the
root volume. If your custom cookbooks have changed since you stopped the instance, you must
manually update them after the instance is online. For more information, see Updating Custom
Cookbooks.

Note

It might take several minutes for an Elastic IP address to be reassociated with a restarted
instance. Be aware that the instance's Elastic IP setting represents metadata, and simply
indicates that the address should be associated with the instance. The Public IP setting
reflects the instance's state, and might be empty initially. When the Elastic IP address is
associated with the instance, the address is assigned to the Public IP setting, followed by
(EIP).

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 559

AWS OpsWorks User Guide

Stopping an Instance

On the Instances page, click stop in the instance's Actions column, which notifies AWS OpsWorks
Stacks to run the shutdown recipes and terminate the EC2 instance.

You can also shut down every instance in the stack by clicking Stop All Instances.

After you stop the instance, AWS OpsWorks Stacks performs several tasks:

1. If the instance's layer has an attached Elastic Load Balancing load balancer, AWS OpsWorks
Stacks deregisters the instance.

If the layer supports the load balancer's connection draining feature, AWS OpsWorks Stacks
delays triggering the Shutdown event until connection draining is complete. For more
information, see Elastic Load Balancing Layer.

2. AWS OpsWorks Stacks triggers a Shutdown event, which runs the instance's Shutdown recipes.

3. After triggering the Shutdown event, AWS OpsWorks Stacks waits for a specified time to allow
the Shutdown recipes time to finish and then does the following:

• Terminates instance store-backed instances, which deletes all data.

• Stops Amazon EBS-backed instances, which preserves the data on the root volume.

For more information on instance storage, see Storage.

Note

The default shutdown timeout setting is 120 seconds. If your Shutdown recipes need
more time, you can edit the layer configuration to change the setting.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 560

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html

AWS OpsWorks User Guide

You can monitor the shutdown process by watching the instance's Status column. As shutdown
progresses, it displays the following series of values:

1. terminating - AWS OpsWorks Stacks is terminating the Amazon EC2 instance.

2. shutting_down - AWS OpsWorks Stacks is running the layer's Shutdown recipes.

3. terminated - The Amazon EC2 instance is terminated.

4. stopped - The instance has stopped.

Rebooting an Instance

On the Instances page, click the nonfunctioning instance's name to open the details page and then
click Reboot.

This command performs a soft reboot of the associated Amazon EC2 instance. It does not delete
the instance's data, even for instance store-backed instances, and does not trigger any lifecycle
events.

Note

To have AWS OpsWorks Stacks automatically replace failed instances, enable auto healing.
For more information, see Using Auto Healing.

Managing load with time-based and load-based instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 561

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

As your incoming traffic varies, your stack may have either too few instances to comfortably handle
the load or more instances than necessary. You can save both time and money by using time-
based or load-based instances to automatically increase or decrease a layer's instances so that you
always have enough instances to adequately handle incoming traffic without paying for unneeded
capacity. There's no need to monitor server loads or manually start or stop instances. In addition,
time- and load-based instances automatically distribute, scale, and balance applications over
multiple Availability Zones within a region, giving you geographic redundancy and scalability.

Automatic scaling is based on two instance types, which adjust a layer's online instances based on
different criteria:

• Time-based instances

They allow a stack to handle loads that follow a predictable pattern by including instances that
run only at certain times or on certain days. For example, you could start some instances after
6PM to perform nightly backup tasks or stop some instances on weekends when traffic is lower.

• Load-based instances

They allow a stack to handle variable loads by starting additional instances when traffic is high
and stopping instances when traffic is low, based on any of several load metrics. For example,
you can have AWS OpsWorks Stacks start instances when the average CPU utilization exceeds
80% and stop instances when the average CPU load falls below 60%.

Both time-based and load-based instances are supported for Linux stacks, while only time-based
instances are supported for Windows stacks.

Unlike 24/7 instances, which you must start and stop manually, you do not start or stop time-
based or load-based instances yourself. Instead, you configure the instances and AWS OpsWorks
Stacks starts or stops them based on their configuration. For example, you configure time-based
instances to start and stop on a specified schedule. AWS OpsWorks Stacks then starts and stops the
instances according to that configuration.

A common practice is to use all three instance types together, as follows.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 562

AWS OpsWorks User Guide

• A set 24/7 instances to handle the base load. You typically just start these instances and let them
run continuously.

• A set of time-based instances, which AWS OpsWorks Stacks starts and stops to handle
predictable traffic variations. For example, if your traffic is highest during working hours, you
would configure the time-based instances to start in the morning and shut down in the evening.

• A set of load-based instances, which AWS OpsWorks Stacks starts and stops to handle
unpredictable traffic variations. AWS OpsWorks Stacks starts them when the load approaches
the capacity of the stacks' 24/7 and time-based instances, and stops them when the traffic
returns to normal..

For more information on how to use these scaling times, see Optimizing the Number of Servers.

Note

If you have created apps for the instances' layer or created custom cookbooks, AWS
OpsWorks Stacks automatically deploys the latest version to time-based and load-based
instances when they are first started. However, AWS OpsWorks Stacks does not necessarily
deploy the latest cookbooks to restarted offline instances. For more information, see
Editing Apps and Updating Custom Cookbooks.

Topics

• Using automatic time-based scaling

• Using automatic load-based scaling

• How load-based scaling differs from auto healing

Using automatic time-based scaling

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 563

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Time-based scaling lets you control how many instances a layer should have online at certain
times of day or days of the week by starting or stopping instances on a specified schedule. AWS
OpsWorks Stacks checks every couple of minutes and starts or stops instances as required. You
specify the schedule separately for each instance, as follows:

• Time of day. You can have more instances running during the day than at night, for example.

• Day of the week. You can have more instances running on weekdays than weekends, for example.

Note

You cannot specify particular dates.

Topics

• Adding a time-based instance to a layer

• Configuring a time-based instance

Adding a time-based instance to a layer

You can either add a new time-based instance to a layer, or use an existing instance.

To add a new time-based instance

1. On the Instances page, choose + Instance to add an instance. On the New tab, choose
Advanced, and then choose time-based.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 564

AWS OpsWorks User Guide

2. Configure the instance. Then choose Add Instance to add the instance to the layer.

To add an existing time-based instance to a layer

1. On the Time-based Instances page, choose + Instance if a layer already has a time-based
instance. Otherwise, choose Add a time-based instance. Then choose the Existing tab.

2. On the Existing tab, choose an instance from the list. The list shows only time-based instances.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 565

AWS OpsWorks User Guide

Note

If you change your mind about using an existing instance, on the New tab, create a
new instance, as described in the preceding procedure.

3. Choose Add instance to add the instance to the layer.

Configuring a time-based instance

After you add a time-based instance to a layer, you configure its schedule as follows.

To configure a time-based instance

1. In the navigation pane, under Instances, choose Time-based.

2. Specify the online periods for each time-based instance by filling the appropriate boxes below
the desired hour.

• To use the same schedule every day, choose the Every day tab, and then specify the online
time periods.

• To use different schedules on different days, choose each day, and then choose the
appropriate time periods.

Note

Be sure to allow for the amount of time it takes to start an instance, and that AWS
OpsWorks Stacks checks only every few minutes to see if instances should be started or
stopped. For example, if an instance should be running by 1:00 UTC, start it at 0:00 UTC.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 566

AWS OpsWorks User Guide

Otherwise, AWS OpsWorks Stacks might not start the instance until several minutes past
1:00 UTC, and the instance takes several more minutes to be online.

You can change an instance's online time periods at any time by performing the preceding steps.
The next time AWS OpsWorks Stacks checks, it uses the new schedule to determine whether to
start or stop instances.

Note

You can add a new time-based instance to a layer by opening the Time-based page, and
choosing Add a time-based instance (if you have not yet added a time-based instance to
the layer) or + Instance (if the layer already has one or more time-based instances). Then,
configure the instance as described in the preceding procedures.

Using automatic load-based scaling

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Load-based instances let you rapidly start or stop instances in response to changes in incoming
traffic. AWS OpsWorks Stacks uses Amazon CloudWatch data to compute the following metrics for
each layer, which represent average values across all of the layer's instances:

• CPU: The average CPU consumption, such as 80%

• Memory: The average memory consumption, such as 60%

• Load: The average computational work a system performs in one minute.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 567

http://aws.amazon.com/cloudwatch/

AWS OpsWorks User Guide

You define upscaling and downscaling thresholds for any or all of these metrics. You can also use
custom CloudWatch alarms as thresholds.

Crossing a threshold triggers a scaling event. You determine how AWS OpsWorks Stacks responds
to scaling events by specifying the following:

• How many instances to start or stop.

• How long AWS OpsWorks Stacks should wait after exceeding a threshold before starting or
deleting instances. For example, CPU utilization must exceed the threshold for at least 15
minutes. This value allows you to ignore brief traffic fluctuations.

• How long AWS OpsWorks Stacks should wait after starting or stopping instances before
monitoring metrics again. You usually want to allow enough time for started instances to come
online or stopped instances to shut down before assessing whether the layer is still exceeding a
threshold.

When a scaling event occurs, AWS OpsWorks Stacks starts or stops only load-based instances. It
does not start or stop 24/7 instances or time-based instances.

Note

Automatic load-based scaling does not create new instances; it starts and stops only those
instances that you have created. You must therefore provision enough load-based instances
in advance to handle the maximum anticipated load.

To create a load-based instance

1. On the Instances page, choose +Instance to add an instance. Choose Advanced, and then
choose load-based.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 568

AWS OpsWorks User Guide

2. Configure the instance, then choose Add Instance to add the instance to the layer.

Repeat this procedure until you have created a sufficient number of instances. You can add or
remove instances later, as required.

After you have added load-based instances to a layer, you must enable load-based scaling and
specify the configuration. The load-based scaling configuration is a layer property, not an instance
property, that specifies when a layer should start or stop its load-based instances. It must be
specified separately for each layer that uses load-based instances.

To enable and configure automatic load-based scaling

1. In the navigation pane, under Instances, choose Load-based, and then choose edit for the
appropriate layer.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 569

AWS OpsWorks User Guide

2. Set Load-based auto scaling enabled to On. Then set threshold and scaling parameters to
define how and when to add or delete instances.

Layer-average thresholds

You can set scaling thresholds based on the following values, which are averaged over all of
the layer's instances.

• Average CPU – The layer's average CPU utilization, as a percent of the total.

• Average memory – The layer's average memory utilization, as a percent of the total.

• Average load – The layer's average load.

For more information about how load is computed, see Load (computing) on Wikipedia.

Crossing a threshold causes a scaling event, upscaling if more instances are needed, and
downscaling if fewer instances are needed. AWS OpsWorks Stacks then adds or deletes
instances based on the scaling parameters.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 570

http://en.wikipedia.org/wiki/Load_(computing)

AWS OpsWorks User Guide

Custom CloudWatch alarms

You can use up to five custom CloudWatch alarms as upscaling or downscaling thresholds.
They must be in the same region as the stack. For more information about how to create
custom alarms, see Creating Amazon CloudWatch Alarms.

Note

To use custom alarms, you must update your service role to allow
cloudwatch:DescribeAlarms. You can either have AWS OpsWorks Stacks
update the role for you the first time you use this feature, or you can edit the role
manually. For more information, see Allowing AWS OpsWorks Stacks to Act on Your
Behalf.
When there are multiple alarms configured for load-based configuration, if an
alarm is in the INSUFFICIENT_DATA metric alarm state, load-based instance
scaling cannot occur even if another alarm is in the ALARM state. Auto scaling can
proceed only if all alarms are in the OK or ALARM states. For more information
about using Amazon CloudWatch alarms, see Using Amazon CloudWatch alarms in
the Amazon CloudWatch User Guide.

Scaling parameters

The following parameters control how AWS OpsWorks Stacks manages scaling events.

• Start servers in batches of – The number of instances to add or remove when the scaling
event occurs.

• If thresholds are exceeded – The amount of time (in minutes), that the load must remain
over an upscaling threshold or under a downscaling threshold before AWS OpsWorks
Stacks triggers a scaling event.

• After scaling, ignore metrics – The amount of time (in minutes) after a scaling event
occurs that AWS OpsWorks Stacks should ignore metrics and suppress additional scaling
events.

For example, AWS OpsWorks Stacks adds new instances following an upscaling event but
the instances won't start reducing the load until they have been booted and configured.
There is no point in raising additional scaling events until the new instances are online
and handling requests, which typically takes several minutes. This setting allows you

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 571

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

AWS OpsWorks User Guide

to direct AWS OpsWorks Stacks to suppress scaling events long enough to get the new
instances online.

You can increase this setting to prevent sudden swings in scaling when layer averages
such as Average CPU, Average memory, or Average load are in temporary disagreement.

For example, if CPU usage is above the limit and memory usage is close to downscaling,
an instance upscale event might immediately be followed by a memory downscaling
event. To prevent this, you can increase the number of minutes in the After scaling,
ignore metrics setting. In this example, the CPU scaling would occur, but the memory
downscaling event would not.

3. To add additional load-based instances, choose + Instance, configure the settings, and then
choose Add Instance. Repeat until you have enough load-based instances to handle your
maximum anticipated load. Then choose Save.

Note

You can also add a new load-based instance to a layer by opening the Load-based page,
and choosing Add a load-based instance (if you have not yet added a load-based instance
to the layer) or + Instance (if the layer already has one or more load-based instances). Then
configure the instance as described earlier in this section.

To add an existing load-based instance to a layer

1. In the navigation pane, under Instances, choose Load-based.

2. If you have already enabled load-based automatic scaling for a layer, choose + Instance.
Otherwise, choose Add a load-based instance. Choose the Existing tab.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 572

AWS OpsWorks User Guide

3. On the Existing tab, choose an instance. The list shows only load-based instances.

Note

If you change your mind about using an existing instance, on the New tab, create a
new instance as described in the preceding procedure.

4. Choose Add Instance to add the instance to the layer.

You can modify the configuration for or disable automatic load-based scaling at any time.

To disable automatic load-based scaling

1. In the navigation pane, under Instances, choose Load-based, and then choose edit for the
appropriate layer.

2. Switch Load-based auto scaling enabled to No.

How load-based scaling differs from auto healing

Automatic load-based scaling uses load metrics that are averaged across all running instances. If
the metrics remain between the specified thresholds, AWS OpsWorks Stacks does not start or stop
any instances. With auto healing, on the other hand, AWS OpsWorks Stacks automatically starts a
new instance with the same configuration when an instance stops responding. The instance may
not be able to respond due to a network issue or some problem with the instance.

For example, suppose your CPU upscaling threshold is 80%, and one instance stops responding.

Using AWS OpsWorks Stacks Instances API Version 2013-02-18 573

AWS OpsWorks User Guide

• If auto healing is disabled, and the remaining running instances can keep average CPU utilization
below 80%, AWS OpsWorks Stacks does not start a new instance. It starts a replacement
instance only if the average CPU utilization across the remaining instances exceeds 80%.

• If auto healing is enabled, AWS OpsWorks Stacks starts a replacement instance regardless of load
thresholds.

Using Computing Resources Created Outside of AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

Instances describes how to use AWS OpsWorks Stacks to create and manage groups of Amazon
Elastic Compute Cloud (Amazon EC2) instances. You can also incorporate Linux computing
resources into a stack that was created outside of AWS OpsWorks Stacks:

• Amazon EC2 instances that you created directly by using the Amazon EC2 console, CLI, or API.

• On-premises instances running on your own hardware, including instances running in virtual
machines.

These computing resources become AWS OpsWorks Stacks-managed instances, and you can
manage them much like regular AWS OpsWorks Stacks instances:

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 574

AWS OpsWorks User Guide

• Manage user permissions – You can use AWS OpsWorks Stacks user management to specify
which users are allowed to access your stacks, which actions they are allowed to perform on the
stack's instances, and whether they have SSH access and sudo privileges.

• Automate tasks – You can have AWS OpsWorks Stacks run custom Chef recipes to perform tasks
such as executing scripts on any or all of a stack's instances with a single command.

If you assign the instance to a layer, AWS OpsWorks Stacks automatically runs a specified set
of Chef recipes on the instance at key points in its lifecycle, including your custom recipes. Note
that you can assign registered Amazon EC2 instances to custom layers only.

• Manage resources – A stack lets you group and manage resources in an AWS Region, and the
OpsWorks dashboard shows the status of your stacks across all Regions.

• Install packages – You can use Chef recipes to install packages on any instance in a stack.

• Update the operating system – AWS OpsWorks Stacks provides a simple way to install operating
system security patches and updates on a stack's instances.

• Deploy applications – AWS OpsWorks Stacks deploys applications consistently to all of the
stack's application server instances.

• Monitoring – AWS OpsWorks Stacks creates custom CloudWatch metrics to monitor all of your
stack's instances.

For pricing information, see AWS OpsWorks Pricing.

Following is the basic procedure for working with a registered instance.

1. Register the instance with a stack.

The instance is now part of the stack and managed by AWS OpsWorks Stacks.

2. Optionally, assign the instance to a layer.

This step lets you take full advantage of AWS OpsWorks Stacks management functionality. You
can assign registered on-premises instances to any layer; registered Amazon EC2 instances can
be assigned to custom layers only.

3. Use AWS OpsWorks Stacks to manage the instance.

4. When you no longer need the instance in the stack, deregister it, which removes the instance
from AWS OpsWorks Stacks.

The following sections describe this process in detail.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 575

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://aws.amazon.com/opsworks/stacks/pricing/

AWS OpsWorks User Guide

Topics

• Registering an Instance with an AWS OpsWorks Stacks Stack

• Managing Registered Instances

• Assigning a Registered Instance to a Layer

• Unassigning a Registered Instance

• Deregistering a Registered Instance

• Registered Instance Life Cycle

Registering an Instance with an AWS OpsWorks Stacks Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

To register an instance that is outside of AWS OpsWorks Stacks, you run the AWS CLI aws
opsworks register command. You can run this command from the instance that you want
to register, or from another computer. You apply the AWSOpsWorksRegisterCLI_EC2 or
AWSOpsWorksRegisterCLI_OnPremises policies to a user or group to grant permissions
required for the AWS CLI to register EC2 or on-premises instances, respectively. These policies
require version 1.16.180 of the AWS CLI or newer.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 576

AWS OpsWorks User Guide

Note

To prevent users or roles from registering instances, update the instance profile to deny
access to the register command.

The registration process installs an agent on an instance that you want to manage by using AWS
OpsWorks Stacks, and registers the instance with an AWS OpsWorks stack that you specify. After
you register an instance, the instance is part of the stack and is managed by AWS OpsWorks Stacks.
For more information, see Managing Registered Instances.

Note

Although AWS Tools for PowerShell includes the Register-OpsInstance cmdlet,
which calls the register API action, we recommend that you use the AWS CLI to run the
register command instead.

The following diagram shows both approaches to registering an Amazon EC2 instance. You can use
the same approaches for registering an on-premises instance.

Note

You can use the AWS OpsWorks Stacks console to manage a registered instance, but you
must run an AWS CLI register command to register the instance. The reason for this is
that the registration process must be run from the instance, which can't be done by the
console.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 577

http://docs.aws.amazon.com/powershell/latest/userguide/pstools-welcome.html
http://docs.aws.amazon.com/powershell/latest/reference/items/Register-OPSInstance.html
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

The following sections describe the procedure in detail.

Topics

• Walkthrough: Register an Instance from Your Workstation

• Registering Amazon EC2 and On-premises Instances

Walkthrough: Register an Instance from Your Workstation

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

The registration process supports several scenarios. This section walks you through an end-to-end
example of one scenario: how to use your workstation to register an Amazon EC2 instance. Other
registration scenarios use a similar procedure. For more information, see Registering Amazon EC2
and On-premises Instances.

Note

You typically want to register an existing Amazon EC2 instance. However, you can just
create a new instance and a new stack for the walkthrough and delete them when you are
finished.

Topics

• Step 1: Create a Stack and an Instance

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 578

AWS OpsWorks User Guide

• Step 2: Install and Configure the AWS CLI

• Step 3: Register the Instance with the EC2Register Stack

Step 1: Create a Stack and an Instance

To get started, you need a stack and an Amazon EC2 instance to be registered with that stack.

To create the stack and instance

1. Use the AWS OpsWorks Stacks console to create a new stack named EC2Register. You can
accept default values for the other stack settings.

2. Launch a new instance from the Amazon EC2 console. Note the following.

• The instance must in the same region and VPC as the stack.

If you are using a VPC, pick a public subnet for this walkthrough.

• If you need to create an SSH key, save the private key file to your workstation and record the
name and file location.

If you use an existing key, record the name and private key file location. You need those
values later.

• The instance must be based on one of the supported Linux operating systems. For example,
if your stack is in US West (Oregon), you can use ami-35501205 to launch a Ubuntu 14.04
LTS instance in that region.

Otherwise, accept the default values.

While the instance is booting, you can proceed to the next section.

Step 2: Install and Configure the AWS CLI

Registration is performed by using the AWS CLI aws opsworks register command. Before you
register your first instance, you must be running version 1.16.180 of the AWS CLI or newer. The
installation details depend on your workstation's operating system. For more information about
installing the AWS CLI, see Installing the AWS Command Line Interface. To check the version of the
AWS CLI that you are running, enter aws --version in a shell session.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 579

https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/ec2/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html

AWS OpsWorks User Guide

Note

To prevent users or roles from registering instances, update the instance profile to deny
access to the register command.

We strongly recommend that you do not skip this step, even if you are already running the AWS CLI
on your workstation. Using the most current release of the AWS CLI is a security best practice.

You must provide register with a set of AWS credentials that have appropriate permissions. The
recommended way to do this—so that you avoid installing credentials directly on an instance—is to
register instances that are launched with an instance profile, and then add the --use-instance-
profile switch to your register command. If you are getting credentials from an instance
profile, skip to Step 3: Register the Instance with the EC2Register Stack in this topic. However, if
your instance was not launched with an instance profile, you can create an IAM user. The following
procedure creates a new user with appropriate permissions, installing the user's credentials on the
workstation, and then passing those credentials to register.

Warning

IAM users have long-term credentials, which presents a security risk. To help mitigate this
risk, we recommend that you provide these users with only the permissions they require to
perform the task and that you remove these users when they are no longer needed.

To create the user

1. On the IAM console, choose Users in the navigation pane, and then choose Add user.

2. Add a user named EC2Register.

3. Choose Next.

4. On the Set permissions page, choose Attach policies directly.

5. Enter OpsWorks in the Permissions policy filter box to display the AWS OpsWorks policies,
select one of the following policies, and then choose Next: review. The policy grants your user
the permissions that are required to run register.

• Choose AWSOpsWorksRegisterCLI_EC2 to allow the user permissions to register EC2
instances that use instance profiles.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 580

https://console.aws.amazon.com/iam/

AWS OpsWorks User Guide

• Choose AWSOpsWorksRegisterCLI_OnPremises to allow the user permissions to register
on-premises instances.

6. Choose Next.

7. On the Review page, choose Create user.

8. Now create access keys for your user. From the navigation pane, choose Users, and then
choose the user you want to create access keys for.

9. Choose the Security credentials tab, then choose Create access key.

10. Choose the Access key best practices & alternatives that best corresponds to your task.

11. Choose Next.

12. (Optionally) enter a tag to identify the access keys.

13. Choose Next.

14. Choose Download .csv file, save the credentials file to a convenient location on your system,
and choose Done.

You need to provide the IAM user's credentials to register. This walkthrough handles the task
by installing the EC2Register credentials in your workstation's credentials file. For information
about other ways to manage credentials for the AWS CLI, see Configuration and Credential Files.

To install the user's credentials

1. Create or open your workstation's credentials file. The file is located at ~/.aws/
credentials (Linux, Unix, and OS X) or C:\Users\User_Name\.aws\credentials
(Windows systems).

2. Add a profile for the EC2Register user to the credentials file, using the following format.

[ec2register]
aws_access_key_id = access_key_id
aws_secret_access_key = secret_access_key

Replace access_key_id and secret_access_key with the EC2Register keys for that you
downloaded earlier.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 581

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files

AWS OpsWorks User Guide

Step 3: Register the Instance with the EC2Register Stack

You are now ready to register the instance.

To register the instance

1. In AWS OpsWorks Stacks, return to the EC2Register stack, choose Instances in the navigation
pane, and then choose Register an instance.

2. Select EC2 Instances, choose Next: Select Instances, and select your instance from the list.

3. Choose Next: Install AWS CLI, and Next: Register Instances. AWS OpsWorks Stacks
automatically uses the available information, such as the stack ID and the instance ID to create
a register command template, which is displayed on the Register Instances page. For this
example, you use register to log in to the instance with an SSH key and explicitly specify
the key file, so set I use SSH keys to connect to my instances to Yes. The command template
resembles the following.

aws opsworks register --infrastructure-class ec2 --region region endpoint ID
 --stack-id 247be7ea-3551-4177-9524-1ff804f453e3 --ssh-username [username]
 --ssh-private-key [key-file] i-f1245d10

Note

You must set the Region to the AWS OpsWorks Stacks service's endpoint Region,
not the stack's Region, if the stack is within a classic Region associated with the us-
east-1 regional endpoint. AWS OpsWorks Stacks determines the stack's Region from
the stack ID.

4. The command template contains several user-specific argument values, which are indicated by
brackets and must be replaced with appropriate values. Copy the command template to a text
editor and edit it as follows.

Important

The IAM user that is created during the registration process is required throughout the
life of a registered instance. Deleting the user causes the AWS OpsWorks Stacks agent
to be unable to communicate with the service. To help prevent problems managing
registered instances in the event that the user is accidentally deleted, add the --use-
instance-profile parameter to your register command to use the instance's

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 582

AWS OpsWorks User Guide

built-in instance profile instead. Adding the --use-instance-profile parameter
also prevents errors from occurring when you rotate AWS account access keys every
90 days (a recommended best practice), because it prevents mismatches between the
access keys available to the AWS OpsWorks agent and required IAM user.

• Replace key file with the fully qualified path of the private key file for the Amazon EC2
key pair that you saved when you created the instance.

You can use a relative path, if you prefer.

• Replace username with the instance's user name.

For this example, the user name is either ubuntu, for an Ubuntu instance, or ec2-user, for
a Red Hat Enterprise Linux (RHEL) or Amazon Linux instance.

• Add --use-instance-profile, which runs register with the instance profile to prevent
errors during key rotation or if the principal IAM user is accidentally deleted.

Your command should resemble the following.

aws opsworks register --use-instance-profile --infrastructure-class ec2 \
 --region us-west-2 --stack-id 247be7ea-3551-4177-9524-1ff804f453e3 --ssh-
username ubuntu \
 --ssh-private-key "./keys/mykeys.pem" i-f1245d10

5. Open a terminal window on your workstation, paste the register command from your
editor, and run the command.

Registration typically takes around five minutes. When it is complete, return to the AWS
OpsWorks Stacks console and choose Done. Then choose Instances in the navigation pane.
Your instance should be listed under Unassigned Instances. You can then assign the instance
to a layer or leave it where it is, depending on how you intend to manage the instance.

6. When you are finished, stop the instance and then delete it by using the AWS OpsWorks
Stacks console or commands. This terminates the Amazon EC2 instance, so you don't incur any
further charges.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 583

AWS OpsWorks User Guide

Registering Amazon EC2 and On-premises Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

This section describes how to register an Amazon EC2 or on-premises instance with an AWS
OpsWorks Stacks stack.

Topics

• Preparing the Instance

• Installing and Configuring the AWS CLI

• Registering the Instance

• Using the register Command

• Example register Commands

• Instance Registration Policies

Preparing the Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 584

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

Before registering an instance, you must ensure that it is compatible with AWS OpsWorks Stacks.
The details depend on whether you are registering an on-premises or Amazon EC2 instance.

On-premises Instances

An on-premises instance must satisfy the following criteria:

• The instance must run one of the supported Linux operating systems. While it might be possible
to create or register instances with other operating systems (such as CentOS 6.x) that have been
created from custom or community-generated AMIs, these are not officially supported.

You must install the libyaml package on the instance. For Ubuntu instances, the package is
named libyaml-0-2. For CentOS and Red Hat Enterprise Linux instances, the package is named
libyaml.

• The instance must have a supported instance type (sometimes called the instance size).
Supported instance types can vary by operating system, and depend on whether your stack is in
a VPC. For a list of supported instance types, view the Size drop-down list values that are shown
in the AWS OpsWorks Stacks console when you try to create a new instance in your target stack.
If an instance type is grayed-out, and cannot be created in your target stack, then you cannot
register an instance of that type.

• The instance must have Internet access that allows it to communicate with the AWS OpsWorks
Stacks service endpoint, opsworks.us-east-1.amazonaws.com (HTTPS). The instance must
also support outbound connections to AWS resources such as Amazon S3.

• If you plan to register the instance from a separate workstation, the registered instance must
support SSH login from the workstation.

SSH login is not required if you run the registration command from the instance.

• The AWS access key is used for authentication from the AWS OpsWorks agent to the AWS
OpsWorks Stacks service. If you rotate access keys as recommended every 90 days, update the

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 585

AWS OpsWorks User Guide

AWS OpsWorks agent manually to use the new key. On an on-premises computer or instance,
edit the /etc/aws/opsworks/instance-agent.yml file with the new access key and secret
key. The following command shows the access key and secret key in this file. An agent that is
using old keys can cause errors.

cat /etc/aws/opsworks/instance-agent.yml | egrep "access_key|secret_key"
:access_key_id: AKIAIOSFODNN7EXAMPLE
:secret_access_key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Amazon EC2 Instances

An Amazon EC2 instance must satisfy the following criteria:

• The AMI must be based on one of the supported Linux operating systems. For a current list, see
AWS OpsWorks Stacks operating systems.

For more information, see Using Custom AMIs.

If the instance is based on a custom AMI that derives from a standard supported AMI, or if the
instance contains a very minimal setup, you must install the libyaml package on the instance.
For Ubuntu instances, the package is named libyaml-0-2. For Amazon Linux and Red Hat
Enterprise Linux instances, the package is named libyaml.

• The instance must have a supported instance type (sometimes called the instance size).
Supported instance types can vary by operating system, and depend on whether your stack is in
a VPC. For a list of supported instance types, view the Size drop-down list values that are shown
in the AWS OpsWorks Stacks console when you try to create a new instance in your target stack.
If an instance type is grayed-out, and cannot be created in your target stack, then you cannot
register an instance of that type, either.

• The instance must be in the running state.

• The instance should not be part of an Auto Scaling group.

For more information, see Detach EC2 Instances From Your Auto Scaling Group.

• The instance can be part of a VPC, but it must be in the same VPC as the stack and the VPC must
be configured to work properly with AWS OpsWorks Stacks.

• Spot instances are not supported, because they do not work with auto healing.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 586

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/detach-instance-asg.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-instances-work.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autohealing.html

AWS OpsWorks User Guide

When you register an Amazon EC2 instance, AWS OpsWorks Stacks does not modify the instance's
security groups or rules. Be sure that the instance's security group rules match the following AWS
OpsWorks Stacks requirements.

Ingress Rules

Ingress rules should allow the following.

• SSH login.

• Traffic from the appropriate layers.

For example, a database server would typically allow inbound traffic from the stack's
application server layers.

• Traffic to the appropriate ports.

For example, application server instances typically allow all inbound traffic to ports 80 (HTTP)
and 443 (HTTPS).

Egress Rules

Egress rules should allow the following.

• Traffic to the AWS OpsWorks Stacks service from applications running on the instance.

• Traffic to access AWS resources such as Amazon S3 from applications using the AWS API.

One common approach is to not specify any egress rules, which places no restrictions on
outbound traffic.

Installing and Configuring the AWS CLI

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 587

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

AWS OpsWorks User Guide

Before you register your first instance, you must be running version 1.16.180 of the AWS CLI or
newer on the computer from which you run register. The installation details depend on your
workstation's operating system. For more information about installing the AWS CLI, see Installing
the AWS Command Line Interface and Configuring the AWS Command Line Interface. To check the
version of the AWS CLI that you are running, enter aws --version in a shell session.

Note

Although AWS Tools for PowerShell includes the Register-OpsInstance cmdlet,
which calls the register API action, we recommend that you use the AWS CLI to run the
register command instead.

You must run register with appropriate permissions. You can get permissions by using
an IAM role, or less optimally, by installing user credentials with appropriate permissions
on the workstation or instance to be registered. You can then run register with those
credentials, as described later. Specify permissions by attaching an IAM policy to the
user or role. For register, you use either the AWSOpsWorksRegisterCLI_EC2 or
AWSOpsWorksRegisterCLI_OnPremises policies, which grant permissions to register Amazon
EC2 or on-premises instances, respectively.

Note

If you run register on an Amazon EC2 instance, you should ideally use an IAM role to
provide credentials. For more information about how to attach an IAM role to an existing
instance, see Attach an IAM role to an instance or Replace an IAM role in the Amazon EC2
User Guide.

For example snippets of the AWSOpsWorksRegisterCLI_EC2 and
AWSOpsWorksRegisterCLI_OnPremises policies, see Instance Registration Policies. For more
information about creating and managing AWS credentials, see AWS Security Credentials.

Topics

• Using an IAM Role

• Using Installed Credentials

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 588

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/powershell/latest/userguide/pstools-welcome.html
http://docs.aws.amazon.com/powershell/latest/reference/items/Register-OPSInstance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#replace-iam-role
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

AWS OpsWorks User Guide

Using an IAM Role

If you are running the command from the Amazon EC2 instance that you intend to register,
the preferred strategy for providing credentials to register is to use an IAM role that has the
AWSOpsWorksRegisterCLI_EC2 policy or equivalent permissions attached. This approach allows
you to avoid installing your credentials on the instance. One way to do this is by using the Attach/
Replace IAM Role command in the EC2 console, as shown in the following image.

For more information about how to attach an IAM role to an existing instance, see Attach an IAM
role to an instance or Replace an IAM role in the Amazon EC2 User Guide. For instances that were
launched with an instance profile (recommended), add the --use-instance-profile switch to
your register command to provide credentials; do not use the --profile parameter.

If the instance is running and has a role, you can grant the required permissions by attaching the
AWSOpsWorksRegisterCLI_EC2 policy to the role. The role provides a set of default credentials
for the instance. As long as you have not installed any credentials on the instance, register
automatically assumes the role and runs with its permissions.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 589

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#replace-iam-role

AWS OpsWorks User Guide

Important

We recommend that you do not install credentials on the instance. In addition to creating
a security risk, the instance's role is at the end of the default providers chain that the AWS
CLI uses to locate the default credentials. Installed credentials might take precedence
over the role, and register might therefore not have the required permissions. For more
information, see Getting started with the AWS CLI.

If a running instance does not have a role, you must install credentials with the required
permissions on the instance, as described in Using Installed Credentials. It is recommended, easier,
and less error-prone to use instances that are launched with an instance profile.

Using Installed Credentials

There are several ways to install user credentials on a system and provide them to an AWS CLI
command. The following describes an approach that is no longer recommended, but can be used
if you are registering EC2 instances that were launched without an instance profile. You can also
use an existing user's credentials as long as the attached policies grant the required permissions.
For more information, including a description of other ways to install credentials, see Configuration
and Credential Files.

To use installed credentials

1. Create an IAM user and save the access key ID and secret access key in a secure location.

Warning

IAM users have long-term credentials, which presents a security risk. To help mitigate
this risk, we recommend that you provide these users with only the permissions they
require to perform the task and that you remove these users when they are no longer
needed.

2. Attach the AWSOpsWorksRegisterCLI_OnPremises policy to the user. If you prefer,
you can attach a policy that grants broader permissions, as long as it includes the
AWSOpsWorksRegisterCLI_OnPremises permissions.

3. Create a profile for the user in the system's credentials file. The file is located at ~/.aws/
credentials (Linux, Unix, and OS X) or C:\Users\User_Name\.aws\credentials

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 590

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#config-settings-and-precedence
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

AWS OpsWorks User Guide

(Windows systems). The file contains one or more profiles in the following format, each of
which contains a user's access key ID and secret access key.

[profile_name]
aws_access_key_id = access_key_id
aws_secret_access_key = secret_access_key

Substitute the IAM credentials that you saved earlier for the access_key_id and
secret_access_key values. You can specify any name you prefer for a profile name, with
two limitations: the name must be unique, and the default profile must be named default.
You can also use an existing profile, as long as it has the required permissions.

4. Use the register command's --profile parameter to specify the profile name. The
register command runs with the permissions that are granted to the associated credentials.

You can also omit --profile. In that case, register runs with default credentials. Be aware
that these are not necessarily the default profile's credentials , so you must ensure that the
default credentials have the required permissions. For more information about how the AWS
CLI determines default credentials, see Configuring the AWS Command Line Interface.

Registering the Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 591

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS OpsWorks User Guide

You register an instance by running the AWS CLI register command from your workstation or
from the instance. The simplest way to handle the operation is to use the AWS OpsWorks Stacks
console's registration wizard, which simplifies the process of constructing the command string.
After you are familiar with the registration procedure, you can skip the wizard if you prefer, and run
the register command.

The following describes how to use the registration wizard to register an instance with an existing
stack.

Note

To register an instance with a new stack, you can do so by choosing Register Instances on
the AWS OpsWorks Stacks dashboard. This starts a wizard that is identical to the one for
existing stacks, except for an additional page that configures the new stack.

To use the registration wizard to register an instance

1. In the AWS OpsWorks Stacks console, create a stack or open an existing stack.

2. Choose Instances in the navigation pane, and then choose register an instance.

3. On the Choose an Instance Type page, specify whether you want to register an Amazon EC2
or an on-premises instance:

• If you are registering an Amazon EC2 instance, choose Next: Select Instances.

• If you are registering an on-premises instance, choose Next: Install AWS CLI, and then go to
Step 5.

4. If you are registering an Amazon EC2 instance, open the Select Instances page to select
the instance to register. AWS OpsWorks Stacks collects the information needed to build the
command. When you are finished, choose Next:Install AWS CLI.

5. The instance on which you plan to run register must be running version 1.16.180 of the
AWS CLI or newer. To install or update the AWS CLI, the registration wizard page provides links
to installation and configuration instructions. After you have verified the AWS CLI installation,
choose whether you are running the command from the instance to be registered or from a
separate workstation, and then choose Next: Register Instances.

6. The Register Instances page displays a template for a register command string that
incorporates your selected options. For example, if you are registering an Amazon EC2 instance
from a separate workstation, the default template resembles the following.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 592

https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/opsworks/
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

aws opsworks register --infrastructure-class ec2 --region us-west-2
 --stack-id 247be7ea-3551-4177-9524-1ff804f453e3 --ssh-username [username] i-
f1245d10

Important

The IAM user that is created during the registration process is required throughout the
life of a registered instance. Deleting the user causes the AWS OpsWorks Stacks agent
to be unable to communicate with the service. To help prevent problems managing
registered instances in the event that the user is accidentally deleted, add the --use-
instance-profile parameter to your register command to use the instance's
built-in instance profile instead. Adding the --use-instance-profile parameter
also prevents errors from occurring when you rotate AWS account access keys every
90 days (a recommended best practice), because it prevents mismatches between the
access keys available to the AWS OpsWorks agent and required IAM user.

If you set I use SSH keys to Yes, AWS OpsWorks Stacks adds the --ssh-private-key
argument to the string, which you can use to specify a private SSH key file.

Note

If you want register to log on with a password, set I use SSH keys to No. When you
run register, you are prompted for the password.

Copy this string to a text editor. and edit it as required. Note the following.

• The bracketed text represents information that you must supply, such as the location of your
SSH key file.

• The template assumes that you are running register with default AWS credentials. If not,
add a --profile argument to the command string, and specify the credential profile name
that you want to use.

For other scenarios, you might need to change the command further. For an explanation of
the available register arguments and alternative ways to construct the command string,

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 593

AWS OpsWorks User Guide

see Using the register Command. You can also display the command's documentation
by running aws opsworks help register from the command line. For some example
command strings, see Example register Commands.

7. After you have finished editing the command string, open a terminal window on your
workstation or use SSH to log on to the instance and run the command. The entire operation
typically takes around five minutes, during which the instance is in the Registering state.

8. When the operation is finished, choose Done. The instance is now in the Registered state and
is listed as an unassigned instance on the stack's Instances page.

The register command does the following.

1. If register is running on a workstation, the command first uses SSH to log in to the instance to
be registered.

The remainder of the process takes place on the instance, and is the same regardless of where
you ran the command.

2. Downloads the AWS OpsWorks Stacks agent package from Amazon S3.

3. Unpacks and installs the agent and its dependencies, such as the AWS SDK for Ruby.

4. Creates the following:

• An IAM user that bootstraps the agent with the AWS OpsWorks Stacks service to provide
secure communication.

The user's permissions allow only the opsworks:RegisterInstance action, and they expire
after 15 minutes.

• An IAM group for the stack, which contains the registered instances' users.

5. Creates an RSA key pair and sends the public key to AWS OpsWorks Stacks.

This key pair is used to encrypt communications between the agent and AWS OpsWorks Stacks.

6. Registers the instance with AWS OpsWorks Stacks. The stack then runs a set of initial setup
recipes to configure the instance, which includes the following.

• Overwriting the instance's hosts file.

By registering the instance, you have handed user management over to AWS OpsWorks
Stacks, which must have its own hosts file to control SSH login permissions.

• For Amazon EC2 instances, initial setup also includes registering any attached Amazon EBS
volumes or Elastic IP addresses with the stack.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 594

http://aws.amazon.com/documentation/sdk-for-ruby/

AWS OpsWorks User Guide

You must ensure that the Amazon EBS volumes are not mounted to reserved mount points,
including /var/www and any mount points that are reserved by the instance's layers. For
more information about managing stack resources, see Resource Management. For more
information about layer mount points, see AWS OpsWorks Stacks Layer Reference.

For a complete description of the initial setup configuration changes, see Initial Setup
Configuration Changes.

Note

Initial setup does not update a registered instance's operating system; you must handle
that task yourself. For more information, see Managing Security Updates.

Using the register Command

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

To register an instance, be sure you are running at least version 1.16.180 of the AWS CLI. The
following shows the general syntax for the register command.

aws opsworks register \
 [--profile profile_name] \
 [--region region_name] \

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 595

AWS OpsWorks User Guide

 --infrastructure-class instance_type \
 --stack-id stack ID \
 [--local] | [--ssh-private-key key_file --ssh-username username] | [--override-
ssh command_string] \
 [--override-hostname hostname] \
 [--debug] \
 [--override-public-ip public IP] \
 [--override-private-ip private IP] \
..[--use-instance-profile] \
 [[IP address] | [hostname] | [instance ID]

The following arguments are common to all AWS CLI commands.

--profile

(Optional) The credential's profile name. If you omit this argument, the command runs with
your default credentials. For more information about how the AWS CLI determines default
credentials, see Configuring the AWS Command Line Interface.

--region

(Optional) The AWS OpsWorks Stacks service endpoint's Region. Do not set --region to the
stack's Region. AWS OpsWorks Stacks automatically determines the stack's Region from the
stack ID.

Note

If your default Region is already set, you can omit this argument. For more information
about how to specify a default Region, see Configuring the AWS Command Line
Interface.

Use the following arguments for both Amazon EC2 and on-premises instances.

--infrastructure-class

(Required) This parameter must be set to either ec2 or on-premises, to indicate whether you
are registering an Amazon EC2 or on-premises instance, respectively.

--stack-id

(Required) The ID of the stack that the instance is to be registered with.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 596

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS OpsWorks User Guide

Note

To find a stack ID, on the Stack page, choose Settings. The stack ID is labeled
OpsWorks ID, and is a GUID that looks something like ad21bce6-7623-47f1-bf9d-
af2affad8907.

SSH Login Arguments

Use the following arguments to specify how register should log in to the instance.

--local

(Optional) Use this argument to register the instance that you run the command on.

In this case, register does not need to log in to the instance.

--ssh-private-key and --ssh-username

(Optional) Use these arguments if you are registering the instance from a separate
workstation and want to explicitly specify the user name or private key file.

• --ssh-username – Use this argument to specify an SSH user name.

If you omit --ssh-username, ssh uses the default user name.

• --ssh-private-key – Use this argument to explicitly specify a private key file.

If you omit --ssh-private-key, ssh attempts to log in using authentication techniques
that do not require a password, including using the default private key. If none of those
techniques are supported, ssh queries for your password. For more information about
how ssh handles authentication, see The Secure Shell (SSH) Authentication Protocol.

--override-ssh

(Optional) Use this argument if you are registering the instance from a separate workstation
and want to specify a custom ssh command string. The register command uses this
command string to log in to the registered instance.

For more information about ssh, see SSH.

--override-hostname

(Optional) Specifies a host name for the instance, which is used only by AWS OpsWorks Stacks.
The default value is the instance's host name.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 597

https://www.ietf.org/rfc/rfc4252.txt
http://linux.about.com/od/commands/l/blcmdl1_ssh.htm
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/slogin.1

AWS OpsWorks User Guide

--debug

(Optional) Provides debugging information if the registration process fails. For troubleshooting
information, see Troubleshooting Instance Registration.

--use-instance-profile

(Optional, but highly recommended for Amazon EC2 instances) Lets the register command
use an attached instance profile, instead of creating an IAM user. Adding this parameter can
help prevent errors that occur if you try to manage a registered instance when the IAM user has
accidentally been deleted.

Important

The IAM user that is created during the registration process is required throughout the
life of a registered instance. Deleting the user causes the AWS OpsWorks Stacks agent
to be unable to communicate with the service. To help prevent problems managing
registered instances in the event that the user is accidentally deleted, add the --use-
instance-profile parameter to your register command to use the instance's
built-in instance profile instead. Adding the --use-instance-profile parameter
also prevents errors from occurring when you rotate AWS account access keys every
90 days (a recommended best practice), because it prevents mismatches between the
access keys available to the AWS OpsWorks agent and required user.

Target

(Conditional) If you run this command from a workstation, the final value in the command
string specifies the registration target in one of the following ways.

• The instance's public IP address.

• The instance's host name.

• For Amazon EC2 instances, the instance ID.

AWS OpsWorks Stacks uses the instance ID to obtain the instance configuration, including the
instance's public IP address. By default, AWS OpsWorks Stacks uses this address to construct
the ssh command string that it uses to log in to the instance. If you need to connect to a
private IP address, you must use --override-ssh to provide a custom command string. For
an example, see Register an On-Premises Instance from a Workstation.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 598

AWS OpsWorks User Guide

Note

If you specify a host name, ssh depends on the DNS server to resolve the name to a
particular instance. If you aren't certain that the host name is unique, use ssh to verify
that the host name resolves to the correct instance.

If you run this command from the instance to be registered, omit the instance identifier and
instead use the --local argument.

The following arguments are only for on-premises instances.

--override-public-ip

(Optional) AWS OpsWorks Stacks displays the specified address as the instance's public IP
address. It does not change the instance's public IP address. However, if a user uses the console
to connect to the instance, such as by choosing the address on the Instances page, AWS
OpsWorks Stacks uses the specified address. AWS OpsWorks Stacks automatically determines
the argument's default value.

--override-private-ip

(Optional) AWS OpsWorks Stacks displays the specified address as the instance's private
IP address. It does not change the instance's private IP address. AWS OpsWorks Stacks
automatically determines the argument's default value.

Example register Commands

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 599

AWS OpsWorks User Guide

Note

This feature is supported only for Linux stacks.

This section contains some examples of register command strings.

Register an Amazon EC2 Instance from a Workstation

The following example registers an Amazon EC2 instance from a workstation. The command
string uses default credentials and identifies the instance by its Amazon EC2 instance ID. You
can use the example for on-premises instances by changing ec2 to on-premises.

aws opsworks register \
 --region us-west-2 \
 --use-instance-profile \
 --infrastructure-class ec2 \
 --stack-id ad21bce6-7623-47f1-bf9d-af2affad8907 \
 --ssh-user-name my-sshusername \
 --ssh-private-key "./keys/mykeys.pem" \
 i-2422b9c5

Register an On-Premises Instance from a Workstation

The following example registers an on-premises instance from a separate workstation. The
command string uses default credentials and logs in to the instance with the specified ssh
command string. If your instance requires a password, register prompts you. You can use the
example for Amazon EC2 instances by changing on-premises to ec2.

aws opsworks register \
 --region us-west-2 \
 --infrastructure-class on-premises \
 --stack-id ad21bce6-7623-47f1-bf9d-af2affad8907 \
 --override-ssh "ssh your-user@192.0.2.0"

Note

You can use --override-ssh to specify any custom SSH command string. AWS
OpsWorks Stacks then uses the specified string to log in to the instance instead of

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 600

AWS OpsWorks User Guide

constructing a command string. For another example, see Register an Instance Using a
Custom SSH Command String.

Register an Instance Using a Custom SSH Command String

The following example registers an on-premises instance from a workstation, and uses the --
override-ssh argument to specify a custom SSH command that register uses to log in to
the instance. This example uses sshpass to log in with a user name and password, but you can
specify any valid ssh command string.

aws opsworks register \
 --region us-west-2 \
 --infrastructure-class on-premises \
 --stack-id 2f92ff9d-04f2-4728-879b-f4283b40783c \
 --override-ssh "sshpass -p 'mypassword' ssh your-user@192.0.2.0"

Register an Instance by Running register from the Instance

The following example shows how to register an Amazon EC2 instance by running register
from the instance itself. The command string depends on default credentials for its permissions.
To use the example for an on-premises instance, change --infrastructure-class to on-
premises.

aws opsworks register \
 --region us-west-2 \
 --infrastructure-class ec2 \
 --stack-id ad21bce6-7623-47f1-bf9d-af2affad8907 \
 --local

Register an Instance with a Private IP Address

By default, register uses the instance's public IP address to log in to the instance. To register
an instance with a private IP address, such as an instance in a VPC's private subnet, you must
use --override-ssh to specify a custom ssh command string.

aws opsworks register \
 --region us-west-2 \
 --infrastructure-class ec2 \
 --stack-id 2f92ff9d-04f2-4728-879b-f4283b40783c \
 --override-ssh "ssh -i mykey.pem ec2-user@10.183.201.93" \

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 601

AWS OpsWorks User Guide

 i-2422b9c5

Instance Registration Policies

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The AWSOpsWorksRegisterCLI_EC2 and AWSOpsWorksRegisterCLI_OnPremises policies
provide the correct permissions for registering EC2 and on-premises instances, respectively.
You add AWSOpsWorksRegisterCLI_EC2 to your IAM user to register EC2 instances, but add
AWSOpsWorksRegisterCLI_OnPremises to your user to register on-premises instances. To use
these policies, you must be running at least version 1.16.180 of the AWS CLI or newer.

The AWSOpsWorksRegisterCLI_EC2 Policy

Add AWSOpsWorksRegisterCLI_EC2 to your user to register EC2 instances. You should use
this profile if you plan to register only EC2 instances. When you use this policy, permissions are
provided by the EC2 instance's instance profile.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "opsworks:AssignInstance",
 "opsworks:CreateLayer",
 "opsworks:DeregisterInstance",
 "opsworks:DescribeInstances",
 "opsworks:DescribeStackProvisioningParameters",
 "opsworks:DescribeStacks",
 "opsworks:UnassignInstance"
],

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 602

AWS OpsWorks User Guide

 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances"
],
 "Resource": [
 "*"
]
 }
]
 }

The AWSOpsWorksRegisterCLI_OnPremises Policy

Add AWSOpsWorksRegisterCLI_OnPremises to your user to register on-premises instances.
This policy includes IAM permissions, such as AttachUserPolicy, but the resources on which
those permissions work are restricted.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "opsworks:AssignInstance",
 "opsworks:CreateLayer",
 "opsworks:DeregisterInstance",
 "opsworks:DescribeInstances",
 "opsworks:DescribeStackProvisioningParameters",
 "opsworks:DescribeStacks",
 "opsworks:UnassignInstance"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 603

AWS OpsWorks User Guide

 "ec2:DescribeInstances"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateGroup",
 "iam:AddUserToGroup"
],
 "Resource": [
 "arn:aws:iam::*:group/AWS/OpsWorks/OpsWorks-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateUser",
 "iam:CreateAccessKey"
],
 "Resource": [
 "arn:aws:iam::*:user/AWS/OpsWorks/OpsWorks-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachUserPolicy"
],
 "Resource": [
 "arn:aws:iam::*:user/AWS/OpsWorks/OpsWorks-*"
],
 "Condition": {
 "ArnEquals":
 {
 "iam:PolicyARN": "arn:aws:iam::aws:policy/
AWSOpsWorksInstanceRegistration"
 }
 }
 }
]

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 604

AWS OpsWorks User Guide

 }

(Deprecated) The AWSOpsWorksRegisterCLI Policy

Important

The AWSOpsWorksRegisterCLI policy has been deprecated, and cannot be used to
register new instances. It is available only for backward compatibility on instances that
have already been registered. The AWSOpsWorksRegisterCLI policy includes many
IAM permissions including CreateUser, PutUserPolicy, and AddUserToGroup.
Because these are administrator-level permissions, you should only assign the
AWSOpsWorksRegisterCLI policy to trusted administrative users.

Managing Registered Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

When you register an instance, it becomes an AWS OpsWorks Stacks instance, and you can manage
it in much the same way as instances created with AWS OpsWorks Stacks. There are two primary
differences:

• Registered instances do not have to be assigned to a layer.

• You can deregister a registered instance and return it to your direct control.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 605

AWS OpsWorks User Guide

After you register an instance, it is in the Registered state. AWS OpsWorks Stacks provides the
following management functionality to all registered instances:

• Health checks – AWS OpsWorks Stacks monitors the agent to evaluate whether the instance
continues to function.

If an instance fails a health check, AWS OpsWorks Stacks autoheals registered Amazon EC2
instances and changes the status of registered on-premises instances to connection lost.

• CloudWatch monitoring – CloudWatch monitoring is enabled for registered instance.

You can monitor metrics such as CPU utilization and available memory and optionally receive a
notification if a metric crosses a specified threshold.

• User management – AWS OpsWorks Stacks provides a simple way to specify which users can
access the instance and what operations they are allowed to perform. For more information, see
Managing User Permissions.

• Recipe execution – You can use the Execute Recipes stack command to execute Chef recipes on
the instance.

• Operating system updates – You can use the Update Dependencies stack command to update
the instance's operating system.

To take full advantage of AWS OpsWorks Stacks management functionality, you can assign the
instance to a layer. For more information, see Assigning a Registered Instance to a Layer.

There are differences between the way AWS OpsWorks Stacks manages Amazon EC2 and on-
premises instances.

Amazon EC2 Instances

• If you stop a registered Amazon EC2 instance, AWS OpsWorks Stacks terminates instance
store-backed instances and stops Amazon EBS-backed instances.

The instance is still registered with the stack and assigned to its layers, so you can restart it if
needed. You must deregister a registered instance to remove it from a stack, either explicitly
or by deleting the instance, which automatically deregisters it.

• If you restart a registered Amazon EC2 instance or the instance fails and is autohealed, the
result is the same as stopping and restarting the instance by using Amazon EC2. Note these
differences:

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 606

AWS OpsWorks User Guide

• Instance store-backed instances – AWS OpsWorks Stacks starts a new instance with the
same AMI.

Note that AWS OpsWorks Stacks has no knowledge of any operations that you performed
on the instance before it was registered, such as installing software packages. If you want
AWS OpsWorks Stacks to install packages or perform other configuration tasks at startup,
you must provide custom Chef recipes that perform the required tasks and assign them to
the appropriate layers' Setup events.

• Amazon EBS-backed instances – AWS OpsWorks Stacks starts a new instance with the
same AMI and reattaches the root volume, which restores the instance to its previous
configuration.

• If you deregister a registered Amazon EC2 instance, it returns to being a regular Amazon EC2
instance.

On-premises Instances

• AWS OpsWorks Stacks cannot stop or start a registered on-premises instance.

Unassigning a registered on-premises instance triggers a Shutdown event. However, that
event simply runs the assigned layers' Shutdown recipes. They perform tasks such as shutting
down services, but do not stop the instance.

• AWS OpsWorks Stacks cannot autoheal a registered on-premises instance if it fails, but the
instance is marked as connection lost.

• On-premises instances cannot use the Elastic Load Balancing, Amazon EBS, or Elastic IP
address services.

Assigning a Registered Instance to a Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 607

AWS OpsWorks User Guide

Note

This feature is supported only for Linux stacks.

After you register an instance, you can assign it to one or more layers. The advantage of assigning
an instance to a layer instead of leaving it unassigned is that you can assign custom recipes to the
layer's lifecycle events. AWS OpsWorks Stacks then runs them automatically at the appropriate
time, after the layer's recipes for that event.

• You can assign any registered instance to a custom layer. A custom layer has a minimal set
of recipes that do not install any packages, so they should not create any conflicts with the
instance's existing configuration.

• You can assign on-premises instances to AWS OpsWorks Stacks built-in layers.

Every built-in layer includes recipes that automatically install one or more packages. For
example, the Java App Server Setup recipes install Apache and Tomcat. The layer's recipes might
also perform other operations such as restarting services and deploying applications. Before
assigning an on-premises instance to a built-in layer, you should ensure that the layer's recipes
do not create any conflicts, such as attempting to install a different application server version
than is currently on the instance. For more information, see Layers and AWS OpsWorks Stacks
Layer Reference.

To assign a registered instance to a layer

1. Add the layers that you want to use to the stack, if you have not done so already.

2. Choose Instances in the navigation pane and then choose assign in the instance's Actions
column.

3. Select the appropriate layers and choose Save.

When you assign an instance to a layer AWS OpsWorks Stacks does the following.

• Runs the layer's Setup recipes.

• Adds any attached Elastic IP addresses or Amazon EBS volumes to the stack's resources.

You can then use AWS OpsWorks Stacks to manage these resources. For more information, see
Resource Management.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 608

AWS OpsWorks User Guide

After they are finished, the instance is in the online status and fully incorporated into the stack.
AWS OpsWorks Stacks then runs the layer's assigned recipes each time a lifecycle event occurs.

Unassigning a Registered Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

You can unassign a registered instance from its layers by using the AWS OpsWorks console, AWS
CLI, or SDK operation.

When you unassign an instance, AWS OpsWorks Stacks runs the layer's Shutdown recipes on the
instance. These recipes perform tasks such as shutting down services but do not stop the instance.
If the instance is assigned to multiple layers, unassign applies to every layer; you can't unassign an
instance from a subset of its layers. However, the instance is still registered with the stack, and you
can assign it to another layer if you wish.

To unassign a registered instance using the console

1. In the navigation pane, choose Instances.

2. Choose the instance that you want to unassign.

3. On the Details page for the instance, choose Unassign.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 609

AWS OpsWorks User Guide

To unassign a registered instance using the AWS CLI

Run the aws opsworks unassign-instance command to unassign a registered instance from all
layers that are using the instance.

aws opsworks unassign-instance --region region --instance-id instance-id

Deregistering a Registered Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 610

https://docs.aws.amazon.com/cli/latest/reference/opsworks/unassign-instance.html

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can deregister an instance using the AWS OpsWorks console, AWS CLI, or SDK operation.

To deregister an instance using the console

1. In the navigation pane, choose Instances.

2. Choose the instance that you want to deregister.

3. On the Details page for the instance, choose Deregister.

To deregister an instance using the AWS CLI

Run the aws opsworks deregister-instance command to deregister an instance from its stack.

aws opsworks deregister-instance --region region --instance-id instance-id

When you deregister an instance, AWS OpsWorks Stacks does the following:

• Removes the instance from the stack.

• Unassigns the instance from any assigned layers.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 611

https://docs.aws.amazon.com/cli/latest/reference/opsworks/deregister-instance.html

AWS OpsWorks User Guide

• Shuts down and uninstalls the agent.

• Deregisters any attached resources (Elastic IP addresses and Amazon EBS volumes).

This procedure includes resources that were attached to the instance prior to registration, and
resources that you used AWS OpsWorks Stacks to attach to the instance while it was part of the
stack. After deregistration, the resources are no longer part of the stack's resources, but they
remain attached to the instance.

• For on-premises instances, stops the charges.

• Removes all tags that OpsWorks added to the instance.

The instance remains in the running state, but it is under your direct control and is no longer
managed by AWS OpsWorks Stacks.

Note

Both registering and deregistering computers or instances are fully supported only within
Linux stacks. For Windows stacks, deregistering instances is allowed, but it doesn’t uninstall
the OpsWorks agent from the instance. Deregistration does not remove all changed files,
and does not fully revert to backed-up copies of certain files. This list applies to both Chef
11.10 and Chef 12 stacks; differences between the two versions are noted here.

• /etc/hosts is backed up to /var/lib/aws/opsworks/local-mode-cache/
backup/etc/, but is not restored.

• Entries remain for aws and opsworks in passwd, group, and shadow files, etc.

• /etc/sudoers contains a reference to an AWS OpsWorks Stacks directory.

• The following files are safe to leave behind; long-term, consider deleting /var/lib/
aws/opsworks.

• /var/log/aws/opsworks remains on instances in Chef 11.10 stacks.

• /var/lib/aws/opsworks remains on both Chef 11.10 and Chef 12 stacks.

• /var/chef remains on instances in Chef 12 stacks.

• Other files left behind:

• /etc/logrotate.d/opsworks-agent

• /etc/cron.d/opsworks-agent-updater

• /etc/ld.so.conf.d/opsworks-user-space.conf
Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 612

AWS OpsWorks User Guide

• /etc/motd.opsworks-static

• /etc/aws/opsworks

• /etc/sudoers.d/opsworks

• /etc/sudoers.d/opsworks-agent

Registered Instance Life Cycle

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is supported only for Linux stacks.

The registered instance lifecycle starts after the agent is installed and running. At that point, it
directs AWS OpsWorks Stacks to register the instance with the stack. The following state diagram
summarizes the key lifecycle elements.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 613

AWS OpsWorks User Guide

Each state corresponds to an instance status. The edges represent one of the following AWS
OpsWorks Stacks commands. The details are discussed in the following sections.

• Setup – This command corresponds to the Setup lifecycle event and runs the instance's Setup
recipes.

• Configure – This command corresponds to the Configure lifecycle event.

AWS OpsWorks Stacks triggers this event on every instance in the stack when an instance enters
or leaves the online state. The instances run their Configure recipes, which make any changes
that are required to accommodate the new instance.

• Shutdown – This command corresponds to the Shutdown lifecycle event, which runs the
instance's Shutdown recipes.

These recipes perform tasks such as shutting down services, but they do not stop the instance.

• Deregister – This command deregisters an instance and does not correspond to a lifecycle event.

Note

For simplicity the diagram does not show the Deregistering and Deleted states. You can
deregister an instance from any of the states in the diagram, which sends a Deregister
command to the instance and moves it to the Deregistering state.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 614

AWS OpsWorks User Guide

• If you deregister an online instance, AWS OpsWorks Stacks sends a Configure command
to the remaining instances in the stack to notify them that the instance is going offline.

• After the Deregister command is acknowledged, the instance is still running, but it is in
the Deleted state and no longer part of the stack. If you want to incorporate the instance
into the stack again, you must re-register it.

Topics

• Registering

• Running Setup

• Registered

• Assigning

• Online

• Setup Failed

• Unassigning

• Initial Setup Configuration Changes

Registering

After the agent sends a registration request, AWS OpsWorks Stacks starts the instance lifecycle by
sending a Setup command to the instance, putting it in the Registering state. After the instance
acknowledges the Setup command, it moves to the Running Setup state.

Running Setup

The Running Setup state runs the instance's Setup recipes. Setup works depending on the
preceding state.

Note

If you unassign the instance while it is in the Running Setup state, AWS OpsWorks Stacks
sends a Shutdown command, which runs the instance's Shutdown recipes but does not stop
the instance. The instance moves to the Unassigning state.

Topics

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 615

AWS OpsWorks User Guide

• Registering

• Assigning

• Setup Failed

Registering

During the Registering process, setup creates an AWS OpsWorks Stacks instance to represent the
registered instance in the stack, and runs a set of core Setup recipes on the instance.

One key change performed by initial setup is overwriting the instance's hosts file. By registering the
instance, you have handed user management over to AWS OpsWorks Stacks, which must have its
own hosts file to control SSH login permissions. Initial setup also creates or modifies a number of
files and, on Ubuntu systems, modifies package sources and installs a set of packages. For details,
see Initial Setup Configuration Changes.

During registering, the process calls the IAM AttachUserPolicy that is part of the permissions
attached to the IAM user that you create as a prerequisite. If AttachUserPolicy does not exist
(most likely because you are running an older release of the AWS CLI), the process falls back to
calling PutUserPolicy.

Note

For consistency, AWS OpsWorks Stacks runs every core Setup recipe. However, some of
them perform some or all of their tasks only if an instance has been assigned to at least
one layer, so they do not necessarily affect initial setup.

• If setup is successful, the instance moves to the Registered state.

• If setup is unsuccessful, the instance moves to the Setup Failed state.

Assigning

The instance has at least one assigned layer. AWS OpsWorks Stacks runs each layer's Setup recipes,
including any custom recipes that you have assigned to the layers' Setup event.

• If setup is successful, the instance moves to the Online state and AWS OpsWorks Stacks triggers
a Configure lifecycle event on every instance in the stack to notify them of the new instance.

• If setup is unsuccessful, the instance moves to the Setup Failed state.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 616

AWS OpsWorks User Guide

Note

This setup process runs the core recipes a second time. However, Chef recipes are
idempotent, so they do not repeat any tasks that have already been performed.

Setup Failed

If a setup process for an instance in the Assigning state fails, you can try again by using the Setup
stack command to manually rerun the instance's Setup recipes.

• If setup is successful, the assigned instance moves to the Online state and AWS OpsWorks Stacks
triggers a Configure lifecycle event on every instance in the stack to notify them of the new
instance.

• If the setup attempt is unsuccessful, the instance moves back to the Setup Failed state.

Registered

Instances in the Registered state are part of the stack and are managed by AWS OpsWorks Stacks
but are not assigned to a layer. They can remain in this state indefinitely.

If you assign the instance to one or more layers, AWS OpsWorks Stacks sends a Setup command to
the instance and it moves to the Assigning state.

Assigning

After the instance acknowledges the Setup command, it moves to the Running Setup state.

If you unassign the instance while it is in the Assigning state, AWS OpsWorks Stacks terminates the
setup process and sends a Shutdown command. The instance moves to the Unassigning state.

Online

The instance is now a member of at least one layer and is treated like a regular AWS OpsWorks
Stacks instance. It can remain in this state indefinitely.

If you unassign the instance while it is in the Online state, AWS OpsWorks Stacks sends a Shutdown
command to the instance and a Configure command to the rest of the stack's instances. The
instance moves to the Unassigning state.

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 617

AWS OpsWorks User Guide

Setup Failed

The Setup command has failed.

• You can try again by running the Setup stack command.

The instance returns to the Running Setup state.

• If you unassign the instance, AWS OpsWorks Stacks sends a Shutdown command to the instance.

The instance moves to the Unassigning state.

Unassigning

After the Shutdown command finishes, the instance is no longer assigned to any layers and returns
to the Registered state.

Note

If an instance is assigned to multiple layers, unassignment applies to every layer; you
cannot unassign a subset of the assigned layers. If you want a different set of assigned
layers, unassign the instance and then reassign the desired layers.

Initial Setup Configuration Changes

Initial setup creates or modifies the following files and directories on all registered instances.

Created Files

/etc/apt/apt.conf.d/99-no-pipelining
/etc/aws/
/etc/init.d/opsworks-agent
/etc/motd
/etc/motd.opsworks-static
/etc/sudoers.d/opsworks
/etc/sudoers.d/opsworks-agent
/etc/sysctl.d/70-opsworks-defaults.conf
/opt/aws/opsworks/
/usr/sbin/opsworks-agent-cli
/var/lib/aws/
/var/log/aws/

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 618

AWS OpsWorks User Guide

/vol/

Modified Files

/etc/apt/apt.conf.d/99-no-pipelining
/etc/crontab
/etc/default/monit
/etc/group
/etc/gshadow
/etc/monit/monitrc
/etc/passwd
/etc/security/limits.conf (removing limits only for EC2 micro instances)
/etc/shadow
/etc/sudoers

Initial setup also creates a swap file on Amazon EC2 micro instances.

Initial setup makes the following changes to Ubuntu systems.

Package Sources

Initial setup changes package sources to the following.

• deb http://archive.ubuntu.com/ubuntu/ ${code_name} main universe

To: deb-src http://archive.ubuntu.com/ubuntu/ ${code_name} main universe

• deb http://archive.ubuntu.com/ubuntu/ ${code_name}-updates main
universe

To: deb-src http://archive.ubuntu.com/ubuntu/ ${code_name}-updates main
universe

• deb http://archive.ubuntu.com/ubuntu ${code_name}-security main
universe

To: deb-src http://archive.ubuntu.com/ubuntu ${code_name}-security main
universe

• deb http://archive.ubuntu.com/ubuntu/ ${code_name}-updates multiverse

To: deb-src http://archive.ubuntu.com/ubuntu/ ${code_name}-updates
multiverse

Using Computing Resources Created Outside of AWS OpsWorks Stacks API Version 2013-02-18 619

AWS OpsWorks User Guide

• deb http://archive.ubuntu.com/ubuntu ${code_name}-security multiverse

To: deb-src http://archive.ubuntu.com/ubuntu ${code_name}-security
multiverse

• deb http://archive.ubuntu.com/ubuntu/ ${code_name} multiverse

To: deb-src http://archive.ubuntu.com/ubuntu/ ${code_name} multiverse

• deb http://security.ubuntu.com/ubuntu ${code_name}-security multiverse

To: deb-src http://security.ubuntu.com/ubuntu ${code_name}-security
multiverse

Packages

Initial setup uninstalls landscape and installs the following packages.

autofs libicu-dev libopenssl-ruby

libssl-dev libxml2-dev libxslt-dev

libyaml-dev monit ntpd

procps ruby ruby-dev

rubygems screen sqlite

vim xfs

Editing the Instance Configuration

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Editing the Instance Configuration API Version 2013-02-18 620

AWS OpsWorks User Guide

You can edit instance configurations, including registered Amazon Elastic Compute Cloud (Amazon
EC2) instances, with the following limitations:

• The instance must be in the stopped state.

Although you can't modify an online instance's properties, you can change some aspects of its
configuration by editing the instance's layers. For more information, see Editing an OpsWorks
Layer's Configuration.

• Some settings, such as Availability Zone and Scaling Type, are determined when you create the
instance and cannot be modified later.

• Some settings can be modified for instance store-backed instances only, not for Amazon Elastic
Block Store-backed instances.

For example, you can change an instance store-backed instance's operating system. Amazon
EBS-backed instances must use the operating system that you specified when you created the
instance. For more information on instance storage, see Storage.

• By default, instances inherit the stack's agent version setting.

You can use OpsWorks Agent Version to override the stack's agent version setting and specify
a particular agent version for an instance. If you specify an instance's agent version, AWS
OpsWorks Stacks does not automatically update the agent when a new version is available, even
if the stack's agent version setting is Auto-update. You must update the instance's agent version
manually by editing the instance configuration. AWS OpsWorks Stacks then installs the specified
agent version on the instance.

Note

You cannot edit the configuration of registered on-premises instances.

To edit an instance's configuration

1. Stop the instance, if it is not already stopped.

2. On the Instances page, click an instance name to display the Details page.

3. Click Edit to display the edit page.

4. Edit the instance's configuration, as appropriate.

Editing the Instance Configuration API Version 2013-02-18 621

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html

AWS OpsWorks User Guide

For a description of the Host name, Size, SSH key and Operating system settings, see Adding an
Instance to a Layer. The Layers setting lets you add or remove layers. The instance's current layer's
appear following the list of layers.

• To add another layer, select it from the list.

• To remove the instance from one of its layers, click the x by the appropriate layer.

An instance must be a member of at least one layer, so you cannot remove the last layer.

When you restart the instance, AWS OpsWorks Stacks starts a new Amazon EC2 instance with the
updated configuration.

Deleting AWS OpsWorks Stacks Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can use AWS OpsWorks Stacks to stop an instance, including registered Amazon EC2 instances.
Doing so stops the EC2 instance, but the instance remains in the stack. You can restart it by clicking
start in the instance's Actions column. If you no longer need an instance and want to remove it
from the stack, you can delete it, which removes the instance from the stack and terminates the
associated Amazon EC2 instance. Deleting an instance also deletes any associated logs or data, and
any Amazon Elastic Block Store (EBS) volumes on the instance.

Important

This topic applies only to Amazon EC2 instances that are managed by AWS OpsWorks
Stacks. For more information about how to delete instances that are managed by the
Amazon EC2 console or API, see Terminate Your Instance.

Deleting AWS OpsWorks Stacks Instances API Version 2013-02-18 622

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

AWS OpsWorks User Guide

Note

You cannot use AWS OpsWorks Stacks to delete a registered on-premises instance.

If an instance belongs to multiple layers, you can delete the instance from the stack or just remove
a particular layer. You can also remove layers from instances by editing the instance configuration,
as described in Editing the Instance Configuration.

Important

You should delete AWS OpsWorks Stacks instances only by using the AWS OpsWorks Stacks
console or API. In particular, you should not delete AWS OpsWorks Stacks instances by
using the Amazon EC2 console or API because Amazon EC2 actions are not automatically
synchronized with AWS OpsWorks Stacks. For example, if auto healing is enabled and you
terminate an instance by using the Amazon EC2 console, AWS OpsWorks Stacks treats the
terminated instance as a failed instance and launches another Amazon EC2 instance to
replace it. For more information, see Using Auto Healing.

To delete an instance

1. On the Instances page, locate the instance under the appropriate layer. If the instance is
running, click stop in the Actions column.

2. After the status changes to stopped, click delete. If the instance is a member of more than one
layer, layer AWS OpsWorks Stacks displays the following section.

Deleting AWS OpsWorks Stacks Instances API Version 2013-02-18 623

AWS OpsWorks User Guide

• To remove the instance from only the selected layer, click Remove from layer.

The instance remains a member of its other layers and can be restarted.

• To delete the instance from all its layers, which removes it from the stack, click here.

3. If you choose to completely remove an instance from the stack, or if the instance is a member
of only one layer, AWS OpsWorks Stacks prompts you to confirm the deletion.

Choose Delete to confirm. In addition to deleting the instance from the stack, this action
deletes any associated logs or data, and root volumes that are attached to the instance. To
remove all instance volumes, choose Delete instance's EBS volumes (snapshots will not be
deleted) before you choose Delete.

Using SSH to Log In to a Linux Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can log into your online Linux instances with SSH using either the built-in MindTerm client, or a
third-party client, such as PuTTY. SSH typically depends on an RSA key pair for authentication. You
install the public key on the instance and provide the corresponding private key to the SSH client.
AWS OpsWorks Stacks handles installing public keys on your stack's instances for you, as follows.

• Amazon Elastic Compute Cloud (Amazon EC2)key pair – If the stack's region has one or more
Amazon EC2 key pairs, you can specify a default SSH key pair for the stack.

You can optionally override the default key pair and specify a different pair when you create an
instance. In either case, AWS OpsWorks Stacks installs the specified key pair's public key on the
instance. For more information on how to create Amazon EC2 key pairs, see Amazon EC2 Key
Pairs.

Logging In with SSH API Version 2013-02-18 624

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

• Personal key pair – Each user can register a personal key pair with AWS OpsWorks Stacks.

The user or an administrator registers the public key with AWS OpsWorks Stacks, and the user
stores the private key locally. When setting permissions for a stack, the administrator specifies
which users should have SSH access to the stack's instances. AWS OpsWorks Stacks automatically
creates a system user on the stack's instances for each authorized user and installs the users'
personal public key.

A user must have SSH authorization to use the MindTerm SSH client or to use their personal key
pair to log in to a stack's instances.

To authorize SSH for a user

1. In the AWS OpsWorks Stacks navigation pane, click Permissions.

2. Select SSH/RDP for the desired IAM user to grant the necessary permissions. If you want to
allow the user to use sudo to elevate privileges—for example, to run agent CLI commands—
select sudo/admin also.

For more information on how to use AWS OpsWorks Stacks to manage SSH access, see Managing
SSH Access.

Topics

• Using the Built-in MindTerm SSH Client

• Using a Third-Party SSH Client

Logging In with SSH API Version 2013-02-18 625

AWS OpsWorks User Guide

Using the Built-in MindTerm SSH Client

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The simplest way to log into a Linux instance is to use the built-in MindTerm SSH client. Each
online instance includes an ssh action that you can use to launch the MindTerm client.

Note

You must have Java enabled in your browser to use the MindTerm client.

To log in with the MindTerm client

1. If you haven't done so already, authorize SSH access for the IAM user that will be connecting to
the instance, as described in the preceding section.

2. Log in as the user.

3. On the Instances page, choose ssh in the Actions column for the appropriate instance.

4. For Private key, provide a path to the user's personal private key or an Amazon EC2 private
key, depending on which public keys you have installed on the instance.

5. Choose Launch Mindterm and use the terminal window to run commands on the instance.

Logging In with SSH API Version 2013-02-18 626

AWS OpsWorks User Guide

Using a Third-Party SSH Client

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can also use a third-party SSH client, such as PuTTY, to connect to Linux instances.

To use a third party SSH client

1. Ensure that AWS OpsWorks Stacks has installed an Amazon EC2 public key or an IAM user's
personal public key on the instance, as discussed earlier.

2. Obtain the instance's public DNS name or public IP address from its details page.

3. Provide the client with the instance's host name, which depends on the operating system, as
follows:

• Amazon Linux and Red Hat Enterprise Linux (RHEL)– ec2-user@DNSName/Address.

• Ubuntu – ubuntu@DNSName/Address.

Replace DNSName/Address with the public DNS name or IP address from the previous step.

4. Provide the client with a private key that corresponds to an installed public key. You can use
either an Amazon EC2 private key or an IAM user's personal private key, depending on which
public keys have been installed on the instance.

Using RDP to Log In to a Windows Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Logging In with RDP API Version 2013-02-18 627

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can use the Windows remote desktop protocol (RDP) to log in to an online Windows instance,
as follows:

• The instance must have a security group with an inbound rule that allows RDP access.

For more information on working with security groups, see Using Security Groups.

• Ordinary users – AWS OpsWorks Stacks provides authorized ordinary users with an RDP
password that is valid for a limited time period, which can range from 30 minutes to 12 hours.

In addition to being authorized, users must have at least a Show permission level or
their attached AWS Identity and Access Management (IAM) policies must allow the
opsworks:GrantAccess action.

• Administrators – You can use the Administrator password to log in for an unlimited amount of
time.

As described later, if you have specified an Amazon Elastic Compute Cloud (Amazon EC2) key pair
for the instance, you can use it to retrieve the Administrator password.

Note

This topic describes how to use the Windows Remote Desktop Connection client to log in
from a Windows workstation. You can also use one of the available RDP clients for Linux
or OS X, but the procedure might be somewhat different. For more information on RDP
clients that are compatible with Microsoft Windows Server 2012 R2, see Microsoft Remote
Desktop Clients.

Topics

• Providing a Security Group that Allows RDP Access

• Logging in As an Ordinary User

• Logging in As Administrator

Logging In with RDP API Version 2013-02-18 628

https://technet.microsoft.com/en-us/library/dn473009.aspx
https://technet.microsoft.com/en-us/library/dn473009.aspx

AWS OpsWorks User Guide

Providing a Security Group that Allows RDP Access

Before you can use RDP to log into a Windows instance, the instance's security group inbound rules
must allow RDP connections. When you create the first stack in a region, AWS OpsWorks Stacks
creates a set of security groups. They include one named something like AWS-OpsWorks-RDP-
Server, which AWS OpsWorks Stacks attaches to all Windows instances to allow RDP access.
However, by default, this security group does not have any rules, so you must add an inbound rule
to allow RDP access to your instances.

To allow RDP access

1. Open the Amazon EC2 console, set it to the stack's region, and choose Security Groups from
the navigation pane.

2. Select AWS-OpsWorks-RDP-Server, choose the Inbound tab, and choose Edit.

3. Choose Add Rule and specify the following settings:

• Type – RDP

• Source – The permissible source IP addresses.

You typically allow inbound RDP requests from your IP address or a specified IP address
range (typically your corporate IP address range).

Logging in As an Ordinary User

An authorized user can log in to instances using a temporary password, provided by AWS
OpsWorks Stacks.

To authorize RDP for a user;

1. In the AWS OpsWorks Stacks navigation pane, click Permissions.

2. Select the SSH/RDP checkbox for the desired user to grant the necessary permissions. If you
want the user to have administrator permissions, you should also select sudo/admin.

Logging In with RDP API Version 2013-02-18 629

https://console.aws.amazon.com/ec2/v2/

AWS OpsWorks User Guide

Authorized users can log in to any of the stack's online instances, as follows.

To log in as an ordinary IAM user

1. Log in as an IAM user.

2. On the Instances page, choose rdp in the Actions column for the appropriate instance.

3. Specify the session length, which can vary from 30 minutes to 12 hours, and choose Generate
Password. The password will be valid only for the specified session duration.

4. Record the public DNS name, username, and password values, then choose Acknowledge
and close.

5. Open the Windows Remote Desktop Connection client, choose Show Options, and provide the
following from the information that you recorded in Step 4:

• Computer – The instance's public DNS name.

You can also use the public IP address, if you prefer. Choose Instances and copy the address
from the instance's Public IP column.

• User name – The user name.

6. When the client prompts for your credentials, enter the password that you saved in Step 4.

Note

AWS OpsWorks Stacks generates a user password only for online instances. If you start
an instance and, for example, one of your custom Setup recipes fails, the instance will
end up in the setup_failed state. Even though the instance is not online as far as AWS
OpsWorks Stacks is concerned, the EC2 instance is running and it's often useful to log in
to troubleshoot the issue. AWS OpsWorks Stacks won't generate a password for you in this

Logging In with RDP API Version 2013-02-18 630

AWS OpsWorks User Guide

case, but if you have assigned an SSH key pair to the instance, you can use the EC2 console
or CLI to retrieve the instance's Administrator password and log in as Administrator. For
more information, see the following section.

Logging in As Administrator

You can log in to an instance as Administrator by using the appropriate password. If you have
assigned an EC2 key pair to an instance, Amazon EC2 uses it to automatically create and encrypt an
Administrator password when the instance starts. You can then use the key pair's private key with
the EC2 console, API, or CLI to retrieve and decrypt the password.

Note

You cannot use a personal SSH key pair to retrieve an Administrator password; you must
use an EC2 key pair.

The following describes how to use the EC2 console to retrieve an Administrator password and log
in to an instance. If you prefer command-line tools, you can also use the AWS CLI get-password-
data command to retrieve the password.

To log in as Administrator

1. Make sure that you have specified an EC2 key pair for the instance. You can specify a default
key pair for all of the stack's instances when you create the stack, or you can specify a key pair
for a particular instance when you create the instance.

2. Open the EC2 console, set it to the stack's region, and choose Instances from the navigation
pane.

3. Select the instance, choose Connect, and choose Get Password.

4. Provide a path to the EC2 key pair's private key on your workstation, and choose Decrypt
Password. Copy the decrypted password for later use.

5. Open the Windows Remote Desktop Connection client, choose Show Options, and provide the
following information:

• Computer – The instance's public DNS name or public IP address, which you can get from
the instance's details page.

Logging In with RDP API Version 2013-02-18 631

http://docs.aws.amazon.com/cli/latest/reference/ec2/get-password-data.html
http://docs.aws.amazon.com/cli/latest/reference/ec2/get-password-data.html
https://console.aws.amazon.com/ec2/v2/

AWS OpsWorks User Guide

• User name – Administrator.

6. When the client prompts for your credentials, provide the decrypted password from Step 4.

Apps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

An AWS OpsWorks Stacks app represents code that you want to run on an application server. The
code itself resides in a repository such as an Amazon S3 archive; the app contains the information
required to deploy the code to the appropriate application server instances.

When you deploy an application, AWS OpsWorks Stacks triggers a Deploy event, which runs each
layer's Deploy recipes. AWS OpsWorks Stacks also installs stack configuration and deployment
attributes that contain all of the information needed to deploy the app, such as the app's
repository and database connection data.

You must implement custom recipes that retrieve the app's deployment data from the stack
configuration and deployment attributes and handle the deployment tasks.

Topics

• Adding Apps

• Deploying Apps

• Editing Apps

• Connecting an Application to a Database Server

• Using Environment Variables

• Passing Data to Applications

• Using Git Repository SSH Keys

Apps API Version 2013-02-18 632

AWS OpsWorks User Guide

• Using Custom Domains

• Using SSL

Adding Apps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The first step in deploying an application to your application servers is to add an app to the stack.
The app represents the application, and contains a variety of metadata, such as the application's
name and type, and the information required to deploy the application to the server instances,
such as the repository URL. You must have Manage permissions to add an app to a stack. For more
information, see Managing User Permissions.

Note

The procedure in this section applies to Chef 12 and newer stacks. For information about
how to add apps to layers in Chef 11 stacks, see Step 2.4: Create and Deploy an App - Chef
11.

To add an app to a stack

1. Put the code in your preferred repository—an Amazon S3 archive, a Git repository, a
Subversion repository, or an HTTP archive. For more information, see Application Source.

2. Click Apps in the navigation pane. On the Apps page, click Add an app for your first app. For
subsequent apps, click +App.

3. Use the App New page to configure the app, as described in the following section.

Adding Apps API Version 2013-02-18 633

AWS OpsWorks User Guide

Configuring an App

The Add App page consists of the following sections: Settings, Application source, Data Sources,
Environment Variables, Add Domains, and SSL Settings.

Topics

• Settings

• Application Source

• Data Sources

• Environment Variables

• Domain and SSL Settings

Settings

Name

The app name, which is used to represent the app in the UI. AWS OpsWorks Stacks also uses
this name to generate a short name for the app that is used internally and to identify the app in
the stack configuration and deployment attributes. After you have added the app to the stack,
you can see the short name by clicking Apps in the navigation pane and then clicking the app's
name to open the details page.

Document root

AWS OpsWorks Stacks assigns the Document root setting to the [:document_root] attribute
in the app's deploy attributes. The default value is null. Your deployment recipes can obtain
that value from the deploy attributes using standard Chef node syntax and deploy the
specified code to the appropriate location on the server. For more information about how to
deploy apps, see Deploy Recipes.

Application Source

You can deploy apps from the following repository types: Git, Amazon S3 bundle, HTTP bundle,
and Other. All repository types require you to specify the repository type and the repository URL.
Individual repository types have their own requirements, as explained below.

Adding Apps API Version 2013-02-18 634

AWS OpsWorks User Guide

Note

AWS OpsWorks Stacks automatically deploys applications from the standard repositories
to the built-in server layers. If you use the Other repository type, which is the only option
for Windows stacks, AWS OpsWorks Stacks puts the repository information in the app's
deploy attributes, but you must implement custom recipes to handle the deployment
tasks.

Topics

• HTTP Archive

• Amazon S3 Archive

• Git Repository

• Other Repositories

HTTP Archive

To use a publicly-accessible HTTP server as a repository:

1. Create a compressed archive—zip, gzip, bzip2, Java WAR, or tarball—of the folder that
contains the app's code and any associated files.

Note

AWS OpsWorks Stacks does not support uncompressed tarballs.

2. Upload the archive file to the server.

3. To specify the repository in the console, select HTTP Archive as the repository type and enter
the URL.

If the archive is password-protected, under Application Source, specify the sign-in credentials.

Amazon S3 Archive

To use an Amazon Simple Storage Service bucket as a repository:

Adding Apps API Version 2013-02-18 635

AWS OpsWorks User Guide

1. Create a public or private Amazon S3 bucket. For more information, see Amazon S3
Documentation.

2. For AWS OpsWorks Stacks to access private buckets, you must be a user with at least read-only
rights to the Amazon S3 bucket and you will need the access key ID and secret access key. For
more information, see AWS Identity and Access Management Documentation.

3. Put the code and any associated files in a folder and store the folder in a compressed archive—
zip, gzip, bzip2, Java WAR, or tarball.

Note

AWS OpsWorks Stacks does not support uncompressed tarballs.

4. Upload the archive file to the Amazon S3 bucket and record the URL.

5. To specify the repository in the AWS OpsWorks Stacks console, set Repository type to S3
Archive and enter the archive's URL. For a private archive, you must also provide an AWS
access key ID and secret access key whose policy grants permissions to access the bucket. Leave
these settings blank for public archives.

Git Repository

A Git repository provides source control and versioning. AWS OpsWorks Stacks supports publicly
hosted repository sites such as GitHub or Bitbucket as well as privately hosted Git servers. For both
apps and Git submodules, the format you use to specify the repository's URL in Application Source
depends on whether the repository is public or private:

Public repository–Use the HTTPS or Git read-only protocols. For example, Getting Started
with Chef 11 Linux Stacks uses a public GitHub repository that can be accessed by either of the
following URL formats:

• Git read-only: git://github.com/amazonwebservices/opsworks-demo-php-simple-
app.git

• HTTPS: https://github.com/amazonwebservices/opsworks-demo-php-simple-
app.git

Private repository–Use the SSH read/write format shown in these examples:

• Github repositories: git@github.com:project/repository.

Adding Apps API Version 2013-02-18 636

http://aws.amazon.com/documentation/s3/
http://aws.amazon.com/documentation/s3/
https://docs.aws.amazon.com/iam/
http://git-scm.com/
https://github.com/
https://bitbucket.org

AWS OpsWorks User Guide

• Repositories on a Git server: user@server:project/repository

Selecting Git under Source Control displays two additional optional settings:

Repository SSH key

You must specify a deploy SSH key to access private Git repositories. This field requires the
private key; the public key is assigned to your Git repository. For Git submodules, the specified
key must have access to those submodules. For more information, see Using Git Repository SSH
Keys.

Important

The deploy SSH key cannot require a password; AWS OpsWorks Stacks has no way to
pass it through.

Branch/Revision

If the repository has multiple branches, AWS OpsWorks Stacks downloads the master branch
by default. To specify a particular branch, enter the branch name, SHA1 hash, or tag name. To
specify a particular commit, enter the full 40-hexdigit commit identifier.

Other Repositories

If the standard repositories do not meet your requirements, you can use other repositories,
such as Bazaar. However, AWS OpsWorks Stacks does not automatically deploy apps from such
repositories. You must implement custom recipes to handle the deployment process and assign
them to the appropriate layers' Deploy events. For an example of how to implement Deploy
recipes, see Deploy Recipes.

Data Sources

This section attaches a database to the app. You have the following options:

• RDS – Attach one of the stack's Amazon RDS service layers.

• None – Do not attach a database server.

If you select RDS, you must specify the following.

Adding Apps API Version 2013-02-18 637

http://bazaar.canonical.com/en/

AWS OpsWorks User Guide

Database instance

The list includes every Amazon RDS service layer. You can also select one of the following:

(Required) Specify which database server to attach to the app. The contents of the list depend
on the data source.

• RDS – A list of the stack's Amazon RDS service layers.

Database name

(Optional) Specify a database name.

• Amazon RDS layer – Enter the database name that you specified for the Amazon RDS
instance.

You can get the database name from the Amazon RDS console.

When you deploy an app with an attached database, AWS OpsWorks Stacks adds the database
instance's connection to the app's deploy attributes.

You can write a custom recipe to retrieve the information from the deploy attributes and put
it file that can be accessed by the application. This is the only option for providing database
connection information to the Other application type.

For more information on how to handle database connections, see Connecting to a Database.

To detach a database server from an app, edit the app's configuration to specify a different
database server, or no server.

Environment Variables

You can specify a set of environment variables for each app, which are specific to the app. For
example, if you have two apps, the environment variables that you define for the first app are not
available to the second app and vice versa. You can also define the same environment variable for
multiple apps and assign it a different value for each app.

Note

There is no specific limit on the number of environment variables. However, the size of
the associated data structure—which includes the variables' names, values, and protected

Adding Apps API Version 2013-02-18 638

https://console.aws.amazon.com/rds/

AWS OpsWorks User Guide

flag values—cannot exceed 20 KB. This limit should accommodate most if not all use
cases. Exceeding it will cause a service error (console) or exception (API) with the message,
"Environment: is too large (maximum is 20 KB)."

AWS OpsWorks Stacks stores the variables as attributes in the app's deploy attributes. You can
have your custom recipes retrieve those values by using standard Chef node syntax. For examples
of how to access an app's environment variables, see Using Environment Variables.

Key

The variable name. It can contain up to 64 upper and lower case letters, numbers, and
underscores (_), but it must start with a letter or underscore.

Value

The variable's value. It can contain up to 256 characters, which must all be printable.

Protected value

Whether the value is protected. This setting allows you to conceal sensitive information such as
passwords. If you set Protected value for a variable, after you create the app:

• The app's details page displays only the variable name, not the value.

• If you have permission to edit the app, you can click Update value to specify a new value, but
you cannot see or edit the old value.

Note

Chef deployment logs can sometimes include environment variables. This means protected
variables might be shown in the console. To prevent protected variables from being shown
in the console, we recommend that you use Amazon S3 buckets as storage for protected
variables that you do not want shown in the console. An example of how to use an S3
bucket for this purpose is available in Using an Amazon S3 Bucket in this guide.

Domain and SSL Settings

For the Other app type, AWS OpsWorks Stacks adds the settings to the app's deploy attributes.
Your recipes can retrieve the data from those attributes and configure the server as needed.

Adding Apps API Version 2013-02-18 639

AWS OpsWorks User Guide

Domain Settings

This section has an optional Add Domains field for specifying domains. For more information,
see Using Custom Domains.

SSL Settings

This section has an SSL Support toggle that you can use to enable or disable SSL. If you click
Yes, you'll need to provide SSL certificate information. For more information, see Using SSL.

Deploying Apps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The primary purpose of deployment is to deploy application code and related files to application
server instances. The deployment operation is handled by each instance's Deploy recipes, which are
determined by the instance's layer.

When you start an instance, after the Setup recipes complete, AWS OpsWorks Stacks automatically
runs the instance's Deploy recipes. However, when you add or modify an app, you must deploy it
manually to any online instances. You must have Manage or Deploy permissions to deploy an app.
For more information, see Managing User Permissions.

To deploy an app

1. On the Apps page, click the app's deploy action.

Deploying Apps API Version 2013-02-18 640

AWS OpsWorks User Guide

Note

You can also deploy an app by clicking Deployments in the navigation pane. On the
Deployments & Commands page, click Deploy an app When you do this, you can also
choose which app to deploy.

2. Specify the following:

• (Required) Set Command: to deploy, if it is not already selected.

• (Optional) Include a comment.

3. Click Advanced >> to specify custom JSON. AWS OpsWorks Stacks adds a set of stack
configuration and deployment attributes to the node object. The deploy attributes
contain the deployment details and can be used by Deploy recipes to handle installation
and configuration. On Linux stacks, you can use the custom JSON field to override default
AWS OpsWorks Stacks settings or pass custom settings to your custom recipes. For more
information about how to use custom JSON, see Using Custom JSON.

Note

If you specify custom JSON here, it is added to the stack configuration and deployment
attributes for this deployment only. If you want to add custom JSON permanently, you
must add it to the stack. Custom JSON is limited to 120 KB. If you need more capacity,
we recommend storing some of the data on Amazon S3. Your custom recipes can then
use the AWS CLI or AWS SDK for Ruby to download the data from the bucket to your
instance. For an example, see Using the SDK for Ruby.

4. Under Instances, click Advanced >> and specify which instances to run the deploy command
on.

Deploying Apps API Version 2013-02-18 641

http://aws.amazon.com/documentation/sdk-for-ruby/

AWS OpsWorks User Guide

The deploy command triggers a Deploy event, which runs the deploy recipes on the selected
instances. The deploy recipes for the associated application server download the code and
related files from the repository and install them on the instance, so you typically select all of
the associated application server instances. However, other instance types might require some
configuration changes to accommodate the new app, so it is often useful to run deploy recipes
on those instances as well. Those recipes update the configuration as needed but do not install
the app's files. For more information about recipes, see Cookbooks and Recipes.

5. Click Deploy to run the deploy recipes on the specified instances, which displays the
Deployment page. When the process is complete, AWS OpsWorks Stacks marks the app with
a green check to indicate successful deployment. If deployment fails, AWS OpsWorks Stacks
marks the app with a red X. In that case, you can go to the Deployments page and examine
the deployment log for more information.

Note

When you deploy an update to a JSP app, Tomcat might not recognize the update and
instead continue to run the existing app version. This can happen, for example, if you
deploy your app as a .zip file that contains only a JSP page. To ensure that Tomcat runs
the most recently deployed version, the project's root directory should include a WEB-INF
directory that contains a web.xml file. A web.xml file can contain a variety of content, but
the following is sufficient to ensure that Tomcat recognizes updates and runs the currently
deployed app version. You don't have to change the version for each update. Tomcat will
recognize the update even if the version hasn't changed.

<context-param>

Deploying Apps API Version 2013-02-18 642

AWS OpsWorks User Guide

 <param-name>appVersion</param-name>
 <param-value>0.1</param-value>
</context-param>

Other Deployment Commands

The Deploy app page includes several other commands for managing your apps and the associated
servers. Of the following commands, only Undeploy is available for apps on Chef 12 stacks.

Undeploy

Triggers an Undeploy lifecycle event, which runs the undeploy recipes to remove all versions of
the app from the specified instances.

Rollback

Restores the previously deployed app version. For example, if you have deployed the app three
times and then run Rollback, the server will serve the app from the second deployment. If you
run Rollback again, the server will serve the app from the first deployment. By default, AWS
OpsWorks Stacks stores the five most recent deployments, which allows you to roll back up to
four versions. If you exceed the number of stored versions, the command fails and leaves the
oldest version in place. This command is not available in Chef 12 stacks.

Start Web Server

Runs recipes that start the application server on the specified instances. This command is not
available in Chef 12 stacks.

Stop Web Server

Runs recipes that stop the application server on the specified instances. This command is not
available in Chef 12 stacks.

Restart Web Server

Runs recipes that restart the application server on the specified instances. This command is not
available in Chef 12 stacks.

Deploying Apps API Version 2013-02-18 643

AWS OpsWorks User Guide

Important

Start Web Server, Stop Web Server, Restart Web Server, and Rollback are essentially
customized versions of the Execute Recipes stack command. They run a set of recipes that
perform the task on the specified instances.

• These commands do not trigger a lifecycle event, so you cannot hook them to run
custom code.

• These commands work only for the built-in application server layers.

In particular, these commands have no effect on custom layers, even if they support
an application server. To start, stop, or restart servers on a custom layer, you must
implement custom recipes to perform these tasks and use the Execute Recipes stack
command to run them. For more information on how to implement and install custom
recipes, see Cookbooks and Recipes.

Editing Apps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can modify an app's configuration by editing the app. For example, if you are ready to deploy
a new version, you can edit the app's AWS OpsWorks Stacks settings to use the new repository
branch. You must have Manage or Deploy permissions to edit an app's configuration. For more
information, see Managing User Permissions.

To edit an app

1. On the Apps page click the app name to open its details page.

2. Click Edit to change the app's configuration.

Editing Apps API Version 2013-02-18 644

AWS OpsWorks User Guide

• If you modify the app's name, AWS OpsWorks Stacks uses the new name to identify the app
in the console.

Changing the name does not change the associated short name. The short name is set when
you add the app to the stack and cannot be subsequently modified.

• If you have specified a protected environment variable, you cannot see or edit the value.
However, you can specify a new value by clicking Update value.

3. Click Save to save the new configuration and then Deploy App to deploy the app.

Editing an app changes the settings with AWS OpsWorks Stacks, but does not affect the stack's
instances. When you first deploy an app, the Deploy recipes download the code and related files
to the app server instances, which then run the local copy. If you modify the app in the repository
or change any other settings, you must deploy the app to install the updates on your app server
instances, as follows. AWS OpsWorks Stacks automatically deploys the current app version to new
instances when they are started. For existing instances, however, the situation is different:

• AWS OpsWorks Stacks automatically deploys the current app version to new instances when they
are started.

• AWS OpsWorks Stacks automatically deploys the latest app version to offline instances, including
load-based and time-based instances, when they are restarted.

• You must manually deploy the updated app to online instances.

For more information on how to deploy apps, see Deploying Apps

Connecting an Application to a Database Server

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Connecting to a Database API Version 2013-02-18 645

AWS OpsWorks User Guide

You can associate an Amazon RDS database server with an app when you create the app or later by
editing the app. Your application can then use the database connection information—user name,
password, ...—to connect to the database server. When you deploy an app, AWS OpsWorks Stacks
provides this information to applications in two ways:

• For Linux stacks, AWS OpsWorks Stacks creates a file on each of the built-in application server
instances containing the connection data that the application can use to connect to the database
server.

• AWS OpsWorks Stacks includes the connection information in the stack configuration and
deployment attributes that are installed on each instance.

You can implement a custom recipe to extract the connection information from these attributes
and put it in a file in your preferred format. For more information, see Passing Data to
Applications.

Important

For Linux stacks, if you want to associate an Amazon RDS service layer with your app, you
must add the appropriate driver package to the associated app server layer, as follows:

1. Click Layers in the navigation pane and open the app server's Recipes tab.

2. Click Edit and add the appropriate driver package to OS Packages. For example, you
should specify mysql if the layer contains Amazon Linux instances and mysql-client
if the layer contains Ubuntu instances.

3. Save the changes and redeploy the app.

Using a Custom Recipe

You can implement a custom recipe that extracts the connection data from the app's deploy
attributes and saves it in a form that the application can read, such as a YAML file.

You attach a database server to an app when you create the app or later by editing the app. When
you deploy the app, AWS OpsWorks Stacks installs a stack configuration and deployment attributes
on each instance that include the database connection information. Your app can then retrieve the
appropriate attributes. The details depend on whether you are using a Linux or Windows stack.

Connecting to a Database API Version 2013-02-18 646

AWS OpsWorks User Guide

Connecting to a Database Server for a Linux Stack

For Linux stacks, the stack configuration and deployment attributes' deploy namespace includes
an attribute for each deployed app, named with the app's short name. When you attach a database
server to an app, AWS OpsWorks Stacks populates the app's [:database] attribute with the
connection information, and installs it on the stack's instances for each subsequent deployment.
The attribute values are either user-provided or generated by AWS OpsWorks Stacks.

Note

AWS OpsWorks Stacks allows you to attach a database server to multiple apps, but each
app can have only one attached database server. If you want to connect an application
to more than one database server, attach one of the servers to the app, and use the
information in the app's deploy attributes to connect to that server. Use custom JSON to
pass the connection information for the other database servers to the application. For more
information, see Passing Data to Applications.

An application can use the connection information from the instance's deploy attributes to
connect to a database. However, applications cannot access that information directly—only recipes
can access the deploy attributes. You can address this issue by implementing a custom recipe that
extracts the connection information from the deploy attributes and puts it in a file that can be
read by the application.

Using Environment Variables

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using Environment Variables API Version 2013-02-18 647

AWS OpsWorks User Guide

Note

The recommendations in this topic apply to Chef 11.10 and earlier versions of Chef. To
get environment variables in Chef 12 and newer releases, you must use the App Data
Bag. For more information, see AWS OpsWorks Data Bag Reference and App Data Bag
(aws_opsworks_app).

When you specify environment variables for an app, AWS OpsWorks Stacks adds the variable
definitions to the app's deploy attributes.

Custom layers can use a recipe to retrieve a variable's value by using standard node syntax, and
store it in a form that is accessible to the layer's apps.

You must implement a custom recipe that obtains the environment variable values from the
instance's deploy attributes. The recipe can then store the data on the instance in a form that can
be accessed by the application, such as a YAML file. An app's environment variable definitions are
stored in the deploy attributes, in the app's environment_variables. The following example
shows the location of these attributes for an app named simplephpapp, using JSON to represent
the attribute structure.

{
 ...
 "ssh_users": {
 },
 "deploy": {
 "simplephpapp": {
 "application": "simplephpapp",
 "application_type": "php",
 "environment_variables": {
 "USER_ID": "168424",
 "USER_KEY": "somepassword"
 },
 ...
 }
}

A recipe can obtain variable values by using standard node syntax. The following example shows
how to obtain the USER_ID value from the preceding JSON and place it in the Chef log.

Using Environment Variables API Version 2013-02-18 648

http://docs.aws.amazon.com/opsworks/latest/userguide/data-bags.html
http://docs.aws.amazon.com/opsworks/latest/userguide/data-bag-json-app.html
http://docs.aws.amazon.com/opsworks/latest/userguide/data-bag-json-app.html

AWS OpsWorks User Guide

Chef::Log.info("USER_ID: #{node[:deploy]['simplephpapp'][:environment_variables]
[:USER_ID]}")

For a more detailed description of how to retrieve information from the stack configuration and
deployment JSON and store it on the instance, see Passing Data to Applications.

Passing Data to Applications

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

It is often useful to pass data such as key-value pairs to an application on the server. To do so, use
custom JSON to add the data to the stack. AWS OpsWorks Stacks adds the data to each instance's
node object for each lifecycle event.

Note, however, that although recipes can get the custom JSON data from the node object by using
Chef attributes, applications cannot. One approach to getting custom JSON data to one or more
applications is to implement a custom recipe that extracts the data from the node object and
writes it to a file that the application can read. The example in this topic shows how to write the
data to a YAML file, but you can use the same basic approach for other formats, such as JSON or
XML.

To pass key-value data to the stack's instances, add custom JSON like the following to the stack.
For more information about how to add custom JSON to a stack, see Using Custom JSON.

{
 "my_app_data": {
 "app1": {
 "key1": "value1",
 "key2": "value2",

Passing Data to Applications API Version 2013-02-18 649

AWS OpsWorks User Guide

 "key3": "value3"
 },
 "app2": {
 "key1": "value1",
 "key2": "value2",
 "key3": "value3"
 }
 }
}

The example assumes that you have two apps whose short names are app1 and app2, each of
which has three data values. The accompanying recipe assumes that you use the apps' short names
to identify the associated data; the other names are arbitrary. For more information on app short
names, see Settings.

The recipe in the following example shows how to extract the data for each app from the deploy
attributes and put it in a .yml file. The recipe assumes that your custom JSON contains data for
each app.

node[:deploy].each do |app, deploy|
 file File.join(deploy[:deploy_to], 'shared', 'config', 'app_data.yml') do
 content YAML.dump(node[:my_app_data][app].to_hash)
 end
end

The deploy attributes contain an attribute for each app, named with the app's short name.
Each app attribute contains a set of attributes that represent a variety of information about the
app. This example uses the app's deployment directory, which is represented by the [:deploy]
[:app_short_name][:deploy_to] attribute. For more information on [:deploy], see deploy
Attributes.

For each app in deploy, the recipe does the following:

1. Creates a file named app_data.yml in the shared/config subdirectory of the application's
[:deploy_to]directory.

For more information on how AWS OpsWorks Stacks installs apps, see Deploy Recipes.

2. Converts the app's custom JSON values to YAML and writes the formatted data to
app_data.yml.

Passing Data to Applications API Version 2013-02-18 650

AWS OpsWorks User Guide

To pass data to an app

1. Add an app to the stack and note its short name. For more information, see Adding Apps.

2. Add custom JSON with the app's data to the deploy attributes, as described earlier. For more
information on how to add custom JSON to a stack, see Using Custom JSON.

3. Create a cookbook and add a recipe to it with code based on the previous example, modified
as needed for the attribute names that you used in the custom JSON. For more information on
how to create cookbooks and recipes, see Cookbooks and Recipes. If you already have custom
cookbooks for this stack, you could also add the recipe to an existing cookbook, or even add
the code to an existing Deploy recipe.

4. Install the cookbook on your stack. For more information, see Installing Custom Cookbooks.

5. Assign the recipe to the app server layer's Deploy lifecycle event. AWS OpsWorks Stacks will
then run the recipe on each new instance, after it has booted. For more information, see
Executing Recipes.

6. Deploy the app, which also installs stack configuration and deployment attributes that now
contain your data.

Note

If the data files must be in place before the app is deployed, you can also assign the recipe
to the layer's Setup lifecycle event, which occurs once, right after the instance finishes
booting. However, AWS OpsWorks Stacks will not have created the deployment directories
yet, so your recipe should create the required directories explicitly prior to creating the data
file. The following example explicitly creates the app's /shared/config directory, and
then creates a data file in that directory.

node[:deploy].each do |app, deploy|

 directory "#{deploy[:deploy_to]}/shared/config" do
 owner "deploy"
 group "www-data"
 mode 0774
 recursive true
 action :create
 end

Passing Data to Applications API Version 2013-02-18 651

AWS OpsWorks User Guide

 file File.join(deploy[:deploy_to], 'shared', 'config', 'app_data.yml') do
 content YAML.dump(node[:my_app_data][app].to_hash)
 end
end

To load the data, you can use something like the following Sinatra code:

#!/usr/bin/env ruby
encoding: UTF-8
require 'sinatra'
require 'yaml'

get '/' do
 YAML.load(File.read(File.join('..', '..', 'shared', 'config', 'app_data.yml')))
End

You can update the app's data values at any time by updating the custom JSON, as follows.

To update the app data

1. Edit the custom JSON to update the data values.

2. Deploy the app again, which directs AWS OpsWorks Stacks to run the Deploy recipes on the
stack's instances. The recipes will use attributes from the updated stack configuration and
deployment attributes, so your custom recipe will update the data files with the current values.

Using Git Repository SSH Keys

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using Git Repository SSH Keys API Version 2013-02-18 652

http://www.sinatrarb.com/

AWS OpsWorks User Guide

A Git repository SSH key, sometimes called a deploy SSH key, is an SSH key with no password that
provides access to a private Git repository. Ideally, it doesn't belong to any specific developer. Its
purpose is to allow AWS OpsWorks Stacks to asynchronously deploy apps or cookbooks from a Git
repository without requiring any further input from you.

The following describes the basic procedure for creating a repository SSH key. For details, see the
documentation for your repository. For example, Managing deploy keys describes how to create a
repository SSH key for a GitHub repository, and Deployment Keys on Bitbucket describes how to
create a repository SSH key for a Bitbucket repository. Note that some documentation describes
creating a key on a server. For AWS OpsWorks Stacks, just replace "server" with "workstation" in the
instructions.

To create a repository SSH key

1. Create a deploy SSH key pair for your Git repository on your workstation using a program such
as ssh-keygen.

Important

AWS OpsWorks Stacks does not support SSH key passphrases.

2. Assign the public key to the repository and store the private key on your workstation.

3. Enter the private key in the Repository SSH Key box when you add an app or specify cookbook
repository. For more information, see Adding Apps.

AWS OpsWorks Stacks passes the repository SSH key to each instance, and the built-in recipes then
use the key to connect to the repository and download the code. The key is stored in the deploy
attributes as node[:deploy]['appshortname'][:scm][:ssh_key], and is accessible only to
the root user.

Using Custom Domains

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Using Custom Domains API Version 2013-02-18 653

https://help.github.com/articles/managing-deploy-keys
http://blog.bitbucket.org/2012/06/20/deployment-keys/

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If you host a domain name with a third party, you can map that domain name to an app. The basic
procedure is as follows:

1. Create a subdomain with your DNS registrar and map it to your load balancer's Elastic IP address
or your app server's public IP address.

2. Update your app's configuration to point to the subdomain and redeploy the app.

Note

Make sure you forward your unqualified domain name (such as myapp1.example.com) to
your qualified domain name (such as www.myapp1.example.com) so that both map to your
app.

When you configure a domain for an app, it is listed as a server alias in the server's configuration
file. If you are using a load balancer, the load balancer checks the domain name in the URL as
requests come in and redirects the traffic based on the domain.

To map a subdomain to an IP address

1. If you are using a load balancer, on the Instances page, click the load balancer instance to
open its details page and get the instance's Elastic IP address. Otherwise, get the public IP
address from the application server instance's details page.

2. Follow the directions provided by your DNS registrar to create and map your subdomain to the
IP address from Step 1.

Note

If the load balancer instance terminates at some point, you are assigned a new Elastic
IP address. You need to update your DNS registrar settings to map to the new Elastic IP
address.

Using Custom Domains API Version 2013-02-18 654

AWS OpsWorks User Guide

AWS OpsWorks Stacks simply adds the domain settings to the app's deploy attributes. You must
implement a custom recipe to retrieve the information from the node object and configure the
server appropriately. For more information, see Cookbooks and Recipes.

Running Multiple Applications on the Same Application Server

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

The information in this topic does not apply to Node.js apps.

If you have multiple applications of the same type, it is sometimes more cost-effective to run them
on the same application server instances.

To run multiple applications on the same server

1. Add an app to the stack for each application.

2. Obtain a separate subdomain for each app and map the subdomains to the application server's
or load balancer's IP address.

3. Edit each app's configuration to specify the appropriate subdomain.

For more information on how to perform these tasks, see Using Custom Domains.

Note

If your application servers are running multiple HTTP applications, you can use Elastic Load
Balancing for load-balancing. For multiple HTTPS applications, you must either terminate
the SSL connection at the load balancer or create a separate stack for each application.

Using Custom Domains API Version 2013-02-18 655

AWS OpsWorks User Guide

HTTPS requests are encrypted, which means that if you terminate the SSL connection
at the servers, the load balancer cannot check the domain name to determine which
application should handle the request.

Using SSL

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To use SSL with your application, you must first obtain a digital server certificate from a Certificate
Authority (CA). For simplicity, this walkthrough creates a certificate and then self-signs it. Self-
signed certificates are useful for learning and testing purposes, but you should always use a
certificate signed by a CA for production stacks.

In this walkthrough, you'll do the following:

1. Install and configure OpenSSL.

2. Create a private key.

3. Create a certificate signing request.

4. Generate a self-signed certificate.

5. Edit the application with your certificate information.

Important

If your application uses SSL, we recommend that you disable SSLv3, if possible, in your
application server layers to address the vulnerabilities described in CVE-2014-3566. If your
stack includes a Ganglia layer, you should disable SSL v3 for that layer too. The details
depend on the particular layer; for more information, see the following.

Using SSL API Version 2013-02-18 656

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-3566

AWS OpsWorks User Guide

• Java App Server AWS OpsWorks Stacks Layer

• Node.js App Server AWS OpsWorks Stacks Layer

• PHP App Server AWS OpsWorks Stacks Layer

• Rails App Server AWS OpsWorks Stacks Layer

• Static Web Server AWS OpsWorks Stacks Layer

• Ganglia Layer

Topics

• Step 1: Install and Configure OpenSSL

• Step 2: Create a Private Key

• Step 3: Create a Certificate Signing Request

• Step 4: Submit the CSR to Certificate Authority

• Step 5: Edit the App

Step 1: Install and Configure OpenSSL

Creating and uploading server certificates requires a tool that supports the SSL and TLS protocols.
OpenSSL is an open-source tool that provides the basic cryptographic functions necessary to create
an RSA token and sign it with your private key.

The following procedure assumes that your computer does not already have OpenSSL installed.

To install OpenSSL on Linux and Unix

1. Go to OpenSSL: Source, Tarballs.

2. Download the latest source.

3. Build the package.

To install OpenSSL on Windows

1. If the Microsoft Visual C++ 2008 Redistributable Package is not already installed on your
system, download the package.

Using SSL API Version 2013-02-18 657

https://www.openssl.org/source/
https://www.microsoft.com/en-us/download/details.aspx?id=11895

AWS OpsWorks User Guide

2. Run the installer and follow the instructions provided by the Microsoft Visual C++ 2008
Redistributable Setup Wizard to install the redistributable.

3. Go to OpenSSL: Binary Distributions, click the appropriate version of the OpenSSL binaries for
your environment, and save the installer locally.

4. Run the installer and follow the instructions in the OpenSSL Setup Wizard to install the
binaries.

Create an environment variable that points to the OpenSSL install point by opening a terminal or
command window and using the following command lines.

• On Linux and Unix

export OpenSSL_HOME=path_to_your_OpenSSL_installation

• On Windows

set OpenSSL_HOME=path_to_your_OpenSSL_installation

Add the OpenSSL binaries' path to your computer's path variable by opening a terminal or
command window and using the following command lines.

• On Linux and Unix

export PATH=$PATH:$OpenSSL_HOME/bin

• On Windows

set Path=OpenSSL_HOME\bin;%Path%

Note

Any changes you make to the environment variables by using these command lines are
valid only for the current command-line session.

Using SSL API Version 2013-02-18 658

https://www.openssl.org/community/binaries.html

AWS OpsWorks User Guide

Step 2: Create a Private Key

You need a unique private key to create your Certificate Signing Request (CSR). Create the key by
using the following command line:

openssl genrsa 2048 > privatekey.pem

Step 3: Create a Certificate Signing Request

A Certificate Signing Request (CSR) is a file sent to a Certificate Authority (CA) to apply for a digital
server certificate. Create the CSR by using the following command line.

openssl req -new -key privatekey.pem -out csr.pem

The command's output will look similar to the following:

You are about to be asked to enter information that will be incorporated
 into your certificate request.
 What you are about to enter is what is called a Distinguished Name or a DN.
 There are quite a few fields but you can leave some blank
 For some fields there will be a default value,
 If you enter '.', the field will be left blank.

The following table can help you create your certificate request.

Certificate Request Data

Name Description Example

Country Name The two-letter ISO abbreviat
ion for your country.

US = United States

State or Province The name of the state
or province where your
organization is located. This
name cannot be abbreviated.

Washington

Locality Name The name of the city where
your organization is located.

Seattle

Using SSL API Version 2013-02-18 659

AWS OpsWorks User Guide

Name Description Example

Organization Name The full legal name of
your organization. Do not
abbreviate your organization
name.

CorporationX

Organizational Unit (Optional) For additional
organization information.

Marketing

Common Name The fully qualified domain
name for your CNAME. You
will receive a certificate name
check warning if this is not an
exact match.

www.example.com

Email address The server administrator's
email address

someone@example.com

Note

The Common Name field is often misunderstood and is completed incorrectly. The common
name is typically your host plus domain name. It will look like "www.example.com" or
"example.com". You need to create a CSR using your correct common name.

Step 4: Submit the CSR to Certificate Authority

For production use, you would obtain a server certificate by submitting your CSR to a Certificate
Authority (CA), which might require other credentials or proofs of identity. If your application
is successful, the CA returns digitally signed identity certificate and possibly a certificate chain
file. AWS does not recommend a specific CA. For a partial listing of available CAs, see Certificate
Authority - Providers on Wikipedia.

You can also generate a self-signed certificate, which can be used for testing purposes only. For this
example, use the following command line to generate a self-signed certificate.

Using SSL API Version 2013-02-18 660

https://en.wikipedia.org/wiki/Certificate_authority#Providers
https://en.wikipedia.org/wiki/Certificate_authority#Providers

AWS OpsWorks User Guide

openssl x509 -req -days 365 -in csr.pem -signkey privatekey.pem -out server.crt

The output will look similar to the following:

Loading 'screen' into random state - done
Signature ok
subject=/C=us/ST=washington/L=seattle/O=corporationx/OU=marketing/CN=example.com/
emailAddress=someone@example.com
Getting Private key

Step 5: Edit the App

After you generate your certificate and sign it, update your app to enable SSL and provide your
certificate information. On the Apps page, choose an app to open the details page, and then click
Edit App. To enable SSL support, set Enable SSL to Yes, which displays the following configuration
options.

SSL Certificate

Paste the contents of the public key certificate (.crt) file into the box. The certificate should look
something like the following:

-----BEGIN CERTIFICATE-----
MIICuTCCAiICCQCtqFKItVQJpzANBgkqhkiG9w0BAQUFADCBoDELMAkGA1UEBhMC
dXMxEzARBgNVBAgMCndhc2hpbmd0b24xEDAOBgNVBAcMB3NlYXR0bGUxDzANBgNV
BAoMBmFtYXpvbjEWMBQGA1UECwwNRGV2IGFuZCBUb29sczEdMBsGA1UEAwwUc3Rl
cGhhbmllYXBpZXJjZS5jb20xIjAgBgkqhkiG9w0BCQEWE3NhcGllcmNlQGFtYXpv
...
-----END CERTIFICATE-----

Note

If you are using Nginx and you have a certificate chain file, you should append the
contents to the public key certificate file.

If you are updating an existing certificate, do the following:

• Choose Update SSL certificate to update the certificate.

Using SSL API Version 2013-02-18 661

AWS OpsWorks User Guide

• If the new certificate does not match the existing private key, choose Update SSL certificate
key.

• If the new certificate does not match the existing certificate chain, choose Update SSL
certificates.

SSL Certificate Key

Paste the contents of the private key file (.pem file) into the box. It should look something like
the following:

----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC0CYklJY5r4vV2NHQYEpwtsLuMMBhylMrgBShKq+HHVLYQQCL6
+wGIiRq5qXqZlRXje3GM5Jvcm6q0R71MfRIl1FuzKyqDtneZaAIEYniZibHiUnmO
/UNqpFDosw/6hY3ONk0fSBlU4ivD0Gjpf6J80jL3DJ4R23Ed0sdL4pRT3QIDAQAB
AoGBAKmMfWrNRqYVtGKgnWB6Tji9QrKQLMXjmHeGg95mppdJELiXHhpMvrHtpIyK
...
-----END RSA PRIVATE KEY-----

SSL certificates of Certification Authorities

If you have a certificate chain file, paste the contents into the box.

Note

If you are using Nginx, you should leave this box empty. If you have a certificate chain
file, append it to the public key certificate file in SSL Certificate.

Using SSL API Version 2013-02-18 662

AWS OpsWorks User Guide

After you click Save, redeploy the application to update your online instances.

For the built-in application server layers, AWS OpsWorks Stacks automatically updates the server
configuration. After deployment is finished, you can verify that your OpenSSL installation worked,
as follows.

To verify an OpenSSL installation

1. Go to the Instances page.

2. Run the app by clicking the application server instance's IP address or, if you are using a load
balancer, the load balancer's IP address.

3. Change the IP address prefix from http:// to https:// and refresh the browser to verify the
page loads correctly with SSL.

Using SSL API Version 2013-02-18 663

AWS OpsWorks User Guide

If your app does not run as expected, or the webpage does not work as expected, see the "Using
the OpenSSL application" section of the OpenSSL FAQ for troubleshooting information. Users
who have configured apps to run in Mozilla Firefox sometimes get the following certificate error:
SEC_ERROR_UNKNOWN_ISSUER. This error can be caused by certificate-replacement functionality
in your organization's antivirus and antimalware programs, by some types of network traffic
monitoring and filtering software, or by malware. For more information about how to troubleshoot
this error, see How to troubleshoot security error codes on secure websites on the Mozilla Firefox
Support website.

For all other layers, including custom layers, AWS OpsWorks Stacks simply adds the SSL settings to
the app's deploy attributes. You must implement a custom recipe to retrieve the information from
the node object and configure the server appropriately.

Cookbooks and Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks uses Chef cookbooks to handle tasks such as installing and configuring
packages and deploying apps. This section describes how to use cookbooks with AWS OpsWorks
Stacks. For more information, see Chef.

Note

AWS OpsWorks Stacks currently supports Chef versions 12, 11.10.4, 11.4.4, and 0.9.15.5.
However, Chef 0.9.15.5 is deprecated and we do not recommend that you use it for new
stacks. For convenience, they are usually referred to by just their major and minor version
numbers. Stacks running Chef 0.9 or 11.4 use Chef Solo and stacks running Chef 12 or
11.10 use Chef Client in local mode. For Linux stacks, you can use the Configuration
Manager to specify which Chef version to use when you create a stack. Windows stacks

Cookbooks and Recipes API Version 2013-02-18 664

https://www.openssl.org/docs/faq.html#USER
https://support.mozilla.org/en-US/kb/error-codes-secure-websites?redirectlocale=en-US&redirectslug=troubleshoot-SEC_ERROR_UNKNOWN_ISSUER#w_monitoringfiltering-in-corporate-networks
http://www.opscode.com/
https://docs.chef.io/chef_solo.html
http://www.getchef.com/blog/2013/10/31/chef-client-z-from-zero-to-chef-in-8-5-seconds/

AWS OpsWorks User Guide

must use Chef 12.2. For more information, including guidelines for migrating stacks to
more recent Chef versions, see Chef Versions.

Topics

• Cookbook Repositories

• Chef Versions

• Ruby Versions

• Installing Custom Cookbooks

• Updating Custom Cookbooks

• Executing Recipes

Cookbook Repositories

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Your custom cookbooks must be stored in an online repository, either an archive such as a .zip file
or a source control manager such as Git. A stack can have only one custom cookbook repository,
but the repository can contain any number of cookbooks. When you install or update the
cookbooks, AWS OpsWorks Stacks installs the entire repository in a local cache on each of the
stack's instances. When an instance needs, for example, to run one or more recipes, it uses the code
from the local cache.

The following describes how to structure your cookbook repository, which depends on the type.
The italicized text in the illustrations represents user-defined directory and file names, including
the repository or archive name.

Cookbook Repositories API Version 2013-02-18 665

AWS OpsWorks User Guide

Source Control Manager

AWS OpsWorks Stacks supports the following source control managers:

• Linux stacks – Git and Subversion

• Windows stacks – Git

The following shows the required directory and file structure:

• The cookbook directories must all be at the top-level.

Archive

AWS OpsWorks Stacks supports the following archives:

• Linux stacks – zip, gzip, bzip2, or tarball files, stored on Amazon S3 or a web site (HTTP
archive).

AWS OpsWorks Stacks does not support uncompressed tarballs.

• Windows stacks – zip and tgz (gzip compressed tar) files, stored on Amazon S3.

The following shows the required directory and file structure, which depends on whether
you are running a Linux or Windows stack. The cookbook structure is the same as for SCM
repositories, so it is represented by an ellipsis (...).

Cookbook Repositories API Version 2013-02-18 666

AWS OpsWorks User Guide

• Linux stacks – The cookbook directories must be contained in a root directory.

• Windows stacks – The cookbooks must be at the archive's top level.

If you have only one cookbook, you can optionally omit the cookbook directory and put the
cookbook files at the top level. In that case, AWS OpsWorks Stacks obtains the cookbook
name from metadata.rb.

Each cookbook directory has least one and typically all of the following standard directories and
files, which must use standard names:

• attributes – The cookbook's attributes files.

• recipes – The cookbook's recipe files.

• templates – The cookbook's template files.

• other – Optional user-defined directories that contain other file types, such as definitions or
specs.

• metadata.rb – The cookbook's metadata.

For Chef 11.10 and later, if your recipes depend on other cookbooks, you must include
corresponding depends statements in your cookbook's metadata.rb file. For
example, if your cookbook includes a recipe with a statement such as include_recipe
anothercookbook::somerecipe, your cookbook's metadata.rb file must include the
following line: depends "anothercookbook". For more information, see About Cookbook
Metadata.

Cookbook Repositories API Version 2013-02-18 667

http://docs.chef.io/cookbook_repo.html#about-cookbook-metadata
http://docs.chef.io/cookbook_repo.html#about-cookbook-metadata

AWS OpsWorks User Guide

Templates must be in a subdirectory of the templates directory, which contains at least one and
optionally multiple subdirectories. Those subdirectories can optionally have subdirectories as well.

• Templates usually have a default subdirectory, which contains the template files that Chef uses
by default.

• other represents optional subdirectories that can be used for operating system-specific
templates.

• Chef automatically uses the template from the appropriate subdirectory, based on naming
conventions that are described in File Specificity. For example, for the Amazon Linux and Ubuntu
operating systems, you can put operating system-specific templates in subdirectories named
amazon or ubuntu, respectively.

The details of how you handle custom cookbooks depend on your preferred repository type.

To use an archive

1. Implement your cookbooks by using the folder structure shown in the preceding section.

2. Create a compressed archive and upload it to an Amazon S3 bucket or a website.

If you update your cookbooks, you must create and upload a new archive file. Content
delivered to Amazon S3 buckets might contain customer content. For more information about
removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3 Bucket?.

To use an SCM

1. Set up a Git or Subversion repository using the structure shown earlier.

2. Optionally, use the repository's version control features to implement multiple branches or
versions.

If you update your cookbooks, you can do so in a new branch and just direct OpsWorks to use
the new version. You can also specify particular tagged versions. For details, see Specifying a
Custom Cookbook Repository.

Installing Custom Cookbooks describes how to have AWS OpsWorks Stacks install your cookbook
repository on the stack's instances.

Cookbook Repositories API Version 2013-02-18 668

http://docs.chef.io/templates.html#file-specificity
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

Important

After you update existing cookbooks in the repository, you must run the
update_cookbooks stack command to direct AWS OpsWorks Stacks to update each
online instance's local cache. For more information, see Run Stack Commands.

Chef Versions

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks supports multiple versions of Chef. You select the version when you create
the stack. AWS OpsWorks Stacks then installs that version of Chef on all of the stack's instances
along with a set of built-in recipes that are compatible with that version. If you install any custom
recipes, they must be compatible with the stack's Chef version.

AWS OpsWorks Stacks currently supports Chef versions 12, 11.10, 11.4 and 0.9 for Linux stacks,
and Chef 12.2 (currently Chef 12.22) for Windows stacks. For convenience, they are usually referred
to by just their major and minor version numbers. For Linux stacks, you can use the Configuration
Manager to specify which Chef version to use when you create a stack. Windows stacks must use
Chef 12.2. For more information, including guidelines for migrating stacks to more recent Chef
versions, see Chef Versions. For complete version information, see AWS OpsWorks Stacks operating
systems.

Chef 12.2

Chef 12.2 support was introduced in May 2015, and is used only by Windows stacks. The current
version of Chef on Windows stacks is Chef 12.22. It runs with Ruby 2.3.6, and uses chef-client
in local mode, which launches a local in-memory Chef server called chef-zero. The presence of
this server enables recipes to use Chef search and data bags. The support has some limitations,

Chef Versions API Version 2013-02-18 669

https://docs.chef.io/ctl_chef_client.html#run-in-local-mode
https://docs.chef.io/ctl_chef_client.html#run-in-local-mode
https://docs.chef.io/ctl_chef_client.html#about-chef-zero

AWS OpsWorks User Guide

which are described in Implementing Recipes: Chef 12.2, but you can run many community
cookbooks without modification.

Chef 12

Chef 12 support was introduced in December 2015, and is used only by Linux stacks. It runs
with Ruby 2.1.6 or 2.2.3 and uses chef-client in local mode, which enables recipes to use Chef
search and data bags. For more information, see AWS OpsWorks Stacks operating systems.

Chef 11.10

Chef 11.10 support was introduced in March 2014, and is used only by Linux stacks. It runs with
Ruby 2.0.0 and uses chef-client in local mode, which enables recipes to use Chef search and
data bags. The support has some limitations, which are described in Implementing Recipes:
Chef 11.10, but you can run many community cookbooks without modification. You can also
use Berkshelf to manage your cookbook dependencies. The supported Berkshelf versions
depend on the operating system. For more information, see AWS OpsWorks Stacks operating
systems. You cannot create CentOS stacks that use Chef 11.10.

Chef 11.4

Chef 11.4 support was introduced in July 2013, and is used only by Linux stacks. It runs with
Ruby 1.8.7 and uses chef-solo, which does not support Chef search or data bags. You can often
use community cookbooks that depend on those features with AWS OpsWorks Stacks, but you
must modify them as described in Migrating to a new Chef Version. You cannot create CentOS
stacks that use Chef 11.4. Chef 11.4 stacks are not supported in regional endpoints outside the
US East (N. Virginia) Region.

Chef 0.9

Chef 0.9 is used only by Linux stacks and is no longer supported. Note these details:

• You cannot use the console to create a new Chef 0.9 stack.

You must use the CLI or API, or you must create a stack with a different Chef version and then
edit the stack configuration.

• New AWS OpsWorks Stacks features are not available for Chef 0.9 stacks.

• New operating system versions will provide only limited support for Chef 0.9 stacks.

In particular, Amazon Linux 2014.09 and later versions do not support Chef 0.9 stacks with
Rails App Server layers that depend on Ruby 1.8.7.

• New AWS regions, including Europe (Frankfurt), do not support Chef 0.9 stacks.

Chef Versions API Version 2013-02-18 670

https://docs.chef.io/ctl_chef_client.html#run-in-local-mode
https://docs.chef.io/ctl_chef_client.html#run-in-local-mode
http://berkshelf.com/
https://docs.chef.io/chef_solo.html

AWS OpsWorks User Guide

Note

We do not recommend using Chef 0.9 for new stacks. You should migrate any existing
stacks to the latest Chef version as soon as possible.

If you want to use community cookbooks with AWS OpsWorks Stacks, we recommend that you
specify Chef 12 for new Linux stacks and migrate your existing Linux stacks to Chef 12. You can
use the AWS OpsWorks Stacks console, API, or CLI to migrate your existing stacks to a newer Chef
version. For more information, see Migrating to a new Chef Version.

Topics

• Implementing Recipes for Chef 12.2 Stacks

• Implementing Recipes for Chef 12 Stacks

• Implementing Recipes for Chef 11.10 Stacks

• Implementing Recipes for Chef 11.4 Stacks

• Migrating an Existing Linux Stack to a new Chef Version

Implementing Recipes for Chef 12.2 Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 12.2 (currently Chef 12.22) is available only on Windows stacks, which must run that Chef
version.

• Recipes must use Windows-specific attributes and resources for some purposes.

For more information, see Chef for Microsoft Windows.

Chef Versions API Version 2013-02-18 671

https://docs.chef.io/windows.html

AWS OpsWorks User Guide

• Chef runs use Ruby 2.3.6, so your recipes can use the new Ruby syntax.

• Recipes can use Chef search and data bags.

Chef 12.2 stacks can use many community cookbooks without modification. For more
information, see Using Chef Search and Using Data Bags.

• Most of the stack configuration and deployment attributes described in AWS OpsWorks Stacks
Data Bag Reference and Built-in Cookbook Attributes are available to Windows recipes.

You can use Chef search to obtain these attribute values. For an example, see Obtaining
Attribute Values with Chef Search. For a list of attributes, see AWS OpsWorks Stacks Data Bag
Reference.

Implementing Recipes for Chef 12 Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 12 stacks provide the following advantages over Chef 11.10 stacks:

• Chef runs use Ruby 2.1.6, so your recipes can use the new Ruby syntax.

• Chef 12 stacks can use even more community cookbooks without modification. Without any
built-in cookbooks in the way, there will no longer be any chance of name conflicts between
built-in cookbooks and custom cookbooks.

• You are no longer limited to the Berkshelf versions that AWS OpsWorks Stacks has provided pre-
built packages for. Berkshelf is no longer installed on AWS OpsWorks Stacks instances in Chef 12.
Instead, you can use any Berkshelf version on your local workstation.

• There is now a clear separation between the built-in cookbooks that AWS OpsWorks Stacks
provides with Chef 12 (Elastic Load Balancing, Amazon RDS, and Amazon ECS) and custom
cookbooks. This makes troubleshooting failed Chef runs easier.

Chef Versions API Version 2013-02-18 672

AWS OpsWorks User Guide

Implementing Recipes for Chef 11.10 Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 stacks provide the following advantages over Chef 11.4 stacks:

• Chef runs use Ruby 2.0.0, so your recipes can use the new Ruby syntax.

• Recipes can use Chef search and data bags.

Chef 11.10 stacks can use many community cookbooks without modification.

• You can use Berkshelf to manage cookbooks.

Berkshelf provides a much more flexible way to manage your custom cookbooks and to use
community cookbooks in a stack.

• Cookbooks must declare dependencies in metadata.rb.

If your cookbook depends on another cookbook, you must include that dependency in your
cookbook's metadata.rb file. For example, if your cookbook includes a recipe with a statement
such as include_recipe anothercookbook::somerecipe, your cookbook's metadata.rb
file must include the following line: depends "anothercookbook".

• AWS OpsWorks Stacks installs a MySQL client on a stack's instances only if the stack includes a
MySQL layer.

• AWS OpsWorks Stacks installs a Ganglia client on a stack's instances only if the stack includes a
Ganglia layer.

• If a deployment runs bundle install and the install fails, the deployment also fails.

Chef Versions API Version 2013-02-18 673

AWS OpsWorks User Guide

Important

Do not reuse built-in cookbook names for custom or community cookbooks. Custom
cookbooks that have the same name as built-in cookbooks might fail. For a complete list
of built-in cookbooks that are available with Chef 11.10, 11.4, and 0.9 stacks, see the
opsworks-cookbooks repository on GitHub.
Cookbooks with non-ASCII characters that run successfully on Chef 0.9 and 11.4 stacks
might fail on a Chef 11.10 stack. The reason is that Chef 11.10 stacks use Ruby 2.0.0 for
Chef runs, which is much stricter about encoding than Ruby 1.8.7. To ensure that such
cookbooks run successfully on Chef 11.10 stacks, each file that uses non-ASCII characters
should have a comment at the top that provides a hint about the encoding. For example,
for UTF-8 encoding, the comment would be # encoding: UTF-8. For more information
on Ruby 2.0.0 encoding, see Encoding.

Topics

• Cookbook Installation and Precedence

• Using Chef Search

• Using Data Bags

• Using Berkshelf

Cookbook Installation and Precedence

The procedure for installing AWS OpsWorks Stacks cookbooks works somewhat differently for
Chef 11.10 stacks than for earlier Chef versions. For Chef 11.10 stacks, after AWS OpsWorks Stacks
installs the built-in, custom, and Berkshelf cookbooks, it merges them to a common directory in
the following order:

1. Built-in cookbooks.

2. Berkshelf cookbooks, if any.

3. Custom cookbooks, if any.

When AWS OpsWorks Stacks performs this merge, it copies the entire contents of the directories,
including recipes. If there are any duplicates, the following rules apply:

• The contents of Berkshelf cookbooks take precedence over the built-in cookbooks.

Chef Versions API Version 2013-02-18 674

https://github.com/aws/opsworks-cookbooks
http://www.ruby-doc.org/core-2.0.0/Encoding.html

AWS OpsWorks User Guide

• The contents of custom cookbooks take precedence over the Berkshelf cookbooks.

To illustrate how this process works, consider the following scenario, where all three cookbook
directories include a cookbook named mycookbook:

• Built-in cookbooks – mycookbook includes an attributes file named someattributes.rb, a
template file named sometemplate.erb, and a recipe named somerecipe.rb.

• Berkshelf cookbooks – mycookbook includes sometemplate.erb and somerecipe.rb.

• Custom cookbooks – mycookbook includes somerecipe.rb.

The merged cookbook contains the following:

• someattributes.rb from the built-in cookbook.

• sometemplate.erb from the Berkshelf cookbook.

• somerecipe.rb from the custom cookbook.

Important

You should not customize your Chef 11.10 stack by copying an entire built-in cookbook to
your repository and then modifying parts of the cookbook. Doing so overrides the entire
built-in cookbook, including recipes. If AWS OpsWorks Stacks updates that cookbook, your
stack will not get the benefit of those updates unless you manually update your private
copy. For more information on how to customize stacks, see Customizing AWS OpsWorks
Stacks.

Using Chef Search

You can use the Chef search Method in your recipes to query for stack data. You use the same
syntax as you would for Chef server, but AWS OpsWorks Stacks obtains the data from the local
node object instead of querying a Chef server. This data includes:

• The instance's stack configuration and deployment attributes.

• The attributes from the instance's built-in and custom cookbooks' attributes files.

• System data collected by Ohai.

Chef Versions API Version 2013-02-18 675

http://docs.chef.io/dsl_recipe.html#search

AWS OpsWorks User Guide

The stack configuration and deployment attributes contain most of the information that recipes
typically obtain through search, including data such as host names and IP addresses for each online
instance in the stack. AWS OpsWorks Stacks updates these attributes for each lifecycle event,
which ensures that they accurately reflect the current stack state. This means that you can often
use search-dependent community recipes in your stack without modification. The search method
still returns the appropriate data; it's just coming from the stack configuration and deployment
attributes instead of a server.

The primary limitation of AWS OpsWorks Stacks search is that handles only the data in the local
node object, the stack configuration and deployment attributes in particular. For that reason, the
following types of data might not be available through search:

• Locally defined attributes on other instances.

If a recipe defines an attribute locally, that information is not reported back to the AWS
OpsWorks Stacks service, so you cannot access that data from other instances by using search.

• Custom deploy attributes.

You can specify custom JSON when you deploy an app and the corresponding attributes are
installed on the stack's instances for that deployment. However, if you deploy only to selected
instances, the attributes are installed on only those instances. Queries for those custom JSON
attributes will fail on all other instances. In addition, the custom attributes are included in
the stack configuration and deployment JSON only for that particular deployment. They
are accessible only until the next lifecycle event installs a new set of stack configuration and
deployment attributes. Note that if you specify custom JSON for the stack, the attributes are
installed on every instance for every lifecycle event and are always accessible through search.

• Ohai data from other instances.

Chef's Ohai tool obtains a variety of system data on an instance and adds it to the node object.
This data is stored locally and not reported back to the AWS OpsWorks Stacks service, so search
can't access Ohai data from other instances. However, some of this data might be included in the
stack configuration and deployment attributes.

• Offline instances.

The stack configuration and deployment attributes contain data only for online instances.

The following recipe excerpt shows how to get the private IP address of a PHP layer's instance by
using search.

Chef Versions API Version 2013-02-18 676

http://docs.chef.io/resource_ohai.html

AWS OpsWorks User Guide

appserver = search(:node, "role:php-app").first
Chef::Log.info("The private IP is '#{appserver[:private_ip]}'")

Note

When AWS OpsWorks Stacks adds the stack configuration and deployment attributes
to the node object, it actually creates two sets of layer attributes, each with the same
data. One set is in the layers namespace, which is how AWS OpsWorks Stacks stores
the data. The other set is in the role namespace, which is how Chef server stores the
equivalent data. The purpose of the role namespace is to allow search code that was
implemented for Chef server to run on an AWS OpsWorks Stacks instance. If you are
writing code specifically for AWS OpsWorks Stacks, you could use either layers:php-app
or role:php-app in the preceding example and search would return the same result.

Using Data Bags

You can use the Chef data_bag_item method in your recipes to query for information in a data
bag. You use the same syntax as you would for Chef server, but AWS OpsWorks Stacks obtains the
data from the instance's stack configuration and deployment attributes. However, AWS OpsWorks
Stacks does not currently support Chef environments, so node.chef_environment always
returns _default.

You create a data bag by using custom JSON to add one or more attributes to the [:opsworks]
[:data_bags] attribute. The following example shows the general format for creating a data bag
in custom JSON.

Note

You cannot create a data bag by adding it to your cookbook repository. You must use
custom JSON.

{
 "opsworks": {
 "data_bags": {

Chef Versions API Version 2013-02-18 677

http://docs.chef.io/dsl_recipe.html#data-bag-item

AWS OpsWorks User Guide

 "bag_name1": {
 "item_name1: {
 "key1" : “value1”,
 "key2" : “value2”,
 ...
 }
 },
 "bag_name2": {
 "item_name1": {
 "key1" : “value1”,
 "key2" : “value2”,
 ...
 }
 },
 ...
 }
 }
}

You typically specify custom JSON for the stack, which installs the custom attributes on every
instance for each subsequent lifecycle event. You can also specify custom JSON when you deploy
an app, but those attributes are installed only for that deployment, and might be installed to only
a selected set of instances. For more information, see Deploying Apps.

The following custom JSON example creates data bag named myapp. It has one item, mysql, with
two key-value pairs.

{ "opsworks": {
 "data_bags": {
 "myapp": {
 "mysql": {
 "username": "default-user",
 "password": "default-pass"
 }
 }
 }
 }
}

Chef Versions API Version 2013-02-18 678

AWS OpsWorks User Guide

To use the data in your recipe, you can call data_bag_item and pass it the data bag and value
names, as shown in the following excerpt.

mything = data_bag_item("myapp", "mysql")
Chef::Log.info("The username is '#{mything['username']}' ")

To modify the data in the data bag, just modify the custom JSON, and it will be installed on the
stack's instances for the next lifecycle event.

Using Berkshelf

With Chef 0.9 and Chef 11.4 stacks, you can install only one custom cookbook repository. With
Chef 11.10 stacks, you can use Berkshelf to manage your cookbooks and their dependencies, which
allows you to install cookbooks from multiple repositories. (For more information, see Packaging
Cookbook Dependencies Locally.) In particular, with Berkshelf, you can install AWS OpsWorks
Stacks-compatible community cookbooks directly from their repositories instead of having to
copy them to your custom cookbook repository. The supported Berkshelf versions depend on the
operating system. For more information, see AWS OpsWorks Stacks operating systems.

To use Berkshelf, you must explicitly enable it, as described in Installing Custom Cookbooks.
Then, include a Berksfile file in your cookbook repository's root directory that specifies which
cookbooks to install.

To specify an external cookbook source in a Berksfile, include a source attribute at the top of the
file that specifies the default repository URL. Berkshelf will look for the cookbooks in the source
URLs unless you explicitly specify a repository. Then include a line for each cookbook that you want
to install in the following format:

cookbook 'cookbook_name', ['>= cookbook_version'], [cookbook_options]

The fields following cookbook specify the particular cookbook.

• cookbook_name – (Required) Specifies the cookbook's name.

If you don't include any other fields, Berkshelf installs the cookbook from the specified source
URLs.

• cookbook_version – (Optional) Specifies the cookbook version or versions.

Chef Versions API Version 2013-02-18 679

http://berkshelf.com/

AWS OpsWorks User Guide

You can use a prefix such as = or >= to specify a particular version or a range of acceptable
versions. If you don't specify a version, Berkshelf installs the latest one.

• cookbook_options – (Optional) The final field is a hash containing one or more key-value pairs
that specify options such as the repository location.

For example, you can include a git key to designate a particular Git repository and a tag key to
designate a particular repository branch. Specifying the repository branch is usually the best way
to ensure that you install your preferred cookbook.

Important

Do not declare cookbooks by including a metadata line in your Berksfile and declaring the
cookbook dependencies in metadata.rb. For this to work correctly, both files must be in
the same directory. With AWS OpsWorks Stacks, the Berksfile must be in the repository's
root directory, but metadata.rb files must be in their respective cookbook directories. You
should instead explicitly declare external cookbooks in the Berksfile.

The following is an example of a Berksfile that shows different ways to specify cookbooks For more
information on how to create a Berksfile, see Berkshelf.

source "https://supermarket.chef.io"

cookbook 'apt'
cookbook 'bluepill', '>= 2.3.1'
cookbook 'ark', git: 'git://github.com/opscode-cookbooks/ark.git'
cookbook 'build-essential', '>= 1.4.2', git: 'git://github.com/opscode-cookbooks/build-
essential.git', tag: 'v1.4.2'

This file installs the following cookbooks:

• The most recent version of apt from the community cookbooks repository.

• The most recent version bluepill from the community cookbooks, as long as it is version 2.3.1
or later.

• The most recent version of ark from a specified repository.

Chef Versions API Version 2013-02-18 680

http://berkshelf.com/

AWS OpsWorks User Guide

The URL for this example is for a public community cookbook repository on GitHub, but you can
install cookbooks from other repositories, including private repositories. For more information,
see Berkshelf.

• The build-essential cookbook from the v1.4.2 branch of the specified repository.

A custom cookbook repository can contain custom cookbooks in addition to a Berksfile. In that
case, AWS OpsWorks Stacks installs both sets of cookbooks, which means that an instance can have
as many as three cookbook repositories.

• The built-in cookbooks are installed to /opt/aws/opsworks/current/cookbooks.

• If your custom cookbook repository contains cookbooks, they are installed to /opt/aws/
opsworks/current/site-cookbooks.

• If you have enabled Berkshelf and your custom cookbook repository contains a Berksfile, the
specified cookbooks are installed to /opt/aws/opsworks/current/berkshelf-cookbooks.

The built-in cookbooks and your custom cookbooks are installed on each instance during setup
and are not subsequently updated unless you manually run the Update Custom Cookbooks stack
command. AWS OpsWorks Stacks runs berks install for every Chef run, so your Berkshelf
cookbooks are updated for each lifecycle event, according to the following rules:

• If you have a new cookbook version in the repository, this operation updates the cookbook from
the repository.

• Otherwise, this operation updates the Berkshelf cookbooks from a local cache.

Note

The operation overwrites the Berkshelf cookbooks, so if you have modified the local copies
of any cookbooks, the changes will be overwritten. For more information, see Berkshelf

You can also update your Berkshelf cookbooks by running the Update Custom Cookbooks stack
command, which updates both the Berkshelf cookbooks and your custom cookbooks.

Chef Versions API Version 2013-02-18 681

http://berkshelf.com/
http://berkshelf.com/

AWS OpsWorks User Guide

Implementing Recipes for Chef 11.4 Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Important

Do not reuse built-in cookbook names for custom or community cookbooks. Custom
cookbooks that have the same name as built-in cookbooks might fail. For a complete list
of built-in cookbooks that are available with Chef 11.10, 11.4, and 0.9 stacks, see the
opsworks-cookbooks repository on GitHub.

The primary limitation of Chef 11.4 stacks is that recipes cannot use Chef search or data bags.
However, AWS OpsWorks Stacks installs stack configuration and deployment attributes on each
instance that contain much of the information that you would obtain with search, including the
following:

• User-defined data from the console such as host or app names.

• Stack configuration data generated by the AWS OpsWorks Stacks service, such as the stack's
layers, apps, and instances, and details about each instance such as the IP address.

• Custom JSON attributes that contain data provided by the user and can serve much the same
purpose as data bags.

AWS OpsWorks Stacks installs a current version of the stack configuration and deployment
attributes on each instance for each lifecycle event, prior to starting the event's Chef run. The data
is available to recipes through the standard node[:attribute][:child_attribute][...]
syntax. For example, the stack configuration and deployment attributes includes the stack name,
node[:opsworks][:stack][:name].

Chef Versions API Version 2013-02-18 682

https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

The following excerpt from one of the built-in recipes obtains the stack name and uses it to create
a configuration file.

template '/etc/ganglia/gmetad.conf' do
 source 'gmetad.conf.erb'
 mode '0644'
 variables :stack_name => node[:opsworks][:stack][:name]
 notifies :restart, "service[gmetad]"
end

Many of the stack configuration and deployment attribute values contain multiple attributes. You
must iterate over these attributes to obtain the information you need. The example below shows
an excerpt from the stack configuration and deployment attributes, which are represented as JSON
object for convenience. It contains a top-level attribute, deploy, which contains an attribute for
each of the stack's apps, named with the app's short name.

{
 ...
 "deploy": {
 "app1_shortname": {
 "document_root": "app1_root",
 "deploy_to": "deploy_directory",
 "application_type": "php",
 ...
 },
 "app2_shortname": {
 "document_root": "app2_root",
 ...
 }
 },
 ...
}

Each app attribute contains a set of attributes that characterize the app. For example, the
deploy_to attribute represents the app's deploy directory. The following excerpt sets the user,
group, and path for each app's deploy directory.

node[:deploy].each do |application, deploy|

Chef Versions API Version 2013-02-18 683

AWS OpsWorks User Guide

 opsworks_deploy_dir do
 user deploy[:user]
 group deploy[:group]
 path deploy[:deploy_to]
 end
 ...
end

For more information on the stack configuration and deployment attributes, see Customizing AWS
OpsWorks Stacks. For more information on deploy directories, see Deploy Recipes.

Chef 11.4 stacks do not support data bags, but you can add arbitrary data to the stack
configuration and deployment attributes by specifying custom JSON. Your recipes can then access
the data by using standard Chef node syntax. For more information, see Using Custom JSON.

If you need the functionality of an encrypted data bag, one option is to store sensitive attributes
in a secure location such as a private Amazon S3 bucket. Your recipes can then use the AWS Ruby
SDK—which is installed on all AWS OpsWorks Stacks instances—to download the data from the
bucket.

Note

Each AWS OpsWorks Stacks instance has an instance profile. The associated IAM role
specifies which AWS resources can be accessed by applications that are running on the
instance. For your recipes to access an Amazon S3 bucket, the role's policy must include
a statement similar to the following, which grants permission to retrieve files from a
specified bucket.

"Action": ["s3:GetObject"],
"Effect": "Allow",
"Resource": "arn:aws:s3:::yourbucketname/*",

For more information on instance profiles, see Specifying Permissions for Apps Running on
EC2 instances.

Chef Versions API Version 2013-02-18 684

http://aws.amazon.com/documentation/sdkforruby/
http://aws.amazon.com/documentation/sdkforruby/
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

AWS OpsWorks User Guide

Migrating an Existing Linux Stack to a new Chef Version

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can use AWS OpsWorks Stacks console, API, or CLI to migrate your Linux stacks to a newer
Chef version. However, your recipes might require modification to be compatible with the newer
version. When preparing to migrate a stack, consider the following.

• You cannot change AWS OpsWorksStacks stack versions from Chef 11 to Chef 12 by editing or
cloning the stack. A Chef major version upgrade cannot be performed using the procedure in
this section. For more information on the Chef 11.10 to Chef 12 transition, see Implementing
Recipes: Chef 12.

• The transition from one Chef version to another involves a number of changes, some of them
breaking changes.

For more information on the Chef 0.9 to Chef 11.4 transition, see Migrating to a new Chef
Version. For more information on the Chef 11.4 to Chef 11.10 transition, see Implementing
Recipes: Chef 11.10. For more information on the Chef 11.10 to Chef 12 transition, see
Implementing Recipes: Chef 12.

• Chef runs use a different Ruby version on Chef 0.9 and Chef 11.4 stacks (Ruby 1.8.7), Chef 11.10
stacks (Ruby 2.0.0), and Chef 12 stacks (Ruby 2.1.6).

For more information, see Ruby Versions.

• Chef 11.10 stacks handle cookbook installation differently from Chef 0.9 or Chef 11.4 stacks.

This difference could cause problems when migrating stacks that use custom cookbooks to Chef
11.10. For more information, see Cookbook Installation and Precedence.

The following are recommended guidelines for migrating a Chef stack to a newer Chef version:

Chef Versions API Version 2013-02-18 685

AWS OpsWorks User Guide

To migrate a stack to a newer Chef version

1. Clone your production stack. On the Clone Stack page, click Advanced>> to display the
Configuration Management section, and change Chef version to the next higher version.

Note

If you are starting with a Chef 0.9 stack, you cannot upgrade directly to Chef 11.10;
you must first upgrade to Chef 11.4. If you want to migrate your stack to Chef 11.10
before testing your recipes, wait 20 minutes for the update to be executed, and then
upgrade the stack from 11.4 to 11.10.

2. Add instances to the layers and test the cloned stack's applications and cookbooks on a testing
or staging system. For more information, see All about Chef

3. When the test results are satisfactory, do one of the following:

• If this is your desired Chef version, you can use the cloned stack as your production stack, or
reset the Chef version on your production stack.

• If you are migrating a Chef 0.9 stack to Chef 11.10 in two stages, repeat the process to
migrate the stack from Chef 11.4 to Chef 11.10.

Note

When you are testing recipes, you can use SSH to connect to the instance and then use the
Instance Agent CLI run_command command to run the recipes associated with the various
lifecycle events. The agent CLI is especially useful for testing Setup recipes because you
can use it even Setup fails and the instance does not reach the online state. You can also
use the Setup stack command to rerun Setup recipes, but that command is only available if
Setup succeeded and the instance is online.

It is possible to update a running stack to a new Chef version.

To update a running stack to a new Chef version

1. Edit the stack to change the Chef version stack setting.

Chef Versions API Version 2013-02-18 686

https://docs.chef.io/index.html

AWS OpsWorks User Guide

2. Save the new settings and wait for AWS OpsWorks Stacks to update the instances, which
typically takes 15 - 20 minutes.

Important

AWS OpsWorks Stacks does not synchronize the Chef version update with lifecycle events.
If you want to update the Chef version on a production stack, you must take care to ensure
that the update is complete before the next lifecycle event occurs . If an event occurs—
typically a Deploy or Configure event—the instance agent updates your custom cookbooks
and runs the event's assigned recipes, whether the version update is complete or not. There
is no direct way to determine when the version update is complete, but deployment logs
include the Chef version.

Ruby Versions

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

All instances in a Linux stack have Ruby installed. AWS OpsWorks Stacks installs a Ruby package
on each instance, which it uses to run Chef recipes and the instance agent. AWS OpsWorks Stacks
determines the Ruby version based on which Chef version the stack is running. Do not attempt to
modify this version; doing so might disable the instance agent.

AWS OpsWorks Stacks does not install an application Ruby executable on Windows stacks.
The Chef 12.2 client comes with Ruby 2.0.0 p451, but the Ruby executable is not added to the
instances' PATH environment variable. If you want to use this executable to run Ruby code, it is
located at \opscode\chef\embedded\bin\ruby.exe on your Windows drive.

Ruby Versions API Version 2013-02-18 687

AWS OpsWorks User Guide

The following table summarizes AWS OpsWorks Stacks Ruby versions. The available application
Ruby versions also depend on the instance's operating system. For more information, including the
available patch versions, see AWS OpsWorks Stacks operating systems.

Chef Version Chef Ruby Version Available Application Ruby Versions

0.9 (c) 1.8.7 1.8.7(a), 1.9.3(e), 2.0.0

11.4 (c) 1.8.7 1.8.7(a), 1.9.3(e), 2.0.0, 2.1, 2.2.0, 2.3

11.10 2.0.0-p481 1.9.3(c, e), 2.0.0, 2.1, 2.2.0, 2.3, 2.6.1

12 (b) 2.1.6, 2.2.3 None

12.22 (d) 2.3.6 None

(a) Not available with Amazon Linux 2014.09 and later, Red Hat Enterprise Linux (RHEL), or Ubuntu
14.04 LTS.

(b) Available only on Linux stacks.

(c) Not available with RHEL.

(d) Available only on Windows stacks. Major version is 12.2. Current minor version is 12.22.

(e) Deprecation is complete; support has ended.

The install locations depend on the Chef version:

• Applications use the /usr/local/bin/ruby executable for all Chef Versions.

• For Chef 0.9 and 11.4, the instance agent and Chef recipes use the /usr/bin/ruby executable.

• For Chef 11.10, the instance agent and Chef recipes use the /opt/aws/opsworks/local/bin/
ruby executable.

Ruby Versions API Version 2013-02-18 688

AWS OpsWorks User Guide

Installing Custom Cookbooks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To have a stack install and use custom cookbooks, you must configure the stack to enable custom
cookbooks, if it is not already configured. You must then provide the repository URL and any
related information such as a password.

Important

After you have configured the stack to support custom cookbooks, AWS OpsWorks Stacks
automatically installs your cookbooks on all new instances at startup. However, you
must explicitly direct AWS OpsWorks Stacks to install new or updated cookbooks on
any existing instances by running the Update Custom Cookbooks stack command. For
more information, see Updating Custom Cookbooks. Before you enable Use custom Chef
cookbooks on your stack, be sure that custom and community cookbooks that you run
support the version of Chef that your stack uses.

To configure a stack for custom cookbooks

1. On your stack's page, click Stack Settings to display its Settings page., Click Edit to edit the
settings.

2. Toggle Use custom Chef cookbooks to Yes.

Installing Custom Cookbooks API Version 2013-02-18 689

AWS OpsWorks User Guide

3. Configure your custom cookbooks.

When you are finished, click Save to save the updated stack.

Specifying a Custom Cookbook Repository

Linux stacks can install custom cookbooks from any of the following repository types:

• HTTP or Amazon S3 archives.

They can be either public or private, but Amazon S3 is typically the preferred option for a private
archive.

• Git and Subversion repositories provide source control and the ability to have multiple versions.

Windows stacks can install custom cookbooks from Amazon S3 archives and Git repositories.

All repository types have the following required fields.

• Repository type–The repository type

• Repository URL–The repository URL

AWS OpsWorks Stacks supports publicly hosted Git repository sites such as GitHub or Bitbucket
as well as privately hosted Git servers. For Git repositories, you must use one of the following URL
formats, depending on whether the repository is public or private. Follow the same URL guidelines
for Git submodules.

For a public Git repository, use the HTTPS or Git read-only protocols:

Installing Custom Cookbooks API Version 2013-02-18 690

https://github.com/
https://bitbucket.org

AWS OpsWorks User Guide

• Git read-only – git://github.com/amazonwebservices/opsworks-example-
cookbooks.git.

• HTTPS – https://github.com/amazonwebservices/opsworks-example-
cookbooks.git.

For a private Git repository, you must use the SSH read/write format, as shown in the following
examples:

• Github repositories – git@github.com:project/repository.

• Repositories on a Git server – user@server:project/repository

The remaining settings vary with the repository type and are described in the following sections.

HTTP Archive

Selecting Http Archive for Repository type displays two additional settings, which you must
complete if the archive is password protected.

• User name–Your user name

• Password–Your password

Amazon S3 Archive

Selecting S3 Archive for Repository type displays the following additional, optional settings. AWS
OpsWorks Stacks can access your repository by using Amazon EC2 roles (host operating system
manager authentication), whether you use the AWS OpsWorks Stacks API or console.

• Access key ID –An AWS access key ID, such as AKIAIOSFODNN7EXAMPLE.

• Secret access key – The corresponding AWS secret access key, such as wJalrXUtnFEMI/
K7MDENG/bPxRfiCYEXAMPLEKEY.

Git Repository

Selecting Git under Source Control displays the following additional optional settings:

Installing Custom Cookbooks API Version 2013-02-18 691

AWS OpsWorks User Guide

Repository SSH key

You must specify a deploy SSH key to access private Git repositories. For Git submodules, the
specified key must have access to those submodules. For more information, see Using Git
Repository SSH Keys.

Important

The deploy SSH key cannot require a password; AWS OpsWorks Stacks has no way to
pass it through.

Branch/Revision

If the repository has multiple branches, AWS OpsWorks Stacks downloads the master branch
by default. To specify a particular branch, enter the branch name, SHA1 hash, or tag name. To
specify a particular commit, enter the full 40-hexdigit commit ID.

Subversion Repository

Selecting Subversion under Source Control displays the following additional settings:

• User name–Your user name, for private repositories.

• Password–Your password, for private repositories.

• Revision–[Optional] The revision name, if you have multiple revisions.

To specify a branch or tag, you must modify the repository URL, for example: http://
repository_domain/repos/myapp/branches/my-apps-branch or http://
repository_domain_name/repos/calc/myapp/my-apps-tag.

Updating Custom Cookbooks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Updating Custom Cookbooks API Version 2013-02-18 692

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When you provide AWS OpsWorks Stacks with custom cookbooks, the built-in Setup recipes create
a local cache on each newly-started instance, and download the cookbooks to the cache. AWS
OpsWorks Stacks then runs recipes from the cache, not the repository. If you modify the custom
cookbooks in the repository, you must ensure that the updated cookbooks are installed on your
instances' local caches. AWS OpsWorks Stacks automatically deploys the latest cookbooks to new
instances when they are started. For existing instances, however, the situation is different:

• You must manually deploy updated custom cookbooks to online instances.

• You do not have to deploy updated custom cookbooks to offline instance store-backed instances,
including load-based and time-based instances.

AWS OpsWorks Stacks automatically deploys the current cookbooks when the instances are
restarted.

• You must start offline EBS-backed 24/7 instances that are not load-based or time-based.

• You cannot start offline EBS-backed load-based and time-based instances, so the simplest
approach is to delete the offline instances and add new instances to replace them.

Because they are now new instances, AWS OpsWorks Stacks automatically deploys the current
custom cookbooks when the instances are started.

To manually update custom cookbooks

1. Update your repository with the modified cookbooks. AWS OpsWorks Stacks uses the cache
URL that you provided when you originally installed the cookbooks, so the cookbook root file
name, repository location, and access rights should not change.

• For Amazon S3 or HTTP repositories, replace the original .zip file with a new .zip file that has
the same name.

• For Git or Subversion repositories, edit your stack settings to change the Branch/Revision
field to the new version.

2. On the stack's page, click Run Command and select the Update Custom Cookbooks
command.

Updating Custom Cookbooks API Version 2013-02-18 693

AWS OpsWorks User Guide

3. Add a comment if desired.

4. Optionally, specify a custom JSON object for the command to add custom attributes to the
stack configuration and deployment attributes that AWS OpsWorks Stacks installs on the
instances. For more information, see Using Custom JSON and Overriding Attributes.

5. By default, AWS OpsWorks Stacks updates the cookbooks on every instance. To specify which
instances to update, select the appropriate instances from the list at the end of the page. To
select every instance in a layer, select the appropriate layer checkbox in the left column.

6. Click Update Custom Cookbooks to install the updated cookbooks. AWS OpsWorks Stacks
deletes the cached custom cookbooks on the specified instances and installs the new
cookbooks from the repository.

Note

This procedure is required only for existing instances, which have old versions of the
cookbooks in their caches. If you subsequently add instances to a layer, AWS OpsWorks

Updating Custom Cookbooks API Version 2013-02-18 694

AWS OpsWorks User Guide

Stacks deploys the cookbooks that are currently in the repository so they automatically get
the latest version.

Executing Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can run recipes in two ways:

• Automatically, by assigning recipes to the appropriate layer's lifecycle event.

• Manually, by running the Execute Recipes stack command or by using the agent CLI.

Topics

• AWS OpsWorks Stacks Lifecycle Events

• Automatically Running Recipes

• Manually Running Recipes

AWS OpsWorks Stacks Lifecycle Events

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Executing Recipes API Version 2013-02-18 695

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Each layer has a set of five lifecycle events, each of which has an associated set of recipes that
are specific to the layer. When an event occurs on a layer's instance, AWS OpsWorks Stacks
automatically runs the appropriate set of recipes. To provide a custom response to these events,
implement custom recipes and assign them to the appropriate events for each layer. AWS
OpsWorks Stacks runs those recipes after the event's built-in recipes.

Setup

This event occurs after a started instance has finished booting. You can also manually trigger
the Setup event by using the Setup stack command. AWS OpsWorks Stacks runs recipes that set
the instance up according to its layer. For example, if the instance is a member of the Rails App
Server layer, the Setup recipes install Apache, Ruby Enterprise Edition, Passenger and Ruby on
Rails.

Note

A Setup event takes an instance out of service. Because an instance is not in the Online
state when the Setup lifecycle event runs, instances on which you run Setup events are
removed from a load balancer.

Configure

This event occurs on all of the stack's instances when one of the following occurs:

• An instance enters or leaves the online state.

• You associate an Elastic IP address with an instance or disassociate one from an instance.

• You attach an Elastic Load Balancing load balancer to a layer, or detach one from a layer.

For example, suppose that your stack has instances A, B, and C, and you start a new instance,
D. After D has finished running its setup recipes, AWS OpsWorks Stacks triggers the Configure
event on A, B, C, and D. If you subsequently stop A, AWS OpsWorks Stacks triggers the
Configure event on B, C, and D. AWS OpsWorks Stacks responds to the Configure event by
running each layer's Configure recipes, which update the instances' configuration to reflect
the current set of online instances. The Configure event is therefore a good time to regenerate

Executing Recipes API Version 2013-02-18 696

AWS OpsWorks User Guide

configuration files. For example, the HAProxy Configure recipes reconfigure the load balancer to
accommodate any changes in the set of online application server instances.

You can also manually trigger the Configure event by using the Configure stack command.

Deploy

This event occurs when you run a Deploy command, typically to deploy an application to a set
of application server instances. The instances run recipes that deploy the application and any
related files from its repository to the layer's instances. For example, for a Rails Application
Server instances, the Deploy recipes check out a specified Ruby application and tell Phusion
Passenger to reload it. You can also run Deploy on other instances so they can, for example,
update their configuration to accommodate the newly deployed app.

Note

Setup includes Deploy; it runs the Deploy recipes after setup is complete.

Undeploy

This event occurs when you delete an app or run an Undeploy command to remove an app
from a set of application server instances. The specified instances run recipes to remove all
application versions and perform any required cleanup.

Shutdown

This event occurs after you direct AWS OpsWorks Stacks to shut an instance down but before
the associated Amazon EC2 instance is actually terminated. AWS OpsWorks Stacks runs recipes
to perform cleanup tasks such as shutting down services.

If you have attached an Elastic Load Balancing load balancer to the layer and enabled support
for connection draining, AWS OpsWorks Stacks waits until connection draining is complete
before triggering the Shutdown event.

After triggering a Shutdown event, AWS OpsWorks Stacks allows Shutdown recipes a specified
amount of time to perform their tasks, and then stops or terminates the Amazon EC2 instance.
The default Shutdown timeout value is 120 seconds. If your Shutdown recipes might require
more time, you can edit the layer configuration to change the timeout value. For more
information on instance Shutdown, see Stopping an Instance.

Executing Recipes API Version 2013-02-18 697

https://www.phusionpassenger.com/
https://www.phusionpassenger.com/

AWS OpsWorks User Guide

Note

Rebooting an instance does not trigger any lifecycle events.

For more discussion about the Deploy and Undeploy app commands, see Deploying Apps.

After a started instance has finished booting, the remaining startup sequence is as follows:

1. AWS OpsWorks Stacks runs the instance's built-in Setup recipes, followed by any custom Setup
recipes.

2. AWS OpsWorks Stacks runs the instance's built-in Deploy recipes, followed by any custom
Deploy recipes.

The instance is now online.

3. AWS OpsWorks Stacks triggers a Configure event on all instances in the stack, including the
newly started instance.

AWS OpsWorks Stacks runs the instances' built-in Configure recipes, followed by any custom
Configure recipes.

Note

To see the lifecycle events that have occurred on a particular instance, go to the Instances
page and click the instance's name to open its details page. The list of events is in the Logs
section at the bottom of the page. You can click show in the Log column to examine the
Chef log for an event. It provides detailed information about how the event was handled,
including which recipes were run. For more information on how to interpret Chef logs, see
Chef Logs.

Executing Recipes API Version 2013-02-18 698

AWS OpsWorks User Guide

For each lifecycle event, AWS OpsWorks Stacks installs a set of stack configuration and deployment
attributes on each instance that contains the current stack state and, for Deploy events,
information about the deployment. The attributes include information about what instances
are available, their IP addresses, and so on. For more information, see Stack Configuration and
Deployment Attributes.

Note

Starting or stopping a large number of instances at the same time can rapidly generate
a large number of Configure events. To avoid unnecessary processing, AWS OpsWorks
Stacks responds to only the last event. That event's stack configuration and deployment
attributes contain all the information required to update the stack's instances for the entire
set of changes. This eliminates the need to also process the earlier Configure events. AWS
OpsWorks Stacks labels the unprocessed Configure events as superseded.

Automatically Running Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Executing Recipes API Version 2013-02-18 699

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Each layer has a set of built-in recipes assigned to each lifecycle event, although some layers lack
Undeploy recipes. When a lifecycle event occurs on an instance, AWS OpsWorks Stacks runs the
appropriate set of recipes for the associated layer.

If you have installed custom cookbooks, you can have AWS OpsWorks Stacks run some or all of the
recipes automatically by assigning each recipe to a layer's lifecycle event. After an event occurs,
AWS OpsWorks Stacks runs the specified custom recipes after the layer's built-in recipes.

To assign custom recipes to layer events

1. On the Layers page, for the appropriate layer, click Recipes and then click Edit. If you haven't
yet enabled custom cookbooks, click configure cookbooks to open the stack's Settings
page. Toggle Use custom Chef Cookbooks to Yes, and provide the cookbook's repository
information. Then click Save and navigate back to the edit page for the Recipes tab. For more
information, see Installing Custom Cookbooks.

2. On the Recipes tab, enter each custom recipe in the appropriate event field and click + to add
it to the list. Specify a recipe as follows: cookbook::somerecipe (omit the .rb extension).

Executing Recipes API Version 2013-02-18 700

AWS OpsWorks User Guide

When you start a new instance, AWS OpsWorks Stacks automatically runs the custom recipes for
each event, after it runs the standard recipes.

Note

Custom recipes execute in the order that you enter them in the console. An alternative way
to control execution order is to implement a meta recipe that executes the recipes in the
correct order.

Manually Running Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Although recipes typically are run automatically in response to lifecycle events, you can manually
run recipes at any time on any or all stack instances. This feature is typically used for tasks that
don't map well to a lifecycle event, such as backing up instances. To run a custom recipe manually,
it must be in one of your custom cookbooks, but it does not have to be assigned to a lifecycle
event. When you run a recipe manually, AWS OpsWorks Stacks installs the same deploy attributes
that it does for a Deploy event.

To manually run recipes on stack instances

1. On the Stack page, click Run command. For Command, select Execute Recipes.

Executing Recipes API Version 2013-02-18 701

AWS OpsWorks User Guide

2. Enter the recipes to be run in the Recipes to execute box by using the standard
cookbookname::recipename format. Use commas to separate multiple recipes; they will run
in the order that you list them.

3. Optionally, use the Custom Chef JSON box to add a custom JSON object that defines custom
attributes that will be merged into the stack configuration and deployment attributes that are
installed on the instances. For more information about using custom JSON objects, see Using
Custom JSON and Overriding Attributes.

4. Under Instances, select the instances on which AWS OpsWorks Stacks should run the recipes.

When a lifecycle event occurs, the AWS OpsWorks Stacks agent receives a command to run the
associated recipes. You can manually run these commands on a particular instance by using the
appropriate stack command or by using the agent CLI's run_command command. For more
information on how to use the agent CLI, see AWS OpsWorks Stacks Agent CLI.

Executing Recipes API Version 2013-02-18 702

AWS OpsWorks User Guide

Resource Management

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The Resources page enables you to use your account's Elastic IP address, Amazon EBS volume, or
Amazon RDS instance resources in an AWS OpsWorks Stacks stack. You can use Resources to do
the following:

• Register a resource with a stack, which allows you to attach the resource to one of the stack's
instances.

• Attach a resource to one of the stack's instances.

• Move a resource from one instance to another.

• Detach a resource from an instance. The resource remains registered and can be attached to
another instance.

• Deregister a resource. An unregistered resource cannot be used by AWS OpsWorks Stacks, but it
remains in your account unless you delete it, and can be registered with another stack.

Note the following constraints:

• You cannot attach registered Amazon EBS volumes to Windows instances.

• The Resources page manages standard, PIOPS, Throughput Optimized HDD, Cold HDD, or
General Purpose (SSD) Amazon EBS volumes, but not RAID arrays.

• Amazon EBS volumes must be xfs formatted.

AWS OpsWorks Stacks does not support other file formats, such as ext4. For more information
on preparing Amazon EBS volumes, see Making an Amazon EBS Volume Available for Use.

• You can't attach an Amazon EBS volume to—or detach it from—a running instance.

Resource Management API Version 2013-02-18 703

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-using-volumes.html

AWS OpsWorks User Guide

You can operate only on offline instances. For example, you can register an in-use volume with a
stack and attach it to an offline instance, but you must stop the original instance and detach the
volume before starting the new instance. Otherwise, the start process will fail.

• All registered resources are managed solely in AWS OpsWorks. This can override resource
lifecycle properties, such as DeleteOnTermination for EC2 volumes.

• You can attach an Elastic IP address to and detach it from a running instance.

You can operate on online or offline instances. For example, you can register an in-use address
and assign it to a running instance, and AWS OpsWorks Stacks will automatically reassign the
address.

• To register and deregister resources, your IAM policy must grant permissions for the following
actions:

Amazon EBS Volumes Elastic IP Addresses Amazon RDS Instances

RegisterVolume

UpdateVolume

DeregisterVolume

RegisterElasticIp

UpdateElasticIp

DeregisterElasticIp

RegisterRdsDbInstance

UpdateRdsDbInstance

DeregisterRdsDbInstance

The Manage permissions level grants permissions for all of these actions. To prevent a Manage
user from registering or deregistering particular resources, edit their IAM policy to deny
permissions for the appropriate actions. For more information, see Security and Permissions.

Topics

• Registering Resources with a Stack

• Attaching and Moving Resources

• Detaching Resources

• Deregistering Resources

Resource Management API Version 2013-02-18 704

http://docs.aws.amazon.com/opsworks/latest/APIReference/API_RegisterVolume.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateVolume.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_DeregisterVolume.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_RegisterElasticIp.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateElasticIp.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_DeregisterElasticIp.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_RegisterRdsDbInstance.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateRdsDbInstance.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_DeregisterRdsDbInstance.html

AWS OpsWorks User Guide

Registering Resources with a Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Amazon EBS volumes or Elastic IP addresses must be registered with a stack before you can
attach them to instances. When AWS OpsWorks Stacks creates resources for a stack, they are
automatically registered with that stack. If you want to use externally-created resources, you must
explicitly register them. Note the following:

• You can register a resource with only one stack at a time.

• When you delete a stack, AWS OpsWorks Stacks deregisters all resources.

Topics

• Registering Amazon EBS Volumes with a Stack

• Registering Elastic IP Addresses with a Stack

• Registering Amazon RDS Instances with a Stack

Registering Amazon EBS Volumes with a Stack

Note

This resource can be used only with Linux stacks. Although you can register an Amazon EBS
volume with a Windows stack, you cannot attach it to an instance.

You can use the Resources page to register an Amazon EBS volume with a stack, subject to the
following constraints:

Registering Resources with a Stack API Version 2013-02-18 705

AWS OpsWorks User Guide

• Attached, non-root Amazon EBS volumes must be standard, Throughput Optimized HDD, Cold
HDD, PIOPS, or General Purpose (SSD), but not a RAID array. For information about maximum
and minimum volume sizes, see EBS Volumes in this guide.

• Volumes must be XFS formatted.

• AWS OpsWorks Stacks does not support other file formats, such as fourth extended file system
(ext4), for non-root Amazon EBS volumes. For more information about preparing Amazon EBS
volumes, see Making an Amazon EBS Volume Available for Use. Note that the example in that
topic describes how to create an ext4-based volume, but you can follow the same steps for XFS
based volumes.

To register an Amazon EBS volume

1. Open the desired stack and click Resources in the navigation pane.

2. Click Volumes to display the available Amazon EBS volumes. Initially, the stack has no
registered volumes, as shown in the following illustration.

3. Click Show Unregistered Volumes to display the Amazon EBS volumes in your account
that are in the stack's region and if applicable, the stack's VPC. The Status column indicates
whether the volumes are available for use. Volume Type indicates whether the volume is
standard (standard), General Purpose SSD (gp2), PIOPS (io1, followed by the IOPS per disk
value in parentheses), Throughput Optimized HDD (st1), or Cold HDD (sc1).

Registering Resources with a Stack API Version 2013-02-18 706

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-using-volumes.html

AWS OpsWorks User Guide

4. Select the appropriate volumes and click Register to Stack. The Resources page now lists the
newly registered volumes.

To register additional volumes, click Show Unregistered Volumes or + Unregistered Volumes
and repeat this procedure.

Registering Elastic IP Addresses with a Stack

Use the following procedure to register Elastic IP addresses.

To register an Elastic IP address

1. Open the stack's Resources page and click Elastic IPs to display the available Elastic
IP addresses. Initially, the stack has no registered addresses, as shown in the following
illustration.

Registering Resources with a Stack API Version 2013-02-18 707

AWS OpsWorks User Guide

2. Click Show Unregistered Elastic IPs to display the available Elastic IP addresses in your
account that are in the stack's region.

3. Select the appropriate addresses and click Register to Stack. This returns you to the Resources
page, which now lists the newly registered addresses.

To register additional addresses, click Show Unregistered Elastic IPs or + Unregistered Elastic
IPs and repeat this procedure.

Registering Resources with a Stack API Version 2013-02-18 708

AWS OpsWorks User Guide

Registering Amazon RDS Instances with a Stack

Use the following procedure to register Amazon RDS instances.

To register an Amazon RDS instance

1. Open the stack's Resources page and click RDS to display the available Amazon RDS instances.
Initially, the stack has no registered instances, as shown in the following illustration.

2. Click Show Unregistered RDS DB instances to display the available Amazon RDS instances in
your account that are in the stack's region.

3. Select the appropriate instance, enter its master user and master password values for User and
Password, and click Register to Stack. This returns you to the Resources page, which now lists
the newly registered instance.

Registering Resources with a Stack API Version 2013-02-18 709

AWS OpsWorks User Guide

Important

You must ensure that the user and password that you use to register the Amazon RDS
instance correspond to a valid user and password. If they do not, your applications will
not be able connect to the instance.

To register additional addresses, click Show Unregistered RDS DB instances or + Unregistered
RDS DB instances and repeat this procedure. For more information about how to use Amazon
RDS instances with AWS OpsWorks Stacks, see Amazon RDS Service Layer.

Note

You can also register Amazon RDS instances through the Layers page. For more
information, see Amazon RDS Service Layer.

Attaching and Moving Resources

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Attaching and Moving Resources API Version 2013-02-18 710

AWS OpsWorks User Guide

After you register a resource with a stack, you can attach it to one of the stack's instances. You can
also move an attached resource from one instance to another. Note the following:

• When you attach or move Amazon EBS volumes, the instances involved in the operation must
be offline. If the instance you are interested in is not on the Resources page, go to the Instances
page and stop the instance. After it has stopped, you can return to the Resources page and
attach or move the resource.

• When you attach or move Elastic IP addresses, the instances can be online or offline.

• If you delete an instance, any attached resources remain registered with the stack. You can then
attach the resource to another instance or, if you no longer need it, deregister the resource.

Topics

• Assigning Amazon EBS Volumes to an Instance

• Associating Elastic IP Addresses with an Instance

• Attaching Amazon RDS Instances to an App

Assigning Amazon EBS Volumes to an Instance

Note

You cannot assign Amazon EBS volumes to Windows instances.

You can assign a registered Amazon EBS volume to an instance and move it from one instance to
another, but both instances must be offline.

To assign an Amazon EBS volume to an instance

1. On the Resources page, click assign to instance in the appropriate volume's Instance column.

Attaching and Moving Resources API Version 2013-02-18 711

AWS OpsWorks User Guide

2. On the volume's details page, select the appropriate instance, specify the volume's name and
mount point, and click Save to attach the volume to the instance.

Attaching and Moving Resources API Version 2013-02-18 712

AWS OpsWorks User Guide

Important

If you have assigned an external in-use volume to your instance, you must use the Amazon
EC2 console, API, or CLI to unassign it from the original instance or the start process will
fail.

You can also use the details page to move an assigned Amazon EBS volume to another instance in
the stack.

To move an Amazon EBS volume to another instance

1. Ensure that both instances are in the offline state.

2. On the Resources page, click Volumes and then click edit in the volume's Actions column.

3. Do one of the following:

• To move the volume to another instance in the stack, select the appropriate instance from
the Instance list and click Save.

• To move the volume to an instance in another stack, deregister the volume, register the
volume with the new stack, and attach it to the news instance.

Associating Elastic IP Addresses with an Instance

You can associate a registered Elastic IP address with an instance and move it from one instance to
another, including instances in other stacks. The instances can be either online or offline.

To associate an Elastic IP address with an instance

1. On the Resources page, click associate with instance in the appropriate address's Instance
column.

Attaching and Moving Resources API Version 2013-02-18 713

AWS OpsWorks User Guide

2. On the address's details page, select the appropriate instance, specify the address's name, and
click Save to associate the address with the instance.

Note

If the Elastic IP address is currently associated with another online instance, AWS OpsWorks
Stacks automatically reassigns the address to the new instance.

You can also use the details page to move an associated Elastic IP address to another instance.

To move an Elastic IP address to another instance

1. On the Resources page, click Elastic IPs and click edit in the address's Actions column.

2. Do one of the following:

• To move the address to another instance in the stack, select the appropriate instance from
the Instance list and click Save.

• To move the address to an instance in another stack, click change in the Stack settings to
see a list of the available stacks. Select a stack from the Stack list and an instance from the
Instance list. Then click Save.

Attaching and Moving Resources API Version 2013-02-18 714

AWS OpsWorks User Guide

After you attach or move an address, AWS OpsWorks Stacks triggers a Configure lifecycle event to
notify the stack's instances of the change.

Attaching Amazon RDS Instances to an App

You can attach an Amazon RDS instance to one or more apps.

To attach an Amazon RDS instance to an app

1. On the Resources page, click Add app in the appropriate instance's Apps column.

2. Use the Add App page to attach the Amazon RDS instance. For more information, see Adding
Apps.

Attaching and Moving Resources API Version 2013-02-18 715

AWS OpsWorks User Guide

Because an Amazon RDS can be attached to multiple apps, there is no special procedure for moving
the instance from one app to another. Just edit the first app to remove the RDS instance or edit the
second app to add the RDS instance. For more information, see Editing Apps.

Detaching Resources

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When you no longer need an attached resource, you can detach it. This resource remains registered
with the stack and can be attached elsewhere.

Topics

• Unassigning Amazon EBS Volumes

• Disassociating Elastic IP Addresses

• Detaching Amazon RDS Instances

Unassigning Amazon EBS Volumes

Use the following procedure to unassign an Amazon EBS volume from its instance.

To unassign an Amazon EBS volume

1. Ensure that the instance is in the offline state.

2. On the Resources page, click Volumes and click volume name.

3. On the volume's details page, click Unassign.

Detaching Resources API Version 2013-02-18 716

AWS OpsWorks User Guide

Disassociating Elastic IP Addresses

Use the following procedure to disassociate an Elastic IP address from its instance.

To disassociate an Elastic IP address

1. On the Resources page, click Elastic IPs and click edit in the address's Actions column.

2. On the address's details page, click Disassociate.

Detaching Resources API Version 2013-02-18 717

AWS OpsWorks User Guide

After you disassociate an address, AWS OpsWorks Stacks triggers a Configure lifecycle event to
notify the stack's instances of the change.

Detaching Amazon RDS Instances

Use the following procedure to detach an Amazon RDS from an app.

To detach an Amazon RDS instance

1. On the Resources page, click RDS and click the appropriate app in the Apps column.

2. Click Edit and edit the app configuration to detach the instance. For more information, see
Editing Apps.

Note

This procedure detaches an Amazon RDS from a single app. If the instance is attached to
multiple apps, you must repeat this procedure for each app.

Deregistering Resources

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If you no longer need to have a resource registered with a stack, you can deregister it.
Deregistration does not delete the resource from your account; it remains there and can be
registered with another stack or used outside AWS OpsWorks Stacks. If you want to delete the
resource entirely, you have two options:

• If an Elastic IP or Amazon EBS resource is attached to an instance, you can delete the resource
when you delete the instance.

Deregistering Resources API Version 2013-02-18 718

AWS OpsWorks User Guide

Go to the Instances page, click delete in the instance's Actions column, and then select Delete
instance's EBS volumes or Delete the instance's Elastic IP.

• Deregister the resource and then use the Amazon EC2 or Amazon RDS console, API, or CLI to
delete it.

Topics

• Deregistering Amazon EBS Volumes

• Deregistering Elastic IP Addresses

• Deregistering Amazon RDS Instances

Deregistering Amazon EBS Volumes

Use the following procedure to deregister an Amazon EBS volume.

To deregister an Amazon EBS volume

1. If the volume is attached to an instance, unassign it, as described in Unassigning Amazon EBS
Volumes.

2. On the Resources page, click the volume name in the Name column.

3. On the volume's details page, click Deregister.

Deregistering Elastic IP Addresses

Use the following procedure to deregister an Elastic IP address.

Deregistering Resources API Version 2013-02-18 719

AWS OpsWorks User Guide

To deregister an Elastic IP address

1. If the address is associated with an instance, disassociate it, as described in Disassociating
Elastic IP Addresses.

2. On the Resources page, click Elastic IPs and then click the IP address in the Address column.

3. On the address's details page, click Deregister.

Note

If you simply want to register an Elastic IP address with a different stack, you must
deregister it from its current stack and then register it with the new stack. However, you
can move an attached Elastic IP address to an instance in another stack directly. For more
information, see Attaching and Moving Resources.

Deregistering Amazon RDS Instances

Use the following procedure to deregister an Amazon RDS instance.

To deregister an Amazon RDS instance

1. If the instance is associated with an app, detach it, as described in Detaching Resources.

2. On the Resources page, click RDS and then instance's name.

3. On the instance's details page, click Deregister.

Deregistering Resources API Version 2013-02-18 720

AWS OpsWorks User Guide

Tags

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Tags can help you group resources in Chef 11.10, Chef 12, and Chef 12.2 stacks, and track the costs
of using those resources in AWS Billing and Cost Management.

You can apply tags at the stack and layer level. When you create a tag, you are applying the tag
to every resource within the tagged structure. For example, if you apply a tag to a layer, you are
applying the tag to every instance, Amazon EBS volume (except the root), or Elastic Load Balancing
load balancer in the layer. Tags cannot currently be applied to the root, or default, EBS volume of
an instance.

Tags are key-value pairs that you assign to stacks or layers in AWS OpsWorks Stacks. After you
create tags, open the Billing and Cost Management console to activate user-defined tags. For more
information about how to activate your tags and use them to track and manage the costs of your
AWS OpsWorks Stacks resources, see Using Cost Allocation Tags and Activating User-Defined Cost
Allocation Tags in the Billing and Cost Management User Guide.

Tags work in a way that's similar to custom attributes in AWS OpsWorks Stacks. Tags that you apply
to a stack are inherited by each layer in the stack. At the layer level, you can override the values

Tags API Version 2013-02-18 721

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/activating-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/activating-tags.html

AWS OpsWorks User Guide

(but not the key names) of inherited tags, and add new layer-specific tags. AWS OpsWorks applies
the resulting tag set to all resources in the layer. As you create new or assign existing resources to a
layer, the new resources in the layer are tagged with the same set of tags.

Topics

• Setting Tags at the Stack Level

• Setting Tags at the Layer Level

• Managing Tags with the AWS CLI

• Tag Limitations

Setting Tags at the Stack Level

At the stack level, you can add and manage tags by choosing Tags on the stack's home page.

Setting Tags at the Stack Level API Version 2013-02-18 722

AWS OpsWorks User Guide

On the Tags page, add tags as key-value pairs. The following screenshot shows some example tags.
You can delete tags by choosing the red X to the right of a key-value pair.

Setting Tags at the Stack Level API Version 2013-02-18 723

AWS OpsWorks User Guide

Setting Tags at the Layer Level

At the layer level, set tags by choosing the Tags tab. You can find this tab on the Layers home
page, and the home page for each individual layer.

Setting Tags at the Layer Level API Version 2013-02-18 724

AWS OpsWorks User Guide

When you change or add tags at the layer level, be aware that tags that have been added at the
parent stack level are inherited by the layer and its resources. While you can change the values of
inherited tags, you cannot change the key names, or delete inherited tags. Change the key names
or delete tags inherited from the parent stack in stack settings. The following screenshot shows
examples of tags inherited from the stack level. Inherited tags are grayed out.

Setting Tags at the Layer Level API Version 2013-02-18 725

AWS OpsWorks User Guide

For more information about adding tags to stacks, see Create a New Stack. For more information
about adding tags to layers, see Editing an OpsWorks Layer's Configuration.

Managing Tags with the AWS CLI

You can also use AWS CLI commands to add and remove tags at the stack and layer level. For more
information about downloading and installing the AWS CLI, see Installing the AWS Command Line
Interface. Remember to add the --region parameter to your command if the stack that you want
to tag is not in your default region. Layer ARNs do not currently appear in the AWS Management
Console. To get the ARN of a layer, run the describe-layers command.

To add tags by using the AWS CLI

• At the AWS CLI command prompt, type the following command, replacing
stack_or_layer_ARN and specifying your key-value pair tags, and then press Enter. Double
quotation marks are escaped with backslashes.

aws opsworks tag-resource --resource-arn stack_or_layer_ARN --tags "{\"key\":
\"value\",\"key\":\"value\"}"

The following is an example.

aws opsworks tag-resource --resource-arn arn:aws:opsworks:us-
east-2:800000000003:stack/500b99c0-ec00-4cgg-8a0d-1000000jjd1b --tags "{\"Stage\":
\"Production\",\"Organization\":\"Mobile\"}"

Managing Tags with the AWS CLI API Version 2013-02-18 726

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-layers.html

AWS OpsWorks User Guide

To remove tags by using the AWS CLI

• At the AWS CLI command prompt, type the following, and then press Enter.

aws opsworks untag-resource --resource-arn stack_or_layer_ARN --tag-keys "[\"key\",
\"key\"]"

To remove tags, you only specify the key of the tag that you want to remove. The following is
an example.

aws opsworks untag-resource --resource-arn arn:aws:opsworks:us-
east-2:800000000003:stack/500b99c0-ec00-4cgg-8a0d-1000000jjd1b --tag-keys "[\"Stage
\",\"Organization\"]"

Note

You cannot remove inherited tags (tags that were added at the parent stack level) from
a layer. Remove inherited tags from the stack instead.

Tag Limitations

Keep the following limitations in mind when you create tags.

• AWS OpsWorks Stacks limits the number of user-defined tags at the stack and layer level to
40, including user-defined tags inherited from a parent level. This leaves 10 available slots for
default tags that are prepended with opsworks:, and tags that are set by other AWS processes.
A maximum of 50 tags is allowed on a resource, including both user-defined and default tags
that are created by AWS.

• Tag keys cannot start with aws:, opsworks: or rds:. Do not use name or Name as a tag key,
because Name is reserved by AWS OpsWorks Stacks.

• A key can be a maximum of 127 characters, and can contain only Unicode letters, numbers, or
separators, or the following special characters: + - = . _ : / .

• A value can be a maximum 255 characters, and contain only Unicode letters, numbers, or
separators, or the following special characters: + - = . _ : / .

Tag Limitations API Version 2013-02-18 727

AWS OpsWorks User Guide

Monitoring

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can monitor your stacks in the following ways.

• AWS OpsWorks Stacks uses Amazon CloudWatch to provide thirteen custom metrics with
detailed monitoring for each instance in the stack.

• AWS OpsWorks Stacks integrates with AWS CloudTrail to log every AWS OpsWorks Stacks API
call and store the data in an Amazon S3 bucket.

• You can use Amazon CloudWatch Logs to monitor your stack's system, application, and custom
logs.

Topics

• Monitoring Stacks using Amazon CloudWatch

• Logging AWS OpsWorks Stacks API Calls with AWS CloudTrail

• Using Amazon CloudWatch Logs with AWS OpsWorks Stacks

• Monitoring Stacks using Amazon CloudWatch Events

Monitoring Stacks using Amazon CloudWatch

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Monitoring API Version 2013-02-18 728

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks uses Amazon CloudWatch (CloudWatch) to provide monitoring for stacks.

• For Linux stacks, AWS OpsWorks Stacks supports thirteen custom metrics to provide detailed
monitoring for each instance in the stack and summarizes the data for your convenience on the
Monitoring page.

• For Windows stacks, you can monitor standard Amazon EC2 metrics for your instances with the
CloudWatch console.

The Monitoring page does not display Windows metrics.

The Monitoring page displays metrics for an entire stack, a layer, or an instance. AWS OpsWorks
Stacks metrics are distinct from Amazon EC2 metrics. You can also enable additional metrics
through the CloudWatch console, but they typically require additional charges. You can also view
the underlying data on the CloudWatch console, as follows:

To view OpsWorks custom metrics in CloudWatch

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation bar, select the stack's region.

3. In the navigation pane, choose Metrics.

4. In OpsWorks Metrics, choose Instance Metrics, Layer Metrics, or Stack Metrics.

Using Amazon CloudWatch API Version 2013-02-18 729

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS OpsWorks User Guide

Note

AWS OpsWorks Stacks collects metrics by running a process on each instance (the instance
agent). Because CloudWatch collects metrics differently, using the hypervisor, the values
in the CloudWatch console might differ slightly from the corresponding values on the
Monitoring page in the AWS OpsWorks Stacks console.

You can also use CloudWatch console to set alarms. For more information about how to create
alarms, see Creating Amazon CloudWatch Alarms. For a list of CloudWatch custom metrics, see
AWS OpsWorks Metrics and Dimensions. For more information, see Amazon CloudWatch.

Topics

• AWS OpsWorks Stacks Metrics

• Dimensions for AWS OpsWorks Stacks Metrics

• Stack Metrics

• Layer Metrics

• Instance Metrics

Using Amazon CloudWatch API Version 2013-02-18 730

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ops-metricscollected.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

AWS OpsWorks User Guide

AWS OpsWorks Stacks Metrics

AWS OpsWorks Stacks sends the following metrics to CloudWatch every five minutes.

CPU Metrics

Metric Description

cpu_idle The percentage of time that the CPU is idle.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

cpu_nice The percentage of time that the CPU is handling
processes with a positive nice value, which have
a lower scheduling priority. For more information
about what this measures, see nice (Unix).

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

cpu_steal As AWS allocates hypervisor CPU resources among
increasing numbers of instances, virtualization
load rises, and can affect how often the hyperviso
r can perform requested work on an instance.
cpu_steal measures the percentage of time that
an instance is waiting for the hypervisor to allocate
physical CPU resources.

Using Amazon CloudWatch API Version 2013-02-18 731

http://en.wikipedia.org/wiki/Nice_(Unix)

AWS OpsWorks User Guide

Metric Description

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

cpu_system The percentage of time that the CPU is handling
system operations.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

cpu_user The percentage of time that the CPU is handling
user operations.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

Using Amazon CloudWatch API Version 2013-02-18 732

AWS OpsWorks User Guide

Metric Description

cpu_waitio The percentage of time that the CPU is waiting for
input/output operations.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

Memory Metrics

Metric Description

memory_buffers The amount of buffered memory.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

memory_cached The amount of cached memory.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

Using Amazon CloudWatch API Version 2013-02-18 733

AWS OpsWorks User Guide

Metric Description

memory_free The amount of free memory.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

memory_swap The amount of swap space.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

memory_total The total amount of memory.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

Using Amazon CloudWatch API Version 2013-02-18 734

AWS OpsWorks User Guide

Metric Description

memory_used The amount of memory in use.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

Load Metrics

Metric Description

load_1 The load averaged over a one-minute window.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

load_5 The load averaged over a five-minute window.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

load_15 The load averaged over a 15-minute window.

Using Amazon CloudWatch API Version 2013-02-18 735

AWS OpsWorks User Guide

Metric Description

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

Process Metrics

Metric Description

procs The number of active processes.

Valid Dimensions: The IDs of the individual
resources for which you are viewing metrics:
StackId, LayerId, or InstanceId.

Valid Statistics: Average, Minimum, Maximum, Sum,
or Data Samples.

Unit: None

Dimensions for AWS OpsWorks Stacks Metrics

AWS OpsWorks Stacks metrics use the AWS OpsWorks Stacks namespace, and provide metrics for
the following dimensions:

Dimension Description

StackId Average values for a stack.

LayerId Average values for a layer.

InstanceId Average values for an instance.

Using Amazon CloudWatch API Version 2013-02-18 736

AWS OpsWorks User Guide

Stack Metrics

To view a summary of metrics for an entire stack, select a stack in the AWS OpsWorks Stacks
Dashboard and then click Monitoring in the navigation pane. The following example is for a stack
with a PHP and a DB layer.

The stack view displays graphs of the four types of metrics for each layer over a specified time
period: 1 hour, 8 hours, 24 hours, 1 week, or 2 weeks. Note the following:

• AWS OpsWorks Stacks periodically updates the graphs; the countdown timer at the upper right
indicates the time remaining until the next update,

• If a layer has more than one instance, the graphs display average values for the layer.

• You can specify the time period by clicking the list at the upper right and selecting your
preferred value.

For each metric type, you can use the list at the top of the graph to select the particular metric that
you want to view.

Layer Metrics

To view metrics for a particular layer, click the layer name in the Monitoring Layers view. The
following example shows metrics for the PHP layer, which has two instances.

Using Amazon CloudWatch API Version 2013-02-18 737

AWS OpsWorks User Guide

The metric types are the same as for the stack metrics, and for each type, you can use the list at the
top of the graph to select the particular metric that you want to view.

Note

You can also display layer metrics by going to the layer's details page and clicking
Monitoring at the upper right.

Instance Metrics

To view metrics for a particular instance, click the instance name in the layer monitoring view. The
following example shows metrics for the PHP layer's php-app1 instance.

Using Amazon CloudWatch API Version 2013-02-18 738

AWS OpsWorks User Guide

Using Amazon CloudWatch API Version 2013-02-18 739

AWS OpsWorks User Guide

The graphs summarize all the available metrics for each metric type. To get exact values for a
particular point in time, use your mouse to move the slider (indicated by the red arrow in the
previous illustration) to the appropriate position.

Note

You can also display instance metrics by going to the instance's details page and choosing
Monitoring at the upper right.

Logging AWS OpsWorks Stacks API Calls with AWS CloudTrail

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks is integrated with AWS CloudTrail, a service that provides a record of
actions taken by an IAM identity, or an AWS service in AWS OpsWorks Stacks. CloudTrail captures
all API calls for AWS OpsWorks Stacks as events, including calls from the AWS OpsWorks Stacks
console and from code calls to the AWS OpsWorks Stacks APIs. If you create a trail, you can
enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for
AWS OpsWorks Stacks. If you don't configure a trail, you can still view the most recent events in
the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to AWS OpsWorks Stacks, the IP address from which the
request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS OpsWorks Stacks Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS OpsWorks Stacks, that activity is recorded in a CloudTrail event along with other AWS service

Using AWS CloudTrail API Version 2013-02-18 740

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS OpsWorks User Guide

events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS OpsWorks Stacks,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all regions. The trail logs events from all
regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All AWS OpsWorks Stacks actions are logged by CloudTrail and are documented in the AWS
OpsWorks Stacks API Reference. For example, calls to the CreateLayer, DescribeInstances,
and StartInstance actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding AWS OpsWorks Stacks Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

Using AWS CloudTrail API Version 2013-02-18 741

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/opsworks/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/opsworks/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateLayer.html
https://docs.aws.amazon.com/opsworks/latest/APIReference/API_DescribeInstances.html
https://docs.aws.amazon.com/opsworks/latest/APIReference/API_StartInstance.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS OpsWorks User Guide

The following example shows a CloudTrail log entry that demonstrates the CreateLayer action.

 {
 "Records": [
 {
 "awsRegion": "us-west-2",
 "eventID": "342cd1ec-8214-4a0f-a68f-8e6352feb5af",
 "eventName": "CreateLayer",
 "eventSource": "opsworks.amazonaws.com",
 "eventTime": "2014-05-28T16:05:29Z",
 "eventVersion": "1.01"ed,
 "requestID": "e3952a2b-e681-11e3-aa71-81092480ee2e",
 "requestParameters": {
 "attributes": {},
 "customRecipes": {},
 "name": "2014-05-28 16:05:29 +0000 a073",
 "shortname": "customcf4571d5c0d6",
 "stackId": "a263312e-f937-4949-a91f-f32b6b641b2c",
 "type": "custom"
 },
 "responseElements": null,
 "sourceIPAddress": "198.51.100.0",
 "userAgent": "aws-sdk-ruby/2.0.0 ruby/2.1 x86_64-linux",
 "userIdentity": {
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "accountId": "111122223333",
 "arn": "arn:aws:iam::111122223333:user/A-User-Name",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "type": "IAMUser",
 "userName": "A-User-Name"
 }
 },
 {
 "awsRegion": "us-west-2",
 "eventID": "a860d8f8-c1eb-449b-8f55-eafc373b49a4",
 "eventName": "DescribeInstances",
 "eventSource": "opsworks.amazonaws.com",
 "eventTime": "2014-05-28T16:05:31Z",
 "eventVersion": "1.01",
 "requestID": "e4691bfd-e681-11e3-aa71-81092480ee2e",
 "requestParameters": {
 "instanceIds": [
 "218289c4-0492-473d-a990-3fbe1efa25f6"

Using AWS CloudTrail API Version 2013-02-18 742

AWS OpsWorks User Guide

]
 },
 "responseElements": null,
 "sourceIPAddress": "198.51.100.0",
 "userAgent": "aws-sdk-ruby/2.0.0 ruby/2.1x86_64-linux",
 "userIdentity": {
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "accountId": "111122223333",
 "arn": "arn:aws:iam::111122223333:user/A-User-Name",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "type": "IAMUser",
 "userName": "A-User-Name"
 }
 }
]
}

Using Amazon CloudWatch Logs with AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To simplify the process of monitoring logs on multiple instances, AWS OpsWorks Stacks supports
Amazon CloudWatch Logs. You enable CloudWatch Logs at the layer level in AWS OpsWorks
Stacks. CloudWatch Logs integration works with Chef 11.10 and Chef 12 Linux-based stacks. You
incur additional charges when you enable CloudWatch Logs, so review Amazon CloudWatch Pricing
before you get started.

CloudWatch Logs monitors selected logs for the occurrence of a user-specified
pattern. For example, you can monitor logs for the occurrence of a literal term such as
NullReferenceException, or count the number of such occurrences. After you enable
CloudWatch Logs in AWS OpsWorks Stacks, the AWS OpsWorks Stacks agent sends the logs

Using Amazon CloudWatch Logs API Version 2013-02-18 743

https://aws.amazon.com/cloudwatch/pricing/

AWS OpsWorks User Guide

to CloudWatch Logs. For more information about CloudWatch Logs, see Getting Started with
CloudWatch Logs.

Prerequisites

Before you can enable CloudWatch Logs, your instances must be running version 3444 or later of
the AWS OpsWorks Stacks agent in Chef 11.10 stacks, and 4023 or later in Chef 12 stacks. You
must also use a compatible instance profile for any instances that you are monitoring by using
CloudWatch Logs.

If you are using a custom instance profile (one that AWS OpsWorks Stacks did not provide when
you created the stack), AWS OpsWorks Stacks cannot automatically upgrade the instance profile.
You must manually attach the AWSOpsWorksCloudWatchLogs policy to your profile by using IAM.
For information, see Managing IAM policies in the IAM User Guide.

If you need to upgrade your agent version or instance profile, AWS OpsWorks Stacks displays a
reminder similar to following screen shot when you open the CloudWatch Logs tab on the Layer
page.

Updating the agent on all instances in a layer can take some time. If you try to enable CloudWatch
Logs on a layer before the agent upgrade is complete, you see a message similar to the following.

Using Amazon CloudWatch Logs API Version 2013-02-18 744

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_GettingStarted.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_GettingStarted.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console

AWS OpsWorks User Guide

Enabling CloudWatch Logs

1. After any required agent and instance profile upgrades are complete, you can enable
CloudWatch Logs by setting the slider control on the CloudWatch Logs tab to On.

2. To stream command logs, set the Stream command logs slider to On. This sends logs of Chef
activities and user-initiated commands on your layer's instances to CloudWatch Logs.

The data included in these logs closely matches what you see in the results of a
DescribeCommands operation, when you open the target of the log URL. It includes data
about setup, configure, deploy, undeploy, start, stop, and recipe run commands.

3. To stream logs of activities that are stored in a custom location on your layer's instances, such
as /var/log/apache/myapp/mylog*, type the custom location in the Stream custom logs
string box, and then choose Add (+).

4. Choose Save. Within a few minutes, AWS OpsWorks Stacks log streams should be visible in the
CloudWatch Logs console.

Turning Off CloudWatch Logs

To turn off CloudWatch Logs, edit your layer settings.

1. On your layer's properties page, choose Edit.

Using Amazon CloudWatch Logs API Version 2013-02-18 745

http://docs.aws.amazon.com/opsworks/latest/APIReference/API_DescribeCommands.html

AWS OpsWorks User Guide

2. On the editing page, choose the CloudWatch Logs tab.

3. In the CloudWatch Logs area, turn off Stream command logs. Choose X on custom logs to
delete them from log streams, if applicable.

4. Choose Save.

Deleting Streamed Logs from CloudWatch Logs

After you turn off CloudWatch Logs streaming from AWS OpsWorks Stacks, existing logs are still
available in the CloudWatch Logs management console. You still incur charges for stored logs,
unless you export the logs to Amazon S3 or delete them. For more information about exporting
logs to S3, see Exporting Log Data to Amazon S3.

You can delete log streams and log groups in the CloudWatch Logs management console, or
by running the delete-log-stream and delete-log-group AWS CLI commands. For more
information about changing log retention periods, see Change Log Data Retention in CloudWatch
Logs.

Managing Your Logs in CloudWatch Logs

The logs that you are streaming are managed in the CloudWatch Logs console.

Using Amazon CloudWatch Logs API Version 2013-02-18 746

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3Export.html
http://docs.aws.amazon.com/cli/latest/reference/logs/delete-log-stream.html
http://docs.aws.amazon.com/cli/latest/reference/logs/delete-log-group.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html

AWS OpsWorks User Guide

AWS OpsWorks creates default log groups and log streams automatically. Log groups for AWS
OpsWorks Stacks data have names that match the following pattern:

stack_name/layer_name/chef_log_name

Custom logs have names that match the following pattern:

/stack_name/layer_short_name/file_path_name. The path name is made more human-
readable by the removal of special characters, such as asterisks (*).

When you've located your logs in CloudWatch Logs, you can organize the logs into groups, search
and filter logs by creating metric filters, and create custom alarms.

Configuring Chef 12.2 Windows Layers to Use CloudWatch Logs

CloudWatch Logs automatic integration is not supported for Windows-based instances. The
CloudWatch Logs tab is not available on layers in Chef 12.2 stacks. To manually enable streaming
to CloudWatch Logs for Windows-based instances, do the following.

• Update the instance profile for Windows-based instances so that the CloudWatch Logs agent has
appropriate permissions. The AWSOpsWorksCloudWatchLogs policy statement shows which
permissions are required.

Using Amazon CloudWatch Logs API Version 2013-02-18 747

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Create-Log-Group.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

AWS OpsWorks User Guide

Typically, you do this task only once. You can then use the updated instance profile for all
Windows instances in a layer.

• Edit the following JSON configuration file on each instance. This file includes log stream
preferences, such as which logs to monitor.

%PROGRAMFILES%\Amazon\Ec2ConfigService\Settings
\AWS.EC2.Windows.CloudWatch.json

You can automate the preceding two tasks by creating custom recipes to handle the required tasks
and assigning them to the Chef 12.2 layer's Setup events. Each time you start a new instance on
those layers, AWS OpsWorks Stacks automatically runs your recipes after the instance finishes
booting, enabling CloudWatch Logs. For more information about manually configuring CloudWatch
Logs streams for Windows-based instances, see the following.

• Configuring a Windows Instance Using the EC2Config Service

• Sending Logs, Events, and Performance Counters to Amazon CloudWatch

• CloudWatch Update – Enhanced Support for Windows Log Files (blog post)

To turn off CloudWatch Logs on Windows-based instances, reverse the process. Clear the Enable
CloudWatch Logs integration check box in the EC2 Service Properties dialog box, delete log
stream preferences from the AWS.EC2.Windows.CloudWatch.json file; and stop running any
Chef recipes that are automatically assigning CloudWatch Logs permissions to new instances in
Chef 12.2 layers.

Monitoring Stacks using Amazon CloudWatch Events

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using Amazon CloudWatch Events API Version 2013-02-18 748

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/UsingConfig_WinAMI.html#send_logs_to_cwl
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/send_logs_to_cwl.html
https://aws.amazon.com/blogs/aws/additional-cloudwatch-logs-windows/

AWS OpsWorks User Guide

You can configure rules in Amazon CloudWatch Events to alert you to changes in AWS OpsWorks
Stacks resources, and direct CloudWatch Events to take actions based on event contents. For
more information about how to get started with CloudWatch Events and set up rules, see Getting
Started with CloudWatch Events in the CloudWatch Events User Guide.

The following AWS OpsWorks Stacks event types are supported in CloudWatch Events.

Instance state change

Indicates a change in the state of an AWS OpsWorks Stacks instance.

Command state change

Indicates a change occurred in the state of an AWS OpsWorks Stacks command.

Deployment state change

Indicates a change occurred in the state of an AWS OpsWorks Stacks deployment.

Alerts

Indicates an AWS OpsWorks Stacks service error was raised.

For more information about the AWS OpsWorks Stacks event types that are supported by
CloudWatch Events, see AWS OpsWorks Stacks Events in the CloudWatch Events User Guide.

Security and Permissions

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Each of your users must have appropriate AWS credentials to access your account's AWS
resources. The recommended way to provide credentials to users is with AWS Identity and Access
Management (IAM). AWS OpsWorks Stacks integrates with IAM to let you control the following:

Security and Permissions API Version 2013-02-18 749

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CWE_GettingStarted.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CWE_GettingStarted.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html#opsworks_event_types
https://docs.aws.amazon.com/iam/
https://docs.aws.amazon.com/iam/

AWS OpsWorks User Guide

• How individual users can interact with AWS OpsWorks Stacks.

For example, you can allow some users to deploy apps to any stack but not modify the stack
itself, while allowing other users full access but only to certain stacks, and so on.

• How AWS OpsWorks Stacks can act on your behalf to access stack resources such as Amazon EC2
instances and Amazon S3 buckets.

AWS OpsWorks Stacks provides a service role that grants permissions for these tasks.

• How apps that run on Amazon EC2 instances controlled by AWS OpsWorks Stacks can access
other AWS resources, such as data stored on Amazon S3 buckets.

You can assign an instance profile to a layer's instances that grants permissions to apps running
on those instances to access other AWS resources.

• How to manage user-based SSH keys and use SSH or RDP to connect to instances.

For each stack, administrative users can assign each user a personal SSH key, or authorize users
to specify their own key. You can also authorize SSH or RDP access and sudo or administrator
privileges on the stack's instances for each user.

Other aspects of security include the following:

• How to manage updating your instances' operating system with the latest security patches.

For more information, see Managing Security Updates.

• How to configure Amazon EC2 security groups to control network traffic to and from your
instances.

How to specify custom security groups instead of the AWS OpsWorks Stacks default security
groups. For more information, see Using Security Groups.

Topics

• Managing AWS OpsWorks Stacks User Permissions

• Allowing AWS OpsWorks Stacks to Act on Your Behalf

• Cross-service confused deputy prevention in AWS OpsWorks Stacks

• Specifying Permissions for Apps Running on EC2 instances

• Managing SSH Access

Security and Permissions API Version 2013-02-18 750

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

AWS OpsWorks User Guide

• Managing Linux Security Updates

• Using Security Groups

Managing AWS OpsWorks Stacks User Permissions

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

As a best practice, restrict AWS OpsWorks Stacks users to a specified set of actions or set of stack
resources. You can control AWS OpsWorks Stacks user permissions in two ways: by using the AWS
OpsWorks Stacks Permissions page, and by applying an appropriate IAM policy.

The OpsWorks Permissions page—or the equivalent CLI or API actions—allows you to control user
permissions in a multiuser environment on a per-stack basis by assigning each user one of several
permission levels. Each level grants permissions for a standard set of actions for a particular stack
resource. Using the Permissions page, you can control the following:

• Who can access each stack.

• Which actions each user is allowed to perform on each stack.

For example, you can allow some users to only view the stack while others can deploy
applications, add instances, and so on.

• Who can manage each stack.

You can delegate management of each stack to one or more specified users.

• Who has user-level SSH access and sudo privileges (Linux) or RDP access and administrator
privileges (Windows) on each stack's Amazon EC2 instances.

You can grant or remove these permissions separately for each user at any time.

Managing User Permissions API Version 2013-02-18 751

AWS OpsWorks User Guide

Important

Denying SSH/RDP access does not necessarily prevent a user from logging into instances.
If you specify an Amazon EC2 key pair for an instance, any user with the corresponding
private key can log in or use the key to retrieve the Windows administrator password. For
more information, see Managing SSH Access.

You can use the IAM console, CLI, or API to add policies to your users that grant explicit permissions
for the various AWS OpsWorks Stacks resources and actions.

• Using an IAM policy to specify permissions is more flexible than using the permissions levels.

• You can set up IAM Identities (users, user groups, and roles), which grant permissions to IAM
identities, such as users and user groups, or define roles that can be associated with federated
users.

• An IAM policy is the only way to grant permissions for certain key AWS OpsWorks Stacks actions.

For example, you must use IAM to grant permissions for opsworks:CreateStack and
opsworks:CloneStack, which are used to create and clone stacks, respectively.

While it's not explicitly possible to import federated users in the console, a federated user can
implicitly create a user profile by choosing My Settings at the upper right of the AWS OpsWorks
Stacks console, and then choosing Users, also at the upper right. On the Users page, federated
users—whose accounts are created by using the API or CLI, or implicitly through the console—can
manage their accounts similarly to non-federated users.

The two approaches are not mutually exclusive and it is sometimes useful to combine them; AWS
OpsWorks Stacks then evaluates both sets of permissions. For example, suppose you want to allow
users to add or delete instances but not add or delete layers. None of the AWS OpsWorks Stacks
permission levels grant that specific set of permissions. However, you can use the Permissions
page to grant users a Manage permission level, which allows them to perform most stack
operations, and then apply an IAM policy that denies permissions to add or remove layers. For
more information, see Controlling access to AWS resources using policies.

The following is a typical model for managing user permissions. In each case, the reader (you) is
assumed to be an administrative user.

Managing User Permissions API Version 2013-02-18 752

https://console.aws.amazon.com/iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html

AWS OpsWorks User Guide

1. Use the IAM console to apply AWSOpsWorks_FullAccess policies to one or more administrative
users.

2. Create a user for each nonadministrative user with a policy that grants no AWS OpsWorks Stacks
permissions.

If a user requires access only to AWS OpsWorks Stacks, you might not need to apply a policy at
all. You can instead manage their permissions with the AWS OpsWorks Stacks Permissions page.

3. Use the AWS OpsWorks Stacks Users page to import the nonadministrative users into AWS
OpsWorks Stacks.

4. For each stack, use the stack's Permissions page to assign a permission level to each user.

5. As needed, customize users' permission levels by applying an appropriately configured IAM
policy.

For more recommendations about managing users, see Best Practices: Managing Permissions.

For more information about IAM best practices, see Security best practices in IAM in the IAM User
Guide.

Topics

• Managing AWS OpsWorks Stacks Users

• Granting AWS OpsWorks Stacks Users Per-Stack Permissions

• Managing AWS OpsWorks Stacks Permissions by Attaching an IAM Policy

• Example Policies

• AWS OpsWorks Stacks Permissions Levels

Managing AWS OpsWorks Stacks Users

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Managing User Permissions API Version 2013-02-18 753

https://console.aws.amazon.com/iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS OpsWorks User Guide

Before you can import users into AWS OpsWorks Stacks and grant them permissions, you must first
have created a user for each individual. To create IAM users, start by signing in to AWS as a user
that has been granted the permissions defined in the IAMFullAccess policy. You then use the IAM
console to create IAM users for everyone who needs to access AWS OpsWorks Stacks. You can then
import those users into AWS OpsWorks Stacks and grant user permissions as follows:

Regular AWS OpsWorks Stacks Users

Regular users don't require an attached policy. If they do have one, it typically does not include
any AWS OpsWorks Stacks permissions. Instead, use the AWS OpsWorks Stacks Permissions
page to assign one of the following permissions levels to regular users on a stack-by-stack
basis.

• Show permissions allow users to view the stack, but not perform any operations.

• Deploy permissions include the Show permissions and also allow users to deploy and update
apps.

• Manage permissions include the Deploy permissions and also allow users to perform stack
management operations, such as adding layers or instances, use the Permissions page to set
user permissions, and enable their own SSH/RDP and sudo/admin privileges.

• Deny permissions deny access to the stack.

If these permissions levels are not quite what you want for a particular user, you can customize
the user's permissions by applying an IAM policy. For example, you might want to use the
AWS OpsWorks Stacks Permissions page to assign Manage permissions level to a user, which
grants them permissions to perform all stack management operations, but not to create or
clone stacks. You could then apply a policy that restricts those permissions by denying them
permission to add or delete layers or augments those permissions by allowing them to create
or clone stacks. For more information, see Managing AWS OpsWorks Stacks Permissions by
Attaching an IAM Policy.

AWS OpsWorks Stacks Administrative Users

Administrative users are the account owner or an IAM user with the permissions that are
defined by the AWSOpsWorks_FullAccess policy. In addition to the permissions granted to
Manage users, this policy includes permissions for actions that cannot be granted through the
Permissions page, such as the following:

• Importing users into AWS OpsWorks Stacks

• Creating and cloning stacks

Managing User Permissions API Version 2013-02-18 754

AWS OpsWorks User Guide

For the complete policy, see Example Policies. For a detailed list of permissions that can be
granted to users only by applying an IAM policy, see AWS OpsWorks Stacks Permissions Levels.

Topics

• Users and Regions

• Creating an AWS OpsWorks Stacks Administrative User

• Creating IAM users for AWS OpsWorks Stacks

• Importing Users into AWS OpsWorks Stacks

• Editing AWS OpsWorks Stacks User Settings

Users and Regions

AWS OpsWorks Stacks users are available within the regional endpoint in which they were created.
You can create users in any of the following Regions.

• US East (Ohio) Region

• US East (N. Virginia) Region

• US West (Oregon) Region

• US West (N. California) Region

• Canada (Central) Region (API only; not available in the AWS Management Console

• Asia Pacific (Mumbai) Region

• Asia Pacific (Singapore) Region

• Asia Pacific (Sydney) Region

• Asia Pacific (Tokyo) Region

• Asia Pacific (Seoul) Region

• Europe (Frankfurt) Region

• Europe (Ireland) Region

• Europe (London) Region

• Europe (Paris) Region

• South America (São Paulo) Region

Managing User Permissions API Version 2013-02-18 755

AWS OpsWorks User Guide

When you import users to AWS OpsWorks Stacks, you import them to one of the regional
endpoints; if you want an user to be available in more than one Region, you must import the user
to that Region. You can also import AWS OpsWorks Stacks users from one Region to another; if you
import a user to a Region that already has a user with the same name, the imported user replaces
the existing user. For more information about importing users, see Importing Users.

Creating an AWS OpsWorks Stacks Administrative User

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can create an AWS OpsWorks Stacks administrative user by adding the
AWSOpsWorks_FullAccess policy to a user, which grants that user AWS OpsWorks Stacks Full
Access permissions. For more information about creating an administrative user, see Create an
administrative user.

Note

The AWSOpsWorks_FullAccess policy allows users to create and manage AWS OpsWorks
Stacks stacks, but users cannot create an IAM service role for the stack; they must use
an existing role. The first user to create a stack must have additional IAM permissions,
as described in Administrative Permissions. When this user creates the first stack, AWS
OpsWorks Stacks creates an IAM service role with the required permissions. Thereafter,
any user with opsworks:CreateStack permissions can use that role to create additional
stacks. For more information, see Allowing AWS OpsWorks Stacks to Act on Your Behalf.

When you create a user, you can add additional customer-managed policies to fine-tune the user's
permissions, as needed. For example, you might want an administrative user to be able to create
or delete stacks, but not import new users. For more information, see Managing AWS OpsWorks
Stacks Permissions by Attaching an IAM Policy.

Managing User Permissions API Version 2013-02-18 756

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-set-up.html#create-an-admin
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-set-up.html#create-an-admin

AWS OpsWorks User Guide

If you have multiple administrative users, instead of setting permissions separately for each user,
you can add the AWSOpsWorks_FullAccess policy to an IAM group and add the users to that group.

For information about creating a group, see Creating IAM user groups. When you create the group,
add the AWSOpsWorks_FullAccess policy. You can also add the AdministratorAccess policy, which
includes the AWSOpsWorks_FullAccess permissions.

For information about adding permissions to an existing group, see Attaching a policy to an IAM
user group.

Creating IAM users for AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Before you can import IAM users into AWS OpsWorks Stacks, you need to create them. You can do
this using the IAM console, command line, or API. For full instructions, see Creating an IAM user in
your AWS account.

Note that unlike administrative users, you don't need to attach a policy to define permissions. You
can set permissions after importing the users into AWS OpsWorks Stacks, as explained in Managing
User Permissions.

For more information on creating IAM users and groups, see Getting started with IAM.

Importing Users into AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Managing User Permissions API Version 2013-02-18 757

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_attach-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_attach-policy.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Administrative users can import users into AWS OpsWorks Stacks; they can also import AWS
OpsWorks Stacks users from one regional endpoint to another. When you import users to AWS
OpsWorks Stacks, you import them to one of the AWS OpsWorks Stacks regional endpoints. If you
want a user to be available in more than one Region, you must import the user to that Region.

While it's not explicitly possible to import federated users in the console, a federated user can
implicitly create a user profile by choosing My Settings at the upper right of the AWS OpsWorks
Stacks console, and then choosing Users, also at the upper right. On the Users page, federated
users—whose accounts are created by using the API or CLI, or implicitly through the console—can
manage their accounts similarly to non-federated users.

To import users into AWS OpsWorks Stacks

1. Sign in to AWS OpsWorks Stacks as an administrative user or as the account owner.

2. Choose Users at the upper right to open the Users page.

3. Choose Import IAM Users to <region name> to display the users that are available, but that
have not yet been imported.

4. Fill the Select all check box, or select one or more individual users. When you are finished,
choose Import to OpsWorks.

Note

After you have imported a user into AWS OpsWorks Stacks, if you use the IAM console
or API to delete the user from your account, the user does not automatically lose SSH
access that you have granted through AWS OpsWorks Stacks. You must also delete the

Managing User Permissions API Version 2013-02-18 758

AWS OpsWorks User Guide

user from AWS OpsWorks Stacks by opening the Users page, and choosing delete in
the user's Actions column.

To import AWS OpsWorks Stacks users from one Region to another

AWS OpsWorks Stacks users are available within the regional endpoint in which they were created.
You can create users in the Regions shown in Users and Regions.

You can import AWS OpsWorks Stacks users from one Region to the Region to which your Users list
is currently filtered. If you import a user to a Region that already has a user with the same name,
the imported user replaces the existing user.

1. Sign in to AWS OpsWorks Stacks as an administrative user or as the account owner.

2. Choose Users at the upper right to open the Users page. If you have AWS OpsWorks Stacks
users in more than one Region, use the Filter control to filter for the Region to which you want
to import users.

3. Choose Import AWS OpsWorks Stacks users from another Region to <current region>.

Managing User Permissions API Version 2013-02-18 759

AWS OpsWorks User Guide

4. Select the Region from which you want to import AWS OpsWorks Stacks users.

5. Select one or more users to import, or select all users, and then choose Import to this region.
Wait for AWS OpsWorks Stacks to display the imported users in the Users list.

Unix IDs and Users Created Outside AWS OpsWorks Stacks

AWS OpsWorks assigns users on AWS OpsWorks Stacks instances Unix ID (UID) values between
2000 and 4000. Because AWS OpsWorks reserves the 2000-4000 range of UIDs, users that you
create outside of AWS OpsWorks (by using cookbook recipes, or by importing users into AWS
OpsWorks from IAM, for example) can have UIDs that are overwritten by AWS OpsWorks Stacks for
another user. This can result in users that you have created outside of AWS OpsWorks Stacks not
showing up in data bag search results, or being excluded from the AWS OpsWorks Stacks built-in
sync_remote_users operation.

Managing User Permissions API Version 2013-02-18 760

AWS OpsWorks User Guide

External processes can also create users with UIDs that AWS OpsWorks Stacks can overwrite.
Some operating system packages, for example, can create a user as part of post-installation
processes. When you or a software process creates a user on a Linux-based operating system
without explicitly specifying a UID—which is the default—the UID assigned by AWS OpsWorks
Stacks is <highest existing AWS OpsWorks UID> + 1.

As a best practice, create AWS OpsWorks Stacks users and manage their access in the AWS
OpsWorks Stacks console, AWS CLI, or by using an AWS SDK. If you do create users on AWS
OpsWorks Stacks instances outside of AWS OpsWorks, use UnixID values greater than 4000.

Editing AWS OpsWorks Stacks User Settings

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After you have imported users, you can edit their settings, as follows:

To edit user settings

1. On the Users page, choose edit in the user's Actions column.

2. You can specify the following settings.

Self Management

Select Yes to allow the user to use the MySettings page to specify his or her personal SSH
key.

Note

You can also enable self-management by adding IAM policy to the IAM identity
that grants permissions for the DescribeMyUserProfile and UpdateMyUserProfile
actions.

Managing User Permissions API Version 2013-02-18 761

https://docs.aws.amazon.com/opsworks/latest/APIReference/API_DescribeMyUserProfile.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateMyUserProfile.html

AWS OpsWorks User Guide

Public SSH key

(Optional) Enter a public SSH key for the user. This key will appear on the user's My
Settings page. If you enable self-management, the user can edit My Settings and specify
his or her own key. For more information, see Registering a User's Public SSH Key.

AWS OpsWorks Stacks installs this key on all Linux instances; users can use the associated
private key to log in. For more information, see Logging In with SSH. You cannot use this
key with Windows stacks.

Permissions

(Optional) Set the user's permissions levels for each stack in one place instead of setting
them separately by using each stack's Permissions page. For more information on
permissions levels, see Granting Per-Stack Permissions.

Managing User Permissions API Version 2013-02-18 762

AWS OpsWorks User Guide

Granting AWS OpsWorks Stacks Users Per-Stack Permissions

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The simplest way to manage AWS OpsWorks Stacks user permissions is by using a stack's
Permissions page. Each stack has its own page, which grants permissions for that stack.

You must be signed in as an administrative user or Manage user to modify any of the permissions
settings. The list shows only those users that have been imported into AWS OpsWorks Stacks. For
information on how to create and import users, see Managing Users.

The default permission level is IAM Policies Only, which grants users only those permissions that
are in their IAM policy.

• When you import a user from IAM or from another Region, the user is added to the list for all
existing stacks with an IAM Policies Only permission level.

• By default, a user whom you have just imported from another Region has no access to stacks in
the destination Region. If you import users from another Region, to let them manage stacks in
the destination Region, they must be assigned permissions to those stacks after you import the
users.

• When you create a new stack, all current users are added to the list with IAM Policies Only
permission levels.

Topics

• Setting a User's Permissions

• Viewing your Permissions

• Using IAM Condition Keys to Verify Temporary Credentials

Managing User Permissions API Version 2013-02-18 763

AWS OpsWorks User Guide

Setting a User's Permissions

To set a user's permissions

1. In the navigation pane, choose Permissions.

2. On the Permissions page, choose Edit.

3. Change the Permission level and Instance access settings:

• Use the Permissions level settings to assign one of the standard permission levels to each
user, which determine whether the user can access this stack and what actions the user
can perform. If a user has an IAM policy, AWS OpsWorks Stacks evaluates both sets of
permissions. For an example see Example Policies.

• The Instance access SSH/RDP setting specifies whether the user has SSH (Linux) or RDP
(Windows) access to the stack's instances.

If you authorize SSH/RDP access, you can optionally select sudo/admin, which grants the
user sudo (Linux) or administrative (Windows) privileges on the stack's instances.

You can assign each user to one of the following permissions levels. For a list of the actions that are
allowed by each level, see AWS OpsWorks Stacks Permissions Levels.

Deny

The user cannot perform any AWS OpsWorks Stacks actions on the stack, even if they have an
IAM policy that grants AWS OpsWorks Stacks full access permissions. You might use this, for
example, to deny some users access to stacks for unreleased products.

Managing User Permissions API Version 2013-02-18 764

AWS OpsWorks User Guide

IAM Policies Only

The default level, which is assigned to all newly imported users, and to all users for newly
created stacks. The user's permissions are determined by their IAM policy. If a user has no IAM
policy, or their policy has no explicit AWS OpsWorks Stacks permissions, they cannot access the
stack. Administrative users are typically assigned this level because their IAM policies already
grant full access permissions.

Show

The user can view a stack, but not perform any operations. For example, managers might want
to monitor an account's stacks, but would not need to deploy apps or modify the stack in any
way.

Deploy

Includes the Show permissions and also allows the user to deploy apps. For example, an app
developer might need to deploy updates to the stack's instances but not add layers or instances
to the stack.

Manage

Includes the Deploy permissions and also allows the user to perform a variety of stack
management operations, including:

• Adding or deleting layers and instances.

• Using the stack's Permissions page to assign permissions levels to users.

• Registering or deregistering resources.

For example, each stack can have a designated manager who is responsible for ensuring that
the stack has an appropriate number and type of instances, handling package and operating
system updates, and so on.

Note

The Manage level does not let users create or clone stacks. Those permissions must be
granted by an IAM policy. For an example, see Manage Permissions.

If the user also has an IAM policy, AWS OpsWorks Stacks evaluates both sets of permissions. This
allows you to assign a permission level to a user and then apply a policy to restrict or augment
the level's allowed actions. For example, you could apply a policy that allows a Manage user to

Managing User Permissions API Version 2013-02-18 765

AWS OpsWorks User Guide

create or clone stacks, or denies that user the ability to register or deregister resources. For some
examples of such policies, see Example Policies.

Note

If the user's policy allows additional actions, the result can appear to override the
Permissions page settings. For example, if a user has a policy that allows the CreateLayer
action but you use the Permissions page to specify Deploy permissions, the user is still
allowed to create layers. The exception to this rule is the Deny option, which denies stack
access even to users with AWSOpsWorks_FullAccess policies. For more information, see
Controlling access to AWS resources using policies.

Viewing your Permissions

If self-management is enabled, users can see a summary of their permission levels for every stack
by choosing My Settings, on the upper right. Users can also access My Settings if their policy
grants permissions for the DescribeMyUserProfile and UpdateMyUserProfile actions.

Using IAM Condition Keys to Verify Temporary Credentials

AWS OpsWorks Stacks has a built-in authorization layer that supports additional authorization
cases (such as the simplified management of read-only or read-write access to stacks for individual
users). This authorization layer relies on the usage of temporary credentials. Because of this,
you cannot use an aws:TokenIssueTime condition to verify that users are using long-term
credentials, or block actions from users who are using temporary credentials, as described in IAM
JSON policy elements reference in the IAM documentation.

Managing AWS OpsWorks Stacks Permissions by Attaching an IAM Policy

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Managing User Permissions API Version 2013-02-18 766

http://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateLayer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_DescribeMyUserProfile.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateMyUserProfile.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_Null
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_Null

AWS OpsWorks User Guide

You can specify a user's AWS OpsWorks Stacks permissions by attaching an IAM policy. An attached
policy is required for some permissions:

• Administrative user permissions, such as importing users.

• Permissions for some actions, such as creating or cloning a stack.

For a complete list of actions that require an attached policy, see AWS OpsWorks Stacks
Permissions Levels.

You can also use a policy to customize permission levels that were granted through the
Permissions page. This section provides a brief summary of how to apply an IAM policy to a user to
specify AWS OpsWorks Stacks permissions. For more information, see Access management for AWS
resources.

An IAM policy is a JSON object that contains one or more statements. Each statement element has
a list of permissions, which have three basic elements of their own:

Action

The actions that the permission affects. You specify AWS OpsWorks Stacks
actions as opsworks:action. An Action can be set to a specific action such as
opsworks:CreateStack, which specifies whether the user is allowed to call CreateStack.
You can also use wildcards to specify groups of actions. For example, opsworks:Create*
specifies all creation actions. For a complete list of AWS OpsWorks Stacks actions, see the AWS
OpsWorks Stacks API Reference.

Effect

Whether the specified actions are allowed or denied.

Resource

The AWS resources that the permission affects. AWS OpsWorks Stacks has
one resource type, the stack. To specify permissions for a particular stack
resource, set Resource to the stack's ARN, which has the following format:
arn:aws:opsworks:region:account_id:stack/stack_id/.

You can also use wildcards. For example, setting Resource to * grants permissions for every
resource.

Managing User Permissions API Version 2013-02-18 767

https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateStack.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/Welcome.html

AWS OpsWorks User Guide

For example, the following policy denies the user the ability to stop instances on the stack whose
ID is 2860-2f18b4cb-4de5-4429-a149-ff7da9f0d8ee.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "opsworks:StopInstance",
 "Effect": "Deny",
 "Resource": "arn:aws:opsworks:*:*:stack/2f18b4cb-4de5-4429-a149-ff7da9f0d8ee/"
 }
]
}

For information about adding permissions to an IAM user, see https://docs.aws.amazon.com/IAM/
latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console.

For more information about how to create or modify IAM policies, see Policies and permissions in
IAM. For some examples of AWS OpsWorks Stacks policies, see Example Policies.

Example Policies

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section describes example IAM policies that can be applied to AWS OpsWorks Stacks users.

• Administrative Permissions describes policies used to grant permissions to administrative users.

• Manage Permissions and Deploy Permissions show examples of policies that can be applied to a
user to augment or restrict the Manage and Deploy permissions levels.

AWS OpsWorks Stacks determines the user's permissions by evaluating the permissions
granted by IAM policies as well as the permissions granted by the Permissions page. For more

Managing User Permissions API Version 2013-02-18 768

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

AWS OpsWorks User Guide

information, see Controlling access to AWS resources using policies. For more information on the
Permissions page permissions, see AWS OpsWorks Stacks Permissions Levels.

Administrative Permissions

Use the IAM console, https://console.aws.amazon.com/iam/, to access the
AWSOpsWorks_FullAccess policy, Attach this policy to a user to grant them permissions to perform
all AWS OpsWorks Stacks actions. The IAM permissions are required, among other things, to allow
an administrative user to import users.

You must create an IAM roles that allows AWS OpsWorks Stacks to act on your behalf to access
other AWS resources, such as Amazon EC2 instances. You typically handle this task by having an
administrative user create the first stack, and letting AWS OpsWorks Stacks create the role for
you. You can then use that role for all subsequent stacks. For more information, see Allowing AWS
OpsWorks Stacks to Act on Your Behalf.

The administrative user who creates the first stack must have permissions for some IAM actions
that are not included in the AWSOpsWorks_FullAccess policy. Add the following permissions to the
Actions section of the policy. For proper JSON syntax, be sure to add commas between actions
and remove the trailing comma at the end of the list of actions.

"iam:PutRolePolicy",
"iam:AddRoleToInstanceProfile",
"iam:CreateInstanceProfile",
"iam:CreateRole"

Manage Permissions

The Manage permissions level allows a user to perform a variety of stack management actions,
including adding or deleting layers. This topic describes several policies that you can use to Manage
users to augment or restrict the standard permissions.

Deny a Manage user the ability to add or delete layers

You can restrict the Manage permissions level to allow a user perform all Manage actions
except adding or deleting layers by using the following IAM policy. Replace region,
account_id, and stack_id with values appropriate to your configuration.

{

Managing User Permissions API Version 2013-02-18 769

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS OpsWorks User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "opsworks:CreateLayer",
 "opsworks:DeleteLayer"
],
 "Resource": "arn:aws:opsworks:region:account_id:stack/stack_id/"
 }
]
}

Allow a Manage user to create or clone stacks

The Manage permissions level doesn't allow users to create or clone stacks. You can change
the Manage permissions to allow a user to create or clone stacks by applying the following IAM
policy. Replace region and account_id with values appropriate to your configuration.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRolePolicy",
 "iam:ListRoles",
 "iam:ListInstanceProfiles",
 "iam:ListUsers",
 "opsworks:DescribeUserProfiles",
 "opsworks:CreateUserProfile",
 "opsworks:DeleteUserProfile"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:opsworks::account_id:stack/*/",
 "Condition": {
 "StringEquals": {

Managing User Permissions API Version 2013-02-18 770

AWS OpsWorks User Guide

 "iam:PassedToService": "opsworks.amazonaws.com"
 }
 }
 }
]
}

Deny a Manage user the ability to register or deregister resources

The Manage permissions level allows the user to register and deregister Amazon EBS and
Elastic IP address resources with the stack. You can restrict the Manage permissions to allow
the user to perform all Manage actions except registering resources by applying the following
policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "opsworks:RegisterVolume",
 "opsworks:RegisterElasticIp"
],
 "Resource": "*"
 }
]
}

Allow a Manage user to import users

The Manage permissions level doesn't allow users to import users into AWS OpsWorks Stacks.
You can augment the Manage permissions to allow a user to import and delete users by
applying the following IAM policy. Replace region and account_id with values appropriate to
your configuration.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRolePolicy",

Managing User Permissions API Version 2013-02-18 771

AWS OpsWorks User Guide

 "iam:ListRoles",
 "iam:ListInstanceProfiles",
 "iam:ListUsers",
 "iam:PassRole",
 "opsworks:DescribeUserProfiles",
 "opsworks:CreateUserProfile",
 "opsworks:DeleteUserProfile"
],
 "Resource": "arn:aws:iam:region:account_id:user/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "opsworks.amazonaws.com"
 }
 }
 }
]
}

Deploy Permissions

The Deploy permissions level doesn't allow users to create or delete apps. You can augment the
Deploy permissions to allow a user to create and delete apps by applying the following IAM policy.
Replace region, account_id, and stack_id with values appropriate to your configuration.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "opsworks:CreateApp",
 "opsworks:DeleteApp"
],
 "Resource": "arn:aws:opsworks:region:account_id:stack/stack_id/"
 }
]
}

Managing User Permissions API Version 2013-02-18 772

AWS OpsWorks User Guide

AWS OpsWorks Stacks Permissions Levels

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section lists the actions that are allowed by the Show, Deploy, and Manage permissions levels
on the AWS OpsWorks Stacks Permissions page. It also includes a list of actions that you can grant
permissions only by applying an IAM policy to the user.

Show

The Show level allows DescribeXYZ commands, with the following exceptions:

DescribePermissions
DescribeUserProfiles
DescribeMyUserProfile
DescribeStackProvisioningParameters

If an administrative user has enabled self-management for the user, Show users can also
use DescribeMyUserProfile and UpdateMyUserProfile. For more information on self
management, see Editing User Settings.

Deploy

The following actions are allowed by the Deploy level, in addition to the actions allowed by the
Show level.

CreateDeployment
UpdateApp

Manage

The following actions are allowed by the Manage level, in addition to the actions allowed by the
Deploy and Show levels.

Managing User Permissions API Version 2013-02-18 773

AWS OpsWorks User Guide

AssignInstance
AssignVolume
AssociateElasticIp
AttachElasticLoadBalancer
CreateApp
CreateInstance
CreateLayer
DeleteApp
DeleteInstance
DeleteLayer
DeleteStack
DeregisterElasticIp
DeregisterInstance
DeregisterRdsDbInstance
DeregisterVolume
DescribePermissions
DetachElasticLoadBalancer
DisassociateElasticIp
GrantAccess
GetHostnameSuggestion
RebootInstance
RegisterElasticIp
RegisterInstance
RegisterRdsDbInstance
RegisterVolume
SetLoadBasedAutoScaling
SetPermission
SetTimeBasedAutoScaling
StartInstance
StartStack
StopInstance
StopStack
UnassignVolume
UpdateElasticIp
UpdateInstance
UpdateLayer
UpdateRdsDbInstance
UpdateStack
UpdateVolume

Managing User Permissions API Version 2013-02-18 774

AWS OpsWorks User Guide

Permissions That Require an IAM Policy

You must grant permissions for the following actions by applying an appropriate IAM policy to
the user. For some examples, see Example Policies.

CloneStack
CreateStack
CreateUserProfile
DeleteUserProfile
DescribeUserProfiles
UpdateUserProfile

Allowing AWS OpsWorks Stacks to Act on Your Behalf

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks needs to interact with a variety of AWS services on your behalf. For
example, AWS OpsWorks Stacks interacts with Amazon EC2 to create instances and with Amazon
CloudWatch to get monitoring statistics. When you create a stack, you specify an IAM role, usually
called a service role, that grants AWS OpsWorks Stacks the appropriate permissions.

Allowing AWS OpsWorks Stacks to Act on Your Behalf API Version 2013-02-18 775

AWS OpsWorks User Guide

When you specify a new stack's service role, you can do one of the following:

• Specify a standard service role that you created earlier.

You can usually create a standard service role when you create your first stack, and then use that
role for all subsequent stacks.

• Specify a custom service role that you created by using the IAM console or API.

This approach is useful if you want to grant AWS OpsWorks Stacks more limited permissions
than the standard service role.

Allowing AWS OpsWorks Stacks to Act on Your Behalf API Version 2013-02-18 776

AWS OpsWorks User Guide

Note

To create your first stack, you must have the permissions defined in the IAM
AdministratorAccess policy template. These permissions allow AWS OpsWorks Stacks to
create a new IAM service role and allow you to import users, as described earlier. For all
subsequent stacks, users can select the service role created for the first stack; they don't
require full administrative permissions to create a stack.

The standard service role grants the following permissions:

• Perform all Amazon EC2 actions (ec2:*).

• Get CloudWatch statistics (cloudwatch:GetMetricStatistics).

• Use Elastic Load Balancing to distribute traffic to servers (elasticloadbalancing:*).

• Use an Amazon RDS instance as a database server (rds:*).

• Use IAM roles (iam:PassRole) to provide secure communication between AWS OpsWorks
Stacks and your Amazon EC2 instances.

If you create a custom service role, you must ensure that it grants all the permissions that
AWS OpsWorks Stacks needs to manage your stack. The following JSON sample is the policy
statement for the standard service role; a custom service role should include at least the following
permissions in its policy statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:*",
 "iam:PassRole",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:DescribeAlarms",
 "ecs:*",
 "elasticloadbalancing:*",
 "rds:*"
],
 "Effect": "Allow",
 "Resource": [

Allowing AWS OpsWorks Stacks to Act on Your Behalf API Version 2013-02-18 777

AWS OpsWorks User Guide

 "*"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "ec2.amazonaws.com"
 }
 }
 }
]
}

A service role also has a trust relationship. Service roles created by AWS OpsWorks Stacks have the
following trust relationship.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "StsAssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The service role must have this trust relationship for AWS OpsWorks Stacks to act on your behalf. If
you use the default service role, do not modify the trust relationship. If you are creating a custom
service role, specify the trust relationship by doing one of the following:

• If you are using the Create role wizard in the IAM console, in Choose a use case, choose
Opsworks. This role has the appropriate trust relationship, but no policy is implicitly attached.
To grant AWS OpsWorks Stacks permissions to act on your behalf, create a customer-managed
policy that contains the following, and attach it to the new role.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Allowing AWS OpsWorks Stacks to Act on Your Behalf API Version 2013-02-18 778

https://console.aws.amazon.com/iam/home#roles

AWS OpsWorks User Guide

 "Effect": "Allow",
 "Action": [
 "cloudwatch:DescribeAlarms",
 "cloudwatch:GetMetricStatistics",
 "ec2:*",
 "ecs:*",
 "elasticloadbalancing:*",
 "iam:GetRolePolicy",
 "iam:ListInstanceProfiles",
 "iam:ListRoles",
 "iam:ListUsers",
 "rds:*"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "ec2.amazonaws.com"
 }
 }
 }
]
}

• If you are using a AWS CloudFormation template, you can add something like the following to
your template's Resources section.

"Resources": {
 "OpsWorksServiceRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Principal": {

Allowing AWS OpsWorks Stacks to Act on Your Behalf API Version 2013-02-18 779

AWS OpsWorks User Guide

 "Service": ["opsworks.amazonaws.com"]
 },
 "Action": ["sts:AssumeRole"]
 }]
 },
 "Path": "/",
 "Policies": [{
 "PolicyName": "opsworks-service",
 "PolicyDocument": {
 ...
 }]
 }
 },
 }
}

Cross-service confused deputy prevention in AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in stack access policies to limit the permissions that AWS OpsWorks Stacks gives another

Confused deputy prevention API Version 2013-02-18 780

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS OpsWorks User Guide

service to stacks. If the aws:SourceArn value does not contain the account ID, such as an Amazon
S3 bucket ARN, you must use both global condition context keys to limit permissions. If you use
both global condition context keys and the aws:SourceArn value contains the account ID, the
aws:SourceAccount value and the account in the aws:SourceArn value must use the same
account ID when used in the same policy statement. Use aws:SourceArn if you want only one
stack to be associated with the cross-service access. Use aws:SourceAccount if you want to allow
any stack in that account to be associated with the cross-service use.

The value of aws:SourceArn must be the ARN of an AWS OpsWorks stack.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the AWS OpsWorks Stacks
stack. If you don't know the full ARN, or if you are specifying multiple stack ARNs, use the
aws:SourceArn global context condition key with wildcards (*) for the unknown portions of the
ARN. For example, arn:aws:servicename:*:123456789012:*.

The following section shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in AWS OpsWorks Stacks to prevent the confused deputy problem.

Prevent confused deputy exploits in AWS OpsWorks Stacks

This section describes how you can help prevent confused deputy exploits in AWS OpsWorks
Stacks, and includes examples of permissions policies that you can attach to the IAM role you
are using to access AWS OpsWorks Stacks. As a security best practice, we recommend adding the
aws:SourceArn and aws:SourceAccount condition keys to the trust relationships your IAM role
has with other services. The trust relationships allow AWS OpsWorks Stacks to assume a role to
perform actions in other services that are required to create or manage your AWS OpsWorks Stacks
stacks.

To edit trust relationships to add aws:SourceArn and aws:SourceAccount condition keys

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. In the Search box, search for the role that you use for access to AWS OpsWorks Stacks. The
AWS managed role is aws-opsworks-service-role.

4. On the Summary page for the role, choose the Trust relationships tab.

5. On the Trust relationships tab, choose Edit trust policy.

Confused deputy prevention API Version 2013-02-18 781

https://console.aws.amazon.com/iam/

AWS OpsWorks User Guide

6. On the Edit trust policy page, add at least one of the aws:SourceArn or
aws:SourceAccount condition keys to the policy. Use aws:SourceArn to restrict the trust
relationship between cross services (such as Amazon EC2) and AWS OpsWorks Stacks to
specific AWS OpsWorks Stacks stacks, which is more restrictive. Add aws:SourceAccount to
restrict the trust relationship between cross services and AWS OpsWorks Stacks to stacks in a
specific account, which is less restrictive. The following is an example. Note that if you use both
condition keys, the account IDs must be the same.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnEquals": {
 "arn:aws:opsworks:us-east-2:123456789012:stack/
EXAMPLEd-5699-40a3-80c3-22c32EXAMPLE/"
 }
 }
 }
]
}

7. When you are finished adding condition keys, choose Update policy.

The following are additional examples of roles that limit access to stacks by using aws:SourceArn
and aws:SourceAccount.

Topics

• Example: Accessing stacks in a specific region

• Example: Adding more than one stack ARN to aws:SourceArn

Confused deputy prevention API Version 2013-02-18 782

AWS OpsWorks User Guide

Example: Accessing stacks in a specific region

The following role trust relationship statement accesses any AWS OpsWorks Stacks stacks in
the US East (Ohio) Region (us-east-2). Note that the region is specified in the ARN value of
aws:SourceArn, but the stack ID value is a wildcard (*).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:opsworks:us-east-2:123456789012:stack/*"
 }
 }
 }
]
}

Example: Adding more than one stack ARN to aws:SourceArn

The following example limits access to an array of two AWS OpsWorks Stacks stacks in account ID
123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "opsworks.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {

Confused deputy prevention API Version 2013-02-18 783

AWS OpsWorks User Guide

 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnEquals": {
 "aws:SourceArn": [
 "arn:aws:opsworks:us-east-2:123456789012:stack/unique_ID1",
 "arn:aws:opsworks:us-east-2:123456789012:stack/unique_ID2"
]
 }
 }
 }
]
}

Specifying Permissions for Apps Running on EC2 instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If the applications running on your stack's Amazon EC2 instances need to access other AWS
resources, such as Amazon S3 buckets, they must have appropriate permissions. To confer those
permissions, you use an instance profile. You can specify an instance profile for each instance when
you create an AWS OpsWorks Stacks stack.

Specifying Permissions for Apps Running on EC2 instances API Version 2013-02-18 784

AWS OpsWorks User Guide

You can also specify a profile for a layer's instances by editing the layer configuration.

The instance profile specifies an IAM role. Applications running on the instance can assume that
role to access AWS resources, subject to the permissions that are granted by the role's policy. For
more information about how an application assumes a role, see Assuming the Role Using an API
Call.

You can create an instance profile in any of the following ways:

• Use the IAM console or API to create a profile.

For more information, see Roles (Delegation and Federation).

• Use an AWS CloudFormation template to create a profile.

For some examples of how to include IAM resources in a template, see Identity and Access
Management (IAM) Template Snippets.

An instance profile must have a trust relationship and an attached policy that grants permissions to
access AWS resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {

Specifying Permissions for Apps Running on EC2 instances API Version 2013-02-18 785

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-assume-role.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-assume-role.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html

AWS OpsWorks User Guide

 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The instance profile must have this trust relationship for AWS OpsWorks Stacks to act on your
behalf. If you use the default service role, do not modify the trust relationship. If you are creating a
custom service role, specify the trust relation ship as follows:

• If you are using the Create Role wizard in the IAM console, specify the Amazon EC2 role type
under AWS Service Roles on the wizard's second page.

• If you are using a AWS CloudFormation template, you can add something like the following to
your template's Resources section.

"Resources": {
 "OpsWorksEC2Role": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["ec2.amazonaws.com"]
 },
 "Action": ["sts:AssumeRole"]
 }]
 },
 "Path": "/"
 }
 },
 "RootInstanceProfile": {
 "Type": "AWS::IAM::InstanceProfile",
 "Properties": {
 "Path": "/",
 "Roles": [{
 "Ref": "OpsWorksEC2Role"
 }
]
 }
 }

Specifying Permissions for Apps Running on EC2 instances API Version 2013-02-18 786

https://console.aws.amazon.com/iam/home#roles

AWS OpsWorks User Guide

}

When you create your instance profile, you can attach an appropriate policy to the profile's role
at that time. After you have created the stack, you must use the IAM console or API to attach an
appropriate policy to the profile's role. For example, the following policy grants full access to
all objects in the Amazon S3 bucket named DOC-EXAMPLE-BUCKET. Replace region and DOC-
EXAMPLE-BUCKET with values appropriate to your configuration.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:region::DOC-EXAMPLE-BUCKET/*"
 }
]
}

For an example of how to create and use an instance profile, see Using an Amazon S3 Bucket.

If your application uses an instance profile to call the AWS OpsWorks Stacks API from an EC2
instance, the policy must allow the iam:PassRole action in addition to the appropriate actions
for AWS OpsWorks Stacks and other AWS services. The iam:PassRole permission allows AWS
OpsWorks Stacks to assume the service role on your behalf. For more information about the AWS
OpsWorks Stacks API, see AWS OpsWorks API Reference.

The following is an example of an IAM policy that allows you to call any AWS OpsWorks Stacks
action from an EC2 instance, as well as any Amazon EC2 or Amazon S3 action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "s3:*",
 "opsworks:*",
 "iam:PassRole"
],

Specifying Permissions for Apps Running on EC2 instances API Version 2013-02-18 787

https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted.walkthrough.photoapp.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/Welcome.html

AWS OpsWorks User Guide

 "Resource": "arn:aws:ec2:region:account_id:instance/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "opsworks.amazonaws.com"
 }
 }
 }
]
}

Note

If you do not allow iam:PassRole, any attempt to call an AWS OpsWorks Stacks action
fails with an error like the following:

User: arn:aws:sts::123456789012:federated-user/Bob is not authorized
to perform: iam:PassRole on resource:
arn:aws:sts::123456789012:role/OpsWorksStackIamRole

For more information about using roles on an EC2 instance for permissions, see Granting
Applications that Run on Amazon EC2 Instances Access to AWS Resources in the AWS Identity and
Access Management User Guide.

Managing SSH Access

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks supports SSH keys for both Linux and Windows stacks.

Managing SSH Access API Version 2013-02-18 788

https://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html

AWS OpsWorks User Guide

• For Linux instances, you can use SSH to log in to an instance, for example, to run agent CLI
commands.

For more information, see Logging In with SSH.

• For Windows instances, you can use an SSH key to obtain the instance's Administrator password,
which you can then use to log in with RDP.

For more information, see Logging In with RDP.

Authentication is based on an SSH key pair, which consists of a public key and a private key:

• You install the public key on the instance.

The location depends on the particular operating system, but AWS OpsWorks Stacks handles the
details for you.

• You store the private key locally and provide it to an SSH client, such as ssh.exe, to access the
instance.

The SSH client uses the private key to connect to the instance.

To provide SSH access to a stack's users, you need a way to create SSH key pairs, install public keys
on the stack's instances, and securely manage the private keys.

Amazon EC2 provides a simple way to install a public SSH key on an instance. You can use the
Amazon EC2 console or API to create one or more key pairs for each AWS region that you plan to
use. Amazon EC2 stores the public keys on AWS and you store the private keys locally. When you
launch an instance, you specify one of the region's key pairs and Amazon EC2 automatically installs
it on the instance. You then use the corresponding private key to log in to the instance. For more
information, see Amazon EC2 Key Pairs.

With AWS OpsWorks Stacks, you can specify one of the region's Amazon EC2 key pairs when you
create a stack, and optionally override it with a different key pair when you create each instance.
When AWS OpsWorks Stacks launches the corresponding Amazon EC2 instance, it specifies the
key pair and Amazon EC2 installs the public key on the instance. You can then use the private key
to log in or retrieve an Administrator password, just as you would with a standard Amazon EC2
instance. For more information, see Installing an Amazon EC2 Key.

Using an Amazon EC2 key pair is convenient, but has two significant limitations:

Managing SSH Access API Version 2013-02-18 789

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

• An Amazon EC2 key pair is tied to a particular AWS region.

If you work in multiple regions, you must manage multiple key pairs.

• You can install only one Amazon EC2 key pair on an instance.

If you want to allow multiple users to log in, they must all have a copy of the private key, which is
not a recommended security practice.

For Linux stacks, AWS OpsWorks Stacks provides a simpler and more flexible way to manage SSH
key pairs.

• Each user registers a personal key pair.

They store the private key locally and register the public key with AWS OpsWorks Stacks, as
described in Registering a User's Public SSH Key.

• When you set user permissions for a stack, you specify which users should have SSH access to the
stack's instances.

AWS OpsWorks Stacks automatically creates a system user on the stack's instances for each
authorized user and installs their public key. The user can then use the corresponding private key
to log in, as described in Logging In with SSH.

Using personal SSH keys has the following advantages.

• There's no need to manually configure keys on the instances; AWS OpsWorks Stacks
automatically installs the appropriate public keys on every instance.

• AWS OpsWorks Stacks installs only authorized users' personal public keys.

Unauthorized users cannot use their personal private key to gain access to instances. With
Amazon EC2 key pairs, any user with the corresponding private key can log in, with or without
authorized SSH access.

• If a user no longer needs SSH access, you can use the Permissions page to revoke the user's SSH/
RDP permissions.

AWS OpsWorks Stacks immediately uninstalls the public key from the stack's instances.

• You can use the same key for any AWS region.

Users have to manage only one private key.

Managing SSH Access API Version 2013-02-18 790

AWS OpsWorks User Guide

• There is no need to share private keys.

Each user has his or her own private key.

• It's easy to rotate keys.

You or the user updates the public key in My Settings and AWS OpsWorks Stacks automatically
updates the instances.

Installing an Amazon EC2 Key

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When you create a stack, you can specify an Amazon EC2 SSH key that is installed by default on
every instance in the stack.

Managing SSH Access API Version 2013-02-18 791

AWS OpsWorks User Guide

The Default SSH key list shows your AWS account's Amazon EC2keys. You can do one of the
following:

• Select the appropriate key from the list.

• Select Do not use a default SSH key to specify no key.

If you selected Do not use a default SSH key, or you want to override a stack's default key, you can
specify a key when you create an instance.

Managing SSH Access API Version 2013-02-18 792

AWS OpsWorks User Guide

When you start the instance AWS OpsWorks Stacks installs the public key in the
authorized_keys file.

Registering a User's Public SSH Key

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

There are two ways to register a user's public SSH key:

Managing SSH Access API Version 2013-02-18 793

AWS OpsWorks User Guide

• An administrative user can assign a public SSH key to one or more users and provide them with
the corresponding private key.

• An administrative user can enable self-management for one or more users.

Those users can then specify their own public SSH key.

For more information how administrative users can enable self management or assign public keys
to users, see Editing User Settings.

Connecting to Linux-based instances by using SSH in a PuTTY terminal requires additional steps.
For more information, see Connecting to Your Linux Instance from Windows Using PuTTY and
Troubleshooting Connecting to Your Instance in the AWS documentation.

The following describes how a user with self-management enabled can specify their public key.

To specify your SSH public key

1. Create an SSH key pair.

The simplest approach is to generate the key pair locally. For more information see How to
Generate Your Own Key and Import It to Amazon EC2.

Note

If you use PuTTYgen to generate your key pair, copy the public key from the Public key
for pasting into OpenSSH authorized_keys file box. Clicking Save Public Key saves
the public key in a format that is not supported by MindTerm.

2. Sign into the AWS OpsWorks Stacks console as an IAM user with self-management enabled.

Important

If you sign in as an account owner, or as an IAM user that does not have self-
management enabled, AWS OpsWorks Stacks does not display My Settings. If you are
an administrative user or the account owner, you can instead specify SSH keys by going
to the Users page and editing the user settings.

3. Select My Settings, which displays the settings for the signed-in user.

Managing SSH Access API Version 2013-02-18 794

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/generating-a-keypair.html#how-to-generate-your-own-key-and-import-it-to-aws
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/generating-a-keypair.html#how-to-generate-your-own-key-and-import-it-to-aws
http://www.putty.org/

AWS OpsWorks User Guide

4. On the My Settings page, click Edit.

5. In the Public SSH Key box, enter your SSH public key, and then click Save.

Important

To use the built-in MindTerm SSH client to connect to Amazon EC2 instances, a user must
be signed in as an IAM user and have a public SSH key registered with AWS OpsWorks
Stacks. For more information, see Using the Built-in MindTerm SSH Client.

Managing SSH Access API Version 2013-02-18 795

AWS OpsWorks User Guide

Managing Linux Security Updates

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Security Updates

Linux operating system providers supply regular updates, most of which are operating system
security patches but can also include updates to installed packages. You should ensure that your
instances' operating systems are current with the latest security patches.

By default, AWS OpsWorks Stacks automatically installs the latest updates during setup, after
an instance finishes booting. AWS OpsWorks Stacks does not automatically install updates after
an instance is online, to avoid interruptions such as restarting application servers. Instead, you
manage updates to your online instances yourself, so you can minimize any disruptions.

We recommend that you use one of the following to update your online instances.

• Create and start new instances to replace your current online instances. Then delete the current
instances.

The new instances will have the latest set of security patches installed during setup.

• On Linux-based instances in Chef 11.10 or older stacks, run the Update Dependencies stack
command, which installs the current set of security patches and other updates on the specified
instances.

For both of these approaches, AWS OpsWorks Stacks performs the update by running yum update
for Amazon Linux and Red Hat Enterprise Linux (RHEL) or apt-get update for Ubuntu. Each
distribution handles updates somewhat differently, so you should examine the information in the
associated links to understand exactly how an update will affect your instances:

Managing Security Updates API Version 2013-02-18 796

AWS OpsWorks User Guide

• Amazon Linux – Amazon Linux updates install security patches and might also install feature
updates, including package updates.

For more information, see Amazon Linux AMI FAQs.

• Ubuntu – Ubuntu updates are largely limited to installing security patches, but might also install
package updates for a limited number of critical fixes.

For more information, see LTS - Ubuntu Wiki.

• CentOS – CentOS updates generally maintain binary compatibility with earlier versions.

For more information, see CentOS Product Specifications.

• RHEL – RHEL updates generally maintain binary compatibility with earlier versions.

For more information, see Red Hat Enterprise Linux Life Cycle.

If you want more control over updates, such as specifying particular package versions, you
can disable automatic updates by using the CreateInstance, UpdateInstance, CreateLayer, or
UpdateLayer actions—or the equivalent AWS SDK methods or AWS CLI commands—to set the
InstallUpdatesOnBoot parameter to false. The following example shows how to use the AWS
CLI to disable InstallUpdatesOnBoot as the default setting for an existing layer.

aws opsworks update-layer --layer-id layer ID --no-install-updates-on-boot

You must then manage updates yourself. For example, you could employ one of these strategies:

• Implement a custom recipe that runs the appropriate shell command to install your preferred
updates.

Because system updates don't map naturally to a lifecycle event, include the recipe in your
custom cookbooks but execute it manually. For package updates, you can also use the
yum_package (Amazon Linux) or apt_package (Ubuntu) resources instead of a shell command.

• Log in to each instance with SSH and run the appropriate commands manually.

Managing Security Updates API Version 2013-02-18 797

http://aws.amazon.com/amazon-linux-ami/faqs/#lock
https://wiki.ubuntu.com/LTS
https://wiki.centos.org/About/Product
https://access.redhat.com/support/policy/updates/errata/
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateInstance.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateInstance.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateLayer.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_UpdateLayer.html
https://aws.amazon.com/tools/
http://aws.amazon.com/documentation/cli/
https://docs.chef.io/chef/resources.html#yum-package
https://docs.chef.io/chef/resources.html#apt-package

AWS OpsWorks User Guide

Using Security Groups

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Security Groups

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Each Amazon EC2 instance has one or more associated security groups that govern the instance's
network traffic, much like a firewall. A security group has one or more rules, each of which specifies
a particular category of allowed traffic. A rule specifies the following:

• The type of allowed traffic, such as SSH or HTTP

• The traffic's protocol, such as TCP or UDP

• The IP address range that the traffic can originate from

• The traffic's allowed port range

Security groups have two types of rules:

• Inbound rules govern inbound network traffic.

Using Security Groups API Version 2013-02-18 798

AWS OpsWorks User Guide

For example, application server instances commonly have an inbound rule that allows inbound
HTTP traffic from any IP address to port 80, and another inbound rule that allows inbound SSH
traffic to port 22 from specified set of IP addresses.

• Outbound rules govern outbound network traffic.

A common practice is to use the default setting, which allows any outbound traffic.

For more information about security groups, see Amazon EC2 Security Groups.

The first time you create a stack in a region, AWS OpsWorks Stacks creates a built-in security group
for each layer with an appropriate set of rules. All of the groups have default outbound rules, which
allow all outbound traffic. In general, the inbound rules allow the following:

• Inbound TCP, UDP, and ICMP traffic from the appropriate AWS OpsWorks Stacks layers

• Inbound TCP traffic on port 22 (SSH login)

Warning

The default security group configuration opens SSH (port 22) to any network location
(0.0.0.0/0.) This allows all IP addresses to access your instance by using SSH. For
production environments, you must use a configuration that only allows SSH access from
a specific IP address or range of addresses. Either update the default security groups
immediately after they are created, or use custom security groups instead.

• For web server layers, all inbound TCP, and UDP traffic to ports 80 (HTTP) and 443 (HTTPS)

Note

The built-in AWS-OpsWorks-RDP-Server security group is assigned to all Windows
instances to allow RDP access. However, by default, it does not have any rules. If you
are running a Windows stack and want to use RDP to access instances, you must add an
inbound rule that allows RDP access. For more information, see Logging In with RDP.

To see the details for each group, go to the Amazon EC2 console, select Security Groups in the
navigation pane, and select the appropriate layer's security group. For example, AWS-OpsWorks-

Using Security Groups API Version 2013-02-18 799

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://console.aws.amazon.com/ec2/

AWS OpsWorks User Guide

Default-Server is the default built-in security group for all stacks, and AWS-OpsWorks-WebApp is
the default built-in security group for the Chef 12 sample stack.

Note

If you accidentally delete an AWS OpsWorks Stacks security group, the preferred way
to recreate it is to have AWS OpsWorks Stacks perform the task for you. Just create a
new stack in the same AWS region—and VPC, if present—and AWS OpsWorks Stacks
will automatically recreate all the built-in security groups, including the one that you
deleted. You can then delete the stack if you don't have any further use for it; the security
groups will remain. If you want to recreate the security group manually, it must be an exact
duplicate of the original, including the group name's capitalization.
Additionally, AWS OpsWorks Stacks will attempt to recreate all built-in security groups if
any of the following occur:

• You make any changes to the stack's settings page in the AWS OpsWorks Stacks console.

• You start one of the stack's instances.

• You create a new stack.

You can use either of the following approaches for specifying security groups. You use the Use
OpsWorks security groups setting to specify your preference when you create a stack.

• Yes (default setting) – AWS OpsWorks Stacks automatically associates the appropriate built-in
security group with each layer.

You can fine-tune a layer's built-in security group by adding a custom security group with your
preferred settings. However, when Amazon EC2 evaluates multiple security groups, it uses the
least restrictive rules, so you cannot use this approach to specify more restrictive rules than the
built-in group.

• No – AWS OpsWorks Stacks does not associate built-in security groups with layers.

You must create appropriate security groups and associate at least one with each layer that you
create. Use this approach to specify more restrictive rules than the built-in groups. Note that you
can still manually associate a built-in security group with a layer if you prefer; custom security
groups are required only for those layers that need custom settings.

Using Security Groups API Version 2013-02-18 800

AWS OpsWorks User Guide

Important

If you use the built-in security groups, you cannot create more restrictive rules by manually
modifying the group's settings. Each time you create a stack, AWS OpsWorks Stacks
overwrites the built-in security groups' configurations, so any changes that you make will
be lost the next time you create a stack. If a layer requires more restrictive security group
settings than the built-in security group, set Use OpsWorks security groups to No, create
custom security groups with your preferred settings, and assign them to the layers on
creation.

AWS OpsWorks Stacks Support for Chef 12 Linux

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section provides a brief overview of AWS OpsWorks Stacks for Chef 12 Linux. For information
about Chef 12 on Windows, see Getting Started: Windows. For information about previous Chef
versions on Linux, see Chef 11.10 and Earlier Versions for Linux.

Overview

AWS OpsWorks Stacks supports Chef 12, the latest version of Chef, for Linux stacks. For more
information, see Learn Chef.

AWS OpsWorks Stacks continues to support Chef 11.10 for Linux stacks. However, if you are an
advanced Chef user who would like to benefit from the large selection of community cookbooks
or write your own custom cookbooks, we recommend that you use Chef 12. Chef 12 stacks provide
the following advantages over Chef 11.10 and earlier stacks for Linux:

Chef 12 Linux API Version 2013-02-18 801

https://docs.chef.io/

AWS OpsWorks User Guide

• Two separate Chef runs - When a command is executed on an instance, the AWS OpsWorks
Stacks agent now executes two isolated Chef runs: one run for tasks that integrate the instance
with other AWS services like AWS Identity and Access Management (IAM), and one run for
your custom cookbooks. The first Chef run installs the AWS OpsWorks Stacks agent on the
instance and performs system tasks such as user setup and management, volume setup and
configuration, configuration of CloudWatch metrics, and so on. The second run is dedicated
exclusively to running your custom recipes for AWS OpsWorks Stacks Lifecycle Events. This
second run lets you use your own Chef cookbooks or community cookbooks.

• Resolution of namespace conflicts - Prior to Chef 12, AWS OpsWorks Stacks performed system
tasks and ran built-in and custom recipes in a shared environment. This resulted in namespace
conflicts and lack of clarity about which recipes AWS OpsWorks Stacks had run. Unwanted
default configurations had to be manually overwritten, a time consuming and error-prone task.
In Chef 12 for Linux, AWS OpsWorks Stacks no longer supports built-in Chef cookbooks for
application server environments like PHP, Node.js, or Rails. By eliminating built-in recipes, AWS
OpsWorks Stacks eliminates the issue of naming collisions between built-in and custom recipes.

• Strong support for Chef community cookbooks – AWS OpsWorks Stacks Chef 12 Linux offers
greater compatibility and support for community cookbooks from the Chef supermarket.
You can now use community cookbooks that are superior to the built-in cookbooks that AWS
OpsWorks Stacks previously provided—cookbooks that are designed for use with the latest
application server environments and frameworks. You can run most of these cookbooks without
modification on Chef 12 for Linux. For more information, go to Chef Supermarket on the Learn
Chef website, the Chef Supermarket website, and the Chef Cookbooks repository on GitHub.

• Timely Chef 12 updates - AWS OpsWorks Stacks will update its Chef environment to the latest
Chef 12 version shortly after each Chef release. With Chef 12, minor Chef updates and new AWS
OpsWorks Stacks agent releases will coincide. This lets you test new Chef releases directly, and
enables your Chef recipes and applications to take advantage of the latest Chef features.

For more information about supported Chef versions prior to Chef 12, see Chef 11.10 and Earlier
Versions for Linux.

Moving to Chef 12

Key AWS OpsWorks Stacks changes for Chef 12 Linux, as compared to support for previous Chef
versions 11.10, 11.4, and 0.9, are as follows:

Moving to Chef 12 API Version 2013-02-18 802

https://docs.chef.io/supermarket.html
https://docs.chef.io/
https://docs.chef.io/
https://supermarket.chef.io/
https://github.com/chef-cookbooks
https://github.com/

AWS OpsWorks User Guide

• Built-in layers are no longer provided or supported for Chef 12 for Linux stacks. Because only
your custom recipes are executed, removing this support gives total transparency into how the
instance is set up and makes custom cookbooks much easier to write and maintain. For example,
it's no longer necessary to overwrite attributes of built-in AWS OpsWorks Stacks recipes.
Removal of built-in layers also enables AWS OpsWorks Stacks to better support cookbooks that
are developed and maintained by the Chef community, so that you can take full advantage of
them. The built-in layer types no longer available in Chef 12 for Linux are: AWS Flow (Ruby),
Ganglia, HAProxy, Java App Server, Memcached, MySQL, Node.js App Server, PHP App Server,
Rails App Server, and Static Web Server.

• Because AWS OpsWorks Stacks is running recipes that you provide, there is no longer a need to
override built-in AWS OpsWorks Stacks attributes by running custom cookbooks. To override
attributes in your own or community recipes, follow instructions and examples in About
Attributes in the Chef 12 documentation.

• AWS OpsWorks Stacks continues to provide support for the following layers for Chef 12 Linux
stacks:

• Custom Layers

• Amazon RDS Service Layer

• ECS Cluster Layers

• Stack configuration and data bags for Chef 12 Linux have changed to look very similar to their
counterparts for Chef 12.2 Windows. This makes it easier to query for, analyze, and troubleshoot
these data bags, especially if you work with stacks with different operating system types. Note
that AWS OpsWorks Stacks does not support encrypted data bags. To store sensitive data in
encrypted form, such as passwords or certificates, we recommend storing it in a private S3
bucket. You can then create a custom recipe that uses the Amazon SDK for Ruby to retrieve the
data. For an example, see Using the SDK for Ruby.For more information, see AWS OpsWorks
Stacks Data Bag Reference.

• In Chef 12 Linux, Berkshelf is no longer installed on stack instances. Instead, we recommend that
you use Berkshelf on a local development machine to package your cookbook dependencies
locally. Then upload your package, with the dependencies included, to Amazon Simple Storage
Service. Finally, modify your Chef 12 Linux stack to use the uploaded package as a cookbook
source. For more information, see Packaging Cookbook Dependencies Locally.

• RAID configurations for EBS volumes are no longer supported. For increased performance, you
can use provisioned IOPS for Amazon Elastic Block Store (Amazon EBS).

• autofs is no longer supported.

Moving to Chef 12 API Version 2013-02-18 803

https://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-awsflow.html
https://docs.aws.amazon.com/opsworks/latest/userguide/layers-other-ganglia.html
https://docs.aws.amazon.com/opsworks/latest/userguide/layers-haproxy.html
https://docs.aws.amazon.com/opsworks/latest/userguide/layers-java.html
https://docs.aws.amazon.com/opsworks/latest/userguide/layers-other-memcached.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-db-mysql.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-node.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-php.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-rails.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-static.html
https://docs.chef.io/attributes.html
https://docs.chef.io/attributes.html
http://aws.amazon.com/documentation/sdk-for-ruby/
https://aws.amazon.com/about-aws/whats-new/2012/07/31/announcing-provisioned-iops-for-amazon-ebs/

AWS OpsWorks User Guide

• Subversion repositories are no longer supported.

• Per-layer OS package installations must now be done with custom recipes. For more information,
see Per-layer Package Installations.

Supported Operating Systems

Chef 12 supports the same Linux operating systems as previous versions of Chef. For a list of
Linux operating system types and versions that Chef 12 Linux stacks can use, see Linux operating
systems.

Supported Instance Types

AWS OpsWorks Stacks supports all instance types for Chef 12 Linux stacks except specialized
instance types like high performance computing (HPC) cluster compute, cluster GPU, and high
memory cluster instance types.

More Information

To learn more about how to work with Chef 12 for Linux stacks, see the following:

• Getting Started: Sample

Introduces you to AWS OpsWorks Stacks by guiding you through a brief hands-on exercise with
the AWS OpsWorks Stacks console to create a Node.js application environment.

• Getting Started: Linux

Introduces you to AWS OpsWorks Stacks and Chef 12 Linux by guiding you through a hands-
on exercise with the AWS OpsWorks Stacks console to create a basic Chef 12 Linux stack that
contains a simple layer with a Node.js app that serves traffic.

• Custom Layers

Provides guidance for adding a layer that contains cookbooks and recipes to a Chef 12 Linux
stack. You can use readily available cookbooks and recipes that the Chef community provides, or
you can create your own.

• Moving to Data Bags

Supported Operating Systems API Version 2013-02-18 804

AWS OpsWorks User Guide

Compares and contrasts instance JSON that is used by Linux stacks running Chef 11 and earlier
versions with Chef 12. Also provides pointers to reference documentation for the Chef 12
instance JSON format.

Moving Stack Settings from Attributes to Data Bags

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks exposes a wide variety of stack settings to your Chef recipes. These stack
settings include values such as:

• Stack cookbook source URLs

• Layer volume configurations

• Instance host names

• Elastic Load Balancing DNS names

• App source URLs

• User names

Referencing stack settings from recipes makes recipe code more robust and less error prone
than hard-coding stack settings directly in recipes. This topic describes how to access these stack
settings as well as how to move from attributes in Chef 11.10 and earlier versions for Linux to data
bags in Chef 12 Linux.

In Chef 11.10 and earlier versions for Linux, stack settings are available as Chef attributes and are
accessed through the Chef node object or through Chef search. These attributes are stored on
AWS OpsWorks Stacks instances in a set of JSON files in the /var/lib/aws/opsworks/chef
directory. For more information, see Stack Configuration and Deployment Attributes: Linux.

Moving to Data Bags API Version 2013-02-18 805

https://docs.chef.io/attributes.html

AWS OpsWorks User Guide

In Chef 12 Linux, stack settings are available as Chef data bags and are accessed only through Chef
search. Data bags are stored on AWS OpsWorks Stacks instances in a set of JSON files in the /var/
chef/runs/run-ID/data_bags directory, where run-ID is a unique ID that AWS OpsWorks
Stacks assigns to each Chef run on an instance. Stack settings are no longer available as Chef
attributes, so stack settings can no longer be accessed through the Chef node object. For more
information, see the AWS OpsWorks Stacks Data Bag Reference.

For example, in Chef 11.10 and earlier versions for Linux, the following recipe code uses the Chef
node object to get attributes representing an app's short name and source URL. It then uses the
Chef log to write these two attribute values:

Chef::Log.info ("********** The app's short name is '#{node['opsworks']
['applications'].first['slug_name']}' **********")
Chef::Log.info("********** The app's URL is '#{node['deploy']['simplephpapp']['scm']
['repository']}' **********")

In Chef 12 Linux, the following recipe code uses the aws_opsworks_app search index to get the
contents of the first data bag item in the aws_opsworks_app data bag. The code then writes two
messages to the Chef log, one with the app's short name data bag content, and another with the
app's source URL data bag content:

app = search("aws_opsworks_app").first

Chef::Log.info("********** The app's short name is '#{app['shortname']}' **********")
Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}' **********")

To migrate your recipe code that accesses stack settings from Chef 11.10 and earlier versions for
Linux to Chef 12 Linux, you must revise your code to:

• Access Chef data bags instead of Chef attributes.

• Use Chef search instead of the Chef node object.

• Use AWS OpsWorks Stacks data bag names such as aws_opsworks_app, instead of using AWS
OpsWorks Stacks attribute names such as opsworks and deploy.

For more information, see the AWS OpsWorks Stacks Data Bag Reference.

Moving to Data Bags API Version 2013-02-18 806

https://docs.chef.io/data_bags.html

AWS OpsWorks User Guide

Support for Previous Chef Versions in AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section provides a brief overview of the AWS OpsWorks Stacks documentation for previous
Chef versions.

Chef 11.10 and Earlier Versions for Linux

Provides documentation about AWS OpsWorks Stacks support for Chef 11.10, 11.4, and 0.9 for
Linux stacks.

Chef 11.10 and Earlier Versions for Linux

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section provides a brief overview of the AWS OpsWorks Stacks documentation for Chef 11.10,
11.4, and 0.9 for Linux.

Previous Chef Versions API Version 2013-02-18 807

AWS OpsWorks User Guide

Getting Started with Chef 11 Linux Stacks

Provides a walkthrough that shows you how to create a simple but functional PHP application
server stack.

Creating Your First Node.js Stack

Describes how to create a Linux stack that supports a Node.js application server and how to
deploy a simple application.

Customizing AWS OpsWorks Stacks

Describes how to customize AWS OpsWorks Stacks to meet your specific requirements.

Cookbooks 101

Describes how to implement recipes for AWS OpsWorks Stacks instances.

Load Balancing a Layer

Describes how to use available AWS OpsWorks Stacks load balancing options.

Running a Stack in a VPC

Describes how to create and run a stack in a virtual private cloud.

Migrating from Chef Server

Provides guidelines for migrating from Chef Server to AWS OpsWorks Stacks.

AWS OpsWorks Stacks Layer Reference

Describes the available AWS OpsWorks Stacks built-in layers.

Cookbook Components

Describes the three standard cookbook components: attributes, templates, and recipes.

Stack Configuration and Deployment Attributes: Linux

Describes stack configuration and deployment attributes for Linux.

Built-in Cookbook Attributes

Describes how to use built-in recipe attributes to control the configuration of installed software.

Troubleshooting Chef 11.10 and Earlier Versions for Linux

Describes approaches to troubleshooting various issues in AWS OpsWorks Stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 808

AWS OpsWorks User Guide

Getting Started with Chef 11 Linux Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This section describes how to get started with Linux stacks using Chef 11. For information
about getting started with Chef 12 Linux stacks, see Getting Started: Linux. For information
about getting started with Chef 12 Windows stacks, see Getting Started: Windows.

Cloud-based applications usually require a group of related resources—application servers,
database servers, and so on—that must be created and managed collectively. This collection of
instances is called a stack. A simple application stack might look something like the following.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 809

AWS OpsWorks User Guide

The basic architecture consists of the following:

• A load balancer to distribute incoming traffic from users evenly across the application servers.

• A set of application server instances, as many as needed to handle the traffic.

• A database server to provide the application servers with a back-end data store.

In addition, you typically need a way to distribute applications to the application servers, monitor
the stack, and so on.

AWS OpsWorks Stacks provides a simple and straightforward way to create and manage stacks and
their associated applications and resources. This chapter introduces the basics of AWS OpsWorks
Stacks—along with some of its more sophisticated features—by walking you through the process
of creating the application server stack in the diagram. It uses an incremental development model
that AWS OpsWorks Stacks makes easy to follow: Set up a basic stack and, once it's working
correctly, add components until you arrive at a full-featured implementation.

• Step 1: Complete the Prerequisites shows how to get set up to start the walkthrough.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 810

AWS OpsWorks User Guide

• Step 2: Create a Simple Application Server Stack - Chef 11 shows how to create a minimal stack
that consists of a single application server.

• Step 3: Add a Back-end Data Store shows how to add a database server and connect it to the
application server.

• Step 4: Scale Out MyStack shows how to scale out a stack to handle increased load by adding
more application servers, and a load balancer to distribute incoming traffic.

Topics

• Step 1: Complete the Prerequisites

• Step 2: Create a Simple Application Server Stack - Chef 11

• Step 3: Add a Back-end Data Store

• Step 4: Scale Out MyStack

• Step 5: Delete MyStack

Step 1: Complete the Prerequisites

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Complete the following setup steps before you can start the walkthrough. These setup steps
include signing up for an AWS account, creating an administrative user, and assigning access
permissions to AWS OpsWorks Stacks.

If you have already completed any of the Getting Started with AWS OpsWorks Stacks
walkthroughs, then you have met the prerequisites for this walkthrough, and you can skip ahead to
Step 2: Create a Simple Application Server Stack - Chef 11.

Topics

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 811

AWS OpsWorks User Guide

• Sign up for an AWS account

• Create an administrative user

• Assign Service Access Permissions to Your User

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 812

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial

AWS OpsWorks User Guide

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign Service Access Permissions to Your User

Enable access to the AWS OpsWorks Stacks service (and related services that AWS OpsWorks Stacks
relies on) by adding the AWSOpsWorks_FullAccess and AmazonS3FullAccess permissions to
your role or user.

For more information about adding permissions, see Adding IAM identity permissions (console).

You have now completed all of the setup steps and can start this walkthrough.

Step 2: Create a Simple Application Server Stack - Chef 11

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 813

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A basic application server stack consists of a single application server instance with a public IP
address to receive user requests. Application code and any related files are stored in a separate
repository and deployed from there to the server. The following diagram illustrates such a stack.

The stack has the following components:

• A layer, which represents a group of instances and specifies how they are to be configured.

The layer in this example represents a group of PHP App Server instances.

• An instance, which represents an Amazon EC2 instance.

In this case, the instance is configured to run a PHP app server. Layers can have any number of
instances. AWS OpsWorks Stacks also supports several other app servers. For more information,
see Application Server Layers.

• An app, which contains the information required to install an application on the application
server.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 814

AWS OpsWorks User Guide

The code is stored in a remote repository, such as Git repository or an Amazon S3 bucket.

The following sections describe how to use the AWS OpsWorks Stacks console to create the stack
and deploy the application. You can also use an AWS CloudFormation template to provision a
stack. For an example template that provisions the stack described in this topic, see AWS OpsWorks
Snippets.

Topics

• Step 2.1: Create a Stack - Chef 11

• Step 2.2: Add a PHP App Server Layer - Chef 11

• Step 2.3: Add an Instance to the PHP App Server Layer - Chef 11

• Step 2.4: Create and Deploy an App - Chef 11

Step 2.1: Create a Stack - Chef 11

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You start an AWS OpsWorks Stacks project by creating a stack, which acts as a container for your
instances and other resources. The stack configuration specifies some basic settings, such as the
AWS region and the default operating system, that are shared by all the stack's instances.

Note

This page helps you create Chef 11 stacks. For information about how to create Chef 12
stacks, see Create a Stack.

This page helps you create stacks in Chef 11.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 815

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-opsworks.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-opsworks.html
https://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-intro-create-stack.html

AWS OpsWorks User Guide

To create a new stack

1. Add a Stack

Sign into the AWS OpsWorks Stacks console. If the account has no existing stacks, you will see
the Welcome to AWS OpsWorks page; click Add your first stack. Otherwise, you will see the
AWS OpsWorks Stacks dashboard, which lists your account's stacks; click Add Stack.

2. Configure the Stack

On the Add Stack page, choose Chef 11 stack and specify the following settings:

Stack name

Enter a name for your stack, which can contain alphanumeric characters (a–z, A–Z, and 0–
9), and hyphens (-). The example stack for this walkthrough is named MyStack.

Region

Select US West (Oregon) as the stack's region.

Accept the default values for the other settings and click Add Stack. For more information on
the various stack settings, see Create a New Stack.

Step 2.2: Add a PHP App Server Layer - Chef 11

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 816

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Although a stack is basically a container for instances, you don't add instances directly to a stack.
You add a layer, which represents a group of related instances, and then add instances to the layer.

A layer is basically a blueprint that AWS OpsWorks Stacks uses to create set of Amazon EC2
instances with the same configuration. You add one layer to the stack for each group of related
instances. AWS OpsWorks Stacks includes a set of built-in layers to represent groups of instances
running standard software packages such as a MySQL database server or a PHP application server.
In addition, you can create partially or fully customized layers to suit your specific requirements.
For more information, see Customizing AWS OpsWorks Stacks.

MyStack has one layer, the built-in PHP App Server layer, which represents a group of instances
that function as PHP application servers. For more information, including descriptions of the built-
in layers, see Layers.

To add a PHP App Server layer to MyStack

1. Open the Add Layer Page

After you finish creating the stack, AWS OpsWorks Stacks displays the Stack page. Click Add a
layer to add your first layer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 817

AWS OpsWorks User Guide

2. Specify a Layer Type and Configure the Layer

In the Layer type box, select PHP App Server, accept the default Elastic Load Balancer setting
and click Add Layer. After you create the layer, you can specify other attributes such as the
EBS volume configuration by editing the layer.

Step 2.3: Add an Instance to the PHP App Server Layer - Chef 11

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

An AWS OpsWorks Stacks instance represents a particular Amazon EC2 instance:

• The instance's configuration specifies some basics like the Amazon EC2operating system and size;
it runs but doesn't do very much.

• The instance's layer adds functionality to the instance by determining which packages are to be
installed, whether the instance has an Elastic IP address, and so on.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 818

AWS OpsWorks User Guide

AWS OpsWorks Stacks installs an agent on each instance that interacts with the service. To
add a layer's functionality to an instance, AWS OpsWorks Stacks directs the agent to run small
applications called Chef recipes, which can install applications and packages, create configuration
files, and so on. AWS OpsWorks Stacks runs recipes at key points in the instance's lifecycle. For
example, OpsWorks runs Setup recipes after the instance has finished booting to handle tasks such
as installing software, and runs Deploy recipes when you deploy an app to install the code and
related files.

Note

If you are curious about how the recipes work, all of the AWS OpsWorks Stacks built-in
recipes are in a public GitHub repository: OpsWorks Cookbooks. You can also create your
own custom recipes and have AWS OpsWorks Stacks run them, as described later.

To add a PHP application server to MyStack, add an instance to the PHP App Server layer that you
created in the previous step.

To add an instance to the PHP App Server layer

1. Open Add an Instance

After you finish adding the layer, AWS OpsWorks Stacks displays the Layers page. Click
Instances in the navigation pane and under PHP App Server, click Add an instance.

2. Configure the Instance

Each instance has a default host name that is generated for you by AWS OpsWorks Stacks. In
this example, AWS OpsWorks Stacks simply adds a number to the layer's short name. You can
configure each instance separately, including overriding some of the default settings that you
specified when creating the stack, such as the Availability Zone or operating system. For this
walkthrough, just accept the default settings and click Add Instance to add the instance to the
layer. For more information, see Instances.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 819

http://docs.chef.io/recipes.html
https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

3. Start the Instance

So far, you have just specified the instance's configuration. You have to start an instance to
create a running Amazon EC2 instance. AWS OpsWorks Stacks then uses the configuration
settings to launch an Amazon EC2 instance in the specified Availability Zone. The details of
how you start an instance depend on the instance's scaling type. In the previous step, you
created an instance with the default scaling type, 24/7, which must be manually started and
then runs until it is manually stopped. You can also create time-based and load-based scaling
types, which AWS OpsWorks Stacks automatically starts and stops based on a schedule or
the current load. For more information, see Managing load with time-based and load-based
instances.

Go to php-app1 under PHP App Server and click start in the row's Actions column to start the
instance.

4. Monitor the Instance's Status during Startup

It typically takes a few minutes to boot the Amazon EC2 instance and install the packages. As
startup progresses, the instance's Status field displays the following series of values:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 820

AWS OpsWorks User Guide

1. requested - AWS OpsWorks Stacks has called the Amazon EC2 service to create the Amazon
EC2 instance.

2. pending - AWS OpsWorks Stacks is waiting for the Amazon EC2 instance to start.

3. booting - The Amazon EC2 instance is booting.

4. running_setup - The AWS OpsWorks Stacks agent is running the layer's Setup recipes,
which handle tasks such as configuring and installing packages, and the Deploy recipes,
which deploy any apps to the instance.

5. online - The instance is ready for use.

After php-app1 comes online, the Instances page should look like the following:

The page begins with a quick summary of all your stack's instances. Right now, it shows one
online instance. In the php-app1 Actions column, notice that stop, which stops the instance,
has replaced start and delete.

Step 2.4: Create and Deploy an App - Chef 11

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To make MyStack more useful, you need to deploy an app to the PHP App Server instance. You
store an app's code and any related files in a repository, such as Git. You need to take a couple of
steps to get those files to your application servers:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 821

AWS OpsWorks User Guide

Note

The procedure in this section applies to Chef 11 stacks. For information about how to add
apps to layers in Chef 12 stacks, see Adding Apps.

1. Create an app.

An app contains the information that AWS OpsWorks Stacks needs in order to download the
code and related files from the repository. You can also specify additional information such as
the app's domain.

2. Deploy the app to your application servers.

When you deploy an app, AWS OpsWorks Stacks triggers a Deploy lifecycle event. The agent
then runs the instance's Deploy recipes, which download the files to the appropriate directory
along with related tasks such as configuring the server, restarting the service, and so on.

Note

When you create a new instance, AWS OpsWorks Stacks automatically deploys any existing
apps to the instance. However, when you create a new app or update an existing one, you
must manually deploy the app or update to all existing instances.

This step shows how to manually deploy an example app from a public Git repository to an
application server. If you would like to examine the application, go to https://github.com/
amazonwebservices/opsworks-demo-php-simple-app. The application used in this example is in
the version1 branch. AWS OpsWorks Stacks also supports several other repository types. For more
information, see Application Source.

To create and deploy an app

1. Open the Apps Page

In the navigation pane, click Apps and on the Apps page, click Add an app.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 822

https://github.com/amazonwebservices/opsworks-demo-php-simple-app
https://github.com/amazonwebservices/opsworks-demo-php-simple-app

AWS OpsWorks User Guide

2. Configure the App

On the App page, specify the following values:

Name

The app's name, which AWS OpsWorks Stacks uses for display purposes. The example
app is named SimplePHPApp. AWS OpsWorks Stacks also generates a short name—
simplephpapp for this example—that is used internally and by the Deploy recipes, as
described later.

Type

The app's type, which determines where to deploy the app. The example uses PHP, which
deploys the app to PHP App Server instances.

Data source type

An associated database server. For now, select None; we'll introduce database servers in
Step 3: Add a Back-end Data Store.

Repository type

The app's repository type. The example app is stored in a Git repository.

Repository URL

The app's repository URL. The example URL is: git://github.com/awslabs/
opsworks-demo-php-simple-app.git

Branch/Revision

The app's branch or version. This part of the walkthrough uses the version1 branch.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 823

AWS OpsWorks User Guide

Keep the default values for the remaining settings and click Add App. For more information,
see Adding Apps.

3. Open the Deployment Page

To install the code on the server, you must deploy the app. To do so, click deploy in the
SimplePHPApp Actions column.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 824

AWS OpsWorks User Guide

4. Deploy the App

When you deploy an app, the agent runs the Deploy recipes on the PHP App Server instance,
which download and configure the application.

Command should already be set to deploy. Keep the defaults for the other settings and click
Deploy to deploy the app.

When deployment is complete, the Deployment page displays a Status of Successful, and
php-app1 will have a green check mark next to it.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 825

AWS OpsWorks User Guide

5. Run SimplePHPApp

SimplePHPApp is now installed and ready to go. To run it, click Instances in the navigation
pane to go to the Instances page. Then click the php-app1 instance's public IP address.

You should see a page such as the following in your browser.

Note

This walkthrough assumes that you will go on to the next section and ultimately complete
the entire walkthrough in one session. If you prefer, you can stop at any point and continue
later by signing in to AWS OpsWorks Stacks and opening the stack. However, you are
charged for any AWS resources that you use, such as online instances. To avoid unnecessary
charges, you can stop your instance, which terminates the corresponding EC2 instance. You
can start the instances again when you are ready to continue.

Step 3: Add a Back-end Data Store

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 826

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Step 2.1: Create a Stack - Chef 11 showed you how to create a stack that served a PHP application.
However, that was a very simple application that did little more than display some static text.
Production applications commonly use a back-end data store, yielding a stack configuration
something like the illustration that follows.

This section shows how to extend MyStack to include a back-end MySQL database server. You need
to do more than just add a MySQL server to the stack, though. You also have to configure the app
to communicate properly with the database server. AWS OpsWorks Stacks doesn't do this for you;
you will need to implement some custom recipes to handle that task.

Topics

• Step 3.1: Add a Back-end Database

• Step 3.2: Update SimplePHPApp

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 827

AWS OpsWorks User Guide

• A Short Digression: Cookbooks, Recipes, and AWS OpsWorks Stacks Attributes

• Step 3.3: Add the Custom Cookbooks to MyStack

• Step 3.4: Run the Recipes

• Step 3.5: Deploy SimplePHPApp, Version 2

• Step 3.6: Run SimplePHPApp

Step 3.1: Add a Back-end Database

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The new version of SimplePHPApp stores its data in a back-end database. AWS OpsWorks Stacks
supports two types of database servers:

• The MySQL AWS OpsWorks Stacks layer is a blueprint for creating Amazon EC2 instances that
host a MySQL database master.

• The Amazon RDS service layer provides a way to incorporate an Amazon RDS instance into a
stack.

You can also use other databases, such as Amazon DynamoDB, or create a custom layer to support
databases such as MongoDB. For more information, see the section called “Using a Back-end Data
Store”.

This example uses a MySQL layer.

To add a MySQL layer to MyStack

1. On the Layers page, click + Layer.

2. On the Add Layer page, for Layer type, select MySQL, accept the default settings, and click
Add Layer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 828

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
http://www.mongodb.org/

AWS OpsWorks User Guide

To add an instance to the MySQL layer

1. On the Layers page's MySQL row, click Add an instance.

2. On the Instances page, under MySQL, click Add an instance.

3. Accept the defaults and click Add instance, but don't start it yet.

Note

AWS OpsWorks Stacks automatically creates a database named using the app's short name,
simplephpapp for this example. You'll need this name if you want to use Chef recipes to
interact with the database.

Step 3.2: Update SimplePHPApp

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 829

http://docs.chef.io/recipes.html

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To start, you need a new version of SimplePHPApp that uses a back-end data store. With AWS
OpsWorks Stacks, it's easy to update an application. If you use a Git or Subversion repository, you
can have a separate repository branch for each app version. The example app stores a version of
the app that uses a back-end database in the Git repository's version2 branch. You just need to
update the app's configuration to specify the new branch and redeploy the app.

To update SimplePHPApp

1. Open the App's Edit Page

In the navigation pane, click Apps and then click edit in the SimplePHPApp row's Actions
column.

2. Update the App's Configuration

Change the following settings.

Branch/Revision

This setting indicates the app's repository branch. The first version of SimplePHPApp didn't
connect to a database. To use a the database-enabled version of the app, set this value to
version2.

Document root

This setting specifies your app's root folder. The first version of SimplePHPApp used the
default setting, which installs index.php in the server's standard root folder (/srv/
www for PHP apps). If you specify a subfolder here—just the name, no leading '/'—AWS
OpsWorks Stacks appends it to the standard folder path. Version 2 of SimplePHPApp
should go in /srv/www/web, so set Document root to web.

Data source type

This setting associates a database server with the app. The example uses the MySQL
instance that you created in the previous step, so set Data source type to OpsWorks and
Database instance to the instance you created in the previous step, db-master1 (mysql).
Leave Database name empty; AWS OpsWorks Stacks will create a database on the server
named with the app's short name, simplephpapp.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 830

AWS OpsWorks User Guide

Then click Save to save the new configuration.

3. Start the MySQL instance.

After you update an app, AWS OpsWorks Stacks automatically deploys the new app version to
any new app server instances when you start them. However, AWS OpsWorks Stacks does not
automatically deploy the new app version to existing server instances; you must do that manually,

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 831

AWS OpsWorks User Guide

as described in Step 2.4: Create and Deploy an App - Chef 11. You could deploy the updated
SimplePHPApp now, but for this example, it's better to wait a bit.

A Short Digression: Cookbooks, Recipes, and AWS OpsWorks Stacks Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You now have app and database servers, but they aren't quite ready to use. You still need to set up
the database and configure the app's connection settings. AWS OpsWorks Stacks doesn't handle
these tasks automatically, but it does support Chef cookbooks, recipes, and dynamic attributes.
You can implement a pair of recipes, one to set up the database and one to configure the app's
connection settings, and have AWS OpsWorks Stacks run them for you.

The phpapp cookbook, which contains the required recipes, is already implemented and ready for
use; you can just skip to Step 3.3: Add the Custom Cookbooks to MyStack if you prefer. If you'd like
to know more, this section provides some background on cookbooks and recipes and describes how
the recipes work. To see the cookbook itself, go to the phpapp cookbook.

Topics

• Recipes and Attributes

• Set Up the Database

• Connect the Application to the Database

Recipes and Attributes

A Chef recipe is basically a specialized Ruby application that performs tasks on an instance such as
installing packages, creating configuration files, executing shell commands, and so on. Groups of
related recipes are organized into cookbooks, which also contain supporting files such as templates
for creating configuration files.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 832

https://github.com/amazonwebservices/opsworks-example-cookbooks/tree/master/phpapp

AWS OpsWorks User Guide

AWS OpsWorks Stacks has a set of cookbooks that support the built-in layers. You can also create
custom cookbooks with your own recipes to perform custom tasks on your instances. This topic
provides a brief introduction to recipes and shows how to use them to set up the database and
configure the app's connection settings. For more information on cookbooks and recipes, see
Cookbooks and Recipes or Customizing AWS OpsWorks Stacks.

Recipes usually depend on Chef attributes for input data:

• Some of these attributes are defined by Chef and provide basic information about the instance
such as the operating system.

• AWS OpsWorks Stacks defines a set of attributes that contain information about the stack—such
as the layer configurations—and about deployed apps—such as the app repository.

You can add custom attributes to this set by assigning custom JSON to the stack or deployment.

• Your cookbooks can also define attributes, which are specific to the cookbook.

The phpapp cookbook attributes are defined in attributes/default.rb.

For a complete list of AWS OpsWorks Stacks attributes, see Stack Configuration and Deployment
Attributes: Linux and Built-in Cookbook Attributes. For more information, see Overriding
Attributes.

Attributes are organized in a hierarchical structure, which can be represented as a JSON object.

You incorporate this data into your application by using Chef node syntax, like the following:

[:deploy][:simplephpapp][:database][:username]

The deploy node has a single app node, simplephpapp, that contains information about the
app's database, Git repository, and so on. The example represents the value of the database user
name, which resolves to root.

Set Up the Database

The MySQL layer's built-in Setup recipes automatically create a database for the app named with
the app's shortname, so for this example you already have a database named simplephpapp.
However, you need to finish the setup by creating a table for the app to store its data. You could
create the table manually, but a better approach is to implement a custom recipe to handle

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 833

AWS OpsWorks User Guide

the task, and have AWS OpsWorks Stacks run it for you. This section describes how the recipe,
dbsetup.rb, is implemented. The procedure for having AWS OpsWorks Stacks run the recipe is
described later.

To see the recipe in the repository, go to dbsetup.rb. The following example shows the
dbsetup.rb code.

execute is a Chef resource that executes a specified command. In this case, it's a MySQL command
that creates a table. The not_if directive ensures that the command does not run if the specified
table already exists. For more information on Chef resources, see About Resources and Providers.

The recipe inserts attribute values into the command string, using the node syntax discussed
earlier. For example, the following inserts the database's user name.

#{deploy[:database][:username]}

Let's unpack this somewhat cryptic code:

• For each iteration, deploy is set to the current app node, so it resolves to [:deploy]
[:app_name]. For this example, it resolves to [:deploy][:simplephpapp].

• Using the deployment attribute values shown earlier, the entire node resolves to root.

• You wrap the node in #{ } to insert it into a string.

Most of the other nodes resolve in a similar way. The exception is #{node[:phpapp]
[:dbtable]}, which is defined by the custom cookbook's attributes file and resolves to the table
name, urler. The actual command that runs on the MySQL instance is therefore:

"/usr/bin/mysql
 -uroot
 -pvjud1hw5v8
 simplephpapp
 -e'CREATE TABLE urler(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 author VARCHAR(63) NOT NULL,
 message TEXT,
 PRIMARY KEY (id))'
"

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 834

https://github.com/amazonwebservices/opsworks-example-cookbooks/blob/master/phpapp/recipes/dbsetup.rb
https://docs.chef.io/resource.html

AWS OpsWorks User Guide

This command creates a table named urler with id, author, and message fields, using the
credentials and database name from the deployment attributes.

Connect the Application to the Database

The second piece of the puzzle is the application, which needs connection information such as
the database password to access the table. SimplePHPApp effectively has only one working file,
app.php; all index.php does is load app.php.

app.php includes db-connect.php, which handles the database connection, but that file is not
in the repository. You can't create db-connect.php in advance because it defines the database
based on the particular instance. Instead, the appsetup.rb recipe generates db-connect.php
using connection data from the deployment attributes.

To see the recipe in the repository, go to appsetup.rb. The following example shows the
appsetup.rb code.

Like dbsetup.rb, appsetup.rb iterates over apps in the deploy node—just simplephpapp again
—. It runs a code block with a script resource and a template resource.

The script resource installs Composer—a dependency manager for PHP applications. It then runs
Composer's install command to install the dependencies for the sample application to the app's
root directory.

The template resource generates db-connect.php and puts it in /srv/www/simplephpapp/
current. Note the following:

• The recipe uses a conditional statement to specify the file owner, which depends on the
instance's operating system.

• The only_if directive tells Chef to generate the template only if the specified directory exists.

A template resource operates on a template that has essentially the same content and structure
as the associated file but includes placeholders for various data values. The source parameter
specifies the template, db-connect.php.erb, which is in the phpapp cookbook's templates/
default directory, and contains the following:

When Chef processes the template, it replaces the <%= => placeholders with the value of the
corresponding variables in the template resource, which are in turn drawn from the deployment
attributes. The generated file is therefore:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 835

https://github.com/amazonwebservices/opsworks-example-cookbooks/blob/master/phpapp/recipes/appsetup.rb
http://www.getcomposer.org

AWS OpsWorks User Guide

Step 3.3: Add the Custom Cookbooks to MyStack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You store custom cookbooks in a repository, much like apps. Each stack can have a repository
that contains one set of custom cookbooks. You then direct AWS OpsWorks Stacks to install your
custom cookbooks on the stack's instances.

1. Click Stack in the navigation pane to see the page for the current stack.

2. Click Stack Settings, and then click Edit.

3. Modify the stack configuration as follows:

• Use custom Chef Cookbooks – Yes

• Repository type – Git

• Repository URL – git://github.com/amazonwebservices/opsworks-example-
cookbooks.git

4. Click Save to update the stack configuration.

AWS OpsWorks Stacks then installs the contents of your cookbook repository on all of the stack's
instances. If you create new instances, AWS OpsWorks Stacks automatically installs the cookbook
repository.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 836

AWS OpsWorks User Guide

Note

If you need to update any of your cookbooks, or add new cookbooks to the repository, you
can do so without touching the stack settings. AWS OpsWorks Stacks will automatically
install the updated cookbooks on all new instances. However, AWS OpsWorks Stacks does
not automatically install updated cookbooks on the stack's online instances. You must
explicitly direct AWS OpsWorks Stacks to update the cookbooks by running the Update
Cookbooks stack command. For more information, see Run Stack Commands.

Step 3.4: Run the Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After you have your custom cookbook, you need to run the recipes on the appropriate instances.
You could run them manually. However, recipes typically need to be run at predictable points in
an instance's lifecycle, such as after the instance boots or when you deploy an app. This section
describes a much simpler approach: have AWS OpsWorks Stacks automatically run them for you at
the appropriate time.

AWS OpsWorks Stacks supports a set of lifecycle events that simplify running recipes. For example,
the Setup event occurs after an instance finishes booting and the Deploy event occurs when
you deploy an app. Each layer has a set of built-in recipes associated with each lifecycle event.
When a lifecycle event occurs on an instance, the agent runs the associated recipes for each of
the instance's layers. To have AWS OpsWorks Stacks run a custom recipe automatically, add it to
the appropriate lifecycle event on the appropriate layer and the agent will run the recipe after the
built-in recipes are finished.

For this example, you need to run two recipes, dbsetup.rb on the MySQLinstance and
appsetup.rb on the PHP App Server instance.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 837

AWS OpsWorks User Guide

Note

You specify recipes on the console by using the cookbook_name::recipe_name format,
where recipe_name does not include the .rb extension. For example, you refer to
dbsetup.rb as phpapp::dbsetup.

To assign custom recipes to lifecycle events

1. On the Layers page, for MySQL, click Recipes and then click Edit.

2. In the Custom Chef recipes section, enter phpapp::dbsetup for Deploy.

3. Click the + icon to assign the recipe to the event and click Save to save the new layer
configuration.

4. Return to the Layers page and repeat the procedure to assign phpapp::appsetup to the PHP
App Server layer's Deploy event.

Step 3.5: Deploy SimplePHPApp, Version 2

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 838

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The final step is to deploy the new version of SimplePHPApp.

To deploy SimplePHPApp

1. On the Apps page, click deploy in the SimplePHPApp app's Actions.

2. Accept the defaults and click Deploy.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 839

AWS OpsWorks User Guide

When you click Deploy on the Deploy App page, you trigger a Deploy lifecycle event, which
notifies the agents to run their Deploy recipes. By default, you trigger the event on all of the
stack's instances. The built-in Deploy recipes deploy the app only to the appropriate instances
for the app type, PHP App Server instances in this case. However, it is often useful to trigger
the Deploy event on other instances, to allow them to respond to the app deployment. In this
case, you also want to trigger Deploy on the MySQL instance to set up the database.

Note the following:

• The agent on the PHP App Server instance runs the layer's built-in recipe, followed by
appsetup.rb, which configures the app's database connection.

• The agent on the MySQL instance doesn't install anything, but it runs dbsetup.rb to create
the urler table.

When the deployment is complete, the Status will change to successful on the Deployment
page.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 840

AWS OpsWorks User Guide

Step 3.6: Run SimplePHPApp

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After the deployment status changes to successful, you can run the new SimplePHPApp version, as
follows.

To run SimplePHPApp

1. On the Instances page, click the public IP address in the php-app1 row.

You should see the following page in your browser.

2. Click Share Your Thought and type something like Hello world! for Your Thought and
your name for Your Name. Then click the Submit Your Thought to add the message to the
database.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 841

AWS OpsWorks User Guide

3. Click Go Back to view all the messages in the database.

Step 4: Scale Out MyStack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

MyStack currently has only one application server. A production stack will probably need multiple
application servers to handle the incoming traffic and a load balancer to distribute the incoming
traffic evenly across the application servers. The architecture will look something like the following:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 842

AWS OpsWorks User Guide

AWS OpsWorks Stacks makes it easy to scale out stacks. This section describes the basics of how to
scale out a stack by adding a second 24/7 PHP App Server instance to MyStack and putting both
instances behind an Elastic Load Balancing load balancer. You can easily extend the procedure to
add an arbitrary number of 24/7 instances, or you can use time-based or load-based instances to
have AWS OpsWorks Stacks scale your stack automatically. For more information, see Managing
load with time-based and load-based instances.

Step 4.1: Add a Load Balancer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 843

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Elastic Load Balancing is an AWS service that automatically distributes incoming application traffic
across multiple Amazon EC2 instances. In addition to distributing traffic, Elastic Load Balancing
does the following:

• Detects unhealthy Amazon EC2 instances.

It reroutes traffic to the remaining healthy instances until the unhealthy instances have been
restored.

• Automatically scales request handling capacity in response to incoming traffic

Note

A load balancer can serve two purposes. The obvious one is to equalize the load on your
application servers. In addition, many sites prefer to isolate their application servers and
databases from direct user access. With AWS OpsWorks Stacks, you can do this by running
your stack in a virtual private cloud (VPC) with a public and private subnet, as follows.

• Put the application servers and database in the private subnet, where they can be
accessed by other instances in the VPC but not by users.

• Direct user traffic to a load balancer in the public subnet, which then forwards the traffic
to the application servers in the private subnet and returns responses to users.

For more information, see Running a Stack in a VPC. For an AWS CloudFormation
template that extends the example in this walkthrough to run in a VPC, download the
OpsWorksVPCtemplates.zip file.

Although Elastic Load Balancing is often referred to as a layer, it works a bit differently than the
other built-in layers. Instead of creating a layer and adding instances to it, you create an Elastic
Load Balancing load balancer by using the Amazon EC2 console and then attach it to one of
your existing layers, usually an application server layer. AWS OpsWorks Stacks then registers the

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 844

samples/OpsWorksVPCtemplates.zip

AWS OpsWorks User Guide

layer's existing instances with the service and automatically adds any new instances. The following
procedure describes how to add a load balancer to MyStack's PHP App Server layer.

Note

AWS OpsWorks Stacks does not support Application Load Balancer. You can only use Classic
Load Balancer with AWS OpsWorks Stacks.

To attach a load balancer to the PHP App Server layer

1. Use the Amazon EC2 console to create a new load balancer for MyStack. The details depend
on whether your account supports EC2 Classic. For more information, see Getting Started with
Elastic Load Balancing. When you run the Create Load Balancer wizard, configure the load
balancer as follows:

Define Load Balancer

Assign the load balancer an easily recognizable name, like PHP-LB, to make it easier to
locate in the AWS OpsWorks Stacks console. Then choose Continue to accept defaults for
the remaining settings.

If you choose a VPC with one or more subnets from the Create LB Inside menu, you must
select a subnet for each availability zone where you want traffic to be routed by your load
balancer.

Assign Security Groups

If your account supports default VPC, the wizard displays this page to determine the load
balancer's security group. It does not display this page for EC2 Classic.

For this walkthrough, choose default VPC security group.

Configure Security Settings

If you chose HTTPS as the Load Balancer Protocol on the Define Load Balancer page,
configure certificate, cipher, and SSL protocol settings on this page. For this walkthrough,
accept defaults, and choose Configure Health Check.

Configure Health Check

Set the ping path to / and accept defaults for remaining settings.
Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 845

http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/load-balancer-getting-started.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/load-balancer-getting-started.html

AWS OpsWorks User Guide

Add EC2 Instances

Choose Continue; AWS OpsWorks Stacks automatically registers instances with the load
balancer.

Add Tags

Add tags to help you find . Each tag is a key and value pair; for example, you could specify
Description as the key and Test LB as the value for the purposes of the walkthrough.

Review

Review your choices, choose Create, and then choose Close, which starts the load balancer.

2. If your account supports default VPC, after you start the load balancer, you must ensure that
its security group has appropriate ingress rules. The default rule does not accept any inbound
traffic.

1. Choose Security Groups in the Amazon EC2 navigation pane.

2. Select default VPC security group

3. Choose Edit on the Inbound tab.

4. For this walkthrough, set Source to Anywhere, which directs the load balancer to accept
incoming traffic from any IP address.

3. Return to the AWS OpsWorks Stacks console. On the Layers page, choose the layer's Network
link, and then choose Edit.

4. Under Elastic Load Balancing, choose the load balancer that you created in Step 1, and then
choose Save.

After you have attached the load balancer to the layer, AWS OpsWorks Stacks automatically
registers the layer's current instances, and adds new instances as they come online.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 846

AWS OpsWorks User Guide

5. On the Layers page, click the load balancer's name to open its details page. When registration
is complete and the instance passes a health check, AWS OpsWorks Stacks shows a green
check mark next to the instance on the load balancer page.

You can now run SimplePHPApp by sending a request to the load balancer.

To run SimplePHPApp through the load balancer

1. Open load balancer's details page again, if it is not already open.

2. On the properties page, verify the instance's health-check status and click the load balancer's
DNS name to run SimplePHPApp. The load balancer forwards the request to the PHP App
Server instance and returns the response, which should look exactly the same as the response
you get when you click the PHP App Server instance's public IP address.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 847

AWS OpsWorks User Guide

Note

AWS OpsWorks Stacks also supports the HAProxy load balancer, which might have
advantages for some applications. For more information, see HAProxy AWS OpsWorks
Stacks Layer.

Step 4.2: Add PHP App Server Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now the load balancer is in place, you can scale out the stack by adding more instances to the
PHP App Server layer. From your perspective, the operation is seamless. Each time a new PHP
App Server instance comes online, AWS OpsWorks Stacks automatically registers it with the load
balancer and deploys SimplePHPApp, so the server can immediately start handling incoming
traffic. For brevity, this topic shows how to add one additional PHP App Server instance, but you
can use the same approach to add as many as you need.

To add another instance to the PHP App Server layer

1. On the Instances page, click + Instance under PHP App Server.

2. Accept the default settings and click Add Instance.

3. Click start to start the instance.

Step 4.3: Monitor MyStack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 848

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks uses Amazon CloudWatch to provide metrics for a stack and summarizes
them for your convenience on the Monitoring page. You can view metrics for the entire stack, a
specified layer, or a specified instance.

To monitor MyStack

1. In the navigation pane, click Monitoring, which displays a set of graphs with average metrics
for each layer. You can use the menus for CPU System, Memory Used, and Load to display
different related metrics.

2. Click PHP App Server to see metrics for each of the layer's instances.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 849

AWS OpsWorks User Guide

3. Click php-app1 to see metrics for that instance. You can see metrics for any particular point in
time by moving the slider.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 850

AWS OpsWorks User Guide

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 851

AWS OpsWorks User Guide

Note

AWS OpsWorks Stacks also supports the Ganglia monitoring server, which might have
advantages for some applications. For more information, see Ganglia Layer.

Step 5: Delete MyStack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

As soon as you begin using AWS resources like Amazon EC2 instances you are charged based on
your usage. If you are finished for now, you should stop the instances so that you do not incur any
unwanted charges. If you don’t need the stack anymore, you can delete it.

To delete MyStack

1. Stop all Instances

On the Instances page, click Stop All Instances and click Stop when asked confirm the
operation.

After you click Stop, AWS OpsWorks Stacks terminates the associated Amazon EC2 instances,
but not any associated resources such as Elastic IP addresses or Amazon EBS volumes.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 852

AWS OpsWorks User Guide

2. Delete all Instances

Stopping the instance just terminates the associated Amazon EC2 instances. After the
instances status is in the stopped stated, you must delete each instance. In the PHP App
Server layer click delete in the php-app1 instance's Actions column.

AWS OpsWorks Stacks then asks you to confirm the deletion, and shows you any dependent
resources. You can choose to keep any or all of these resources. This example has no
dependent resources, so just click Delete.

Repeat the process for php-app2 and the MySQL instance, db-master1. Notice that db-
master1 has an associated Amazon Elastic Block Store volume, which is selected by default.
Leave it selected to delete the volume along with the instance.

3. Delete the Layers.

On the Layers page, click Delete and then click Delete to confirm.

Repeat the process for the MySQL layer.

4. Delete the App

On the Apps page, click delete in the SimplePHPApp app's Actions column, and then click
Delete to confirm.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 853

AWS OpsWorks User Guide

5. Delete MyStack

On the Stack page, click Delete Stack and then click Delete to confirm.

You have now reached the end of this walkthrough.

Creating Your First Node.js Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 854

AWS OpsWorks User Guide

This example describes how to create a Linux stack that supports a Node.js application server and
how to deploy a simple application. The stack consists of the following components:

• A Node.js App Server layer with two instances

• An Elastic Load Balancing load balancer to distribute traffic to the application server instances

• An Amazon Relational Database Service (Amazon RDS) service layer that provides a backend
database

Topics

• Prerequisites

• Implementing the Application

• Creating the Database Server and Load Balancer

• Creating the Stack

• Deploying the Application

• What Next?

Prerequisites

This walkthrough assumes the following:

• You have an AWS account and a basic understanding of how to use AWS OpsWorks Stacks.

If you are new to AWS OpsWorks Stacks or to AWS, learn the basics by completing the
introductory tutorial in Getting Started with Chef 11 Linux Stacks.

• You have a basic understanding of how to implement a Node.js application.

If you are new to Node.js, learn the basics by completing an introductory tutorial, such as Node:
Up and Running.

• You have already created at least one stack in the AWS region that you plan to use for this
example.

When you create the first stack in a region, AWS OpsWorks Stacks creates an Amazon Elastic
Compute Cloud (Amazon EC2) security group for each layer type. You need these security groups
to create the Amazon RDS database (DB) instance. If you are new to AWS OpsWorks Stacks, we
recommend that you use the same region for this example that you did when you followed the
tutorial in Getting Started with Chef 11 Linux Stacks. If you want to use a new region, create

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 855

http://chimera.labs.oreilly.com/books/1234000001808/index.html
http://chimera.labs.oreilly.com/books/1234000001808/index.html

AWS OpsWorks User Guide

a new stack in the region; the stack does not need to have layers or instances. As soon as you
create the stack, AWS OpsWorks Stacks automatically adds a set of security groups to the region.

• You will create your stack in a default VPC.

You can use EC2-Classic for this walkthrough, but some of the details will differ slightly. For
example, with EC2-Classic, you specify an instance's Availability Zone (AZ) instead of its subnet.

• Your IAM user has full-access permissions for AWS OpsWorks Stacks.

For security reasons, we strongly recommend that you do not use your account's root credentials
for this walkthrough. Instead, create a user with AWS OpsWorks Stacks full-access permissions
and use those credentials with AWS OpsWorks Stacks. For more information, see Creating an
Administrative User.

Implementing the Application

This walkthrough uses a simple Express application that connects to the Amazon RDS DB instance
and lists the instance's databases.

To implement the application, create a directory named nodedb in a convenient location on your
workstation and add the following three files to it.

Topics

• The Package Descriptor

• The Layout File

• The Code File

The Package Descriptor

To create the application's package descriptor, add a file named package.json with the following
contents to the nodedb directory. package.json is required for Express applications and must be
located in the application's root directory.

{
 "name": "Nodejs-DB",
 "description": "Node.js example application",
 "version": "0.0.1",
 "dependencies": {

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 856

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
http://expressjs.com/

AWS OpsWorks User Guide

 "express": "*",
 "ejs": "*",
 "mysql": "*"
 }
}

This package.json example is fairly minimal. It defines the required name and version
attributes and lists the dependent packages:

• express references the Express package.

• ejs references the EJS package, which the application uses to insert text into an HTML layout
file.

• mysql references the node-mysql package, which the application uses to connect to the RDS
instance.

For more information on package descriptor files, see package.json.

The Layout File

To create the application's layout file, add a views directory to the nodedb directory, and then add
a file to views named index.html with the following contents:

<!DOCTYPE html>
<html>
<head>
 <title>AWS Opsworks Node.js Example</title>
</head>
<body>
 <h1>AWS OpsWorks Node.js Example</h1>
 <p>Amazon RDS Endpoint: <i><%= hostname %></i></p>
 <p>User: <i><%= username %></i></p>
 <p>Password: <i><%= password %></i></p>
 <p>Port: <i><%= port %></i></p>
 <p>Database: <i><%= database %></i></p>

 <p>Connection: <%= connectionerror %></p>
 <p>Databases: <%= databases %></p>
</body>
</html>

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 857

http://expressjs.com/
http://www.embeddedjs.com/
https://github.com/felixge/node-mysql
https://docs.npmjs.com/cli/v9/configuring-npm/package-json

AWS OpsWorks User Guide

For this example, the layout file is a simple HTML document that displays some data from
Amazon RDS. Each <%= ... => element represents the value of a variable that is defined in the
application's code file, which we create next.

The Code File

To create the application's code file, add a server.js file to the nodedb directory with the
following contents.

Important

With AWS OpsWorks Stacks, a Node.js application's main code file must be named
server.js and be located in the application's root folder.

var express = require('express');
var mysql = require('mysql');
var dbconfig = require('opsworks'); //[1] Include database connection data
var app = express();
var outputString = "";

app.engine('html', require('ejs').renderFile);

//[2] Get database connection data
app.locals.hostname = dbconfig.db['host'];
app.locals.username = dbconfig.db['username'];
app.locals.password = dbconfig.db['password'];
app.locals.port = dbconfig.db['port'];
app.locals.database = dbconfig.db['database'];
app.locals.connectionerror = 'successful';
app.locals.databases = '';

//[3] Connect to the Amazon RDS instance
var connection = mysql.createConnection({
 host: dbconfig.db['host'],
 user: dbconfig.db['username'],
 password: dbconfig.db['password'],
 port: dbconfig.db['port'],
 database: dbconfig.db['database']
});

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 858

AWS OpsWorks User Guide

connection.connect(function(err)
{
 if (err) {
 app.locals.connectionerror = err.stack;
 return;
 }
});

// [4] Query the database
connection.query('SHOW DATABASES', function (err, results) {
 if (err) {
 app.locals.databases = err.stack;
 }

 if (results) {
 for (var i in results) {
 outputString = outputString + results[i].Database + ', ';
 }
 app.locals.databases = outputString.slice(0, outputString.length-2);
 }
});

connection.end();

app.get('/', function(req, res) {
 res.render('./index.html');
});

app.use(express.static('public'));

//[5] Listen for incoming requests
app.listen(process.env.PORT);

The example displays the database connection information and also queries the database server
and displays the server's databases. You can easily generalize it to interact with the database as
needed. The following notes refer to the numbered comments in the preceding code.

[1] Include database connection data

This require statement includes the database connection data. As described later, when you
attach a database instance to an app, AWS OpsWorks Stacks puts the connection data in a file
named opsworks.js, which looks similar to the following:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 859

AWS OpsWorks User Guide

exports.db = {
 "host":"nodeexample.cdlqlk5uwd0k.us-west-2.rds.amazonaws.com",
 "database":"nodeexampledb",
 "port":3306,
 "username":"opsworksuser",
 "password":"your_pwd",
 "reconnect":true,
 "data_source_provider":"rds",
 "type":"mysql"}

opsworks.js is in the application's shared/config directory, /srv/www/app_shortname/
shared/config. However, AWS OpsWorks Stacks puts a symlink to opsworks.js in the
application's root directory, so you can include the object by using just require 'opsworks'.

[2] Get database connection data

This set of statements displays the connection data from opsworks.js by assigning the values
from the db object to a set of app.locals properties, each of which maps to one of the <
%= ... %> elements in the index.html file. The rendered document replaces the <%= ... %>
elements with the corresponding property values.

[3] Connect to the Amazon RDS instance

The example uses node-mysql to access the database. To connect to the database, the
example creates a connection object by passing the connection data to createConnection,
and then calls connection.connect to establish the connection.

[4] Query the database

After establishing a connection, the example calls connection.query to query the
database. This example simply queries for the server's database names. query returns
an array of results objects, one for each database, with the database name assigned
to the Database property. The example concatenates the names and assigns them to
app.locals.databases, which displays the list in the rendered HTML page.

For this example, there are five databases, the nodeexampledb database that you specified
when you created the RDS instance and four others that are automatically created by Amazon
RDS.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 860

AWS OpsWorks User Guide

[5] Listen for incoming requests

The final statement listens for incoming requests on a specified port. You don't have to specify
an explicit port value. When you add the app to your stack, you specify whether the application
supports HTTP or HTTPS requests. AWS OpsWorks Stacks then sets the PORT environment
variable to 80 (HTTP) or 443 (HTTPS), and you can use that variable in your application.

It is possible to listen on other ports, but the Node.js App Server layer's built-in security group,
AWS-OpsWorks-nodejs-App-Server, allows inbound user traffic only to ports 80, 443, and 22
(SSH). To allow inbound user traffic to other ports, create a security group with appropriate
inbound rules and assign it to the Node.js App Server layer. Do not modify inbound rules
by editing the built-in security group. Each time you create a stack, AWS OpsWorks Stacks
overwrites the built-in security groups with the standard settings, so any changes that you
make will be lost.

Note

You can associate custom environment variables with your application when you create
or update the associated app. You can also pass data to your application by using custom
JSON and a custom recipe. For more information, see Passing Data to Applications.

Creating the Database Server and Load Balancer

This example uses Amazon RDS database server and Elastic Load Balancing load balancer
instances. You must create each instance separately and then incorporate it into your stack. This
section describes how to create new database and load balancer instances. You instead can use
existing instances, but we recommend that you read through the procedure to ensure that those
instances are correctly configured.

The following describes how to create a minimally configured RDS DB instance that is sufficient for
this example. For more information, see the Amazon RDS User Guide.

To create the RDS DB instance

1. Open the console.

Open the Amazon RDS console, and set the region to US West (Oregon). In the navigation
pane, choose RDS Dashboard, and then choose Launch DB Instance.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 861

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://console.aws.amazon.com/rds/

AWS OpsWorks User Guide

2. Specify the database engine.

Choose MySQL Community Edition as the database engine.

3. Decline multi-AZ deployment.

Choose No, this instance..., and then choose Next. You don't need multi-AZ deployment for
this example.

4. Configure the basic settings.

On the DB Instance Details page, specify the following settings:

• DB Instance Class: db.t2.micro

• Multi-AZ Deployment: No

• Allocated Storage: 5 GB

• DB Instance Identifier: nodeexample

• Master Username: opsworksuser

• Master Password: A password of your choice

Record the instance identifier, user name, and password for later use, accept the default
settings for the other options, and then choose Next.

5. Configure the advanced settings.

On the Configure Advanced Settings page, specify the following settings:

• Database Name: nodeexampledb

• DB Security Group(s): AWS-OpsWorks-DB-Master-Server

Note

The AWS-OpsWorks-DB-Master-Server security group allows only your stack's
instances to access the database. If you want to access the database directly, attach an
additional security group to the RDS DB instance with appropriate inbound rules. For
more information, see Amazon RDS Security Groups. You also can control access by
putting the instance in a VPC. For more information, see Running a Stack in a VPC.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 862

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html

AWS OpsWorks User Guide

Record the database name for later use, accept the default values for the other settings, and
then choose Launch DB Instance.

The following procedure describes how to create an Elastic Load Balancing load balancer for this
example. For more information, see the Elastic Load Balancing User Guide.

To create the load balancer

1. Open the Amazon EC2 console.

Open the Amazon EC2 console and ensure that the region is set to US West (Oregon). In the
navigation pane, choose Load Balancers, and then choose Create Load Balancer.

2. Define the load balancer.

On the Define Load Balancer page, specify the following settings.

• Name – Node-LB

• Create LB Inside – My Default VPC

Accept the default settings for the other options, and choose then Next.

3. Assign security groups.

On the Assign Security Groups page, specify the following groups:

• default VPC security group

• AWS-OpsWorks-nodejs-App-Server

Choose Next. On the Configure Security Settings page, choose Next. You don't need a secure
listener for this example.

4. Configure the health check.

On the Configure Health Check page, set Ping Path to / and accept the default values for
the other settings. Choose Next. On the Add EC2 Instances page, choose Next. On the Add
Tags page, choose Review and Create. AWS OpsWorks Stacks handles the task of adding EC2
instances to the load balancer, and you won't need tags for this example.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 863

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.html
https://console.aws.amazon.com/ec2/

AWS OpsWorks User Guide

5. Create the load balancer.

On the Review page, choose Create to create the load balancer.

Creating the Stack

You now have all the components needed to create the stack.

To create the stack

1. Sign in to the AWS OpsWorks Stacks console.

Sign into the AWS OpsWorks Stacks console, and choose Add Stack.

2. Create the stack.

To create a new stack, choose Chef 11 stack, and then specify the following settings.

• – NodeStack

• Region – US West (Oregon)

You can create a stack in any AWS region, but we recommend US West (Oregon) for tutorials.

Choose Add Stack. For more information on stack configuration settings, see Create a New
Stack.

3. Add a Node.js App Server layer with an attached load balancer.

On the NodeStack page, choose Add a layer, and then specify the following settings:

• Layer type – Node.js App Server

• Elastic Load Balancer – Node-LB

Accept the default values for the other settings, and then choose Add Layer.

4. Add instances to the layer and start them.

In the navigation pane, choose Instances, and then add two instances to the Rails App Server
layer, as follows.

1. Under Node.js App Server, choose Add instance.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 864

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Set Size to t2.micro, accept the default values for the other settings, and then choose Add
Instance.

2. Choose +Instance, and then add a second t2.micro instance to the layer in a different
subnet.

This places the instance in a different Availability Zone (AZ).

3. Choose Add instance.

4. To start both instances, choose Start All Instances.

You have assigned an Elastic Load Balancing load balancer to this layer. When an instance
enters or leaves the online state, AWS OpsWorks Stacks automatically registers or deregisters
the instance with the load balancer.

Note

For a production stack, we recommend that you distribute your application server
instances across multiple AZs. If users can't connect to an AZ, the load balancer routes
incoming traffic to instances in the remaining zones, and your site will continue to
function.

5. Register the RDS DB instance with the stack.

In the navigation pane, choose Resources and register the RDS DB instance with the stack, as
follows.

1. Choose the RDS tab, and then choose Show Unregistered RDS DB instances.

2. Choose the nodeexampledb instance, and then specify the following settings:

• User – The master user name that you specified when you created the instance; for this
example. opsworksuser.

• Password – The master password that you specified when you created the instance.

3. Choose Register with Stack to add the RDS DB instance to the stack as an Amazon RDS
service layer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 865

AWS OpsWorks User Guide

Warning

AWS OpsWorks Stacks does not validate the User or Password values, it simply passes
them to the application. If you enter them incorrectly, your application cannot connect
to the database.

To add the RDS DB instance to the stack as an Amazon RDS service layer, choose Register with
Stack.

Deploying the Application

You must store the application in a remote repository. When you deploy it, AWS OpsWorks Stacks
deploys the code and related files from the repository to the application server instances. For
convenience, this example uses a public Amazon Simple Storage Service (Amazon S3) archive as the
repository, but you also can use several other repository types, including Git and Subversion. For
more information, see Application Source.

To deploy the application

1. Package the application in an archive file.

Create a .zip archive of the nodedb directory and subdirectories named nodedb.zip. You also
can use other types of archive file, including gzip, bzip2, and tarball. Note that AWS OpsWorks
Stacks does not support uncompressed tarballs. For more information, see Application Source.

2. Upload the archive file to Amazon S3.

Upload nodedb.zip to an Amazon S3 bucket, make the file public, and copy the file's URL for
later use. For more information on how to create buckets and upload files, go to Get Started
With Amazon Simple Storage Service.

Note

AWS OpsWorks Stacks can also deploy private files from an Amazon S3 bucket, but
for simplicity, this example uses a public file. For more information, see Application
Source.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 866

http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html

AWS OpsWorks User Guide

3. Create an AWS OpsWorks Stacks app.

Return to the AWS OpsWorks Stacks console, in the navigation pane, choose Apps, and then
choose Add an app. Specify the following settings:

• Name – NodeDB.

This string is the app's display name. For most purposes, you need the app's short name,
which AWS OpsWorks Stacks generates from the display name by transforming all
characters to lower case and removing punctuation. For this example, the short name is
nodedb. To verify an app's short name, after creating the app, choose the app on the Apps
page to display its details page.

• Type – Node.js.

• Data source type – RDS.

• Database instance – Choose the Amazon RDS DB instance that you registered earlier.

• Database name – Specify the database name that you created earlier, nodeexampledb for
this example.

• Repository type – Http Archive.

You must use this repository type for public Amazon S3 files. The S3 Archive type is used
only for private archives.

• Repository URL – The archive file's Amazon S3 URL.

Use the default values for the remaining settings, and then click Add App to create the app.

4. Deploy the app.

Go to the Apps page, and in the NodeDB app's Actions column, choose deploy. Then choose
Deploy to deploy the app to the server instances. AWS OpsWorks Stacks runs the Deploy
recipes on each instance, which downloads the application from the repository and restarts the
server. When each instance has a green check mark and the Status is successful, deployment is
complete and the application is ready to start handling requests.

Note

If the deployment fails, choose show in the Log column to display the deployment's
Chef log. The error information is near the bottom.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 867

AWS OpsWorks User Guide

5. Open the application.

To open the application, choose Layers, choose the load balancer, and then choose the load
balancer's DNS name, which sends an HTTP request to the load balancer. You should see
something like the following.

Note

AWS OpsWorks Stacks automatically deploys apps to new instances during setup. Manual
deployment is required only for online instances. For more information, see Deploying
Apps. For a general discussion of deployment, including some more sophisticated
deployment strategies, see Managing and Deploying Apps and Cookbooks.

What Next?

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 868

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This walkthrough took you through the basics of setting up a simple Node.js application server
stack. Here are some suggestions for what to do next.

Examine the Node.js built-in cookbooks

If you want to know how the instances are configured in detail, see the layer's built-in
cookbook, opsworks_nodejs, which contains the recipes and related files that AWS OpsWorks
Stacks uses to install and configure the software, and the built-in deploy cookbook, which
contains the recipes that AWS OpsWorks Stacks uses to deploy the apps.

Customize the server configuration

The example stack is fairly basic. For production use, you will probably want to customize the
stack. For more information, see Customizing AWS OpsWorks Stacks.

Add SSL support

You can enable SSL support for your app and provide AWS OpsWorks Stacks with the
appropriate certificates when you create the app. AWS OpsWorks Stacks then installs the
certificates in the appropriate directory. For more information, see Using SSL.

Add in-memory data caching

Production-level sites often improve performance by caching data in an in-memory key-value
store, such as Redis or Memcache. You can use either with an AWS OpsWorks Stacks stack. For
more information, see ElastiCache Redis and Memcached.

Use a more sophisticated deployment strategy

The example used a simple app deployment strategy, which deploys the update to every
instance concurrently. This approach is simple and fast, but there is no margin for error. If the
deployment fails or the update has any issues, every instance in your production stack could be
affected, potentially disrupting or disabling your site until you can fix the problem. For more
information on deployment strategies, see Managing and Deploying Apps and Cookbooks.

Extend the Node.js App Server layer

You can extend the layer in a variety of ways. For example, you can implement recipes to run
scripts on the instances or implement Chef deployment hooks to customize app deployment.
For more information, see Extending a Layer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 869

https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.10/opsworks_nodejs
https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.10/deploy

AWS OpsWorks User Guide

Define environment variables

You can pass data to your application by defining environment variables for the associated app.
When you deploy the app, AWS OpsWorks Stacks exports those variables so you can access
them from your app. For more information, see Using Environment Variables.

Customizing AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks built-in layers provide standard functionality that is sufficient for many
purposes. However, you might encounter one or more of the following:

• A built-in layer's standard configuration is adequate but not ideal; you would like to optimize it
for your particular requirements.

For example, you might want to tune a Static Web Server layer's Nginx server configuration by
specifying your own values for settings such as the maximum number of worker processes or the
keepalivetimeout value.

• A built-in layer's functionality is fine, but you want to extend it by installing additional packages
or running some custom installation scripts.

For example, you might want to extend a PHP App Server layer by also installing a Redis server.

• You have requirements that aren't handled by any of the built-in layers.

For example, AWS OpsWorks Stacks does not include built-in layers for some popular database
servers. You can create a custom layer that installs those servers on the layer's instances.

• You are running a Windows stack, which support only custom layers.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 870

AWS OpsWorks User Guide

AWS OpsWorks Stacks provides a variety of ways to customize layers to meet your specific
requirements. The following examples are listed in order of increasing complexity and power:

Note

Some of these approaches work only for Linux stacks. See the following topics for details.

• Use custom JSON to override default AWS OpsWorks Stacks settings.

• Implement a custom Chef cookbook with an attributes file that overrides the default AWS
OpsWorks Stacks settings.

• Implement a custom Chef cookbook with a template that overrides or extends a default AWS
OpsWorks Stacks template.

• Implement a custom Chef cookbook with a simple recipe that runs a shell script.

• Implement a custom Chef cookbook with recipes that perform tasks such as creating and
configuring directories, installing packages, creating configuration files, deploying apps, and so
on.

You can also override recipes, depending on the stack's Chef version and operating system.

• With Chef 0.9 and 11.4 stacks, you cannot override a built-in recipe by implementing a custom
recipe with the same cookbook and recipe name.

For each lifecycle event, AWS OpsWorks Stacks always runs the built-in recipes first, followed by
any custom recipes. Because these Chef versions do not run a recipe with the same cookbook and
recipe name twice, the built-in recipe takes precedence and the custom recipe is not executed.

• You can override built-in recipes on Chef 11.10 stacks.

For more information, see Cookbook Installation and Precedence.

• You cannot override built-in recipes on Windows stacks.

The way that AWS OpsWorks Stacks handles Chef runs for Windows stacks does not allow built-
in recipes to be overridden.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 871

AWS OpsWorks User Guide

Note

Because many of the techniques use custom cookbooks, you should first read Cookbooks
and Recipes if you are not already familiar with cookbook implementation. Cookbook
Basics provides a detailed tutorial introduction to implementing custom cookbooks, and
Implementing Cookbooks for AWS OpsWorks Stacks covers some of the details about how
to implement cookbooks for AWS OpsWorks Stacks instances.

Topics

• Customizing AWS OpsWorks Stacks Configuration by Overriding Attributes

• Extending AWS OpsWorks Stacks Configuration Files Using Custom Templates

• Extending a Layer

• Creating a Custom Tomcat Server Layer

• Stack Configuration and Deployment Attributes

Customizing AWS OpsWorks Stacks Configuration by Overriding Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

For Windows stacks and Chef 12 Linux stacks, AWS OpsWorks Stacks uses separate Chef
runs for built-in recipes and custom recipes. This means that you cannot use the techniques
discussed in this section to override built-in attributes for Windows stacks and Chef 12
Linux stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 872

AWS OpsWorks User Guide

Recipes and templates depend on a variety of Chef attributes for instance or stack-specific
information such as layer configurations or application server settings. These attributes have
several sources:

• Custom JSON–You can optionally specify custom JSON attributes when you create, update, or
clone a stack, or when you deploy an app.

• Stack configuration attributes–AWS OpsWorks Stacks defines these attributes to hold stack
configuration information, including the information that you specify through the console
settings.

• Deployment attributes–AWS OpsWorks defines deployment-related attributes for Deploy
events.

• Cookbook attributes– Built-in and custom Cookbooks usually include one or more attribute
files, which contain attributes that represent cookbook-specific values such as application server
configuration settings.

• Chef–Chef's Ohai tool defines attributes that represent a wide variety of system configuration
settings, such as CPU type and installed memory.

For a complete list of stack configuration and deployment attributes and built-in cookbook
attributes , see Stack Configuration and Deployment Attributes: Linux and Built-in Cookbook
Attributes. For more information about Ohai attributes, see Ohai.

When a lifecycle event such as Deploy or Configure occurs, or you run a stack command such as
execute_recipes or update_packages, AWS OpsWorks Stacks does the following:

• Sends a corresponding command to the agent on each affected instance.

The agent runs the appropriate recipes. For example, for a Deploy event, the agent runs the
built-in Deploy recipes, followed by any custom Deploy recipes.

• Merges any custom JSON and deployment attributes with the stack configuration attributes and
installs them on the instances.

The attributes from custom JSON, stack configuration and deployment attributes, cookbook
attributes, and Ohai attributes are merged into a node object, which supplies attribute values to
recipes. An instance is essentially stateless as far as stack configuration attributes are concerned,
including any custom JSON. When you run a deployment or stack command, the associated recipes
use the stack configuration attributes that were downloaded with the command.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 873

http://docs.chef.io/resource_ohai.html
https://docs.chef.io/ohai.html

AWS OpsWorks User Guide

Topics

• Attribute Precedence

• Overriding Attributes With Custom JSON

• Overriding AWS OpsWorks Stacks Attributes Using Custom Cookbook Attributes

Attribute Precedence

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If an attribute is uniquely defined, Chef simply incorporates it into the node object. However,
any attribute source can define any attribute, so it is possible for the same attribute to have
multiple definitions with different values. For example, the built-in apache2 cookbook defines
node[:apache][:keepalive], but you could also define that attribute in custom JSON or in
a custom cookbook. If an attribute has multiple definitions, they are evaluated in an order that is
described later and the node object receives the definition with the highest precedence.

An attribute is defined as follows:

node.type[:attribute][:sub_attribute][:...]=value

If an attribute has multiple definitions, the type determines which definition has precedence, and
that definition is incorporated into the node object. AWS OpsWorks Stacks uses the following
attribute types:

• default–This is the most common type, and it essentially means "use this value if the attribute
hasn't already been defined." If all definitions of an attribute are default type, the first
definition in the evaluation order has precedence and subsequent values are ignored. Note
that AWS OpsWorks Stacks sets all stack configuration and deployment attribute definitions to
default type.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 874

AWS OpsWorks User Guide

• normal–Attributes with this type override any default or normal attributes that were defined
earlier in the evaluation order. For example, if the first attribute is from a built-in cookbook and
has a default type and the second is a user-defined attribute with has a normal type, the
second definition has precedence.

• set–This is a deprecated type that you might see in older cookbooks. It has been superseded by
normal, which has the same precedence.

Chef supports several additional attribute types, including an automatic type that takes
precedence over all other attribute definitions. The attribute definitions generated by Chef's Ohai
tool are all automatic types, so they are effectively read-only. This isn't usually an issue, because
there is no reason to override them and they are distinct from AWS OpsWorks Stacks' attributes.
However, you should be careful to name your custom cookbook attributes so they are distinct from
the Ohai attributes. For more information, see About Attributes.

Note

The Ohai tool is an executable that you can run from the command line. To list an
instance's Ohai attributes, log in to the instance and run ohai in a terminal window. Be
aware that it produces a very long output.

Here are the steps that incorporate the various attribute definitions into the node object:

1. Merge any custom stack configuration attributes into the stack configuration and deployment
attributes.

Custom JSON attributes can be set for the stack, or for a particular deployment. They are first
in the evaluation order and are effectively normal types. If one or more stack configuration
attributes are also defined in custom JSON, the custom JSON values take precedence.
Otherwise AWS OpsWorks Stacks simply incorporates the custom JSON attributes into the stack
configuration.

2. Merge any deployment custom JSON attributes into the stack configuration and deployment
attributes.

Deployment custom JSON attributes are also effectively normal types, so they take precedence
over built-in and custom stack configuration JSON and built-in deployment JSON.

3. Merge the stack configuration and deployment attributes into the instance's node object.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 875

http://docs.chef.io/attributes.html

AWS OpsWorks User Guide

4. Merge the instance's built-in cookbook attributes into the node object.

The built-in cookbook attributes are all default types. If the one or more built-in cookbook
attributes are also defined in the stack configuration and deployment attributes—typically
because you defined them with custom JSON—the stack configuration definitions take
precedence over the built-in cookbook definitions. All other built-in cookbook attributes are
simply incorporated into the node object.

5. Merge the instance's custom cookbook attributes into the node object.

Custom c ookbook attributes are usually either normal or default types. Unique attributes are
incorporated into the node object. If any custom cookbook attributes are also defined in Steps
1–3 (typically because you defined them with custom JSON), precedence depends on the custom
cookbook attribute's type:

• Attributes defined in Steps 1–3 take precedence over custom cookbook default attributes.

• Custom c ookbook normal attributes take precedence over definitions from Steps 1–3.

Important

Do not use custom cookbook default attributes to override stack configuration or built-in
cookbook attributes. Because custom cookbook attributes are evaluated last, the default
attributes have the lowest precedence, and cannot override anything.

Overriding Attributes With Custom JSON

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 876

AWS OpsWorks User Guide

Note

Because AWS OpsWorks Stacks handles Chef runs differently for Windows stacks than for
Linux stacks, you cannot use the techniques discussed in this section for Windows stacks.

The simplest way to override an AWS OpsWorks Stacks attribute is to define it in custom JSON,
which takes precedence over stack configuration and deployment attributes as well as built-in and
custom cookbook default attributes. For more information, see Attribute Precedence.

Important

You should override stack configuration and deployment attributes with care. For example
overriding attributes in the opsworks namespace can interfere with the built-in recipes.
For more information, see Stack Configuration and Deployment Attributes.

You can also use custom JSON to define unique attributes, typically to pass data to your custom
recipes. The attributes are simply incorporated into the node object, and recipes can reference
them by using the standard Chef node syntax.

How to Specify Custom JSON

To use custom JSON to override an attribute value, you must first determine the attribute's fully
qualified attribute name. You then create a JSON object that contains the attributes you want
to override, set to your preferred values. For convenience, Stack Configuration and Deployment
Attributes: Linux and Built-in Cookbook Attributes documents commonly used stack configuration,
deployment, and built-in cookbook attributes, including their fully qualified names.

The object's parent-child relationships must correspond to the appropriate fully qualified Chef
nodes. For example, suppose you want to change the following Apache attributes:

• The keepalivetimeout attribute, whose node is node[:apache][:keepalivetimeout]
and has a default value of 3.

• The logrotate schedule attribute, whose node is node[:apache][:logrotate]
[:schedule], and has a default value of "daily".

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 877

AWS OpsWorks User Guide

To override the attributes and set the values to 5 and "weekly", respectively, you would use the
following custom JSON:

{
 "apache" : {
 "keepalivetimeout" : 5,
 "logrotate" : {
 "schedule" : "weekly"
 }
 }
}

When to Specify Custom JSON

You can specify a custom JSON structure for the following tasks:

• Create a new stack

• Update a stack

• Run a stack command

• Clone a stack

• Deploy an app

For each task, AWS OpsWorks Stacks merges the custom JSON attributes with the stack
configuration and deployment attributes and sends it to the instances, to be merged into the node
object. However, note the following:

• If you specify custom JSON when you create, clone, or update a stack, the attributes are merged
into the stack configuration and deployment attributes for all subsequent lifecycle events and
stack commands.

• If you specify custom JSON for a deployment, the attributes are merged into the stack
configuration and deployment attributes only for the corresponding event.

If you want to use those custom attributes for subsequent deployments, you must explicitly
specify the custom JSON again.

It is important to remember that attributes only affect the instance when they are used by recipes.
If you override an attribute value but no subsequent recipes reference the attribute, the change has

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 878

AWS OpsWorks User Guide

no effect. You must either ensure that the custom JSON is sent before the associated recipes run,
or ensure that the appropriate recipes are re-run.

Custom JSON Best Practices

You can use custom JSON to override any AWS OpsWorks Stacks attribute, but manually entering
the information is somewhat cumbersome, and it is not under any sort of source control. Custom
JSON is best used for the following purposes:

• When you want to override only a small number of attributes, and you do not otherwise need to
use custom cookbooks.

With custom JSON, you can avoid the overhead of setting up and maintaining a cookbook
repository just to override a couple of attributes.

• Sensitive values, such as passwords or authentication keys.

Cookbook attributes are stored in a repository, so any sensitive information is at some risk of
being compromised. Instead, define attributes with dummy values and use custom JSON to set
the real values.

• Values that are expected to vary.

For example, a recommended practice is to have your production stack supported by separate
development and staging stacks. Suppose that these stacks support an application that accepts
payments. If you use custom JSON to specify the payment endpoint, you can specify a test URL
for your staging stack. When you are ready to migrate an updated stack to your production
stack, you can use the same cookbooks and use custom JSON to set the payment endpoint to the
production URL.

• Values that are specific to a particular stack or deployment command.

Overriding AWS OpsWorks Stacks Attributes Using Custom Cookbook Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 879

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

For Windows stacks, AWS OpsWorks Stacks uses separate Chef runs for built-in recipes and
custom recipes. This means that you cannot use the techniques discussed in this section to
override built-in attributes for Windows stacks.

Custom JSON is a convenient way to override AWS OpsWorks Stacks stack configuration and built-
in cookbook attributes, but it has some limitations. In particular, you must enter custom JSON
manually for each use, so you have no robust way to manage the definitions. A better approach is
often to use custom cookbook attribute files to override built-in attributes. Doing so allows you to
place the definitions under source control.

The procedure for using custom attribute files to override AWS OpsWorks Stacks definitions is
straightforward.

To override AWS OpsWorks Stacks attribute definitions

1. Set up a cookbook repository, as described in Cookbooks and Recipes.

2. Create a cookbook with the same name as the built-in cookbook that contains the attributes
that you want to override. For example, to override the Apache attributes, the cookbook
should be named apache2.

3. Add an attributes folder to the cookbook and add a file to that folder named
customize.rb.

4. Add an attribute definition to the file for each of the built-in cookbook's attributes that you
want to override, set to your preferred value. The attribute must be a normal type or higher
and have exactly the same node name as the corresponding AWS OpsWorks Stacks attribute.
For a detailed list of AWS OpsWorks Stacks attributes, including node names, see Stack
Configuration and Deployment Attributes: Linux and Built-in Cookbook Attributes. For more
information on attributes and attributes files, see About Attribute Files.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 880

http://docs.chef.io/attributes.html

AWS OpsWorks User Guide

Important

Your attributes must be normal type to override AWS OpsWorks Stacks attributes;
default types do not have precedence. For example, if your customize.rb file
contains a default[:apache][:keepalivetimeout] = 5 attribute definition, the
corresponding attribute in the built-in apache.rb attributes file is evaluated first, and
takes precedence. For more information, see Overriding Attributes.

5. Repeat Steps 2 – 4 for each built-in cookbook with attributes that you want to override.

6. Enable custom cookbooks for your stack and provide the information required for AWS
OpsWorks Stacks to download your cookbooks to the stack's instances. For more information,
see Installing Custom Cookbooks.

Note

For a complete walkthrough of this procedure, see Overriding Built-In Attributes.

The node object used by subsequent lifecycle events, deploy commands, and stack commands will
now contain your attribute definitions instead of the AWS OpsWorks Stacks values.

For example, to override the built-in Apache keepalivetimeout and logrotate schedule
settings discussed in How to Specify Custom JSON, add an apache2 cookbook to your repository
and add a customize.rb file to the cookbook's attributes folder with the following contents.

normal[:apache][:keepalivetimeout] = 5
normal[:apache][:logrotate][:schedule] = 'weekly'

Important

You should not override AWS OpsWorks Stacks attributes by modifying a copy of the
associated built-in attributes file. If, for example, you copy apache.rb to your apache2/
attributes folder and modify some of its settings, you essentially override every
attribute in the built-in file. Recipes will use the attribute definitions from your copy and
ignore the built-in file. If AWS OpsWorks Stacks later modifies the built-in attributes file,
recipes will not have access to the changes unless you manually update your copy.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 881

AWS OpsWorks User Guide

To avoid this situation, all built-in cookbooks contain an empty customize.rb attributes
file, which is required in all modules through an include_attribute directive. By
overriding attributes in your copy of customize.rb, you affect only those specific
attributes. Recipes will obtain any other attribute values from the built-in attributes files,
and automatically get the current values of any attributes that you have not overridden.
This approach helps you to keep the number of attributes in your cookbook repository
small, which reduces your maintenance overhead and makes future upgrades easier to
manage.

Extending AWS OpsWorks Stacks Configuration Files Using Custom Templates

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

Because AWS OpsWorks Stacks handles Chef runs differently for Windows stacks than for
Linux stacks, you cannot use the techniques discussed in this section for Windows stacks.

AWS OpsWorks Stacks uses templates to create files such as configuration files, which typically
depend on attributes for many of the settings. If you use custom JSON or custom cookbook
attributes to override the AWS OpsWorks Stacks definitions, your preferred settings are
incorporated into the configuration files in place of the AWS OpsWorks Stacks settings. However,
AWS OpsWorks Stacks does not necessarily specify an attribute for every possible configuration
setting; it accepts the defaults for some settings and hardcodes others directly in the template. You
can't use custom JSON or custom cookbook attributes to specify preferred settings if there is no
corresponding AWS OpsWorks Stacks attribute.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 882

AWS OpsWorks User Guide

You can extend the configuration file to include additional configuration settings by creating a
custom template. You can then add whatever configuration settings or other content you need to
the file, and override any hardcoded settings. For more information on templates, see Templates.

Note

You can override any built-in template except opsworks-agent.monitrc.erb.

To create a custom template

1. Create a cookbook with the same structure and directory names as the built-in cookbook.
Then, create a template file in the appropriate directory with the same name as the built-
in template that you want to customize. For example, to use a custom template to extend
the Apache httpd.conf configuration file, you must implement an apache2 cookbook
in your repository and your template file must be apache2/templates/default/
apache.conf.erb. Using exactly the same names allows AWS OpsWorks Stacks to recognize
the custom template and use it instead of the built-in template.

The simplest approach is to just copy the built-in template file from the built-in cookbook's
GitHub repository to your cookbook and modify it as needed.

Important

Do not copy any files from the built-in cookbook except for the template files that
you want to customize. Copies of other types of cookbook file, such as recipes, create
duplicate Chef resources and can cause errors.

The cookbook can also include custom attributes, recipes, and related files, but their file names
should not duplicate built-in file names.

2. Customize the template file to produce a configuration file that meets your requirements. You
can add more settings, delete existing settings, replace hardcoded attributes, and so on.

3. If you haven't done so already, edit the stack settings to enable custom cookbooks and specify
your cookbook repository. For more information, see Installing Custom Cookbooks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 883

https://github.com/aws/opsworks-cookbooks
https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

Note

For a complete walkthrough of this procedure, see Overriding Built-In Templates.

You don't have to implement any recipes or add recipes to the layer configuration to override a
template. AWS OpsWorks Stacks always runs the built-in recipes. When it runs the recipe that
creates the configuration file, it will automatically use your custom template instead of the built-in
template.

Note

If AWS OpsWorks Stacks makes any changes to the built-in template, your custom template
might become out of sync and no longer work correctly. For example, suppose your
template refers to a dependent file, and the file name changes. AWS OpsWorks Stacks
doesn't make such changes often, and when a template does change, it lists the changes
and gives you the option of upgrading to a new version. You should monitor the AWS
OpsWorks Stacks repository for changes, and manually update your template as needed.

Extending a Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Sometimes, you need to customize a built-in layer beyond what can be handled by modifying AWS
OpsWorks Stacks attributes or customizing templates. For example, suppose you need to create
symlinks, set file or folder modes, install additional packages, and so on. You must extend custom
layers to provide more than minimal functionality. In that case, you will need to implement one or
more custom cookbooks with recipes to handle the customization tasks. This topic provides some
examples of how to use recipes to extend a layer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 884

AWS OpsWorks User Guide

If you are new to Chef, you should first read Cookbooks 101, which is a tutorial that introduces
the basics of how to implement cookbooks to perform a variety of common tasks. For a detailed
example of how to implement a custom layer, see Creating a Custom Tomcat Server Layer.

Topics

• Using Recipes to Run Scripts

• Using Chef Deployment Hooks

• Running Cron Jobs on Linux Instances

• Installing and Configuring Packages on Linux Instances

Using Recipes to Run Scripts

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If you already have a script that performs the required customization tasks, the simplest approach
to extending a layer is often to implement a simple recipe to run the script. You can then assign the
recipe to the appropriate lifecycle events, typically Setup or Deploy, or use the execute_recipes
stack command to run the recipe manually.

The following example runs a shell script on Linux instances, but you can use the same approach
for other types of script, including Windows PowerShell scripts.

cookbook_file "/tmp/lib-installer.sh" do
 source "lib-installer.sh"
 mode 0755
end

execute "install my lib" do

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 885

AWS OpsWorks User Guide

 command "sh /tmp/lib-installer.sh"
end

The cookbook_file resource represents a file that is stored in a subdirectory of a cookbook's
files directory, and transfers the file to a specified location on the instance. This example
transfers a shell script, lib-installer.sh, to the instance's /tmp directory and sets the file's
mode to 0755. For more information, see cookbook_file.

The execute resource represents a command, such as a shell command. This example runs lib-
installer.sh. For more information, see execute.

You can also run a script by incorporating it into a recipe. The following example runs a bash script,
but Chef also supports Csh, Perl, Python, and Ruby.

script "install_something" do
 interpreter "bash"
 user "root"
 cwd "/tmp"
 code <<-EOH
 #insert bash script
 EOH
end

The script resource represents a script. The example specifies a bash interpreter, sets user to
"root", and sets the working directory to /tmp. It then runs the bash script in the code block,
which can include as many lines as required. For more information, see script.

For more information on how to use recipes to run scripts, see Example 7: Running Commands and
Scripts. For an example of how to run a PowerShell script on a Windows instance, see Running a
Windows PowerShell Script.

Using Chef Deployment Hooks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 886

https://docs.chef.io/chef/resources.html#cookbook-file
https://docs.chef.io/chef/resources.html#execute
https://docs.chef.io/chef/resources.html#script

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can customize deployment by implementing a custom recipe to perform the required tasks
and assigning it to the appropriate layer's Deploy event. An alternative and sometimes simpler
approach—especially if you don't need to implement a cookbook for other purposes—is to use
Chef deployment hooks to run your customization code. In addition, custom Deploy recipes run
after the deployment has already been performed by the built-in recipes. Deployment hooks
allow you to interact during a deployment, for example, after the app's code is checked out of the
repository but before Apache is restarted.

Chef deploys apps in four stages:

• Checkout–Downloads the files from the repository

• Migrate–Runs a migration, as required

• Symlink–Creates symlinks

• Restart–Restarts the application

Chef deployment hooks provide a simple way to customize a deployment by optionally running a
user-supplied Ruby application after each stage completes. To use deployment hooks, implement
one or more Ruby applications and place them in your app's /deploy directory. (If your app does
not have a /deploy directory, create one at the APP_ROOT level.) The application must have one
of the following names, which determines when it runs.

• before_migrate.rb runs after the Checkout stage is complete but before Migrate.

• before_symlink.rb runs after the Migrate stage is complete but before Symlink.

• before_restart.rb runs after the Symlink stage is complete but before Restart.

• after_restart.rb runs after the Restart stage is complete.

Chef deployment hooks can access the node object by using standard node syntax, just like recipes.
Deployment hooks can also access the values of any app environment variables that you have
specified. However, you must use new_resource.environment["VARIABLE_NAME"] to access
the variable's value instead of ENV["VARIABLE_NAME"].

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 887

AWS OpsWorks User Guide

Running Cron Jobs on Linux Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A Linux cron job directs the cron daemon to run one or more commands on a specified schedule.
For example, suppose your stack supports a PHP e-commerce application. You can set up a cron
job to have the server send you a sales report at a specified time every week. For more information
about cron, see cron on Wikipedia. For more information about how to run a cron job directly on a
Linux-based computer or instance, see What are cron and crontab, and how do I use them? on the
Indiana University knowledge base website.

Although you can manually set up cron jobs on individual Linux-based instances by connecting
to them with SSH, and editing their crontab entries, a key advantage of AWS OpsWorks Stacks is
that you can direct it to run the task across an entire layer of instances. The following procedure
describes how to set up a cron job on a PHP App Server layer's instances, but you can use the same
approach with any layer.

To set up a cron job on a layer's instances

1. Implement a cookbook with a recipe with a cron resource that sets up the job. The example
assumes that the recipe is named cronjob.rb; the implementation details are described later.
For more information on cookbooks and recipes, see Cookbooks and Recipes.

2. Install the cookbook on your stack. For more information, see Installing Custom Cookbooks.

3. Have AWS OpsWorks Stacks run the recipe automatically on the layer's instances by assigning
it to the following lifecycle events. For more information, see Automatically Running Recipes.

• Setup – Assigning cronjob.rb to this event directs AWS OpsWorks Stacks to run the recipe
on all new instances.

• Deploy – Assigning cronjob.rb to this event directs AWS OpsWorks Stacks to run the
recipe on all online instances when you deploy or redeploy an app to the layer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 888

http://en.wikipedia.org/wiki/Cron
https://kb.iu.edu/d/afiz

AWS OpsWorks User Guide

You can also manually run the recipe on online instances by using the Execute Recipes
stack command. For more information, see Run Stack Commands.

The following is the cronjob.rb example, which sets up a cron job to run a user-implemented
PHP application once a week that collects the sales data from the server and mails a report. For
more examples of how to use a cron resource, see cron.

cron "job_name" do
 hour "1"
 minute "10"
 weekday "6"
 command "cd /srv/www/myapp/current && php .lib/mailing.php"
end

cron is a Chef resource that represents a cron job. When AWS OpsWorks Stacks runs the recipe on
an instance, the associated provider handles the details of setting up the job.

• job_name is a user-defined name for the cron job, such as weekly report.

• hour/minute/weekday specify when the commands should run. This example runs the
commands every Saturday at 1:10 AM.

• command specifies the commands to be run.

This example runs two commands. The first navigates to the /srv/www/myapp/current
directory. The second runs the user-implemented mailing.php application, which collects the
sales data and sends the report.

Note

The bundle command does not work with cron jobs by default. The reason is that AWS
OpsWorks Stacks installs bundler in the /usr/local/bin directory. To use bundle with a
cron job, you must explicitly add the path /usr/local/bin to the cron job. Also, because
the $PATH environment variable may not expand in the cron job, a best practice is to
explicitly add any necessary path information to the job without relying on expansion of
the $PATH variable. The following examples show two ways to use bundle in a cron job.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 889

https://docs.chef.io/chef/resources.html#cron

AWS OpsWorks User Guide

cron "my first task" do
 path "/usr/local/bin"
 minute "*/10"
 command "cd /srv/www/myapp/current && bundle exec my_command"
end

cron_env = {"PATH" => "/usr/local/bin"}
cron "my second task" do
 environment cron_env
 minute "*/10"
 command "cd /srv/www/myapp/current && /usr/local/bin/bundle exec my_command"
end

If your stack has multiple application servers, assigning cronjob.rb to the PHP App Server layer's
lifecycle events might not be an ideal approach. For example, the recipe runs on all of the layer's
instances, so you will receive multiple reports. A better approach is to use a custom layer to ensure
that only one server sends a report.

To run a recipe on just one of a layer's instances

1. Create a custom layer called, for example, PHPAdmin and assign cronjob.rb to its Setup and
Deploy events. Custom layers don't necessarily have to do very much. In this case, PHPAdmin
just runs one custom recipe on its instances.

2. Assign one of the PHP App Server instances to AdminLayer. If an instance belongs to more
than one layer, AWS OpsWorks Stacks runs each layer's built-in and custom recipes.

Because only one instance belongs to the PHP App Server and PHPAdmin layers, cronjob.rb runs
only on that instance and you receive just one report.

Installing and Configuring Packages on Linux Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 890

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The built-in layers support only certain packages. For more information, see Layers. You can install
other packages, such as a Redis server, by implementing custom recipes to handle the associated
setup, configuration, and deployment tasks. In some cases, the best approach is to extend a built-
in layer to have it install the package on its instances alongside the layer's standard packages. For
example, if you have a stack that supports a PHP application, and you would like to include a Redis
server, you could extend the PHP App Server layer to install and configure a Redis server on the
layer's instances in addition to a PHP application server.

A package installation recipe typically needs to perform tasks like these:

• Create one or more directories and set their modes.

• Create a configuration file from a template.

• Run the installer to install the package on the instance.

• Start one or more services.

For an example of how to install a Tomcat server, see Creating a Custom Tomcat Server Layer. The
topic describes how to set up a custom Redis layer, but you could use much the same code to install
and configure Redis on a built-in layer. For examples of how to install other packages, see the built-
in cookbooks, at https://github.com/aws/opsworks-cookbooks.

Creating a Custom Tomcat Server Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 891

https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

Note

This topic describes how to implement a custom layer for a Linux stack. However, the
basic principles and some of the code can also be adapted to implement custom layers for
Windows stacks, especially those in the section on app deployment.

The simplest way to use nonstandard packages on AWS OpsWorks Stacks instances is to extend
an existing layer. However, this approach installs and runs both the standard and nonstandard
packages on the layer's instances, which is not always desirable. A somewhat more demanding but
more powerful approach is to implement a custom layer, which gives you almost complete control
over the layer's instances, including the following:

• Which packages are installed

• How each package is configured

• How to deploy apps from a repository to the instance

Whether using the console or API, you create and manage a custom layer much like any other layer,
as described in Custom Layers. However, a custom layer's built-in recipes perform only some very
basic tasks, such as installing a Ganglia client to report metrics to a Ganglia master. To make a
custom layer's instances more than minimally functional, you must implement one or more custom
cookbooks with Chef recipes and related files to handle the tasks of installing and configuring
packages, deploying apps, and so on. You don't necessarily have to implement everything from
scratch, though. For example, if you store applications in one of the standard repositories, you can
use the built-in deploy recipes to handle much of the work of installing the applications on the
layer's instances.

Note

If you are new to Chef, you should first read Cookbooks 101, which is a tutorial that
introduces the basics of how to implement cookbooks to perform a variety of common
tasks.

The following walkthrough describes how to implement a custom layer that supports a Tomcat
application server. The layer is based on a custom cookbook named Tomcat, which includes recipes
to handle package installation, deployment, and so on. The walkthrough includes excerpts from

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 892

AWS OpsWorks User Guide

the Tomcat cookbook. You can download the complete cookbook from its GitHub repository. If you
are not familiar with Opscode Chef, you should first read Cookbooks and Recipes.

Note

AWS OpsWorks Stacks includes a full-featured Java App Server layer for production use.
The purpose of the Tomcat cookbook is to show how to implement custom layers, so it
supports only a limited version of Tomcat that does not include features such as SSL. For
an example of a full featured implementation, see the built-in opsworks_java cookbook .

The Tomcat cookbook supports a custom layer whose instances have the following characteristics:

• They support a Tomcat Java application server with an Apache front end.

• Tomcat is configured to allow applications to use a JDBC DataSource object to connect to a
separate MySQL instance, which serves as a back end data store.

The cookbook for this project involves several key components:

• Attributes file contains configuration settings that are used by the various recipes.

• Setup recipes are assigned to the layer's Setup lifecycle event. They run after an instance has
booted and perform tasks such as installing packages and creating configuration files.

• Configure recipes are assigned to the layer's Configure lifecycle event. They run after the stack's
configuration changes—primarily when instances come online or go offline—and handle any
required configuration changes.

• Deploy recipes are assigned to the layer's Deploy lifecycle event. They run after the Setup recipes
and when you manually deploy an app to install the code and related files on a layer's instances
and handle related tasks, such as restarting services.

The final section, Create a Stack and Run an Application, describes how to create a stack that
includes a custom layer based on the Tomcat cookbook and how to deploy and run a simple JSP
application that displays data from a MySQL database running on an instance that belongs to a
separate MySQL layer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 893

https://github.com/amazonwebservices/opsworks-example-cookbooks/tree/master/tomcat
http://www.opscode.com/chef/
https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.10/opsworks_java

AWS OpsWorks User Guide

Note

The Tomcat cookbook recipes depend on some AWS OpsWorks Stacks built-in
recipes. To make each recipe's origin clear, this topic identifies recipes using the Chef
cookbookname::recipename convention.

Topics

• Attributes File

• Setup Recipes

• Configure Recipes

• Deploy Recipes

• Create a Stack and Run an Application

Attributes File

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Before looking at the recipes, it is useful to first examine the Tomcat cookbook's attributes file,
which contains variety of configuration settings that the recipes use. Attributes aren't required; you
can simply hardcode these values in your recipes or templates. However, if you define configuration
settings using attributes, you can use the AWS OpsWorks Stacks console or API to modify the
values by defining custom JSON attributes, which is simpler and more flexible than rewriting the
recipe or template code every time you want to change a setting. This approach allows you, for
example, to use the same cookbook for multiple stacks, but configure the Tomcat server differently
for each stack. For more information on attributes and how to override them, see Overriding
Attributes.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 894

AWS OpsWorks User Guide

The following example shows the complete attributes file, default.rb, which is located in the
Tomcat cookbook's attributes directory.

default['tomcat']['base_version'] = 6
default['tomcat']['port'] = 8080
default['tomcat']['secure_port'] = 8443
default['tomcat']['ajp_port'] = 8009
default['tomcat']['shutdown_port'] = 8005
default['tomcat']['uri_encoding'] = 'UTF-8'
default['tomcat']['unpack_wars'] = true
default['tomcat']['auto_deploy'] = true
case node[:platform]
when 'centos', 'redhat', 'fedora', 'amazon'
 default['tomcat']['java_opts'] = ''
when 'debian', 'ubuntu'
 default['tomcat']['java_opts'] = '-Djava.awt.headless=true -Xmx128m -XX:
+UseConcMarkSweepGC'
end
default['tomcat']['catalina_base_dir'] = "/etc/tomcat#{node['tomcat']['base_version']}"
default['tomcat']['webapps_base_dir'] = "/var/lib/tomcat#{node['tomcat']
['base_version']}/webapps"
default['tomcat']['lib_dir'] = "/usr/share/tomcat#{node['tomcat']['base_version']}/lib"
default['tomcat']['java_dir'] = '/usr/share/java'
default['tomcat']['mysql_connector_jar'] = 'mysql-connector-java.jar'
default['tomcat']['apache_tomcat_bind_mod'] = 'proxy_http' # or: 'proxy_ajp'
default['tomcat']['apache_tomcat_bind_config'] = 'tomcat_bind.conf'
default['tomcat']['apache_tomcat_bind_path'] = '/tc/'
default['tomcat']['webapps_dir_entries_to_delete'] = %w(config log public tmp)
case node[:platform]
when 'centos', 'redhat', 'fedora', 'amazon'
 default['tomcat']['user'] = 'tomcat'
 default['tomcat']['group'] = 'tomcat'
 default['tomcat']['system_env_dir'] = '/etc/sysconfig'
when 'debian', 'ubuntu'
 default['tomcat']['user'] = "tomcat#{node['tomcat']['base_version']}"
 default['tomcat']['group'] = "tomcat#{node['tomcat']['base_version']}"
 default['tomcat']['system_env_dir'] = '/etc/default'
end

The settings themselves are discussed later in the related section. The following notes apply
generally:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 895

AWS OpsWorks User Guide

• All of the node definitions are default type, so you can override them with custom JSON
attributes.

• The file uses a case statement to conditionally set some attribute values based on instance's
operating system.

The platform node is generated by Chef's Ohai tool and represents the instance's operating
system.

Setup Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Setup recipes are assigned to the layer's Setup lifecycle event and run after an instance boots. They
perform tasks such as installing packages, creating configuration files, and starting services. After
the Setup recipes finish running, AWS OpsWorks Stacks runs the Deploy recipes to deploy any apps
to the new instance.

Topics

• tomcat::setup

• tomcat::install

• tomcat::service

• tomcat::container_config

• tomcat::apache_tomcat_bind

tomcat::setup

The tomcat::setup recipe is intended to be assigned to a layer's Setup lifecycle event.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 896

AWS OpsWorks User Guide

include_recipe 'tomcat::install'
include_recipe 'tomcat::service'

service 'tomcat' do
 action :enable
end

for EBS-backed instances we rely on autofs
bash '(re-)start autofs earlier' do
 user 'root'
 code <<-EOC
 service autofs restart
 EOC
 notifies :restart, resources(:service => 'tomcat')
end

include_recipe 'tomcat::container_config'
include_recipe 'apache2'
include_recipe 'tomcat::apache_tomcat_bind'

tomcat::setup recipe is largely a metarecipe. It includes a set of dependent recipes that handle
most of the details of installing and configuring Tomcat and related packages. The first part of
tomcat::setup runs the following recipes, which are discussed later:

• The tomcat::install recipe installs the Tomcat server package.

• The tomcat::service recipe sets up the Tomcat service.

The middle part of tomcat::setup enables and starts the Tomcat service:

• The Chef service resource enables the Tomcat service at boot.

• The Chef bash resource runs a Bash script to start the autofs daemon, which is necessary for
Amazon EBS-backed instances. The resource then notifies the service resource to restart the
Tomcat service.

For more information, see: autofs (for Amazon Linux) or Autofs (for Ubuntu).

The final part of tomcat::setup creates configuration files and installs and configures the front-
end Apache server:

• The tomcat::container_config recipe creates configuration files.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 897

https://docs.chef.io/chef/resources.html#service
https://docs.chef.io/chef/resources.html#bash
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/s2-nfs-config-autofs.html
https://help.ubuntu.com/community/Autofs

AWS OpsWorks User Guide

• The apache2 recipe (which is shorthand for apache2::default) is an AWS OpsWorks Stacks
built-in recipe that installs and configures an Apache server.

• The tomcat::apache_tomcat_bind recipe configures the Apache server to function as a front-end
for the Tomcat server.

Note

You can often save time and effort by using built-in recipes to perform some of the
required tasks. This recipe uses the built in apache2::default recipe to install Apache
rather than implementing it from scratch. For another example of how to use built-in
recipes, see Deploy Recipes.

The following sections describe the Tomcat cookbook's Setup recipes in more detail. For more
information on the apache2 recipes, see opsworks-cookbooks/apache2.

tomcat::install

The tomcat::install recipe installs the Tomcat server, the OpenJDK, and a Java connector
library that handles the connection to the MySQL server.

tomcat_pkgs = value_for_platform(
 ['debian', 'ubuntu'] => {
 'default' => ["tomcat#{node['tomcat']['base_version']}", 'libtcnative-1',
 'libmysql-java']
 },
 ['centos', 'redhat', 'fedora', 'amazon'] => {
 'default' => ["tomcat#{node['tomcat']['base_version']}", 'tomcat-native', 'mysql-
connector-java']
 },
 'default' => ["tomcat#{node['tomcat']['base_version']}"]
)

tomcat_pkgs.each do |pkg|
 package pkg do
 action :install
 end
end

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 898

https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.4/apache2

AWS OpsWorks User Guide

link ::File.join(node['tomcat']['lib_dir'], node['tomcat']['mysql_connector_jar']) do
 to ::File.join(node['tomcat']['java_dir'], node['tomcat']['mysql_connector_jar'])
 action :create
end

remove the ROOT webapp, if it got installed by default
include_recipe 'tomcat::remove_root_webapp'

The recipe performs the following tasks:

1. Creates a list of packages to be installed, depending on the instance's operating system.

2. Installs each package in the list.

The Chef package resource uses the appropriate provider—yum for Amazon Linux and apt-get
for Ubuntu— to handle the installation. The package providers install OpenJDK as a Tomcat
dependency, but the MySQL connector library must be installed explicitly.

3. Uses a Chef link resource to create a symlink in the Tomcat server's lib directory to the MySQL
connector library in the JDK.

Using the default attribute values, the Tomcat lib directory is /usr/share/tomcat6/lib and
the MySQL connector library (mysql-connector-java.jar) is in /usr/share/java/.

The tomcat::remove_root_webapp recipe removes the ROOT web application (/var/lib/
tomcat6/webapps/ROOT by default) to avoid some security issues.

ruby_block 'remove the ROOT webapp' do
 block do
 ::FileUtils.rm_rf(::File.join(node['tomcat']['webapps_base_dir'], 'ROOT'), :secure
 => true)
 end
 only_if { ::File.exists?(::File.join(node['tomcat']['webapps_base_dir'], 'ROOT'))
 && !::File.symlink?(::File.join(node['tomcat']['webapps_base_dir'], 'ROOT')) }
end

The only_if statement ensures that the recipe removes the file only if it exists.

Note

The Tomcat version is specified by the ['tomcat']['base_version'] attribute, which
is set to 6 in the attributes file. To install Tomcat 7, you can use custom JSON attributes

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 899

https://docs.chef.io/chef/resources.html#id146
https://docs.chef.io/chef/resources.html#link

AWS OpsWorks User Guide

to override the attribute. Just edit your stack settings and enter the following JSON in the
Custom Chef JSON box, or add it to any existing custom JSON:

{
 'tomcat' : {
 'base_version' : 7
 }
}

The custom JSON attribute overrides the default attribute and sets the Tomcat version to
7. For more information on overriding attributes, see Overriding Attributes.

tomcat::service

The tomcat::service recipe creates the Tomcat service definition.

service 'tomcat' do
 service_name "tomcat#{node['tomcat']['base_version']}"

 case node[:platform]
 when 'centos', 'redhat', 'fedora', 'amazon'
 supports :restart => true, :reload => true, :status => true
 when 'debian', 'ubuntu'
 supports :restart => true, :reload => false, :status => true
 end

 action :nothing
end

The recipe uses the Chef service resource to specify the Tomcat service name (tomcat6, by default)
and sets the supports attribute to define how Chef manages the service's restart, reload, and
status commands on the different operating systems.

• true indicates that Chef can use the init script or other service provider to run the command

• false indicates that Chef must attempt to run the command by other means.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 900

https://docs.chef.io/chef/resources.html#service

AWS OpsWorks User Guide

Notice that the action is set to :nothing. For each lifecycle event, AWS OpsWorks Stacks
initiates a Chef run to execute the appropriate set of recipes. The Tomcat cookbook follows a
common pattern of having a recipe create the service definition, but not restart the service. Other
recipes in the Chef run handle the restart, typically by including a notifies command in the
template resources that are used to create configuration files. Notifications are a convenient
way to restart a service because they do so only if the configuration has changed. In addition, if
a Chef run has multiple restart notifications for a service, Chef restarts the service at most once.
This practice avoids problems that can occur when attempting to restart a service that is not fully
operational, which is a common source of Tomcat errors.

The Tomcat service must be defined for any Chef run that uses restart notifications.
tomcat::service is therefore included in several recipes, to ensure that the service is defined for
every Chef run. There is no penalty if a Chef run includes multiple instances of tomcat::service
because Chef ensures that a recipe executes only once per run, regardless of how many times it is
included.

tomcat::container_config

The tomcat::container_config recipe creates configuration files from cookbook template
files.

include_recipe 'tomcat::service'

template 'tomcat environment configuration' do
 path ::File.join(node['tomcat']['system_env_dir'], "tomcat#{node['tomcat']
['base_version']}")
 source 'tomcat_env_config.erb'
 owner 'root'
 group 'root'
 mode 0644
 backup false
 notifies :restart, resources(:service => 'tomcat')
end

template 'tomcat server configuration' do
 path ::File.join(node['tomcat']['catalina_base_dir'], 'server.xml')
 source 'server.xml.erb'
 owner 'root'
 group 'root'
 mode 0644

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 901

https://docs.chef.io/chef_client_overview.html#the-chef-client-run

AWS OpsWorks User Guide

 backup false
 notifies :restart, resources(:service => 'tomcat')
end

The recipe first calls tomcat::service, which defines the service if necessary. The bulk of the
recipe consists of two template resources, each of which creates a configuration file from one of
the cookbook's template files, sets the file properties, and notifies Chef to restart the service.

Tomcat Environment Configuration File

The first template resource uses the tomcat_env_config.erb template file to create a Tomcat
environment configuration file, which is used to set environment variables such as JAVA_HOME.
The default file name is the template resource's argument. tomcat::container_config uses
a path attribute to override the default value and name the configuration file /etc/sysconfig/
tomcat6 (Amazon Linux) or /etc/default/tomcat6 (Ubuntu). The template resource also
specifies the file's owner, group, and mode settings and directs Chef to not create backup files.

If you look at the source code, there are actually three versions of tomcat_env_config.erb,
each in a different subdirectory of the templates directory. The ubuntu and amazon directories
contain the templates for their respective operating systems. The default folder contains a
dummy template with a single comment line, which is used only if you attempt to run this recipe
on an instance with an unsupported operating system. The tomcat::container_config
recipe doesn't need to specify which tomcat_env_config.erb to use. Chef automatically picks
the appropriate directory for the instance's operating system based on rules described in File
Specificity.

The tomcat_env_config.erb files for this example consist largely of comments. To set
additional environment variables, just uncomment the appropriate lines and provide your preferred
values.

Note

Any configuration setting that might change should be defined as an attribute rather than
hardcoded in the template. That way, you don't have to rewrite the template to change a
setting, you can just override the attribute.

The Amazon Linux template sets only one environment variable, as shown in the following excerpt.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 902

https://docs.chef.io/chef/resources.html#template
http://docs.chef.io/templates.html#file-specificity
http://docs.chef.io/templates.html#file-specificity

AWS OpsWorks User Guide

...
Use JAVA_OPTS to set java.library.path for libtcnative.so
#JAVA_OPTS="-Djava.library.path=/usr/lib"

JAVA_OPTS="${JAVA_OPTS} <%= node['tomcat']['java_opts'] %>"

What user should run tomcat
#TOMCAT_USER="tomcat"
...

JAVA_OPTS can be used to specify Java options such as the library path. Using the default attribute
values, the template sets no Java options for Amazon Linux. You can set your own Java options
by overriding the ['tomcat']['java_opts'] attribute, for example, by using custom JSON
attributes. For an example, see Create a Stack.

The Ubuntu template sets several environment variables, as shown in the following template
excerpt.

Run Tomcat as this user ID. Not setting this or leaving it blank will use the
default of tomcat<%= node['tomcat']['base_version'] %>.
TOMCAT<%= node['tomcat']['base_version'] %>_USER=tomcat<%= node['tomcat']
['base_version'] %>
...
Run Tomcat as this group ID. Not setting this or leaving it blank will use
the default of tomcat<%= node['tomcat']['base_version'] %>.
TOMCAT<%= node['tomcat']['base_version'] %>_GROUP=tomcat<%= node['tomcat']
['base_version'] %>
...
JAVA_OPTS="<%= node['tomcat']['java_opts'] %>"

<% if node['tomcat']['base_version'].to_i < 7 -%>
Unset LC_ALL to prevent user environment executing the init script from
influencing servlet behavior. See Debian bug #645221
unset LC_ALL
<% end -%>

Using default attribute values, the template sets the Ubuntu environment variables as follows:

• TOMCAT6_USER and TOMCAT6_GROUP, which represent the Tomcat user and group, are both set
to tomcat6.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 903

AWS OpsWorks User Guide

If you set ['tomcat']['base_version'] to tomcat7, the variable names resolve to TOMCAT7_USER
and TOMCAT7_GROUP, and both are set to tomcat7.

• JAVA_OPTS is set to -Djava.awt.headless=true -Xmx128m -XX:+UseConcMarkSweepGC:

• Setting -Djava.awt.headless to true informs the graphics engine that the instance is
headless and does not have a console, which addresses faulty behavior of certain graphical
applications.

• -Xmx128m ensures that the JVM has adequate memory resources, 128MB for this example.

• -XX:+UseConcMarkSweepGC specifies concurrent mark sweep garbage collection, which
helps limit garbage-collection induced pauses.

For more information, see: Concurrent Mark Sweep Collector Enhancements.

• If the Tomcat version is less than 7, the template unsets LC_ALL, which addresses a Ubuntu bug.

Note

With the default attributes, some of these environment variables are simply set to their
default values. However, explicitly setting environment variables to attributes means you
can define custom JSON attributes to override the default attributes and provide custom
values. For more information on overriding attributes, see Overriding Attributes.

For the complete template files, see the source code.

Server.xml Configuration File

The second template resource uses server.xml.erb to create the system.xml configuration
file, which configures the servlet/JSP container. server.xml.erb contains no operating system-
specific settings, so it is in the template directory's default subdirectory.

The template uses standard settings, but it can create a system.xml file for either Tomcat 6
or Tomcat 7. For example, the following code from the template's server section configures the
listeners appropriately for the specified version.

<% if node['tomcat']['base_version'].to_i > 6 -%>
 <!-- Security listener. Documentation at /docs/config/listeners.html
 <Listener className="org.apache.catalina.security.SecurityListener" />

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 904

http://docs.oracle.com/javase/6/docs/technotes/guides/vm/cms-6.html
https://github.com/amazonwebservices/opsworks-example-cookbooks/tree/master/tomcat
http://tomcat.apache.org/tomcat-7.0-doc/config/
http://tomcat.apache.org/tomcat-7.0-doc/config/

AWS OpsWorks User Guide

 -->
<% end -%>
 <!--APR library loader. Documentation at /docs/apr.html -->
 <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" />
 <!--Initialize Jasper prior to webapps are loaded. Documentation at /docs/jasper-
howto.html -->
 <Listener className="org.apache.catalina.core.JasperListener" />
 <!-- Prevent memory leaks due to use of particular java/javax APIs-->
 <Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener" />
<% if node['tomcat']['base_version'].to_i < 7 -%>
 <!-- JMX Support for the Tomcat server. Documentation at /docs/non-existent.html -->
 <Listener className="org.apache.catalina.mbeans.ServerLifecycleListener" />
<% end -%>
 <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" />
<% if node['tomcat']['base_version'].to_i > 6 -%>
 <Listener className="org.apache.catalina.core.ThreadLocalLeakPreventionListener" />
<% end -%>

The template uses attributes in place of hardcoded settings so you can easily change the settings
by defining custom JSON attributes. For example:

<Connector port="<%= node['tomcat']['port'] %>" protocol="HTTP/1.1"
 connectionTimeout="20000"
 URIEncoding="<%= node['tomcat']['uri_encoding'] %>"
 redirectPort="<%= node['tomcat']['secure_port'] %>" />

For more information, see the source code.

tomcat::apache_tomcat_bind

The tomcat::apache_tomcat_bind recipe enables the Apache server to act as Tomcat's front
end, receiving incoming requests and forwarding them to Tomcat and returning the responses to
the client. This example uses mod_proxy as the Apache proxy/gateway.

execute 'enable mod_proxy for apache-tomcat binding' do
 command '/usr/sbin/a2enmod proxy'
 not_if do
 ::File.symlink?(::File.join(node['apache']['dir'], 'mods-enabled', 'proxy.load'))
 || node['tomcat']['apache_tomcat_bind_mod'] !~ /\Aproxy/
 end
end

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 905

https://github.com/amazonwebservices/opsworks-example-cookbooks/tree/master/tomcat
https://httpd.apache.org/docs/2.2/mod/mod_proxy.html

AWS OpsWorks User Guide

execute 'enable module for apache-tomcat binding' do
 command "/usr/sbin/a2enmod #{node['tomcat']['apache_tomcat_bind_mod']}"
 not_if {::File.symlink?(::File.join(node['apache']['dir'], 'mods-enabled',
 "#{node['tomcat']['apache_tomcat_bind_mod']}.load"))}
end

include_recipe 'apache2::service'

template 'tomcat thru apache binding' do
 path ::File.join(node['apache']['dir'], 'conf.d', node['tomcat']
['apache_tomcat_bind_config'])
 source 'apache_tomcat_bind.conf.erb'
 owner 'root'
 group 'root'
 mode 0644
 backup false
 notifies :restart, resources(:service => 'apache2')
end

To enable mod_proxy, you must enable the proxy module and a protocol-based module. You
have two options for the protocol module:

• HTTP: proxy_http

• Apache JServ Protocol (AJP): proxy_ajp

AJP is an internal Tomcat protocol.

Both the recipe's execute resources run the a2enmod command, which enables the specified
module by creating the required symlinks:

• The first execute resource enables the proxy module.

• The second execute resource enables the protocol module, which is set to proxy_http by
default.

If you would rather use AJP, you can define custom JSON to override the
apache_tomcat_bind_mod attribute and set it to proxy_ajp.

The apache2::service recipe is an AWS OpsWorks Stacks built-in recipe that defines the Apache
service. For more information, see the recipe in the AWS OpsWorks Stacks GitHub repository.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 906

http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html
https://docs.chef.io/chef/resources.html#execute
https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.4/apache2/recipes/service.rb

AWS OpsWorks User Guide

The template resource uses apache_tomcat_bind.conf.erb to create a configuration file,
named tomcat_bind.conf by default. It places the file in the ['apache']['dir']/.conf.d
directory. The ['apache']['dir'] attribute is defined in the built-in apache2 attributes
file, and is set by default to /etc/httpd (Amazon Linux), or /etc/apache2 (Ubuntu). If the
template resource creates or changes the configuration file, the notifies command schedules
an Apache service restart.

<% if node['tomcat']['apache_tomcat_bind_mod'] == 'proxy_ajp' -%>
ProxyPass <%= node['tomcat']['apache_tomcat_bind_path'] %> ajp://localhost:<%=
 node['tomcat']['ajp_port'] %>/
ProxyPassReverse <%= node['tomcat']['apache_tomcat_bind_path'] %> ajp://localhost:<%=
 node['tomcat']['ajp_port'] %>/
<% else %>
ProxyPass <%= node['tomcat']['apache_tomcat_bind_path'] %> http://localhost:<%=
 node['tomcat']['port'] %>/
ProxyPassReverse <%= node['tomcat']['apache_tomcat_bind_path'] %> http://localhost:<%=
 node['tomcat']['port'] %>/
<% end -%>

The template uses the ProxyPass and ProxyPassReverse directives to configure the port used to
pass traffic between Apache and Tomcat. Because both servers are on the same instance, they can
use a localhost URL and are both set by default to http://localhost:8080.

Configure Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Configure recipes are assigned to the layer's Configure lifecycle event, which occurs on all of
the stack's instances whenever an instance enters or leaves the online state. You use Configure
recipes to adjust an instance's configuration to respond to the change, as appropriate. When you

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 907

https://httpd.apache.org/docs/2.0/mod/mod_proxy.html#proxypass
https://httpd.apache.org/docs/2.0/mod/mod_proxy.html#proxypassreverse

AWS OpsWorks User Guide

implement a Configure recipe, keep in mind that a stack configuration change might involve
instances that have nothing to do with this layer. The recipe must be able to respond appropriately,
which might mean doing nothing in some cases.

tomcat::configure

The tomcat::configure recipe is intended for a layer's Configure lifecycle event.

include_recipe 'tomcat::context'
Optional: Trigger a Tomcat restart in case of a configure event, if relevant
settings in custom JSON have changed (e.g. java_opts/JAVA_OPTS):
#include_recipe 'tomcat::container_config'

The tomcat::configure recipe is basically a metarecipe that runs two dependent recipes.

1. The tomcat::context recipe create a web app context configuration file.

This file configures the JDBC resources that applications use to communicate with the MySQL
instance, as discussed in the next section. Running this recipe in response to a configure event
allows the layer to update the web app context configuration file if the database layer has
changed.

2. The tomcat::container_config Setup recipe is run again to capture any changes in the
container configuration.

The include for tomcat::container_config is commented out for this example. If you
want to use custom JSON to modify Tomcat settings, you can remove the comment. A Configure
lifecycle event then runs tomcat::container_config, which updates the Tomcat related
configuration files, as described in tomcat::container_config and restarts the Tomcat service.

tomcat::context

The Tomcat cookbook enables applications to access a MySQL database server, which can
be running on a separate instance, by using a J2EE DataSource object. With Tomcat, you can
enable the connection by creating and installing a web app context configuration file for each
application. This file defines the relationship between the application and the JDBC resource that
the application will use to communicate with the database. For more information, see The Context
Container.

The tomcat::context recipe's primary purpose is to create this configuration file.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 908

http://docs.oracle.com/javase/tutorial/jdbc/basics/sqldatasources.html
http://tomcat.apache.org/tomcat-7.0-doc/config/context.html
http://tomcat.apache.org/tomcat-7.0-doc/config/context.html

AWS OpsWorks User Guide

include_recipe 'tomcat::service'

node[:deploy].each do |application, deploy|
 context_name = deploy[:document_root].blank? ? application : deploy[:document_root]

 template "context file for #{application} (context name: #{context_name})" do
 path ::File.join(node['tomcat']['catalina_base_dir'], 'Catalina', 'localhost',
 "#{context_name}.xml")
 source 'webapp_context.xml.erb'
 owner node['tomcat']['user']
 group node['tomcat']['group']
 mode 0640
 backup false
 only_if { node['datasources'][context_name] }
 variables(:resource_name => node['datasources'][context_name], :webapp_name =>
 application)
 notifies :restart, resources(:service => 'tomcat')
 end
end

In addition to Tomcat cookbook attributes, this recipe uses the stack configuration and deployment
attributes that AWS OpsWorks Stacks installs with the Configure event. The AWS OpsWorks Stacks
service adds attributes to each instance's node object that contain the information that recipes
would typically obtain by using data bags or search and installs the attributes on each instance.
The attributes contain detailed information about the stack configuration, deployed apps, and
any custom data that a user wants to include. Recipes can obtain data from stack configuration
and deployment attributes by using standard Chef node syntax. For more information, see Stack
Configuration and Deployment Attributes. With Chef 11.10 stacks, you also can use Chef search to
obtain stack configuration and deployment data. For more information, see Using Chef Search.

deploy attributes refers to the [:deploy] namespace, which contains deployment-related
attributes that are defined through the console or API, or generated by the AWS OpsWorks Stacks
service. The deploy attribute includes an attribute for each deployed app, named with the app's
short name. Each app attribute contains a set of attributes that characterize the app, such as the
document root ([:deploy][:appname][:document_root]).

The context recipe first ensures that the service is defined for this Chef run by calling
tomcat::service. It then defines a context_name variable which represents the configuration file's
name, excluding the .xml extension. If you use the default document root, context_name is set

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 909

AWS OpsWorks User Guide

to the app's short name. Otherwise, it is set to the specified document root. The example discussed
in Create a Stack and Run an Application sets the document root to "ROOT", so the context is
ROOT and the configuration file is named ROOT.xml.

The bulk of the recipe goes through the list of deployed apps and for each app, uses the
webapp_context.xml.erb template to create a context configuration file. The example deploys
only one app, but the definition of the deploy attribute requires you to treat it as a list of apps
regardless.

The webapp_context.xml.erb template is not operating-system specific, so it is located in the
templates directory's default subdirectory.

The recipe creates the configuration file as follows:

• Using default attribute values, the configuration file name is set to context_name.xml and
installed in the /etc/tomcat6/Catalina/localhost/ directory.

The ['datasources'] node from the stack configuration attributes contains one or more
attributes, each of which maps a context name to the JDBC data resource that the associated
application will use to communicate with the database. The node and its contents are defined
with custom JSON when you create the stack, as described later in Create a Stack and Run an
Application. The example has a single attribute that associates the ROOT context name with a
JDBC resource named jdbc/mydb.

• Using default attribute values, the file's user and group are both set to the values defined by the
Tomcat package: tomcat (Amazon Linux) or tomcat6 (Ubuntu).

• The template resource creates the configuration file only if the ['datasources'] node exists
and includes a context_name attribute.

• The template resource defines two variables, resource_name and webapp_name.

resource_name is set to the resource name that is associated with context_name and
webapp_name is set to the app's short name.

• The template resource restarts the Tomcat service to load and activate the changes.

The webapp_context.xml.erb template consists of a Context element that contains a
Resource element with its own set of attributes.

The Resource attributes characterize the context configuration:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 910

AWS OpsWorks User Guide

• name–The JDBC resource name, which is set to the resource_name value defined in
tomcat::context.

For the example, the resource name is set to jdbc/mydb.

• auth and type–These are standard settings for JDBC DataSource connections.

• maxActive, maxIdle, and maxWait–The maximum number of active and idle connections, and
the maximum wait time for a connection to be returned.

• username, and password–The database's user name and root password, which are obtained from
the deploy attributes.

• driverClassName–The JDBC driver's class name, which is set to the MySQL driver.

• url–The connection URL.

The prefix depends on the database. It should be set to jdbc:mysql for MySQL,
jdbc:postgresql for Postgres, and jdbc:sqlserver for SQL Server. The example sets the
URL to jdbc:mysql://host_IP_Address:3306:simplejsp, where simplejsp is the app's
short name.

• factory–The DataSource factory, which is required for MySQL databases.

For more information on this configuration file, see the Tomcat wiki's Using DataSources topic.

Deploy Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Deploy recipes are assigned to the layer's Deploy lifecycle event. It typically occurs on all of the
stack's instances whenever you deploy an app, although you can optionally restrict the event to
only specified instances. AWS OpsWorks Stacks also runs the Deploy recipes on new instances,
after the Setup recipes complete. The primary purpose of Deploy recipes is to deploy code and
related files from a repository to the application server layer's instances. However, you often run

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 911

http://wiki.apache.org/tomcat/UsingDataSources

AWS OpsWorks User Guide

Deploy recipes on other layers as well. This allows those layers' instances, for example, to update
their configuration to accommodate the newly deployed app. When you implement a Deploy
recipe, keep in mind a Deploy event does not necessarily mean that apps are being deployed to the
instance. It could simply be a notification that apps are being deployed to other instances in the
stack, to allow the instance to make any necessary updates. The recipe must be able to respond
appropriately, which might mean doing nothing.

AWS OpsWorks Stacks automatically deploys apps of the standard app types to the corresponding
built-in application server layers. To deploy apps to a custom layer, you must implement custom
Deploy recipes that download the app's files from a repository to the appropriate location on the
instance. However, you can often limit the amount of code you must write by using the built-in
deploy cookbook to handle some aspects of deployment. For example, if you store your files in one
of the supported repositories, the built-in cookbook can handle the details of downloading the files
from the repository to the layer's instances.

The tomcat::deploy recipe is intended to be assigned to the Deploy lifecycle event.

include_recipe 'deploy'

node[:deploy].each do |application, deploy|
 opsworks_deploy_dir do
 user deploy[:user]
 group deploy[:group]
 path deploy[:deploy_to]
 end

 opsworks_deploy do
 deploy_data deploy
 app application
 end
...

The tomcat::deploy recipe uses the built-in deploy cookbook for aspects of deployment
that aren't application specific. The deploy recipe (which is shorthand for the built-in
deploy::default recipe) is a built-in recipe that handles the details of setting up the users,
groups, and so on, based on data from the deploy attributes.

The recipe uses two built-in Chef definitions, opsworks_deploy_dir and opworks_deploy to
install the application.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 912

https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.4/deploy

AWS OpsWorks User Guide

The opsworks_deploy_dir definition sets up the directory structure, based on data from the
app's deployment JSON. Definitions are basically a convenient way to package resource definitions,
and are located in a cookbook's definitions directory. Recipes can use definitions much like
resources, but the definition itself does not have an associated provider, just the resources that
are included in the definition. You can define variables in the recipe, which are passed to the
underlying resource definitions. The tomcat::deploy recipe sets user, group, and path
variables based on data from the deployment JSON. They are passed to the definition's directory
resource, which manages the directories.

Note

Your deployed app's user and group are determined by the [:opsworks]
[:deploy_user][:user] and [:opsworks][:deploy_user][:group] attributes,
which are defined in the built-in deploy cookbook's deploy.rb attributes file. The default
value of [:opsworks][:deploy_user][:user] is deploy. The default value of
[:opsworks][:deploy_user][:group] depends on the instance's operating system:

• For Ubuntu instances, the default group is www-data.

• For Amazon Linux instances that are members of a Rails App Server layer that uses Nginx
and Unicorn, the default group is nginx.

• For all other Amazon Linux instances, the default group is apache.

You can change either setting by using custom JSON or a custom attributes file to override
the appropriate attribute. For more information, see Overriding Attributes.

The other definition, opsworks_deploy, handles the details of checking out the app's code and
related files from the repository and deploying them to the instance, based on data from the
deploy attributes. You can use this definition for any app type; deployment details such as the
directory names are specified in the console or through the API and put in the deploy attributes.
However, opsworks_deploy works only for the four supported repository types: Git, Subversion,
S3, and HTTP. You must implement this code yourself if you want to use a different repository
type.

You install an app's files in the Tomcat webapps directory. A typical practice is to copy the files
directly to webapps. However, AWS OpsWorks Stacks deployment is designed to retain up to

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 913

https://docs.chef.io/chef/resources.html#directory
https://docs.chef.io/chef/resources.html#directory
https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.4/deploy/attributes/deploy.rb

AWS OpsWorks User Guide

five versions of an app on an instance, so you can roll back to an earlier version if necessary. AWS
OpsWorks Stacks therefore does the following:

1. Deploys apps to a distinct directory whose name contains a time stamp, such as /srv/www/
my_1st_jsp/releases/20130731141527.

2. Creates a symlink named current, such as /srv/www/my_1st_jsp/current, to this unique
directory.

3. If does not already exist, creates a symlink from the webapps directory to the current symlink
created in Step 2.

If you need to roll back to an earlier version, modify the current symlink to point to a distinct
directory containing the appropriate timestamp, for example, by changing the link target of /srv/
www/my_1st_jsp/current.

The middle section of tomcat::deploy sets up the symlink.

 ...
 current_dir = ::File.join(deploy[:deploy_to], 'current')
 webapp_dir = ::File.join(node['tomcat']['webapps_base_dir'],
 deploy[:document_root].blank? ? application : deploy[:document_root])

 # opsworks_deploy creates some stub dirs, which are not needed for typical webapps
 ruby_block "remove unnecessary directory entries in #{current_dir}" do
 block do
 node['tomcat']['webapps_dir_entries_to_delete'].each do |dir_entry|
 ::FileUtils.rm_rf(::File.join(current_dir, dir_entry), :secure => true)
 end
 end
 end

 link webapp_dir do
 to current_dir
 action :create
 end
 ...

The recipe first creates two variables, current_dir and webapp_dir to represent the current
and webapp directories, respectively. It then uses a link resource to link webapp_dir to

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 914

AWS OpsWorks User Guide

current_dir. The AWS OpsWorks Stacks deploy::default recipe creates some stub directories
that aren't required for this example, so the middle part of the excerpt removes them.

The final part of tomcat::deploy restarts the Tomcat service, if necessary.

 ...
 include_recipe 'tomcat::service'

 execute 'trigger tomcat service restart' do
 command '/bin/true'
 not_if { node['tomcat']['auto_deploy'].to_s == 'true' }
 notifies :restart, resources(:service => 'tomcat')
 end
end

include_recipe 'tomcat::context'

The recipe first runs tomcat::service, to ensure that the service is defined for this Chef
run. It then uses an execute resource to notify the service to restart, but only if ['tomcat']
['auto_deploy'] is set to 'true'. Otherwise, Tomcat listens for changes in its webapps
directory, which makes an explicit Tomcat service restart unnecessary.

Note

The execute resource doesn't actually execute anything substantive; /bin/true is a
dummy shell script that simply returns a success code. It is used here simply as a convenient
way to generate a restart notification. As mentioned earlier, using notifications ensures that
services are not restarted too frequently.

Finally, tomcat::deploy runs tomcat::context, which updates the web app context
configuration file if you have changed the back end database.

Create a Stack and Run an Application

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 915

https://docs.chef.io/chef/resources.html#execute

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section shows how to use the Tomcat cookbook to implement a basic stack setup that runs a
simple Java server pages (JSP) application named SimpleJSP. The stack consists of a Tomcat-based
custom layer named TomCustom and a MySQL layer. SimpleJSP is deployed to TomCustom and
displays some information from the MySQL database. If you are not already familiar with the basics
of how to use AWS OpsWorks Stacks, you should first read Getting Started with Chef 11 Linux
Stacks.

The SimpleJSP Application

The SimpleJSP application demonstrates the basics of how to set up a database connection and
retrieve data from the stack's MySQL database.

<html>
 <head>
 <title>DB Access</title>
 </head>
 <body>
 <%@ page language="java" import="java.sql.*,javax.naming.*,javax.sql.*" %>
 <%
 StringBuffer output = new StringBuffer();
 DataSource ds = null;
 Connection con = null;
 Statement stmt = null;
 ResultSet rs = null;
 try {
 Context initCtx = new InitialContext();
 ds = (DataSource) initCtx.lookup("java:comp/env/jdbc/mydb");
 con = ds.getConnection();
 output.append("Databases found:
");
 stmt = con.createStatement();
 rs = stmt.executeQuery("show databases");
 while (rs.next()) {
 output.append(rs.getString(1));
 output.append("
");
 }

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 916

AWS OpsWorks User Guide

 }
 catch (Exception e) {
 output.append("Exception: ");
 output.append(e.getMessage());
 output.append("
");
 }
 finally {
 try {
 if (rs != null) {
 rs.close();
 }
 if (stmt != null) {
 stmt.close();
 }
 if (con != null) {
 con.close();
 }
 }
 catch (Exception e) {
 output.append("Exception (during close of connection): ");
 output.append(e.getMessage());
 output.append("
");
 }
 }
 %>
 <%= output.toString() %>
 </body>
</html>

SimpleJSP uses a DataSource object to communicate with the MySQL database. Tomcat uses
the data in the web app context configuration file to create and initialize a DataSource object
and bind it to a logical name. It then registers the logical name with a Java Naming and Directory
Interface (JNDI) naming service. To get an instance of the appropriate DataSource object,
you create an InitialContext object and pass the resource's logical name to the object's
lookup method, which retrieves the appropriate object. The SimpleJSP example's logical name,
java:comp/env/jdbc/mydb, has the following components:

• The root namespace, java, which is separated from the rest of the name by a colon (:).

• Any additional namespaces, separated by forward slashes (/).

Tomcat automatically adds resources to the comp/env namespace.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 917

AWS OpsWorks User Guide

• The resource name, which is defined in the web app context configuration file and separated
from the namespaces by a forward slash.

The resource name for this example is jdbc/mydb.

To establish a connection to the database, SimpleJSP does the following:

1. Calls the DataSource object's getConnection method, which returns a Connection object.

2. Calls the Connection object's createStatement method to create a Statement object,
which you use to communicate with the database.

3. Communicates with the database by calling the appropriate Statement method.

SimpleJSP calls executeQuery to execute a SHOW DATABASES query, which lists the server's
databases.

The executeQuery method returns a ResultSet object, which contains the query results.
SimpleJSP gets the database names from the returned ResultSet object and concatenates
them to create an output string. Finally, the example closes the ResultSet, Statement, and
Connection objects. For more information about JSP and JDBC, see JavaServer Pages Technology
and JDBC Basics, respectively.

To use SimpleJSP with a stack, you must put it in a repository. You can use any of the supported
repositories, but to use SimpleJSP with the example stack discussed in the following section, you
must put it in a public S3 archive. For information on how to use the other standard repositories,
see Cookbook Repositories.

To put SimpleJSP in an S3 archive repository

1. Copy the example code to a file named simplejsp.jsp and put the file in a directory named
simplejsp.

2. Create a .zip archive of the simplejsp directory.

3. Create a public Amazon S3 bucket, upload simplejsp.zip to the bucket, and make the file
public.

For a description of how to perform this task, see Get Started With Amazon Simple Storage
Service.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 918

http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html
http://docs.oracle.com/javase/tutorial/jdbc/basics/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html

AWS OpsWorks User Guide

Create a Stack

To run SimpleJSP you need a stack with the following layers.

• A MySQL layer, that supports the back end MySQL server.

• A custom layer that uses the Tomcat cookbook to support Tomcat server instances.

To create the stack

1. On the AWS OpsWorks Stacks dashboard, click Add Stack to create a new stack and click
Advanced >> to display all options. Configure the stack as follows.

• Name–A user-defined stack name; this example uses TomStack.

• Use custom Chef cookbooks–Set the toggle to Yes, which displays some additional options.

• Repository type–Git.

• Repository URL–git://github.com/amazonwebservices/opsworks-example-
cookbooks.git.

• Custom Chef JSON–Add the following JSON:

{
 "tomcat": {
 "base_version": 7,
 "java_opts": "-Djava.awt.headless=true -Xmx256m"
 },
 "datasources": {
 "ROOT": "jdbc/mydb"
 }
}

For the remaining options, you can accept the defaults.

The custom JSON does the following:

• Overrides the Tomcat cookbook's ['base_version'] attribute to set the Tomcat version
to 7; the default value is 6.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 919

AWS OpsWorks User Guide

• Overrides the Tomcat cookbook's ['java_opts'] attribute to specify that the instance is
headless and set the JVM maximum heap size to 256MB; the default value sets no options
for instances running Amazon Linux.

• Specifies the ['datasources] attribute value, which assigns a JDBC resource name (jdbc/
mydb) to the web app context name (ROOT), as discussed in tomcat::context.

This last attribute has no default value; you must set it with custom JSON.

2. Click Add a layer. For Layer type, select MySQL. Then click Add Layer.

3. Click Instances in the navigation pane and then click Add an instance. Click Add Instance to
accept the defaults. On the line for the instance, click start.

4. Return to the Layers page and click + Layer to add a layer. For Layer type, click Custom.s The
example uses TomCustom and tomcustom as the layer's name and short name, respectively.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 920

AWS OpsWorks User Guide

5. On the Layers page, for the custom layer, click Recipes and then click Edit. Under Custom Chef
Recipes, assign Tomcat cookbook recipes to the layer's lifecycle events, as follows:

• For Setup, type tomcat::setup and click +.

• For Configure, type tomcat::configure and click +.

• For Deploy, type tomcat::deploy and click +. Then click Save.

.

6. Click Apps in the navigation pane and then click Add an app. Specify the following options
and then click Add App:

• Name–The app's name; the example uses SimpleJSP and the short name generated by AWS
OpsWorks Stacks will be simplejsp.

• App type–Set this option to Other.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 921

AWS OpsWorks User Guide

AWS OpsWorks Stacks automatically deploys standard app types to the associated server
instances. If you set App type to other, AWS OpsWorks Stacks simply runs the Deploy
recipes, and lets them handle deployment.

• Document root–Set this option to ROOT.

The Document root value specifies the context name.

• Repository type–Set this option to S3 Archive.

• Repository URL–Set this to the app's Amazon S3 URL that you created earlier.

Use default settings for the other options.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 922

AWS OpsWorks User Guide

7. Use the Instances page to add an instance to the TomCustom layer and start it. AWS
OpsWorks Stacks automatically runs the Deploy recipes on a new instance after the Setup
recipes complete, so starting the instance also deploys SimpleJSP.

8. When the TomCustom instance is online, click the instance name on the Instances
page to see its details. Copy the public IP address. Then construct a URL as follows:
http://publicIP/tc/appname.jsp. For the example, this URL will look something like
http://50.218.191.172/tc/simplejsp.jsp.

Note

The Apache URL that forwards requests to Tomcat is set to the default ['tomcat']
['apache_tomcat_bind_path'] attribute, /tc/. The SimpleJSP document root
is set to ROOT which is a special value that resolves to /. The URL is therefore ".../tc/
simplejsp.jsp".

9. Paste the URL from the previous step into your browser. You should see the following:

Databases found:
information_schema
simplejsp
test

Note

If your stack has a MySQL instance, AWS OpsWorks Stacks automatically creates a
database for each app, named with the app's short name.

Stack Configuration and Deployment Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 923

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When AWS OpsWorks Stacks runs a command on an instance—for example, a deploy command
in response to a Deploy lifecycle event—it adds a set of attributes to the instance's node object
that describes the stack's current configuration. For Deploy events and Execute Recipes stack
commands, AWS OpsWorks Stacks installs deploy attributes, which provide some additional
deployment information. For more information about the node object, see Overriding Attributes.
For a list of commonly used stack configuration and deployment attributes, including fully
qualified node names, see Stack Configuration and Deployment Attributes: Linux and Built-in
Cookbook Attributes.

Note

On Linux stacks, you can get a complete list of these attributes, formatted as a JSON
object, by using the agent CLI's get_json command.

The following sections show the attributes associated with a Configure event and a Deploy event
for a simple stack, which consists of the following:

• A PHP App Server layer with two instances

• An HAProxy layer with one instance

The examples are from one of the PHP App Server instances, php-app1. For convenience, the
attributes are formatted as a JSON object. The object's structure maps to the attributes' fully
qualified names. For example, the node[:opsworks][:ruby_version] attribute appears as
follows in a JSON representation.

{
 "opsworks": {
 ...
 "ruby_version": "1.8.7",
 ...
 }
}

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 924

AWS OpsWorks User Guide

Topics

• Configure Attributes

• Deployment Attributes

Configure Attributes

The following JSON object shows the attributes for a Configure event, which occurs on every
instance in the stack when an instance comes online or goes offline. The attributes include the
built-in stack configuration attributes and any custom JSON attributes that were defined for
the stack prior to the event (none in this example). It has been edited for length. For a detailed
description of the various attributes, see Stack Configuration and Deployment Attributes: Linux and
Built-in Cookbook Attributes.

{
 "opsworks": {
 "layers": {
 "php-app": {
 "id": "4a2a56c8-f909-4b39-81f8-556536d20648",
 "instances": {
 "php-app2": {
 "elastic_ip": null,
 "region": "us-west-2",
 "booted_at": "2013-02-26T20:41:10+00:00",
 "ip": "192.0.2.0",
 "aws_instance_id": "i-34037f06",
 "availability_zone": "us-west-2a",
 "instance_type": "c1.medium",
 "private_dns_name": "ip-10-252-0-203.us-west-2.compute.internal",
 "private_ip": "10.252.0.203",
 "created_at": "2013-02-26T20:39:39+00:00",
 "status": "online",
 "backends": 8,
 "public_dns_name": "ec2-192-0-2-0.us-west-2.compute.amazonaws.com"
 },
 "php-app1": {
 ...
 }
 },
 "name": "PHP Application Server"
 },

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 925

AWS OpsWorks User Guide

 "lb": {
 "id": "15c86142-d836-4191-860f-f4d310440f14",
 "instances": {
 "lb1": {
 ...
 }
 },
 "name": "Load Balancer"
 }
 },
 "agent_version": "104",
 "applications": [

],
 "stack": {
 "name": "MyStack"
 },
 "ruby_version": "1.8.7",
 "sent_at": 1361911623,
 "ruby_stack": "ruby_enterprise",
 "instance": {
 "layers": [
 "php-app"
],
 "region": "us-west-2",
 "ip": "192.0.2.0",
 "id": "45ef378d-b87c-42be-a1b9-b67c48edafd4",
 "aws_instance_id": "i-32037f00",
 "availability_zone": "us-west-2a",
 "private_dns_name": "ip-10-252-84-253.us-west-2.compute.internal",
 "instance_type": "c1.medium",
 "hostname": "php-app1",
 "private_ip": "10.252.84.253",
 "backends": 8,
 "architecture": "i386",
 "public_dns_name": "ec2-192-0-2-0.us-west-2.compute.amazonaws.com"
 },
 "activity": "configure",
 "rails_stack": {
 "name": null
 },
 "deployment": null,
 "valid_client_activities": [
 "reboot",

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 926

AWS OpsWorks User Guide

 "stop",
 "setup",
 "configure",
 "update_dependencies",
 "install_dependencies",
 "update_custom_cookbooks",
 "execute_recipes"
]
 },
 "opsworks_custom_cookbooks": {
 "recipes": [

],
 "enabled": false
 },
 "recipes": [
 "opsworks_custom_cookbooks::load",
 "opsworks_ganglia::configure-client",
 "ssh_users",
 "agent_version",
 "mod_php5_apache2::php",
 "php::configure",
 "opsworks_stack_state_sync",
 "opsworks_custom_cookbooks::execute",
 "test_suite",
 "opsworks_cleanup"
],
 "opsworks_rubygems": {
 "version": "1.8.24"
 },
 "ssh_users": {
 },
 "opsworks_bundler": {
 "manage_package": null,
 "version": "1.0.10"
 },
 "deploy": {
 }
}

Most of the information is under the opsworks attribute, which is often referred to as a
namespace. The following list describes the key attributes:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 927

AWS OpsWorks User Guide

• layers attributes – A set of attributes, each of which describes the configuration of one of the
stack's layers.

The layers are identified by their shortnames, php-app and lb for this example. For more
information about shortnames for other layers, see AWS OpsWorks Stacks Layer Reference.

• instances attributes – Every layer has an instances element, which includes an attribute for
each of the layers' online instances, named with the instance's short name.

The PHP App Server layer has two instances, php-app1 and php-app2. The HAProxy layer has
one instance, lb1.

Note

The instances element contains only those instances that are in the online state when
the particular stack and deployment attributes are created.

• Instance attributes – Each instance attribute contains a set of attributes that characterize
the instance, such as the instance's private IP address and private DNS name. For brevity, the
example shows only the php-app2 attribute in detail; the others contain similar information.

• applications – A list of deployed apps, not used in this example.

• stack – The stack name; MyStack in this example.

• instance – The instance that these attributes are installed on; php-app1 in this example.
Recipes can use this attribute to obtain information about the instance that they are running on,
such as the instance's public IP address.

• activity – The activity that produced the attributes; a Configure event in this example.

• rails_stack – The Rails stack for stacks that include a Rails App Server layer.

• deployment – Whether these attributes are associated with a deployment. It is set to null for
this example because they are associated with a Configure event.

• valid_client_activities – A list of valid client activities.

The opsworks attribute is followed by several other top-level attributes, including the following:

• opsworks_custom_cookbooks – Whether custom cookbooks are enabled. If so, the attribute
includes a list of custom recipes.

• recipes – The recipes that were run by this activity.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 928

AWS OpsWorks User Guide

• opsworks_rubygems – The instance's RubyGems version.

• ssh_users – A list of SSH users; none in this example.

• opsworks_bundler – The bundler version and whether it is enabled.

• deploy – Information about deployment activities; none in this example.

Deployment Attributes

The attributes for a Deploy event or Execute Recipes stack command consist of the built-in stack
configuration and deployment attributes, and any custom stack or deployment attributes (none for
this example). The following JSON object shows the attributes from php-app1 that are associated
with a Deploy event that deployed the SimplePHP app to the stack's PHP instances. Much of the
object consists of stack configuration attributes that are similar to the ones for the Configure
event described in the previous section, so the example focuses primarily on the deployment-
specific attributes. For a detailed description of the various attributes, see Stack Configuration and
Deployment Attributes: Linux and Built-in Cookbook Attributes.

{
 ...
 "opsworks": {
 ...
 "activity": "deploy",
 "applications": [
 {
 "slug_name": "simplephp",
 "name": "SimplePHP",
 "application_type": "php"
 }
],
 "deployment": "5e6242d7-8111-40ee-bddb-00de064ab18f",
 ...
 },
 ...
{
 "ssh_users": {
 },
 "deploy": {
 "simplephpapp": {
 "application": "simplephpapp",
 "application_type": "php",

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 929

AWS OpsWorks User Guide

 "environment_variables": {
 "USER_ID": "168424",
 "USER_KEY": "somepassword"
 },
 "auto_bundle_on_deploy": true,
 "deploy_to": "/srv/www/simplephpapp",
 "deploying_user": "arn:aws:iam::123456789012:user/guysm",
 "document_root": null,
 "domains": [
 "simplephpapp"
],
 "migrate": false,
 "mounted_at": null,
 "rails_env": null,
 "restart_command": "echo 'restarting app'",
 "sleep_before_restart": 0,
 "ssl_support": false,
 "ssl_certificate": null,
 "ssl_certificate_key": null,
 "ssl_certificate_ca": null,
 "scm": {
 "scm_type": "git",
 "repository": "git://github.com/amazonwebservices/opsworks-demo-php-simple-
app.git",
 "revision": "version1",
 "ssh_key": null,
 "user": null,
 "password": null
 },
 "symlink_before_migrate": {
 "config/opsworks.php": "opsworks.php"
 },
 "symlinks": {
 },
 "database": {
 },
 "memcached": {
 "host": null,
 "port": 11211
 },
 "stack": {
 "needs_reload": false
 }
 }

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 930

AWS OpsWorks User Guide

 },
}

The opsworks attribute is largely identical to the example in the previous section. The following
sections are most relevant to deployment:

• activity – The event that is associated with these attributes; a Deploy event in this example.

• applications – Contains a set of attributes for each app that provide the apps' names, slug
names, and types.

The slug name is the app's short name, which AWS OpsWorks Stacks generates from the app
name. The slug name for SimplePHP is simplephp.

• deployment – The deployment ID, which uniquely identifies a deployment.

The deploy attribute includes information about the apps that are being deployed. For example,
the built-in Deploy recipes use the data in the deploy attribute to install files in the appropriate
directories and create database connection files. The deploy attribute includes one attribute for
each deployed app, named with the app's short name. Each app attribute includes the following
attributes:

• environment_variables – Contains any environment variables that you have defined for the
app. For more information, see Environment Variables.

• domains – By default, the domain is the app's short name, which is simplephpapp for this
example. If you have assigned custom domains, they appear here as well. For more information,
see Using Custom Domains.

• application – The app's short name.

• scm – This element contains the information required to download the app's files from its
repository; a Git repository in this example.

• database – Database information, if the stack includes a database layer.

• document_root – The document root, which is set to null in this example, indicating that the
root is public.

• ssl_certificate_ca, ssl_support, ssl_certificate_key – Indicates whether the app
has SSL support. If so, the ssl_certificate_key and ssl_certificate_ca attributes are
set to the corresponding certificates.

• deploy_to – The app's root directory.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 931

AWS OpsWorks User Guide

Cookbooks 101

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A production-level AWS OpsWorks Stacks stack typically requires some customization, which often
means implementing a custom Chef cookbook with one or more recipes, attribute files, or template
files. This topic is a tutorial introduction to implementing cookbooks for AWS OpsWorks Stacks.

For more information on how AWS OpsWorks Stacks uses cookbooks, which includes a brief
general introduction to cookbooks, see Cookbooks and Recipes. For additional information on how
to implement and test Chef recipes, see Test-Driven Infrastructure with Chef, 2nd Edition.

The tutorial examples are divided into two sections:

• Cookbook Basics is a set of example walkthroughs that are intended for users who are not
familiar with Chef; experienced Chef users can skip this section.

The examples walk you through the basics of how to implement cookbooks to perform common
tasks, such as installing packages or creating directories. To simplify the process, you will use a
pair of useful tools, Vagrant and Test Kitchen, to run most of the examples locally in a virtual
machine. Before starting Cookbook Basics, you should first read Vagrant and Test Kitchen to
learn how to install and use these tools. Because Test Kitchen does not yet support Windows, the
examples are all for Linux, with notes indicating how to adapt them for Windows.

• Implementing Cookbooks for AWS OpsWorks Stacks describes how to implement recipes for
AWS OpsWorks Stacks, including for Windows stacks.

It also includes some more advanced s such as how to use Berkshelf to manage external
cookbooks. The examples are written for new Chef users, much like the examples in Cookbook
Basics. However AWS OpsWorks Stacks works a bit differently than Chef server, so we
recommend that experienced Chef users at least read through this section.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 932

http://www.amazon.com/Test-Driven-Infrastructure-Chef-Behavior-Driven-Development/dp/1449372201/ref=sr_1_fkmr0_1?ie=UTF8&qid=1405556803&sr=8-1-fkmr0&keywords=Test-Driven+Infrastructure+with+Chef%2C+2nd+Edition
http://docs.vagrantup.com/v2/
http://kitchen.ci/

AWS OpsWorks User Guide

Vagrant and Test Kitchen

If you are working with recipes for Linux instances, Vagrant and Test Kitchen are very useful tools
for learning and initial development and testing. This provides brief descriptions of Vagrant and
Test Kitchen, and points you to installation instructions and walkthroughs that will get you set
up and familiarize you with the basics of how to use the tools. Although Vagrant does support
Windows, Test Kitchen does not, so only Linux examples are provided for these tools.

Vagrant

Vagrant provides a consistent environment for executing and testing code on a virtual machine.
It supports a wide variety of environments—called Vagrant boxes—each of which represents a
configured operating system. For AWS OpsWorks Stacks, the environments of interest are based on
Ubuntu, Amazon, or Red Hat Enterprise Linux (RHEL) distributions, so the examples primarily use a
Vagrant box named opscode-ubuntu-12.04.

Vagrant is available for Linux, Windows, and Macintosh systems, so you can use your preferred
workstation to implement and test recipes on any supported operating system. The examples for
this chapter were created on an Ubuntu Linux system, but translating the procedures to Windows
or Macintosh systems is straightforward.

Vagrant is basically a wrapper for a virtualization provider. Most of the examples use the VirtualBox
provider. VirtualBox is free and available for Linux, Windows, and Macintosh systems. The Vagrant
walkthrough provides installation instructions if you do not already have VirtualBox on your
system. Note that you can run Ubuntu-based environments on VirtualBox, but Amazon Linux is
available only for Amazon EC2 instances. However, you can run a similar operating system such as
CentOS on VirtualBox, which is useful for initial development and testing.

For information on other providers, see the Vagrant documentation. In particular, the vagrant-
aws plug-in provider allows you to use Vagrant with Amazon EC2 instances. This provider is
particularly useful for testing recipes on Amazon Linux, which is available only on Amazon EC2
instances. The vagrant-aws provider is free, but you must have an AWS account and pay for any
AWS resources that you use.

At this point, you should go through Vagrant's Getting Started walkthrough, which describes how
to install Vagrant on your workstation and teaches you the basics of how to use Vagrant. Note
that the examples in this chapter do not use a Git repository, so you can omit that part of the
walkthrough if you prefer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 933

http://docs.vagrantup.com/v2/
https://www.virtualbox.org/
http://docs.vagrantup.com/v2/
http://docs.vagrantup.com/v2/getting-started/index.html

AWS OpsWorks User Guide

Test Kitchen

Test Kitchen simplifies the process of executing and testing your cookbooks on Vagrant. As a
practical matter, you rarely if ever need to use Vagrant directly. Test Kitchen performs most
common tasks, including:

• Launching an instance in Vagrant.

• Transferring cookbooks to the instance.

• Running the cookbook's recipes on the instance.

• Testing a cookbook's recipes on the instance.

• Using SSH to log in to the instance.

Instead of installing the Test Kitchen gem directly, we recommend installing Chef DK. In addition to
Chef itself, this package includes Test Kitchen, Berkshelf, ChefSpec, and several other useful tools.

At this point, you should go through Test Kitchen's Getting Started walkthrough, which teaches
you the basics of how to use Test Kitchen to execute and test recipes.

Note

The examples in this chapter use Test Kitchen as a convenient way to run recipes. If you
prefer, you can stop the Getting Started walkthrough after completing the Manually
Verifying section, which covers everything you need to know for the examples. However,
Test Kitchen is primarily a testing platform that supports test frameworks such as bash
automated test system (BATS). You should complete the remainder of the walkthrough at
some point to learn how to use Test Kitchen to test your recipes.

Cookbook Basics

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 934

http://kitchen.ci/
https://downloads.chef.io/chef-dk/
http://berkshelf.com/
https://docs.chef.io/chefspec.html
http://kitchen.ci/
https://github.com/sstephenson/bats
https://github.com/sstephenson/bats

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can use cookbooks to accomplish a wide variety of tasks. The following topics assume that you
are new to Chef, and describe how to use cookbooks to accomplish some common tasks. Because
Test Kitchen does not yet support Windows, the examples are all for Linux, with notes indicating
how to adapt them for Windows. If you are new to Chef, we recommend going through these
examples, even if you will be working with Windows. Most of the examples in this topic can be
used on Windows instances with some modest changes, which are noted in the examples. All of the
examples run in a virtual machine, so you don't even need to have a Linux computer. Just install
Vagrant and Test Kitchen on your regular workstation.

Note

If you want to run these recipes on a Windows instance, the simplest approach is to create a
Windows stack and run the recipes on one of the stack's instances. For more information on
how to run recipes on an AWS OpsWorks Stacks Windows instance, see Running a Recipe on
a Windows Instance.

Before continuing, make sure that you have installed Vagrant and Test Kitchen, and gone through
their Getting Started walkthroughs. For more information, see Vagrant and Test Kitchen.

Topics

• Recipe Structure

• Example 1: Installing Packages

• Example 2: Managing Users

• Example 3: Creating Directories

• Example 4: Adding Flow Control

• Example 5: Using Attributes

• Example 6: Creating Files

• Example 7: Running Commands and Scripts

• Example 8: Managing Services

• Example 9: Using Amazon EC2 Instances

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 935

AWS OpsWorks User Guide

• Next Steps

Recipe Structure

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A cookbook is primarily a set of recipes, which can perform a wide variety of tasks on an instance.
To clarify how to implement recipes, it's useful to look at a simple example. The following is the
setup recipe for the built-in HAProxy layer. Just focus on the overall structure at this point and
don't worry too much about the details; they will be covered in the subsequent examples.

package 'haproxy' do
 action :install
end

if platform?('debian','ubuntu')
 template '/etc/default/haproxy' do
 source 'haproxy-default.erb'
 owner 'root'
 group 'root'
 mode 0644
 end
end

include_recipe 'haproxy::service'

service 'haproxy' do
 action [:enable, :start]
end

template '/etc/haproxy/haproxy.cfg' do

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 936

AWS OpsWorks User Guide

 source 'haproxy.cfg.erb'
 owner 'root'
 group 'root'
 mode 0644
 notifies :restart, "service[haproxy]"
end

Note

For this and other examples of working recipes and related files, see the AWS OpsWorks
Stacks built-in recipes.

The example highlights the key recipe elements, which are described in the following sections.

Topics

• Resources

• Flow Control

• Included Recipes

Resources

Recipes consist largely of a set of Chef resources. Each one specifies a particular aspect of the
instance's final state, such as a package to be installed or a service to be started. The example has
four resources:

• A package resource, which represents an installed package, an HAProxy server for this example.

• A service resource, which represents a service, the HAProxy service for this example.

• Two template resources, which represent files that are to be created from a specified template,
two HAProxy configuration files for this example.

Resources provide a declarative way to specify the instance state. Behind the scenes, each resource
has an associated provider that performs the required tasks, such as installing packages, creating
and configuring directories, starting services, and so on. If the details of the task depend on the
particular operating system, the resource has multiple providers and uses the appropriate one
for the system. For example, on a Red Hat Linux system the package provider uses yum to install
packages. On a Ubuntu Linux system, the package provider uses apt-get.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 937

https://github.com/aws/opsworks-cookbooks
https://github.com/aws/opsworks-cookbooks
http://haproxy.1wt.eu/

AWS OpsWorks User Guide

You implement a resource as a Ruby code block with the following general format.

resource_type "resource_name" do
 attribute1 'value1'
 attribute2 'value2'
 ...
 action :action_name
 notifies : action 'resource'
end

The elements are:

Resource type

(Required) The example includes three resource types, package, service, and template.

Resource name

(Required) The name identifies the particular resource and is sometimes used as a default
value for one of the attributes. In the example, package represents a package resource named
haproxy and the first template resource represents a configuration file named /etc/
default/haproxy.

Attributes

(Optional) Attributes specify the resource configuration and vary depending on the resource
type and how you want to configure the resource.

• The example's template resources explicitly define a set of attributes that specify the
created file's source, owner, group, and mode.

• The example's package and service resources do not explicitly define any attributes.

The resource name is typically the default value for a required attribute and is sometimes
all that is needed. For example, the resource name is the default value for the package
resource's package_name attribute, which is the only required attribute.

There are also some specialized attributes called guard attributes, which specify when the
resource provider is to take action. For example, the only_if attribute directs the resource
provider to take action only if a specified condition is met. The HAProxy recipe does not use
guard attributes, but they are used by several of the following examples.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 938

AWS OpsWorks User Guide

Actions and Notifications

(Optional) Actions and notifications specify what tasks the provider is to perform.

• action directs the provider to take a specified action, such as install or create.

Each resource has a set of actions that depend on the particular resource, one of which is the
default action. In the example, the package resource's action is install, which directs the
provider to install the package. The first template resource has no action element, so the
provider takes the default create action.

• notifies directs another resource's provider to perform an action, but only if the resource's
state has changed.

notifies is typically used with resources such as template and file to perform tasks
such as restarting a service after modifying a configuration file. Resources do not have
default notifications. If you want a notification, the resource must have an explicit notifies
element. In the HAProxy recipe, the second template resource notifies the haproxy service
resource to restart the HAProxy service if the associated configuration file has changed.

Resources sometimes depend on operating system.

• Some resources can be used only on Linux or Windows systems.

For example, package installs packages on Linux systems and windows_package installs
packages on Windows systems.

• Some resources can be used with any operating system, but have attributes that are specific to a
particular system.

For example, the file resource can be used on either Linux or Windows systems, but has separate
sets of attributes for configuring permissions.

For descriptions of the standard resources, including the available attributes, actions, and
notifications for each resource, see About Resources and Providers.

Flow Control

Because recipes are Ruby applications, you can use Ruby control structures to incorporate flow
control into a recipe. For example, you can use Ruby conditional logic to have the recipe behave
differently on different systems. The HAProxy recipe includes an if block that uses a template

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 939

https://docs.chef.io/chef/resources.html#package
https://docs.chef.io/chef/resources.html#windows-package
https://docs.chef.io/chef/resources.html#file
https://docs.chef.io/resource.html

AWS OpsWorks User Guide

resource to create a configuration file, but only if the recipe is running on a Debian or Ubuntu
system.

Another common scenario is using a loop to execute a resource multiple times with different
attribute settings. For example, you can create a set of directories by using a loop to execute a
directory resource multiple times with different directory names.

Note

If you aren't familiar with Ruby, see Just Enough Ruby for Chef, which covers what you need
to know for most recipes.

Included Recipes

include_recipe includes other recipes in your code, which allows you to modularize your recipes
and reuse the same code in multiple recipes. When you run the host recipe, Chef replaces each
include_recipe element with the specified recipe's code before it executes the host recipe.
You identify an included recipe by using the standard Chef cookbook_name::recipe_name
syntax, where recipe_name omits the .rb extension. The example includes one recipe,
haproxy::service, which represents the HAProxy service.

Note

If you use include_recipe in recipes running on Chef 11.10 and later to include a recipe
from another cookbook, you must use a depends statement to declare the dependency in
the cookbook's metadata.rb file. For more information, see Implementing Recipes: Chef
11.10.

Example 1: Installing Packages

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 940

https://docs.chef.io/just_enough_ruby_for_chef.html

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Package installation is one of the more common uses of recipes and can be quite simple,
depending on the package. For example, the following recipe installs Git on a Linux system.

package 'git' do
 action :install
end

The package resource handles package installation. For this example, you don't need to specify
any attributes. The resource name is the default value for the package_name attribute, which
identifies the package. The install action directs the provider to install the package. You could
make the code even simpler by skipping install; it's the package resource's default action.
When you run the recipe, Chef uses the appropriate provider to install the package. On the Ubuntu
system that you will use for the example, the provider installs Git by calling apt-get.

Note

Installing software on a Windows system requires a somewhat different procedure. For
more information, see Installing Windows Software.

To use Test Kitchen to run this recipe in Vagrant, you first need to set up a cookbook and initialize
and configure Test Kitchen. The following is for a Linux system, but the procedure is essentially
similar for Windows and Macintosh systems. Start by opening a Terminal window; all of the
examples in this chapter use command-line tools.

To prepare the cookbook

1. In your home directory, create a subdirectory named opsworks_cookbooks, which will
contain all the cookbooks for this chapter. Then create a subdirectory for this cookbook named
installpkg and navigate to it.

2. In installpkg, create a file named metadata.rb that contains the following code.

name "installpkg"

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 941

https://docs.chef.io/chef/resources.html#package

AWS OpsWorks User Guide

version "0.1.0"

For simplicity, the examples in this chapter just specify the cookbook name and version, but
metadata.rb can contain a variety of cookbook metadata. For more information, see About
Cookbook Metadata.

Note

Make sure to create metadata.rb before you initialize Test Kitchen; it uses the data to
create the default configuration file.

3. In installpkg, run kitchen init, which initializes Test Kitchen and installs the default
Vagrant driver.

4. The kitchen init command creates a YAML configuration file in installpkg named
.kitchen.yml. Open the file in your favorite text editor. The .kitchen.yml file includes a
platforms section that specifies which systems to run the recipes on. Test Kitchen creates an
instance and runs the specified recipes on each platform.

Note

By default, Test Kitchen runs recipes one platform at a time. If you add a -p argument
to any command that creates an instance, Test Kitchen will run the recipes on every
platform, in parallel.

A single platform is sufficient for this example, so edit .kitchen.yml to remove the
centos-6.4 platform. Your .kitchen.yml file should now look like this:

driver:
 name: vagrant

provisioner:
 name: chef_solo

platforms:
 - name: ubuntu-12.04

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 942

http://docs.chef.io/cookbook_repo.html#about-cookbook-metadata
http://docs.chef.io/cookbook_repo.html#about-cookbook-metadata

AWS OpsWorks User Guide

suites:
 - name: default
 run_list:
 - recipe[installpkg::default]
 attributes:

Test Kitchen runs only those recipes that are in the .kitchen.yml run list. You identify
recipes by using the [cookbook_name::recipe_name] format, where recipe_name omits
the .rb extension. Initially, the .kitchen.yml run list contains the cookbook's default recipe,
installpkg::default. That's the recipe that you are going to implement, so you don't need
to modify the run list.

5. Create a subdirectory of installpkg named recipes.

If a cookbook contains recipes—most do—they must be in the recipes subdirectory.

You can now add the recipe to the cookbook and use Test Kitchen to run it on an instance.

To run the recipe

1. Create a file named default.rb that contains the Git installation example code from the
beginning of the section and save it to the recipes subdirectory.

2. In the installpkg directory, run kitchen converge. This command starts a new Ubuntu
instance in Vagrant, copies your cookbooks to the instance, and initiates a Chef run to execute
the recipes in the .kitchen.yml run list.

3. To verify that the recipe was successful, run kitchen login, which opens an SSH connection
to the instance. Then run git --version to verify that Git was successfully installed. To
return to your workstation, run exit.

4. When you are finished, run kitchen destroy to shut down the instance. The next example
uses a different cookbook.

This example was a good way to get started, but it is especially simple. Other packages can be
more complicated to install; you might need to do any or all of the following:

• Create and configure a user.

• Create one or more directories for data, logs, and so on.

• Install one or more configuration files.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 943

AWS OpsWorks User Guide

• Specify a different package name or attribute values for different operating systems.

• Start a service and then restart it as needed.

The following examples describe how to address these issues, along with some other useful
operations.

Example 2: Managing Users

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Another simple task is managing users on an instance. The following recipe adds a new user to a
Linux instance.

user "myuser" do
 home "/home/newuser"
 shell "/bin/bash"
end

You use a user resource to manage users on both Linux and Windows systems, although some
attributes apply to only one system. The example creates a user named myuser and specifies their
home directory and shell. There is no action specified, so the resource uses the default create
action. You can add attributes to user to specify a variety of other settings, such as their password
or group ID. You can also use user for related user-management tasks such as modifying user
settings or deleting users. For more information, see user.

To run the recipe

1. Create a directory within opsworks_cookbooks named newuser and navigate to it.

2. Create a metadata.rb file that contains the following code and save it to newuser.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 944

https://docs.chef.io/chef/resources.html#user
https://docs.chef.io/chef/resources.html#user

AWS OpsWorks User Guide

name "newuser"
version "0.1.0"

3. Initialize and configure Test Kitchen, as described in Example 1: Installing Packages, and add a
recipes directory inside the newuser directory.

4. Add default.rb file with the example recipe to the cookbook's recipes directory .

5. Run kitchen converge to execute the recipe.

6. Use kitchen login to log in to the instance and verify the new user's existence by running
cat /etc/passwd. The myuser user should be at the bottom of the file.

Example 3: Creating Directories

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When you install a package on an instance, you often need to create some configuration files and
place them in the appropriate directories. However, those directories might not exist yet. You might
also need to create directories for data, log files, and so on. For example, you first boot the Ubuntu
system that you use for most of the examples, the /srv directory has no subdirectories. If you
are installing an application server, you will probably want a /srv/www/ directory and perhaps
some subdirectories for data files, logs, and so on. The following recipe creates /srv/www/ on an
instance.

directory "/srv/www/" do
 mode 0755
 owner 'root'
 group 'root'
 action :create
end

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 945

AWS OpsWorks User Guide

You use a directory resource to create and configure directories on both Linux and Windows
systems, although some attributes are used differently. The resource name is the default value for
the resource's path attribute, so the example creates /srv/www/ and specifies its mode, owner,
and group properties.

To run the recipe

1. Create a directory inside opsworks_cookbooks named createdir and navigate to it.

2. Initialize and configure Test Kitchen, as described in Example 1: Installing Packages, and add a
recipes directory within createdir.

3. Add a default.rb file with the recipe code to the cookbook's recipes subdirectory.

4. Run kitchen converge to execute the recipe.

5. Run kitchen login, navigate to /srv and verify that it has a www subdirectory.

6. Run exit to return to your workstation but leave the instance running.

Note

To create a directory relative to your home directory on the instance, use
#{ENV['HOME']} to represent the home directory. For example, the following creates the
~/shared directory.

directory "#{ENV['HOME']}/shared" do
 ...
end

Suppose that you want to create a more deeply nested directory, such as /srv/www/shared. You
could modify the preceding recipe as follows.

directory "/srv/www/shared" do
 mode 0755
 owner 'root'
 group 'root'
 action :create
end

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 946

https://docs.chef.io/chef/resources.html#directory

AWS OpsWorks User Guide

To run the recipe

1. Replace the code in default.rb with the preceding recipe.

2. Run kitchen converge from the createdir directory.

3. To verify that the directory was indeed created, run kitchen login, navigate to /srv/www,
and verify that it contains a shared subdirectory.

4. Run kitchen destroy to shut the instance down.

You will notice the kitchen converge command ran much faster. That's because the instance is
already running, so there's no need to boot the instance, install Chef, and so on. Test Kitchen just to
copies the updated cookbook to the instance and starts a Chef run.

Now run kitchen converge again, which executes the recipe on a fresh instance. You'll now see
the following result.

Chef Client failed. 0 resources updated in 1.908125788 seconds
[2014-06-20T20:54:26+00:00] ERROR: directory[/srv/www/shared] (createdir::default line
 1) had an error: Chef::Exceptions::EnclosingDirectoryDoesNotExist: Parent directory /
srv/www does not exist, cannot create /srv/www/shared
[2014-06-20T20:54:26+00:00] FATAL: Chef::Exceptions::ChildConvergeError: Chef run
 process exited unsuccessfully (exit code 1)
>>>>>> Converge failed on instance <default-ubuntu-1204>.
>>>>>> Please see .kitchen/logs/default-ubuntu-1204.log for more details
>>>>>> ------Exception-------
>>>>>> Class: Kitchen::ActionFailed
>>>>>> Message: SSH exited (1) for command: [sudo -E chef-solo --config /tmp/kitchen/
solo.rb --json-attributes /tmp/kitchen/dna.json --log_level info]
>>>>>> ----------------------

What happened? The problem is that by default, a directory resource can create only one
directory at a time; it can't create a chain of directories. The reason the recipe worked earlier is that
the very first recipe you ran on the instance had already created /srv/www, so creating /srv/
www/shared created only one subdirectory.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 947

AWS OpsWorks User Guide

Note

When you run kitchen converge, make sure you know whether you are running your
recipes on a new or existing instance. You might get different results.

To create a chain of subdirectories, add a recursive attribute to directory and set it to true.
The following recipe creates /srv/www/shared directly on a clean instance.

directory "/srv/www/shared" do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
end

Example 4: Adding Flow Control

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Some recipes are just a series of Chef resources. In that case, when you run the recipe, it simply
executes each of the resource providers in sequence. However, it's often useful to have a more
sophisticated execution path. The following are two common scenarios:

• You want a recipe to execute the same resource multiple times with different attribute settings.

• You want to use different attribute settings on different operating systems.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 948

AWS OpsWorks User Guide

You can address scenarios such as these by incorporating Ruby control structures into the recipe.
This section shows how to modify the recipe from Example 3: Creating Directories to address both
scenarios.

Topics

• Iteration

• Conditional Logic

Iteration

Example 3: Creating Directories showed how to use a directory resource to create a directory
or chain of directories. However, suppose that you want to create two separate directories, /srv/
www/config and /srv/www/shared. You could implement a separate directory resource for each
directory, but that approach can get cumbersome if you want to create very many directories. The
following recipe shows a simpler way to handle the task.

["/srv/www/config", "/srv/www/shared"].each do |path|
 directory path do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
 end
end

Instead of using a separate directory resource for each subdirectory, the recipe uses a string
collection that contains the subdirectory paths. The Ruby each method executes the resource
once for each collection element, starting with the first one. The element's value is represented in
the resource by the path variable, which in this case represents the directory path. You can easily
adapt this example to create any number of subdirectories.

To run the recipe

1. Stay in createdir directory; you'll be using that cookbook for the next several examples.

2. If you haven't done so already, run kitchen destroy so you are starting with a clean
instance.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 949

AWS OpsWorks User Guide

3. Replace the code in default.rb with the example and run kitchen converge.

4. Log in to the instance; you will see the newly created directories under /srv.

You can use a hash table to specify two values for each iteration. The following recipe creates /
srv/www/config and /srv/www/shared, each with a different mode.

{ "/srv/www/config" => 0644, "/srv/www/shared" => 0755 }.each do |path, mode_value|
 directory path do
 mode mode_value
 owner 'root'
 group 'root'
 recursive true
 action :create
 end
end

To run the recipe

1. If you haven't done so already, run kitchen destroy so you are starting with a clean
instance.

2. Replace the code in default.rb with the example and run kitchen converge.

3. Log in to the instance; you will see the newly created directories under /srv with the specified
modes.

Note

AWS OpsWorks Stacks recipes commonly use this approach to extract values from the stack
configuration and deployment JSON—which is basically a large hash table—and insert
them in a resource. For an example, see Deploy Recipes.

Conditional Logic

You can also use Ruby conditional logic to create multiple execution branches. The following recipe
uses if-elsif-else logic to extend the previous example so that it creates a subdirectory named
/srv/www/shared, but only on Debian and Ubuntu systems. For all other systems, it logs an error
message that is displayed in the Test Kitchen output.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 950

AWS OpsWorks User Guide

if platform?("debian", "ubuntu")
 directory "/srv/www/shared" do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
 end
else
 log "Unsupported system"
end

To run the example recipe

1. If your instance is still up, run kitchen destroy to shut it down.

2. Replace the code in default.rb with the example code.

3. Edit .kitchen.yml to add a CentOS 6.4 system to the platform list. The file's platforms
section should now look like.

...
platforms:
 - name: ubuntu-12.04
 - name: centos-6.4
...

4. Run kitchen converge, which will create an instance and run the recipes for each platform
in .kitchen.yml, in sequence.

Note

If you want to converge just one instance, add the instance name as a parameter.
For example, to converge the recipe only on the Ubuntu platform, run kitchen
converge default-ubuntu-1204. If you forget the platform names, just run
kitchen list.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 951

AWS OpsWorks User Guide

You should see your log message in the CentOS part of the Test Kitchen output, which will look
something like the following:

...
Converging 1 resources
Recipe: createdir::default
* log[Unsupported system] action write[2014-06-23T19:10:30+00:00] INFO: Processing
 log[Unsupported system] action write (createdir::default line 12)
[2014-06-23T19:10:30+00:00] INFO: Unsupported system

[2014-06-23T19:10:30+00:00] INFO: Chef Run complete in 0.004972162 seconds

You can now log in to the instances and verify that the directories were or were not created.
However, you can't simply run kitchen login now. You must specify which instance by
appending the platform name, for example, kitchen login default-ubuntu-1204 .

Note

If a Test Kitchen command takes an instance name, you don't need to type the complete
name. Test Kitchen treats an instance name as a Ruby regular expression, so you just need
enough characters to provide a unique match. For example, you can converge just the
Ubuntu instance by running kitchen converge ub or log in to the CentOS instance by
running kitchen login 64.

The question you probably have at this point is how the recipe knows which platform it is running
on. Chef runs a tool called Ohai for every run that collects system data, including the platform,
and represents it as a set of attributes in a structure called the node object. The Chef platform?
method compares the systems in parentheses against the Ohai platform value, and returns true if
one of them matches.

You can reference the value of a node attribute directly in your code by using
node['attribute_name']. The platform value, for example, is represented by
node['platform']. You could, for example, have written the preceding example as follows.

if node[:platform] == 'debian' or node[:platform] == 'ubuntu'
 directory "/srv/www/shared" do

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 952

https://docs.chef.io/ohai.html

AWS OpsWorks User Guide

 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
 end
else
 log "Unsupported system"
end

A common reason for including conditional logic in a recipe is to accommodate the fact that
different Linux families sometimes use different names for packages, directories, and so on.
For example, the Apache package name is httpd on CentOS systems and apache2 on Ubuntu
systems.

If you just need a different string for different systems, the Chef value_for_platform method
is a simpler solution than if-elsif-else. The following recipe creates a /srv/www/shared
directory on CentOS systems, a /srv/www/data directory on Ubuntu systems, and /srv/www/
config on all others.

data_dir = value_for_platform(
 "centos" => { "default" => "/srv/www/shared" },
 "ubuntu" => { "default" => "/srv/www/data" },
 "default" => "/srv/www/config"
)
directory data_dir do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
end

value_for_platform assigns the appropriate path to data_dir and the directory resource
uses that value to create the directory.

To run the example recipe

1. If your instance is still up, run kitchen destroy to shut it down.

2. Replace the code in default.rb with the example code.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 953

http://docs.chef.io/dsl_recipe.html#value-for-platform

AWS OpsWorks User Guide

3. Run kitchen converge and then login to each instance to verify that the appropriate
directories are present.

Example 5: Using Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The recipes in the preceding sections used hard-coded values for everything other than the
platform. This approach can be inconvenient if, for example, you want to use the same value in
more than one recipe. You can define values separately from recipes by including an attribute file
in your cookbook.

An attribute file is a Ruby application that assigns values to one or more attributes. It must be in
the cookbook's attributes folder. Chef incorporates the attributes into the node object and any
recipe can use the attribute values by referencing the attribute. This topic shows how to modify the
recipe from Iteration to use attributes. Here's the original recipe for reference.

["/srv/www/config", "/srv/www/shared"].each do |path|
 directory path do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
 end
end

The following defines attributes for the subdirectory name, mode, owner, and group values.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 954

AWS OpsWorks User Guide

default['createdir']['shared_dir'] = 'shared'
default['createdir']['config_dir'] = 'config'
default['createdir']['mode'] = 0755
default['createdir']['owner'] = 'root'
default['createdir']['group'] = 'root'

Note the following:

• Each definition starts with an attribute type.

If an attribute is defined more than once—perhaps in different attribute files—the attribute type
specifies the attribute's precedence, which determines which definition is incorporated into the
node object. For more information, see Attribute Precedence. All the definitions in this example
have the default attribute type, which is the usual type for this purpose.

• The attributes have nested names.

The node object is basically a hash table that can be nested arbitrarily deeply, so attribute names
can be and commonly are nested. This attribute file follows a standard practice of using a nested
name with the cookbook name, createdir, as the first element.

The reason for using createdir as the attribute's first element is that when you do a Chef run, Chef
incorporates the attributes from every cookbook into the node object. With AWS OpsWorks Stacks,
the node object includes a large number of attributes from the built-in cookbooks in addition
to any attributes that you define. Including the cookbook name in the attribute name reduces
the risk of a name collision with attributes from another cookbook, especially if your attribute
has a name like port or user. Don't name an attribute something like [:apache2][:user],
for example, unless you want to override that attribute's value. For more information, see Using
Custom Cookbook Attributes.

The following example shows the original recipe using attributes instead of hard-coded values.

["/srv/www/#{node['createdir']['shared_dir']}", "/srv/www/#{node['createdir']
['config_dir']}"].each do |path|
 directory path do
 mode node['createdir']['mode']
 owner node['createdir']['owner']
 group node['createdir']['group']
 recursive true
 action :create

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 955

https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

 end
end

Note

If you want to incorporate an attribute value into a string, wrap it with #{}. In the
preceding example, #{node['createdir']['shared_dir']} appends "shared" to "/
srv/www/".

To run the recipe

1. Run kitchen destroy to start with a clean instance.

2. Replace the code in recipes/default.rb with the preceding recipe example.

3. Create a subdirectory of createdir named attributes and add a file named default.rb
that contains the attribute definitions.

4. Edit .kitchen.yml to remove CentOS from the platforms list.

5. Run kitchen converge and then log in to the instance and verify that /srv/www/shared
and /srv/www/config are there.

Note

With AWS OpsWorks Stacks, defining values as attributes provides an additional benefit;
you can use custom JSON to override those values on a per-stack or even per-deployment
basis. This can be useful for a variety of purposes, including the following:

• You can customize the behavior of your recipes, such as configuration settings or user
names, without having to modify the cookbook.

You can, for example, use the same cookbook for different stacks and use custom JSON
to specify key configuration settings for a particular stack. This saves you the time and
effort required to modify the cookbook or use a different cookbook for each stack.

• You don't have to put potentially sensitive information such as database passwords in
your cookbook repository.

You can instead use an attribute to define a default value and then use custom JSON to
override that value with the real one.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 956

AWS OpsWorks User Guide

For more information on how to use custom JSON to override attributes, see Overriding
Attributes.

The attribute file is named default.rb because it is a Ruby application, if a rather simple one.
That means you can, for example, use conditional logic to specify attribute values based on the
operating system. In Conditional Logic, you specified a different subdirectory name for different
Linux families in the recipe. With an attribute file, you can instead put the conditional logic in the
attribute file.

The following attribute file uses value_for_platform to specify a different ['shared_dir']
attribute value, depending on the operating system. For other conditions, you can use Ruby if-
elsif-else logic or a case statement.

data_dir = value_for_platform(
 "centos" => { "default" => "shared" },
 "ubuntu" => { "default" => "data" },
 "default" => "user_data"
)
default['createdir']['shared_dir'] = data_dir
default['createdir']['config_dir'] = "config"
default['createdir']['mode'] = 0755
default['createdir']['owner'] = 'root'
default['createdir']['group'] = 'root'

To run the recipe

1. Run kitchen destroy to start with a fresh instance.

2. Replace the code in attributes/default.rb with the preceding example.

3. Edit .kitchen.yml to add a CentOS platform to the platforms section, as described in
Conditional Logic.

4. Run kitchen converge, and then log in to the instances to verify that the directories are
there.

When you are finished, run kitchen destroy to terminate the instance. The next example uses a
new cookbook.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 957

AWS OpsWorks User Guide

Example 6: Creating Files

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After you have created directories, you often need to populate them with configuration files, data
files, and so on. This topic shows two ways to install files on an instance.

Topics

• Installing a File from a Cookbook

• Creating a File from a Template

Installing a File from a Cookbook

The simplest way to install a file on an instance is to use a cookbook_file resource, which copies
a file from the cookbook to a specified location on the instance for both Linux and Windows
systems. This example extends the recipe from Example 3: Creating Directories to add a data file to
/srv/www/shared after the directory is created. For reference, here is the original recipe.

directory "/srv/www/shared" do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
end

To set up the cookbook

1. Inside the opsworks_cookbooks directory, create a directory named createfile and
navigate to it.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 958

https://docs.chef.io/chef/resources.html#cookbook-file

AWS OpsWorks User Guide

2. Add a metadata.rb file to createfile with the following content.

name "createfile"
version "0.1.0"

3. Initialize and configure Test Kitchen, as described in Example 1: Installing Packages, and
remove CentOS from the platforms list.

4. Add a recipes subdirectory to createfile.

The file to be installed contains the following JSON data.

{
 "my_name" : "myname",
 "your_name" : "yourname",
 "a_number" : 42,
 "a_boolean" : true
}

To set up the data file

1. Add a files subdirectory to createfile and a default subdirectory to files. Any file
that you install with cookbook_file must be in a subdirectory of files, such as files/
default in this example.

Note

If you want to specify different files for different systems, you can put each system-
specific file in a subfolder named for the system, such as files/ubuntu. The
cookbook_file resource copies the appropriate system-specific file, if it exists, and
otherwise uses the default file. For more information, see cookbook_file.

2. Create a file named example_data.json with the JSON from the preceding example and
add it to files/default.

The following recipe copies example_data.json to a specified location.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 959

https://docs.chef.io/chef/resources.html#cookbook-file

AWS OpsWorks User Guide

directory "/srv/www/shared" do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
end

cookbook_file "/srv/www/shared/example_data.json" do
 source "example_data.json"
 mode 0644
 action :create_if_missing
end

After the directory resource creates /srv/www/shared, the cookbook_file resource copies
example_data.json to that directory and also sets the file's user, group, and mode.

Note

The cookbook_file resource introduces a new action: create_if_missing. You could
also use a create action, but that overwrites an existing file. If you don't want to overwrite
anything, use create_if_missing, which installs example_data.json only if it does
not already exist.

To run the recipe

1. Run kitchen destroy to start with a fresh instance.

2. Create a default.rb file that contains the preceding recipe and save it to recipes.

3. Run kitchen converge, then log in to the instance to verify that /srv/www/shared
containsexample_data.json.

Creating a File from a Template

The cookbook_file resource is useful for some purposes, but it just installs whatever file you
have in the cookbook. A template resource provides a more flexible way to install a file on a
Windows or Linux instance by creating it dynamically from a template. You can then determine the
details of the file's contents at runtime and change them as needed. For example, you might want

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 960

https://docs.chef.io/chef/resources.html#template

AWS OpsWorks User Guide

a configuration file to have a particular setting when you start the instance and modify the setting
later when you add more instances to the stack.

This example modifies the createfile cookbook to use a template resource to install a slightly
modified version of example_data.json.

Here's what the installed file will look like.

{
 "my_name" : "myname",
 "your_name" : "yourname",
 "a_number" : 42,
 "a_boolean" : true,
 "a_string" : "some string",
 "platform" : "ubuntu"
}

Template resources are typically used in conjunction with attribute files, so the example uses one
to define the following values.

default['createfile']['my_name'] = 'myname'
default['createfile']['your_name'] = 'yourname'
default['createfile']['install_file'] = true

To set up the cookbook

1. Delete the createfile cookbook's files directory and its contents.

2. Add an attributes subdirectory to createfile and add a default.rb file to
attributes that contains the preceding attribute definitions.

A template is a .erb file that is basically a copy of the final file, with some of the contents
represented by placeholders. When the template resource creates the file, it copies the template's
contents to the specified file, and overwrites the placeholders with their assigned values. Here's the
template for example_data.json.

{
 "my_name" : "<%= node['createfile']['my_name'] %>",

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 961

AWS OpsWorks User Guide

 "your_name" : "<%= node['createfile']['your_name'] %>",
 "a_number" : 42,
 "a_boolean" : <%= @a_boolean_var %>,
 "a_string" : "<%= @a_string_var %>",
 "platform" : "<%= node['platform'] %>"
}

The <%=...%> values are the placeholders.

• <%=node[...]%> represents a node attribute value.

For this example, the "your_name" value is a placeholder that represents one of the attribute
values from the cookbook's attribute file.

• <%=@...%> represents the value of a variable that is defined in the template resource, as
discussed shortly.

To create the template file

1. Add a templates subdirectory to the createfile cookbook and a default subdirectory to
templates.

Note

The templates directory works much like the files directory. You can put system-
specific templates in a subdirectory such as ubuntu that is named for the system.
The template resource uses the appropriate system-specific template if it exists and
otherwise uses the default template.

2. Create a file named example_data.json.erb and put in the templates/default
directory. The template name is arbitrary, but you usually create it by appending .erb to the
file name, including any extensions.

The following recipe uses a template resource to create /srv/www/shared/
example_data.json.

directory "/srv/www/shared" do
 mode 0755
 owner 'root'

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 962

AWS OpsWorks User Guide

 group 'root'
 recursive true
 action :create
end

template "/srv/www/shared/example_data.json" do
 source "example_data.json.erb"
 mode 0644
 variables(
 :a_boolean_var => true,
 :a_string_var => "some string"
)
 only_if {node['createfile']['install_file']}
end

The template resource creates example_data.json from a template and installs it in /srv/
www/shared.

• The template name, /srv/www/shared/example_data.json, specifies the installed file's
path and name.

• The source attribute specifies the template used to create the file.

• The mode attribute specifies the installed file's mode.

• The resource defines two variables, a_boolean_var and a_string_var.

When the resource creates example_data.json, it overwrites the variable placeholders in the
template with the corresponding values from the resource.

• The only_if guard attribute directs the resource to create the file only if ['createfile']
['install_file'] is set to true.

To run the recipe

1. Run kitchen destroy to start with a fresh instance.

2. Replace the code in recipes/default.rb with the preceding example.

3. Run kitchen converge, then log in to the instance to verify that the file is in /srv/www/
shared and has the correct content.

When you are finished, run kitchen destroy to shut down the instance. The next section uses a
new cookbook.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 963

AWS OpsWorks User Guide

Example 7: Running Commands and Scripts

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef resources can handle a wide variety of tasks on an instance, but it is sometimes preferable
to use a shell command or a script. For example, you might already have scripts that you use to
accomplish certain tasks, and it will be easier to continue using them rather than implement new
code. This section shows how to run commands or scripts on an instance.

Topics

• Running Commands

• Running Scripts

Running Commands

The script resource runs one or more commands . It supports the csh, bash, Perl, Python, and
Ruby command interpreters, so it can be used on either Linux or Windows systems as long as they
have the appropriate interpreters installed. This topic shows how to run a simple bash command
on a Linux instance. Chef also supports powershell_script and batch resources to run scripts on
Windows. For more information, see Running a Windows PowerShell Script.

To get started

1. Inside the opsworks_cookbooks directory, create a directory named script and navigate to
it.

2. Add a metadata.rb file to script with the following content.

name "script"
version "0.1.0"

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 964

https://docs.chef.io/chef/resources.html#script
https://docs.chef.io/chef/resources.html#powershell-script
https://docs.chef.io/chef/resources.html#batch

AWS OpsWorks User Guide

3. Initialize and configure Test Kitchen, as described in Example 1: Installing Packages, and
remove CentOS from the platforms list.

4. Inside script, create a directory named recipes.

You can run commands by using the script resource itself, but Chef also supports a set of
command interpreter-specific versions of the resource, which are named for the interpreter. The
following recipe uses a bash resource to run a simple bash script.

bash "install_something" do
 user "root"
 cwd "/tmp"
 code <<-EOH
 touch somefile
 EOH
 not_if do
 File.exists?("/tmp/somefile")
 end
end

The bash resource is configured as follows.

• It uses the default action, run, which runs the commands in the code block.

This example has one command, touch somefile, but a code block can contain multiple
commands.

• The user attribute specifies the user that executes the command.

• The cwd attribute specifies the working directory.

For this example, touch creates a file in the /tmp directory.

• The not_if guard attribute directs the resource to take no action if the file already exists.

To run the recipe

1. Create a default.rb file that contains the preceding example code and save it to recipes.

2. Run kitchen converge, then log in to the instance to verify that the file is in /tmp.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 965

https://docs.chef.io/chef/resources.html#bash

AWS OpsWorks User Guide

Running Scripts

The script resource is convenient, especially if you need to run only one or two commands, but
it's often preferable to store the script in a file and execute the file. The execute resource runs
a specified executable file, including script files, on Linux or Windows. This topic modifies the
script cookbook from the preceding example to use execute to run a simple shell script. You
can easily extend the example to more complex scripts, or other types of executable file.

To set up the script file

1. Add a files subdirectory to script and a default subdirectory to files.

2. Create a file named touchfile that contains the following and add it to files/default. A
common Bash interpreter line is used in this example, but substitute an interpreter that works
for your shell environment if necessary.

#!/usr/bin/env bash
touch somefile

The script file can contain any number of commands. For convenience, this example script has
only a single touch command.

The following recipe executes the script.

cookbook_file "/tmp/touchfile" do
 source "touchfile"
 mode 0755
end

execute "touchfile" do
 user "root"
 cwd "/tmp"
 command "./touchfile"
end

The cookbook_file resource copies the script file to /tmp and sets the mode to make the file
executable. The execute resource then executes the file as follows:

• The user attribute specifies the command's user (root in this example).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 966

https://docs.chef.io/chef/resources.html#execute

AWS OpsWorks User Guide

• The cwd attribute specifies the working directory (/tmp in this example).

• The command attribute specifies the script to be executed (touchfile in this example), which is
located in the working directory.

To run the recipe

1. Replace the code in recipes/default.rb with the preceding example.

2. Run kitchen converge, then log in to the instance to verify that /tmp now contains the
script file, with the mode set to 0755, and somefile.

When you are finished, run kitchen destroy to shut down the instance. The next section uses a
new cookbook.

Example 8: Managing Services

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Packages such as application servers typically have an associated service that must be started,
stopped, restarted, and so on. For example, you need to start the Tomcat service after installing
the package or after the instance finishes booting, and restart the service each time you modify the
configuration file. This topic discusses the basics of how to manage a service on a Linux instance,
using a Tomcat application server as an example. The service resource works much the same way
on Windows instances, although there are some differences in detail. For more information, see
service.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 967

https://docs.chef.io/chef/resources.html#service

AWS OpsWorks User Guide

Note

The example does a very minimal Tomcat installation, just enough to demonstrate the
basics of how to use a service resource. For an example of how to implement recipes for
a more functional Tomcat server, see Creating a Custom Tomcat Server Layer.

Topics

• Defining and Starting a Service

• Using notifies to Start or Restart a Service

Defining and Starting a Service

This section shows the basics of how to define and start a service.

To get started

1. In the opsworks_cookbooks directory, create a directory named tomcat and navigate to it.

2. Add a metadata.rb file to tomcat with the following content.

name "tomcat"
version "0.1.0"

3. Initialize and configure Test Kitchen, as described in Example 1: Installing Packages, and
remove CentOS from the platforms list.

4. Add a recipes subdirectory to tomcat.

You use a service resource to manage a service. The following default recipe installs Tomcat and
starts the service.

execute "install_updates" do
 command "apt-get update"
end

package "tomcat7" do
 action :install

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 968

https://docs.chef.io/chef/resources.html#service

AWS OpsWorks User Guide

end

include_recipe 'tomcat::service'

service 'tomcat' do
 action :start
end

The recipe does the following:

• The execute resource runs apt-get update to install the current system updates.

For the Ubuntu instance used in this example, you must install the updates before installing
Tomcat. Other systems might have different requirements.

• The package resource installs Tomcat 7.

• The includedtomcat::service recipe defines the service and is discussed later.

• The service resource starts the Tomcat service.

You can also use this resource to issue other commands, such as stopping and restarting the
service.

The following example shows the tomcat::service recipe.

service 'tomcat' do
 service_name "tomcat7"
 supports :restart => true, :reload => false, :status => true
 action :nothing
end

This recipe creates the Tomcat service definition as follows:

• The resource name, tomcat, is used by other recipes to reference the service.

For example, default.rb references tomcat to start the service.

• The service_name resource specifies the service name.

When you list the services on the instance, the Tomcat service will be named tomcat7.

• supports specifies how Chef manages the service's restart, reload, and status commands.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 969

AWS OpsWorks User Guide

• true indicates that Chef can use the init script or other service provider to run the command.

• false indicates that Chef must attempt to run the command by other means.

Notice that action is set to :nothing, which directs the resource to take no action. The service
resource does support actions such as start and restart. However, this cookbook follows a
standard practice of using a service definition that takes no action and starting or restarting the
service elsewhere. Each recipe that starts or restarts a service must first define it, so the simplest
approach is to put the service definition in a separate recipe and include it in other recipes as
needed.

Note

For simplicity, the default recipe for this example uses a service resource to start the
service after running the service definition. A production implementation typically starts or
restarts a service by using notifies, as discussed later.

To run the recipe

1. Create a default.rb file that contains the default recipe example and save it to recipes.

2. Create a service.rb file that contains the service definition example and save it to recipes.

3. Run kitchen converge, then log in to the instance and run the following command to verify
that the service is running.

sudo service tomcat7 status

Note

If you were running service.rb separately from default.rb, you would have to edit
.kitchen.yml to add tomcat::service to the run list. However, when you include
a recipe, its code is incorporated into the parent recipe before the recipe is executed.
service.rb is therefore basically a part of default.rb and doesn't require a separate
run list entry.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 970

AWS OpsWorks User Guide

Using notifies to Start or Restart a Service

Production implementations typically do not use service to start or restart a service. Instead,
they add notifies to any of several resources. For example, if you want to restart the service
after modifying a configuration file, you include notifies in the associated template resource.
Using notifies has the following advantages over using a service resource to explicitly restart
the service.

• The notifies element restarts the service only if the associated configuration file has changed,
so there's no risk of causing an unnecessary service restart.

• Chef restarts the service at most once at the end of each run, regardless of how many notifies
the run contains.

For example, Chef run might include multiple template resources, each of which modifies a
different configuration file and requires a service restart if the file has changed. However, you
typically want to restart the service only once, at the end of the Chef run. Otherwise, you might
attempt to restart a service that is not yet fully operational from an earlier restart, which can
lead to errors.

This example modifies tomcat::default to include a template resource that uses notifies
to restart the service. A realistic example would use a template resource that creates a customized
version of one of the Tomcat configuration files, but those are rather long and complex. For
simplicity, the example just uses the template resource from Creating a File from a Template.
It doesn't have anything to do with Tomcat, but it provides a simple way to show how to use
notifies. For an example of how to use templates to create Tomcat configuration files, see Setup
Recipes.

To set up the cookbook

1. Add a templates subdirectory to tomcat and a default subdirectory to templates.

2. Copy the example_data.json.erb template from the createfile cookbook to the
templates/default directory.

3. Add an attributes subdirectory to tomcat.

4. Copy the default.rb attribute file from the createfile cookbook to the attributes
directory.

The following recipe uses notifies to restart the Tomcat service.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 971

AWS OpsWorks User Guide

execute "install_updates" do
 command "apt-get update"
end

package "tomcat7" do
 action :install
end

include_recipe 'tomcat::service'

service 'tomcat' do
 action :enable
end

directory "/srv/www/shared" do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
end

template "/srv/www/shared/example_data.json" do
 source "example_data.json.erb"
 mode 0644
 variables(
 :a_boolean_var => true,
 :a_string_var => "some string"
)
 only_if {node['createfile']['install_file']}
 notifies :restart, resources(:service => 'tomcat')
end

The example merges the recipe from Creating a File from a Template into the recipe from the
preceding section, with two significant changes:

• The service resource is still there, but it now serves a somewhat different purpose.

The :enable action enables the Tomcat service at boot.

• The template resource now includes notifies, which restarts the Tomcat service if
example_data.json has changed.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 972

AWS OpsWorks User Guide

This ensures that the service is started when Tomcat is first installed and restarted after every
configuration change.

To run the recipe

1. Run kitchen destroy to start with a clean instance.

2. Replace the code in default.rb with the preceding example.

3. Run kitchen converge, then log in to the instance and verify that the service is running.

Note

If you want to restart a service but the recipe doesn't include a resource such as template
that supports notifies, you can instead use a dummy execute resource. For example

execute 'trigger tomcat service restart' do
 command 'bin/true'
 notifies :restart, resources(:service => 'tomcat')
end

The execute resource must have a command attribute, even if you are using the resource
only as a way to run notifies. This example gets around that requirement by running /
bin/true, which is a shell command that simply returns a success code.

Example 9: Using Amazon EC2 Instances

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 973

AWS OpsWorks User Guide

To this point, you've been running instances locally in VirtualBox. While this is quick and easy, you
will eventually want to test your recipes on an Amazon EC2 instance. In particular, if you want to
run recipes on Amazon Linux, it is available only on Amazon EC2. You can use a similar system such
as CentOS for preliminary implementation and testing, but the only way to fully test your recipes
on Amazon Linux is with an Amazon EC2 instance.

This topic shows how to run recipes on an Amazon EC2 instance. You will use Test Kitchen and
Vagrant in much the same way as the preceding sections, with two differences:

• The driver is kitchen-ec2 instead of Vagrant.

• The cookbook's .kitchen.yml file must be configured with the information required to launch
the Amazon EC2 instance.

Note

An alternative approach is to use the vagrant-aws Vagrant plug-in. For more information,
see Vagrant AWS Provider.

You will need AWS credentials to create an Amazon EC2 instance. If you don't have an AWS account
you can obtain one, as follows.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 974

https://rubygems.org/gems/kitchen-ec2
https://github.com/mitchellh/vagrant-aws
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

AWS OpsWorks User Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 975

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS OpsWorks User Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

You should create an IAM user with permissions to access Amazon EC2 and save the user's access
and secret keys to a secure location on your workstation. Test Kitchen will use those credentials to
create the instance. The preferred way to provide credentials to Test Kitchen is to assign the keys to
the following environment variables on your workstation.

Warning

IAM users have long-term credentials, which presents a security risk. To help mitigate this
risk, we recommend that you provide these users with only the permissions they require to
perform the task and that you remove these users when they are no longer needed.

• AWS_ACCESS_KEY – your user's access key, which will look something like
AKIAIOSFODNN7EXAMPLE.

• AWS_SECRET_KEY – your user's secret key, which will look something like wJalrXUtnFEMI/
K7MDENG/bPxRfiCYEXAMPLEKEY.

This approach reduces the chances of accidentally compromising your account by, for example,
uploading a project containing your credentials to a public repository.

To set up the cookbook

1. To use the kitchen-ec2 driver, you must have the ruby-dev package installed on your
system. The following example command shows how to use aptitude to install the package
on a Ubuntu system.

sudo aptitude install ruby1.9.1-dev

2. The kitchen-ec2 driver is a gem, which you can install as follows:

gem install kitchen-ec2

Depending on your workstation, this command might require sudo, or you can also use a
Ruby environment manager such as RVM. This procedure was tested with version 0.8.0 of

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 976

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://rvm.io/

AWS OpsWorks User Guide

the kitchen-ec2 driver, but there are newer versions. To install a specific version, run gem
install kitchen-ec2 -v <version number>.

3. You must specify an Amazon EC2 SSH key pair that Test Kitchen can use to connect to the
instance. If you don't have an Amazon EC2 key pair, see Amazon EC2 Key Pairs for information
on how to create one. Note that the key pair must belong to the same AWS region as the
instance. The example uses US West (N. California).

After you have selected a key pair, create a subdirectory of opsworks_cookbooks named
ec2_keys and copy the key pair's private key (.pem) file to that subdirectory. Note that
putting the private key in ec2_keys is just a convenience that simplifies the code a bit; it can
be anywhere on your system.

4. Create a subdirectory of opsworks_cookbooks named createdir-ec2 and navigate to it.

5. Add a metadata.rb file to createdir-ec2 with the following content.

name "createdir-ec2"
version "0.1.0"

6. Initialize Test Kitchen, as described in Example 1: Installing Packages. The following section
describes how to configure .kitchen.yml, which is significantly more complicated for
Amazon EC2 instances.

7. Add a recipes subdirectory to createdir-ec2.

Configuring .kitchen.yml for Amazon EC2

You configure .kitchen.yml with the information that the kitchen-ec2 driver needs to
launch an appropriately configured Amazon EC2 instance. The following is an example of a
.kitchen.yml file for an Amazon Linux instance in the US West (N. California) region.

driver:
 name: ec2
 aws_ssh_key_id: US-East1
 region: us-west-1
 availability_zone: us-west-1c
 require_chef_omnibus: true
 security_group_ids: sg........
 subnet_id: subnet-.........
 associate_public_ip: true

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 977

https://rubygems.org/gems/kitchen-ec2/versions
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

 interface: dns

provisioner:
 name: chef_solo

platforms:
 -name: amazon
 driver:
 image_id: ami-xxxxxxxx
 transport:
 username: ec2-user
 ssh_key: ../ec2_keys/US-East1.pem

suites:
 - name: default
 run_list:
 - recipe[createdir-ec2::default]
 attributes:

You can use the default settings for the provisioner and suites sections, but you must modify
the default driver and platforms settings. This example uses a minimal list of settings, and
accepts the default values for the remainder. For a complete list of kitchen-ec2 settings, see
Kitchen::Ec2: A Test Kitchen Driver for Amazon EC2.

The example sets the following driver attributes. It assumes that you have assigned your
user's access and secret keys to the standard environment variables, as discussed earlier. The
driver uses those keys by default. Otherwise, you must explicitly specify the keys by adding
aws_access_key_id and aws_secret_access_key to the driver attributes, set to the
appropriate key values.

name

(Required) This attribute must be set to ec2.

aws_ssh_key_id

(Required) The Amazon EC2 SSH key pair name, which is named US-East1 in this example.

transport.ssh_key

(Required) The private key (.pem) file for the key that you specified for aws_ssh_key_id.
For this example, the file is named US-East1.pem and is in the ../opsworks/ec2_keys
directory.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 978

https://github.com/test-kitchen/kitchen-ec2

AWS OpsWorks User Guide

region

(Required) The instance's AWS region. The example uses US West (N. California), which is
represented by us-west-1).

availability_zone

(Optional) The instance's Availability Zone. If you omit this setting, Test Kitchen uses a default
Availability Zone for the specified region, which is us-west-1b for US West (N. California).
However, the default zone might not be available for your account. In that case, you must
explicitly specify an Availability Zone. As it happens, the account used to prepare the examples
doesn't support us-west-1b, so the example explicitly specifies us-west-1c.

require_chef_omnibus

When set to true, this setting ensures that the omnibus installer is used to install chef-
client to all platform instances.

security_group_ids

(Optional) A list of security group IDs to apply to the instance. This setting applies the default
security group to the instance. Make sure that the security group ingress rules allow inbound
SSH connections, or Test Kitchen will not be able to communicate with the instance. If you use
the default security group, you might need to edit it accordingly. For more information, see
Amazon EC2 Security Groups.

subnet_id

The ID of the target subnet for the instance, if applicable.

associate_public_ip

You can have Amazon EC2 associate a public IP address with the instance if you want to be able
to access the instance from the Internet.

interface

The host name configuration type that you use to access the instance. Valid values are dns,
public, private, or private_dns. If you do not specify a value for this attribute, kitchen-
ec2 sets up the host name configuration in the following order. If you omit this attribute, the
configuration type is not set.

1. DNS name

2. Public IP address

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 979

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

AWS OpsWorks User Guide

3. Private IP address

4. Private DNS name

Important

Rather than use your account credentials for the access and secret keys, you should create a
user and provide those credentials to Test Kitchen. For more information, see Best Practices
for Managing AWS Access Keys.
Be careful not to put .kitchen.yml in a publicly accessible location, such as uploading
it to a public GitHub or Bitbucket repository. Doing so exposes your credentials and could
compromise your account's security.

The kitchen-ec2 driver provides default support for the following platforms:

• ubuntu-10.04

• ubuntu-12.04

• ubuntu-12.10

• ubuntu-13.04

• ubuntu-13.10

• ubuntu-14.04

• centos-6.4

• debian-7.1.0

• windows-2012r2

• windows-2008r2

If you want to use one or more of these platforms, add the appropriate platform names to
platforms. The kitchen-ec2 driver automatically selects an appropriate AMI and generates
an SSH user name. You can use other platforms—this example uses Amazon Linux—but you must
explicitly specify the following platforms attributes.

name

The platform name. This example uses Amazon Linux, so name is set to amazon.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 980

http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS OpsWorks User Guide

driver

The driver attributes, which include the following:

• image_id – The platform's AMI, which must belong to the specified region. The example uses
ami-ed8e9284, an Amazon Linux AMI from the US West (N. California) region.

• transport.username – The SSH user name that Test Kitchen will use to communicate with
the instance.

Use ec2-user for Amazon Linux. Other AMIs might have different user names.

Replace the code in .kitchen.yml with the example, and assign appropriate values to account-
specific attributes such as aws_access_key_id.

Running the Recipe

This example uses the recipe from Iteration.

To run the recipe

1. Create a file named default.rb with the following code and save it to the cookbook's
recipes folder.

directory "/srv/www/shared" do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
end

2. Run kitchen converge to execute the recipe. Note that this command will take longer to
complete than the previous examples because of the time required to launch and initialize an
Amazon EC2 instance.

3. Go to the Amazon EC2 console, select the US West (N. California)) region, and click Instances
in the navigation pane. You will see the newly created instance in the list.

4. Run kitchen login to log in to the instance, just as you have been doing for instances
running in VirtualBox. You will see the newly created directories under /srv. You can also use
your favorite SSH client to connect to the instance.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 981

https://console.aws.amazon.com/ec2/

AWS OpsWorks User Guide

Next Steps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This chapter walked you through the basics of how to implement Chef cookbooks, but there's much
more:

• The examples showed you how to use some of the more commonly used resources, but there are
many more.

For the resources that were covered, the examples used only some of the available attributes and
actions. For a complete reference, see About Resources and Providers.

• The examples used only the core cookbook elements: recipes, attributes, files, and
templates.

Cookbooks can also include a variety of other elements, such as libraries, definitions, and
specs. For more information, see the Chef documentation.

• The examples used Test Kitchen only as a convenient way to start instances, run recipes, and log
in to instances.

Test Kitchen is primarily a testing platform that you can use to run a variety of tests on your
recipes. If you haven't done so already, go through the rest of the Test Kitchen walkthrough,
which introduces you to its testing features.

• Implementing Cookbooks for AWS OpsWorks Stacks provides some more advanced examples,
and shows how to implement cookbooks for AWS OpsWorks Stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 982

https://docs.chef.io/resource.html
https://docs.chef.io
https://kitchen.ci/docs/getting-started/introduction/

AWS OpsWorks User Guide

Implementing Cookbooks for AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Cookbook Basics introduced you to cookbooks and recipes. The examples in that section were
simple by design and will work on any instance that supports Chef, including AWS OpsWorks Stacks
instances. To implement more sophisticated cookbooks for AWS OpsWorks Stacks, you typically
need to take full advantage of the AWS OpsWorks Stacks environment, which differs from standard
Chef in a number of ways.

This topic describes the basics of implementing recipes for AWS OpsWorks Stacks instances.

Note

If you are not familiar with how to implement cookbooks, you should start with Cookbook
Basics.

Topics

• Running a Recipe on an AWS OpsWorks Stacks Linux Instance

• Running a Recipe on a Windows Instance

• Running a Windows PowerShell Script

• Mocking the Stack Configuration and Deployment Attributes on Vagrant

• Using Stack Configuration and Deployment Attribute Values

• Using an External Cookbook on a Linux Instance: Berkshelf

• Using the SDK for Ruby: Downloading Files from Amazon S3

• Installing Windows Software

• Overriding Built-In Attributes

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 983

AWS OpsWorks User Guide

• Overriding Built-In Templates

Running a Recipe on an AWS OpsWorks Stacks Linux Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Test Kitchen and Vagrant provide a simple and efficient way to implement cookbooks, but to verify
that a cookbook's recipes will run correctly in production, you must run them on an AWS OpsWorks
Stacks instance. This topic describes how to install a custom cookbook on an AWS OpsWorks Stacks
Linux instance and run a simple recipe. The topic also provides some tips for efficiently fixing recipe
bugs.

For a description of how to run recipes on Windows instances, see Running a Recipe on a Windows
Instance.

Topics

• Creating and Running the Recipe

• Executing the Recipe Automatically

• Troubleshooting and Fixing Recipes

Creating and Running the Recipe

First, you need to create a stack. The following briefly summarizes how to create a stack for this
example. For more information, see Create a New Stack.

To create a stack

1. Open the AWS OpsWorks Stacks console and click Add Stack.

2. Specify the following settings, accept the defaults for the other settings, and click Add Stack.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 984

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

• Name – OpsTest

• Default SSH key – An Amazon EC2 key pair

If you need to create an Amazon EC2 key pair, see Amazon EC2 Key Pairs. Note that the key
pair must belong to the same AWS region as the instance. The example uses the default US
West (Oregon) region.

3. Click Add a layer and add a custom layer to the stack with the following settings.

• Name – OpsTest

• Short name – opstest

Any layer type will actually work for Linux stacks, but the example doesn't require any of
the packages that are installed by the other layer types, so a custom layer is the simplest
approach.

4. Add a 24/7 instance with default settings to the layer and start it.

While the instance is starting up—it usually takes several minutes—you can create the cookbook.
This example will use a slightly modified version of the recipe from Conditional Logic, which
creates a data directory whose name depends on the platform.

To set up the cookbook

1. Create a directory within opsworks_cookbooks named opstest and navigate to it.

2. Create a metadata.rb file with the following content and save it to opstest.

name "opstest"
version "0.1.0"

3. Create a recipes directory within opstest.

4. Create a default.rb file with the following recipe and save it to the recipes directory.

Chef::Log.info("******Creating a data directory.******")

data_dir = value_for_platform(

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 985

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

 "centos" => { "default" => "/srv/www/shared" },
 "ubuntu" => { "default" => "/srv/www/data" },
 "default" => "/srv/www/config"
)

directory data_dir do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
end

Notice that the recipe logs a message, but it does so by calling Chef::Log.info. You aren't
using Test Kitchen for this example, so the log method isn't very useful. Chef::Log.info
puts the message into the Chef log, which you can read after the Chef run is finished. AWS
OpsWorks Stacks provides an easy way to view these logs, as described later.

Note

Chef logs usually contain a lot of routine and relatively uninteresting information. The
'*' characters bracketing the message text make it easier to spot.

5. Create a .zip archive of opsworks_cookbooks. To install your cookbook on an AWS
OpsWorks Stacks instance, you must store it in a repository and provide AWS OpsWorks
Stacks with the information required to download the cookbook to the instance. You can store
your cookbooks in any of several supported repository types. This example stores an archive
file containing the cookbooks in an Amazon S3 bucket. For more information on cookbook
repositories, see Cookbook Repositories.

Note

For simplicity, this example just archives the entire opsworks_cookbooks directory.
However, it means that AWS OpsWorks Stacks will download all the cookbooks in
opsworks_cookbooks to the instance, even though you will use only one of them. To
install only the example cookbook, create another parent directory and move opstest
to that directory. Then create a .zip archive of the parent directory and use it instead
of opsworks_cookbooks.zip.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 986

AWS OpsWorks User Guide

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How
Do I Delete an S3 Bucket?.

6. Upload the archive to an Amazon S3 bucket, make the archive public, and record the archive's
URL.

You can now install the cookbook and run the recipe.

To run the recipe

1. Edit the stack to enable custom cookbooks, and specify the following settings.

• Repository type – S3 Archive

• Repository URL – The cookbook archive URL that you recorded earlier

Use the default values for the other settings and click Save to update the stack configuration.

2. Run the Update Custom Cookbooks stack command, which installs the current version of your
custom cookbooks on the stack's instances. If an earlier version of your cookbooks is present,
this command overwrites it.

3. Execute the recipe by running the Execute Recipes stack command with Recipes to execute
set to opstest::default. This command initiates a Chef run, with a run list that consists of
opstest::default.

After the recipe runs successfully, you can verify it.

To verify opstest

1. The first step is to examine the Chef log. Click show in the opstest1 instance's Log column to
display the log. Scroll down and you will see your log message near the bottom.

...
[2014-07-31T17:01:45+00:00] INFO: Storing updated cookbooks/opsworks_cleanup/
attributes/customize.rb in the cache.
[2014-07-31T17:01:45+00:00] INFO: Storing updated cookbooks/opsworks_cleanup/
metadata.rb in the cache.
[2014-07-31T17:01:46+00:00] INFO: ******Creating a data directory.******

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 987

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html

AWS OpsWorks User Guide

[2014-07-31T17:01:46+00:00] INFO: Processing template[/etc/hosts] action create
 (opsworks_stack_state_sync::hosts line 3)
...

2. Use SSH to log in to the instance and list the contents of /srv/www/.

If you followed all the steps, you will see /srv/www/config rather than the /srv/www/shared
directory you were expecting. The following section provides some guidelines for quickly fixing
such bugs.

Executing the Recipe Automatically

The Execute Recipes command is a convenient way to test custom recipes, which is why it is used
in most of these examples. However, in practice you typically run recipes at standard points in an
instance's lifecycle, such as after the instance finishes booting or when you deploy an app. AWS
OpsWorks Stacks simplifies running recipes on your instance by supporting a set of lifecycle events
for each layer: Setup, Configure, Deploy, Undeploy, and Shutdown. You can have AWS OpsWorks
Stacks run a recipe automatically on a layer's instances by assigning the recipe to the appropriate
lifecycle event.

You would typically create directories as soon as an instance finishes booting, which corresponds to
the Setup event. The following shows how to run the example recipe at setup, using the same stack
that you created earlier in the example. You can use the same procedure for the other events.

To automatically run a recipe at setup

1. Choose Layers in the navigation pane and then chose the pencil icon next to the OpsTest
layer's Recipes link.

2. Add opstest::default to the layer's Setup recipes, click + to add it to the layer, and choose
Save to save the configuration.

3. Choose Instances, add another instance to the layer, and start it.

The instance should be named opstest2. After it finishes booting, AWS OpsWorks Stacks will
run opstest::default.

4. After the opstest2 instance is online, verify that /srv/www/shared is present.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 988

AWS OpsWorks User Guide

Note

If you have assigned recipes to the Setup, Configure, or Deploy events, you also run them
manually by using a stack command (Setup and Configure) or a deploy command (Deploy)
to trigger the event. Note that if you have multiple recipes assigned to an event, these
commands run all of them.

Troubleshooting and Fixing Recipes

If you aren't getting the expected results, or your recipes don't even run successfully,
troubleshooting typically starts by examining the Chef log. It contains a detailed description of the
run and includes any inline log messages from your recipes. The logs are particularly useful if your
recipe simply failed. When that happens, Chef logs the error, including a stack trace.

If the recipe was successful, as it was for this example, the Chef log often isn't much help. In this
case, you can figure out the problem by just taking a closer look at the recipe, the first few lines in
particular:

Chef::Log.info("******Creating a data directory.******")

data_dir = value_for_platform(
 "centos" => { "default" => "/srv/www/shared" },
 "ubuntu" => { "default" => "/srv/www/data" },
 "default" => "/srv/www/config"
)
...

CentOS is a reasonable stand-in for Amazon Linux when you are testing recipes on Vagrant, but
now you are running on an actual Amazon Linux instance. The platform value for Amazon Linux is
amazon, which isn't included in the value_for_platform call, so the recipe creates /srv/www/
config by default. For more information on troubleshooting, see Debugging and Troubleshooting
Guide.

Now that you have identified the problem, you need to update the recipe and verify the fix. You
could go back to the original source files, update default.rb, upload a new archive to Amazon
S3, and so on. However, that process can be a bit tedious and time consuming. The following
shows a much quicker approach that is especially useful for simple recipe bugs like the one in the
example: edit the recipe on the instance.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 989

AWS OpsWorks User Guide

To edit a recipe on an instance

1. Use SSH to log in to the instance and then run sudo su to elevate your privileges. You need
root privileges to access the cookbook directories.

2. AWS OpsWorks Stacks stores your cookbook in /opt/aws/opsworks/current/site-
cookbooks, so navigate to /opt/aws/opsworks/current/site-cookbooks/opstest/
recipes.

Note

AWS OpsWorks Stacks also stores a copy of your cookbooks in /opt/aws/opsworks/
current/merged-cookbooks. Don't edit that cookbook. When you execute the
recipe, AWS OpsWorks Stacks copies the cookbook from .../site-cookbooks to
.../merged-cookbooks, so any changes you make in .../merged-cookbooks will
be overwritten.

3. Use a text editor on the instance to edit default.rb, and replace centos with amazon. Your
recipe should now look like the following.

Chef::Log.info("******Creating a data directory.******")

data_dir = value_for_platform(
 "amazon" => { "default" => "/srv/www/shared" },
 "ubuntu" => { "default" => "/srv/www/data" },
 "default" => "/srv/www/config"
)
...

To verify the fix, execute the recipe by running the Execute Recipe stack command again. The
instance should now have a /srv/www/shared directory. If you need to make further changes
to a recipe, you can run Execute Recipe as often as you like; you don't need to stop and restart
the instance each time you run the command. When you are satisfied that the recipe is working
correctly, don't forget to update the code in your source cookbook.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 990

AWS OpsWorks User Guide

Note

If you have assigned your recipe to a lifecycle event so AWS OpsWorks Stacks runs it
automatically, you can always use Execute Recipe to rerun the recipe. You can also
rerun the recipe as many times as you want without restarting the instance by using the
AWS OpsWorks Stacks console to manually trigger the appropriate event. However, this
approach runs all of the event's recipes. Here's a reminder:

• Use a stack command to trigger Setup or Configure events.

• Use a deploy command to trigger Deploy or Undeploy events.

Running a Recipe on a Windows Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This topic is basically an abbreviated version of Running a Recipe on a Linux Instance, which shows
you how to run a recipe on a Windows stack. We recommend that you go through Running a Recipe
on a Linux Instance first, because it provides a more detailed discussion, most of which is relevant
to either type of operating system.

For a description of how to run recipes on AWS OpsWorks Stacks Linux instances, see Running a
Recipe on a Linux Instance.

Topics

• Enabling RDP Access

• Creating and Running the Recipe

• Executing the Recipe Automatically

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 991

AWS OpsWorks User Guide

Enabling RDP Access

Before you start, if you have not done so already, you must set up a security group with an inbound
rule that allows RDP access for your instances . You will need that group when you create the stack.

When you create the first stack in a region, AWS OpsWorks Stacks creates a set of security groups.
They include one named something like AWS-OpsWorks-RDP-Server, which AWS OpsWorks
Stacks attaches to all Windows instances to allow RDP access. However, by default, this security
group does not have any rules, so you must add an inbound rule to allow RDP access to your
instances.

To allow RDP access

1. Open the Amazon EC2 console, set it to the stack's region, and choose Security Groups from
the navigation pane.

2. Choose AWS-OpsWorks-RDP-Server, choose the Inbound tab, and choose Edit.

3. Add a rule with the following settings:

• Type – RDP

• Source – The permissible source IP addresses.

You typically allow inbound RDP requests from your IP address or a specified IP address
range (typically your corporate IP address range).

Note

As described later, you also must edit user permissions to authorize RDP access for regular
users.

For more information, see Logging In with RDP.

Creating and Running the Recipe

The following briefly summarizes how to create a stack for this example. For more information, see
Create a New Stack.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 992

https://console.aws.amazon.com/ec2/v2/

AWS OpsWorks User Guide

Create a stack

1. Open the AWS OpsWorks Stacks console and choose Add Stack. Specify the following settings,
accept the defaults for the other settings, and choose Add Stack.

• Name – WindowsRecipeTest

• Region – US West (Oregon)

This example will work in any region, but we recommend using US West (Oregon) for
tutorials.

• Default operating system – Microsoft Windows Server 2012 R2

2. Choose Add a layer and add a custom layer to the stack with the following settings.

• Name – RecipeTest

• Short name – recipetest

3. Add a 24/7 instance with default settings to the RecipeTest layer and start it.

AWS OpsWorks Stacks automatically assigns AWS-OpsWorks-RDP-Server to this instance,
which allows authorized users to log in to the instance.

4. Choose Permissions and then Edit, and choose SSH/RDP and sudo/admin. Regular users need
this authorization in addition to the AWS-OpsWorks-RDP-Server security group to log in to
the instance.

Note

You can also log in as Administrator, but it requires a different procedure. For more
information, see Logging In with RDP.

While the instance is starting up—it usually takes several minutes—you can create the cookbook.
The recipe for this example creates a data directory, and is basically the recipe from Example 3:
Creating Directories, modified for Windows.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 993

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Note

When implementing cookbooks for AWS OpsWorks Stacks Windows instances, you use a
somewhat different directory structure than you do when implementing cookbooks for
AWS OpsWorks Stacks Linux instances. For more information, see Cookbook Repositories.

To set up the cookbook

1. Create a directory named windowstest and navigate to it.

2. Create a metadata.rb file with the following content and save it to windowstest.

name "windowstest"
version "0.1.0"

3. Create a recipes directory within windowstest.

4. Create a default.rb file with the following recipe and save it to the recipes directory.

Chef::Log.info("******Creating a data directory.******")

directory 'C:\data' do
 rights :full_control, 'instance_name\username'
 inherits false
 action :create
end

Replace username with your user name.

5. Put the cookbook in a repository.

To install your cookbook on an AWS OpsWorks Stacks instance, you must store it in a
repository and provide AWS OpsWorks Stacks with the information required to download the
cookbook to the instance. You can store Windows cookbooks as an archive file in an S3 bucket
or in a Git repository. This example uses an S3 bucket, so you must create a .zip archive of
the windowstest directory. For more information on cookbook repositories, see Cookbook
Repositories.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 994

AWS OpsWorks User Guide

6. Upload the archive to an S3 bucket, make the archive public, and record the archive's URL. You
can also use a private archive, but a public archive is sufficient for this example and somewhat
easier to work with.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

You can now install the cookbook and run the recipe.

To run the recipe

1. Edit the stack to enable custom cookbooks and specify the following settings.

• Repository type – S3 Archive

• Repository URL – The cookbook archive URL that you recorded earlier

Accept the default values for the other settings and choose Save to update the stack
configuration.

2. Run the Update Custom Cookbooks stack command, which installs the current version of your
custom cookbooks on the stack's instances, including online instances. If an earlier version of
your cookbooks is present, this command overwrites it.

3. After Update Custom Cookbooks is finished, execute the recipe by running the Execute
Recipes stack command with Recipes to execute set to windowstest::default. This
command initiates a Chef run, with a run list that consists of your recipe.

After the recipe runs successfully, you can verify it.

To verify windowstest

1. Examine the Chef log. Choose show in the opstest1 instance's Log column to display the log.
Scroll down and you will see your log message near the bottom.

...
[2014-07-31T17:01:45+00:00] INFO: Storing updated cookbooks/opsworks_cleanup/
attributes/customize.rb in the cache.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 995

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

[2014-07-31T17:01:45+00:00] INFO: Storing updated cookbooks/opsworks_cleanup/
metadata.rb in the cache.
[2014-07-31T17:01:46+00:00] INFO: ******Creating a data directory.******
[2014-07-31T17:01:46+00:00] INFO: Processing template[/etc/hosts] action create
 (opsworks_stack_state_sync::hosts line 3)
...

2. Choose Instances, choose rdp in the instance's Actions column, and request an RDP password
with a suitable expiration time. Copy the DNS name, user name, and password. You can then
can use that information with an RDP client, such as the Windows Remote Desktop Connection
client, to log in to the instance and verify that c:\data exists. For more information, see
Logging In with RDP.

Note

If your recipe isn't working properly, see Troubleshooting and Fixing Recipes for
troubleshooting tips; most of them also apply to Windows instances. If you want to test
your fix by editing the recipe on the instance, look for your cookbook in the C:\chef
\cookbooks directory, where AWS OpsWorks Stacks installs custom cookbooks.

Executing the Recipe Automatically

The Execute Recipes command is a convenient way to test custom recipes, which is why it is used
in most of these examples. However, in practice you typically run recipes at standard points in an
instance's lifecycle, such as after the instance finishes booting or when you deploy an app. AWS
OpsWorks Stacks simplifies running recipes on your instance by supporting a set of lifecycle events
for each layer: Setup, Configure, Deploy, Undeploy, and Shutdown. You can have AWS OpsWorks
Stacks run a recipe automatically on a layer's instances by assigning the recipe to the appropriate
lifecycle event.

You would typically create directories as soon as an instance finishes booting, which corresponds to
the Setup event. The following shows how to run the example recipe at setup, using the same stack
that you created earlier in the example. You can use the same procedure for the other events.

To automatically run a recipe at setup

1. Choose Layers in the navigation pane and then choose the pencil icon next to the RecipeTest
layer's Recipes link.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 996

AWS OpsWorks User Guide

2. Add windowstest::default to the layer's Setup recipes, choose + to add it to the layer, and
choose Save to save the configuration.

3. Choose Instances, add another instance to the layer, and start it.

The instance should be named recipetest2. After it finishes booting, AWS OpsWorks Stacks
will run windowstest::default.

4. After the recipetest2 instance is online, verify that c:\data is present.

Note

If you have assigned recipes to the Setup, Configure, or Deploy events, you can also run
them manually by using a stack command (Setup and Configure) or a deploy command
(Deploy) to trigger the event. Note that if you have multiple recipes assigned to an event,
these commands run all of them.

Running a Windows PowerShell Script

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These examples assume that you have already done the Running a Recipe on a Windows
Instance example. If not, you should do that example first. In particular, it describes how to
enable RDP access to your instances.

One way to have a recipe perform tasks on a Windows instance—especially tasks that do not have
a corresponding Chef resource—is to have the recipe run a Windows PowerShell script. This section

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 997

AWS OpsWorks User Guide

introduces you to the basics by describing how to use a Windows PowerShell script to install a
Windows feature.

The powershell_script resource runs Windows PowerShell cmdlets on an instance. The
following example uses a Install-WindowsFeature cmdlet to install an XPS viewer on the instance.

The following briefly summarizes how to create a stack for this example. For more information, see
Create a New Stack.

Create a stack

1. Open the AWS OpsWorks Stacks console and choose Add Stack. Specify the following settings,
accept the defaults for the other settings, and click Add Stack.

• Name – PowerShellTest

• Region – US West (Oregon)

This example will work in any region, but we recommend using US West (Oregon) for
tutorials.

• Default operating system – Microsoft Windows Server 2012 R2

2. Choose Add a layer and add a custom layer to the stack with the following settings.

• Name – PowerShell

• Short name – powershell

3. Add a 24/7 instance to with default settings to the PowerShell layer and start it.

4. Choose Permissions and then Edit, and select SSH/RDP and sudo/admin. You need this
authorization in addition to the AWS-OpsWorks-RDP-Server security group to log in to the
instance as a regular user.

While the instance is starting up—it usually takes several minutes—you can create the cookbook.
The recipe for this example creates a data directory, and is basically the recipe from Example 3:
Creating Directories, modified for Windows.

To set up the cookbook

1. Create a directory named powershell and navigate to it.

2. Create a metadata.rb file with the following content and save it to windowstest.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 998

https://docs.chef.io/chef/resources.html#powershell-script
https://technet.microsoft.com/en-us/library/hh849795.aspx
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

name "powershell"
version "0.1.0"

3. Create a recipes directory within the powershell directory.

4. Create a default.rb file with the following recipe and save it to the recipes directory.

Chef::Log.info("******Installing XPS.******")

powershell_script "Install XPS Viewer" do
 code <<-EOH
 Install-WindowsFeature XPS-Viewer
 EOH
 guard_interpreter :powershell_script
 not_if "(Get-WindowsFeature -Name XPS-Viewer).installed"
end

• The powershell_script resource runs a cmdlet to install the XPS viewer.

This example runs only one cmdlet, but the code block can contain any number of
command lines.

• The guard_interpreter attribute directs Chef to use the 64-bit version of Windows
PowerShell.

• The not_if guard attribute ensures that Chef does not install the feature if it has already
been installed.

5. Create a .zip archive of the powershell directory.

6. Upload the archive to an Amazon S3 bucket, make the archive public, and record the archive's
URL. You can also use a private archive, but a public archive is sufficient for this example, and
somewhat easier to work with.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

You can now install the cookbook and run the recipe.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 999

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

To run the recipe

1. Edit the stack to enable custom cookbooks and specify the following settings.

• Repository type – S3 Archive

• Repository URL – The cookbook archive URL that you recorded earlier

Accept the default values for the other settings and choose Save to update the stack
configuration.

2. Run the Update Custom Cookbooks stack command to install the current version of your
custom cookbooks on the instance.

3. After Update Custom Cookbooks has finished, execute the recipe by running the Execute
Recipes stack command with Recipes to execute set to powershell::default.

Note

This example uses Execute Recipes for convenience, but you typically have AWS OpsWorks
Stacks run your recipes automatically by assigning them to the appropriate lifecycle event.
You can run such recipes by manually triggering the event. You can use a stack command
to trigger Setup and Configure events, and a deploy command to trigger Deploy and
Undeploy events.

After the recipe runs successfully, you can verify it.

To verify the powershell recipe

1. Examine the Chef log. Click show in the powershell1 instance's Log column to display the log.
Scroll down and you will see your log message near the bottom.

...
[2015-04-27T18:12:09+00:00] INFO: Storing updated cookbooks/powershell/metadata.rb
 in the cache.
[2015-04-27T18:12:09+00:00] INFO: ******Installing XPS.******
[2015-04-27T18:12:09+00:00] INFO: Processing powershell_script[Install XPS Viewer]
 action run (powershell::default line 3)

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1000

AWS OpsWorks User Guide

[2015-04-27T18:12:09+00:00] INFO: Processing powershell_script[Guard resource]
 action run (dynamically defined)
[2015-04-27T18:12:42+00:00] INFO: powershell_script[Install XPS Viewer] ran
 successfully
...

2. Use RDP to log in to the instance and open the Start menu. XPS Viewer should be listed with
Windows Accessories.

Mocking the Stack Configuration and Deployment Attributes on Vagrant

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This topic applies only to Linux instances. Test Kitchen does not yet support Windows, so
you will run all Windows examples on AWS OpsWorks Stacks instances.

AWS OpsWorks Stacks adds stack configuration and deployment attributes to the node object
for each instance in your stack for every lifecycle event. These attributes provide a snapshot of
the stack configuration, including the configuration of each layer and its online instances, the
configuration of each deployed app, and so on. Because these attributes are in the node object,
they can be accessed by any recipe; most recipes for AWS OpsWorks Stacks instances use one or
more of these attributes.

An instance running in a Vagrant box is not managed by AWS OpsWorks Stacks, so its node object
does not include any stack configuration and deployment attributes by default. However, you
can add a suitable set of attributes to the Test Kitchen environment. Test Kitchen then adds the
attributes to the instance's node object, and your recipes can access the attributes much like they
would on an AWS OpsWorks Stacks instance.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1001

AWS OpsWorks User Guide

This topic shows how to obtain a copy of a suitable stack configuration and deployment attributes,
install the attributes on an instance, and access them.

Note

If you are using Test Kitchen to run tests on your recipes, fauxhai provides an alternative
way to mock stack configuration and deployment JSON.

To set up the cookbook

1. Create a subdirectory of opsworks_cookbooks named printjson and navigate to it.

2. Initialize and configure Test Kitchen, as described in Example 1: Installing Packages.

3. Add two subdirectories to printjson: recipes and environments.

You could mock stack configuration and deployment attributes by adding an attribute file to
your cookbook with the appropriate definitions, but a better approach is to use the Test Kitchen
environment. There are two basic approaches:

• Add attribute definitions to .kitchen.yml.

This approach is most useful if you have just a few attributes. For more information, see
kitchen.yml.

• Define the attributes in an environment file and reference the file in .kitchen.yml.

This approach is usually preferable for stack configuration and deployment attributes because
the environment file is already in JSON format. You can get a copy of the attributes in JSON
format from a suitable AWS OpsWorks Stacks instance and just paste it in. All of the examples
use an environment file.

The simplest way to create a stack configuration and deployment attributes for your cookbook
is to create an appropriately configured stack and copy the resulting attributes from an instance
as JSON. To keep your Test Kitchen environment file manageable, you can then edit that JSON
to have only the attributes that your recipes need. The examples in this chapter are based on the
stack from Getting Started with Chef 11 Linux Stacks, which is a simple PHP application server
stack with a load balancer, PHP application servers, and a MySQL database server.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1002

https://github.com/customink/fauxhai
https://docs.chef.io/config_yml_kitchen.html

AWS OpsWorks User Guide

To create a stack configuration and deployment JSON

1. Create MyStack as described in Getting Started with Chef 11 Linux Stacks, including deploying
SimplePHPApp. If you prefer, you can omit the second PHP App Server instance called for in
Step 4: Scale Out MyStack; the examples don't use those attributes.

2. If you haven't already done so, start the php-app1 instance, and then log in with SSH.

3. In the terminal window, run the following agent cli command:

sudo opsworks-agent-cli get_json

This command prints the instance's most recent stack configuration and deployment attributes
to the terminal window in JSON format.

4. Copy the JSON to a .json file and save it in a convenient location on your workstation. The
details depend on your SSH client. For example, if you are using PuTTY on Windows, you
can run the Copy All to Clipboard command, which copies all the text in the terminal
window to the Windows clipboard. You can then paste the contents into a .json file and edit
the file to remove extraneous text.

5. Edit MyStack JSON as needed. Stack configuration and deployment attributes are numerous,
and cookbooks typically use only a small subset of them. To keep your environment file
manageable, you can edit the JSON so that it retains the original structure but contains only
the attributes that your cookbooks actually use.

This example uses a heavily edited version of the MyStack JSON that includes just two
['opsworks']['stack'] attributes, ['id] and ['name']. Create an edited version of the
MyStack JSON that looks something like the following:

{
 "opsworks": {
 "stack": {
 "name": "MyStack",
 "id": "42dfd151-6766-4f1c-9940-ba79e5220b58",
 },
 },
}

To get this JSON into the instance's node object, you need to add it to a Test Kitchen environment.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1003

AWS OpsWorks User Guide

To add stack configuration and deployment attributes to the Test Kitchen environment

1. Create an environment file named test.json with the following contents and save it to the
cookbook's environments folder.

{
 "default_attributes": {
 "opsworks" : {
 "stack" : {
 "name" : "MyStack",
 "id" : "42dfd151-6766-4f1c-9940-ba79e5220b58"
 }
 }
 },
 "chef_type" : "environment",
 "json_class" : "Chef::Environment"
}

The environment file has the following elements:

• default_attributes – The default attributes in JSON format.

These attributes are added to the node object with the default attribute type, which is the
type used by all of the stack configuration and deployment JSON attributes. This example
uses the edited version of the stack configuration and deployment JSON shown earlier.

• chef_type – Set this element to environment.

• json_class – Set this element to Chef::Environment.

2. Edit .kitchen.yml to define the Test Kitchen environment, as follows.

driver:
 name: vagrant

provisioner:
 name: chef_solo
 environments_path: ./environments

platforms:
 - name: ubuntu-12.04

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1004

AWS OpsWorks User Guide

suites:
 - name: printjson
 provisioner:
 solo_rb:
 environment: test
 run_list:
 - recipe[printjson::default]
 attributes:

You define the environment by adding the following elements to the default .kitchen.yml
created by kitchen init.

provisioner

Add the following elements.

• name – Set this element to chef_solo.

To replicate the AWS OpsWorks Stacks environment more closely, you could use Chef
client local mode instead of Chef solo. Local mode is a Chef client option that uses a
lightweight version of Chef server (Chef Zero) that runs locally on the instance instead of
a remote server. It enables your recipes to use Chef server features such as search or data
bags without connecting to a remote server.

• environments_path – The cookbook subdirectory that contains the environment file,
./environments for this example.

suites:provisioner

Add a solo_rb element with an environment element set to the environment file's
name, minus the .json extension. This example sets environment to test.

3. Create a recipe file named default.rb with the following content and save it to the
cookbook's recipes directory.

log "Stack name: #{node['opsworks']['stack']['name']}"
log "Stack id: #{node['opsworks']['stack']['id']}"

This recipe simply logs the two stack configuration and deployment values that you added
to the environment. Although the recipe is running locally in Virtual Box, you reference those

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1005

https://docs.chef.io/ctl_chef_client.html
https://docs.chef.io/ctl_chef_client.html

AWS OpsWorks User Guide

attributes using the same node syntax that you would if the recipe were running on an AWS
OpsWorks Stacks instance.

4. Run kitchen converge. You should see something like the following log output.

...
Converging 2 resources
Recipe: printjson::default
 * log[Stack name: MyStack] action write[2014-07-01T23:14:09+00:00] INFO:
 Processing log[Stack name: MyStack] action write (printjson::default line 1)

[2014-07-01T23:14:09+00:00] INFO: Stack name: MyStack

 * log[Stack id: 42dfd151-6766-4f1c-9940-ba79e5220b58] action
 write[2014-07-01T23:14:09+00:00] INFO: Processing log[Stack id:
 42dfd151-6766-4f1c-9940-ba79e5220b58] action write (printjson::default line 2)

[2014-07-01T23:14:09+00:00] INFO: Stack id: 42dfd151-6766-4f1c-9940-ba79e5220b58

...

Using Stack Configuration and Deployment Attribute Values

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Recipes often need information about the stack configuration or deployed apps. For example, you
might need a list of the stack's IP addresses to create a configuration file, or an app's deployment
directory to create a log directory. Instead of storing this data on a central server, AWS OpsWorks
Stacks installs a set of stack configuration and deployment attributes in each instance's node
object for each lifecycle event. These attributes represent the current stack state, including
deployed apps. Recipes can then obtain the data they need from the node object.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1006

AWS OpsWorks User Guide

Note

Applications sometimes need information from the node object, such as stack
configuration and deployment attribute values. However, an application cannot access
the node object. To provide node object data to an application, you can implement a
recipe that retrieves the required information from the node object and puts it in a file
in a convenient format. The application can then read the data from the file. For more
information and an example, see Passing Data to Applications.

Recipes can obtain stack configuration and deployment attribute values from the node object as
follows.

• Directly, by using an attribute's fully qualified name.

You can use this approach with any Linux stack, but not with Windows stacks.

• With Chef search, which you can use to query the node object for attribute values.

You can use this approach with Windows stacks and Chef 11.10 Linux stacks.

Note

With Linux stacks, you can use the agent CLI to get a copy of an instance's stack
configuration and deployment attributes in JSON format. For more information, see
Mocking the Stack Configuration and Deployment Attributes on Vagrant.

Topics

• Obtaining Attribute Values Directly

• Obtaining Attribute Values with Chef Search

Obtaining Attribute Values Directly

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1007

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This approach works only for Linux stacks.

Mocking the Stack Configuration and Deployment Attributes on Vagrant shows how to obtain stack
configuration and deployment data by using node syntax to directly reference particular attributes.
This is sometimes the best approach. However, many attributes are defined in collections or lists
whose contents and names can vary from stack to stack and over time for a particular stack. For
example, the deploy attribute contains a list of app attributes, which are named with the app's
short name. This list, including the app attribute names, typically varies from stack to stack and
even from deployment to deployment.

It is often more useful, and sometimes even necessary, to obtain the required data by enumerating
the attributes in a list or collection. For example, suppose that you want to know the public
IP addresses of your stack's instances. That information is in the ['opsworks']['layers']
attribute, which is set to a hash table that contains one element for each of the stack's layers,
named with the layer's shortname. Each layer element is set to a hash table containing the layer's
attributes, one of which is ['instances']. That element in turn is set to yet another hash table
containing an attribute for each of the layer's instances, named with the instance's shortname.
Each instance attribute is set to still another hash table that contains the instance attributes,
including ['ip'], which represents the public IP address. If you are having trouble visualizing this,
the following procedure includes an example in JSON format.

This example shows how to obtain data from the stack configuration and deployment JSON for a
stack's layers.

To set up the cookbook

1. Create a directory within opsworks_cookbooks named listip and navigate to it.

2. Initialize and configure Test Kitchen, as described in Example 1: Installing Packages.

3. Add two directories to listip: recipes and environments.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1008

AWS OpsWorks User Guide

4. Create an edited JSON version of the MyStack configuration and deployment attributes that
contains the relevant attributes. It should look something like the following.

{
 "opsworks": {
 "layers": {
 "php-app": {
 "name": "PHP App Server",
 "id": "efd36017-ec42-4423-b655-53e4d3710652",
 "instances": {
 "php-app1": {
 "ip": "192.0.2.0"
 }
 }
 },
 "db-master": {
 "name": "MySQL",
 "id": "2d8e0b9a-0d29-43b7-8476-a9b2591a7251",
 "instances": {
 "db-master1": {
 "ip": "192.0.2.5"
 }
 }
 },
 "lb": {
 "name": "HAProxy",
 "id": "d5c4dda9-2888-4b22-b1ea-6d44c7841193",
 "instances": {
 "lb1": {
 "ip": "192.0.2.10"
 }
 }
 }
 }
 }
}

5. Create an environment file named test.json, paste the example JSON into
default_attributes, and save the file to the cookbook's environments folder. The file
should look something the following (for brevity, most of the example JSON is represented by
an ellipsis).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1009

AWS OpsWorks User Guide

{
 "default_attributes" : {
 "opsworks": {
 "layers": {
 ...
 }
 }
 },
 "chef_type" : "environment",
 "json_class" : "Chef::Environment"
}

6. Replace the text in .kitchen.yml with the following.

driver:
 name: vagrant

provisioner:
 name: chef_zero
 environments_path: ./environment

platforms:
 - name: ubuntu-12.04

suites:
 - name: listip
 provisioner:
 client_rb:
 environment: test
 run_list:
 - recipe[listip::default]
 attributes:

After the cookbook is set up, you can use the following recipe to log the layer IDs.

node['opsworks']['layers'].each do |layer, layerdata|
 log "#{layerdata['name']} : #{layerdata['id']}"

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1010

AWS OpsWorks User Guide

end

The recipe enumerates the layers in ['opsworks']['layers'] and logs each layer's name and
ID.

To run the layer ID logging recipe

1. Create a file named default.rb with the example recipe and save it to the recipes
directory.

2. Run kitchen converge.

The relevant part of the output should look something like the following.

Recipe: listip::default
 * log[PHP App Server : efd36017-ec42-4423-b655-53e4d3710652] action
 write[2014-07-17T22:56:19+00:00] INFO: Processing log[PHP App Server : efd36017-
ec42-4423-b655-53e4d3710652] action write (listip::default line 4)
[2014-07-17T22:56:19+00:00] INFO: PHP App Server : efd36017-ec42-4423-b655-53e4d3710652

 * log[MySQL : 2d8e0b9a-0d29-43b7-8476-a9b2591a7251] action
 write[2014-07-17T22:56:19+00:00] INFO: Processing log[MySQL : 2d8e0b9a-0d29-43b7-8476-
a9b2591a7251] action write (listip::default line 4)
[2014-07-17T22:56:19+00:00] INFO: MySQL : 2d8e0b9a-0d29-43b7-8476-a9b2591a7251

 * log[HAProxy : d5c4dda9-2888-4b22-b1ea-6d44c7841193] action
 write[2014-07-17T22:56:19+00:00] INFO: Processing log[HAProxy : d5c4dda9-2888-4b22-
b1ea-6d44c7841193] action write (listip::default line 4)
[2014-07-17T22:56:19+00:00] INFO: HAProxy : d5c4dda9-2888-4b22-b1ea-6d44c7841193

To list the instances' IP addresses, you will need a nested loop like the following.

node['opsworks']['layers'].each do |layer, layerdata|
 log "#{layerdata['name']} : #{layerdata['id']}"
 layerdata['instances'].each do |instance, instancedata|
 log "Public IP: #{instancedata['ip']}"

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1011

AWS OpsWorks User Guide

 end
end

The inner loop iterates over each layer's instances and logs the IP addresses.

To run the instance IP logging recipe

1. Replace the code in default.rb with the example recipe.

2. Run kitchen converge to execute the recipe.

The relevant part of the output should look something like the following.

 * log[PHP App Server : efd36017-ec42-4423-b655-53e4d3710652] action
 write[2014-07-17T23:09:34+00:00] INFO: Processing log[PHP App Server : efd36017-
ec42-4423-b655-53e4d3710652] action write (listip::default line 2)
[2014-07-17T23:09:34+00:00] INFO: PHP App Server : efd36017-ec42-4423-b655-53e4d3710652

 * log[Public IP: 192.0.2.0] action write[2014-07-17T23:09:34+00:00] INFO: Processing
 log[Public IP: 192.0.2.0] action write (listip::default line 4)
[2014-07-17T23:09:34+00:00] INFO: Public IP: 192.0.2.0

 * log[MySQL : 2d8e0b9a-0d29-43b7-8476-a9b2591a7251] action
 write[2014-07-17T23:09:34+00:00] INFO: Processing log[MySQL : 2d8e0b9a-0d29-43b7-8476-
a9b2591a7251] action write (listip::default line 2)
[2014-07-17T23:09:34+00:00] INFO: MySQL : 2d8e0b9a-0d29-43b7-8476-a9b2591a7251

 * log[Public IP: 192.0.2.5] action write[2014-07-17T23:09:34+00:00] INFO: Processing
 log[Public IP: 192.0.2.5] action write (listip::default line 4)
[2014-07-17T23:09:34+00:00] INFO: Public IP: 192.0.2.5

 * log[HAProxy : d5c4dda9-2888-4b22-b1ea-6d44c7841193] action
 write[2014-07-17T23:09:34+00:00] INFO: Processing log[HAProxy : d5c4dda9-2888-4b22-
b1ea-6d44c7841193] action write (listip::default line 2)
[2014-07-17T23:09:34+00:00] INFO: HAProxy : d5c4dda9-2888-4b22-b1ea-6d44c7841193

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1012

AWS OpsWorks User Guide

 * log[Public IP: 192.0.2.10] action write[2014-07-17T23:09:34+00:00] INFO: Processing
 log[Public IP: 192.0.2.10] action write (listip::default line 4)
[2014-07-17T23:09:34+00:00] INFO: Public IP: 192.0.2.10

When you are finished, run kitchen destroy; the next topic uses a new cookbook.

Note

One of the most common reasons for enumerating a stack configuration and deployment
JSON collection is to obtain data for a particular deployed app, such as its deployment
directory. For an example, see Deploy Recipes.

Obtaining Attribute Values with Chef Search

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This approach is available for Windows stacks and Chef 11.10 Linux stacks.

Obtaining stack configuration and deployment attribute values directly from the node object can
be complicated, and can't be used with Windows stacks. An alternative approach is to use Chef
search to query for the attributes of interest. If you are familiar with Chef server, you will find that
Chef search works a bit differently with AWS OpsWorks Stacks. Because AWS OpsWorks Stacks uses
chef-client in local mode, Chef search depends on a local version of Chef server called chef-zero, so
that search operates on the data that is stored locally in the instance's node object instead of on a
remote server.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1013

http://docs.chef.io/chef_search.html
http://docs.chef.io/chef_search.html

AWS OpsWorks User Guide

As a practical matter, restricting search to locally stored data usually doesn't matter because the
node object on an AWS OpsWorks Stacks instance includes the stack configuration and deployment
attributes. They contain most if not all of the data that recipes would typically obtain from Chef
server and use the same names, so you can usually use search code written for Chef server on AWS
OpsWorks Stacks instances without modification. For more information, see Using Chef Search.

The following shows the basic structure of a search query:

result = search(:search_index, "key:pattern")

• The search index specifies what attributes the query applies to and determines the type of object
that is returned.

• The key specifies the attribute name.

• The pattern specifies which values of the attribute that you want to retrieve.

You can query for specific attribute values or use wild cards to query for a range of values.

• The result is a list of objects that satisfy the query, each of which is a hash table containing
multiple related attributes.

For example, if you use the node search index, the query returns a list of instance objects, one
for each instance that satisfies the query. Each object is a hash table that contains a set of
attributes that define the instance configuration, such as the hostname and IP address.

For example, the following query uses the node search index, which is a standard Chef index that
applies to the stack's instances (or nodes, in Chef terminology). It searches for instances with
hostname of myhost.

result = search(:node, "hostname:myhost")

Search returns a list of instance objects whose hostname is myhost. If you want the first instance's
operating system, for example, it would be represented by result[0][:os]. If the query returns
multiple objects, you can enumerate them to retrieve the required information.

The details of how to use search in a recipe depend on whether you are using a Linux or Windows
stack. The following topics provide examples for both stack types.

Topics

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1014

AWS OpsWorks User Guide

• Using Search on a Linux Stack

• Using Search on a Windows Stack

Using Search on a Linux Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This example is based on a Linux stack with a single PHP application server. It uses Chef search to
obtain the server's public IP address and puts the address in a file in the /tmp directory. It retrieves
essentially the same information from the node object as Obtaining Attribute Values Directly ,
but the code is much simpler and does not depend on the details of the stack configuration and
deployment attribute structure.

The following briefly summarizes how to create the stack for this example. For more information,
see Create a New Stack.

Note

If you have not run a custom recipe on an AWS OpsWorks Stacks instance before, you
should first go through the Running a Recipe on a Linux Instance example.

Create a stack

1. Open the AWS OpsWorks Stacks console and click Add Stack.

2. Specify the following settings, accept the defaults for the other settings, and click Add Stack.

• Name – SearchJSON

• Default SSH key – An Amazon EC2 key pair

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1015

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

If you need to create an Amazon EC2 key pair, see Amazon EC2 Key Pairs. Note that the key
pair must belong to the same AWS region as the instance. The example uses the US West
(Oregon) region.

3. Click Add a layer and add a PHP App Server layer to the stack with default settings.

4. Add a 24/7 instance with default settings to the layer and start it.

To set up the cookbook

1. Create a directory within opsworks_cookbooks named searchjson and navigate to it.

2. Create a metadata.rb file with the following content and save it to opstest.

name "searchjson"
version "0.1.0"

3. Create a recipes directory within searchjson.

4. Create a default.rb file with the following recipe and save it to the recipes directory.

phpserver = search(:node, "layers:php-app").first
Chef::Log.info("**********The public IP address is: '#{phpserver[:ip]}'**********")

file "/tmp/ip_addresses" do
 content "#{phpserver[:ip]}"
 mode 0644
 action :create
end

Linux stacks support only the node search index. The recipe uses this index to obtain a list
of instances in the php-app layer. Because the layer is known to have only one instance, the
recipe simply assigns the first one to phpserver. If the layer has multiple instances, you can
enumerate them to retrieve the required information. Each list item is a hash table containing
a set of instance attributes. The ip attribute is set to the instance's public IP address, so you
can represent that address in the subsequent recipe code as phpserver[:ip].

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1016

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

After adding a message to the Chef log, the recipe then uses a file resource to create
a file named ip_addresses. The content attribute is set to a string representation of
phpserver[:ip]. When Chef creates ip_addresses, it adds that string to the file.

5. Create a .zip archive of opsworks_cookbooks, Upload the archive to an Amazon S3 bucket,
make the archive public, and record the archive's URL. For more information on cookbook
repositories, see Cookbook Repositories.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

You can now install the cookbook and run the recipe.

To run the recipe

1. Edit the stack to enable custom cookbooks, and specify the following settings.

• Repository type – Http Archive

• Repository URL – The cookbook archive URL that you recorded earlier

Use the default values for the other settings and click Save to update the stack configuration.

2. Edit the custom layer configuration and assign searchjson::default to the layer's Setup
event. AWS OpsWorks Stacks will run the recipe after the instance boots or if you explicitly
trigger the Setup event.

3. Run the Update Custom Cookbooks stack command, which installs the current version of your
custom cookbook repository on the stack's instances. If an earlier version of the repository is
present, this command overwrites it.

4. Execute the recipe by running the Setup stack command, which triggers a Setup event on the
instance and runs searchjson::default. Leave the Running command setup page open.

After the recipe has run successfully, you can verify it.

To verify searchjson

1. The first step is to examine the Chef log for the most recent Setup event. On the Running
command setup page, click show in the php-app1 instance's Log column to display the log.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1017

https://docs.chef.io/chef/resources.html#file
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

Scroll down to find your log message near the middle, which will look something like the
following.

...
[2014-09-05T17:08:41+00:00] WARN: Previous
 bash[logdir_existence_and_restart_apache2]: ...
[2014-09-05T17:08:41+00:00] WARN: Current
 bash[logdir_existence_and_restart_apache2]: ...
[2014-09-05T17:08:41+00:00] INFO: **********The public IP address is:
 '192.0.2.0'**********
[2014-09-05T17:08:41+00:00] INFO: Processing directory[/etc/sysctl.d] action create
 (opsworks_initial_setup::sysctl line 1)
...

2. Use SSH to log in to the instance and list the contents of /tmp, which should include a file
named ip_addresses that contains the IP address.

Using Search on a Windows Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks provides two options to use search on Windows stacks.

• The node search index, which can be used to query a set of standard Chef attributes.

If you have existing recipes with search code that uses node, they will usually work on AWS
OpsWorks Stacks stacks without modification.

• An additional set of search indexes that can be used to query sets of AWS OpsWorks Stacks-
specific attributes, and some standard attributes.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1018

AWS OpsWorks User Guide

These indexes are discussed in Using AWS OpsWorks Stacks-Specific Search Indexes on Windows
Stacks.

We recommend using node for retrieving standard information, such as hostnames or IP addresses.
That approach will keep your recipes consistent with standard Chef practice. Use the AWS
OpsWorks Stacks search indexes to retrieve information that is specific to AWS OpsWorks Stacks.

Topics

• Using the node Search Index on Windows Stacks

• Using AWS OpsWorks Stacks-Specific Search Indexes on Windows Stacks

Using the node Search Index on Windows Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This example assumes that you have already done the Running a Recipe on a Windows
Instance example. If not, you should do that example first. In particular, it describes how to
enable RDP access to your instances.

This example is based on a Windows stack with a single custom layer and one instance. It uses Chef
search with the node search index to obtain the server's public IP address and puts the address in
a file in the C:\tmp directory. The following briefly summarizes how to create the stack for this
example. For more information, see Create a New Stack.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1019

AWS OpsWorks User Guide

Create a stack

1. Open the AWS OpsWorks Stacks console and choose Add Stack.

2. Specify the following settings, accept the defaults for the other settings, and choose Add
Stack.

• Name – NodeSearch

• Region – US West (Oregon)

This example will work in any region, but we recommend using US West (Oregon) for
tutorials.

• Default operating system – Microsoft Windows Server 2012 R2

3. Choose Add a layer and add a custom layer to the stack with the following settings.

• Name – IPTest

• Short name – iptest

4. Add a 24/7 t2.micro instance with default settings to the IPTest layer and start it. It will be
named iptest1.

AWS OpsWorks Stacks automatically assigns AWS-OpsWorks-RDP-Server to this instance,
which allows authorized users to log in to the instance.

5. Choose Permissions and then Edit, and select SSH/RDP and sudo/admin. Regular users need
this authorization in addition to the AWS-OpsWorks-RDP-Server security group to log in to
the instance.

Note

You also can log in as Administrator, but it requires a different procedure. For more
information, see Logging In with RDP.

To set up the cookbook

1. Create a directory named nodesearch and navigate to it.

2. Create a metadata.rb file with the following content and save it to opstest.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1020

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

name "nodesearch"
version "0.1.0"

3. Create a recipes directory within nodesearch.

4. Create a default.rb file with the following recipe and save it to the recipes directory.

directory 'C:\tmp' do
 rights :full_control, 'Everyone'
 recursive true
 action :create
end

windowsserver = search(:node, "hostname:iptest*").first
Chef::Log.info("**********The public IP address is:
 '#{windowsserver[:ipaddress]}'**********")

file 'C:\tmp\addresses.txt' do
 content "#{windowsserver[:ipaddress]}"
 rights :full_control, 'Everyone'
 action :create
end

The recipe does the following:

1. Uses a directory resource to create a C:\tmp directory for the file.

For more information on this resource, see Example 3: Creating Directories.

2. Uses Chef search with the node search index to obtain a list of nodes (instances) with a
hostname that starts with iptest.

If you use the default theme, which creates hostnames by appending integers to the layer's
short name, this query will return every instance in the IPTest layer. For this example,
the layer is known to have only one instance, so the recipe simply assigns the first one to
windowsserver. For multiple instances, you can get the complete list and then enumerate
them.

3. Adds a message with the IP address to the Chef log for this run.

The windowsserver object is a hash table whose ipaddress attribute is set to the
instance's public IP address, so you can represent that address in the subsequent recipe code

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1021

AWS OpsWorks User Guide

as windowsserver[:ipaddress]. The recipe inserts the corresponding string into the
message and adds it to the Chef log.

4. Uses the file resource to create a file with the IP address named C:\tmp
\addresses.txt.

The resource's content attribute specifies content to be added to the file, which is the
public IP address in this case.

5. Create a .zip archive of nodesearch, Upload the archive to an S3 bucket, make the archive
public, and record the archive's URL.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

You can now install the cookbook and run the recipe.

To install the cookbook and run the recipe

1. Edit the stack to enable custom cookbooks and specify the following settings.

• Repository type – S3 Archive

• Repository URL – The cookbook archive URL that you recorded earlier

Accept the default values for the other settings, and choose Save to update the stack
configuration.

2. Run the Update Custom Cookbooks stack command, which installs the current version of your
custom cookbooks on the stack's instances, including online instances. If an earlier version of
your cookbooks is present, this command overwrites it.

3. After Update Custom Cookbooks has finished, execute the recipe by running the Execute
Recipes stack command with Recipes to execute set to nodesearch::default. This
command initiates a Chef run, with a run list that consists of your recipe. Leave the
execute_recipes page open.

After the recipe has run successfully, you can verify it.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1022

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

To verify nodesearch

1. Examine the Chef log for the most recent execute_recipes event. On the Running command
execute_recipes page, choose show in the iptest1 instance's Log column to display the log.
Scroll down to find your log message near the bottom, which will look something like the
following.

...
[2015-05-13T18:55:47+00:00] INFO: Storing updated cookbooks/nodesearch/recipes/
default.rb in the cache.
[2015-05-13T18:55:47+00:00] INFO: Storing updated cookbooks/nodesearch/metadata.rb
 in the cache.
[2015-05-13T18:55:47+00:00] INFO: **********The public IP address is:
 '192.0.0.1'**********
[2015-05-13T18:55:47+00:00] INFO: Processing directory[C:\tmp] action create
 (nodesearch::default line 1)
[2015-05-13T18:55:47+00:00] INFO: Processing file[C:\tmp\addresses.txt] action
 create (nodesearch::default line 10)
...

2. Use RDP to log in to the instance and examine the contents of C:\tmp\addresses.txt.

Using AWS OpsWorks Stacks-Specific Search Indexes on Windows Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1023

AWS OpsWorks User Guide

Note

This example assumes that you have already done the Running a Recipe on a Windows
Instance example. If not, you should do that example first. In particular, it describes how to
enable RDP access to your instances.

AWS OpsWorks Stacks provides the following search indexes in addition to node:

• aws_opsworks_stack – The stack configuration.

• aws_opsworks_layer – The stack's layer configurations.

• aws_opsworks_instance – The stack's instance configurations.

• aws_opsworks_app – The stack's app configurations.

• aws_opsworks_user – The stack's user configurations.

• aws_opsworks_rds_db_instance – Connection information for registered RDS instances.

These indexes include some standard Chef attributes, but are primarily intended for retrieving AWS
OpsWorks Stacks-specific attributes. For example aws_opsworks_instance includes a status
attribute that provides the instance's status, such as online.

Note

The recommended practice is to use node when possible to keep your recipes consistent
with standard Chef usage. For an example, see Using the node Search Index on Windows
Stacks.

This example shows how to use the AWS OpsWorks Stacks indexes to retrieve the value of an AWS
OpsWorks Stacks-specific attribute. It is based on a simple Windows stack with a custom layer that
has one instance. It uses Chef search to obtain the instance's AWS OpsWorks Stacks ID and puts the
results in the Chef log.

The following briefly summarizes how to create a stack for this example. For more information, see
Create a New Stack.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1024

AWS OpsWorks User Guide

Create a stack

1. Open the AWS OpsWorks Stacks console and choose + Stack. Specify the following settings,
accept the defaults for the other settings, and choose Add Stack.

• Name – IDSearch

• Region – US West (Oregon)

This example will work in any region, but we recommend using US West (Oregon) for
tutorials.

• Default operating system – Microsoft Windows Server 2012 R2

2. Choose Add a layer and add a custom layer to the stack with the following settings.

• Name – IDCheck

• Short name – idcheck

3. Add a 24/7 t2.micro instance with default settings to the IDCheck layer and start it. It will be
named iptest1.

AWS OpsWorks Stacks automatically assigns AWS-OpsWorks-RDP-Server to this instance.
Enabling RDP Access explains how to add an inbound rule to this security group that allows
authorized users to log in to the instance.

4. Choose Permissions and then Edit, and choose SSH/RDP and sudo/admin. Regular users need
this authorization in addition to the AWS-OpsWorks-RDP-Server security group to log in to
the instance.

Note

You can also log in as Administrator, but it requires a different procedure. For more
information, see Logging In with RDP.

To set up the cookbook

1. Create a directory named idcheck and navigate to it.

2. Create a metadata.rb file with the following content and save it to opstest.

name "idcheck"

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1025

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

version "0.1.0"

3. Create a recipes directory within idcheck and add a default.rb file to the directory that
contains the following recipe.

windowsserver = search(:aws_opsworks_instance, "hostname:idcheck*").first
Chef::Log.info("**********The public IP address is:
 '#{windowsserver[:instance_id]}'**********")

The recipe uses Chef search with an aws_opsworks_instance search index to obtain the
instance attributes of each instance in the stack with a hostname that starts with idcheck.
If you use the default theme, which creates hostnames by appending integers to the layer's
short name, this query will return every instance in the IDCheck layer. For this example,
the layer is known to have only one instance, so the recipe simply assigns the first one to
windowsserver. For multiple instances, you can get the complete list and then enumerate
them.

The recipe takes advantage of the fact that there is only one instance in the stack with this
hostname, so the first result is the correct one. If your stack has multiple instances, searching
on other attributes might return more than one result. For a list of instance attributes, see
Instance Data Bag (aws_opsworks_instance).

The instance attributes are basically a hash table, and the instance's AWS OpsWorks
Stacks ID is assigned to the instance_id attribute, so you can refer to the ID as
windowsserver[:instance_id]. The recipe inserts the corresponding string into the
message and adds it to the Chef log.

4. Create a .zip archive of the ipaddress cookbook, Upload the archive to an Amazon S3
bucket, and record the archive's URL. For more information on cookbook repositories, see
Cookbook Repositories.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

You can now install the cookbook and run the recipe.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1026

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

To install the cookbook and run the recipe

1. Edit the stack to enable custom cookbooks and specify the following settings.

• Repository type – S3 Archive

• Repository URL – The cookbook archive URL that you recorded earlier

Accept the default values for the other settings, and choose Save to update the stack
configuration.

2. Run the Update Custom Cookbooks stack command, which installs the current version of your
custom cookbooks on the stack's instances, including online instances. If an earlier version of
your cookbooks is present, this command overwrites it.

3. After Update Custom Cookbooks is finished, execute the recipe by running the Execute
Recipes stack command with Recipes to execute set to idcheck::default. This command
initiates a Chef run, with a run list that consists of your recipe. Leave the execute_recipes page
open.

After the recipe has run successfully, you can verify it by examining the Chef log for the most
recent execute_recipes event. On the Running command execute_recipes page, choose show in
the iptest1 instance's Log column to display the log. Scroll down to find your log message near the
bottom, which will look something like the following.

...
[2015-05-13T20:03:47+00:00] INFO: Storing updated cookbooks/nodesearch/recipes/
default.rb in the cache.
[2015-05-13T20:03:47+00:00] INFO: Storing updated cookbooks/nodesearch/metadata.rb in
 the cache.
[2015-05-13T20:03:47+00:00] INFO: **********The instance ID is: 'i-8703b570'**********
[2015-05-13T20:03:47+00:00] INFO: Chef Run complete in 0.312518 seconds
...

Using an External Cookbook on a Linux Instance: Berkshelf

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1027

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

Berkshelf is available only for Chef 11.10 Linux stacks.

Before you start implementing a cookbook, check out Chef Community Cookbooks, which contains
cookbooks that have been created by members of the Chef community for a wide variety of
purposes. Many of these cookbooks can be used with AWS OpsWorks Stacks without modification,
so you might able to take advantage of them for some of your tasks instead of implementing all
the code yourself.

To use an external cookbook on an instance, you need a way to install it and manage any
dependencies. The preferred approach is to implement a cookbook that supports a dependency
manager named Berkshelf. Berkshelf works on Amazon EC2 instances, including AWS OpsWorks
Stacks instances, but it is also designed to work with Test Kitchen and Vagrant. However, the usage
on Vagrant is a bit different than with AWS OpsWorks Stacks, so this topic includes examples for
both platforms. For more information on how to use Berkshelf, see Berkshelf.

Topics

• Using Berkshelf with Test Kitchen and Vagrant

• Using Berkshelf with AWS OpsWorks Stacks

Using Berkshelf with Test Kitchen and Vagrant

This example shows how to use Berkshelf to install the getting-started community cookbook and
execute its recipe, which installs a brief text file in your home directory on the instance.

To install Berkshelf and initialize a cookbook

1. On your workstation, install the Berkshelf gem, as follows.

gem install berkshelf

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1028

https://github.com/opscode-cookbooks
http://berkshelf.com/

AWS OpsWorks User Guide

Depending on your workstation, this command might require sudo, or you can also use a Ruby
environment manager such as RVM. To verify that Berkshelf was successfully installed, run
berks --version.

2. The cookbook for this topic is named external_cookbook. You can use Berkshelf to create an
initialized cookbook instead of the manual approach that the previous topics have taken. To do
so, navigate to the opsworks_cookbooks directory and run the following command.

berks cookbook external_cookbook

The command creates the external_cookbook directory and several standard Chef and
Test Kitchen subdirectories, including recipes and test. The command also creates default
versions of a number of standard files, including the following:

• metadata.rb

• Configuration files for Vagrant, Test Kitchen, and Berkshelf

• An empty default.rb recipe in the recipes directory

Note

You don't need to run kitchen init; the berks cookbook command handles those
tasks.

3. Run kitchen converge. The newly created cookbook doesn't do anything interesting at this
point, but it does converge.

Note

You can also use berks init to initialize an existing cookbook to use Berkshelf.

To use Berkshelf to manage a cookbook's external dependencies, the cookbook's root directory
must contain a Berksfile, which is a configuration file that specifies how Berkshelf should
manage dependencies. When you used berks cookbook to create the external_cookbook
cookbook, it created a Berksfile with the following contents.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1029

https://rvm.io/

AWS OpsWorks User Guide

source "https://supermarket.chef.io"
metadata

This file has the following declarations:

• source – The URL of a cookbook source.

A Berksfile can have any number of source declarations, each of which specifies a default source
for dependent cookbooks. If you do not explicitly specify a cookbook's source, Berkshelf looks
in the default repositories for a cookbook with the same name. The default Berksfile includes
a single source attribute which specifies the community cookbook repository. That repository
contains the getting-started cookbook, so you can leave the line unchanged.

• metadata – Directs Berkshelf to include cookbook dependencies that are declared in the
cookbook's metadata.rb file.

You can also declare a dependent cookbook in the Berksfile by including a cookbook attribute,
as discussed later.

There are two ways to declare a cookbook dependency:

• By including a cookbook declaration in the Berksfile.

This is the approach used by AWS OpsWorks Stacks. For example to specify the getting-started
cookbook used in this example, include cookbook "getting-started" in the Berksfile.
Berkshelf will then look in the default repositories for a cookbook with that name. You can also
use cookbook to explicitly specify a cookbook source, and even a particular version. For more
information, see Berkshelf.

• By including a metadata declaration in the Berksfile and declaring the dependency in
metadata.rb.

This declaration directs Berkshelf to include cookbook dependencies that are declared in
metadata.rb. For example, to declare a getting-started dependency, add a depends
'getting-started' declaration to the cookbook's metadata.rb file.

This example uses the first approach, for consistency with AWS OpsWorks Stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1030

http://berkshelf.com/

AWS OpsWorks User Guide

To install the getting-started cookbook

1. Edit the default Berksfile to replace the metadata declaration with a cookbook declaration
for getting-started. The contents should look like the following.

source "https://supermarket.chef.io"

cookbook 'getting-started'

2. Run berks install, which downloads the getting-started cookbook from the community
cookbook repository to your workstation's Berkshelf directory, which is typically
~/.berkshelf. This directory is often simply called the Berkshelf. Look in the Berkshelf's
cookbooks directory, and you should see the directory for the getting-started cookbook,
which will be named something like getting-started-0.4.0.

3. Replace external_cookbook::default in the .kitchen.yml run list with getting-
started::default. This example doesn't run any recipes from external_cookbook; it's
basically just a way to use the getting-started cookbook. The .kitchen.yml file should now
look like the following.

driver:
 name: vagrant

provisioner:
 name: chef_solo

platforms:
 - name: ubuntu-12.04

suites:
 - name: default
 run_list:
 - recipe[getting-started::default]
 attributes:

4. Run kitchen converge and then use kitchen login to log in to the instance. The login
directory should contain a file named chef-getting-started.txt with something like the
following:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1031

AWS OpsWorks User Guide

Welcome to Chef!

This is Chef version 11.12.8.
Running on ubuntu.
Version 12.04.

Test Kitchen installs cookbooks in the instance's /tmp/kitchen/cookbooks directory. If you
list the contents of that directory, you will see two cookbooks: external_cookbook and getting-
started.

5. Run kitchen destroy to shut down the instance. The next example uses an AWS OpsWorks
Stacks instance.

Using Berkshelf with AWS OpsWorks Stacks

AWS OpsWorks Stacks optionally supports Berkshelf for Chef 11.10 stacks. To use Berkshelf with
your stack, you must do the following.

• Enable Berkshelf for the stack.

AWS OpsWorks Stacks then handles the details of installing Berkshelf on the stack's instances.

• Add a Berksfile to your cookbook repository's root directory.

The Berksfile should contain source and cookbook declarations for all dependent cookbooks.

When AWS OpsWorks Stacks installs your custom cookbook repository on an instance, it uses
Berkshelf to install the dependent cookbooks that are declared in the repository's Berksfile. For
more information, see Using Berkshelf.

This example shows how to use Berkshelf to install the getting-started community cookbook on an
AWS OpsWorks Stacks instance. It also installs a version of the createfile custom cookbook, which
creates a file in a specified directory. For more information on how createfile works, see Installing a
File from a Cookbook.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1032

AWS OpsWorks User Guide

Note

If this is the first time you have installed a custom cookbook on an AWS OpsWorks Stacks
stack, you should first go through the Running a Recipe on a Linux Instance example.

Start by creating a stack, as summarized in the following. For more information, see Create a New
Stack.

Create a stack

1. Open the AWS OpsWorks Stacks console and click Add Stack.

2. Specify the following settings, accept the defaults for the other settings, and click Add Stack.

• Name – BerksTest

• Default SSH key – An Amazon EC2 key pair

If you need to create an Amazon EC2 key pair, see Amazon EC2 Key Pairs. Note that the key
pair must belong to the same AWS region as the instance. The example uses the default US
West (Oregon) region.

3. Click Add a layer and add a custom layer to the stack with the following settings.

• Name – BerksTest

• Short name – berkstest

You could actually use any layer type for this example. However, the example doesn't require
any of the packages that are installed by the other layers, so a custom layer is the simplest
approach.

4. Add a 24/7 instance to the BerksTest layer with default settings, but don't start it yet.

With AWS OpsWorks Stacks, cookbooks must be in a remote repository with a standard
directory structure. You then provide the download information to AWS OpsWorks Stacks, which
automatically downloads the repository to each of the stack's instances on startup. For simplicity,
the repository for this example is a public Amazon S3 archive, but AWS OpsWorks Stacks also
supports HTTP archives, Git repositories, and Subversion repositories. For more information, see
Cookbook Repositories.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1033

https://console.aws.amazon.com/opsworks/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

Content delivered to Amazon S3 buckets might contain customer content. For more information
about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3
Bucket?.

To create the cookbook repository

1. In your opsworks_cookbooks directory, create a directory named berkstest_cookbooks.
If you prefer, you can create this directory anywhere that you find convenient, because you will
upload it to a repository.

2. Add a file named Berksfile to berkstest_cookbooks with the following contents.

source "https://supermarket.chef.io"

cookbook 'getting-started'

This file declares the getting-started cookbook dependency, and directs Berkshelf to download
it from the community cookbook site.

3. Add a createfile directory to berkstest_cookbooks that contains the following.

• A metadata.rb file with the following contents.

name "createfile"
version "0.1.0"

• A files/default directory that contains an example_data.json file with the following
content.

{
 "my_name" : "myname",
 "your_name" : "yourname",
 "a_number" : 42,
 "a_boolean" : true
}

The file's name and content are arbitrary. The recipe simply copies the file to the specified
location.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1034

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

• A recipes directory that contains a default.rb file with the following recipe code.

directory "/srv/www/shared" do
 mode 0755
 owner 'root'
 group 'root'
 recursive true
 action :create
end

cookbook_file "/srv/www/shared/example_data.json" do
 source "example_data.json"
 mode 0644
 action :create_if_missing
end

This recipe creates /srv/www/shared and copies example_data.json to that directory
from the cookbook's files directory.

4. Create a .zip archive of berkstest_cookbooks, Upload the archive to an Amazon S3
bucket, make the archive public, and record the archive's URL.

You can now install the cookbooks and run the recipe.

To install the cookbooks and run the recipes

1. Edit the stack to enable custom cookbooks, and specify the following settings.

• Repository type – Http Archive

• Repository URL – The cookbook archive URL that you recorded earlier

• Manage Berkshelf – Yes

The first two settings provide AWS OpsWorks Stacks with the information it needs to
download the cookbook repository to your instances. The last setting enables Berkshelf
support, which downloads the getting-started cookbook to the instance. Accept the default
values for the other settings and click Save to update the stack configuration.

2. Edit the BerksTest layer to add the following recipes to the layer's Setup lifecycle event.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1035

http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html

AWS OpsWorks User Guide

• getting-started::default

• createfile::default

3. Start the instance. The Setup event occurs after the instance finishes booting. AWS OpsWorks
Stacks then installs the cookbook repository, uses Berkshelf to download the getting-
started cookbook, and runs the layer's setup and deploy recipes, including getting-
started::default and createfile::default.

4. After the instance is online, use SSH to log in. You should see the following

• /srv/www/shared should contain example_data.json.

• /root should contain chef-getting-started.txt.

AWS OpsWorks Stacks runs recipes as root, so getting-started installs the file in the /root
directory rather than your home directory.

Using the SDK for Ruby: Downloading Files from Amazon S3

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

There are some tasks, such as interacting with AWS services, that cannot be handled with Chef
resources. For example, it is sometimes preferable to store files remotely and have a recipe
download them to the instance. You can use the remote_file resource to download files from
remote servers. However, if you want to store your files in an Amazon S3 bucket, remote_file
can download those files only if the ACL allows the operation.

Recipes can use the AWS SDK for Ruby to access most AWS services. This topic shows how to use
the SDK for Ruby to download a file from an S3 bucket.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1036

https://docs.chef.io/chef/resources.html#remote-file
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/

AWS OpsWorks User Guide

Note

For more information about how to use the AWS SDK for Ruby to handle encryption and
decryption, see AWS::S3::S3Object. Content delivered to Amazon S3 buckets might contain
customer content. For more information about removing sensitive data, see How Do I
Empty an S3 Bucket? or How Do I Delete an S3 Bucket?.

Topics

• Using the SDK for Ruby on a Vagrant Instance

• Using the SDK for Ruby on an AWS OpsWorks Stacks Linux Instance

• Using the SDK for Ruby on an AWS OpsWorks Stacks Windows Instance

Using the SDK for Ruby on a Vagrant Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This topic describes how a recipe running on a Vagrant instance can use the AWS SDK for Ruby to
download a file from Amazon S3. Before starting, you must first have a set of AWS credentials—an
access key and a secret access key—that allow the recipe to access Amazon S3.

Important

We strongly recommend that you do not use root account credentials for this purpose.
Instead, create a user with an appropriate policy and provide those credentials to the
recipe.
Be careful not to put credentials—even IAM user credentials—in a publicly accessible
location, such as by uploading a file containing the credentials to a public GitHub or

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1037

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/S3/S3Object.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/

AWS OpsWorks User Guide

Bitbucket repository. Doing so exposes your credentials and could compromise your
account's security.
Recipes running on an EC2Amazon EC2 instance can use an even better approach, an IAM
role, as described in Using the SDK for Ruby on an AWS OpsWorks Stacks Linux Instance.
Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

If you don't already have an appropriate user, you can create one as follows. For more information,
see What is IAM.

Warning

IAM users have long-term credentials, which presents a security risk. To help mitigate this
risk, we recommend that you provide these users with only the permissions they require to
perform the task and that you remove these users when they are no longer needed.

To create an IAM user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users and, if necessary, choose Add users to create a new
administrative user.

3. On the Set permissions page, choose Attach policies directly.

4. Type S3 in the Permissions policies search box to display the Amazon S3 policies.

Choose AmazonS3ReadOnlyAccess. If you prefer, you can specify a policy that grants broader
permissions, such as AmazonS3FullAccess, but standard practice is to grant only those
permissions that are required. In this case, the recipe will only be downloading a file, so read-
only access is sufficient.

5. Choose Next.

6. Choose Create user

7. Next create access keys for your user. For more information about creating access keys, see
Managing access keys for IAM users in the IAM User Guide.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1038

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Introduction.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS OpsWorks User Guide

You must next provide a file to be downloaded. This example assumes that you will put a file
named myfile.txt in a newly created S3 bucket named cookbook_bucket.

To provide a file for downloading

1. Create a file named myfile.txt with the following text and save it in a convenient location
on your workstation.

This is the file that you just downloaded from Amazon S3.

2. On the Amazon S3 console, create a bucket named cookbook_bucket in the Standard
region and upload myfile.txt to the bucket.

Set the cookbook up as follows.

To set up the cookbook

1. Create a directory within opsworks_cookbooks named s3bucket and navigate to it.

2. Initialize and configure Test Kitchen, as described in Example 1: Installing Packages.

3. Replace the text in .kitchen.yml with the following.

driver:
 name: vagrant

provisioner:
 name: chef_solo
 environments_path: ./environments

platforms:
 - name: ubuntu-14.04

suites:
 - name: s3bucket
 provisioner:
 solo_rb:
 environment: test
 run_list:
 - recipe[s3bucket::default]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1039

https://console.aws.amazon.com/s3/

AWS OpsWorks User Guide

 attributes:

4. Add two directories to s3bucket: recipes and environments.

5. Create an environment file named test.json with the following default_attributes
section, replacing the access_key and secret_key values with the corresponding keys for
your user. Save the file to the cookbook's environments folder.

{
 "default_attributes" : {
 "cookbooks_101" : {
 "access_key": "AKIAIOSFODNN7EXAMPLE",
 "secret_key" : "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
 }
 },
 "chef_type" : "environment",
 "json_class" : "Chef::Environment"
}

You have a variety of ways to provide credentials to a recipe running on an instance. The key
consideration is limiting the chances of accidentally exposing the keys and compromising your
account security. For that reason, using explicit key values in your code is not recommended. The
example instead puts the key values in the node object, which allows the recipe to reference them
by using node syntax instead of exposing literal values. You must have root privileges to access the
node object, which limits the possibility that the keys might be exposed. For more information, see
Best Practices for Managing AWS Access Keys.

Note

Notice that the example uses nested attributes, with cookbooks_101 as the first element.
This practice limits the chance of a name collision if there are other access_key or
secret_key attributes in the node object.

The following recipe downloads myfile.text from the cookbook_bucket bucket.

gem_package "aws-sdk ~> 3" do
 action :install

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1040

http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS OpsWorks User Guide

end

ruby_block "download-object" do
 block do
 require 'aws-sdk'

 s3 = Aws::S3::Client.new(
 :access_key_id => "#{node['cookbooks_101']['access_key']}",
 :secret_access_key => "#{node['cookbooks_101']['secret_key']}")

 myfile = s3.bucket['cookbook_bucket'].objects['myfile.txt']
 Dir.chdir("/tmp")
 File.open("myfile.txt", "w") do |f|
 f.write(myfile.read)
 f.close
 end
 end
 action :run
end

The first part of the recipe installs the SDK for Ruby, which is a gem package. The gem_package
resource installs gems that will be used by recipes or other applications.

Note

Your instance usually has two Ruby instances, which are typically different versions. One
is a dedicated instance that is used by the Chef client. The other is used by applications
and recipes running on the instance. It's important to understand this distinction when
installing gem packages, because there are two resources for installing gems, gem_package
and chef_gem. If applications or recipes use the gem package, install it with gem_package.
chef_gem is only for gem packages used by Chef client.

The remainder of the recipe is a ruby_block resource, which contains the Ruby code that downloads
the file. You might think that because a recipe is a Ruby application, you could put the code in the
recipe directly. However, a Chef run compiles all of that code before executing any resources. If you
put the example code directly in the recipe, Ruby will attempt to resolve the require 'aws-sdk'
statement before it executes the gem_package resource. Because the SDK for Ruby hasn't been
installed yet, compilation will fail.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1041

https://docs.chef.io/chef/resources.html#gem-package
https://docs.chef.io/chef/resources.html#gem-package
https://docs.chef.io/chef/resources.html#chef-gem
https://docs.chef.io/chef/resources.html#ruby-block

AWS OpsWorks User Guide

Code in a ruby_block resource isn't compiled until that resource is executed. In this example, the
ruby_block resource is executed after the gem_package resource has finished installing the SDK
for Ruby, so the code will run successfully.

The code in the ruby_block works as follows.

1. Creates a new Aws::S3 object, which provides the service interface.

The access and secret keys are specified by referencing the values stored in the node object.

2. Calls the S3 object's bucket.objects association, which returns an Aws::S3::Object object
named myfile that represents myfile.txt.

3. Uses Dir.chdir to set the working directory to /tmp.

4. Opens a file named myfile.txt, writes the contents of myfile to the file, and closes the file.

To run the recipe

1. Create a file named default.rb with the example recipe and save it to the recipes
directory.

2. Run kitchen converge.

3. Run kitchen login to log in to the instance, and then run ls /tmp. You should see the
myfile.txt, along with several Test Kitchen files and directories.

vagrant@s3bucket-ubuntu-1204:~$ ls /tmp
install.sh kitchen myfile.txt stderr

You can also run cat /tmp/myfile.txt to verify that the file's content is correct.

When you are finished, run kitchen destroy to terminate the instance.

Using the SDK for Ruby on an AWS OpsWorks Stacks Linux Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1042

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/Object.html

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This topic describes how to use the SDK for Ruby on an AWS OpsWorks Stacks Linux instance to
download a file from an Amazon S3 bucket. AWS OpsWorks Stacks automatically installs the SDK
for Ruby on every Linux instance. However, when you create a service's client object, you must
provide a suitable set of AWS credentials AWS::S3.new or the equivalent for other services.

Content delivered to Amazon S3 buckets might contain customer content. For more information
about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3
Bucket?.

Using the SDK for Ruby on a Vagrant Instance shows how to mitigate the risk of exposing your
credentials by storing the credentials in the node object and referencing the attributes in your
recipe code. When you run recipes on an Amazon EC2 instance, you have an even better option, an
IAM role.

An IAM role works much like an IAM user. It has an attached policy that grants permissions to use
the various AWS services. However, you assign a role to an Amazon EC2 instance rather than to
an individual. Applications running on that instance can then acquire the permissions granted by
the attached policy. With a role, credentials never appear in your code, even indirectly. This topic
describes how you can use an IAM role to run the recipe from Using the SDK for Ruby on a Vagrant
Instance on an Amazon EC2 instance.

You could run this recipe with Test Kitchen using the kitchen-ec2 driver, as described in Example
9: Using Amazon EC2 Instances. However, installing the SDK for Ruby on Amazon EC2 instances
is somewhat complicated and not something you need to be concerned with for AWS OpsWorks
Stacks. All AWS OpsWorks Stacks Linux instances have the SDK for Ruby installed by default. For
simplicity, the example therefore uses an AWS OpsWorks Stacks instance.

The first step is to set up the IAM role. This example takes the simplest approach, which is to use
the Amazon EC2 role that AWS OpsWorks Stacks creates when you create your first stack. It is
named aws-opsworks-ec2-role. However, AWS OpsWorks Stacks does not attach a policy to
that role, so by default it grants no permissions.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1043

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS OpsWorks User Guide

You must attach the AmazonS3ReadOnlyAccess policy to the aws-opsworks-ec2-role role to
grants appropriate permissions. For more information about how to attach a policy to a role, see
Adding IAM identity permissions (console) in the IAM User Guide.

You specify the role when you create or update a stack. Set up a stack with a custom layer, as
described in Running a Recipe on a Linux Instance, with one addition. On the Add Stack page,
confirm that Default IAM instance profile is set to aws-opsworks-ec2-role. AWS OpsWorks Stacks
will then assign that role to all of the stack's instances.

The procedure for setting up the cookbook is similar to the one used by Running a Recipe on a
Linux Instance. The following is a brief summary; you should refer to that example for details.

To set up the cookbook

1. Create a directory named s3bucket_ops and navigate to it.

2. Create a metadata.rb file with the following content and save it to s3bucket_ops.

name "s3bucket_ops"
version "0.1.0"

3. Create a recipes directory within s3bucket_ops.

4. Create a default.rb file with the following recipe and save it to the recipes directory.

Chef::Log.info("******Downloading a file from Amazon S3.******")

ruby_block "download-object" do
 block do
 require 'aws-sdk'

 s3 = AWS::S3.new

 myfile = s3.buckets['cookbook_bucket'].objects['myfile.txt']
 Dir.chdir("/tmp")
 File.open("myfile.txt", "w") do |f|
 f.syswrite(myfile.read)
 f.close
 end
 end
 action :run

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1044

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

AWS OpsWorks User Guide

end

5. Create a .zip archive of s3bucket_ops and upload the archive to an Amazon S3 bucket. For
simplicity, make the archive public, then record the archive's URL for later use. You can also
store your cookbooks in a private Amazon S3 archive, or several other repository types. For
more information, see Cookbook Repositories.

This recipe is similar the one used by the previous example, with the following exceptions.

• Because AWS OpsWorks Stacks has already installed the SDK for Ruby, the chef_gem resource
has been deleted.

• The recipe does not pass any credentials to AWS::S3.new.

Credentials are automatically assigned to the application based on the instance's role.

• The recipe uses Chef::Log.info to add a message to the Chef log.

Create a stack for this example as follows. You can also use an existing Windows stack. Just update
the cookbooks, as described later.

To create a stack

1. Open the AWS OpsWorks Stacks console and click Add Stack.

2. Specify the following settings, accept the defaults for the other settings, and click Add Stack.

• Name – RubySDK

• Default SSH key – An Amazon EC2 key pair

If you need to create an Amazon EC2 key pair, see Amazon EC2 Key Pairs. Note that the key
pair must belong to the same AWS region as the instance. The example uses the default US
West (Oregon) region.

3. Click Add a layer and add a custom layer to the stack with the following settings.

• Name – S3Download

• Short name – s3download

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1045

http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
https://console.aws.amazon.com/opsworks/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

Any layer type will actually work for Linux stacks, but the example doesn't require any of
the packages that are installed by the other layer types, so a custom layer is the simplest
approach.

4. Add a 24/7 instance with default settings to the layer and start it.

You can now install and run the recipe

To run the recipe

1. Edit the stack to enable custom cookbooks, and specify the following settings.

• Repository type – Http Archive

• Repository URL – The cookbook's archive URL that you recorded earlier.

Use the default values for the other settings and click Save to update the stack configuration.

2. Run the Update Custom Cookbooks stack command, which installs the current version of your
custom cookbooks on the stack's instances. If an earlier version of your cookbooks is present,
this command overwrites it.

3. Execute the recipe by running the Execute Recipes stack command with Recipes to execute set
to s3bucket_ops::default. This command initiates a Chef run, with a run list that consists
of s3bucket_ops::default.

Note

You typically have AWS OpsWorks Stacks run your recipes automatically by assigning
them to the appropriate lifecycle event. You can run such recipes by manually
triggering the event. You can use a stack command to trigger Setup and Configure
events, and a deploy command to trigger Deploy and Undeploy events.

After the recipe runs successfully, you can verify it.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1046

AWS OpsWorks User Guide

To verify s3bucket_ops

1. The first step is to examine the Chef log. Your stack should have one instance named opstest1.
On the Instances page, click show in the instance's Log column to display the Chef log. Scroll
down and to find your log message near the bottom.

...
[2014-07-31T17:01:45+00:00] INFO: Storing updated cookbooks/opsworks_cleanup/
attributes/customize.rb in the cache.
[2014-07-31T17:01:45+00:00] INFO: Storing updated cookbooks/opsworks_cleanup/
metadata.rb in the cache.
[2014-07-31T17:01:46+00:00] INFO: ******Downloading a file from Amazon S3.******
[2014-07-31T17:01:46+00:00] INFO: Processing template[/etc/hosts] action create
 (opsworks_stack_state_sync::hosts line 3)
...

2. Use SSH to log in to the instance and list the contents of /tmp.

Using the SDK for Ruby on an AWS OpsWorks Stacks Windows Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This example assumes that you have already done the Running a Recipe on a Windows
Instance example. If not, you should do that example first. In particular, it describes how to
enable RDP access to your instances.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1047

AWS OpsWorks User Guide

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

This topic describes how to use the AWS SDK for Ruby on an AWS OpsWorks Stacks Windows
instance to download a file from an S3 bucket.

If a Ruby application needs to access an AWS resource, you must provide it with a set of AWS
credentials with the appropriate permissions. For recipes, your best option for providing AWS
credentials is to use an AWS Identity and Access Management (IAM) role. An IAM role works much
like an IAM user it has an attached policy that grants permissions to use the various AWS services.
However, you assign a role to an Amazon Elastic Compute Cloud (Amazon EC2) instance instead of
to an individual. Applications running on that instance can then acquire the permissions granted by
the attached policy. With a role, credentials never appear in your code, even indirectly.

The first step is to set up the IAM role. This example takes the simplest approach, which is to use
the Amazon EC2 role that AWS OpsWorks Stacks creates when you create your first stack. It is
named aws-opsworks-ec2-role. However, AWS OpsWorks Stacks does not attach a policy to
that role, so by default it grants no permissions.

You must attach the AmazonS3ReadOnlyAccess policy to the aws-opsworks-ec2-role role to
grants appropriate permissions. For more information about how to attach a policy to a role, see
Adding IAM identity permissions (console) in the IAM User Guide.

You specify the role when you create or update a stack. Set up a stack with a custom layer, as
described in Running a Recipe on a Windows Instance, with one addition. On the Add Stack page,
confirm that Default IAM instance profile is set to aws-opsworks-ec2-role. AWS OpsWorks Stacks
will then assign that role to all of the stack's instances.

The procedure for setting up the cookbook is similar to the one used by Running a Recipe on a
Linux Instance. The following is a brief summary; refer to that example for details.

To set up the cookbook

1. Create a directory named s3bucket_ops and navigate to it.

2. Create a metadata.rb file with the following content and save it to s3bucket_ops.

name "s3download"

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1048

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

AWS OpsWorks User Guide

version "0.1.0"

3. Create a recipes directory within s3download.

4. Create a default.rb file with the following recipe, and save it to the recipes directory.
Replace windows-cookbooks with the name of the S3 bucket that you will use to store the
file to be downloaded.

Chef::Log.info("******Downloading an object from S3******")

chef_gem "aws-sdk-s3" do
 compile_time false
 action :install
end

ruby_block "download-object" do
 block do
 require 'aws-sdk-s3'

 Aws.use_bundled_cert!

 s3_client = Aws::S3::Client.new(region:'us-west-2')

 s3_client.get_object(bucket: 'windows-cookbooks',
 key: 'myfile.txt',
 response_target: '/chef/myfile.txt')
 end
 action :run
end

5. Create a .zip archive of s3download and upload the file to an S3 bucket. Make the file public
and record the URL for later use.

6. Create a text file named myfile.txt and upload it to an S3 bucket. This is the file that your
recipe will download, so you can use any convenient bucket.

The recipe performs the following tasks.

1: Install the SDK for Ruby v2.

The example uses the SDK for Ruby to download the object. However, AWS OpsWorks Stacks
does not install this SDK on Windows instances, so the first part of the recipe uses a chef_gem

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1049

https://docs.chef.io/chef/resources.html#chef-gem

AWS OpsWorks User Guide

resource to handle that task. You use this resource to install gems for use by Chef, which
includes recipes.

2: Download the file.

The third part of the recipe uses a ruby_block resource to run SDK for Ruby v2 code to
download myfile.txt from an S3 bucket named windows-cookbooks to the instance's
/chef directory. Change windows-cookbooks to the name of the bucket that contains
myfile.txt.

Note

A recipe is a Ruby application, so you can put Ruby code in the body of the recipe; it doesn't
have to be in a ruby_block resource. However, Chef executes the Ruby code in the recipe's
body first, followed by each resource, in order. For this example, if you put the download
code in the recipe's body, it will fail because it depends on the SDK for Ruby, and the
chef_gem resource that installs the SDK hasn't yet executed. The code in the ruby_block
resource executes when the resource executes, and that happens after the chef_gem
resource has installed the SDK for Ruby.

Create a stack for this example as follows. You can also use an existing Windows stack. Just update
the cookbooks, as described later.

Create a stack

1. Open the AWS OpsWorks Stacks console and choose Add Stack. Specify the following settings,
accept the defaults for the other settings, and choose Add Stack.

• Name – S3Download

• Region – US West (Oregon)

This example will work in any region, but we recommend using US West (Oregon) for
tutorials.

• Default operating system – Microsoft Windows Server 2012 R2

2. Choose Add a layer and add a custom layer to the stack with the following settings.

• Name – S3Download

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1050

https://docs.chef.io/chef/resources.html#ruby-block
https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

• Short name – s3download

3. Add a 24/7 instance with default settings to the S3Download layer and start it.

You can now install and run the recipe

To run the recipe

1. Edit the stack to enable custom cookbooks, and specify the following settings.

• Repository type – S3 Archive.

• Repository URL – The cookbook's archive URL that you recorded earlier.

Accept the default values for the other settings and choose Save to update the stack
configuration.

2. Run the Update Custom Cookbooks stack command, which installs the latest version of your
custom cookbook on the stack's online instances. If an earlier version of your cookbooks is
present, this command overwrites it.

3. Execute the recipe by running the Execute Recipes stack command with Recipes to execute set
to s3download::default. This command initiates a Chef run, with a run list that consists of
s3download::default.

Note

You typically have AWS OpsWorks Stacks run your recipes automatically by assigning
them to the appropriate lifecycle event. You also can run such recipes by manually
triggering the event. You can use a stack command to trigger Setup and Configure
events, and a deploy command to trigger Deploy and Undeploy events.

After the recipe runs successfully, you can verify it.

To verify s3download

1. The first step is to examine the Chef log. Your stack should have one instance named
s3download1. On the Instances page, choose show in the instance's Log column to display the
Chef log. Scroll down to find your log message near the bottom.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1051

AWS OpsWorks User Guide

...
[2015-05-01T21:11:04+00:00] INFO: Loading cookbooks [s3download@0.0.0]
[2015-05-01T21:11:04+00:00] INFO: Storing updated cookbooks/s3download/recipes/
default.rb in the cache.
[2015-05-01T21:11:04+00:00] INFO: ******Downloading an object from S3******
[2015-05-01T21:11:04+00:00] INFO: Processing chef_gem[aws-sdk] action install
 (s3download::default line 3)
[2015-05-01T21:11:05+00:00] INFO: Processing ruby_block[download-object] action run
 (s3download::default line 8)
...

2. Use RDP to log in to the instance and examine the contents of c:\chef.

Installing Windows Software

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These examples assume that you have already done the Running a Recipe on a Windows
Instance example. If not, you should do that example first. In particular, it describes how to
enable RDP access to your instances.

Windows instances start with Windows Server 2012 R2 Standard, so you typically need to install
some software. The details depend on the type of software.

• Windows features are optional system components, including the .NET frameworks and Internet
Information Services (IIS), which you can download to your instance.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1052

AWS OpsWorks User Guide

• Third-party software typically comes in an installer package, such as an MSI file, which you must
download to the instance and then run.

Some Microsoft software also comes in an installer package.

This section describes how to implement cookbooks to install Windows features and packages. It
also introduces the Chef windows cookbook, which contains resources and helper functions that
simplify implementing recipes for Windows instances.

Topics

• Installing a Windows Feature: IIS

• Installing a Package on a Windows Instance

Installing a Windows Feature: IIS

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Windows features are a set of optional system components, including the .NET frameworks and
Internet Information Services (IIS). This topic describes how to implement a cookbook to install a
commonly used feature, Internet Information Services (IIS).

Note

Installing a Package shows how to install software that comes in an installer package, such
as an MSI file, which you must download to the instance and run. IIS cookbooks

Running a Recipe on a Windows Instance shows how to use a powershell_script resource to
install a Windows feature. This example shows an alternative approach: use the Chef Windows

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1053

https://github.com/opscode-cookbooks/iis
https://github.com/opscode-cookbooks/windows

AWS OpsWorks User Guide

cookbook's windows_feature resource. This cookbook contains a set of resources that use
Deployment Image Servicing and Management to perform a variety of tasks on Windows, including
feature installation.

Note

Chef also has an IIS cookbook, which you can use to manage IIS. For more information, see
IIS cookbook.

To set up the cookbook

1. Go to the windows cookbook GitHub repository and download the windows cookbook.

This example assumes that you will download the windows repository as a .zip file, but you
can also clone the repository if you prefer.

2. Go to the chef_handler cookbook GitHub repository and download the chef-handler
cookbook.

The windows cookbook depends on chef_handler; you won't be using it directly. This
example assumes that you will download the chef_handler repository as a .zip file, but you
can also clone the repository if you prefer.

3. Extract the windows and chef_handler cookbooks to directories in your cookbooks
directory named windows and chef_handler, respectively.

4. Create a directory in your cookbooks directory named install-iis and navigate to it.

5. Add a metadata.rb file to install-iis with the following content.

name "install-iis"
version "0.1.0"

depends "windows"

The depends directive allows you to use the windows cookbook resources in your recipes.

6. Add a recipes directory to install-iis and add a file named default.rb to that
directory that contains the following recipe code.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1054

https://github.com/opscode-cookbooks/windows
https://technet.microsoft.com/en-us/library/dd744256%28v=ws.10%29.aspx
https://github.com/opscode-cookbooks/iis
https://github.com/opscode-cookbooks/windows
https://github.com/opscode-cookbooks/chef_handler

AWS OpsWorks User Guide

%w{ IIS-WebServerRole IIS-WebServer }.each do |feature|
 windows_feature feature do
 action :install
 end
end

service 'w3svc' do
 action [:start, :enable]
end

The recipe uses the windows cookbook's windows_feature resource to install the following:

1. The IIS Web Server role.

2. The IIS Web Server.

The recipe then uses a service resource to start and enable the IIS service (W3SVC).

Note

For a complete list of available Windows features, use RDP to log in to the instance,
open a command prompt window, and run the following command. Note that the list
is quite long.

dism /online /Get-Features

7. Create a .zip archive that contains the install-iis, chef_handler, and windows
cookbooks and upload the archive to an S3 bucket. Make the archive public and record the URL
for later use. This example assumes that the archive is named install-iis.zip. For more
information, see Cookbook Repositories.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

Create a stack for this example as follows. You also can use an existing Windows stack. Just update
the cookbooks, as described later.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1055

https://technet.microsoft.com/en-us/library/cc770634.aspx
https://technet.microsoft.com/en-us/library/cc753433%28v=ws.10%29.aspx
https://docs.chef.io/chef/resources.html#service
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

Create a stack

1. Open the AWS OpsWorks Stacks console and choose Add Stack. Specify the following settings,
accept the defaults for the other settings, and choose Add Stack.

• Name – InstallIIS

• Region – US West (Oregon)

This example will work in any region, but we recommend using US West (Oregon) for
tutorials.

• Default operating system – Microsoft Windows Server 2012 R2

2. Choose Add a layer and add a custom layer to the stack with the following settings.

• Name – IIS

• Short name – iis

3. Add a 24/7 instance with default settings to the IIS layer and start it.

You can now install the cookbook and run the recipe

To install the cookbook and run the recipe

1. Edit the stack to enable custom cookbooks, and specify the following settings.

• Repository type – S3 Archive

• Repository URL – The cookbook archive's URL that you recorded earlier.

Accept the default values for the other settings and choose Save to update the stack
configuration.

2. Run the Update Custom Cookbooks stack command, which installs the latest version of your
custom cookbooks on the stack's online instances. If an earlier version of your cookbooks is
present, this command overwrites it.

3. Execute the recipe by running the Execute Recipes stack command with Recipes to execute
set to install-iis::default. This command initiates a Chef run, which runs the specified
recipes.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1056

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Note

This example uses Execute Recipes for convenience, but you typically have AWS
OpsWorks Stacks run your recipes automatically by assigning them to the appropriate
lifecycle event. You can run such recipes by manually triggering the event. You can use
a stack command to trigger Setup and Configure events, and a deploy command to
trigger Deploy and Undeploy events.

4. To verify the installation, use RDP to connect to the instance and open Windows Explorer. The
file system should now have a C:\inetpub directory. If you check the list of services in the
Administrative Tools Control Panel application, IIS should be near the bottom. However, it will
be named World Wide Web Publishing Service, not IIS.

Installing a Package on a Windows Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This example assumes that you have already done the Running a Recipe on a Windows
Instance example. If not, you should do that example first. In particular, it describes how to
enable RDP access to your instances.

If your software comes in an installer package, such as an MSI, you must download the file to
the instance and then run it. This example shows how to implement a cookbook to install an MSI
package, the Python runtime, including how to define associated environment variables. For more
information on how to install Windows features such as IIS, see Installing a Windows Feature: IIS.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1057

AWS OpsWorks User Guide

To set up the cookbook

1. Create a directory named installpython and navigate to it.

2. Add a metadata.rb file to installpython with the following content.

name "installpython"
version "0.1.0"

3. Add recipes and files directories to installpython and add a default directory to files.

4. Download a Python package from Python Releases for Windows to the cookbook's files
\default directory. This example installs the Windows x86-64 version of Python 3.5.0a3,
which uses an MSI installer named python-3.4.3.amd64.msi.

5. Add a file named default.rb to the recipes directory with the following recipe code.

directory 'C:\tmp' do
 rights :full_control, 'Everyone'
 recursive true
 action :create
end

cookbook_file 'C:\tmp\python-3.4.3.amd64.msi' do
 source "python-3.4.3.amd64.msi"
 rights :full_control, 'Everyone'
 action :create
end

windows_package 'python' do
 source 'C:\tmp\python-3.4.3.amd64.msi'
 action :install
end

env "PATH" do
 value 'c:\python34'
 delim ";"
 action :modify
end

The recipe does the following:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1058

https://www.python.org/downloads/windows/

AWS OpsWorks User Guide

1. Uses a directory resource to create a C:\tmp directory.

For more information on this resource, see Example 3: Creating Directories.

2. Uses a cookbook_file resource to copy the installer from the cookbook's files\default
directory to C:\tmp.

For more information on this resource, see Installing a File from a Cookbook.

3. Uses a windows_package resource to run the MSI installer, which installs Python to c:
\python34.

The installer creates the required directories and installs the files, but does not modify the
system's PATH environment variable.

4. Uses an env resource to add c:\python34 to the system path.

You use the env resource to define environment variables. In this case, the recipe allows you
to easily run Python scripts from the command line by adding c:\python34 to the path.

• The resource name specifies the environment variable's name, PATH for this example.

• The value attribute specifies the variable's value, c:\\python34 for this example (you
need to escape the \ character).

• The :modify action prepends the specified value to the variable's current value.

• The delim attribute specifies a delimiter that separates the new value from the existing
value, which is ; for this example.

6. Create a .zip archive of installpython, upload the archive to an S3 bucket, and make
it public. Record the archive's URL for later use. For more information, see Cookbook
Repositories.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

Create a stack for this example as follows. You also can use an existing Windows stack. Just update
the cookbooks, as described later.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1059

https://docs.chef.io/chef/resources.html#directory
https://docs.chef.io/chef/resources.html#cookbook-file
https://docs.chef.io/chef/resources.html#windows-package
https://docs.chef.io/chef/resources.html#env
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

Create a stack

1. Open the AWS OpsWorks Stacks console and choose Add Stack. Specify the following settings,
accept the defaults for the other settings, and choose Add Stack.

• Name – InstallPython

• Region – US West (Oregon)

This example will work in any region, but we recommend using US West (Oregon) for
tutorials.

• Default operating system – Microsoft Windows Server 2012 R2

2. Choose Add a layer and add a custom layer to the stack with the following settings.

• Name – Python

• Short name – python

3. Add a 24/7 instance with default settings to the Python layer and start it.

After the instance is online, you can install the cookbook and run the recipe

To install the cookbook and run the recipe

1. Edit the stack to enable custom cookbooks, and specify the following settings.

• Repository type – S3 Archive.

• Repository URL – The cookbook's archive URL that you recorded earlier.

Accept the default values for the other settings and choose Save to update the stack
configuration.

2. Run the Update Custom Cookbooks stack command, which installs the latest version of your
custom cookbooks on the stack's online instances. If an earlier version of your cookbook is
present, this command overwrites it.

3. Execute the recipe by running the Execute Recipes stack command with Recipes to execute
set to installpython::default. This command initiates a Chef run, with a run list that
consists of installpython::default.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1060

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Note

This example uses Execute Recipes for convenience, but you typically have AWS
OpsWorks Stacks run your recipes automatically by assigning them to the appropriate
lifecycle event. You can run such recipes by manually triggering the event. You can use
a stack command to trigger Setup and Configure events, and a deploy command to
trigger Deploy and Undeploy events.

4. To verify the installation, use RDP to connect to the instance and open Windows Explorer.

• The file system should now have a C:\Python34 directory.

• If you run path from the command line, it should look something like: PATH=c:
\python34;C:\Windows\system32;...

• If you run python --version from the command line, it should return Python 3.4.3.

Overriding Built-In Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This topic applies only to Linux stacks. You cannot override built-in attributes on Windows
stacks.

AWS OpsWorks Stacks installs a set of built-in cookbooks on each instance. Many of the built-
in cookbooks support the built-in layers, and their attribute files define a variety of default
system and application settings, such as the Apache server configuration settings. By putting

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1061

AWS OpsWorks User Guide

these settings in attribute files, you can customize many configuration settings by overriding the
corresponding built-in attribute in either of the following ways:

• Define the attribute in custom JSON.

This approach has the advantage of being simple and flexible. However, you must enter custom
JSON manually, so there is no robust way to manage the attribute definitions.

• Implement a custom cookbook and define the attribute in a customize.rb attribute file.

This approach is less flexible than using custom JSON, but is more robust because you can put
custom cookbooks under source control.

This topic describes how to use a custom cookbook attribute file to override built-in attributes,
using the Apache server as an example. For more information on how to override attributes with
custom JSON, see Using Custom JSON. For a general discussion of how to override attributes, see
Overriding Attributes.

Note

Overriding attributes is the preferred way to customize configuration settings, but settings
are not always represented by attributes. In that case, you can often customize the
configuration file by overriding the template that the built-in recipes use to create the
configuration file. For an example, see Overriding Built-In Templates.

The built-in attributes typically represent values in the template files that Setup recipes use to
create configuration files. For example, one of the apache2 Setup recipes, default.rb, uses the
apache2.conf.erb template to create the Apache server's main configuration file, httpd.conf
(Amazon Linux) or apache2.conf (Ubuntu). The following is an excerpt from the template file:

...
#
MaxKeepAliveRequests: The maximum number of requests to allow
during a persistent connection. Set to 0 to allow an unlimited amount.
We recommend you leave this number high, for maximum performance.
#
MaxKeepAliveRequests <%= node[:apache][:keepaliverequests] %>
#

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1062

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/apache2/recipes/default.rb
https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/apache2/templates/default/apache2.conf.erb

AWS OpsWorks User Guide

KeepAliveTimeout: Number of seconds to wait for the next request from the
same client on the same connection.
#
KeepAliveTimeout <%= node[:apache][:keepalivetimeout] %>
##
Server-Pool Size Regulation (MPM specific)
##

...

The KeepAliveTimeout setting in this example is the value of the [:apache]
[:keepalivetimeout] attribute. This attribute's default value is defined in the apache2
cookbook's apache.rb attribute file, as shown in the following excerpt:

...
General settings
default[:apache][:listen_ports] = ['80','443']
default[:apache][:contact] = 'ops@example.com'
default[:apache][:log_level] = 'info'
default[:apache][:timeout] = 120
default[:apache][:keepalive] = 'Off'
default[:apache][:keepaliverequests] = 100
default[:apache][:keepalivetimeout] = 3
...

Note

For more information about commonly used built-in attributes, see Built-in Cookbook
Attributes.

To support overriding built-in attributes, all built-in cookbooks contain a customize.rb attribute
file, which is incorporated into all modules through an include_attribute directive. The built-
in cookbooks' customize.rb files contain no attribute definitions and have no effect on the built-
in attributes. To override the built-in attributes, you create a custom cookbook with the same name
as the built-in cookbook and put your custom attribute definitions in an attribute file that is also
named customize.rb. That file takes precedence over the built-in version, and is included in any
related modules. If you define any built-in attributes in your customize.rb, they override the
corresponding built-in attributes.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1063

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/apache2/attributes/apache.rb

AWS OpsWorks User Guide

This example shows how to override the built-in [:apache][:keepalivetimeout] attribute to
set its value to 5 instead of 3. You can use a similar approach for any built-in attribute. However,
be careful which attributes you override. For example, overriding attributes in the opsworks
namespace might cause problems for some built-in recipes.

Important

Do not override built-in attributes by modifying a copy of the built-in attributes file itself.
For example, you could put a copy of apache.rb in your custom cookbook's apache2/
attributes folder and modify some of its settings. However, this file takes precedence
over the built-in version, and the built-in recipes will now use your version of apache.rb.
If AWS OpsWorks Stacks later modifies the built-in apache.rb file, recipes will not get
the new values unless you manually update your version. By using customize.rb, you
override only the specified attributes; the built-in recipes continue to automatically get up-
to-date values for every attribute that you have not overridden.

To start, create a custom cookbook.

To create the cookbook

1. Within your opsworks_cookbooks directory, create a cookbook directory named apache2
and navigate to it.

To override built-in attributes, the custom cookbook must have the same name as the built-in
cookbook, apache2 for this example.

2. In the apache2 directory, create an attributes directory.

3. Add a file named customize.rb to the attributes directory and use it to define the built-
in cookbook attributes that you want to override. For this example, the file should contain the
following:

normal[:apache][:keepalivetimeout] = 5

Important

To override a built-in attribute, a custom attribute must be a normal type or higher
and have exactly the same node name as the corresponding built-in attribute. The

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1064

AWS OpsWorks User Guide

normal type ensures that the custom attribute takes precedence over the built-
in attributes, which are all default type. For more information, see Attribute
Precedence.

4. Create a .zip archive of opsworks_cookbooks named opsworks_cookbooks.zip and
upload the archive to an Amazon Simple Storage Service (Amazon S3) bucket. For simplicity,
make the file public. Record the URL for later use. You can also store your cookbooks in a
private Amazon S3 archive or in other repository types. For more information, see Cookbook
Repositories.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

To use the custom attribute, create a stack and install the cookbook.

To use the custom attribute

1. Open the AWS OpsWorks Stacks console, and then choose Add Stack.

2. Specify the following standard settings.

• Name – ApacheConfig

• Region – US West (Oregon)

You can put your stack in any region, but we recommend US West (Oregon) for tutorials.

• Default SSH key – An EC2 key pair

If you need to create an EC2 key pair, see Amazon EC2 Key Pairs. Note that the key pair must
belong to the same AWS region as the stack.

Choose Advanced>>, set Use custom Chef cookbooks to Yes, and then specify the following
settings.

• Repository type – Http Archive

• Repository URL – The cookbook archive's URL that you recorded earlier

Accept the defaults for the other settings, and then choose Add Stack to create the stack.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1065

http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://console.aws.amazon.com/opsworks/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

Note

This example uses the default operating system, Amazon Linux. You can use Ubuntu,
if you prefer. The only difference is that on Ubuntu systems, the built-in Setup recipe
produces a configuration file with the same settings named apache2.conf and puts it
in the /etc/apache2 directory.

3. Choose Add a layer, and then add a Java App Server layer with default settings to the stack.

4. Add a 24/7 instance with default settings to the layer, and then start the instance.

A t2.micro instance is sufficient for this example.

5. After the instance is online, connect to it with SSH. The httpd.conf file is in the /
etc/httpd/conf directory. If you examine the file, you should see your custom
KeepAliveTimeout setting. The remainder of the settings will have the default values from
the built-in apache.rb file. The relevant part of httpd.conf should look similar to the
following:

...
#
KeepAliveTimeout: Number of seconds to wait for the next request from the
same client on the same connection.
#
KeepAliveTimeout 5
...

Overriding Built-In Templates

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1066

AWS OpsWorks User Guide

Note

This topic applies only to Linux stacks. You cannot override built-in templates on Windows
stacks.

The AWS OpsWorks Stacks built-in recipes use templates to create files on instances, primarily
configuration files for servers, such as Apache. For example, the apache2 recipes use the
apache2.conf.erb template to create the Apache server's primary configuration file,
httpd.conf (Amazon Linux) or apache2.conf (Ubuntu).

Most of the configuration settings in these templates are represented by attributes, so the
preferred way to customize a configuration file is by overriding the appropriate built-in attributes.
For an example, see Overriding Built-In Attributes. However, if the settings that you want to
customize aren't represented by built-in attributes, or aren't in the template at all, you must
override the template itself. This topic describes how to override a built-in template to specify a
custom Apache configuration setting.

You can provide custom error responses to Apache by adding ErrorDocument settings to the
httpd.conf file. apache2.conf.erb contains only some commented-out examples, as shown in
the following:

...
#
Customizable error responses come in three flavors:
1) plain text 2) local redirects 3) external redirects
#
Some examples:
#ErrorDocument 500 "The server made a boo boo."
#ErrorDocument 404 /missing.html
#ErrorDocument 404 "/cgi-bin/missing_handler.pl"
#ErrorDocument 402 http://www.example.com/subscription_info.html
...

Because these settings are hardcoded comments, you can't specify custom values by overriding
attributes; you must override the template itself. However, unlike with attributes, there is no way
to override particular parts of a template file. You must create a custom cookbook with the same
name as the built-in version, copy the template file to the same subdirectory, and modify the file

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1067

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/apache2/templates/default/apache2.conf.erb

AWS OpsWorks User Guide

as needed. This topic shows how to override apache2.conf.erb to provide a custom response to
error 500. For a general discussion of overriding templates, see Using Custom Templates.

Important

When you override a buiIt-in template, the built-in recipes use your customized version of
the template instead of the built-in version. If AWS OpsWorks Stacks updates the built-
in template, the custom template becomes out of sync and might not work correctly.
AWS OpsWorks Stacks doesn't make such changes often, and when a template does
change, AWS OpsWorks Stacks lists the changes and gives you the option of upgrading to
a new version. We recommend that you monitor the AWS OpsWorks Stacks repository for
changes, and manually update your custom template as needed. Note that the repository
has a separate branch for each supported Chef version, so be sure that you are in the
correct branch.

To start, create a custom cookbook.

To create the cookbook

1. In the opsworks_cookbooks directory, create a cookbook directory named apache2, and
then navigate to it. To override built-in templates, the custom cookbook must have the same
name as the built-in cookbook, apache2 for this example.

Note

If you have already completed the Overriding Built-In Attributes walkthrough, you can
use the same apache2 cookbook for this example, and skip Step 2.

2. Create a metadata.rb file with the following content, and then save it to the apache2
directory.

name "apache2"
version "0.1.0"

3. In apache2 directory, create a templates/default directory..

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1068

https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

Note

The templates/default directory works for Amazon Linux instances, which
use the default apache2.conf.erb template. Ubuntu 14.04 instances use an
operating system-specific apache2.conf.erb template, which is in the templates/
ubuntu-14.04 directory. If you want the customization to apply to Ubuntu 14.04
instances also, you must override that template too.

4. Copy the built-in apache2.conf.erb template to your templates/default directory.
Open the template file, uncomment the ErrorDocument 500 line, and provide a custom
error message, as follows:

...
ErrorDocument 500 "A custom error message."
#ErrorDocument 404 /missing.html
...

5. Create a .zip archive of opsworks_cookbooks named opsworks_cookbooks.zip, and
then upload the file to an Amazon Simple Storage Service (Amazon S3) bucket. For simplicity,
make the archive public. Record the archive's URL for later use. You can also store your
cookbooks in a private Amazon S3 archive or in other repository types. For more information,
see Cookbook Repositories.

Content delivered to Amazon S3 buckets might contain customer content. For more
information about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I
Delete an S3 Bucket?.

Note

For simplicity, this example adds a hardcoded error message to the template. To change
it, you must modify the template and reinstall the cookbook. To give yourself greater
flexibility, you can define a default custom attribute for the error string in the custom
cookbook's customize.rb attribute file and assign the value of that attribute to
ErrorDocument 500. For example, if you name the attribute [:apache][:custom]
[:error500], the corresponding line in apache2.conf.erb would then look something
like the following:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1069

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/apache2/templates/default/apache2.conf.erb
http://docs.aws.amazon.com/AmazonS3/latest/UG/EditingPermissionsonanObject.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

...
ErrorDocument 500 <%= node[:apache][:custom][:error500] %>
#ErrorDocument 404 /missing.html
...

You can then change the custom error message at any time by overriding [:apache]
[:custom][:error500]. If you use custom JSON to override the attribute, you don't
even need to touch the cookbook.

To use the custom template, create a stack and install the cookbook.

To use the custom template

1. Open the AWS OpsWorks Stacks console, and then choose Add Stack.

2. Specify the following standard settings:

• Name – ApacheTemplate

• Region – US West (Oregon)

• Default SSH key – An Amazon Elastic Compute Cloud (Amazon EC2) key pair

If you need to create an Amazon EC2 key pair, see Amazon EC2 Key Pairs. Note that the key
pair must belong to the same AWS region as the instance.

Choose Advanced>>, choose Use custom Chef cookbooks, to specify the following settings:

• Repository type – Http Archive

• Repository URL – The cookbook archive's URL that you recorded earlier

Accept the default values for the other settings, and then choose Add Stack to create the
stack.

3. Choose Add a layer, and then add a Java App Server layer to the stack with default settings.

4. Add a 24/7 instance with default settings to the layer, and then start the instance.

A t2.micro instance is sufficient for this example.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1070

https://console.aws.amazon.com/opsworks/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS OpsWorks User Guide

5. After the instance is online, connect to it with SSH. The httpd.conf file is in the /etc/
httpd/conf directory. The file should contain your custom ErrorDocument setting, which
will look something like the following:

...
Some examples:
ErrorDocument 500 "A custom error message."
#ErrorDocument 404 /missing.html
#ErrorDocument 404 "/cgi-bin/missing_handler.pl"
#ErrorDocument 402 http://www.example.com/subscription_info.html
...

Load Balancing a Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks provides two load balancing options, Elastic Load Balancing and HAProxy,
which are typically used to balance load across an application server layer's instances. This topic
describes the benefits and limitations of each to help you decide which option to choose when
adding load balancing to a layer. In some cases, the best approach is to use both.

SSL Termination

The built-in HAProxy layer does not handle SSL termination; you must terminate SSL at the
servers. The advantage of this approach is that traffic is encrypted until it reaches the servers.
However, the servers must handle decryption, which increases server load. In addition, you must
put your SSL certificates on the application servers, which are more accessible to users.

With Elastic Load Balancing, you can terminate SSL at the load balancer. This reduces the
load on your application servers, but traffic between the load balancer and the server is not

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1071

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elastic-load-balancing.html
http://www.haproxy.org/

AWS OpsWorks User Guide

encrypted. Elastic Load Balancing also allows you to terminate SSL at the server, but it is
somewhat complicated to set up.

Scaling

If incoming traffic exceeds the capacity of an HAProxy load balancer, you must increase its
capacity manually.

Elastic Load Balancing automatically scales to handle incoming traffic. To ensure that an Elastic
Load Balancing load balancer has sufficient capacity to handle the expected load when it first
comes online, you can pre-warm it.

Load Balancer Failure

If the instance hosting your HAProxy server fails, it could take your entire site offline until you
can restart the instance.

Elastic Load Balancing is more failure resistant than HAProxy. For example, it provisions load
balancing nodes in each Availability Zone that has registered EC2 instances. If service in one
zone is disrupted, the other nodes continue to handle incoming traffic. For more information,
see Elastic Load Balancing Concepts.

Idle Timeout

Both load balancers terminate a connection if a server is idle for more than a specified idle
timeout value.

• HAProxy – The idle timeout value does not have an upper limit.

• Elastic Load Balancing – The default idle timeout value is 60 seconds, with a maximum of
3600 seconds (60 minutes).

The Elastic Load Balancing idle time limit is sufficient for most purposes. We recommend using
HAProxy if you require a longer idle timeout. For example:

• A long-running HTTP connection that is used for push notifications.

• An administrative interface that you use to perform tasks that could take longer than 60
minutes.

URL-based Mapping

You might want to have a load balancer forward an incoming request to a particular server
based on the request's URL. For example, suppose you have a group of ten application
servers that supports an online commerce application. Eight of the servers handle the catalog

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1072

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-https-load-balancers.html
https://aws.amazon.com/articles/1636185810492479#pre-warming
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/TerminologyandKeyConcepts.html

AWS OpsWorks User Guide

and two handle payments. You want to direct all payment-related HTTP requests to the
payment servers, based on the request URL. In this case, you would direct all URLs that include
"payment" or "checkout" to one of the payment servers.

With HAProxy, you can use URL-based mapping to direct URLs containing a specified string to
particular servers. To use URL-based mapping with AWS OpsWorks Stacks, you must create
a custom HAProxy configuration file by overriding the haproxy-default.erb template in
the haproxy built-in cookbook. For more information, see HAProxy Configuration Manual and
Using Custom Templates. You cannot use URL-based mapping for HTTPS requests. An HTTPS
request is encrypted, so HAProxy has no way to examine the request URL.

Elastic Load Balancing has limited support for URL mapping. For more information, see Listener
Configurations for Elastic Load Balancing.

Recommendation: We recommend using Elastic Load Balancing for load balancing unless you
have requirements that can be handled only by HAProxy. In that case, the best approach might be
combining the two by using Elastic Load Balancing as a front-end load balancer that distributes
incoming traffic to a set of HAProxy servers. To do this:

• Set up an HAProxy instance in each of your stack's Availability Zones to distribute requests to the
zone's application servers.

• Assign the HAProxy instances to an Elastic Load Balancing load balancer, which then distributes
incoming requests to the HAProxy load balancers.

This approach allows you to use HAProxy's URL-based mapping to distribute different types of
requests to the appropriate application servers. However, if one of the HAProxy servers goes
offline, the site will continue to function because the Elastic Load Balancing load balancer
automatically distributes incoming traffic to the healthy HAProxy servers. Note that you must
use Elastic Load Balancing as the front-end load balancer; an HAProxy server cannot distribute
requests to other HAProxy servers.

Migrating from Chef Server to AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1073

http://cbonte.github.io/haproxy-dconv/configuration-1.5.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-listener-config.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-listener-config.html

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Because AWS OpsWorks Stacks is based on Chef, migrating from Chef Server to AWS OpsWorks
Stacks is relatively straightforward. This topic provides guidelines for modifying Chef Server code
to work with AWS OpsWorks Stacks.

Note

We do not recommend migrating to stacks using Chef versions earlier than 11.10, which are
based on chef-solo and do not support search or data bags.

Topics

• Mapping Roles to Layers

• Using Data Bags

• Using Chef Search

• Managing Cookbooks and Recipes

• Using Chef Environments

Mapping Roles to Layers

Chef Server uses roles to represent and manage instances with the same purpose and
configuration, such as a set of instances that each host a Java application server. An AWS OpsWorks
Stacks layer serves essentially the same purpose as a Chef role. A layer is a blueprint for creating
a set of Amazon Elastic Compute Cloud (Amazon EC2) instances with the same configuration,
installed packages, application deployment procedure, and so on.

AWS OpsWorks Stacks includes a set of built-in layers for several types of application server, an
HAProxy load balancer, a MySQL database master, and a Ganglia monitoring master. For example,
the built-in Java App Server layer is a blueprint for creating instances that host a Tomcat server.

To migrate to AWS OpsWorks Stacks, you need to associate each role with a layer that provides
equivalent functionality. For some roles, you might be able to simply use one of the built-in layers.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1074

AWS OpsWorks User Guide

Other roles might require varying degrees of customization. Start by examining the functionality of
the built-in layers, including the recipes associated with each, to see if one provides at least some
of your role's functionality. For more information about the built-in layers, see Layers and AWS
OpsWorks Stacks Layer Reference. To examine the built-in recipes, see the AWS OpsWorks Stacks
public GitHub repository.

How you proceed depends on how closely you can match a layer to each role, as follows.

A built-in layer supports all of the role's functionality

You can use the built-in layer directly, with minor customizations, if necessary. For example, if
a role supports a Tomcat server, the Java App Server layer's recipes might already handle all
of the role's tasks, perhaps with some modest customization. For example, you can make the
layer's built-in recipes use custom Tomcat or Apache configuration settings by overriding the
appropriate attributes or templates.

A built-in layer supports some, but not all, of the role's functionality

You might be able to use a built-in layer by extending the layer. This typically involves
implementing custom recipes to support the missing functionality and assigning the recipes to
the layer's lifecycle events. For example, suppose that your role installs a Redis server on the
same instances that host a Tomcat server. You could extend the Java App Server layer to match
the role's functionality by implementing a custom recipe to install Redis on the layer's instances
and assigning the recipe to the layer's Setup event.

No built-in layer adequately supports the role's functionality

Implement a custom layer. For example, suppose that your role supports a MongoDB database
server, which is not supported by any of the built-in layers. You can provide that support by
implementing recipes to install the required packages, configure the server, and so on, and
assign the recipes to a custom layer's lifecycle events. Typically, you can use at least some of the
role's recipes for this purpose. For more information about how to implement a custom layer,
see Creating a Custom Tomcat Server Layer.

Using Data Bags

Chef Server allows you to pass user-defined data to your recipes by using data bags.

• You store the data with your cookbooks, and Chef installs it on each instance.

• You can use encrypted data bags for sensitive data such as passwords.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1075

https://github.com/aws/opsworks-cookbooks
https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

AWS OpsWorks Stacks supports data bags; recipes can retrieve the data using exactly the same
code as with Chef Server. However, the support has the following limitations and differences:

• Data bags are supported only on Chef 11.10 Linux and later stacks.

Windows stacks and Linux stacks running earlier versions of Chef do not support data bags.

• You do not store data bags in your cookbook repository.

Instead, you use custom JSON to manage your data bag's data.

• AWS OpsWorks Stacks does not support encrypted data bags.

If you need to store sensitive data in encrypted form, such as passwords or certificates, we
recommend storing it in a private S3 bucket. You can then create a custom recipe that uses the
Amazon SDK for Ruby to retrieve the data. For an example, see Using the SDK for Ruby.

For more information, see Using Data Bags.

Using Chef Search

Chef Server stores stack configuration information, such as IP addresses and role configurations,
on the server. Recipes use Chef search to retrieve this data. AWS OpsWorks Stacks uses a somewhat
different approach. For example, Chef 11.10 Linux stacks are based on Chef client local mode, a
Chef client option that runs a lightweight version of Chef Server (often called Chef Zero) locally on
the instance. Chef Zero supports search against the data stored in the instance's node object.

Instead of storing stack data on a remote server, AWS OpsWorks Stacks adds a set of stack
configuration and deployment attributes to each instance's node object for every lifecycle event.
These attributes represent a snapshot of the stack configuration. They use the same syntax as Chef
Server and represent most of the data that recipes need to retrieve from the server.

You often don't need to modify your recipes' search-dependent code for AWS OpsWorks Stacks.
Because Chef search operates on the node object, which includes the stack configuration and
deployment attributes, search queries in AWS OpsWorks Stacks usually work exactly as they do
with Chef Server.

The primary exception is caused by the fact that the stack configuration and deployment attributes
contain only data that AWS OpsWorks Stacks is aware of when it installs the attributes on the
instance. If you create or modify an attribute locally on a particular instance those changes do not
propagate back to AWS OpsWorks Stacks and are not incorporated into the stack configuration and

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1076

http://aws.amazon.com/documentation/sdk-for-ruby/

AWS OpsWorks User Guide

deployment attributes that are installed on the other instances. You can use search to retrieve the
attribute value only on that instance. For more information, see Using Chef Search.

For compatibility with Chef Server, AWS OpsWorks Stacks adds a set of role attributes to the node
object, each of which contains one of the stack's layer attributes. If your recipe uses roles as a
search key, you don't need to change the search code. The query automatically returns data for the
corresponding layer. For example, the following queries both return the php-app layer's attributes.

phpserver = search(:node, "layers:php-app").first

phpserver = search(:node, "roles:php-app").first

Managing Cookbooks and Recipes

AWS OpsWorks Stacks and Chef Server handle cookbooks and recipes somewhat differently. With
Chef Server:

• You provide all of the cookbooks, either by implementing them yourself or by using community
cookbooks.

• You store cookbooks on the server.

• You execute recipes manually or on a regular schedule.

With AWS OpsWorks Stacks:

• AWS OpsWorks Stacks provides one or more cookbooks for each of the built-in layers. These
cookbooks handle standard tasks, such as installing and configuring a built-in layer's software
and deploying apps.

To handle tasks that aren't performed by the built-in cookbooks, you add custom cookbooks to
your stack or use community cookbooks.

• You store AWS OpsWorks Stacks cookbooks in a remote repository, such as an S3 bucket or a Git
repository.

For more information, see Storing Cookbooks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1077

AWS OpsWorks User Guide

• You can execute recipes manually, but you typically have AWS OpsWorks Stacks execute recipes
for you in response to a set of lifecycle events that occur at key points during an instance's
lifecycle.

For more information, see Executing Recipes.

• AWS OpsWorks Stacks supports Berkshelf on Chef 11.10 stacks only. If you use Berkshelf to
manage your cookbook dependencies, you cannot use stacks running Chef 11.4 or earlier
versions.

For more information, see Using Berkshelf.

Topics

• Storing Cookbooks

• Executing Recipes

Storing Cookbooks

With Chef Server, you store your cookbooks on the server and deploy them from the server to
the instances. With AWS OpsWorks Stacks, you store cookbooks in a repository— an S3 or HTTP
archive or a Git or Subversion repository. You specify the information that AWS OpsWorks Stacks
needs to download the code from the repository to a stack's instances when you install cookbooks.

To migrate from Chef Server, you must put your cookbooks in one of these repositories. For
information on how to structure a cookbook repository, see Cookbook Repositories.

Executing Recipes

In AWS OpsWorks Stacks, each layer has a set of lifecycle events—Setup, Configure, Deploy,
Undeploy, and Shutdown—each of which occurs at a key point during an instance's lifecycle. To
execute a custom recipe, you typically assign it to the appropriate event on the appropriate layer.
When the event occurs, AWS OpsWorks Stacks runs the associated recipes. For example, the Setup
event occurs after an instance finishes booting, so you typically assign recipes to this event that
perform tasks such as installing and configuring packages and starting services.

You can execute recipes manually by using the Execute Recipes stack command. This command is
useful for development and testing, but you also can use it to execute recipes that don't map to
a lifecycle event. You can also use the Execute Recipes command to manually trigger Setup and
Configure events.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1078

AWS OpsWorks User Guide

In addition to the AWS OpsWorks Stacks console, you can use the AWS CLI or SDKs to execute
recipes. These tools support all of the AWS OpsWorks Stacks API actions, but are simpler to use
than the API. Use the create-deployment CLI command to trigger a lifecycle event, which runs all
of the associated recipes. You also can use this command to execute one or more recipes without
triggering an event. The equivalent SDK code depends on the particular language, but is generally
similar to the CLI command.

The following examples describe two ways to use the create-deployment CLI command to
automate application deployment.

• Deploy your app on a regular schedule by adding a custom layer with a single instance to your
stack.

Add a custom Setup recipe to the layer that creates a cron job on the instance to run the
command on a specified schedule. For an example of how to use a recipe to create a cron job,
see Running Cron Jobs on Linux Instances.

• Add a task to your continuous integration pipeline that uses the create-deployment CLI
command to deploy the app.

Using Chef Environments

AWS OpsWorks Stacks does not support Chef environments; node.chef_environment always
returns _default.

AWS OpsWorks Stacks Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Every instance that AWS OpsWorks Stacks deploys must be a member of at least one layer, which
defines an instance's role in the stack and controls the details of setting up and configuring the

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1079

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/opsworks/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/create-deployment.html

AWS OpsWorks User Guide

instance, installing packages, deploying applications, and so on. For more information about how
to use the AWS OpsWorks Stacks to create and manage layers, see Layers.

Each layer description includes a list of the built-in recipes that AWS OpsWorks Stacks runs for
each of the layer's lifecycle events. Those recipes are stored at https://github.com/aws/opsworks-
cookbooks. Note that the lists include only those recipes that are run directly by AWS OpsWorks
Stacks. Those recipes sometimes run dependent recipes, which are not listed. To see the complete
list of recipes for a particular event, including dependent and custom recipes, examine the run list
in the appropriate lifecycle event's Chef log.

Topics

• HAProxy Layer Reference

• HAProxy AWS OpsWorks Stacks Layer

• MySQL Layer Reference

• MySQL OpsWorks Layer

• Application Server Layers Reference

• Application Server Layers

• ECS Cluster Layer Reference

• Custom Layer Reference

• Other Layers Reference

• Other Layers

HAProxy Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1080

https://github.com/aws/opsworks-cookbooks
https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

Note

This layer is available only for Linux-based stacks.

A HAProxy layer uses HAProxy—a reliable high-performance TCP/HTTP load balancer— to provide
high availability load balancing and proxy services for TCP- and HTTP-based applications. It is
particularly useful for websites that must crawl under very high loads while requiring persistence
or Layer 7 processing.

HAProxy monitors traffic and displays the statistics and the health of the associated instances on
a web page. By default, the URI is http://DNSName/haproxy?stats, where DNSName is the HAProxy
instance's DNS name.

Short name: lb

Compatibility: A HAProxy layer is compatible with the following layers: custom, db-master, and
memcached.

Open ports: HAProxy allows public access to ports 22 (SSH), 80 (HTTP), and 443 (HTTPS).

Autoassign Elastic IP addresses: On by default

Default EBS volume: No

Default security group: AWS-OpsWorks-LB-Server

Configuration: To configure a HAProxy layer, you must specify the following:

• Health check URI (default: http://DNSName/).

• Statistics URI (default: http://DNSName/haproxy?stats).

• Statistics password (optional).

• Health check method (optional). By default, HAProxy uses the HTTP OPTIONS method. You can
also specify GET or HEAD.

• Enable statistics (optional)

• Ports. By default, AWS OpsWorks Stacks configures HAProxy to handle both HTTP and HTTPS
traffic. You can configure HAProxy to handle only one or the other by overriding the Chef
configuration template, haproxy.cfg.erb.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1081

http://haproxy.1wt.eu/
https://github.com/aws/opsworks-cookbooks/tree/master-chef-11.4/haproxy/templates/default

AWS OpsWorks User Guide

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• haproxy

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

• haproxy::configure

Deploy recipes:

• deploy::default

• haproxy::configure

Shutdown recipes:

• opsworks_shutdown::default

• haproxy::stop

Installation:

• AWS OpsWorks Stacks uses the instance's package installer to install HAProxy to its default
locations.

• You must set up syslog to direct the log files to a specified location. For more information, see
HAProxy.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1082

http://haproxy.1wt.eu/

AWS OpsWorks User Guide

HAProxy AWS OpsWorks Stacks Layer

Note

This layer is available only for Chef 11 and earlier Linux-based stacks.

The AWS OpsWorks Stacks HAProxy layer is an AWS OpsWorks Stacks layer that provides a
blueprint for instances that host an HAProxy server—a reliable high-performance TCP/HTTP load
balance. One small instance is usually sufficient to handle all application server traffic.

Note

Stacks are limited to a single region. To distribute your application across multiple regions,
you must create a separate stack for each region.

To create a HAProxy layer

1. In the navigation pane, click Layers.

2. On the Layers page, click Add a Layer or + Layer. For Layer type, select HAProxy.

The layer has the following configuration settings, all of which are optional.

HAProxy statistics

Whether the layer collects and displays statistics. The default value is Yes.

Statistics URL

The statistics page's URL path. The complete URL is http://DNSNameStatisticsPath,
where DNSName is the associated instance's DNS name. The default StatisticsPath
value is /haproxy?stats, which corresponds to something like: http://ec2-54-245-151-7.us-
west-2.compute.amazonaws.com/haproxy?stats.

Statistics user name

The statistics page's user name, which you must provide to view the statistics page. The default
value is "opsworks".

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1083

http://haproxy.1wt.eu/

AWS OpsWorks User Guide

Statistics password

A statistics page password, which you must provide to view the statistics page. The default
value is a randomly generated string.

Health check URL

The health check URL suffix. HAProxy uses this URL to periodically call an HTTP method on
each application server instance to determine whether the instance is functioning. If the health
check fails, HAProxy stops routing traffic to the instance until it is restarted, either manually
or through auto healing. The default value for the URL suffix is "/", which corresponds to the
server instance's home page: http://DNSName/.

Health check method

An HTTP method to be used to check whether instances are functioning. The default value is
OPTIONS and you can also specify GET or HEAD. For more information, see httpchk.

Custom security groups

This setting appears if you chose to not automatically associate a built-in AWS OpsWorks Stacks
security group with your layers. You must specify which security group to associate with the
layer. Make sure that the group has the correct settings to allow traffic between layers. For more
information, see Create a New Stack.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1084

http://cbonte.github.io/haproxy-dconv/configuration-1.5.html

AWS OpsWorks User Guide

Note

Record the password for later use; AWS OpsWorks Stacks does not allow you to view the
password after you create the layer. However, you can update the password by going to the
layer's Edit page and clicking Update password on the General Settings tab.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1085

AWS OpsWorks User Guide

How the HAProxy Layer Works

By default, HAProxy does the following:

• Listens for requests on the HTTP and HTTPS ports.

You can configure HAProxy to listen on only the HTTP or HTTPS port by overriding the Chef
configuration template, haproxy.cfg.erb.

• Routes incoming traffic to instances that are members of any application server layer.

By default, AWS OpsWorks Stacks configures HAProxy to distribute traffic to instances that are
members of any application server layer. You could, for example, have a stack with both Rails
App Server and PHP App Server layers, and an HAProxy master distributes traffic to the instances
in both layers. You can configure the default routing by using a custom recipe.

• Routes traffic across multiple Availability Zones.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1086

AWS OpsWorks User Guide

If one Availability Zone goes down, the load balancer routes incoming traffic to instances in other
zones so your application continues to run without interruption. For this reason, a recommended
practice is to distribute your application servers across multiple Availability Zones.

• Periodically runs the specified health check method on each application server instance to assess
its health.

If the method does not return within a specified timeout period, the instance is presumed to
have failed and HAProxy stops routing requests to the instance. AWS OpsWorks Stacks also
provides a way to automatically replace failed instances. For more information, see Using Auto
Healing. You can change the health check method when you create the layer.

• Collects statistics and optionally displays them on a web page.

Important

For health check to work correctly with the default OPTIONS method, your app must return
a 2xx or 3xx status code.

By default, when you add an instance to a HAProxy layer, AWS OpsWorks Stacks assigns it an
Elastic IP address to represent the application, which is public to the world. Because the HAProxy
instance's Elastic IP address is the application's only publicly exposed URL, you don't have to create
and manage public domain names for the underlying application server instances. You can obtain
the address by going to the Instances page and examining the instance's public IP address, as the
following illustration shows. An address that is followed by (EIP) is an Elastic IP address. For more
information on Elastic IP addresses, see Elastic IP Addresses (EIP).

When you stop an HAProxy instance, AWS OpsWorks Stacks retains the Elastic IP address and
reassigns it to the instance when you restart it. If you delete an HAProxy instance, by default,

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1087

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

AWS OpsWorks User Guide

AWS OpsWorks Stacks deletes the instance's IP address. To retain the address, clear the Delete
instance's Elastic IP option, as shown in the following illustration.

This option affects what happens when you add a new instance to the layer to replace a deleted
instance:

• If you retained the deleted instance's Elastic IP address, AWS OpsWorks Stacks assigns the
address to the new instance.

• Otherwise, AWS OpsWorks Stacks assigns a new Elastic IP address to the instance and you must
update your DNS registrar settings to map to the new address.

When application server instances come on line or go off line—either manually or as a
consequence of automatic scaling or auto healing—the load balancer configuration must be
updated to route traffic to the current set of online instances. This task is handled automatically by
the layer's built-in recipes:

• When new instances come on line, AWS OpsWorks Stacks triggers a Configure lifecycle event.
The HAProxy layer's built-in Configure recipes update the load balancer configuration so that it
also distributes requests to any new application server instances.

• When instances go off line or an instance fails a health check, AWS OpsWorks Stacks also
triggers a Configure lifecycle event. The HAProxy Configure recipes update the load balancer
configuration to route traffic to only the remaining online instances.

Finally, you can also use a custom domain with the HAProxy layer. For more information, see Using
Custom Domains.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1088

AWS OpsWorks User Guide

Statistics Page

If you have enabled the statistics page, the HAProxy displays a page containing a variety of metrics
at the specified URL.

To view HAProxy statistics

1. Obtain the HAProxy instance's Public DNS name from the instance's Details page and copy it.

2. On the Layers page, click HAProxy to open the layer's details page.

3. Obtain the statistics URL from the layer details and append it to the Public DNS name. For
example: http://ec2-54-245-102-172.us-west-2.compute.amazonaws.com/
haproxy?stats. to it.

4. Paste the URL from the previous step into your browser and use the user name and password
that you specified when you created the layer to open the statistics page.

MySQL Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1089

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

The MySQL layer supports MySQL, a widely used relational database management system. AWS
OpsWorks Stacks installs the most recent available version, which depends on the operating
system. If you add a MySQL instance, the needed access information is provided to the application
server layers. You must write custom Chef recipes to set up master–master or master–slave
configurations.

Short name: db-master

Compatibility: A MySQL layer is compatible with the following layers: custom, lb, memcached,
monitoring-master, nodejs-app, php-app, rails-app, and web.

Open ports: A MySQL layer allows public access to port 22(SSH) and all ports from the stack's web
servers, custom servers, and Rails, PHP, and Node.js application servers.

Autoassign Elastic IP addresses: Off by default

Default EBS volume: Yes, at /vol/mysql

Default security group: AWS-OpsWorks-DB-Master-Server

Configuration: To configure a MySQL layer, you must specify the following:

• Root user password

• MySQL engine

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1090

AWS OpsWorks User Guide

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• mysql::server

• dependencies

• deploy::mysql

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

• deploy::mysql

Deploy recipes:

• deploy::default

• deploy::mysql

Shutdown recipes:

• opsworks_shutdown::default

• mysql::stop

Installation:

• AWS OpsWorks Stacks uses the instance's package installer to install MySQL and its log files to
their default locations. For more information, see MySQL Documentation.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1091

http://dev.mysql.com/doc/index.html

AWS OpsWorks User Guide

MySQL OpsWorks Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Chef 11 and earlier Linux-based stacks.

A MySQL OpsWorks layer provides a blueprint for Amazon EC2 instances that function as a MySQL
database master. A built-in recipe creates a database for each application that has been deployed
to an application server layer. For example, if you deploy a PHP application “myapp,” the recipe
creates a “myapp” database.

The MySQL layer has the following configuration settings.

MySQL root user password

(Required) The root user password.

Set root user password on every instance

(Optional) Whether the root user password is included in the stack configuration and
deployment attributes that are installed on every instance in the stack. The default setting is
Yes.

If you set this value to No, AWS OpsWorks Stacks passes the root password only to application
server instances.

Custom security groups

(Optional) A custom security group to be associated with the layer. For more information, see
Create a New Stack.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1092

http://www.mysql.com/

AWS OpsWorks User Guide

You can add one or more instances to the layer, each of which represents a separate MySQL
database master. You can then attach an instance to an app, which installs the necessary
connection information on the app's application servers. The application can then use the
connection information to connect to the instance's database server.

Application Server Layers Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks supports several different application and static web page servers.

Topics

• AWS Flow (Ruby) Layer Reference

• Java App Server Layer Reference

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1093

AWS OpsWorks User Guide

• Node.js App Server Layer Reference

• PHP App Server Layer Reference

• Rails App Server Layer Reference

• Static Web Server Layer Reference

AWS Flow (Ruby) Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

An AWS Flow (Ruby) layer provides a blueprint for instances that host Amazon Simple Workflow
Service activity and workflow workers.

Short name: aws-flow-ruby

Compatibility: An AWS Flow (Ruby) layer is compatible with PHP App Server, MySQL, Memcached,
Ganglia, and custom layers.

Open ports: None.

IAM role: aws-opsworks-ec2-role-with-swf is the standard AWS Flow (Ruby) role that AWS
OpsWorks Stacks creates for you, if requested.

Autoassign Elastic IP addresses: Off by default

Default EBS Volume: No

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1094

AWS OpsWorks User Guide

Default security group: AWS-OpsWorks-AWS-Flow-Ruby-Server

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• opsworks_aws_flow_ruby::setup

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• mysql::client

• agent_version

• opsworks_aws_flow_ruby::configure

Deploy recipes:

• deploy::default

• deploy::aws-flow-ruby

Undeploy recipes:

• deploy::aws-flow-ruby-undeploy

Shutdown recipes:

• opsworks_shutdown::default

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1095

AWS OpsWorks User Guide

Java App Server Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

A Java App Server layer supports an Apache Tomcat 7.0 application server.

Short name: java-app

Compatibility: A Java App Server layer is compatible with the following layers: custom, db-master,
and memcached.

Open ports: A Java App Server layer allows public access to ports 22 (SSH), 80 (HTTP), 443
(HTTPS), and all ports from load balancers.

Autoassign Elastic IP addresses: Off by default

Default EBS Volume: No

Default security group: AWS-OpsWorks-Java-App-Server

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1096

http://tomcat.apache.org/

AWS OpsWorks User Guide

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• opsworks_java::setup

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

• opsworks_java::configure

Deploy recipes:

• deploy::default

• deploy::java

Undeploy recipes:

• deploy::java-undeploy

Shutdown recipes:

• opsworks_shutdown::default

• deploy::java-stop

Installation:

• Tomcat installs to /usr/share/tomcat7.

• For more information about how to produce log files, see Logging in Tomcat.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1097

http://tomcat.apache.org/tomcat-6.0-doc/logging.html

AWS OpsWorks User Guide

Node.js App Server Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

A Node.js App Server layer supports a Node.js application server, which is a platform for
implementing highly scalable network application servers. Programs are written in JavaScript,
using event-driven asynchronous I/O to minimize overhead and maximize scalability.

Short name: nodejs-app

Compatibility: A Node.js App Server layer is compatible with the following layers: custom, db-
master, memcached, and monitoring-master.

Open ports: A Node.js App Server layer allows public access to ports 22 (SSH), 80 (HTTP), 443
(HTTPS), and all ports from load balancers.

Autoassign Elastic IP addresses: Off by default

Default EBS volume: No

Default security group: AWS-OpsWorks-nodejs-App-Server

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1098

http://nodejs.org/

AWS OpsWorks User Guide

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• opsworks_nodejs

• opsworks_nodejs::npm

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

• opsworks_nodejs::configure

Deploy recipes:

• deploy::default

• opsworks_nodejs

• opsworks_nodejs::npm

• deploy::nodejs

Undeploy recipes:

• deploy::nodejs-undeploy

Shutdown recipes:

• opsworks_shutdown::default

• deploy::nodejs-stop

Installation:

• Node.js installs to /usr/local/bin/node.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1099

AWS OpsWorks User Guide

• For more information about how to produce log files, see How to log in node.js on the Nodejitsu
website.

Node.js application configuration:

• The main file run by Node.js must be named server.js and reside in the root directory of the
deployed application.

• The Node.js application must be set to listen on port 80 (or port 443, if applicable).

Note

Node.js apps that run Express commonly use the following code to set the listening port,
where process.env.PORT represents the default port and resolves to 80:

app.set('port', process.env.PORT || 3000);

With AWS OpsWorks Stacks, you must explicitly specify port 80, as follows:

app.set('port', 80);

PHP App Server Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1100

https://docs.nodejitsu.com/articles/intermediate/how-to-log/

AWS OpsWorks User Guide

The PHP App Server layer supports a PHP application server by using Apache2 with mod_php.

Short name: php-app

Compatibility: A PHP App Server layer is compatible with the following layers: custom, db-master,
memcached, monitoring-master, and rails-app.

Open ports: A PHP App Server layer allows public access to ports 22 (SSH), 80 (HTTP), 443
(HTTPS), and all ports from load balancers.

Autoassign Elastic IP addresses: Off by default

Default EBS volume: No

Default security group: AWS-OpsWorks-PHP-App-Server

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• mysql::client

• dependencies

• mod_php5_apache2

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

• mod_php5_apache2::php

• php::configure

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1101

http://httpd.apache.org/

AWS OpsWorks User Guide

Deploy recipes:

• deploy::default

• deploy::php

Undeploy recipes:

• deploy::php-undeploy

Shutdown recipes:

• opsworks_shutdown::default

• apache2::stop

Installation:

• AWS OpsWorks Stacks uses the instance's package installer to install Apache2, mod_php and
the associated log files to their default locations. For more information about installation, see
Apache. For more information about logging, see Log Files.

Rails App Server Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1102

http://httpd.apache.org/
http://httpd.apache.org/docs/2.2/logs.html

AWS OpsWorks User Guide

The Rails App Server layer supports a Ruby on Rails application server.

Short name: rails-app

Compatibility: A Rails App Server layer is compatible with the following layers: custom, db-master,
memcached, monitoring-master, php-app.

Ports: A Rails App Server layer allows public access to ports 22(SSH), 80 (HTTP), 443 (HTTPS), and
all ports from load balancers.

Autoassign Elastic IP addresses: Off by default

Default EBS volume: No

Default security group: AWS-OpsWorks-Rails-App-Server

Configuration: To configure a Rails App Server layer, you must specify the following:

• Ruby version

• Rails stack

• Rubygems version

• Whether to install and manage Bundler

• The Bundler version

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• apache2 apache2::mod_deflate

• passenger_apache2

• passenger_apache2::mod_rails

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1103

http://rubyonrails.org/
http://gembundler.com/

AWS OpsWorks User Guide

• passenger_apache2::rails

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

• rails::configure

Deploy recipes:

• deploy::default

• deploy::rails

Undeploy recipes:

• deploy::rails-undeploy

Shutdown recipes:

• opsworks_shutdown::default

• apache2::stop

Installation:

• AWS OpsWorks Stacks uses the instance's package installer to install Apache2 with
mod_passenger, mod_rails, and the associated log files to their default locations. For more
information about installation, see Phusion Passenger. For more information about logging, see
Log Files.

Static Web Server Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1104

https://www.phusionpassenger.com/
http://httpd.apache.org/docs/2.2/logs.html

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

The Static Web Server layer serves static HTML pages, which can include client-side code such as
JavaScript. It is based on Nginx, which is an open source HTTP, reverse proxy, and mail proxy server.

Short name: web

Compatibility: A Static Web Server layer is compatible with the following layers: custom, db-
master, memcached.

Open ports: A Static Web Server layer allows public access to ports 22(SSH), 80 (HTTP), 443
(HTTPS), and all ports from load balancers.

Autoassign Elastic IP addresses: Off by default

Default EBS volume: No

Default security group: AWS-OpsWorks-Web-Server

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• nginx

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1105

http://nginx.org/en/

AWS OpsWorks User Guide

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

Deploy recipes:

• deploy::default

• deploy::web

Undeploy recipes:

• deploy::web-undeploy

Shutdown recipes:

• opsworks_shutdown::default

• nginx::stop

Installation:

• Nginx installs to /usr/sbin/nginx.

• Nginx log files are in /var/log/nginx.

Application Server Layers

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1106

AWS OpsWorks User Guide

Note

These layers are available only for Chef 11 and earlier Linux-based stacks.

AWS OpsWorks Stacks supports several different application servers, where "application" includes
static web pages. Each type of server has a separate AWS OpsWorks Stacks layer, with built-in
recipes that handle installing the application server and any related packages on each of the
layer's instances, deploying apps, and so on. For example, the Java App Server layer installs several
packages—including Apache, Tomcat, and OpenJDK—and deploys Java apps to each of the layer's
instances.

The following is the basic procedure for using an application server layers:

1. Create one of the available App Server layer types.

2. Add one or more instances to the layer.

3. Create apps and deploy them to the instances. For more information, see Apps.

4. (Optional) If the layer has multiple instances, you can add a load balancer, which distributes
incoming traffic across the instances. For more information, see HAProxy AWS OpsWorks Stacks
Layer.

Topics

• AWS Flow (Ruby) Layer

• Java App Server AWS OpsWorks Stacks Layer

• Node.js App Server AWS OpsWorks Stacks Layer

• PHP App Server AWS OpsWorks Stacks Layer

• Rails App Server AWS OpsWorks Stacks Layer

• Static Web Server AWS OpsWorks Stacks Layer

AWS Flow (Ruby) Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1107

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

An AWS Flow (Ruby) layer is an AWS OpsWorks Stacks layer that provides a blueprint for instances
that host Amazon SWF activity and workflow workers. The workers are implemented by using the
AWS Flow Framework for Ruby, which is a programming framework that simplifies the process of
implementing a distributed asynchronous application while providing all the benefits of Amazon
SWF. It is ideal for implementing applications to address a broad range of scenarios, including
business processes, media encoding, long-running tasks, and background processing.

The AWS Flow (Ruby) layer includes the following configuration settings.

RubyGems version

The framework's Gem version.

Bundler version

The Bundler version.

EC2 Instance profile

A user-defined Amazon EC2 instance profile to be used by the layer's instances. This profile
must grant permissions for applications running on the layer's instances to access Amazon SWF.

If your account does not have an appropriate profile, you can select New profile with SWF access
to have AWS OpsWorks Stacks update the profile for or you can update it yourself by using the IAM
console. You can then use the updated profile for all subsequent AWS Flow layers. The following is
a brief description of how to create the profile by using the IAM console. For more information, see
Identity and Access Management in Amazon Simple Workflow Service.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1108

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-welcome.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowguide/welcome.html
http://bundler.io/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dev-iam.html

AWS OpsWorks User Guide

Creating a profile for AWS Flow (Ruby) instances

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Policies in the navigation pane and choose Create policy to create a new customer-
managed policy.

3. For Service, choose SWF.

4. For Actions, choose All SWF actions (swf:*).

5. For Amazon Resource Name (ARN), enter the ARN that specifies which Amazon SWF domains
the workers can access. Choose All resources to provide access to all domains.

6. Choose Next.

7. Optionally, enter a tag to identify the policy.

8. Choose Next.

9. When you are finished, choose Create policy.

10. Choose Roles in the navigation pane and choose Create role.

11. Specify the role name and choose Next Step. You cannot change the name after the role has
been created.

12. Choose AWS service and then choose EC2.

13. Choose Next.

14. From the Permissions policies list, choose the policy that you created earlier.

15. Choose Next.

16. Enter a role name and choose Create role. You cannot change the name after the role has
been created.

17. Specify this profile when you create an AWS Flow (Ruby) layer in AWS OpsWorks Stacks.

Java App Server AWS OpsWorks Stacks Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1109

https://console.aws.amazon.com/iam/

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

The Java App Server layer is an AWS OpsWorks Stacks layer that provides a blueprint for instances
that function as Java application servers. This layer is based on Apache Tomcat 7.0 and Open JDK
7. AWS OpsWorks Stacks also installs the Java connector library, which allows Java apps to use a
JDBC DataSource object to connect to a back end data store.

Installation: Tomcat is installed in /usr/share/tomcat7.

The Add Layer page provides the following configuration options:

Java VM Options

You can use this setting to specify custom Java VM options; there are no default options.
For example, a common set of options is -Djava.awt.headless=true -Xmx128m -XX:
+UseConcMarkSweepGC. If you use Java VM Options, make sure that you pass a valid set of
options; AWS OpsWorks Stacks does not validate the string. If you attempt to pass an invalid
option, the Tomcat server typically fails to start, which causes setup to fail. If that happens, you
can examine the instance's setup Chef log for details. For more information on how to view and
interpret Chef logs, see Chef Logs.

Custom security groups

This setting appears if you chose to not automatically associate a built-in AWS OpsWorks Stacks
security group with your layers. You must specify which security group to associate with the
layer. For more information, see Create a New Stack.

Elastic Load Balancer

You can attach an Elastic Load Balancing load balancer to the layer's instances. For more
information, see Elastic Load Balancing Layer.

You can specify other configuration settings by using custom JSON or a custom attributes file. For
more information, see Custom Configuration.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1110

http://tomcat.apache.org/
http://openjdk.java.net/
http://openjdk.java.net/

AWS OpsWorks User Guide

Important

If your Java application uses SSL, we recommend that you disable SSLv3 if possible
to address the vulnerabilities described in CVE-2014-3566. For more information, see
Disabling SSLv3 for Apache Servers.

Topics

• Disabling SSLv3 for Apache Servers

• Custom Configuration

• Deploying Java Apps

Disabling SSLv3 for Apache Servers

To disable SSLv3, you must modify the Apache server's ssl.conf file's SSLProtocol setting.
To do so, you must override the built-in apache2 cookbook's ssl.conf.erb template file, which
the Java App Server layer's Setup recipes use to create ssl.conf. The details depend on which
operating system you specify for the layer's instances. The following summarizes the required
modifications for Amazon Linux and Ubuntu systems. SSLv3 is automatically disabled for Red Hat
Enterprise Linux (RHEL) systems. For more information on how to override a built-in template, see
Using Custom Templates.

Amazon Linux

The ssl.conf.erb file for these operating systems is in the apache2 cookbook's apache2/
templates/default/mods directory. The following shows the relevant part of the built-in
file.

...
#SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

enable only secure protocols: SSLv3 and TLSv1.2, but not SSLv2
SSLProtocol all -SSLv2
</IfModule>

Override ssl.conf.erb and modify the SSLProtocol setting as follows.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1111

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.10/apache2

AWS OpsWorks User Guide

...
#SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

enable only secure protocols: SSLv3 and TLSv1.2, but not SSLv2
SSLProtocol all -SSLv3 -SSLv2
</IfModule>

Ubuntu 14.04 LTS

The ssl.conf.erb file for this operating system is in the apache2 cookbook's apache2/
templates/ubuntu-14.04/mods directory. The following shows the relevant part of the
built-in file.

...
The protocols to enable.
Available values: all, SSLv3, TLSv1.2
SSL v2 is no longer supported
SSLProtocol all
...

Change this setting to the following.

...
The protocols to enable.
Available values: all, SSLv3, TLSv1.2
SSL v2 is no longer supported
SSLProtocol all -SSLv3 -SSLv2
...

Custom Configuration

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1112

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks exposes additional configuration settings as built-in attributes, which
are all in the opsworks_java namespace. You can use custom JSON or a custom attributes
file to override the built-in attributes and specify custom values. For example, the JVM and
Tomcat versions are represented by the built-in jvm_version and java_app_server_version
attributes, both of which are set to 7. You can use custom JSON or a custom attributes file to set
either or both to 6. The following example uses custom JSON to set both attributes to 6:

{
 "opsworks_java": {
 "jvm_version": 6,
 "java_app_server_version" : 6
 }
}

For more information, see Using Custom JSON.

Another example of custom configuration is installing a custom JDK by overriding
the use_custom_pkg_location, custom_pkg_location_url_debian, and
custom_pkg_location_url_rhel attributes.

Note

If you override the built-in cookbooks, you will need to update those components yourself.

For more information on attributes and how to override them, see Overriding Attributes. For a list
of built in attributes, see opsworks_java Attributes.

Deploying Java Apps

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1113

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The following topics describe how to deploy apps to a Java App Server layer's instances. The
examples are for JSP apps, but you can use essentially the same procedure for installing other
types of Java app.

You can deploy JSP pages from any of the supported repositories. If you want to deploy WAR
files, note that AWS OpsWorks Stacks automatically extracts WAR files that are deployed from an
Amazon S3 or HTTP archive, but not from a Git or Subversion repository. If you want to use Git or
Subversion for WAR files, you can do one of the following:

• Store the extracted archive in the repository.

• Store the WAR file in the repository and use a Chef deployment hook to extract the archive, as
described in the following example.

You can use Chef deployment hooks to run user-supplied Ruby applications on an instance at
any of four deployment stages. The application name determines the stage. The following is an
example of a Ruby application named before_migrate.rb, which extracts a WAR file that has
been deployed from a Git or Subversion repository. The name associates the application with the
Checkout deployment hook so it runs at the beginning of the deployment operation, after the code
is checked but before migration. For more information on how to use this example, see Using Chef
Deployment Hooks.

::Dir.glob(::File.join(release_path, '*.war')) do |archive_file|
 execute "unzip_#{archive_file}" do
 command "unzip #{archive_file}"
 cwd release_path
 end
end

Note

When you deploy an update to a JSP app, Tomcat might not recognize the update and
instead continue to run the existing app version. This can happen, for example, if you

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1114

AWS OpsWorks User Guide

deploy your app as a .zip file that contains only a JSP page. To ensure that Tomcat runs
the most recently deployed version, the project's root directory should include a WEB-INF
directory that contains a web.xml file. A web.xml file can contain a variety of content, but
the following is sufficient to ensure that Tomcat recognizes updates and runs the currently
deployed app version. You don't have to change the version for each update. Tomcat will
recognize the update even if the version hasn't changed.

<context-param>
 <param-name>appVersion</param-name>
 <param-value>0.1</param-value>
</context-param>

Topics

• Deploying a JSP App

• Deploying a JSP App with a Back-End Database

Deploying a JSP App

To deploy a JSP app, specify the name and repository information. You can also optionally specify
domains and SSL settings. For more information on how to create an app, see Adding Apps. The
following procedure shows how to create and deploy a simple JSP page from a public Amazon
S3 archive. For information on how to use other repository types, including private Amazon S3
archives, see Application Source.

The following example shows the JSP page, which simply displays some system information.

<%@ page import="java.net.InetAddress" %>
<html>
<body>
<%
 java.util.Date date = new java.util.Date();
 InetAddress inetAddress = InetAddress.getLocalHost();
%>
The time is
<%
 out.println(date);

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1115

AWS OpsWorks User Guide

 out.println("
Your server's hostname is "+inetAddress.getHostName());
%>

</body>
</html>

Note

The following procedure assumes that you are already familiar with the basics of creating
stacks, adding instances to layers, and so on. If you are new to AWS OpsWorks Stacks, you
should first see Getting Started with Chef 11 Linux Stacks.

To deploy a JSP page from an Amazon S3 archive

1. Create a stack with a Java App Server layer, add a 24/7 instance to the layer, and start it.

2. Copy the code to a file named simplejsp.jsp, put the file in a folder named simplejsp,
and create a .zip archive of the folder. The names are arbitrary; you can use any file or folder
names that you want. You can also use other types of archive, including gzip, bzip2, tarball, or
Java WAR file. Note that AWS OpsWorks Stacks does not support uncompressed tarballs. To
deploy multiple JSP pages, include them in the same archive.

3. Upload the archive to an Amazon S3 bucket and make the file public. Copy the file's URL for
later use . For more information on how to create buckets and upload files, go to Get Started
With Amazon Simple Storage Service.

4. Add an app to the stack and specify following settings:

• Name – SimpleJSP

• App type – Java

• Repository type – Http Archive

• Repository URL – the Amazon S3 URL of your archive file.

Use the default values for the remaining settings and then click Add App to create the app.

5. Deploy the app to the Java App Server instance.

You can now go to the app's URL and view the app. If you have not specified a domain, you can
construct a URL by using either the instance's public IP address or its public DNS name. To get an

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1116

http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html

AWS OpsWorks User Guide

instance's public IP address or public DNS name, go the AWS OpsWorks Stacks console and click
the instance's name on the Instances page to open its details page.

The rest of URL depends on the app's short name, which is a lowercase name that AWS OpsWorks
Stacks generates from the app name that you specified when you created the app. For example the
short name of SimpleJSP is simplejsp. You can get an app's short name from its details page.

• If the short name is root, you can use either http://public_DNS/appname.jsp or
http://public_IP/appname.jsp.

• Otherwise, you can use either http://public_DNS/app_shortname/appname.jsp or
http://public_IP/app_shortname/appname.jsp.

If you have specified a domain for the app, the URL is http://domain/appname.jsp.

The URL for the example would be something like http://192.0.2.0/simplejsp/
simplejsp.jsp.

If you want to deploy multiple apps to the same instance, you should not use root as a short
name. This can cause URL conflicts that prevent the app from working properly. Instead, assign a
different domain name to each app.

Deploying a JSP App with a Back-End Database

JSP pages can use a JDBC DataSource object to connect to a back end database. You create and
deploy such an app by using the procedure in the previous section, with one additional step to set
up the connection.

The following JSP page shows how to connect to a DataSource object.

<html>
 <head>
 <title>DB Access</title>
 </head>
 <body>
 <%@ page language="java" import="java.sql.*,javax.naming.*,javax.sql.*" %>
 <%
 StringBuffer output = new StringBuffer();
 DataSource ds = null;
 Connection con = null;
 Statement stmt = null;

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1117

AWS OpsWorks User Guide

 ResultSet rs = null;
 try {
 Context initCtx = new InitialContext();
 ds = (DataSource) initCtx.lookup("java:comp/env/jdbc/mydb");
 con = ds.getConnection();
 output.append("Databases found:
");
 stmt = con.createStatement();
 rs = stmt.executeQuery("show databases");
 while (rs.next()) {
 output.append(rs.getString(1));
 output.append("
");
 }
 }
 catch (Exception e) {
 output.append("Exception: ");
 output.append(e.getMessage());
 output.append("
");
 }
 finally {
 try {
 if (rs != null) {
 rs.close();
 }
 if (stmt != null) {
 stmt.close();
 }
 if (con != null) {
 con.close();
 }
 }
 catch (Exception e) {
 output.append("Exception (during close of connection): ");
 output.append(e.getMessage());
 output.append("
");
 }
 }
 %>
 <%= output.toString() %>
 </body>
</html>

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1118

AWS OpsWorks User Guide

AWS OpsWorks Stacks creates and initializes the DataSource object, binds it to a logical name,
and registers the name with a Java Naming and Directory Interface (JNDI) naming service. The
complete logical name is java:comp/env/user-assigned-name. You must specify the user-
assigned part of the name by adding custom JSON attributes to the stack configuration and
deployment attributes to define the ['opsworks_java']['datasources'] attribute, as
described in the following.

To deploy a JSP page that connects to a MySQL database

1. Create a stack with a Java App Server layer, add 24/7 instances to each layer, and start it.

2. Add a database layer to the stack. The details depend on which database you use.

To use a MySQL instance for the example, add a MySQL layer to the stack, add a 24/7 instance
to the layer, and start it.

To use an Amazon RDS (MySQL) instance for the example:

• Specify a MySQL database engine for the instance.

• Assign the AWS-OpsWorks-DB-Master-Server (security_group_id) and AWS-
OpsWorks-Java-App-Server (security_group_id) security groups to the instance. AWS
OpsWorks Stacks creates these security groups for you when you create your first stack in
the region.

• Create a database named simplejspdb.

• Ensure that the master user name and password do not contain & or other characters that
could cause a Tomcat error.

In particular during startup Tomcat must parse the web app context file, which is an XML file
that includes the master password and user name. If the either string includes a & character,
the XML parser treats it as a malformed XML entity and throws a parsing exception, which
prevents Tomcat from starting. For more information about the web app context file, see
tomcat::context.

• Add a MySQL driver to the Java App Server layer.

• Register the RDS instance with your stack.

For more information about how to use Amazon RDS instances with AWS OpsWorks Stacks,
see Amazon RDS Service Layer.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1119

AWS OpsWorks User Guide

3. Copy the example code to a file named simplejspdb.jsp, put the file in a folder named
simplejspdb, and create a .zip archive of the folder. The names are arbitrary; you can use
any file or folder names that you want. You can also use other types of archive, including
gzip, bzip2, or tarball. To deploy multiple JSP pages, include them in the same archive. For
information on how to deploy apps from other repository types, see Application Source.

4. Upload the archive to an Amazon S3 bucket and make the file public. Copy the file's URL for
later use . For more information on how to create buckets and upload files, go to Get Started
With Amazon Simple Storage Service.

5. Add an app to the stack and specify following settings:

• Name – SimpleJSPDB

• App type – Java

• Data source type – OpsWorks (for a MySQL instance) or RDS (for an Amazon RDS instance).

• Database instance – The MySQL instance you created earlier, which is typically named db-
master1(mysql), or the Amazon RDS instance, which will be named DB_instance_name
(mysql).

• Database name – simplejspdb.

• Repository type – Http Archive

• Repository URL – the Amazon S3 URL of your archive file.

Use the default values for the remaining settings and then click Add App to create the app.

6. Add the following custom JSON attributes to the stack configuration attributes, where
simplejspdb is the app's short name.

{
 "opsworks_java": {
 "datasources": {
 "simplejspdb": "jdbc/mydb"
 }
 }
}

AWS OpsWorks Stacks uses this mapping to generate a context file with the necessary
database information.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1120

http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html

AWS OpsWorks User Guide

For more information on how to add custom JSON attributes to the stack configuration
attributes, see Using Custom JSON.

7. Deploy the app to the Java App Server instance.

You can now use the app's URL to view the app. For a description of how to construct the URL, see
Deploying a JSP App.

The URL for the example would be something like http://192.0.2.0/simplejspdb/
simplejspdb.jsp.

Note

The datasources attribute can contain multiple attributes. Each attribute is named with
an apps short name and set to the appropriate user-assigned part of a logical name. If you
have multiple apps, you can use separate logical names, which requires a custom JSON
something like the following.

{
 "opsworks_java": {
 "datasources": {
 "myjavaapp": "jdbc/myappdb",
 "simplejsp": "jdbc/myjspdb",
 ...
 }
 }
}

Node.js App Server AWS OpsWorks Stacks Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1121

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

The Node.js App Server layer is an AWS OpsWorks Stacks layer that provides a blueprint for
instances that function as Node.js application servers. AWS OpsWorks Stacks also installs Express,
so the layer's instances support both standard and Express applications.

Installation: Node.js is installed in /usr/local/bin/node.

The Add Layer page provides the following configuration options:

Node.js version

For a list of currently supported versions, see AWS OpsWorks Stacks operating systems.

Custom security groups

This setting appears if you chose to not automatically associate a built-in AWS OpsWorks Stacks
security group with your layers. You must specify which security group to associate with the
layer. For more information, see Create a New Stack.

Elastic Load Balancer

You can attach an Elastic Load Balancing load balancer to the layer's instances.

Important

If your Node.js application uses SSL, we recommend that you disable SSLv3 if possible to
address the vulnerabilities described in CVE-2015-8027. To do so, you must set Node.js
version to 0.12.9.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1122

http://nodejs.org/
http://expressjs.com/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8027

AWS OpsWorks User Guide

Deploying Node.js Apps

For a detailed walkthrough of how to implement a simple Node.js application for AWS OpsWorks
Stacks and deploy it to a stack, see Creating Your First Node.js Stack. In general, Node.js
applications for AWS OpsWorks Stacks should meet the following conditions:

• The main file must be named server.js and reside in the deployed application's root directory.

• Express apps must include a package.json file in the application's root directory.

• By default, the application must listen on port 80 (HTTP) or port 443 (HTTPS).

It is possible to listen on other ports, but the Node.js App Server layer's built-in security group,
AWS-OpsWorks-nodejs-App-Server, allows inbound user traffic only to ports 80, 443, and 22
(SSH). To allow inbound user traffic to other ports, create a security group with appropriate
inbound rules and assign it to the Node.js App Server layer. Do not modify inbound rules
by editing the built-in security group. Each time you create a stack, AWS OpsWorks Stacks
overwrites the built-in security groups with the standard settings, so any changes that you make
will be lost.

Note

AWS OpsWorks Stacks sets the PORT environment variable to 80 (default) or 443 (if you
enable SSL), so you can use the following code to listen for requests.

app.listen(process.env.PORT);

If you configure a Node.js app to support SSL, you must specify the key and certificates. AWS
OpsWorks Stacks puts the data for each application server instance as separate files in the /srv/
www/app_shortname/shared/config directory, as follows.

• ssl.crt – the SSL certificate.

• ssl.key – the SSL key.

• ssl.ca – the chain certificate, if you have specified one.

Your application can obtain the SSL key and certificates from those files.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1123

http://expressjs.com/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

AWS OpsWorks User Guide

PHP App Server AWS OpsWorks Stacks Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

The PHP App Server layer is an AWS OpsWorks Stacks layer that provides a blueprint for instances
that function as PHP application servers. The PHP App Server layer is based on Apache2 with
mod_php and has no standard configuration options. The PHP and Apache version depends on
which operating system you specify for the layer's instances.

Operating System PHP Version Apache Version

Amazon Linux 2018.03 5.3 2.2

Amazon Linux 2017.09 5.3 2.2

Amazon Linux 2017.03 5.3 2.2

Amazon Linux 2016.09 5.3 2.2

Amazon Linux 2016.03 5.3 2.2

Amazon Linux 2015.09 5.3 2.2

Amazon Linux 2015.03 5.3 2.2

Amazon Linux 2014.09 5.3 2.2

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1124

http://httpd.apache.org/

AWS OpsWorks User Guide

Operating System PHP Version Apache Version

Ubuntu 14.04 LTS 5.5 2.4

Installation: AWS OpsWorks Stacks uses the instance's package installer to install Apache2 and
mod_php in their default locations. For more information about installation, see Apache.

The Add Layer page provides the following configuration options:

Custom security groups

This setting appears if you chose to not automatically associate a built-in AWS OpsWorks Stacks
security group with your layers. You must specify which security group to associate with the
layer. For more information, see Create a New Stack.

Elastic Load Balancer

You can attach an Elastic Load Balancing load balancer to the layer's instances.

You can modify some Apache configuration settings by using custom JSON or a custom attributes
file. For more information, see Overriding Attributes. For a list of Apache attributes that can be
overridden, see apache2 Attributes.

For an example of how to deploy a PHP App, including how to connect the app to a backend
database, see Getting Started with Chef 11 Linux Stacks.

Important

If your PHP application uses SSL, we recommend that you disable SSLv3 if possible to
address the vulnerabilities described in CVE-2014-3566. To do so, you must modify the
SSLProtocol setting in the Apache server's ssl.conf file. For more information on how
to modify this setting, see Disabling SSLv3 for Apache Servers.

Rails App Server AWS OpsWorks Stacks Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1125

http://httpd.apache.org/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

The Rails App Server layer is an AWS OpsWorks Stacks layer that provides a blueprint for instances
that function as Rails application servers.

Installation: AWS OpsWorks Stacks uses the instance's package installer to install the server
packages in their default locations. For more information about Apache/Passenger installation, see
Phusion Passenger. For more information about logging, see Log Files. For more information about
Nginx/Unicorn installation, see Unicorn.

The Add Layer page provides the following configuration options, all of which are optional.

Ruby Version

The Ruby version that will be used by your applications. The default value is 2.3.

You can also specify your preferred Ruby version by overriding the [:opsworks]
[:ruby_version] attribute.

Note

AWS OpsWorks Stacks installs a separate Ruby package to be used by recipes and the
instance agent. For more information, see Ruby Versions.

Rails Stack

The default Rails stack is Apache2 with Phusion Passenger. You can also use Nginx with Unicorn.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1126

https://www.phusionpassenger.com/
http://httpd.apache.org/docs/2.2/logs.html
http://unicorn.bogomips.org/
http://httpd.apache.org/
https://www.phusionpassenger.com/
http://nginx.org/en/
http://unicorn.bogomips.org/

AWS OpsWorks User Guide

Note

If you use Nginx and Unicorn, you must add the unicorn gem to your app's Gemfile, as in
the following example:

source 'https://rubygems.org'
gem 'rails', '3.2.15'
...
Use unicorn as the app server
gem 'unicorn'
...

Passenger Version

If you have specified Apache2/Passenger, you must specify the Passenger version. The default
value is 5.0.28.

Rubygems Version

The default Rubygems version is 2.5.1

Install and Manage Bundler

Lets you choose whether to install and manage Bundler. The default value is Yes.

Bundler version

The default Bundler version is 1.12.5.

Custom security groups

This setting appears if you chose to not automatically associate a built-in AWS OpsWorks Stacks
security group with your layers. You must specify which security group to associate with the
layer. For more information, see Create a New Stack.

Elastic Load Balancer

You can attach an Elastic Load Balancing load balancer to the layer's instances.

You can modify some configuration settings by using custom JSON or a custom attributes file. For
more information, see Overriding Attributes. For a list of Apache, Nginx, Phusion Passenger, and
Unicorn attributes that can be overridden, see Built-in Cookbook Attributes.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1127

http://rubygems.org/
http://gembundler.com/

AWS OpsWorks User Guide

Important

If your Ruby on Rails application uses SSL, we recommend that you disable SSLv3 if
possible to address the vulnerabilities described in CVE-2014-3566. For more information,
see Disabling SSLv3 for Rails Servers.

Topics

• Disabling SSLv3 for Rails Servers

• Connecting to a Database

• Deploying Ruby on Rails Apps

Disabling SSLv3 for Rails Servers

To disable SSLv3 for Rails servers, update the layer's Ruby Version setting to 2.1 or higher, which
installs Ruby 2.1.4 or higher as the version that applications use.

• Update the layer's Ruby Version setting to 2.1 or higher.

• Update the configuration file for your Rails stack, as follows.

Apache with Phusion Passenger

Update SSLProtocol setting in the Apache server's ssl.conf file, as described in Disabling
SSLv3 for Apache Servers.

Nginx with Unicorn

Add an explicit ssl_protocols directive to the Nginx server's nginx.conf file. To disable
SSLv3, override the built-in nginx cookbook's nginx.conf.erb template file, which the Rails
App Server layer's Setup recipes use to create nginx.conf, and add the following directive:

ssl_protocols TLSv1.2;

For more information on how to configure nginx.conf, see Configuring HTTPS servers. For
more information on how to override a built-in template, see Using Custom Templates.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1128

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.10/nginx
http://nginx.org/en/docs/http/configuring_https_servers.html

AWS OpsWorks User Guide

Connecting to a Database

When you deploy an app, AWS OpsWorks Stacks creates a new database.yml file using
information from the app's deploy attributes. If you attach a MySQL or Amazon RDS instance to
the app, AWS OpsWorks Stacks adds the connection information to the deploy attributes, so that
database.yml automatically contains the correct connection data.

If an app does not have an attached database, by default, AWS OpsWorks Stacks does not add
any connection information to the deploy attributes and does not create database.yml. If you
want to use a different database, you can use custom JSON to add database attributes to the app's
deploy attributes with the connection information. The attributes are all under["deploy"]
["appshortname"]["database"], where appshortname is the app's short name, which AWS
OpsWorks Stacks generates from the app name. The values you specify in custom JSON override
any default settings. For more information, see Adding Apps.

AWS OpsWorks Stacks incorporates the following [:...][:database] attribute values into
database.yml. The required attributes depend on the particular database, but you must have a
host attribute or AWS OpsWorks Stacks will not create database.yml.

• [:adapter] (String) – The database adapter, such as mysql.

• [:database] (String) – The database name.

• [:encoding] (String) – The encoding, which is typically set to utf8.

• [:host] (String) – The host URL, such as railsexample.cdlqlk5uwd0k.us-
west-2.rds.amazonaws.com.

• [:reconnect] (Boolean) – Whether the application should reconnect if the connection no
longer exists.

• [:password] (String) – The database password.

• [:port] (Number). – The database's port number. Use this attribute to override the default port
number, which is set by is set by the adapter.

• [:username] (String) – The database user name.

The following example shows custom JSON for an app whose short name is myapp.

{
 "deploy" : {

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1129

AWS OpsWorks User Guide

 "myapp" : {
 "database" : {
 "adapter" : "adapter",
 "database" : "databasename",
 "host" : "host",
 "password" : "password",
 "port" : portnumber
 "reconnect" : true/false,
 "username" : "username"
 }
 }
 }
}

For information on how to specify custom JSON, see Using Custom JSON. To see the template used
to create database.yml (database.yml.erb), go to the built-in cookbook repository.

Deploying Ruby on Rails Apps

You can deploy Ruby on Rails apps from any of the supported repositories. The following shows
how to deploy an example Ruby on Rails app to a server running an Apache/Passenger Rails stack.
The example code is stored in a public GitHub repository, but the basic procedure is the same for
the other supported repositories. For more information on how to create and deploy apps, see
Apps. To view the example's code, which includes extensive comments, go to https://github.com/
awslabs/opsworks-demo-rails-photo-share-app.

To deploy a Ruby on Rails app from a GitHub repository

1. Create a stack with a Rails App Server layer with Apache/Passenger as the Rails stack, add a
24/7 instance to the layer, and start it.

2. After the instance is online, add an app to the stack and specify following settings:

• Name – Any name you prefer; the example uses PhotoPoll.

AWS OpsWorks Stacks uses this name for display purposes, and generates a short name for
internal use and to identify the app in the stack configuration and deployment attributes.
For example, the PhotoPoll short name is photopoll.

• App type – Ruby on Rails.

• Rails environment – The available environments are determined by the application.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1130

https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.4/rails/templates/default
https://github.com/awslabs/opsworks-demo-rails-photo-share-app
https://github.com/awslabs/opsworks-demo-rails-photo-share-app

AWS OpsWorks User Guide

The example app has three: development, test, and production. For this example,
set the environment to development. See the example code for descriptions of each
environment.

• Repository type – Any of the supported repository types. Specify Git for this example

• Repository URL – The repository that the code should be deployed from.

For this example, set the URL to git://github.com/awslabs/opsworks-demo-rails-
photo-share-app.

Use the default values for the remaining settings and then click Add App to create the app.

3. Deploy the app to the Rails App Server instance.

4. When deployment is finished, go to the Instances page and click the Rails App Server
instance's public IP address. You should see the following:

Static Web Server AWS OpsWorks Stacks Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1131

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

The Static Web Server layer is an AWS OpsWorks Stacks layer that provides a template for
instances to serve static HTML pages, which can include client-side scripting. This layer is based on
Nginx.

Installation: Nginx is installed in /usr/sbin/nginx.

The Add Layer page provides the following configuration options:

Custom security groups

This setting appears if you chose to not automatically associate a built-in AWS OpsWorks Stacks
security group with your layers. You must specify which security group to associate with the
layer. For more information, see Create a New Stack.

Elastic Load Balancer

You can attach an Elastic Load Balancing load balancer to the layer's instances.

You can modify some Nginx configuration settings by using custom JSON or a custom attributes
file. For more information, see Overriding Attributes. For a list of Apache attributes that can be
overridden, see nginx Attributes.

Important

If your web application uses SSL, we recommend that you disable SSLv3 if possible to
address the vulnerabilities described in CVE-2014-3566.
To disable SSLv3, you must modify the Nginx server's nginx.conf file. To do so, override
the built-in nginx cookbook's nginx.conf.erb template file, which the Rails App Server
layer's Setup recipes use to create nginx.conf, and add the following directive:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1132

http://nginx.org/en/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://github.com/aws/opsworks-cookbooks/tree/release-chef-11.10/nginx

AWS OpsWorks User Guide

ssl_protocols TLSv1.2;

For more information on how to configure nginx.conf, see Configuring HTTPS servers.
For more information on how to override a built-in template, see Using Custom Templates.

ECS Cluster Layer Reference

Note

This layer is available only for Linux-based stacks.

An ECS Cluster layer represents an Amazon Elastic Container Service (Amazon ECS) cluster and
simplifies cluster management.

Short name: ecs-cluster

Compatibility: An Amazon ECS service layer is compatible only with custom layers

Open ports: ECS Cluster allows public access to port 22 (SSH)

Autoassign Elastic IP addresses: Off by default

Default EBS volume: No

Default security group: AWS-OpsWorks-ECS-Cluster

Configuration: To configure an ECS Cluster layer, you must specify the following:

• Whether to assign public IP addresses or Elastic IP addresses to the container instances

• The instance profile for the container instances

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1133

http://nginx.org/en/docs/http/configuring_https_servers.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html

AWS OpsWorks User Guide

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• opsworks_ecs::setup

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• mysql::client

• agent_version

• opsworks_ecs::configure

Deploy recipes:

• deploy::default

• opsworks_ecs::deploy

Undeploy recipes:

• opsworks_ecs::undeploy

Shutdown recipes:

• opsworks_shutdown::default

• opsworks_ecs::shutdown

Installation:

• AWS OpsWorks Stacks uses the instance's package installer to install Docker to its default
locations

• The Chef log for the Setup event notes whether the Amazon ECS agent was successfully
installed. Otherwise, the logs provided by AWS OpsWorks Stacks do not include Amazon ECS

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1134

AWS OpsWorks User Guide

error log information. For more information on how to handleAmazon ECS errors, see Amazon
ECS Troubleshooting.

Custom Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If the standard layers don't suit your requirements, you can create a custom layer. A stack can have
multiple custom layers. By default, the custom layer runs a limited set of standard recipes that
support basic functionality. You then implement the layer's primary functionality by implementing
a set of custom Chef recipes for each of the appropriate lifecycle events to set up and configure the
layer's software, and so on. Custom recipes run after the standard AWS OpsWorks Stacks recipes
for each event.

Short name: User-defined; each custom layer in a stack must have a different short name

Open ports: By default, a custom server layer opens public access to ports 22(SSH), 80 (HTTP), 443
(HTTPS), and all ports from the stack's Rails and PHP application server layers

Autoassign Elastic IP Addresses: Off by default

Default EBS volume: No

Default Security Group: AWS-OpsWorks-Custom-Server

Compatibility: Custom layers are compatible with the following layers: custom, db-master, lb,
memcached, monitoring-master, nodejs-app, php-app, rails-app, and web

Configuration: To configure a custom layer, you must specify the following:

• The layer's name

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1135

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshooting.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshooting.html

AWS OpsWorks User Guide

• The layer's short name, which identifies the layer in Chef recipes and must use only a-z and
numbers

For Linux stacks, the custom layer uses the following recipes.

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

Deploy recipes:

• deploy::default

Shutdown recipes:

• opsworks_shutdown::default

Other Layers Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1136

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks also supports the following layers.

Topics

• Ganglia Layer Reference

• Memcached Layer Reference

Ganglia Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Linux-based stacks.

A Ganglia layer supports Ganglia, a distributed monitoring system that manages the storage and
visualization of instance metrics. It is designed to work with hierarchical instance topologies, which
makes it particularly useful for groups of instances. Ganglia has two basic components:

• A low-overhead client, which is installed on each instance in the stack and sends metrics to the
master.

• A master, which collects metrics from the clients and stores them on an Amazon EBS volume. It
also displays the metrics on a web page.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1137

http://ganglia.sourceforge.net/

AWS OpsWorks User Guide

AWS OpsWorks Stacks has a Ganglia monitoring agent on each instance that it manages. When you
add a Ganglia layer to your stack and start it, the Ganglia agents on each instance report metrics
to the Ganglia instance. To use Ganglia, add a Ganglia layer with one instance to the stack. You
access the data by logging in to the Ganglia backend at the master's IP address. You can provide
additional metric definitions by writing Chef recipes.

Short name: monitoring-master

Compatibility: A Ganglia layer is compatible with the following layers: custom, db-master,
memcached, php-app, rails-app.

Open ports: Load-Balancer allows public access to ports 22(SSH), 80 (HTTP), and 443 (HTTPS).

Autoassign Elastic IP addresses: Off by default

Default EBS volume: Yes, at /vol/ganglia

Default security group: AWS-OpsWorks-Monitoring-Master-Server

Configuration: To configure a Ganglia layer, you must specify the following:

• The URI that provides access to the monitoring graphs. The default value is http://DNSName/
ganglia, where DNSName is the Ganglia instance's DNS name.

• A user name and password that control access to the monitoring statistics.

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

• mysql::client

• dependencies

• ebs

• opsworks_ganglia::client

• opsworks_ganglia::server

Configure recipes:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1138

AWS OpsWorks User Guide

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

• opsworks_ganglia::configure-server

Deploy recipes:

• deploy::default

• opsworks_ganglia::configure-server

• opsworks_ganglia::deploy

Shutdown recipes:

• opsworks_shutdown::default

• apache2::stop

Installation:

• The Ganglia client is installed under: /etc/ganglia.

• The Ganglia web front end is installed under: /usr/share/ganglia-webfrontend.

• The Ganglia logtailer is installed under: /usr/share/ganglia-logtailer.

Memcached Layer Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1139

AWS OpsWorks User Guide

Note

This layer is available only for Linux-based stacks.

Memcached is a distributed memory-caching system for arbitrary data. It speed up websites by
caching strings and objects as keys and values in RAM to reduce the number of times an external
data source must be read.

To use Memcached in a stack, create a Memcached layer and add one or more instances, which
function as Memcached servers. The instances automatically install Memcached and the stack's
other instances are able to access and use the Memcached servers. If you use a Rails App Server
layer, AWS OpsWorks Stacks automatically places a memcached.yml configuration file in the
config directory of each instance in the layer. You can obtain the Memcached server and port
number from this file.

Short name: memcached

Compatibility: A Memcached layer is compatible with the following layers: custom, db-master, lb,
monitoring-master, nodejs-app, php-app, rails-app, and web.

Open ports: A Memcached layer allows public access to port 22(SSH) and all ports from the stack's
web servers, custom servers, and Rails, PHP, and Node.js application servers.

Autoassign Elastic IP addresses: Off by default

Default EBS volume: No

Default security group: AWS-OpsWorks-Memcached-Server

To configure a Memcached layer, you must specify the cache size, in MB.

Setup recipes:

• opsworks_initial_setup

• ssh_host_keys

• ssh_users

• mysql::client

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1140

http://memcached.org/

AWS OpsWorks User Guide

• dependencies

• ebs

• opsworks_ganglia::client

• memcached

Configure recipes:

• opsworks_ganglia::configure-client

• ssh_users

• agent_version

Deploy recipes:

• deploy::default

Shutdown recipes:

• opsworks_shutdown::default

• memcached::stop

Installation:

• AWS OpsWorks Stacks uses the instance's package installer to install Memcached and its log files
in their default locations.

Other Layers

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1141

AWS OpsWorks User Guide

Note

These layers are available only for Chef 11 and earlier Linux-based stacks.

AWS OpsWorks Stacks also supports the Ganglia and Memcached layers.

Topics

• Ganglia Layer

• Memcached

Ganglia Layer

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for Chef 11 and earlier Linux-based stacks.

AWS OpsWorks Stacks sends all of your instance and volume metrics to Amazon CloudWatch,
making it easy to view graphs and set alarms to help you troubleshoot and take automated action
based on the state of your resources. You can also use the Ganglia AWS OpsWorks Stacks layer for
additional application monitoring options such as storing your chosen metrics.

The Ganglia layer is a blueprint for an instance that monitors your stack by using Ganglia
distributed monitoring. A stack usually has only one Ganglia instance. The Ganglia layer includes
the following optional configuration settings:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1142

http://aws.amazon.com/documentation/cloudwatch/
http://ganglia.sourceforge.net/

AWS OpsWorks User Guide

Ganglia URL

The statistic's URL path. The complete URL is http://DNSNameURLPath, where DNSName is the
associated instance's DNS name. The default URLPath value is "/ganglia" which corresponds to
something like: http://ec2-54-245-151-7.us-west-2.compute.amazonaws.com/ganglia.

Ganglia user name

A user name for the statistics web page. You must provide the user name when you view the
page. The default value is "opsworks".

Ganglia password

A password that controls access to the statistics web page. You must provide the password
when you view the page. The default value is a randomly generated string.

Note

Record the password for later use; AWS OpsWorks Stacks does not allow you to view the
password after you create the layer. However, you can update the password by going to
the layer's Edit page and clicking Update password.

Custom security groups

This setting appears if you chose to not automatically associate a built-in AWS OpsWorks Stacks
security group with your layers. You must specify which security group to associate with the
layer. For more information, see Create a New Stack.

Elastic Load Balancer

You can attach an Elastic Load Balancing load balancer to the layer's instances.

Important

If your stack includes a Ganglia layer, we recommend that you disable SSLv3 if possible
for that layer to address the vulnerabilities described in CVE-2014-3566. To do so, you
must override the Apache server's ssl.conf.erb template to modify the SSLProtocol
setting. For details, see Disabling SSLv3 for Apache Servers.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1143

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566

AWS OpsWorks User Guide

View the Ganglia Statistics

AWS OpsWorks Stacks recipes install a low-overhead Ganglia client on every instance. If your stack
includes a Ganglia layer, the Ganglia client automatically starts reporting to the Ganglia as soon as
the instance comes on line. The Ganglia uses the client data to compute a variety of statistics and
displays the results graphically on its statistics web page.

To view Ganglia statistics

1. On the Layers page, click Ganglia to open the layer's details page.

2. In the navigation pane, click Instances. Under Ganglia, click the instance name.

3. Copy the instance's Public DNS name.

4. Use the DNS name to construct the statistics URL, which will look something like: http://
ec2-54-245-151-7.us-west-2.compute.amazonaws.com/ganglia.

5. Paste the complete URL into your browser, navigate to the page, and enter the Ganglia user
name and password to display the page. An example follows.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1144

AWS OpsWorks User Guide

Memcached

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This layer is available only for for Chef 11 and earlier Linux-based stacks.

A Memcached layer is an AWS OpsWorks Stacks layer that provides a blueprint for instances that
function as Memcached servers—a distributed memory-caching system for arbitrary data. The
Memcached layer includes the following configuration settings.

Allocated memory (MB)

(Optional) The amount of cache memory (in MB) for each of the layer's instances. The default is
512 MB.

Custom security groups

This setting appears if you chose to not automatically associate a built-in AWS OpsWorks Stacks
security group with your layers. You must specify which security group to associate with the
layer. For more information, see Create a New Stack.

Cookbook Components

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1145

http://memcached.org/

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A cookbook typically includes the following basic components:

• Attribute files contain a set of attributes that represent values to be used by the recipes and
templates.

• Template files are templates that recipes use to create other files, such as configuration files.

Template files typically let you modify the configuration file by overriding attributes—which can
be done without touching the cookbook—instead of rewriting a configuration file. The standard
practice is that whenever you expect to change a configuration file on an instance even slightly,
you should use a template file.

• Recipe files are Ruby applications that define everything that is required to configure a system,
including creating and configuring folders, installing and configuring packages, starting services,
and so on.

Cookbooks don't have to have all three components. The simpler approaches to customization
require only attribute or template files. In addition, cookbooks can optionally include other file
types, such as definitions or specs.

This section describes the three standard cookbook components. For more information, especially
about how to implement recipes, see Opscode.

Topics

• Attributes

• Templates

• Recipes

Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1146

http://www.opscode.com/chef/

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Recipes and templates depend on a variety of values, such as configuration settings. Rather than
hardcode such values directly in recipes or templates, you can create an attribute file with an
attribute that represents each value. You then use the attributes in your recipes or templates
instead of explicit values. The advantage of using attributes is that you can override their values
without touching the cookbook. For this reason, you should always use attributes to define the
following types of values:

• Values that might vary from stack to stack or with time, such as user names.

If you hardcode such values, you must change the recipe or template each time you need to
change a value. By using attributes to define these values, you can use the same cookbooks for
every stack and just override the appropriate attributes.

• Sensitive values, such as passwords or secret keys.

Putting explicit sensitive values in your cookbook can increase the risk of exposure. Instead,
define attributes with dummy values and override them to set the actual values. The best way to
override such attributes is with custom JSON. For more information, see Using Custom JSON.

For more information about attributes and how to override them, see Overriding Attributes.

The following example is a portion of an example attribute file.

...
default["apache"]["listen_ports"] = ['80','443']
default["apache"]["contact"] = 'ops@example.com'
default["apache"]["timeout"] = 120
default["apache"]["keepalive"] = 'Off'
default["apache"]["keepaliverequests"] = 100
default["apache"]["keepalivetimeout"] = 3
default["apache"]["prefork"]["startservers"] = 16
default["apache"]["prefork"]["minspareservers"] = 16
default["apache"]["prefork"]["maxspareservers"] = 32
default["apache"]["prefork"]["serverlimit"] = 400

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1147

AWS OpsWorks User Guide

default["apache"]["prefork"]["maxclients"] = 400
default["apache"]["prefork"]["maxrequestsperchild"] = 10000
...

AWS OpsWorks Stacks defines attributes by using the following syntax:

node.type["attribute"]["subattribute"]["..."]=value

You can also use colons (:), as follows:

node.type[:attribute][:subattribute][:...]=value

An attribute definition has the following components:

node.

The node. prefix is optional and usually omitted, as shown in the example.

type

The type governs whether the attribute can be overridden. AWS OpsWorks Stacks attributes
typically use one of the following types:

• default is the most commonly used type, because it allows the attribute to be overridden.

• normal defines an attribute that overrides one of the standard AWS OpsWorks Stacks attribute
values.

Note

Chef supports additional types, which aren't necessary for AWS OpsWorks Stacks but might
be useful for your project. For more information, see About Attributes.

attribute name

The attribute name uses the standard Chef node syntax, [:attribute][:subattribute]
[...]. You can use any names you like for your attributes. However, as discussed in Overriding
Attributes, custom cookbook attributes are merged into the instance's node object, along with
the attributes from the stack configuration and deployment attributes, and Chef's Ohai tool.
Commonly used configuration names such as port or user might appear in a variety of cookbooks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1148

http://docs.chef.io/attributes.html
https://docs.chef.io/ohai.html

AWS OpsWorks User Guide

To avoid name collisions, the convention is to create qualified attribute names with at least two
elements, as shown in the example. The first element should be unique and is typically based on a
product name like Apache. It is followed by one or more subattributes that identify the particular
value, such as [:user] or [:port]. You can use as many subattributes as are appropriate for your
project.

value

An attribute can be set to the following types of values:

• A string, such as default[:apache][:keepalive] = 'Off'.

• A number (without quotes) such as default[:apache][:timeout] = 120.

• A Boolean value, which can be either true or false (no quotes).

• A list of values, such as default[:apache][:listen_ports] = ['80','443']

The attribute file is a Ruby application, so you can also use node syntax and logical operators to
assign values based on other attributes. For more information about how to define attributes, see
About Attributes s. For examples of working attribute files, see the AWS OpsWorks Stacks built-in
cookbooks at https://github.com/aws/opsworks-cookbooks.

Templates

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You configure many packages by creating a configuration file and placing it in the appropriate
directory. You can include a configuration file in your cookbook and copy it to the appropriate
directory, but a more flexible approach is to have your recipes create the configuration file from
a template. One advantage of a template is that you can use attributes to define the template's
values. This allows you, for example, to modify a configuration file without touching the cookbook
by using custom JSON to override the appropriate attribute values.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1149

https://docs.chef.io/chef_overview_attributes.html
https://github.com/aws/opsworks-cookbooks

AWS OpsWorks User Guide

A template has essentially the same content and structure as the associated file. Here is an
example file, httpd.conf.

ServerRoot "<%= node[:apache][:dir] %>"
<% if node[:platform] == "debian" || node[:platform] == "ubuntu" -%>
 LockFile /var/lock/apache2/accept.lock
<% else -%>
 LockFile logs/accept.lock
<% end -%>
PidFile <%= node[:apache][:pid_file] %>
Timeout <%= node[:apache][:timeout] %>
KeepAlive <%= node[:apache][:keepalive] %>
MaxKeepAliveRequests <%= node[:apache][:keepaliverequests] %>
KeepAliveTimeout <%= node[:apache][:keepalivetimeout] %>
<IfModule mpm_prefork_module>
 StartServers <%= node[:apache][:prefork][:startservers] %>
 MinSpareServers <%= node[:apache][:prefork][:minspareservers] %>
 MaxSpareServers <%= node[:apache][:prefork][:maxspareservers] %>
 ServerLimit <%= node[:apache][:prefork][:serverlimit] %>
 MaxClients <%= node[:apache][:prefork][:maxclients] %>
 MaxRequestsPerChild <%= node[:apache][:prefork][:maxrequestsperchild] %>
</IfModule>
...

The following example is the httpd.conf file that was generated for a Ubuntu instance:

ServerRoot "/etc/httpd"
LockFile logs/accept.lock
PidFile /var/run/httpd/httpd.pid
Timeout 120
KeepAlive Off
MaxKeepAliveRequests 100
KeepAliveTimeout 3
<IfModule mpm_prefork_module>
 StartServers 16
 MinSpareServers 16
 MaxSpareServers 32
 ServerLimit 400
 MaxClients 400
 MaxRequestsPerChild 10000
</IfModule>

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1150

AWS OpsWorks User Guide

...

Much of the template's text is simply copied from the template to the httpd.conf file. However,
<%= ... %> content is handled as follows:

• Chef replaces <%= node[:attribute][:sub_attribute][:...]%> with the attribute's
value.

For example, StartServers <%= node[:apache][:prefork][:startservers] %>
becomes StartServers 16 in the httpd.conf.

• You can use <%if-%>, <%else-%>, and <%end-%> to conditionally select a value.

The example sets a different file path for accept.lock depending on the platform.

Note

You are not limited to the attributes in your cookbook's attribute files. You can use any
attribute in the instance's node object. For example, generated by a Chef tool called
Ohai and also incorporated into the node object. For more information on attributes, see
Overriding Attributes.

For more information on templates, including how to incorporate Ruby code, see About Templates.

Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Recipes are Ruby applications that define a system's configuration. They install packages, create
configuration files from templates, execute shell commands, create files and directories, and

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1151

https://docs.chef.io/ohai.html
http://docs.chef.io/templates.html

AWS OpsWorks User Guide

so on. You typically have AWS OpsWorks Stacks execute recipes automatically when a lifecycle
event occurs on the instance but you can also run them explicitly at any time by using the Execute
Recipes stack command. For more information, see About Recipes.

A recipe typically consists largely of a series of resources, each of which represents the desired state
of an aspect of the system. Each resource includes a set of attributes that define the desired state
and specify what action is to be taken. Chef associates each resource with an appropriate provider
that performs the action. For more information, see Resources and Providers Reference.

A package resource helps you manage software packages on Linux instances. The following
example installs the Apache package.

...
package 'apache2' do
 case node[:platform]
 when 'centos','redhat','fedora','amazon'
 package_name 'httpd'
 when 'debian','ubuntu'
 package_name 'apache2'
 end
 action :install
end
...

Chef uses the appropriate package provider for the platform. Resource attributes are often just
assigned a value, but you can use Ruby logical operations to perform conditional assignments. The
example uses a case operator, which uses node[:platform] to identify the instance's operating
system and sets the package_name attribute accordingly. You can insert attributes into a recipe
by using the standard Chef node syntax and Chef replaces it with the associated value. You can use
any attribute in the node object, not just your cookbook's attributes.

After determining the appropriate package name, the code segment ends with an install action,
which installs the package. Other actions for this resource include upgrade and remove. For more
information, see package.

It is often useful to break complex installation and configuration tasks into one or more subtasks,
each implemented as a separate recipe, and have your primary recipe run them at the appropriate
time. The following example shows the line of code that follows the preceding example:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1152

http://docs.chef.io/recipes.html
https://docs.chef.io/resource.html
https://docs.chef.io/chef/resources.html#id150

AWS OpsWorks User Guide

include_recipe 'apache2::service'

To have a recipe execute a child recipe, use the include_recipe keyword, followed by the recipe
name. Recipes are identified by using the standard Chef CookbookName::RecipeName syntax,
where RecipeName omits the .rb extension.

Note

An include_recipe statement effectively executes the recipe at that point in the primary
recipe. However, what actually happens is that Chef replaces each include_recipe
statement with the specified recipe's code before it executes the primary recipe.

A directory resource represents a directory, such as the one that is to contain a package's files.
The following default.rb resource creates a Linux log directory.

directory node[:apache][:log_dir] do
 mode 0755
 action :create
end

The log directory is defined in one of the cookbook's attribute files. The resource specifies the
directory's mode as 0755, and uses a create action to create the directory. For more information,
see directory. You can also use this resource with Windows instances.

The execute resource represents commands, such as shell commands or scripts. The following
example generates module.load files.

execute 'generate-module-list' do
 if node[:kernel][:machine] == 'x86_64'
 libdir = 'lib64'
 else
 libdir = 'lib'
 end
 command "/usr/local/bin/apache2_module_conf_generate.pl /usr/#{libdir}/httpd/
modules /etc/httpd/mods-available"
 action :run
end

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1153

https://docs.chef.io/chef/resources.html#directory

AWS OpsWorks User Guide

The resource first determines the CPU type. [:kernel][:machine] is another of the automatic
attributes that Chef generates to represent various system properties, the CPU type in this case. It
then specifies the command, a Perl script and uses a run action to run the script, which generates
the module.load files. For more information, see execute.

A template resource represents a file—typically a configuration file—that is to be generated from
one of the cookbook's template files. The following example creates an httpd.conf configuration
file from the apache2.conf.erb template that was discussed in Templates.

template 'apache2.conf' do
 case node[:platform]
 when 'centos','redhat','fedora','amazon'
 path "#{node[:apache][:dir]}/conf/httpd.conf"
 when 'debian','ubuntu'
 path "#{node[:apache][:dir]}/apache2.conf"
 end
 source 'apache2.conf.erb'
 owner 'root'
 group 'root'
 mode 0644
 notifies :restart, resources(:service => 'apache2')
end

The resource determines the generated file's name and location based on the instance's operating
system. It then specifies apache2.conf.erb as the template to be used to generate the file and
sets the file's owner, group, and mode. It runs the notify action to notify the service resource
that represents the Apache server to restart the server. For more information, see template.

Stack Configuration and Deployment Attributes: Linux

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1154

https://docs.chef.io/chef/resources.html#execute
https://docs.chef.io/chef/resources.html#template

AWS OpsWorks User Guide

This topic includes the most commonly used stack configuration and deployment attributes
and their associated node syntax. It is organized around the stack configuration namespace
structure that is used by Linux stacks. Note that the same attribute names are sometimes used for
different purposes, and occur in different namespaces. For example, id can refer to a stack ID, a
layer ID, an app ID, and so on, so you need the fully qualified name to use the attribute value. A
convenient way to visualize this data is as a JSON object. For examples , see Stack Configuration
and Deployment Attributes.

Note

On Linux instances, AWS OpsWorks Stacks installs this JSON object on each instance in
addition to adding the data to the node object. You can retrieve it by using the agent CLI's
get_json command.

Topics

• opsworks Attributes

• opsworks_custom_cookbooks Attributes

• dependencies Attributes

• ganglia Attributes

• mysql Attributes

• passenger Attributes

• opsworks_bundler Attributes

• deploy Attributes

• Other Top-Level Attributes

opsworks Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1155

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The opsworks element—sometimes referred to as the opsworks namespace—contains a set of
attributes that define the basic stack configuration.

Important

Overriding the attribute values in the opsworks namespace is not recommended. Doing so
can cause the built-in recipes to fail.

Topics

• applications

• instance Attributes

• layers Attributes

• rails_stack Attributes

• stack Attributes

• Other Top-level opsworks Attributes

applications

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Contains a list of embedded objects, one for each app that exists for the stack. Each embedded
object contains the following attributes that describe the application configuration.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1156

AWS OpsWorks User Guide

Note

The general node syntax for these attributes is as follows, where i specifies the instance's
zero-based list index.

node["opsworks"]["applications"]["i"]["attribute_name"]

application_type

The application's type (string). Possible values are as follows:

• php: PHP app

• rails: A Ruby on Rails app

• java: A Java app

• nodejs: A Node.js app

• web: A static HTML page

• other: All other application types

node["opsworks"]["applications"]["i"]["application_type"]

name

The user-defined display name, such as "SimplePHP" (string).

node["opsworks"]["applications"]["i"]["name"]

slug_name

A short name , which is an all-lowercase name such as "simplephp" that is generated by
OpsWorks from the app's name (string).

node["opsworks"]["applications"]["i"]["slug_name"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1157

AWS OpsWorks User Guide

instance Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The instance attribute contains a set of attributes that specify the configuration of this instance.

architecture availability_zone backends

aws_instance_id hostname id

instance_type ip layers

private_dns_name private_ip public_dns_name

region

architecture

The instance's architecture, such as "i386" (string).

node["opsworks"]["instance"]["architecture"]

availability_zone

The instance's availability zone, such as "us-west-2a" (string).

node["opsworks"]["instance"]["availability_zone"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1158

AWS OpsWorks User Guide

backends

The number of back-end web processes (string). It determines, for example, the number of
concurrent connections that HAProxy will forward to a Rails back end. The default value
depends on the instance's memory and number of cores.

node["opsworks"]["instance"]["backends"]

aws_instance_id

The EC2 instance ID (string).

node["opsworks"]["instance"]["aws_instance_id"]

hostname

The host name, such as "php-app1" (string).

node["opsworks"]["instance"]["hostname"]

id

The instance ID, which is an AWS OpsWorks Stacks-generated GUID that uniquely identifies the
instance (string).

node["opsworks"]["instance"]["id"]

instance_type

The instance type, such as "c1.medium" (string).

node["opsworks"]["instance"]["instance_type"]

ip

The public IP address (string).

node["opsworks"]["instance"]["ip"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1159

AWS OpsWorks User Guide

layers

A list of the instance's layers, which are identified by their short names, such as "lb" or "db-
master" (list of string).

node["opsworks"]["instance"]["layers"]

private_dns_name

The private DNS name (string).

node["opsworks"]["instance"]["private_dns_name"]

private_ip

The private IP address (string).

node["opsworks"]["instance"]["private_ip"]

public_dns_name

The public DNS name (string).

node["opsworks"]["instance"]["public_dns_name"]

region

The AWS region, such as "us-west-2" (string).

node["opsworks"]["instance"]["region"]

layers Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1160

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The layers attribute contains a set of layer attributes, one for each of the stack's layers, which
are named with the layer's short name, such as php-app. A stack can have at most one each of the
built-in layers, whose short names are as follows:

• db-master: MySQL layer

• java-app: Java App Server layer

• lb: HAProxy layer

• monitoring-master: Ganglia layer

• memcached: Memcached layer

• nodejs-app: Node.js App Server layer

• php-app: PHP App Server layer

• rails-app: Rails App Server layer

• web: Static Web Server layer

A stack can contain any number of custom layers, which have user-defined short names.

Each layer attribute contains the following attributes:

• id

• instances

• name

id

The layer ID, which is a GUID that is generated by OpsWorks and uniquely identifies the layer
(string).

node["opsworks"]["layers"]["layershortname"]["id"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1161

AWS OpsWorks User Guide

instances

The instances element contains a set of instance attributes, one for each of the layer's online
instances. They are named with the instance's host name, such as php-app1.

Note

The instances element contains only those instances that are in the online state when
the particular stack configuration and deployment attributes are created.

Each instance element contains the following attributes:

availability_zone aws_instance_id backends

booted_at created_at elastic_ip

instance_type ip private_ip

public_dns_name private_dns_name region

status

availability_zone

The Availability Zone, such as "us-west-2a" (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["availability_zone"]

aws_instance_id

The EC2 instance ID (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["aws_instance_id"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1162

AWS OpsWorks User Guide

backends

The number of back-end web processes (number). It determines, for example, the number
of concurrent connections that HAProxy will forward to a Rails back end. The default value
depends on the instance's memory and number of cores.

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["backends"]

booted_at

The time that the EC2 instance was booted, using the UTC yyyy-mm-dddThh:mm:ss+hh:mm
format (string). For example, "2013-10-01T08:35:22+00:00" corresponds to 8:35:22 on
Oct. 10, 2013, with no time zone offset. For more information, see ISO 8601.

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["booted_at"]

created_at

The time that the EC2 instance was created, using the UTC yyyy-mm-dddThh:mm:ss+hh:mm
format (string). For example, "2013-10-01T08:35:22+00:00" corresponds to 8:35:22 on
Oct. 10, 2013, with no time zone offset. For more information, see ISO 8601.

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["created_at"]

elastic_ip

The Elastic IP address, which is set to null if the instance does not have one (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["elastic_ip"]

instance_type

The instance type, such as "c1.medium" (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["instance_type"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1163

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

AWS OpsWorks User Guide

ip

The public IP address (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["ip"]

private_ip

The private IP address (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["private_ip"]

public_dns_name

The public DNS name (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["public_dns_name"]

private_dns_name

The private DNS name (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["private_dns_name"]

region

The AWS region, such as "us-west-2" (string).

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["region"]

status

The status (string). Possible values are as follows:

• "requested"

• "booting"

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1164

AWS OpsWorks User Guide

• "running_setup"

• "online"

• "setup_failed"

• "start_failed"

• "terminating"

• "terminated"

• "stopped"

• "connection_lost"

node["opsworks"]["layers"]["layershortname"]["instances"]["instancehostname"]
["status"]

name

The layer's name, which is used to represent the layer in the console (string). It can be user-
defined and is not necessarily unique.

node["opsworks"]["layers"]["layershortname"]["name"]

rails_stack Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

name

Specifies the rails stack, and is set to "apache_passenger" or "nginx_unicorn" (string).

node["opsworks"]["rails_stack"]["name"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1165

AWS OpsWorks User Guide

recipe

The associated recipe, which depends on whether you are using Passenger or Unicorn (string):

• Unicorn: "unicorn::rails"

• Passenger: "passenger_apache2::rails"

node["opsworks"]["rails_stack"]["recipe"]

restart_command

The restart command, which depends on whether you are using Passenger or Unicorn (string):

• Unicorn: "../../shared/scripts/unicorn clean-restart"

• Passenger: "touch tmp/restart.txt"

service

The service name, which depends on whether you are using Passenger or Unicorn (string):

• Unicorn: "unicorn"

• Passenger: "apache2"

node["opsworks"]["rails_stack"]["service"]

stack Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

stack attributes specify some aspects of the stack configuration, such as service layer
configurations.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1166

AWS OpsWorks User Guide

• elb-load-balancers

• id

• name

• rds_instances

• vpc_id

elb-load-balancers

Contains a list of embedded objects, one for each Elastic Load Balancing load balancer in the
stack. Each embedded object contains the following attributes that describe the load balancer
configuration.

Note

The general node syntax for these attributes is as follows, where i specifies the
instance's zero-based list index.

node["opsworks"]["stack"]["elb-load-balancers"]["i"]["attribute_name"]

dns_name

The load balancer's DNS name (string).

node["opsworks"]["stack"]["elb-load-balancers"]["i"]["dns_name"]

name

The load balancer's name (string).

node["opsworks"]["stack"]["elb-load-balancers"]["i"]["name"]

layer_id

The ID of the layer that the load balancer is attached to (string).

node["opsworks"]["stack"]["elb-load-balancers"]["i"]["layer_id"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1167

AWS OpsWorks User Guide

id

The stack ID (string).

node["opsworks"]["stack"]["id"]

name

The stack name (string).

node["opsworks"]["stack"]["name"]

rds_instances

Contains a list of embedded objects, one for each Amazon RDS instance that is registered
with the stack. Each embedded object contains a set of attributes that define the instance's
configuration. You specify these values when you use the Amazon RDS console or API to create
the instance. You can also use the Amazon RDS console or API to edit some of the settings after
the instance has been created. For more information, see the Amazon RDS documentation.

Note

The general node syntax for these attributes is as follows, where i specifies the
instance's zero-based list index.

node["opsworks"]["stack"]["rds_instances"]["i"]["attribute_name"]

If your stack has multiple Amazon RDS instances, the following is an example of how to use a
particular instance in a recipe.

if my_rds = node["opsworks"]["stack"]["rds_instances"].select{|rds_instance|
 rds_instance["db_instance_identifier"] == ‘db_id’ }.first
 template “/etc/rds.conf” do
 source "rds.conf.erb"
 variables :address => my_rds["address"]
 end
end

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1168

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

AWS OpsWorks User Guide

address allocated_storage arn

auto_minor_version
_upgrade

availability_zone backup_retention_period

db_instance_class db_instance_identifier db_instance_status

db_name db_parameter_groups db_security_groups

db_user engine instance_create_time

license_model multi_az option_group_memberships

port preferred_backup_window preferred_maintena
nce_window

publicly_accessible read_replica_db_instance_id
entifiers

region

status_infos vpc_security_groups

address

The instances URL, such as opsinstance.ccdvt3hwog1a.us-
west-2.rds.amazonaws.com (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["address"]

allocated_storage

The allocated storage, in GB (number).

node["opsworks"]["stack"]["rds_instances"]["i"]["allocated_storage"]

arn

The instance's ARN (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["arn"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1169

AWS OpsWorks User Guide

auto_minor_version_upgrade

Whether to automatically apply minor version upgrades (Boolean).

node["opsworks"]["stack"]["rds_instances"]["i"]["auto_minor_version_upgrade"]

availability_zone

The instance's Availability Zone, such as us-west-2a (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["availability_zone"]

backup_retention_period

The backup retention period, in days (number).

node["opsworks"]["stack"]["rds_instances"]["i"]["backup_retention_period"]

db_instance_class

The DB instance class, such as db.m1.small (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["db_instance_class"]

db_instance_identifier

The user-defined DB instance identifier (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["db_instance_identifier"]

db_instance_status

The instance's status (string). For more information, see DB Instance.

node["opsworks"]["stack"]["rds_instances"]["i"]["db_instance_status"]

db_name

The user-defined DB name (string).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1170

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.html

AWS OpsWorks User Guide

node["opsworks"]["stack"]["rds_instances"]["i"]["db_name"]

db_parameter_groups

The instance's DB parameter groups, which contains a list of embedded objects, one for
each parameter group. For more information, see Working with DB Parameter Groups. Each
object contains the following attributes:

db_parameter_group_name

The group name (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["db_parameter_groups"][j"]
["db_parameter_group_name"]

parameter_apply_status

The apply status (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["db_parameter_groups"][j"]
["parameter_apply_status"]

db_security_groups

The instance's database security groups, which contains a list of embedded objects, one
for each security group. For more information, see Working with DB Security Groups. Each
object contains the following attributes

db_security_group_name

The security group name (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["db_security_groups"][j"]
["db_security_group_name"]

status

The status (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["db_security_groups"][j"]
["status"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1171

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithSecurityGroups.html

AWS OpsWorks User Guide

db_user

The user-defined Master User name (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["db_user"]

engine

The database engine, such as mysql(5.6.13) (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["engine"]

instance_create_time

The instance creation time, such as 2014-04-15T16:13:34Z (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["instance_create_time"]

license_model

The instance's license model, such as general-public-license (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["license_model"]

multi_az

Whether multi-AZ deployment is enabled (Boolean).

node["opsworks"]["stack"]["rds_instances"]["i"]["multi_az"]

option_group_memberships

The instance's option group memberships, which contains a list of embedded objects, one
for each option group. For more information, see Working with Option Groups. Each object
contains the following attributes:

option_group_name

The group's name (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["option_group_memberships"]
[j"]["option_group_name"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1172

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithOptionGroups.html

AWS OpsWorks User Guide

status

The group's status (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["option_group_memberships"]
[j"]["status"]

port

The database server's port (number).

node["opsworks"]["stack"]["rds_instances"]["i"]["port"]

preferred_backup_window

The preferred daily backup window, such as 06:26-06:56 (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["preferred_backup_window"]

preferred_maintenance_window

The preferred weekly maintenance window, such as thu:07:13-thu:07:43 (string).

node["opsworks"]["stack"]["rds_instances"]["i"]["preferred_maintenance_window"]

publicly_accessible

Whether the database is publicly accessible (Boolean).

node["opsworks"]["stack"]["rds_instances"]["i"]["publicly_accessible"]

read_replica_db_instance_identifiers

A list of the read-replica instance identifiers (list of string). For more information, see
Working with Read Replicas.

node["opsworks"]["stack"]["rds_instances"]["i"]
["read_replica_db_instance_identifiers"]

region

The AWS region, such as us-west-2 (string).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1173

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html

AWS OpsWorks User Guide

node["opsworks"]["stack"]["rds_instances"]["i"]["region"]

status_infos

A list of status information (list of string).

node["opsworks"]["stack"]["rds_instances"]["i"]["status_infos"]

vpc_security_groups

A list of VPC security groups (list of string).

node["opsworks"]["stack"]["rds_instances"]["i"]["vpc_security_groups"]

vpc_id

The VPC id (string). This value is null if the instance is not in a VPC.

node["opsworks"]["stack"]["vpc_id"]

Other Top-level opsworks Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section contains the opsworks attributes that do not have child attributes.

activity

The activity that is associated with the attributes, such as deploy (string).

node["opsworks"]["activity"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1174

AWS OpsWorks User Guide

agent_version

The version of the instance's OpsWorks agent (string).

node["opsworks"]["agent_version"]

deploy_chef_provider

The Chef deploy provider, which influences a deployed app's directory structure (string). You can
set this attribute to one the following:

• Branch

• Revision

• Timestamped (default value)

node["opsworks"]["deploy_chef_provider"]

ruby_stack

The Ruby stack (string). The default setting is the enterprise version (ruby_enterprise). For
the MRI version, set this attribute to ruby.

node["opsworks"]["ruby_stack"]

ruby_version

The Ruby version that will be used by applications (string). You can use this attribute to specify
only the major and minor version. You must use the appropriate ["ruby"] attribute to specify
the patch version. For more information about how to specify a version, including examples,
see Ruby Versions. For complete details on how AWS OpsWorks Stacks determines the Ruby
version, see the built-in attributes file, ruby.rb.

node["opsworks"]["ruby_version"]

run_cookbook_tests

Whether to run minitest-chef-handler tests on your Chef 11.4 cookbooks (Boolean).

node["opsworks"]["run_cookbook_tests"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1175

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/ruby/attributes/ruby.rb
https://github.com/calavera/minitest-chef-handler

AWS OpsWorks User Guide

sent_at

When this command was sent to the instance (number).

node["opsworks"]["sent_at"]

deployment

If these attributes are associated with a deploy activity, deployment is set to the deployment
ID, an AWS OpsWorks Stacks-generated GUID that uniquely identifies the deployment (string).
Otherwise the attribute is set to null.

node["opsworks"]["deployment"]

opsworks_custom_cookbooks Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Contains attributes that specify the stack's custom cookbooks.

enabled

Whether custom cookbooks are enabled (Boolean).

node["opsworks_custom_cookbooks"]["enabled"]

recipes

A list of the recipes that are to be executed for this command, including custom recipes, using
the cookbookname::recipename format (list of string).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1176

AWS OpsWorks User Guide

node["opsworks_custom_cookbooks"]["recipes"]

dependencies Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Contains several attributes that are related to the update_dependencies stack command.

gem_binary

The location of the Gems binary (string).

upgrade_debs

Whether to upgrade Debs packages (Boolean).

update_debs

Whether to update Debs packages (Boolean).

ganglia Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1177

AWS OpsWorks User Guide

Contains a web attribute that contains several attributes that specify how to access the Ganglia
statistics web page:

password

The password required to access the statistics page (string).

node["ganglia"]["web"]["password"]

url

The statistics page's URL path, such as "/ganglia" (string). The complete URL is
http://DNSNameURLPath, where DNSName is the associated instance's DNS name.

node["ganglia"]["web"]["url"]

user

The user name required to access the statistics page (string).

node["ganglia"]["web"]["user"]

mysql Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Contains a set of attributes that specify the MySQL database server configuration.

clients

A list of client IP addresses (list of string).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1178

AWS OpsWorks User Guide

node["mysql"]["clients"]

server_root_password

The root password (string).

node["mysql"]["server_root_password"]

passenger Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Contains a set of attributes that specify the Phusion Passenger configuration.

gem_bin

The location of the RubyGems binaries, such as "/usr/local/bin/gem" (string).

node["passenger"]["gem_bin"]

max_pool_size

The maximum pool size (number).

node["passenger"]["max_pool_size"]

ruby_bin

The location of the Ruby binaries, such as "/usr/local/bin/ruby".

node["passenger"]["ruby_bin"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1179

AWS OpsWorks User Guide

version

The Passenger version (string).

node["passenger"]["version"]

opsworks_bundler Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Contains elements that specify Bundler support.

manage_package

Whether to install and manage Bundler (Boolean).

node["opsworks_bundler"]["manage_package"]

version

The bundler version (string).

node["opsworks_bundler"]["version"]

deploy Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1180

http://gembundler.com/

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If the attributes are associated with a Deploy event or an Execute Recipes stack command, the
deploy attribute contains an attribute for each app that was deployed, named by the app's short
name. Each app attribute contains the following attributes:

application application_type auto_bundle_on_deploy

database deploy_to domains

document_root environment_variables group

keep_releases memcached migrate

mounted_at purge_before_symlink rails_env

restart_command scm ssl_certificate

ssl_certificate_ca ssl_certificate_key ssl_support

stack symlink_before_migrate symlinks

user

application

The app's slug name, such as "simplephp" (string).

node["deploy"]["appshortname"]["application"]

application_type

The app type (string). Possible values are as follows:

• java: A Java app

• nodejs: A Node.js app

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1181

AWS OpsWorks User Guide

• php: A PHP app

• rails: A Ruby on Rails app

• web: A static HTML page

• other: All other application types

node["deploy"]["appshortname"]["application_type"]

auto_bundle_on_deploy

For Rails applications, whether to execute bundler during the deployment (Boolean).

node["deploy"]["appshortname"]["auto_bundle_on_deploy"]

database

Contains the information required to connect the app's database. If the app has an attached
a database layer, AWS OpsWorks Stacks automatically assigns the appropriate values to these
attributes.

adapter

The database adapter, such as mysql (string).

node["deploy"]["appshortname"]["database"]["adapter"]

database

The database name, which is usually the app's slug name, such as "simplephp" (string).

node["deploy"]["appshortname"]["database"]["database"]

data_source_provider

The data source: mysql or rds (string).

node["deploy"]["appshortname"]["database"]["data_source_provider"]

host

The database host's IP address (string).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1182

AWS OpsWorks User Guide

node["deploy"]["appshortname"]["database"]["host"]

password

The database password (string).

node["deploy"]["appshortname"]["database"]["password"]

port

The database port (number).

node["deploy"]["appshortname"]["database"]["port"]

reconnect

For Rails applications, whether the application should reconnect if the connection no longer
exists (Boolean).

node["deploy"]["appshortname"]["database"]["reconnect"]

username

The user name (string).

node["deploy"]["appshortname"]["database"]["username"]

deploy_to

Where the app is to be deployed to, such as "/srv/www/simplephp" (string).

node["deploy"]["appshortname"]["deploy_to"]

domains

A list of the app's domains (list of string).

node["deploy"]["appshortname"]["domains"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1183

AWS OpsWorks User Guide

document_root

The document root, if you specify a nondefault root, or null if you use the default root (string).

node["deploy"]["appshortname"]["document_root"]

environment_variables

A collection of up to twenty attributes that represent the user-specified environment variables
that have been defined for the app. For more information about how to define an app's
environment variables, see Adding Apps. Each attribute name is set to an environment variable
name and the corresponding value is set to the variable's value, so you can use the following
syntax to reference a particular value.

node["deploy"]["appshortname"]["environment_variables"]["variable_name"]

group

The app's group (string).

node["deploy"]["appshortname"]["group"]

keep_releases

The number of app deployments that AWS OpsWorks Stacks will store (number). This attribute
controls the number of times you can roll back an app. By default, it is set to the global value,
deploy_keep_releases , which has a default value of 5. You can override keep_releases to
specify the number of stored deployments for a particular application.

node["deploy"]["appshortname"]["keep_releases"]

memcached

Contains two attributes that define the memcached configuration.

host

The Memcached server instance's IP address (string).

node["deploy"]["appshortname"]["memcached"]["host"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1184

AWS OpsWorks User Guide

port

The port that the memcached server is listening on (number).

node["deploy"]["appshortname"]["memcached"]["port"]

migrate

For Rails applications, whether to run migrations (Boolean).

node["deploy"]["appshortname"]["migrate"]

mounted_at

The app's mount point, if you specify a nondefault mount point, or null if you use the default
mount point (string).

node["deploy"]["appshortname"]["mounted_at"]

purge_before_symlink

For Rails apps, an array of paths to be cleared before creating symlinks (list of string).

node["deploy"]["appshortname"]["purge_before_symlink"]

rails_env

For Rails App Server instances, the rails environment, such as "production" (string).

node["deploy"]["appshortname"]["rails_env"]

restart_command

A command to be run when the app is restarted, such as "echo 'restarting app'".

node["deploy"]["appshortname"]["restart_command"]

scm

Contains a set of attributes that specify the information that OpsWorks uses to deploy the app
from its source control repository. The attributes vary depending on the repository type.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1185

AWS OpsWorks User Guide

password

The password, for private repositories, and null for public repositories (string). For private
Amazon S3 buckets, the attribute is set to the secret key.

node["deploy"]["appshortname"]["scm"]["password"]

repository

The repository URL, such as "git://github.com/amazonwebservices/opsworks-
demo-php-simple-app.git" (string).

node["deploy"]["appshortname"]["scm"]["repository"]

revision

If the repository has multiple branches, the attribute specifies the app's branch or version,
such as "version1" (string). Otherwise it is set to null.

node["deploy"]["appshortname"]["scm"]["revision"]

scm_type

The repository type (string). Possible values are as follows:

• "git": A Git repository

• "svn": A Subversion repository

• "s3": An Amazon S3 bucket

• "archive": An HTTP archive

• "other": Another repository type

node["deploy"]["appshortname"]["scm"]["scm_type"]

ssh_key

A deploy SSH key, for accessing private Git repositories, and null for public repositories
(string).

node["deploy"]["appshortname"]["scm"]["ssh_key"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1186

AWS OpsWorks User Guide

user

The user name, for private repositories, and null for public repositories (string). For private
Amazon S3 buckets, the attribute is set to the access key.

node["deploy"]["appshortname"]["scm"]["user"]

ssl_certificate

The app's SSL certificate, if you enabled SSL support, or null otherwise (string).

node["deploy"]["appshortname"]["ssl_certificate"]

ssl_certificate_ca

If SSL is enabled, an attribute for specifying an intermediate certificate authority key or client
authentication (string).

node["deploy"]["appshortname"]["ssl_certificate_ca"]

ssl_certificate_key

The app's SSL private key, if you enabled SSL support, or null otherwise (string).

node["deploy"]["appshortname"]["ssl_certificate_key"]

ssl_support

Whether SSL is supported (Boolean).

node["deploy"]["appshortname"]["ssl_support"]

stack

Contains one Boolean attribute, needs_reload, that specifies whether to reload the app
server during deployment.

node["deploy"]["appshortname"]["stack"]["needs_reload"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1187

AWS OpsWorks User Guide

symlink_before_migrate

For Rails apps, contains symlinks that are to be created before running migrations as
"link":"target" pairs.

node["deploy"]["appshortname"]["symlink_before_migrate"]

symlinks

Contains the deployment's symlinks as "link":"target" pairs.

node["deploy"]["appshortname"]["symlinks"]

user

The app's user (string).

node["deploy"]["appshortname"]["user"]

Other Top-Level Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section contains top-level stack configuration attributes that do not have child attributes.

rails Attributes

Contains a max_pool_size attribute that specifies the server's maximum pool size (number). The
attribute value is set by AWS OpsWorks Stacks and depends on the instance type, but you can
override it by using custom JSON or a custom attribute file.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1188

AWS OpsWorks User Guide

node["rails"]["max_pool_size"]

recipes Attributes

A list of the built-in recipes that were run by this activity, using the
"cookbookname::recipename" format (list of string).

node["recipes"]

opsworks_rubygems Attributes

Contains a version element that specifies the RubyGems version (string).

node["opsworks_rubygems"]["version"]

languages Attributes

Contains an attribute for each installed language, named for the language, such as ruby. The
attribute is an object that contains an attribute, such as ruby_bin, that specifies the installation
folder, such as "/usr/bin/ruby" (string).

ssh_users Attributes

Contains a set of attributes, each of which describes one of the users that have been granted
SSH permissions. Each attribute is named with a user's Unix ID. AWS OpsWorks Stacks generates
a unique ID for each user in the 2000-4000 range, such as "2001", and creates a user with that
ID on every instance. Because AWS OpsWorks reserves the 2000-4000 range, users that you
create outside of AWS OpsWorks (by using cookbook recipes, or by importing users into AWS
OpsWorks from IAM, for example) can have UIDs that are overwritten by AWS OpsWorks Stacks
for another user. As a best practice, create users and manage their access in the AWS OpsWorks
Stacks console. If you do create users outside of AWS OpsWorks Stacks, use UnixID values
greater than 4000.

Each attribute contains the following attributes:

email

The user's e-mail address (string).

node["ssh_users"]["UnixID"]["email"]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1189

AWS OpsWorks User Guide

public_key

The user's public SSH key (string).

node["ssh_users"]["UnixID"]["public_key"]

sudoer

Whether the user has sudo permissions (Boolean).

node["ssh_users"]["UnixID"]["sudoer"]

name

The user name (string).

node["ssh_users"]["UnixID"]["name"]

Built-in Cookbook Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

Most of these attributes are available only on Linux stacks.

Most of the built-in recipes have one or more attributes files that define various settings. You
can access these settings in your custom recipes and use custom JSON to override them. You

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1190

AWS OpsWorks User Guide

typically need to access or override attributes that control the configuration of the various
server technologies that are supported by AWS OpsWorks Stacks. This section summarizes those
attributes. The complete attributes files, and the associated recipes and templates, are available at
https://github.com/aws/opsworks-cookbooks.git.

Note

All built-in recipe attributes are default type.

Topics

• apache2 Attributes

• deploy Attributes

• haproxy Attributes

• memcached Attributes

• mysql Attributes

• nginx Attributes

• opsworks_berkshelf Attributes

• opsworks_java Attributes

• passenger_apache2 Attributes

• ruby Attributes

• unicorn Attributes

apache2 Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1191

https://github.com/aws/opsworks-cookbooks.git

AWS OpsWorks User Guide

Note

These attributes are available only on Linux stacks.

The apache2 attributes specify the Apache HTTP server configuration. For more information,
see Apache Core Features. For more information on how to override built-in attributes to specify
custom values, see Overriding Attributes.

binary contact deflate_types

dir document_root group

hide_info_headers icondir init_script

keepalive keepaliverequests keepalivetimeout

lib_dir libexecdir listen_ports

log_dir logrotate Attributes pid_file

prefork Attributes serversignature servertokens

timeout traceenable user

version worker Attributes

binary

The location of the Apache binary (string). The default value is '/usr/sbin/httpd'.

node[:apache][:binary]

contact

An e-mail contact (string). The default value is a dummy address, 'ops@example.com'.

node[:apache][:contact]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1192

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/apache2/attributes/apache.rb
http://httpd.apache.org/
http://httpd.apache.org/docs/current/mod/core.html

AWS OpsWorks User Guide

deflate_types

Directs mod_deflate to enable compression for the specified Mime types, if they are
supported by the browser (list of string). The default value is as follows:

['application/javascript',
 'application/json',
 'application/x-javascript',
 'application/xhtml+xml',
 'application/xml',
 'application/xml+rss',
 'text/css',
 'text/html',
 'text/javascript',
 'text/plain',
 'text/xml']

Warning

Compression can introduce security risks. To completely disable compression, set this
attribute as follows:

node[:apache][:deflate_types] = []

node[:apache][:deflate_types]

dir

The server's root directory (string). The default values are as follows:

• Amazon Linux and Red Hat Enterprise Linux (RHEL): '/etc/httpd'

• Ubuntu: '/etc/apache2'

node[:apache][:dir]

document_root

The document root (string). The default values are as follows:

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1193

AWS OpsWorks User Guide

• Amazon Linux and RHEL: '/var/www/html'

• Ubuntu: '/var/www'

node[:apache][:document_root]

group

The group name (string). The default values are as follows:

• Amazon Linux and RHEL: 'apache'

• Ubuntu: 'www-data'

node[:apache][:group]

hide_info_headers

Whether to omit version and module information from HTTP headers ('true'/'false')
(string). The default value is 'true'.

node[:apache][:hide_info_headers]

icondir

The icon directory (string). The defaults value are as follows:

• Amazon Linux and RHEL: '/var/www/icons/'

• Ubuntu: '/usr/share/apache2/icons'

node[:apache][:icondir]

init_script

The initialization script (string). The default values are as follows:

• Amazon Linux and RHEL: '/etc/init.d/httpd'

• Ubuntu: '/etc/init.d/apache2'

node[:apache][:init_script]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1194

AWS OpsWorks User Guide

keepalive

Whether to enable keep-alive connections (string). The possible values are 'On' and 'Off'
(string). The default value is 'Off'.

node[:apache][:keepalive]

keepaliverequests

The maximum number of keep-alive requests that Apache will handle at the same time
(number). The default value is 100.

node[:apache][:keepaliverequests]

keepalivetimeout

The time that Apache waits for a request before closing the connection (number). The default
value is 3.

node[:apache][:keepalivetimeout]

lib_dir

The directory that contains the object code libraries (string). The default values are as follows:

• Amazon Linux (x86): '/usr/lib/httpd'

• Amazon Linux (x64) and RHEL: '/usr/lib64/httpd'

• Ubuntu: '/usr/lib/apache2'

node[:apache][:lib_dir]

libexecdir

The directory that contains the program executables (string). The default values are as follows:

• Amazon Linux (x86): '/usr/lib/httpd/modules'

• Amazon Linux (x64) and RHEL: '/usr/lib64/httpd/modules'

• Ubuntu: '/usr/lib/apache2/modules'

node[:apache][:libexecdir]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1195

AWS OpsWorks User Guide

listen_ports

A list of ports that the server listens to (list of string). The default value is ['80','443'].

node[:apache][:listen_ports]

log_dir

The log directory (string). The default values are as follows:

• Amazon Linux and RHEL: '/var/log/httpd'

• Ubuntu: '/var/log/apache2'

node[:apache][:log_dir]

logrotate Attributes

These attributes specify how to rotate the log files.

delaycompress

Whether to delay compressing a closed log file until the start of the next rotation cycle
('true'/'false') (string). The default value is 'true'.

node[:apache][:logrotate][:delaycompress]

group

The log files' group (string). The default value is 'adm'.

node[:apache][:logrotate][:group]

mode

The log files' mode (string). The default value is '640'.

node[:apache][:logrotate][:mode]

owner

The log files' owner (string). The default value is 'root'.

node[:apache][:logrotate][:owner]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1196

AWS OpsWorks User Guide

rotate

The number of rotation cycles before a closed log file is removed (string). The default value
is '30'.

node[:apache][:logrotate][:rotate]

schedule

The rotation schedule (string). Possible values are as follows:

• 'daily'

• 'weekly'

• 'monthly'

The default value is 'daily'.

node[:apache][:logrotate][:schedule]

pid_file

The file that contains the daemon's process ID (string). The default values are as follows:

• Amazon Linux and RHEL: '/var/run/httpd/httpd.pid'

• Ubuntu: '/var/run/apache2.pid'

node[:apache][:pid_file]

prefork Attributes

These attributes specify the pre-forking configuration.

maxclients

The maximum number of simultaneous requests that will be served (number). The default
value is 400.

Note

Use this attribute only for instances that are running Amazon Linux, or RHEL. If your
instances are running Ubuntu 14.04 LTS, use maxrequestworkers.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1197

AWS OpsWorks User Guide

node[:apache][:prefork][:maxclients]

maxrequestsperchild

The maximum number of requests that a child server process will handle (number). The
default value is 10000.

node[:apache][:prefork][:maxrequestsperchild]

maxrequestworkers

The maximum number of simultaneous requests that will be served (number). The default
value is 400.

Note

Use this attribute only for instances that are running Ubuntu 14.04 LTS. If your
instances are running Amazon Linux, or RHEL, use maxclients .

node[:apache][:prefork][:maxrequestworkers]

maxspareservers

The maximum number of idle child server processes (number). The default value is 32.

node[:apache][:prefork][:maxspareservers]

minspareservers

The minimum number of idle child server processes (number). The default value is 16.

node[:apache][:prefork][:minspareservers]

serverlimit

The maximum number of processes that can be configured (number). The default value is
400.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1198

AWS OpsWorks User Guide

node[:apache][:prefork][:serverlimit]

startservers

The number of child server processes to be created at startup (number). The default value is
16.

node[:apache][:prefork][:startservers]

serversignature

Specifies whether and how to configure a trailing footer for server-generated documents
(string). The possible values are 'On', 'Off', and 'Email'). The default value is 'Off'.

node[:apache][:serversignature]

servertokens

Specifies what type of server version information is included in the response header (string):

• 'Full': Full information. For example, Server: Apache/2.4.2 (Unix) PHP/4.2.2 MyMod/1.2

• 'Prod': Product name. For example, Server: Apache

• 'Major': Major version. For example, Server: Apache/2

• 'Minor': Major and minor version. For example, Server: Apache/2.4

• 'Min': Minimal version. For example, Server: Apache/2.4.2

• 'OS': Version with operating system. For example, Server: Apache/2.4.2 (Unix)

The default value is 'Prod'.

node[:apache][:servertokens]

timeout

The amount of time that Apache waits for I/O (number). The default value is 120.

node[:apache][:timeout]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1199

AWS OpsWorks User Guide

traceenable

Whether to enable TRACE requests (string). The possible values are 'On' and 'Off'. The
default value is 'Off'.

node[:apache][:traceenable]

user

The user name (string). The default values are as follows:

• Amazon Linux and RHEL: 'apache'

• Ubuntu: 'www-data'

node[:apache][:user]

version

The Apache version (string). The default values are as follows:

• Amazon Linux: 2.2

• Ubuntu 14.04 LTS: 2.4

• RHEL: 2.4

node[:apache][:version]

worker Attributes

These attributes specify the worker process configuration.

startservers

The number of child server processes to be created at startup (number). The default value is
4.

node[:apache][:worker][:startservers]

maxclients

The maximum number of simultaneous requests that will be served (number). The default
value is 1024.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1200

AWS OpsWorks User Guide

node[:apache][:worker][:maxclients]

maxsparethreads

The maximum number of idle threads (number). The default value is 192.

node[:apache][:worker][:maxsparethreads]

minsparethreads

The minimum number of idle threads (number). The default value is 64.

node[:apache][:worker][:minsparethreads]

threadsperchild

The number of threads per child process (number). The default value is 64.

node[:apache][:worker][:threadsperchild]

maxrequestsperchild

The maximum number of requests that a child server process will handle (number). The
default value is 10000.

node[:apache][:worker][:maxrequestsperchild]

deploy Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1201

AWS OpsWorks User Guide

The built-in deploy cookbook's deploy.rb attributes file defines the following attributes in
the opsworks namespace. For more information on deploy directories, see Deploy Recipes. For
more information on how to override built-in attributes to specify custom values, see Overriding
Attributes.

deploy_keep_releases

A global setting for the number of app deployments that AWS OpsWorks Stacks will store
(number). The default value is 5. This value controls the number of times you can roll back an
app.

node[:opsworks][:deploy_keep_releases]

group

(Linux only) The group setting for the app's deploy directory (string). The default value
depends on the instance's operating system:

• For Ubuntu instances, the default value is www-data.

• For Amazon Linux or RHEL instances that are members of a Rails App Server layer that uses
Nginx and Unicorn, the default value is nginx.

• For all other Amazon Linux or RHEL instances, the default value is apache.

node[:opsworks][:deploy_user][:group]

user

(Linux only) The user setting for the app's deploy directory (string). The default value is
deploy.

node[:opsworks][:deploy_user][:user]

haproxy Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1202

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/deploy/attributes/deploy.rb

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These attributes are available only on Linux stacks.

The haproxy attributes specify the HAProxy server configuration. For more information, see
HAProxy Docs. For more information on how to override built-in attributes to specify custom
values, see Overriding Attributes.

balance check_interval client_timeout

connect_timeout default_max_connections global_max_connections

health_check_method health_check_url queue_timeout

http_request_timeout maxcon_factor_nodejs_app maxcon_factor_node
js_app_ssl

maxcon_factor_php_app maxcon_factor_php_app_ssl maxcon_factor_rails_app

maxcon_factor_rails_app_ssl maxcon_factor_static maxcon_factor_static_ssl

retries server_timeout stats_url

stats_user

balance

The algorithm used by a load balancer to select a server (string). The default value is
'roundrobin'. The other options are:

• 'static-rr'

• 'leastconn'

• 'source'

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1203

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/haproxy/attributes/default.rb
http://haproxy.1wt.eu/
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html

AWS OpsWorks User Guide

• 'uri'

• 'url_param'

• 'hdr(name)'

• 'rdp-cookie'

• 'rdp-cookie(name)'

For more information on these arguments, see balance.

node[:haproxy][:balance]

check_interval

The health check time interval (string). The default value is '10s'.

node[:haproxy][:check_interval]

client_timeout

The maximum amount of time that a client can be inactive (string). The default value is '60s'.

node[:haproxy][:client_timeout]

connect_timeout

The maximum amount of time that HAProxy will wait for a server connection attempt to
succeed (string). The default value is '10s'.

node[:haproxy][:connect_timeout]

default_max_connections

The default maximum number of connections (string). The default value is '80000'.

node[:haproxy][:default_max_connections]

global_max_connections

The maximum number of connections (string). The default value is '80000'.

node[:haproxy][:global_max_connections]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1204

http://cbonte.github.io/haproxy-dconv/configuration-1.5.html

AWS OpsWorks User Guide

health_check_method

The health check method (string). The default value is 'OPTIONS'.

node[:haproxy][:health_check_method]

health_check_url

The URL path that is used to check servers' health (string). The default value is '/'.

node[:haproxy][:health_check_url]

queue_timeout

The maximum wait time for a free connection (string). The default value is '120s'.

node[:haproxy][:queue_timeout]

http_request_timeout

The maximum amount of time that HAProxy will wait for a complete HTTP request (string). The
default value is '30s'.

node[:haproxy][:http_request_timeout]

retries

The number of retries after server connection failure (string). The default value is '3'.

node[:haproxy][:retries]

server_timeout

The maximum amount of time that a client can be inactive (string). The default value is '60s'.

node[:haproxy][:server_timeout]

stats_url

The URL path for the statistics page (string). The default value is '/haproxy?stats'.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1205

AWS OpsWorks User Guide

node[:haproxy][:stats_url]

stats_user

The statistics page user name (string). The default value is 'opsworks'.

node[:haproxy][:stats_user]

The maxcon attributes represent a load factor multiplier that is used to compute the maximum
number of connections that HAProxy allows for backends. For example, suppose you have
a Rails app server on a small instance with a backend value of 4, which means that AWS
OpsWorks Stacks will configure four Rails processes for that instance. If you use the default
maxcon_factor_rails_app value of 7, HAProxy will handle 28 (4*7) connections to the Rails
server.

maxcon_factor_nodejs_app

The maxcon factor for a Node.js app server (number). The default value is 10.

node[:haproxy][:maxcon_factor_nodejs_app]

maxcon_factor_nodejs_app_ssl

The maxcon factor for a Node.js app server with SSL (number). The default value is 10.

node[:haproxy][:maxcon_factor_nodejs_app_ssl]

maxcon_factor_php_app

The maxcon factor for a PHP app server (number). The default value is 10.

node[:haproxy][:maxcon_factor_php_app]

maxcon_factor_php_app_ssl

The maxcon factor for a PHP app server with SSL (number). The default value is 10.

node[:haproxy][:maxcon_factor_php_app_ssl]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1206

AWS OpsWorks User Guide

maxcon_factor_rails_app

The maxcon factor for a Rails app server (number). The default value is 7.

node[:haproxy][:maxcon_factor_rails_app]

maxcon_factor_rails_app_ssl

The maxcon factor for a Rails app server with SSL (number). The default value is 7.

node[:haproxy][:maxcon_factor_rails_app_ssl]

maxcon_factor_static

The maxcon factor for a static web server (number). The default value is 15.

node[:haproxy][:maxcon_factor_static]

maxcon_factor_static_ssl

The maxcon factor for a static web server with SSL (number). The default value is 15.

node[:haproxy][:maxcon_factor_static_ssl]

memcached Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These attributes are available only on Linux stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1207

AWS OpsWorks User Guide

The memcached attributes specify the Memcached server configuration. For more information on
how to override built-in attributes to specify custom values, see Overriding Attributes.

memory max_connections pid_file

port start_command stop_command

user

memory

The maximum memory to use, in MB (number). The default value is 512.

node[:memcached][:memory]

max_connections

The maximum number of connections (string). The default value is '4096'.

node[:memcached][:max_connections]

pid_file

The file that contains the daemon's process ID (string). The default value is 'var/run/
memcached.pid'.

node[:memcached][:pid_file]

port

The port to listen on (number). The default value is 11211.

node[:memcached][:port]

start_command

The start command (string). The default value is '/etc/init.d/memcached start'.

node[:memcached][:start_command]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1208

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/memcached/attributes/default.rb
http://memcached.org/

AWS OpsWorks User Guide

stop_command

The stop command (string). The default value is '/etc/init.d/memcached stop'.

node[:memcached][:stop_command]

user

The user (string). The default value is 'nobody'.

node[:memcached][:user]

mysql Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These attributes are available only on Linux stacks.

The mysql attributes specify the MySQL master configuration. For more information, see Server
System Variables. For more information on how to override built-in attributes to specify custom
values, see Overriding Attributes.

basedir bind_address clients

conf_dir confd_dir datadir

grants_path mysql_bin mysqladmin_bin

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1209

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/mysql/attributes/server.rb
http://www.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html

AWS OpsWorks User Guide

pid_file port root_group

server_root_password socket tunable Attributes

basedir

The base directory (string). The default value is '/usr'.

node[:mysql][:basedir]

bind_address

The address that MySQL listens on (string). The default value is '0.0.0.0'.

node[:mysql][:bind_address]

clients

A list of clients (list of string).

node[:mysql][:clients]

conf_dir

The directory that contains the configuration file (string). The default values are as follows:

• Amazon Linux and RHEL: '/etc'

• Ubuntu: '/etc/mysql'

node[:mysql][:conf_dir]

confd_dir

The directory that contains additional configuration files (string). The default value is '/etc/
mysql/conf.d'.

node[:mysql][:confd_dir]

datadir

The data directory (string). The default value is '/var/lib/mysql'.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1210

AWS OpsWorks User Guide

node[:mysql][:datadir]

grants_path

The grant table location (string). The default value is '/etc/mysql_grants.sql'.

node[:mysql][:grants_path]

mysql_bin

The mysql binaries location (string). The default value is '/usr/bin/mysql'.

node[:mysql][:mysql_bin]

mysqladmin_bin

The mysqladmin location (string). The default value is '/usr/bin/mysqladmin'.

node[:mysql][:mysqladmin_bin]

pid_file

The file that contains the daemon's process ID (string). The default value is '/var/run/
mysqld/mysqld.pid'.

node[:mysql][:pid_file]

port

The port that the server listens on (number). The default value is 3306.

node[:mysql][:port]

root_group

The root group (string). The default value is 'root'.

node[:mysql][:root_group]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1211

AWS OpsWorks User Guide

server_root_password

The server's root password (string). The default value is randomly generated.

node[:mysql][:server_root_password]

socket

The location of the socket file (string). The default value is '/var/lib/mysql/mysql.sock'.
The default values are as follows:

• Amazon Linux and RHEL: '/var/lib/mysql/mysql.sock'

• Ubuntu: '/var/run/mysqld/mysqld.sock'

node[:mysql][:socket]

tunable Attributes

The tunable attributes are used for performance tuning.

back_log innodb_additional_
mem_pool_size

innodb_buffer_pool_size

innodb_flush_log_a
t_trx_commit

innodb_lock_wait_timeout key_buffer

log_slow_queries long_query_time max_allowed_packet

max_connections max_heap_table_size net_read_timeout

net_write_timeout query_cache_limit query_cache_size

query_cache_type thread_cache_size thread_stack

wait_timeout table_cache

back_log

The maximum number of outstanding requests (string). The default value is '128'.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1212

AWS OpsWorks User Guide

node[:mysql][:tunable][:back_log]

innodb_additional_mem_pool_size

The size of the pool that Innodb uses to store internal data structures (string). The default
value is '20M'.

node[:mysql][:tunable][:innodb_additional_mem_pool_size]

innodb_buffer_pool_size

The Innodb buffer pool size (string). The attribute value is set by AWS OpsWorks Stacks and
depends on the instance type, but you can override it by using custom JSON or a custom
attribute file.

node[:mysql][:tunable][:innodb_buffer_pool_size]

innodb_flush_log_at_trx_commit

How often Innodb flushes the log buffer (string). The default value is '2'. For more
information, see innodb_flush_log_at_trx_commit.

node[:mysql][:tunable][:innodb_flush_log_at_trx_commit]

innodb_lock_wait_timeout

The maximum amount of time, in seconds, that an Innodb transaction waits for a row lock
(string). The default value is '50'.

node[:mysql][:tunable][:innodb_lock_wait_timeout]

key_buffer

The index buffer size (string). The default value is '250M'.

node[:mysql][:tunable][:key_buffer]

log_slow_queries

The location of the slow-query log file (string). The default value is '/var/log/mysql/
mysql-slow.log'.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1213

http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html

AWS OpsWorks User Guide

node[:mysql][:tunable][:log_slow_queries]

long_query_time

The time, in seconds, required to designate a query as a long query (string). The default
value is '1'.

node[:mysql][:tunable][:long_query_time]

max_allowed_packet

The maximum allowed packet size (string). The default value is '32M'.

node[:mysql][:tunable][:max_allowed_packet]

max_connections

The maximum number of concurrent client connections (string). The default value is
'2048'.

node[:mysql][:tunable][:max_connections]

max_heap_table_size

The maximum size of user-created MEMORY tables (string). The default value is '32M'.

node[:mysql][:tunable][:max_heap_table_size]

net_read_timeout

The amount of time, in seconds, to wait for more data from a connection (string). The
default value is '30'.

node[:mysql][:tunable][:net_read_timeout]

net_write_timeout

The amount of time, in seconds, to wait for a block to be written to a connection (string).
The default value is '30'.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1214

AWS OpsWorks User Guide

node[:mysql][:tunable][:net_write_timeout]

query_cache_limit

The maximum size of an individual cached query (string). The default value is '2M'.

node[:mysql][:tunable][:query_cache_limit]

query_cache_size

The query cache size (string). The default value is '128M'.

node[:mysql][:tunable][:query_cache_size]

query_cache_type

The query cache type (string). The possible values are as follows:

• '0': No caching or retrieval of cached data.

• '1': Cache statements that don't begin with SELECT SQL_NO_CACHE.

• '2': Cache statements that begin with SELECT SQL_CACHE.

The default value is '1'.

node[:mysql][:tunable][:query_cache_type]

thread_cache_size

The number of client threads that are cached for re-use (string). The default value is '8'.

node[:mysql][:tunable][:thread_cache_size]

thread_stack

The stack size for each thread (string). The default value is '192K'.

node[:mysql][:tunable][:thread_stack]

wait_timeout

The amount of time, in seconds, to wait on a noninteractive connection. The default value is
'180' (string).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1215

AWS OpsWorks User Guide

node[:mysql][:tunable][:wait_timeout]

table_cache

The number of open tables (string). The default value is '2048'.

node[:mysql][:tunable][:table_cache]

nginx Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These attributes are available only on Linux stacks.

The nginx attributes specify the Nginx configuration. For more information, see Directive
Index. For more information on how to override built-in attributes to specify custom values, see
Overriding Attributes.

binary dir gzip

gzip_comp_level gzip_disable gzip_http_version

gzip_proxied gzip_static gzip_types

gzip_vary keepalive keepalive_timeout

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1216

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/nginx/attributes/nginx.rb
http://wiki.nginx.org/Main
http://wiki.nginx.org/DirectiveIndex
http://wiki.nginx.org/DirectiveIndex

AWS OpsWorks User Guide

log_dir user server_names_hash_bucket_si
ze

worker_processes worker_connections

binary

The location of the Nginx binaries (string). The default value is '/usr/sbin/nginx'.

node[:nginx][:binary]

dir

The location of files such as configuration files (string). The default value is '/etc/nginx'.

node[:nginx][:dir]

gzip

Whether gzip compression is enabled (string). The possible values are 'on' and 'off'. The
default value is 'on'.

Warning

Compression can introduce security risks. To completely disable compression, set this
attribute as follows:

node[:nginx][:gzip] = 'off'

node[:nginx][:gzip]

gzip_comp_level

The compression level, which can range from 1–9, with 1 corresponding to the least
compression (string). The default value is '2'.

node[:nginx][:gzip_comp_level]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1217

AWS OpsWorks User Guide

gzip_disable

Disables gzip compression for specified user agents (string). The value is a regular expression
and the default value is 'MSIE [1-6].(?!.*SV1)'.

node[:nginx][:gzip_disable]

gzip_http_version

Enables gzip compression for a specified HTTP version (string). The default value is '1.0'.

node[:nginx][:gzip_http_version]

gzip_proxied

Whether and how to compress the response to proxy requests, which can take one of the
following values (string):

• 'off': do not compress proxied requests

• 'expired': compress if the Expire header prevents caching

• 'no-cache': compress if the Cache-Control header is set to "no-cache"

• 'no-store': compress if the Cache-Control header is set to "no-store"

• 'private': compress if the Cache-Control header is set to "private"

• 'no_last_modified': compress if Last-Modified is not set

• 'no_etag': compress if the request lacks an ETag header

• 'auth': compress if the request includes an Authorization header

• 'any': compress all proxied requests

The default value is 'any'.

node[:nginx][:gzip_proxied]

gzip_static

Whether the gzip static module is enabled (string). The possible values are 'on' and 'off'.
The default value is 'on'.

node[:nginx][:gzip_static]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1218

AWS OpsWorks User Guide

gzip_types

A list of MIME types to be compressed (list of string). The default value is ['text/plain',
'text/html', 'text/css', 'application/x-javascript', 'text/xml',
'application/xml', 'application/xml+rss', 'text/javascript'].

node[:nginx][:gzip_types]

gzip_vary

Whether to enable a Vary:Accept-Encoding response header (string). The possible values
are 'on' and 'off'. The default value is 'on'.

node[:nginx][:gzip_vary]

keepalive

Whether to enable a keep-alive connection (string). The possible values are 'on' and 'off'.
The default value is 'on'.

node[:nginx][:keepalive]

keepalive_timeout

The maximum amount of time, in seconds, that a keep-alive connection remains open (number).
The default value is 65.

node[:nginx][:keepalive_timeout]

log_dir

The location of the log files (string). The default value is '/var/log/nginx'.

node[:nginx][:log_dir]

user

The user (string). The default values are as follows:

• Amazon Linux and RHEL: 'www-data'

• Ubuntu: 'nginx'

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1219

AWS OpsWorks User Guide

node[:nginx][:user]

server_names_hash_bucket_size

The bucket size for hash tables of server names, which can be set to 32, 64, or 128 (number).
The default value is 64.

node[:nginx][:server_names_hash_bucket_size]

worker_processes

The number of worker processes (number). The default value is 10.

node[:nginx][:worker_processes]

worker_connections

The maximum number of worker connections (number). The default value is 1024. The
maximum number of clients is set to worker_processes * worker_connections.

node[:nginx][:worker_connections]

opsworks_berkshelf Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These attributes are available only on Linux stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1220

AWS OpsWorks User Guide

The opsworks_berkshelf attributes specify the Berkshelf configuration. For more information,
see Berkshelf. For more information on how to override built-in attributes to specify custom values,
see Overriding Attributes.

debug

Whether to include Berkshelf debugging information in the Chef log (Boolean). The default
value is false.

node['opsworks_berkshelf]['debug']

opsworks_java Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These attributes are available only on Linux stacks.

The opsworks_java attributes specify the Tomcat server configuration. For more information,
see Apache Tomcat Configuration Reference. For more information on how to override built-in
attributes to specify custom values, see Overriding Attributes.

datasources java_app_server_version java_shared_lib_dir

jvm_pkg Attributes custom_pkg_location_url_deb
ian

java_home_basedir

custom_pkg_location_url_rhel use_custom_pkg_location jvm_options

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1221

https://github.com/aws/opsworks-cookbooks/blob/master-chef-11.10/opsworks_berkshelf/attributes/default.rb
http://berkshelf.com/
https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/opsworks_java/attributes/default.rb
http://tomcat.apache.org/
http://tomcat.apache.org/tomcat-5.5-doc/config/

AWS OpsWorks User Guide

jvm_version tomcat Attributes

datasources

A set of attributes that define JNDI resource names (string). For more information on how to
use this attribute, see Deploying a JSP App with a Back-End Database. The default value is an
empty hash, which can be filled with custom mappings between app short names and JNDI
names. For more information, see Deploying a JSP App with a Back-End Database.

node['opsworks_java']['datasources']

java_app_server_version

The Java app server version (number). The default value is 7. You can override this attribute to
specify version 6. If you install a nondefault JDK, this attribute is ignored.

node['opsworks_java']['java_app_server_version']

java_shared_lib_dir

The directory for the Java shared libraries (string). The default value is /usr/share/java.

node['opsworks_java']['java_shared_lib_dir']

jvm_pkg Attributes

A set of attributes that you can override to install a nondefault JDK.

use_custom_pkg_location

Whether to install a custom JDK instead of OpenJDK (Boolean). The default value is false.

node['opsworks_java']['jvm_pkg']['use_custom_pkg_location']

custom_pkg_location_url_debian

The location of the JDK package to be installed on Ubuntu instances (string). The default
value is 'http://aws.amazon.com/', which is simply an initialization value with no
proper meaning. If you want to install a nondefault JDK, you must override this attribute
and set it to the appropriate URL.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1222

AWS OpsWorks User Guide

node['opsworks_java']['jvm_pkg']['custom_pkg_location_url_debian']

custom_pkg_location_url_rhel

The location of the JDK package to be installed on Amazon Linux and RHEL instances
(string). The default value is 'http://aws.amazon.com/', which is simply an initialization
value with no proper meaning. If you want to install a nondefault JDK, you must override
this attribute and set it to the appropriate URL.

node['opsworks_java']['jvm_pkg']['custom_pkg_location_url_rhel']

java_home_basedir

The directory that the JDK package will be extracted to (string). The default value is /usr/
local. You do not need to specify this setting for RPM packages; they include a complete
directory structure.

node['opsworks_java']['jvm_pkg']['java_home_basedir']

jvm_options

The JVM command line options, which allow you to specify settings such as the heap size
(string). A common set of options is -Djava.awt.headless=true -Xmx128m -XX:
+UseConcMarkSweepGC. The default value is no options.

node['opsworks_java']['jvm_options']

jvm_version

The OpenJDK version (number). The default value is 7. You can override this attribute to specify
OpenJDK version 6. If you install a nondefault JDK, this attribute is ignored.

node['opsworks_java']['jvm_version']

tomcat Attributes

A set of attributes that you can override to install the default Tomcat configuration.

ajp_port apache_tomcat_bind_mod apache_tomcat_bind_path

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1223

AWS OpsWorks User Guide

auto_deploy connection_timeout mysql_connector_jar

port secure_port shutdown_port

threadpool_max_threads threadpool_min_spa
re_threads

unpack_wars

uri_encoding use_ssl_connector use_threadpool

userdatabase_pathname

ajp_port

The AJP port (number). The default value is 8009.

node['opsworks_java']['tomcat]['ajp_port']

apache_tomcat_bind_mod

The proxy module (string). The default value is proxy_http. You can override this attribute
to specify the AJP proxy module, proxy_ajp.

node['opsworks_java']['tomcat]['apache_tomcat_bind_mod']

apache_tomcat_bind_path

The Apache-Tomcat bind path (string). The default value is /. You should not override this
attribute; changing the bind path can cause the application to stop working.

node['opsworks_java']['tomcat]['apache_tomcat_bind_path']

auto_deploy

Whether to autodeploy (Boolean). The default value is true.

node['opsworks_java']['tomcat]['auto_deploy']

connection_timeout

The connection timeout, in milliseconds (number). The default value is 20000 (20 seconds).

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1224

AWS OpsWorks User Guide

node['opsworks_java']['tomcat]['connection_timeout']

mysql_connector_jar

The MySQL connector library's JAR file (string). The default value is mysql-connector-
java.jar.

node['opsworks_java']['tomcat]['mysql_connector_jar']

port

The standard port (number). The default value is 8080.

node['opsworks_java']['tomcat]['port']

secure_port

The secure port (number). The default value is 8443.

node['opsworks_java']['tomcat]['secure_port']

shutdown_port

The shutdown port (number). The default value is 8005.

node['opsworks_java']['tomcat]['shutdown_port']

threadpool_max_threads

The maximum number of threads in the thread pool (number). The default value is 150.

node['opsworks_java']['tomcat]['threadpool_max_threads']

threadpool_min_spare_threads

The minimum number of spare threads in the thread pool (number). The default value is 4.

node['opsworks_java']['tomcat]['threadpool_min_spare_threads']

unpack_wars

Whether to unpack WAR files (Boolean). The default value is true.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1225

AWS OpsWorks User Guide

node['opsworks_java']['tomcat]['unpack_wars']

uri_encoding

The URI encoding (string). The default value is UTF-8.

node['opsworks_java']['tomcat]['uri_encoding']

use_ssl_connector

Whether to use an SSL connector (Boolean). The default value is false.

node['opsworks_java']['tomcat]['use_ssl_connector']

use_threadpool

Whether to use a thread pool (Boolean). The default value is false.

node['opsworks_java']['tomcat]['use_threadpool']

userdatabase_pathname

The user database path name (string). The default value is conf/tomcat-users.xml.

node['opsworks_java']['tomcat]['userdatabase_pathname']

passenger_apache2 Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1226

AWS OpsWorks User Guide

Note

These attributes are available only on Linux stacks.

The passenger_apache2 attributes specify the Phusion Passenger configuration. For more
information, see Phusion Passenger users guide, Apache version. For more information on how to
override built-in attributes to specify custom values, see Overriding Attributes.

friendly_error_pages gem_bin gems_path

high_performance_mode root_path max_instances_per_app

max_pool_size max_requests module_path

pool_idle_time rails_app_spawner_idle_time rails_framework_spawner_idl
e_time

rails_spawn_method ruby_bin ruby_wrapper_bin

stat_throttle_rate version

friendly_error_pages

Whether to display a friendly error page if an application fails to start (string). This attribute can
be set to 'on' or 'off'; the default value is 'off'.

node[:passenger][:friendly_error_pages]

gem_bin

The location of the Gem binaries (string). The default value is '/usr/local/bin/gem'.

node[:passenger][:gem_bin]

gems_path

The gems path (string). The default value depends on the Ruby version. For example:

• Ruby version 1.8: '/usr/local/lib/ruby/gems/1.8/gems'

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1227

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/passenger_apache2/attributes/passenger.rb
https://www.phusionpassenger.com/
http://www.modrails.com/documentation/Users%20guide%20Apache.html

AWS OpsWorks User Guide

• Ruby version 1.9: '/usr/local/lib/ruby/gems/1.9.1/gems'

node[:passenger][:gems_path]

high_performance_mode

Whether to use Passenger's high-performance mode (string). The possible values are 'on' and
'off'. The default value is 'off'.

node[:passenger][:high_performance_mode]

root_path

The Passenger root directory (string). The default value depends on the Ruby and Passenger
versions. In Chef syntax, the value is "#{node[:passenger][:gems_path]}/passenger-
#{passenger[:version]}".

node[:passenger][:root_path]

max_instances_per_app

The maximum number of application processes per app (number). The default value is 0. For
more information, see PassengerMaxInstancesPerApp.

node[:passenger][:max_instances_per_app]

max_pool_size

The maximum number of application processors (number). The default value is 8. For more
information, see PassengerMaxPoolSize.

node[:passenger][:max_pool_size]

max_requests

The maximum number of requests (number). The default value is 0.

node[:passenger][:max_requests]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1228

http://www.modrails.com/documentation/Users%20guide%20Apache.html#_passengermaxinstancesperapp_lt_integer_gt
http://www.modrails.com/documentation/Users%20guide%20Apache.html#_passengermaxpoolsize_lt_integer_gt

AWS OpsWorks User Guide

module_path

The module path (string). The default values are as follows:

• Amazon Linux and RHEL: "#{node['apache']['libexecdir']}/mod_passenger.so"

• Ubuntu: "#{passenger[:root_path]}/ext/apache2/mod_passenger.so"

node[:passenger][:module_path]

pool_idle_time

The maximum time, in seconds, that an application process can be idle (number). The default
value is 14400 (4 hours). For more information, see PassengerPoolIdleTime.

node[:passenger][:pool_idle_time]

rails_app_spawner_idle_time

The maximum idle time for the Rails app spawner (number). If this attribute is set to zero, the
app spawner does not time out. The default value is 0. For more information, see Spawning
Methods Explained.

node[:passenger][:rails_app_spawner_idle_time]

rails_framework_spawner_idle_time

The maximum idle time for the Rails framework spawner (number). If this attribute is set to
zero, the framework spawner does not time out. The default value is 0. For more information,
see Spawning Methods Explained.

node[:passenger][:rails_framework_spawner_idle_time]

rails_spawn_method

The Rails spawn method (string). The default value is 'smart-lv2'. For more information, see
Spawning Methods Explained.

node[:passenger][:rails_spawn_method]

ruby_bin

The location of the Ruby binaries (string). The default value is '/usr/local/bin/ruby'.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1229

http://www.modrails.com/documentation/Users%20guide%20Apache.html#PassengerPoolIdleTime
http://www.modrails.com/documentation/Users%20guide%20Apache.html#spawning_methods_explained
http://www.modrails.com/documentation/Users%20guide%20Apache.html#spawning_methods_explained
http://www.modrails.com/documentation/Users%20guide%20Apache.html#spawning_methods_explained
http://www.modrails.com/documentation/Users%20guide%20Apache.html#spawning_methods_explained

AWS OpsWorks User Guide

node[:passenger][:ruby_bin]

ruby_wrapper_bin

The location of the Ruby wrapper script (string). The default value is '/usr/local/bin/
ruby_gc_wrapper.sh'.

node[:passenger][:ruby_wrapper_bin]

stat_throttle_rate

The rate at which Passenger performs file system checks (number). The default value is 5, which
means that the checks will be performed at most once every 5 seconds. For more information,
see PassengerStatThrottleRate .

node[:passenger][:stat_throttle_rate]

version

The version (string). The default value is '3.0.9'.

node[:passenger][:version]

ruby Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These attributes are available only on Linux stacks.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1230

http://www.modrails.com/documentation/Users%20guide%20Apache.html#_passengerstatthrottlerate_lt_integer_gt

AWS OpsWorks User Guide

The ruby attributes specify the Ruby version that is used by applications. Note that attribute usage
changed with the introduction of semantic versioning in Ruby 2.1. For more information about
how to specify a version, including examples, see Ruby Versions. For complete details on how
AWS OpsWorks Stacks determines the Ruby version, see the built-in attributes file, ruby.rb. For
more information on how to override built-in attributes to specify custom values, see Overriding
Attributes.

full_version

The full version number (string). You should not override this attribute. Instead, use [:opsworks]
[:ruby_version] and the appropriate patch version attribute to specify a version.

[:ruby][:full_version]

major_version

The major version number (string). You should not override this attribute. Instead, use
[:opsworks][:ruby_version] to specify the major version.

[:ruby][:major_version]

minor_version

The minor version number (string). You should not override this attribute. Instead, use
[:opsworks][:ruby_version] to specify the minor version.

[:ruby][:minor_version]

patch

The patch level (string). This attribute is valid for Ruby version 2.0.0 and earlier. For later Ruby
versions, use the patch_version attribute.

[:ruby][:patch]

The patch number must be prefaced by p. For example, you would use the following custom
JSON to specify patch level 484.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1231

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/ruby/attributes/ruby.rb
https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/ruby/attributes/ruby.rb

AWS OpsWorks User Guide

{
 "ruby":{"patch":"p484"}
}

patch_version

The patch number (string). This attribute is valid for Ruby version 2.1 and later. For earlier Ruby
versions, use the patch attribute.

[:ruby][:patch_version]

pkgrelease

The package release number (string).

[:ruby][:pkgrelease]

unicorn Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

These attributes are available only on Linux stacks.

The unicorn attributes specify the Unicorn configuration. For more information, see
Unicorn::Configurator. For more information on how to override built-in attributes to specify
custom values, see Overriding Attributes.

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1232

https://github.com/aws/opsworks-cookbooks/blob/release-chef-11.10/unicorn/attributes/default.rb
http://unicorn.bogomips.org/
http://unicorn.bogomips.org/Unicorn/Configurator.html

AWS OpsWorks User Guide

accept_filter backlog delay

tcp_nodelay tcp_nopush preload_app

timeout tries version

worker_processes

accept_filter

The accept filter, 'httpready' or 'dataready' (string). The default value is 'httpready'.

node[:unicorn][:accept_filter]

backlog

The maximum number of requests that the queue can hold (number). The default value is 1024.

node[:unicorn][:backlog]

delay

The amount of time, in seconds, to wait to retry binding a socket (number). The default value is
0.5.

node[:unicorn][:delay]

preload_app

Whether to preload an app before forking a worker process (Boolean). The default value is
true.

node[:unicorn][:preload_app]

tcp_nodelay

Whether to disable Nagle's algorithm for TCP sockets (Boolean). The default value is true.

node[:unicorn][:tcp_nodelay]

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1233

AWS OpsWorks User Guide

tcp_nopush

Whether to enable TCP_CORK (Boolean). The default value is false.

node[:unicorn][:tcp_nopush]

timeout

The maximum amount time, in seconds, that a worker is allowed to use for each request
(number). Workers that exceed the timeout value are terminated. The default value is 60.

node[:unicorn][:timeout]

tries

The maximum number of times to retry binding to a socket (number). The default value is 5.

node[:unicorn][:tries]

version

The Unicorn version (string). The default value is '4.7.0'.

node[:unicorn][:version]

worker_processes

The number of worker processes (number). The default value is max_pool_size, if it exists,
and 4 otherwise.

node[:unicorn][:worker_processes]

Troubleshooting Chef 11.10 and Earlier Versions for Linux

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Chef 11.10 and Earlier Versions for Linux API Version 2013-02-18 1234

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

For additional troubleshooting information, see Debugging and Troubleshooting Guide.

Chef Logs for Chef 11.10 and Earlier Versions for Linux

AWS OpsWorks Stacks stores each instance's Chef logs in its /var/lib/aws/opsworks/chef
directory. You need sudo privileges to access this directory. The log for each run is in a file named
YYYY-MM-DD-HH-MM-SS-NN.log.

For more information, see the following:

• Viewing a Chef Log with the Console

• Viewing a Chef Log with the CLI or API

• Interpreting a Chef Log

• Common Chef Log Errors

Using AWS OpsWorks Stacks with Other AWS Services

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can have application servers running in an AWS OpsWorks Stacks stack use a variety of AWS
services that are not directly integrated with AWS OpsWorks Stacks. For example, you can have

Using AWS OpsWorks Stacks with Other AWS Services API Version 2013-02-18 1235

AWS OpsWorks User Guide

your application servers use Amazon RDS as a back-end database. You can access such services by
using the following general pattern:

1. Create and configure the AWS service by using the AWS console, API, or CLI and record any
required configuration data that the application will need to access the service, such as host
name or port.

2. Create one or more custom recipes to configure the application so that it can access the service.

The recipe obtains the configuration data from stack configuration and deployment JSON
attributes that you define with custom JSON prior to running the recipes.

3. Assign the custom recipe to the Deploy lifecycle event on the application server layer.

4. Create a custom JSON object that assigns appropriate values to the configuration data
attributes and add it to your stack configuration and deployment JSON.

5. Deploy the application to the stack.

Deployment runs the custom recipes, which use the configuration data values that you defined
in the custom JSON to configure the application so that it can access the service.

This section describes how to have AWS OpsWorks Stacks application servers access a variety
of AWS services. It assumes that you are already familiar with Chef cookbooks and how recipes
can use stack and configuration JSON attributes to configure applications, typically by creating
configuration files. If not, you should first read Cookbooks and Recipes and Customizing AWS
OpsWorks Stacks.

Topics

• Using a Back-end Data Store

• Using ElastiCache Redis as an In-Memory Key-Value Store

• Using an Amazon S3 Bucket

• Using AWS CodePipeline with AWS OpsWorks Stacks

Using a Back-end Data Store

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Using a Back-end Data Store API Version 2013-02-18 1236

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Application server stacks commonly include a database server to provide a back-end data store.
AWS OpsWorks Stacks provides integrated support for MySQL servers through the MySQL layer
and for several types of database servers through the Amazon Relational Database Service
(Amazon RDS) layer. However, you can easily customize a stack to have the application servers use
other database servers such as Amazon DynamoDB or MongoDB. This topic describes the basic
procedure for connecting an application server to an AWS database server. It uses the stack and
application from Getting Started with Chef 11 Linux Stacks to show how to manually connect a
PHP application server to an RDS database. Although the example is based on a Linux stack, the
basic principles also apply to Windows stacks. For an example of how to incorporate a MongoDB
database server into a stack, see Deploying MongoDB with OpsWorks.

Note

This topic uses Amazon RDS as a convenient example. However, if you want to use an
Amazon RDS database with your stack, it's much easier to use an Amazon RDS layer.

Topics

• How to Set up a Database Connection

• How to Connect an Application Server Instance to Amazon RDS

How to Set up a Database Connection

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Using a Back-end Data Store API Version 2013-02-18 1237

https://aws.amazon.com/blogs/devops/deploying-mongodb-with-opsworks/

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You set up the connection between an application server and its back-end database by using a
custom recipe. The recipe configures the application server as required, typically by creating a
configuration file. The recipe gets the connection data such as the host and database name from a
set of attributes in the stack configuration and deployment attributes that AWS OpsWorks Stacks
installs on every instance.

For example, Step 2 of Getting Started with Chef 11 Linux Stacks is based on a stack named
MyStack with two layers, PHP App Server and MySQL, each with one instance. You deploy an
app named SimplePHPApp to the PHP App Server instance that uses the database on the MySQL
instance as a back-end data store. When you deploy the application, AWS OpsWorks Stacks installs
stack configuration and deployment attributes that contain the database connection information.
The following example shows the database connection attributes, represented as JSON:

{
 ...
 "deploy": {
 "simplephpapp": {
 ...
 "database": {
 "reconnect": true,
 "password": null,
 "username": "root",
 "host": null,
 "database": "simplephpapp"
 ...
 },
 ...
 }
 }
}

The attribute values are supplied by AWS OpsWorks Stacks, and are either generated or based on
user provided information.

Using a Back-end Data Store API Version 2013-02-18 1238

AWS OpsWorks User Guide

To allow SimplePHPApp to access the data store, you must set up the connection between the PHP
application server and the MySQL database by assigning a custom recipe named appsetup.rb
to the PHP App Server layer's Deploy lifecycle event. When you deploy SimplePHPApp, AWS
OpsWorks Stacks runs appsetup.rb, which creates a configuration file named db-connect.php
that sets up the connection, as shown in the following excerpt.

node[:deploy].each do |app_name, deploy|
 ...
 template "#{deploy[:deploy_to]}/current/db-connect.php" do
 source "db-connect.php.erb"
 mode 0660
 group deploy[:group]

 if platform?("ubuntu")
 owner "www-data"
 elsif platform?("amazon")
 owner "apache"
 end

 variables(
 :host => (deploy[:database][:host] rescue nil),
 :user => (deploy[:database][:username] rescue nil),
 :password => (deploy[:database][:password] rescue nil),
 :db => (deploy[:database][:database] rescue nil),
 :table => (node[:phpapp][:dbtable] rescue nil)
)
 ...
 end
end

The variables that characterize the connection—host, user, and so on—are set the corresponding
values from the deploy JSON's [:deploy][:app_name][:database] attributes. For simplicity,
the example assumes that you have already created a table named urler, so the table name is
represented by [:phpapp][:dbtable] in the cookbook's attributes file.

This recipe can actually connect the PHP application server to any MySQL database server, not just
members of a MySQL layer. To use a different MySQL server, you just have to set the [:database]
attributes to values that are appropriate for your server, which you can do by using custom JSON.
AWS OpsWorks Stacks then incorporates those attributes and values into the stack configuration
and deployment attributes and appsetup.rb uses them to create the template that sets up the

Using a Back-end Data Store API Version 2013-02-18 1239

AWS OpsWorks User Guide

connection. For more information on overriding stack configuration and deployment JSON, see
Overriding Attributes.

How to Connect an Application Server Instance to Amazon RDS

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section describes how to customize MyStack from Getting Started with Chef 11 Linux Stacks
to have the PHP application server connect to an RDS instance.

Topics

• Create an Amazon RDS MySQL Database

• Customize the Stack to Connect to the RDS Database

Create an Amazon RDS MySQL Database

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Now you're ready to create an RDS database for the example using the Amazon RDS console's
Launch DB Instance Wizard. The following procedure is a brief summary of the essential details. For
a detailed description of how to create a database, see Getting Started with Amazon RDS.

Using a Back-end Data Store API Version 2013-02-18 1240

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html

AWS OpsWorks User Guide

To create the Amazon RDS database

1. If this is your first time creating an RDS database, click Get Started Now. Otherwise, click RDS
Dashboard in the navigation pane, and then click Launch a DB Instance.

2. Select the MySQL Community Edition as the DB instance.

3. For Do you plan to use this database for production purposes? select No, this instance...,
which is sufficient for the example. For production use, you might want to select Yes, use
Multi-AZ Deployment.... Click Next Step.

4. On the Specify DB Details page, specify the following settings:

• DB Instance Class: db.t2.micro

• Multi-AZ Deployment: No

• Allocated Storage: 5 GB

• DB Instance Identifier: rdsexample

• Master Username: opsworksuser

• Master Password: Specify a suitable password and record it for later use.

Accept the default settings for the other options and click Next Step.

5. On the Configure Advanced Settings page, specify the following settings:

• In the Network & Security section, for VPC Security Group(s), select phpsecgroup (VPC)

• In the Database Options section, for Database Name, type rdsexampledb

• In the Backup section, set Backup Retention Period to 0 for the purposes of this
walkthrough.

Accept the default settings for the other options and click Launch DB Instance.

6. Choose View Your DB Instances to see the list of DB instances.

7. Select the rdsexample instance in the list and click the arrow to reveal the instance
endpoint and other details. Record the endpoint for later use. It will be something like
rdsexample.c6c8mntzhgv0.us-west-2.rds.amazonaws.com:3306. Just record the
DNS name; you won't need the port number.

8. Use a tool such as MySQL Workbench to create a table named urler in the rdsexampledb
database by using following SQL command:

Using a Back-end Data Store API Version 2013-02-18 1241

AWS OpsWorks User Guide

CREATE TABLE urler(id INT UNSIGNED NOT NULL AUTO_INCREMENT,author VARCHAR(63) NOT
 NULL,message TEXT,PRIMARY KEY (id))

Customize the Stack to Connect to the RDS Database

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Once you have created an RDS instance to use as a back-end database for the PHP application
server, you can customize MyStack from Getting Started with Chef 11 Linux Stacks.

To connect the PHP App Server to an RDS database

1. Open the AWS OpsWorks Stacks console and create a stack with a PHP App Server layer that
contains one instance and deploy SimplePHPApp, as described in Getting Started with Chef
11 Linux Stacks. This stack uses version1 of SimplePHPApp, which does not use a database
connection.

2. Update the stack configuration to use the custom cookbooks that include the appsetup.rb
recipe, and related template and attribute files.

1. Set Use custom Chef cookbooks to Yes.

2. Set Repository type to Git and Repository URL to git://github.com/
amazonwebservices/opsworks-example-cookbooks.git.

3. Add the following to the stack's Custom Chef JSON box to assign the RDS connection data to
the [:database] attributes that appsetup.rb uses to create the configuration file.

{
 "deploy": {
 "simplephpapp": {

Using a Back-end Data Store API Version 2013-02-18 1242

AWS OpsWorks User Guide

 "database": {
 "username": "opsworksuser",
 "password": "your_password",
 "database": "rdsexampledb",
 "host": "rds_endpoint",
 "adapter": "mysql"
 }
 }
 }
}

Use the following attribute values:

• username: The master user name that you specified when you created the RDS instance.

This example uses opsworksuser.

• password: The master password that you specified when you created the RDS instance.

Fill in the password that you specified.

• database: The database that you created when you created the RDS instance.

This example uses rdsexampledb.

• host: The RDS instance's endpoint, which you got from the RDS console when you created
the instance in the previous section. Don't include the port number.

• adapter: The adapter.

The RDS instance for this example uses MySQL, so adapter is set to mysql. Unlike the other
attributes, adapter is not used by appsetup.rb. It is instead used by the PHP App Server
layer's built-in Configure recipe to create a different configuration file.

4. Edit the SimplePHPApp configuration to specify a version of SimplePHPApp that uses a back-
end database, as follows:

• Document root: Set this option to web.

• Branch/Revision: Set this option to version2.

Leave the remaining options unchanged.

5. Edit the PHP App Server layer to set up the database connection by adding
phpapp::appsetup to the layer's Deploy recipes.

Using a Back-end Data Store API Version 2013-02-18 1243

AWS OpsWorks User Guide

6. Deploy the new SimplePHPApp version.

7. When SimplePHPApp is deployed, run the application by going to the Instances page and
clicking the php-app1 instance's public IP address. You should see the following page in your
browser, which allows you to enter text and store it in the database.

Note

If your stack has a MySQL layer, AWS OpsWorks Stacks automatically assigns the
corresponding connection data to the [:database] attributes. However, if you assign
custom JSON to the stack that defines different [:database] values, they override the
default values. Because the [:deploy] attributes are installed on every instance, any
recipes that depend on the [:database] attributes will use the custom connection data,
not the MySQL layer's data for the. If you want a particular application server layer to use
the custom connection data, assign the custom JSON to the layer's Deploy event, and
restrict that deployment to that layer. For more information on how to use deployment
attributes, see Deploying Apps. For more information on overriding AWS OpsWorks Stacks
built-in attributes, see Overriding Attributes.

Using a Back-end Data Store API Version 2013-02-18 1244

AWS OpsWorks User Guide

Using ElastiCache Redis as an In-Memory Key-Value Store

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This topic is based on a Linux stack, but Windows stacks can also use Amazon ElastiCache
(ElastiCache). For an example of how of how to use ElastiCache with a Windows instance,
see ElastiCache as an ASP.NET Session Store.

You can often improve application server performance by using a caching server to provide an in-
memory key-value store for small items of data such as strings. Amazon ElastiCache is an AWS
service that makes it easy to provide caching support for your application server, using either
the Memcached or Redis caching engines. AWS OpsWorks Stacks provides built-in support for
Memcached. However, if Redis better suits your requirements, you can customize your stack so that
your application servers use ElastiCache Redis.

This topic walks you through basic process of providing ElastiCache Redis caching support for
Linux stacks, using a Rails application server as an example. It assumes that you already have an
appropriate Ruby on Rails application. For more information on ElastiCache, see What Is Amazon
ElastiCache?.

Topics

• Step 1: Create an ElastiCache Redis Cluster

• Step 2: Set up a Rails Stack

• Step 3: Create and Deploy a Custom Cookbook

• Step 4: Assign the Recipe to a LifeCycle Event

ElastiCache Redis API Version 2013-02-18 1245

https://aws.amazon.com/blogs/developer/elasticache-as-an-asp-net-session-store/
http://memcached.org/
https://redis.io
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/WhatIs.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/WhatIs.html

AWS OpsWorks User Guide

• Step 5: Add Access Information to the Stack Configuration JSON

• Step 6: Deploy and run the App

Step 1: Create an ElastiCache Redis Cluster

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You must first create an Amazon ElastiCache Redis cluster by using the ElastiCache console, API, or
CLI. The following describes how to use the console to create a cluster.

To create an ElastiCache Redis cluster

1. Go to the ElastiCache console and click Launch Cache Cluster to start the Cache Cluster
wizard.

2. On the Cache Cluster Details page, do the following:

• Set Name to your cache server name.

This example uses OpsWorks-Redis.

• Set Engine to redis.

• Set Topic for SNS Notification to Disable Notifications.

• Accept the defaults for the other settings and click Continue.

ElastiCache Redis API Version 2013-02-18 1246

https://console.aws.amazon.com/elasticache/

AWS OpsWorks User Guide

3. On the Additional Configuration page, accept the defaults and click Continue.

ElastiCache Redis API Version 2013-02-18 1247

AWS OpsWorks User Guide

4. Click Launch Cache Cluster to create the cluster.

Important

The default cache security group is sufficient for this example, but for production use
you should create one that is appropriate for your environment. For more information,
see Managing Cache Security Groups.

5. After the cluster has started, click the name to open the details page and click the Nodes tab.
Record the cluster's Port and Endpoint values for later use.

ElastiCache Redis API Version 2013-02-18 1248

http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ManagingSecurityGroups.html

AWS OpsWorks User Guide

Step 2: Set up a Rails Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

In addition to creating a stack that supports a Rails App Server layer, you must also configure the
layer's security groups so that the Rails server can communicate properly with Redis server.

To set up a stack

1. Create a new stack—named RedisStack for this example—and add a Rails App Server layer.
You can use the default settings for both. For more information, see Create a New Stack and
Creating an OpsWorks Layer .

2. On the Layers page, for Rails App Server, click Security and then click Edit.

3. Go to the Security Groups section and add the ElastiCache cluster's security group to
Additional groups. For this example, select the default security group, click + to add it to the
layer, and click Save to save the new configuration.

ElastiCache Redis API Version 2013-02-18 1249

AWS OpsWorks User Guide

4. Add an instance to the Rails App Server layer and start it. For more information on how to add
and start instances, see Adding an Instance to a Layer.

Step 3: Create and Deploy a Custom Cookbook

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

As it stands, the stack is not quite functional yet; you need to enable your application to access the
Redis server. The most flexible approach is to put a YAML file with the access information in the
application's config subfolder. The application can then get the information from the file. Using
this approach, you can change the connection information without rewriting and redeploying the

ElastiCache Redis API Version 2013-02-18 1250

AWS OpsWorks User Guide

application. For this example, the file should be named redis.yml and contain the ElastiCache
cluster's host name and port, as follows:

host: cache-cluster-hostname
port: cache-cluster-port

You could manually copy this file to your servers, but a better approach is to implement a Chef
recipe to generate the file, and have AWS OpsWorks Stacks run the recipe on every server. Chef
recipes are specialized Ruby applications that AWS OpsWorks Stacks uses to perform tasks on
instances such as installing packages or creating configuration files. Recipes are packaged in a
cookbook, which can contain multiple recipes and related files such as templates for configuration
files. The cookbook is placed in a repository, such as GitHub, and must have a standard directory
structure. If you don't yet have a custom cookbook repository, see Cookbook Repositories for
information on how to set one up.

For this example, add a cookbook named redis-config to your cookbook repository with the
following contents:

my_cookbook_repository
 redis-config
 recipes
 generate.rb
 templates
 default
 redis.yml.erb

The recipes folder contains a recipe named generate.rb, which generates the application's
configuration file from redis.yml.erb, as follows:

node[:deploy].each do |app_name, deploy_config|
 # determine root folder of new app deployment
 app_root = "#{deploy_config[:deploy_to]}/current"

 # use template 'redis.yml.erb' to generate 'config/redis.yml'
 template "#{app_root}/config/redis.yml" do
 source "redis.yml.erb"
 cookbook "redis-config"

ElastiCache Redis API Version 2013-02-18 1251

AWS OpsWorks User Guide

 # set mode, group and owner of generated file
 mode "0660"
 group deploy_config[:group]
 owner deploy_config[:user]

 # define variable “@redis” to be used in the ERB template
 variables(
 :redis => deploy_config[:redis] || {}
)

 # only generate a file if there is Redis configuration
 not_if do
 deploy_config[:redis].blank?
 end
 end
end

The recipe depends on data from the AWS OpsWorks Stacks stack configuration and deployment
JSON object, which is installed on each instance and contains detailed information about the stack
and any deployed apps. The object's deploy node has the following structure:

{
 ...
 "deploy": {
 "app1": {
 "application" : "short_name",
 ...
 }
 "app2": {
 ...
 }
 ...
 }
}

The deploy node contains a set of embedded JSON objects, one for each deployed app, that is
named with the app's short name. Each app object contains a set of attributes that define the app's
configuration, such as the document root and application type. For a list of the deploy attributes,
see deploy Attributes. Recipes can use Chef attribute syntax to represent stack configuration and

ElastiCache Redis API Version 2013-02-18 1252

AWS OpsWorks User Guide

deployment JSON values. For example,[:deploy][:app1][:application] represents the app1
application's short name.

For each app in [:deploy], the recipe executes the associated code block, where deploy_config
represents the app attribute. The recipe first sets app_root to the app's root directory,
[:deploy][:app_name][:deploy_to]/current. It then uses a Chef template resource to
generate a configuration file from redis.yml.erb and place it in the app_root/config.

Configuration files are typically created from templates, with many if not most of the settings
defined by Chef attributes. With attributes you can change settings using custom JSON, as
described later, instead of rewriting the template file.The redis.yml.erb template contains the
following:

host: <%= @redis[:host] %>
port: <%= @redis[:port] || 6379 %>

The <%... %> elements are placeholders that represent an attribute value.

• <%= @redis[:host] %> represents the value of redis[:host], which is the cache cluster's
host name.

• <%= @redis[:port] || 6379 %> represents the value of the redis[:port] or, if that
attribute is not defined, the default port value, 6379.

The template resource works as follows:

• source and cookbook specify the template and cookbook names, respectively.

• mode, group, and owner give the configuration file the same access rights as the application.

• The variables section sets the @redis variable used in the template, to the application's
[:redis] attribute value.

The [:redis] attribute's values are set by using custom JSON, as described later; it is not one of
the standard app attributes.

• The not_if directive ensures that the recipe does not generate a configuration file if one
already exists.

ElastiCache Redis API Version 2013-02-18 1253

https://docs.chef.io/chef/resources.html#template

AWS OpsWorks User Guide

After you author the cookbook, you must deploy it to each instance's cookbook cache. This
operation does not run the recipe; it simply installs the new cookbook on the stack's instances. You
typically run a recipe by assigning it to a layer's lifecycle event, as described later.

To deploy your custom cookbook

1. On the AWS OpsWorks Stacks Stack page, click Stack Settings and then Edit.

2. In the Configuration Management section, set Use custom Chef cookbooks to Yes, enter the
cookbook repository information, and click Save to update the stack configuration.

3. On the Stack page, click Run Command, select the Update Custom Cookbooks stack
command, and click Update Custom Cookbooks to install the new cookbook in the instances'
cookbook caches.

ElastiCache Redis API Version 2013-02-18 1254

AWS OpsWorks User Guide

If you modify your cookbook, just run Update Custom Cookbooks again to install the updated
version. For more information on this procedure, see Installing Custom Cookbooks.

Step 4: Assign the Recipe to a LifeCycle Event

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can run custom recipes manually, but the best approach is usually to have AWS OpsWorks
Stacks run them automatically. Every layer has a set of built-in recipes assigned each of five
lifecycle events—Setup, Configure, Deploy, Undeploy, and Shutdown. Each time an event occurs
for an instance, AWS OpsWorks Stacks runs the associated recipes for each of the instance's layers,
which handle the corresponding tasks. For example, when an instance finishes booting, AWS

ElastiCache Redis API Version 2013-02-18 1255

AWS OpsWorks User Guide

OpsWorks Stacks triggers a Setup event. This event runs the associated layer's Setup recipes, which
typically handle tasks such as installing and configuring packages.

You can have AWS OpsWorks Stacks run a custom recipe on a layer's instances by assigning the
recipe to the appropriate lifecycle event. For this example, you should assign the generate.rb
recipe to the Rails App Server layer's Deploy event. AWS OpsWorks Stacks will then run it on the
layer's instances during startup, after the Setup recipes have finished, and every time you deploy
an app. For more information, see Automatically Running Recipes.

To assign a recipe to the Rails App Server layer's Deploy event

1. On the AWS OpsWorks Stacks Layers page, for Rails App Server, click Recipes and then click
Edit..

2. Under Custom Chef Recipes, add the fully qualified recipe name to the deploy event and
click +. A fully qualified recipe name uses the cookbookname::recipename format, where
recipename does not include the .rb extension. For this example, the fully qualified name is
redis-config::generate. Then click Save to update the layer configuration.

ElastiCache Redis API Version 2013-02-18 1256

AWS OpsWorks User Guide

Step 5: Add Access Information to the Stack Configuration JSON

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The generate.rb recipe depends on a pair of stack configuration and deployment JSON
attributes that represent the Redis server's host name and port. Although these attributes are part
of the standard [:deploy] namespace, they are not automatically defined by AWS OpsWorks
Stacks. Instead, you define the attributes and their values by adding a custom JSON object to the
stack. The following example shows the custom JSON for this example.

To add access information to the stack configuration and deployment JSON

1. On the AWS OpsWorks Stacks Stack page, click Stack Settings and then Edit.

2. In the Configuration Management section, add access information to the Custom Chef JSON
box. It should look something like the following example, with these modifications:

• Replace elasticache_redis_example with your app's short name.

• Replace the host and port values with the values for the ElastiCache Redis server instance
that you created in Step 1: Create an ElastiCache Redis Cluster.

{
 "deploy": {
 "elasticache_redis_example": {
 "redis": {
 "host": "mycluster.XXXXXXXXX.amazonaws.com",
 "port": "6379"
 }
 }
 }

ElastiCache Redis API Version 2013-02-18 1257

AWS OpsWorks User Guide

}

The advantage of this approach is that you can change the port or host value at any time without
touching your custom cookbook. AWS OpsWorks Stacks merges custom JSON into the built-in
JSON and installs it on the stack's instances for all subsequent lifecycle events. Apps can then
access the attribute values by using Chef node syntax, as described in Step 3: Create and Deploy
a Custom Cookbook. The next time you deploy an app, AWS OpsWorks Stacks will install a stack
configuration and deployment JSON that contains the new definitions, and generate.rb will
create a configuration file with the updated host and port values.

Note

[:deploy] automatically includes an attribute for every deployed app, so [:deploy]
[elasticache_redis_example] is already in the stack and configuration JSON.
However, [:deploy][elasticache_redis_example] does not include a [:redis]
attribute, defining them with custom JSON directs AWS OpsWorks Stacks to add those
attributes to [:deploy][elasticache_redis_example]. You can also use custom
JSON to override existing attributes. For more information, see Overriding Attributes.

ElastiCache Redis API Version 2013-02-18 1258

AWS OpsWorks User Guide

Step 6: Deploy and run the App

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This example assumes that you have Ruby on Rails application that uses Redis. To access the
configuration file, you can add the redis gem to your Gemfile and create a Rails initializer in
config/initializers/redis.rb as follows:

REDIS_CONFIG = YAML::load_file(Rails.root.join('config', 'redis.yml'))
$redis = Redis.new(:host => REDIS_CONFIG['host'], :port => REDIS_CONFIG['port'])

Then create an app to represent your application and deploy it to the Rails App Server layer's
instances, which updates the application code and runs generate.rb to generate the
configuration file. When you run the application, it will use the ElastiCache Redis instance as its in-
memory key-value store.

Using an Amazon S3 Bucket

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using an Amazon S3 Bucket API Version 2013-02-18 1259

AWS OpsWorks User Guide

Applications often use an Amazon Simple Storage Service (Amazon S3) bucket to store large items
such as images or other media files. Although AWS OpsWorks Stacks does not provide integrated
support for Amazon S3, you can easily customize a stack to allow your application to use Amazon
S3 storage. This topic walks you through the basic process of providing Amazon S3 access to
applications, using a Linux stack with a PHP application server as an example. The basic principles
also apply to Windows stacks.

Content delivered to Amazon S3 buckets might contain customer content. For more information
about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3
Bucket?.

Topics

• Step 1: Create an Amazon S3 Bucket

• Step 2: Create a PHP App Server Stack

• Step 3: Create and Deploy a Custom Cookbook

• Step 4: Assign the Recipes to LifeCycle Events

• Step 5: Add Access Information to the Stack Configuration and Deployment Attributes

• Step 6: Deploy and Run PhotoApp

Step 1: Create an Amazon S3 Bucket

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You must first create an Amazon S3 bucket. You can do this directly by using the Amazon S3
console, API, or CLI, but a simpler way to create resources is often to use a AWS CloudFormation
template. The following template creates an Amazon S3 bucket for this example and sets up
instance profile with an IAM role that grants unrestricted access to the bucket. You can then use a
layer setting to attach the instance profile to the stack's application server instances, which allows

Using an Amazon S3 Bucket API Version 2013-02-18 1260

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

AWS OpsWorks User Guide

the application to access the bucket, as described later. The usefulness of instance profiles isn't
limited to Amazon S3; they are valuable for integrating a variety of AWS services.

{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Resources" : {
 "AppServerRootRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["ec2.amazonaws.com"]
 },
 "Action": ["sts:AssumeRole"]
 }]
 },
 "Path": "/"
 }
 },
 "AppServerRolePolicies": {
 "Type": "AWS::IAM::Policy",
 "Properties": {
 "PolicyName": "AppServerS3Perms",
 "PolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": { "Fn::Join" : ["", ["arn:aws:s3:::", { "Ref" :
 "AppBucket" } , "/*"]
] }
 }]
 },
 "Roles": [{ "Ref": "AppServerRootRole" }]
 }
 },
 "AppServerInstanceProfile": {
 "Type": "AWS::IAM::InstanceProfile",
 "Properties": {
 "Path": "/",
 "Roles": [{ "Ref": "AppServerRootRole" }]

Using an Amazon S3 Bucket API Version 2013-02-18 1261

AWS OpsWorks User Guide

 }
 },
 "AppBucket" : {
 "Type" : "AWS::S3::Bucket"
 }
 },
 "Outputs" : {
 "BucketName" : {
 "Value" : { "Ref" : "AppBucket" }
 },
 "InstanceProfileName" : {
 "Value" : { "Ref" : "AppServerInstanceProfile" }
 }
 }
}

Several things happen when you launch the template:

• The AWS::S3::Bucket resource creates an Amazon S3 bucket.

• The AWS::IAM::InstanceProfile resource creates an instance profile that will be assigned to
the application server instances.

• The AWS::IAM::Role resource creates the instance profile's role.

• The AWS::IAM::Policy resource sets the role's permissions to allow unrestricted access to
Amazon S3 buckets.

• The Outputs section displays the bucket and instance profile names in AWS CloudFormation
console after you have launched the template.

You will need these values to set up your stack and app.

For more information on how to create AWS CloudFormation templates, see Learn Template Basics.

To create the Amazon S3 bucket

1. Copy the example template to a text file on your system.

This example assumes that the file is named appserver.template.

2. Open the AWS CloudFormation console and choose Create Stack.

3. In the Stack Name box, enter the stack name.

Using an Amazon S3 Bucket API Version 2013-02-18 1262

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-instanceprofile.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-iam-policy.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html
https://console.aws.amazon.com/cloudformation/

AWS OpsWorks User Guide

This example assumes that the name is AppServer.

4. Choose Upload template file, choose Browse, select the appserver.template file that you
created in Step 1, and then choose Next Step.

5. On the Specify Parameters page, select I acknowledge that this template may create IAM
resources, then choose Next Step on each page of the wizard until you reach the end. Choose
Create.

6. After the AppServer stack reaches CREATE_COMPLETE status, select it and choose the
Outputs tab.

You might need to refresh a few times to update the status.

7. On the Outputs tab, record the BucketName and InstanceProfileName values for later use.

Note

AWS CloudFormation uses the term stack to refer to the collection of resources that are
created from a template; it is not the same as an AWS OpsWorks Stacks stack.

Step 2: Create a PHP App Server Stack

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The stack consists of two layers, PHP App Server and MySQL, each with one instance. The
application stores photos on an Amazon S3 bucket, but uses the MySQL instance as a back-end
data store to hold metadata for each photo.

Using an Amazon S3 Bucket API Version 2013-02-18 1263

AWS OpsWorks User Guide

Content delivered to Amazon S3 buckets might contain customer content. For more information
about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3
Bucket?.

To create the stack

1. Create a new stack—named PhotoSite for this example—and add a PHP App Server layer.
You can use the default settings for both. For more information, see Create a New Stack and
Creating an OpsWorks Layer .

2. On the Layers page, for PHP App Server, choose Security and then choose Edit.

3. In the Layer Profile section, select the instance profile name that you recorded earlier, after
launching the AppServer AWS CloudFormation stack. It will be something like AppServer-
AppServerInstanceProfile-1Q3KD0DNMGB90. AWS OpsWorks Stacks assigns this profile
to all of the layer's Amazon EC2 instances, which grants permission to access your Amazon S3
bucket to applications running on the layer's instances .

4. Add an instance to the PHP App Server layer and start it. For more information on how to add
and start instances, see Adding an Instance to a Layer.

5. Add a MySQL layer to the stack, add an instance, and start it. You can use default settings
for both the layer and instance. In particular, the MySQL instance doesn't need to access the
Amazon S3 bucket, so it can use the standard AWS OpsWorks Stacks instance profile, which is
selected by default.

Using an Amazon S3 Bucket API Version 2013-02-18 1264

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

Step 3: Create and Deploy a Custom Cookbook

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The stack is not quite ready yet:

• Your application needs some information to access to the MySQL database server and the
Amazon S3 bucket, such as the database host name and the Amazon S3 bucket name.

• You need to set up a database in the MySQL database server and create a table to hold the
photos' metadata.

You could handle these tasks manually, but a better approach is to implement Chef recipe and have
AWS OpsWorks Stacks run the recipe automatically on the appropriate instances. Chef recipes are
specialized Ruby applications that AWS OpsWorks Stacks uses to perform tasks on instances such
as installing packages or creating configuration files. They are packaged in a cookbook, which can
contain multiple recipes and related files such as templates for configuration files. The cookbook
is placed in a repository such as GitHub, and must have a standard directory structure. If you don't
yet have a custom cookbook repository, see Cookbook Repositories for information on how to set
one up.

For this example, the cookbook has been implemented for you and is stored in a public GitHub
repository. The cookbook contains two recipes, appsetup.rb and dbsetup.rb, and a template
file, db-connect.php.erb.

The appsetup.rb recipe creates a configuration file that contains the information that the
application needs to access the database and the Amazon S3 bucket. It is basically a lightly
modified version of the appsetup.rb recipe described in Connect the Application to the
Database. The primary difference is the variables that are passed to the template, which represent
the access information.

Using an Amazon S3 Bucket API Version 2013-02-18 1265

https://github.com/amazonwebservices/opsworks-example-cookbooks/tree/master/photoapp
https://github.com/amazonwebservices/opsworks-example-cookbooks/tree/master/photoapp

AWS OpsWorks User Guide

The first four attributes define database connection settings, and are automatically defined by
AWS OpsWorks Stacks when you create the MySQL instance.

There are two differences between these variables and the ones in the original recipe:

• Like the original recipe, the table variable represents the name of the database table that is
created by dbsetup.rb, and is set to the value of an attribute that is defined in the cookbook's
attributes file.

However, the attribute has a different name: [:photoapp][:dbtable].

• The s3bucket variable is specific to this example and is set to the value of an attribute that
represents the Amazon S3 bucket name, [:photobucket].

[:photobucket] is defined by using custom JSON, as described later. For more information on
attributes, see Attributes

For more information on attributes, see Attributes.

The dbsetup.rb recipe sets up a database table to hold each photo's metadata. It basically is a
lightly modified version of the dbsetup.rb recipe described in Set Up the Database; see that topic
for a detailed description.

The only difference between this example and the original recipe is the database schema, which
has three columns that contain the ID, URL, and caption of each photo that is stored on the
Amazon S3 bucket.

The recipes are already implemented, so all you need to do is deploy the photoapp cookbook to
each instance's cookbook cache. AWS OpsWorks Stacks then runs the cached recipes when the
appropriate lifecycle event occurs, as described later.

To deploy the photoapp cookbook

1. On the AWS OpsWorks Stacks Stack page, choose Stack Settings and then choose Edit.

2. In the Configuration Management section:

• Set Use custom Chef cookbooks to Yes.

• Set Repository type to Git.

• Set Repository URL to git://github.com/amazonwebservices/opsworks-example-
cookbooks.git.

Using an Amazon S3 Bucket API Version 2013-02-18 1266

AWS OpsWorks User Guide

3. On the Stack page, choose Run Command, select the Update Custom Cookbooks stack
command, and then choose Update Custom Cookbooks to install the new cookbook in
instance cookbook caches.

Step 4: Assign the Recipes to LifeCycle Events

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

You can run custom recipes manually, but the best approach is usually to have AWS OpsWorks
Stacks run them automatically. Every layer has a set of built-in recipes assigned to each of five
lifecycle events—Setup, Configure, Deploy, Undeploy, and Shutdown—. Each time an event
occurs on an instance, AWS OpsWorks Stacks runs the associated recipes for each of the instance's
layers, which handle the required tasks. For example, when an instance finishes booting, AWS

Using an Amazon S3 Bucket API Version 2013-02-18 1267

AWS OpsWorks User Guide

OpsWorks Stacks triggers a Setup event to run the Setup recipes, which typically handle tasks such
as installing and configuring packages .

You can have AWS OpsWorks Stacks run custom recipes on a layer's instances by assigning each
recipe to the appropriate lifecycle event. AWS OpsWorks Stacks will run any custom recipes after
the layer's built-in recipes have finished. For this example, assign appsetup.rb to the PHP App
Server layer's Deploy event and dbsetup.rb to the MySQL layer's Deploy event. AWS OpsWorks
Stacks will then run the recipes on the associated layer's instances during startup, after the built-in
Setup recipes have finished, and every time you deploy an app, after the built Deploy recipes have
finished. For more information, see Automatically Running Recipes.

To assign custom recipes to the layer's Deploy event

1. On the AWS OpsWorks Stacks Layers page, for the PHP App Server choose Recipes and then
choose Edit.

2. Under Custom Chef Recipes, add the recipe name to the deploy event and choose +. The name
must be in the Chef cookbookname::recipename format, where recipename does not
include the .rb extension. For this example, you enter photoapp::appsetup. Then choose
Save to update the layer configuration.

Using an Amazon S3 Bucket API Version 2013-02-18 1268

AWS OpsWorks User Guide

3. On the Layers page, choose edit in the MySQL layer's Actions column.

4. Add photoapp::dbsetup to the layer's Deploy event and save the new configuration.

Step 5: Add Access Information to the Stack Configuration and Deployment
Attributes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The appsetup.rb recipe depends on data from the AWS OpsWorks Stacks stack configuration
and deployment attributes, which are installed on each instance and contain detailed information
about the stack and any deployed apps. The object's deploy attributes have the following
structure, which is displayed for convenience as JSON:

{
 ...
 "deploy": {
 "app1": {
 "application" : "short_name",
 ...
 }
 "app2": {
 ...
 }
 ...
 }
}

The deploy node contains an attribute for each deployed app that is named with the app's short
name. Each app attribute contains a set of attributes that define the app's configuration, such as

Using an Amazon S3 Bucket API Version 2013-02-18 1269

AWS OpsWorks User Guide

the document root and app type. For a list of the deploy attributes, see deploy Attributes. You
can represent stack configuration and deployment attribute values in your recipes by using Chef
attribute syntax. For example,[:deploy][:app1][:application] represents the app1 app's
short name.

The custom recipes depend on several stack configuration and deployment attributes that
represent database and Amazon S3 access information:

• The database connection attributes, such as [:deploy][:database][:host], are defined by
AWS OpsWorks Stacks when it creates the MySQL layer.

• The table name attribute, [:photoapp][:dbtable], is defined in the custom cookbook's
attributes file, and is set to foto.

• You must define the bucket name attribute, [:photobucket], by using custom JSON to add
the attribute to the stack configuration and deployment attributes.

To define the Amazon S3 bucket name attribute

1. On the AWS OpsWorks Stacks Stack page, choose Stack Settings and then Edit.

2. In the Configuration Management section, add access information to the Custom Chef JSON
box. It should look something like the following:

{
 "photobucket" : "yourbucketname"
}

Replace yourbucketname with the bucket name that you recorded in Step 1: Create an
Amazon S3 Bucket.

Using an Amazon S3 Bucket API Version 2013-02-18 1270

AWS OpsWorks User Guide

AWS OpsWorks Stacks merges the custom JSON into the stack configuration and deployment
attributes before it installs them on the stack's instances; appsetup.rb can then obtain the
bucket name from the [:photobucket] attribute. If you want to change the bucket, you don't
need to touch the recipe; you can just override the attribute to provide a new bucket name.

Step 6: Deploy and Run PhotoApp

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

For this example, the application has also been implemented for you and is stored in a public
GitHub repository. You just need to add the app to the stack, deploy it to the application servers,
and run it.

Using an Amazon S3 Bucket API Version 2013-02-18 1271

https://github.com/amazonwebservices/opsworks-demo-php-photo-share-app
https://github.com/amazonwebservices/opsworks-demo-php-photo-share-app

AWS OpsWorks User Guide

To add the app to the stack and deploy it to the application servers

1. Open the Apps page and choose Add an app.

2. On the Add App page, do the following:

• Set Name to PhotoApp.

• Set App type to PHP.

• Set Document root to web.

• Set Repository type to Git.

• Set Repository URL to git://github.com/awslabs/opsworks-demo-php-photo-
share-app.git.

• Choose Add App to accept the defaults for the other settings.

Using an Amazon S3 Bucket API Version 2013-02-18 1272

AWS OpsWorks User Guide

3. On the Apps page, choose deploy in the PhotoApp app's Actions column.

4. Accept the defaults and choose Deploy to deploy the app to the server.

To run PhotoApp, go to the Instances page and choose the PHP App Server instance's public IP
address.

You should see the following user interface. Choose Add a Photo to store a photo on the Amazon
S3 bucket and the metadata in the back-end data store.

Using AWS CodePipeline with AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1273

AWS OpsWorks User Guide

recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS CodePipeline lets you create continuous delivery pipelines that track code changes from
sources such as CodeCommit, Amazon Simple Storage Service (Amazon S3), or GitHub. You can
use CodePipeline to automate the release of your Chef cookbooks and application code to AWS
OpsWorks Stacks, on Chef 11.10, Chef 12, and Chef 12.2 stacks. Examples in this section describe
how to create and use a simple pipeline from CodePipeline as a deployment tool for code that you
run on AWS OpsWorks Stacks layers.

Note

CodePipeline and AWS OpsWorks Stacks integration is not supported for deploying to Chef
11.4 and older stacks.

Topics

• AWS CodePipeline with AWS OpsWorks Stacks - Chef 12 Stacks

• AWS CodePipeline with AWS OpsWorks Stacks - Chef 11 Stacks

AWS CodePipeline with AWS OpsWorks Stacks - Chef 12 Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS CodePipeline lets you create continuous delivery pipelines that track code changes from
sources such as CodeCommit, Amazon Simple Storage Service (Amazon S3), or GitHub. The
example in this topic describes how to create and use a simple pipeline from CodePipeline as a

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1274

https://aws.amazon.com/codepipeline/
https://github.com/
https://aws.amazon.com/codepipeline/
https://github.com/

AWS OpsWorks User Guide

deployment tool for code that you run on AWS OpsWorks Stacks layers. In this example, you create
a pipeline for a simple Node.js app, and then instruct AWS OpsWorks Stacks to run the app on all
of the instances in a layer in a Chef 12 stack (in this case, a single instance).

Note

This topic describes how to use a pipeline to run and update an app on a Chef 12 stack. For
information about how to use a pipeline to run and update an app on a Chef 11.10 stack,
see AWS CodePipeline with AWS OpsWorks Stacks - Chef 11 Stacks. Content delivered to
Amazon S3 buckets might contain customer content. For more information about removing
sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3 Bucket?.

Topics

• Prerequisites

• Other Supported Scenarios

• Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks

• Step 2: Configure your stack and layer to use custom cookbooks

• Step 3: Upload app code to an Amazon S3 bucket

• Step 4: Add your app to AWS OpsWorks Stacks

• Step 5: Create a pipeline in CodePipeline

• Step 6: Verifying the app deployment in AWS OpsWorks Stacks

• Step 7 (Optional): Update the app code to see CodePipeline redeploy your app automatically

• Step 8 (Optional): Clean up resources

Prerequisites

Before you start this walkthrough, be sure that you have administrator permissions to do all of the
following tasks. You can be a member of a group that has the AdministratorAccess policy applied,
or you can be a member of a group that has the permissions and policies shown in the following
table. As a security best practice, you should belong to a group that has permissions to do the
following tasks, instead of assigning required permissions to individual users.

For more information about creating a security group in IAM and assigning permissions to the
group, see Creating IAM user groups. For more information about managing AWS OpsWorks Stacks
permissions, see Best Practices: Managing Permissions.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1275

samples/opsworks-nodejs-demo-app.zip
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
https://docs.aws.amazon.com/opsworks/latest/userguide/best-practices-permissions.html

AWS OpsWorks User Guide

Permissions Recommended Policy to Attach to Group

Create and edit stacks, layers, and instances in
AWS OpsWorks Stacks.

AWSOpsWorks_FullAccess

Create, edit, and run templates in AWS
CloudFormation.

AmazonCloudFormationFullAccess

Create, edit, and access Amazon S3 buckets. AmazonS3FullAccess

Create, edit, and run pipelines in CodePipeline,
especially pipelines that use AWS OpsWorks
Stacks as the provider.

AWSCodePipeline_FullAccess

You must also have an Amazon EC2 key pair. You will be prompted to provide the name of this key
pair when you run the AWS CloudFormation template that creates the sample stack, layer, and
instance in this walkthrough. For more information about obtaining a key pair in the Amazon EC2
console, see Create a Key Pair in the Amazon EC2 documentation. The key pair must be in the US
East (N. Virginia) Region. You can use an existing key pair if you already have one in that region.

Other Supported Scenarios

This walkthrough creates a simple pipeline that includes one Source and one Deploy stage.
However, you can create more complex pipelines that use AWS OpsWorks Stacks as a provider. The
following are examples of supported pipelines and scenarios:

• You can edit a pipeline to add a Chef cookbook to the Source stage and an associated target for
updated cookbooks to the Deploy stage. In this case, you add a Deploy action that triggers the
updating of your cookbooks when you make changes to the source. The updated cookbook is
deployed before your app.

• You can create a complex pipeline, with custom cookbooks and multiple apps, and deploy to an
AWS OpsWorks Stacks stack. The pipeline tracks changes to both the application and cookbook
sources, and redeploys when you have made changes. The following shows an example of a
similar, complex pipeline:

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1276

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair

AWS OpsWorks User Guide

For more information about working with CodePipeline, see the CodePipeline User Guide.

Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1277

http://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html

AWS OpsWorks User Guide

To use AWS OpsWorks Stacks as a deployment provider for a pipeline, you must first have a stack,
a layer, and at least one instance in the layer. Although you can create a stack in AWS OpsWorks
Stacks by following instructions in Getting Started with Linux Stacks or Getting Started with
Windows Stacks, to save you time, this example uses an AWS CloudFormation template to create a
Linux-based Chef 12 stack, layer, and instance. The instance created by this template runs Amazon
Linux 2016.03, and has an instance type of c3.large. Although the template does not configure
your stack to use custom cookbooks, you'll do this later in the walkthrough.

Important

The AWS CloudFormation template must be stored and run in the same region as the
Amazon S3 bucket to which you later upload your app and the same region in which you
later create your pipeline in CodePipeline. At this time, CodePipeline supports the AWS
OpsWorks Stacks provider in the US East (N. Virginia) Region (us-east-1) only. All resources
in this walkthrough should be created in the US East (N. Virginia) Region.
If stack creation fails, you might be approaching the maximum allowed number of IAM
roles for your account. The stack creation can also fail if your account cannot launch
instances with a c3.large instance type. For example, if you are using the AWS Free Tier,
you might receive an error such as Root device type: must be included in EBS.
If your account has limitations on the instance types that you are allowed to create, such
as limitations imposed by the AWS Free Tier, try changing the value of the InstanceType
parameter in the template's instance block to an instance type that your account can use.

To create a stack, layer, and instance using AWS CloudFormation

1. Copy the following AWS CloudFormation template into a new plain-text document.
Save the file to a convenient location on your local computer, and name it
NewOpsWorksStack.template, or another name that is convenient for you.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Mappings": {
 "Region2Principal": {
 "us-east-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "us-west-2": {

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1278

http://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-linux.html
http://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-windows.html
http://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-windows.html

AWS OpsWorks User Guide

 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "us-west-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "eu-west-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "ap-southeast-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "ap-northeast-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "ap-northeast-2": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "ap-southeast-2": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "sa-east-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "cn-north-1": {
 "EC2Principal": "ec2.amazonaws.com.cn",
 "OpsWorksPrincipal": "opsworks.amazonaws.com.cn"
 },
 "eu-central-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 }
 }
 },
 "Parameters": {
 "EC2KeyPairName": {
 "Type": "String",

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1279

AWS OpsWorks User Guide

 "Description": "The name of an existing EC2 key pair that lets you use SSH to
 connect to the OpsWorks instance."
 }
 },
 "Resources": {
 "CPOpsDeploySecGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription" : "Lets you manage OpsWorks instances to which you deploy
 apps with CodePipeline"
 }
 },
 "CPOpsDeploySecGroupIngressHTTP": {
 "Type": "AWS::EC2::SecurityGroupIngress",
 "Properties" : {
 "IpProtocol" : "tcp",
 "FromPort" : "80",
 "ToPort" : "80",
 "CidrIp" : "0.0.0.0/0",
 "GroupId": {
 "Fn::GetAtt": [
 "CPOpsDeploySecGroup", "GroupId"
]
 }
 }
 },
 "CPOpsDeploySecGroupIngressSSH": {
 "Type": "AWS::EC2::SecurityGroupIngress",
 "Properties" : {
 "IpProtocol" : "tcp",
 "FromPort" : "22",
 "ToPort" : "22",
 "CidrIp" : "0.0.0.0/0",
 "GroupId": {
 "Fn::GetAtt": [
 "CPOpsDeploySecGroup", "GroupId"
]
 }
 }
 },
 "MyStack": {
 "Type": "AWS::OpsWorks::Stack",
 "Properties": {
 "Name": {

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1280

AWS OpsWorks User Guide

 "Ref": "AWS::StackName"
 },
 "ServiceRoleArn": {
 "Fn::GetAtt": [
 "OpsWorksServiceRole",
 "Arn"
]
 },
 "ConfigurationManager" : { "Name": "Chef","Version": "12" },
 "DefaultOs": "Amazon Linux 2016.03",
 "DefaultInstanceProfileArn": {
 "Fn::GetAtt": [
 "OpsWorksInstanceProfile",
 "Arn"
]
 },
 "UseCustomCookbooks": "false"
 }
 },
 "MyLayer": {
 "Type": "AWS::OpsWorks::Layer",
 "Properties": {
 "StackId": {
 "Ref": "MyStack"
 },
 "Name": "Node.js App Server",
 "Type": "custom",
 "Shortname": "app1",
 "EnableAutoHealing": "true",
 "AutoAssignElasticIps": "false",
 "AutoAssignPublicIps": "true",
 "CustomSecurityGroupIds": [
 {
 "Fn::GetAtt": [
 "CPOpsDeploySecGroup", "GroupId"
]
 }
]
 },
 "DependsOn": [
 "MyStack",
 "CPOpsDeploySecGroup"
]
 },

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1281

AWS OpsWorks User Guide

 "OpsWorksServiceRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 {
 "Fn::FindInMap": [
 "Region2Principal",
 {
 "Ref": "AWS::Region"
 },
 "OpsWorksPrincipal"
]
 }
]
 },
 "Action": [
 "sts:AssumeRole"
]
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "opsworks-service",
 "PolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "iam:PassRole",
 "cloudwatch:GetMetricStatistics",
 "elasticloadbalancing:*"
],
 "Resource": "*"
 }
]
 }

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1282

AWS OpsWorks User Guide

 }
]
 }
 },
 "OpsWorksInstanceProfile": {
 "Type": "AWS::IAM::InstanceProfile",
 "Properties": {
 "Path": "/",
 "Roles": [
 {
 "Ref": "OpsWorksInstanceRole"
 }
]
 }
 },
 "OpsWorksInstanceRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 {
 "Fn::FindInMap": [
 "Region2Principal",
 {
 "Ref": "AWS::Region"
 },
 "EC2Principal"
]
 }
]
 },
 "Action": [
 "sts:AssumeRole"
]
 }
]
 },
 "Path": "/",
 "Policies": [
 {

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1283

AWS OpsWorks User Guide

 "PolicyName": "s3-get",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "*"
 }
]
 }
 }
]
 }
 },
 "myinstance": {
 "Type": "AWS::OpsWorks::Instance",
 "Properties": {
 "LayerIds": [
 {
 "Ref": "MyLayer"
 }
],
 "StackId": {
 "Ref": "MyStack"
 },
 "InstanceType": "c3.large",
 "SshKeyName": {
 "Ref": "EC2KeyPairName"
 }
 }
 }
 },
 "Outputs": {
 "StackId": {
 "Description": "Stack ID for the newly created AWS OpsWorks stack",
 "Value": {
 "Ref": "MyStack"
 }
 }
 }

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1284

AWS OpsWorks User Guide

}

2. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

3. On the AWS CloudFormation home page, choose Create stack.

4. On the Select Template page, in the Choose a template area, choose Upload a template to
Amazon S3, and then choose Browse.

5. Browse to the AWS CloudFormation template that you saved in step 1, and then choose Open.
On the Select Template page, choose Next.

6. On the Specify Details page, name the stack CodePipelineDemo, or any stack name that is
unique to your account. If you choose a different name for your stack, change the stack name
throughout this walkthrough.

7. In the Parameters area, provide the name of an EC2 key pair that you want to use to access
your AWS OpsWorks Stacks instance after it has been created. Choose Next.

8. On the Options page, choose Next. (Settings on this page are not required for this
walkthrough.)

9. The AWS CloudFormation template that you use in this walkthrough creates IAM roles, an
instance profile, and an instance.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1285

https://console.aws.amazon.com/cloudformation/

AWS OpsWorks User Guide

Important

Before you choose Create, choose Cost to estimate charges you might incur from AWS
for creating resources with this template.

If creating IAM resources is acceptable, select the I acknowledge that this template might
cause AWS CloudFormation to create IAM resources check box, and then choose Create. If
creating IAM resources is not acceptable, you cannot continue with this procedure.

10. On the AWS CloudFormation dashboard, you can view the progress of the creation of the
stack. Before you continue to the next step, wait until CREATE_COMPLETE is displayed in the
Status column.

To verify stack creation in AWS OpsWorks Stacks

1. Open the AWS OpsWorks console at https://console.aws.amazon.com/opsworks/.

2. On the AWS OpsWorks Stacks dashboard, view the stack you created.

3. Open the stack, and view the layer and instance. Observe that the layer and instance were
created with the names and other metadata provided in the AWS CloudFormation template.
You are ready to configure your stack and layer to use custom Chef cookbooks and recipes.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1286

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Step 2: Configure your stack and layer to use custom cookbooks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 12 stacks in AWS OpsWorks Stacks require your own or community-created cookbooks to
build custom application layers. For this walkthrough, you can point to a repository that contains
a set of Chef cookbooks and Chef recipes. These recipes install the Node.js package and its
dependencies on your instance. You will use other Chef recipes to deploy the Node.js app that you
will prepare in Step 4: Add your app to AWS OpsWorks Stacks. The Chef recipe that you specify in
this step runs every time a new version of your application is deployed by CodePipeline.

1. In the AWS OpsWorks Stacks console, open the stack that you created in Step 1: Create a stack,
layer, and an instance in AWS OpsWorks Stacks. Choose Stack Settings, and then choose Edit.

2. Set Use custom Chef cookbooks to Yes. This shows related custom cookbook settings.

3. From the Repository type drop-down list, choose S3 Archive. To work with both CodePipeline
and AWS OpsWorks, your cookbook source must be S3.

4. For Repository URL, specify https://s3.amazonaws.com/opsworks-demo-assets/
opsworks-linux-demo-cookbooks-nodejs.tar.gz. Your settings should resemble the
following.

5. Choose Save.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1287

https://docs.chef.io/cookbooks.html

AWS OpsWorks User Guide

6. In the navigation pane, choose Layers.

7. Choose Settings for the layer you created in Step 1: Create a stack, layer, and an instance in
AWS OpsWorks Stacks.

8. On the General Settings tab, be sure that the layer name is Node.js App Server, and the layer
short name is app1. Choose Recipes.

9. On the Recipes tab, specify nodejs_demo as the recipe you want to run during the Deploy
lifecycle event. Choose Save.

10. On the Security tab, from the Security groups drop-down list, choose the AWS-OpsWorks-
Webapp security group.

11. Choose Save.

Step 3: Upload app code to an Amazon S3 bucket

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Because you must provide a link to your code repository as part of pipeline setup, have the code
repository ready before you create your pipeline. In this walkthrough, you upload a Node.js app to
an Amazon S3 bucket.

Although CodePipeline can use code directly from GitHub or CodeCommit as sources, this
walkthrough demonstrates how to use an Amazon S3 bucket. In this walkthrough, you upload
the sample Node.js app to your own Amazon S3 bucket, so you can make changes to the app. The
Amazon S3 bucket that you create in this step enables CodePipeline to detect changes to the app
code and deploy the changed app automatically. If you wish, you can use an existing bucket. Be
sure the bucket meets the criteria described in Simple Pipeline Walkthrough (Amazon S3 Bucket) in
the CodePipeline documentation.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1288

samples/opsworks-nodejs-demo-app.zip
http://docs.aws.amazon.com/codepipeline/latest/userguide/getting-started-w.html

AWS OpsWorks User Guide

Important

The Amazon S3 bucket must be in the same region in which you will later create your
pipeline. At this time, CodePipeline supports the AWS OpsWorks Stacks provider in the
US East (N. Virginia) Region (us-east-1) only. All resources in this walkthrough should be
created in the US East (N. Virginia) Region. The bucket must also be versioned because
CodePipeline requires a versioned source. For more information, see Using Versioning.

To upload your app to an Amazon S3 bucket

1. Download the ZIP file of the AWS OpsWorks Stacks sample, Node.js app, and save it to a
convenient location on your local computer.

2. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

3. Choose Create Bucket.

4. On the Create a Bucket - Select a Bucket Name and Region page, for Bucket Name, type a
unique name for your bucket. Bucket names must be unique across all AWS accounts, not just
in your own account. This walkthrough uses the name my-appbucket, but you can use my-
appbucket-yearmonthday to make your bucket name unique. From the Region drop-down
list, choose US Standard, and then choose Create. US Standard is equivalent to us-east-1.

5. Choose the bucket you created from the All Buckets list.

6. On the bucket page, choose Upload.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1289

http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
samples/opsworks-nodejs-demo-app.zip
https://console.aws.amazon.com/s3/

AWS OpsWorks User Guide

7. On the Upload - Select Files and Folders page, choose Add files. Browse for the ZIP file you
saved in step 1, choose Open, and then choose Start Upload.

8. After the upload is complete, select the ZIP file from the list of files in your bucket, and then
choose Properties.

9. In the Properties pane, copy the link to your ZIP file, and make a note of the link. You will
need the bucket name and the ZIP file name portion of this link to create your pipeline.

Step 4: Add your app to AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Before you create a pipeline in CodePipeline, add the Node.js test app to AWS OpsWorks Stacks.
When you create the pipeline, you will need to select the app that you've added to AWS OpsWorks
Stacks.

Have the Amazon S3 bucket link from step 9 of the preceding procedure ready. You will need the
link to the bucket in which you stored your test app to complete this procedure.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1290

AWS OpsWorks User Guide

To add an app to AWS OpsWorks Stacks

1. In the AWS OpsWorks Stacks console, open CodePipelineDemo, and in the navigation pane,
choose Apps.

2. Choose Add app.

3. On the Add App page, provide the following information:

a. Specify a name for your app. This walkthrough uses the name Node.js Demo App.

b. For Data source type, choose None. This app does not require an external database or
data source.

c. In the Repository type drop-down list, choose S3 Archive.

d. In the Repository URL string box, paste the URL that you copied in step 9 of Step 3:
Upload app code to an Amazon S3 bucket. Your form should be similar to the following:

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1291

AWS OpsWorks User Guide

4. You do not need to change any other settings in this form. Choose Add App.

5. When the Node.js Demo App app appears in the list on the Apps page, continue to the next
procedure, Step 5: Create a pipeline in CodePipeline.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1292

AWS OpsWorks User Guide

Step 5: Create a pipeline in CodePipeline

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After you have a stack with a layer and at least one instance configured in AWS OpsWorks Stacks,
create a pipeline in CodePipeline with AWS OpsWorks Stacks as the provider to deploy apps or Chef
cookbooks to your AWS OpsWorks Stacks resources.

To create a pipeline

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. Choose Create pipeline.

3. On the Getting started with CodePipeline page, type MyOpsWorksPipeline, or any other
pipeline name that is unique to your account, and then choose Next step.

4. On the Source Location page, select Amazon S3 from the Source provider drop-down list.

5. In the Amazon S3 details area, type your Amazon S3 bucket path, in the format
s3://bucket-name/file name. Refer to the link that you noted in step 9 of Step 3: Upload
app code to an Amazon S3 bucket. In this walkthrough, the path is s3://my-appbucket/
opsworks-nodejs-demo-app.zip. Choose Next step.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1293

https://console.aws.amazon.com/codepipeline/

AWS OpsWorks User Guide

6. On the Build page, choose No Build from the drop-down list, and then choose Next step.

7. On the Deploy page, choose AWS OpsWorks Stacks as the deployment provider.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1294

AWS OpsWorks User Guide

8. In the Stack field, type CodePipelineDemo, or the name of the stack that you created in Step
1: Create a stack, layer, and an instance in AWS OpsWorks Stacks.

9. In the Layer field, type Node.js App Server, or the name of the layer that you created in
Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1295

AWS OpsWorks User Guide

10. In the App field, select the app that you uploaded to Amazon S3 in Step 3: Upload app code to
an Amazon S3 bucket, and then choose Next step.

11. On the AWS Service Role page, choose Create Role.

A new window opens with an IAM console page that describes the role that will be created for
you, AWS-CodePipeline-Service. From the Policy name drop-down list, choose Create
new policy. Be sure the policy document has the following content. Choose Edit to change the
policy document, if required.

{
 "Statement": [
 {
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketVersioning"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": "opsworks:*",
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

When you are finished making changes to the policy document, choose Allow. Your changes
will be displayed in the IAM console.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1296

AWS OpsWorks User Guide

Note

If role creation fails, it might be because you already have an IAM role named AWS-
CodePipeline-Service. If you have been using the AWS-CodePipeline-Service role
before May 2016, the role might not have permissions to use AWS OpsWorks Stacks as
a deployment provider. In this case, you must update the policy statement as shown
in this step. If you see an error message, go back to the beginning of this step, and
choose Use existing role instead of Create role. If you use an existing role, the role
should have a policy attached that includes the permissions shown in this step. For
more information about the service role and its policy statement, see Edit a Policy for
an IAM Service Role.

12. If the role creation process is successful, the IAM page will close, and you will be returned to
the AWS Service Role page. Choose Next step.

13. On the Review your pipeline page, verify the choices shown on the page, and then choose
Create pipeline.

14. When your pipeline is ready, it should start locating your source code and deploying your app
to your stack automatically. This process can take several minutes.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1297

http://docs.aws.amazon.com/codepipeline/latest/userguide/access-permissions.html#how-to-custom-role
http://docs.aws.amazon.com/codepipeline/latest/userguide/access-permissions.html#how-to-custom-role

AWS OpsWorks User Guide

Step 6: Verifying the app deployment in AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To verify that CodePipeline deployed the Node.js app to your stack, sign in to the instance you
created in Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks. You should be
able to see and use the Node.js web app.

To verify the app deployment in your AWS OpsWorks Stacks instance

1. Open the AWS OpsWorks console at https://console.aws.amazon.com/opsworks/.

2. On the AWS OpsWorks Stacks dashboard, choose CodePipelineDemo, and then choose
Node.js App Server.

3. In the navigation pane, choose Instances, and then choose the public IP address of the
instance that you created to view the web app.

The app will be displayed in a new browser tab.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1298

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Step 7 (Optional): Update the app code to see CodePipeline redeploy your app automatically

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1299

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When you make changes to code in apps or cookbooks that you have deployed by using
CodePipeline, the updated artifacts will be deployed automatically by CodePipeline to your
target instances (in this case, to a target AWS OpsWorks Stacks stack). This section shows you the
automatic redeployment when you update the code in your sample Node.js app. If you still have
the app code for this walkthrough stored locally, and no one else has made changes to the code
since you started the walkthrough, you can skip steps 1-4 of this procedure.

To edit the code in the sample app

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Open the bucket in which you are storing your sample Node.js app.

3. Select the ZIP file that contains the app. On the Actions menu, choose Download.

4. In the dialog box, open the context (right-click) menu, choose Download, and then save the
ZIP file to a convenient location. Choose OK.

5. Extract the contents of the ZIP file to a convenient location. You might need to change
permissions on the extracted folder and its subfolders and contents to allow editing. In the
opsworks-nodejs-demo-app\views folder, open the header.html file for editing.

6. Search for the phrase, You just deployed your first app with. Replace the word
deployed with updated. On the next line, change AWS OpsWorks. to AWS OpsWorks and
AWS CodePipeline. Do not edit anything but the text.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1300

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS OpsWorks User Guide

7. Save and close the header.html file.

8. Zip the opsworks-nodejs-demo-app folder, and save the ZIP file to a convenient location.
Do not change the name of the ZIP file.

9. Upload the new ZIP file to your Amazon S3 bucket. In this walkthrough, the name of the
bucket is my-appbucket.

10. Open the CodePipeline console, and open your AWS OpsWorks Stacks pipeline
(MyOpsWorksPipeline). Choose Release Change.

(You can wait for CodePipeline to detect the code change from the updated version of the app
in your Amazon S3 bucket. To save you time, this walkthrough instructs you to simply choose
Release Change.)

11. Observe as CodePipeline runs through the stages of the pipeline. First, CodePipeline detects
changes to the source artifact.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1301

AWS OpsWorks User Guide

CodePipeline pushes the updated code to your stack in AWS OpsWorks Stacks.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1302

AWS OpsWorks User Guide

12. When both stages of the pipeline have been successfully completed, open your stack in AWS
OpsWorks Stacks.

13. On the stack properties page, choose Instances.

14. In the Public IP column, choose the public IP address of your instance to view the updated
app's text.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1303

AWS OpsWorks User Guide

Step 8 (Optional): Clean up resources

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1304

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To help prevent unwanted charges to your AWS account, you can delete the AWS resources that
you used for this walkthrough. These AWS resources include the AWS OpsWorks Stacks stack,
the IAM role and instance profile, and the pipeline that you created in CodePipeline. However,
you might want to keep using these AWS resources as you continue to learn more about AWS
OpsWorks Stacks and CodePipeline. If you want to keep these resources, you have finished this
walkthrough.

To delete the app from the stack

Because you did not create or apply the app as part of your AWS CloudFormation template, delete
the Node.js test app before you delete the stack in AWS CloudFormation.

1. In the AWS OpsWorks Stacks console, in the service navigation pane, choose Apps.

2. On the Apps page, select Node.js Demo App, and then in Actions, choose delete. When you
are prompted to confirm, choose Delete. AWS OpsWorks Stacks will delete the app.

To delete the stack

Because you created the stack by running an AWS CloudFormation template, you can delete the
stack, including the layer, instance, instance profile, and security group that the template created,
in the AWS CloudFormation console.

1. Open the AWS CloudFormation console.

2. In the AWS CloudFormation console dashboard, select the stack you created. On the Actions
menu, choose Delete Stack. When you are prompted to confirm, choose Yes, Delete.

3. Wait for DELETE_COMPLETE to appear in the Status column for the stack.

To delete the pipeline

1. Open the CodePipeline console.

2. In the CodePipeline dashboard, choose the pipeline you created for this walkthrough.

3. On the pipeline page, choose Edit.

4. On the Edit page, choose Delete. When you are prompted to confirm, choose Delete.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1305

AWS OpsWorks User Guide

AWS CodePipeline with AWS OpsWorks Stacks - Chef 11 Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS CodePipeline lets you create continuous delivery pipelines that track code changes from
sources such as CodeCommit, Amazon Simple Storage Service (Amazon S3), or GitHub. The
example in this topic describes how to create and use a simple pipeline from CodePipeline as a
deployment tool for code that you run on AWS OpsWorks Stacks layers. In this example, you create
a pipeline for a simple PHP app, and then instruct AWS OpsWorks Stacks to run the app on all of
the instances in a layer in a Chef 11.10 stack (in this case, a single instance).

Note

This topic describes how to use a pipeline to run and update an app on a Chef 11.10 stack.
For information about how to use a pipeline to run and update an app on a Chef 12 stack,
see AWS CodePipeline with AWS OpsWorks Stacks - Chef 12 Stacks. Content delivered to
Amazon S3 buckets might contain customer content. For more information about removing
sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3 Bucket?.

Topics

• Prerequisites

• Other Supported Scenarios

• Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks

• Step 2: Upload app code to an Amazon S3 bucket

• Step 3: Add your app to AWS OpsWorks Stacks

• Step 4: Create a pipeline in CodePipeline

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1306

https://aws.amazon.com/codepipeline/
https://github.com/
https://github.com/awslabs/opsworks-demo-php-simple-app
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

AWS OpsWorks User Guide

• Step 5: Verifying the app deployment in AWS OpsWorks Stacks

• Step 6 (Optional): Update the app code to see CodePipeline redeploy your app automatically

• Step 7 (Optional): Clean up resources

Prerequisites

Before you start this walkthrough, be sure that you have administrator permissions to perform all
of the following tasks. You can be a member of a group that has the AdministratorAccess policy
applied, or you can be a member of a group that has the permissions and policies shown in the
following table. As a security best practice, you should belong to a group that has permissions to
do the following tasks, instead of assigning required permissions to individual users.

For more information about creating a security group in IAM and assigning permissions to the
group, see Creating IAM user groups. For more information about managing AWS OpsWorks Stacks
permissions, see Best Practices: Managing Permissions.

Permissions Recommended Policy to Attach to Group

Create and edit stacks, layers, and instances in
AWS OpsWorks Stacks.

AWSOpsWorks_FullAccess

Create, edit, and run templates in AWS
CloudFormation.

AmazonCloudFormationFullAccess

Create, edit, and access Amazon S3 buckets. AmazonS3FullAccess

Create, edit, and run pipelines in CodePipeline,
especially pipelines that use AWS OpsWorks
Stacks as the provider.

AWSCodePipeline_FullAccess

You must also have an Amazon EC2 key pair. You will be prompted to provide the name of this key
pair when you run the AWS CloudFormation template that creates the sample stack, layer, and
instance in this walkthrough. For more information about obtaining a key pair in the Amazon EC2
console, see Create a Key Pair in the Amazon EC2 documentation. The key pair should be in the US
East (N. Virginia) Region. You can use an existing key pair if you already have one in that region.

Other Supported Scenarios

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1307

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_create.html
https://docs.aws.amazon.com/opsworks/latest/userguide/best-practices-permissions.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair

AWS OpsWorks User Guide

This walkthrough creates a simple pipeline that includes one Source and one Deploy stage.
However, you can create more complex pipelines that use AWS OpsWorks Stacks as a provider. The
following are examples of supported pipelines and scenarios:

• You can edit a pipeline to add a Chef cookbook to the Source stage and an associated target for
updated cookbooks to the Deploy stage. In this case, you add a Deploy action that triggers the
updating of your cookbooks when you make changes to the source. The updated cookbook is
deployed before your app.

• You can create a complex pipeline, with custom cookbooks and multiple apps, and deploy to an
AWS OpsWorks Stacks stack. The pipeline tracks changes to both the application and cookbook
sources, and redeploys when you have made changes. The following shows an example of a
similar, complex pipeline:

For more information about working with CodePipeline, see the CodePipeline documentation.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1308

http://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html

AWS OpsWorks User Guide

Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To use AWS OpsWorks Stacks as a deployment provider for a pipeline, you must first have a stack,
a layer, and at least one instance in the layer. Although you can create a stack in AWS OpsWorks
Stacks by following instructions in Getting Started with Linux Stacks or Getting Started with
Windows Stacks, to save you time, this example uses an AWS CloudFormation template to create
a Linux-based Chef 11.10 stack, layer, and instance. The instance created by this template runs
Amazon Linux 2016.03, and has an instance type of c3.large.

Important

The AWS CloudFormation template must be stored and run in the same region as the
Amazon S3 bucket to which you later upload your app and the same region in which you
later create your pipeline in CodePipeline. At this time, CodePipeline supports the AWS
OpsWorks Stacks provider in the US East (N. Virginia) Region (us-east-1) only. All resources
in this walkthrough should be created in the US East (N. Virginia) Region.
If stack creation fails, you might be approaching the maximum allowed number of IAM
roles for your account. The stack creation can also fail if your account cannot launch
instances with a c3.large instance type. For example, if you are using the AWS Free Tier,
you might receive an error such as Root device type: must be included in EBS.
If your account has limitations on the instance types that you are allowed to create, such
as limitations imposed by the AWS Free Tier, try changing the value of the InstanceType
parameter in the template's instance block to an instance type that your account can use.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1309

http://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-linux.html
http://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-windows.html
http://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-windows.html

AWS OpsWorks User Guide

To create a stack, layer, and instance using AWS CloudFormation

1. Copy the following AWS CloudFormation template into a new plain-text document.
Save the file to a convenient location on your local computer, and name it
NewOpsWorksStack.template, or another name that is convenient for you.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Mappings": {
 "Region2Principal": {
 "us-east-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "us-west-2": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "us-west-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "eu-west-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "ap-southeast-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "ap-northeast-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "ap-northeast-2": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "ap-southeast-2": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "sa-east-1": {

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1310

AWS OpsWorks User Guide

 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 },
 "cn-north-1": {
 "EC2Principal": "ec2.amazonaws.com.cn",
 "OpsWorksPrincipal": "opsworks.amazonaws.com.cn"
 },
 "eu-central-1": {
 "EC2Principal": "ec2.amazonaws.com",
 "OpsWorksPrincipal": "opsworks.amazonaws.com"
 }
 }
 },
 "Parameters": {
 "EC2KeyPairName": {
 "Type": "String",
 "Description": "The name of an existing EC2 key pair that allows you to use SSH
 to connect to the OpsWorks instance."
 }
 },
 "Resources": {
 "CPOpsDeploySecGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription" : "Lets you manage OpsWorks instances deployed to by
 CodePipeline"
 }
 },
 "CPOpsDeploySecGroupIngressHTTP": {
 "Type": "AWS::EC2::SecurityGroupIngress",
 "Properties" : {
 "IpProtocol" : "tcp",
 "FromPort" : "80",
 "ToPort" : "80",
 "CidrIp" : "0.0.0.0/0",
 "GroupId": {
 "Fn::GetAtt": [
 "CPOpsDeploySecGroup", "GroupId"
]
 }
 }
 },
 "CPOpsDeploySecGroupIngressSSH": {
 "Type": "AWS::EC2::SecurityGroupIngress",

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1311

AWS OpsWorks User Guide

 "Properties" : {
 "IpProtocol" : "tcp",
 "FromPort" : "22",
 "ToPort" : "22",
 "CidrIp" : "0.0.0.0/0",
 "GroupId": {
 "Fn::GetAtt": [
 "CPOpsDeploySecGroup", "GroupId"
]
 }
 }
 },
 "MyStack": {
 "Type": "AWS::OpsWorks::Stack",
 "Properties": {
 "Name": {
 "Ref": "AWS::StackName"
 },
 "ServiceRoleArn": {
 "Fn::GetAtt": [
 "OpsWorksServiceRole",
 "Arn"
]
 },
 "ConfigurationManager" : { "Name": "Chef","Version": "11.10" },
 "DefaultOs": "Amazon Linux 2016.03",
 "DefaultInstanceProfileArn": {
 "Fn::GetAtt": [
 "OpsWorksInstanceProfile",
 "Arn"
]
 }
 }
 },
 "MyLayer": {
 "Type": "AWS::OpsWorks::Layer",
 "Properties": {
 "StackId": {
 "Ref": "MyStack"
 },
 "Name": "MyLayer",
 "Type": "php-app",
 "Shortname": "mylayer",
 "EnableAutoHealing": "true",

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1312

AWS OpsWorks User Guide

 "AutoAssignElasticIps": "false",
 "AutoAssignPublicIps": "true",
 "CustomSecurityGroupIds": [
 {
 "Fn::GetAtt": [
 "CPOpsDeploySecGroup", "GroupId"
]
 }
]
 },
 "DependsOn": [
 "MyStack",
 "CPOpsDeploySecGroup"
]
 },
 "OpsWorksServiceRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 {
 "Fn::FindInMap": [
 "Region2Principal",
 {
 "Ref": "AWS::Region"
 },
 "OpsWorksPrincipal"
]
 }
]
 },
 "Action": [
 "sts:AssumeRole"
]
 }
]
 },
 "Path": "/",
 "Policies": [
 {

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1313

AWS OpsWorks User Guide

 "PolicyName": "opsworks-service",
 "PolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "iam:PassRole",
 "cloudwatch:GetMetricStatistics",
 "elasticloadbalancing:*"
],
 "Resource": "*"
 }
]
 }
 }
]
 }
 },
 "OpsWorksInstanceProfile": {
 "Type": "AWS::IAM::InstanceProfile",
 "Properties": {
 "Path": "/",
 "Roles": [
 {
 "Ref": "OpsWorksInstanceRole"
 }
]
 }
 },
 "OpsWorksInstanceRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 {
 "Fn::FindInMap": [
 "Region2Principal",
 {
 "Ref": "AWS::Region"

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1314

AWS OpsWorks User Guide

 },
 "EC2Principal"
]
 }
]
 },
 "Action": [
 "sts:AssumeRole"
]
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "s3-get",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "*"
 }
]
 }
 }
]
 }
 },
 "myinstance": {
 "Type": "AWS::OpsWorks::Instance",
 "Properties": {
 "LayerIds": [
 {
 "Ref": "MyLayer"
 }
],
 "StackId": {
 "Ref": "MyStack"
 },
 "InstanceType": "c3.large",

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1315

AWS OpsWorks User Guide

 "SshKeyName": {
 "Ref": "EC2KeyPairName"
 }
 }
 }
 },
 "Outputs": {
 "StackId": {
 "Description": "Stack ID for the newly created AWS OpsWorks stack",
 "Value": {
 "Ref": "MyStack"
 }
 }
 }
}

2. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

3. On the AWS CloudFormation home page, choose Create stack.

4. On the Select Template page, in the Choose a template area, choose Upload a template to
Amazon S3, and then choose Browse.

5. Browse to the AWS CloudFormation template that you saved in step 1, and then choose Open.
On the Select Template page, choose Next.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1316

https://console.aws.amazon.com/cloudformation/

AWS OpsWorks User Guide

6. On the Specify Details page, name the stack MyStack, or any stack name that is unique to
your account. If you choose a different name for your stack, change the stack name throughout
this walkthrough.

7. In the Parameters area, provide the name of an EC2 key pair that you want to use to access
your AWS OpsWorks Stacks instance after it has been created. Choose Next.

8. On the Options page, choose Next. (Settings on this page are not required for this
walkthrough.)

9. The AWS CloudFormation template that you use in this walkthrough creates IAM roles, an
instance profile, and an instance.

Important

Before you choose Create, choose Cost to estimate charges you might incur from AWS
for creating resources with this template.

If creating IAM resources is acceptable, select the I acknowledge that this template might
cause AWS CloudFormation to create IAM resources check box, and then choose Create. If
creating IAM resources is not acceptable, you cannot continue with this procedure.

10. On the AWS CloudFormation dashboard, you can view the progress of the creation of the
stack. Before you continue to the next step, wait until CREATE_COMPLETE is displayed in the
Status column.

To verify stack creation in AWS OpsWorks Stacks

1. Open the AWS OpsWorks console at https://console.aws.amazon.com/opsworks/.

2. On the AWS OpsWorks Stacks dashboard, view the stack you created.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1317

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

3. Open the stack, and view the layer and instance. Observe that the layer and instance were
created with the names and other metadata provided in the AWS CloudFormation template.
You are ready to upload your app to an Amazon S3 bucket.

Step 2: Upload app code to an Amazon S3 bucket

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Because you must provide a link to your code repository as part of pipeline setup, have the code
repository ready before you create your pipeline. In this walkthrough, you upload a PHP app to an
Amazon S3 bucket.

Although CodePipeline can use code directly from GitHub or CodeCommit as sources, this
walkthrough demonstrates how to use an Amazon S3 bucket. The Amazon S3 bucket enables
CodePipeline to detect changes to the app code and deploy the changed app automatically. If
you wish, you can use an existing bucket. Be sure the bucket meets criteria for CodePipeline as
described in Simple Pipeline Walkthrough (Amazon S3 Bucket) in the CodePipeline documentation.

Important

The Amazon S3 bucket must be in the same region in which you later create your pipeline.
At this time, CodePipeline supports the AWS OpsWorks Stacks provider in the US East (N.
Virginia) Region (us-east-1) only. All resources in this walkthrough should be created in
the US East (N. Virginia) Region. The bucket must also be versioned because CodePipeline
requires a versioned source. For more information, see Using Versioning.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1318

http://docs.aws.amazon.com/codepipeline/latest/userguide/getting-started-w.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS OpsWorks User Guide

To upload your app to an Amazon S3 bucket

1. From the GitHub website, download a ZIP file of the AWS OpsWorks Stacks sample PHP app,
and save it to a convenient location on your local computer.

2. Be sure that index.php and the ASSETS folder are at the root level of the downloaded ZIP
file. If they are not, unzip the file, and create a new ZIP file that has these files at the root level.

3. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

4. Choose Create Bucket.

5. On the Create a Bucket - Select a Bucket Name and Region page, for Bucket Name, type a
unique name for your bucket. Bucket names must be unique across all AWS accounts, not just
in your own account. This walkthrough uses the name my-appbucket, but you can use my-
appbucket-yearmonthday to make your bucket name unique. From the Region drop-down
list, choose US Standard, and then choose Create. US Standard is equivalent to us-east-1.

6. Choose the bucket that you created from the All Buckets list.

7. On the bucket page, choose Upload.

8. On the Upload - Select Files and Folders page, choose Add files. Browse for the ZIP file you
saved in step 1, choose Open, and then choose Start Upload.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1319

https://github.com/awslabs/opsworks-demo-php-simple-app/archive/version1.zip
https://console.aws.amazon.com/s3/

AWS OpsWorks User Guide

9. After the upload is complete, select the ZIP file from the list of files in your bucket, and then
choose Properties.

10. In the Properties pane, copy the link to your ZIP file, and make a note of the link. You will
need the bucket name and the ZIP file name portion of this link to create your pipeline.

Step 3: Add your app to AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Before you create a pipeline in CodePipeline, add the PHP test app to AWS OpsWorks Stacks. When
you create the pipeline, you will need to select the app that you've added to AWS OpsWorks Stacks.

Have the Amazon S3 bucket link from step 10 of the preceding procedure ready. You will need the
link to the bucket in which you stored your test app to complete this procedure.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1320

AWS OpsWorks User Guide

To add an app to AWS OpsWorks Stacks

1. In the AWS OpsWorks Stacks console, open MyStack, and in the navigation pane, choose Apps.

2. Choose Add app.

3. On the Add App page, provide the following information:

a. Specify a name for your app. This walkthrough uses the name PHPTestApp.

b. In the Type drop-down list, choose PHP.

c. For Data source type, choose None. This app does not require an external database or
data source.

d. In the Repository type drop-down list, choose S3 Archive.

e. In the Repository URL string box, paste the URL that you copied in step 10 of Step 2:
Upload app code to an Amazon S3 bucket. Your form should be similar to the following:

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1321

AWS OpsWorks User Guide

4. You do not need to change any other settings in this form. Choose Add App.

5. When the PHPTestApp app appears in the list on the Apps page, continue to the next
procedure, Step 4: Create a pipeline in CodePipeline.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1322

AWS OpsWorks User Guide

Step 4: Create a pipeline in CodePipeline

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

After you have a stack with a layer and at least one instance configured in AWS OpsWorks Stacks,
create a pipeline in CodePipeline with AWS OpsWorks Stacks as the provider to deploy apps or Chef
cookbooks to your AWS OpsWorks Stacks resources.

To create a pipeline

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. Choose Create pipeline.

3. On the Getting started with CodePipeline page, type MyOpsWorksPipeline, or any other
pipeline name that is unique to your account, and then choose Next step.

4. On the Source Location page, select Amazon S3 from the Source provider drop-down list.

5. In the Amazon S3 details area, type your Amazon S3 bucket path, in the format
s3://bucket-name/file name. Refer to the link that you noted in step 10 of Step
2: Upload app code to an Amazon S3 bucket. In this walkthrough, the path is s3://my-
appbucket/opsworks-demo-php-simple-app-version1.zip. Choose Next step.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1323

https://console.aws.amazon.com/codepipeline/

AWS OpsWorks User Guide

6. On the Build page, choose No Build from the drop-down list, and then choose Next step.

7. On the Deploy page, choose AWS OpsWorks Stacks as the deployment provider.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1324

AWS OpsWorks User Guide

8. In the Stack field, type MyStack, or the name of the stack that you created in Step 1: Create a
stack, layer, and an instance in AWS OpsWorks Stacks.

9. In the Layer field, type MyLayer, or the name of the layer that you created in Step 1: Create a
stack, layer, and an instance in AWS OpsWorks Stacks.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1325

AWS OpsWorks User Guide

10. In the App field, select the app that you uploaded to Amazon S3 in Step 2: Upload app code to
an Amazon S3 bucket, and then choose Next step.

11. On the AWS Service Role page, choose Create Role.

A new window opens with an IAM console page that describes the role that will be created for
you, AWS-CodePipeline-Service. From the Policy name drop-down list, choose Create
new policy. Be sure the policy document has the following content. Choose Edit to change the
policy document, if required.

{
 "Statement": [
 {
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketVersioning"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": "opsworks:*",
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

When you are finished making changes to the policy document, choose Allow. Your changes
will be dislayed in the IAM console.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1326

AWS OpsWorks User Guide

Note

If role creation fails, it might be because you already have an IAM role named AWS-
CodePipeline-Service. If you have been using the AWS-CodePipeline-Service role
before May 2016, the role might not have permissions to use AWS OpsWorks Stacks as
a deployment provider; in this case, you must update the policy statement as shown
in this step. If you see an error message, go back to the beginning of this step, and
choose Use existing role instead of Create role. If you use an existing role, the role
should have a policy attached that includes the permissions shown in this step. For
more information about the service role and its policy statement, see Edit a Policy for
an IAM Service Role.

12. If the role creation process is successful, the IAM page will close, and you will be returned to
the AWS Service Role page. Choose Next step.

13. On the Review your pipeline page, verify the choices shown on the page, and then choose
Create pipeline.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1327

http://docs.aws.amazon.com/codepipeline/latest/userguide/access-permissions.html#how-to-custom-role
http://docs.aws.amazon.com/codepipeline/latest/userguide/access-permissions.html#how-to-custom-role

AWS OpsWorks User Guide

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1328

AWS OpsWorks User Guide

14. When your pipeline is ready, it should start locating your source code and deploying your app
to your stack automatically. This process can take several minutes.

Step 5: Verifying the app deployment in AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To verify that CodePipeline deployed the PHP app to your stack, sign in to the instance you created
in Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks. You should be able to see
and use the PHP web app.

To verify the app deployment in your AWS OpsWorks Stacks instance

1. Open the AWS OpsWorks console at https://console.aws.amazon.com/opsworks/.

2. On the AWS OpsWorks Stacks dashboard, choose MyStack, and then choose MyLayer.

3. In the navigation pane, choose Instances, and then choose the public IP address of the
instance that you created to view the web app.

The app will be displayed in a new browser tab.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1329

https://console.aws.amazon.com/opsworks/

AWS OpsWorks User Guide

Step 6 (Optional): Update the app code to see CodePipeline redeploy your app automatically

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When you make changes to code in apps or cookbooks that you have deployed by using
CodePipeline, the updated artifacts will be deployed automatically by CodePipeline to your
target instances (in this case, to a target AWS OpsWorks Stacks stack). This section shows you the
automatic redeployment when you update the code in your sample PHP app.

To edit the code in the sample app

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Open the bucket in which you are storing your sample PHP app.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1330

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS OpsWorks User Guide

3. Select the ZIP file that contains the app. On the Actions menu, choose Download.

4. In the dialog box, open the context (right-click) menu, choose Download, and then save the
ZIP file to a convenient location. Choose OK.

5. Extract the contents of the ZIP file to a convenient location. You might need to change
permissions on the extracted folder and its subfolders and contents to allow editing. In the
opsworks-demo-php-simple-app-version1 folder, open the index.php file for editing.

6. Search for the phrase, Your PHP application is now running. Replace the text, Your
PHP application is now running with You've just deployed your first app
to AWS OpsWorks with AWS CodePipeline,. Do not edit the variables.

7. Save and close the index.php file.

8. Zip the opsworks-demo-php-simple-app-version1 folder, and save the ZIP file to a
convenient location. Do not change the name of the ZIP file.

9. Upload the new ZIP file to your Amazon S3 bucket. In this walkthrough, the name of the
bucket is my-appbucket.

10. Open the CodePipeline console, and open your AWS OpsWorks Stacks pipeline
(MyOpsWorksPipeline). Choose Release Change.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1331

AWS OpsWorks User Guide

(You can wait for CodePipeline to detect the code change from the updated version of the app
in your Amazon S3 bucket. To save you time, this walkthrough instructs you to simply choose
Release Change.)

11. Observe as CodePipeline runs through the stages of the pipeline. First, CodePipeline detects
changes to the source artifact.

CodePipeline pushes the updated code to your stack in AWS OpsWorks Stacks.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1332

AWS OpsWorks User Guide

12. When both stages of the pipeline have been successfully completed, open your stack in AWS
OpsWorks Stacks (MyStack).

13. On the MyStack properties page, choose Instances.

14. In the Public IP column, choose the public IP address of your instance to view the updated
app's text.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1333

AWS OpsWorks User Guide

Step 7 (Optional): Clean up resources

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

To help prevent unwanted charges to your AWS account, you can delete the AWS resources that
you used for this walkthrough. These AWS resources include the AWS OpsWorks Stacks stack,
the IAM role and instance profile, and the pipeline that you created in CodePipeline. However,
you might want to keep using these AWS resources as you continue to learn more about AWS
OpsWorks Stacks and CodePipeline. If you want to keep these resources, you have finished this
walkthrough.

To delete the app from the stack

Because you did not create or apply the app as part of your AWS CloudFormation template, delete
the PHP test app before you delete the stack in AWS CloudFormation.

1. In the AWS OpsWorks Stacks console, in the service navigation pane, choose Apps.

2. On the Apps page, select PHPTestApp, and then in Actions, choose delete. When you are
prompted to confirm, choose Delete. AWS OpsWorks Stacks will delete the app.

To delete the stack

Because you created the stack by running an AWS CloudFormation template, you can delete the
stack, including the layer, instance, instance profile, and security group that the template created,
in the AWS CloudFormation console.

1. Open the AWS CloudFormation console.

2. In the AWS CloudFormation console dashboard, select the stack you created (MyStack). On the
Actions menu, choose Delete Stack. When you are prompted to confirm, choose Yes, Delete.

3. Wait for DELETE_COMPLETE to appear in the Status column for the stack.

Using AWS CodePipeline with AWS OpsWorks Stacks API Version 2013-02-18 1334

AWS OpsWorks User Guide

To delete the pipeline

1. Open the CodePipeline console.

2. In the CodePipeline dashboard, choose the pipeline you created for this walkthrough.

3. On the pipeline page, choose Edit.

4. On the Edit page, choose Delete. When you are prompted to confirm, choose Delete.

Using the AWS OpsWorks Stacks CLI

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The AWS OpsWorks Stacks command line interface (CLI) provides the same functionality as the
console and can be used for a variety of tasks. The AWS OpsWorks Stacks CLI is part of the AWS
CLI. For more information, including how to install and configure the AWS CLI, go to What Is the
AWS Command Line Interface?. For a complete description of each command, go to the AWS
OpsWorks Stacks reference.

Note

If you are using a Windows-based workstation, you can also run the AWS Tools for Windows
PowerShell to perform AWS OpsWorks Stacks operations from the command line. For more
information, see AWS Tools for Windows PowerShell.

AWS OpsWorks Stacks commands have the following general format:

aws opsworks --region us-west-1 opsworks command-name [--argument1 value] [...]

Using the AWS OpsWorks Stacks CLI API Version 2013-02-18 1335

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/index.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/index.html
http://aws.amazon.com/documentation/powershell/

AWS OpsWorks User Guide

If an argument value is a JSON object, you should escape the " characters or the command
might return an error that the JSON is not valid. For example, if the JSON object is
"{"somekey":"somevalue"}", you should format it as "{\"somekey\":\"somevalue\"}".
An alternative approach is to put the JSON object in a file and use file:// to include it in the
command line. The following example creates an app using an application source object stored in
appsource.json.

aws opsworks --region us-west-1 create-app --stack-id 8c428b08-a1a1-46ce-a5f8-
feddc43771b8 --name SimpleJSP --type java --app-source file://appsource.json

Most commands return one or more values, packaged as a JSON object. The following sections
contain some examples. For a detailed description of the return values for each command, go to
the AWS OpsWorks Stacks reference.

Note

AWS CLI commands must specify a region, as shown in the examples. Valid values for the --
region parameter are shown in the following table. To simplify your AWS OpsWorks Stacks
command strings, configure the CLI to specify your default region, so you can omit the --
region parameter. If you typically work in multiple regional endpoints, do not configure
the AWS CLI to use a default regional endpoint. The Canada (Central) Region endpoint is
available in the API and AWS CLI only; it is not available for stacks that you create in the
AWS Management Console. For more information, see Configuring the AWS Region.

Region name Command code

US East (Ohio) Region us-east-2

US East (N. Virginia) Region us-east-1

US West (N. California) Region us-west-1

US West (Oregon) Region us-west-2

Canada (Central) Region ca-central-1

Europe (Ireland) Region eu-west-1

Europe (London) Region eu-west-2

Using the AWS OpsWorks Stacks CLI API Version 2013-02-18 1336

http://docs.aws.amazon.com/cli/latest/reference/opsworks/index.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-installing-specifying-region

AWS OpsWorks User Guide

Region name Command code

Europe (Paris) Region eu-west-3

Europe (Frankfurt) Region eu-central-1

Asia Pacific (Tokyo) Region ap-northeast-1

Asia Pacific (Seoul) Region ap-northeast-2

Asia Pacific (Mumbai) Region ap-south-1

Asia Pacific (Singapore) Region ap-southeast-1

Asia Pacific (Sydney) Region ap-southeast-2

South America (São Paulo) Region sa-east-1

To use a CLI command, you must have the appropriate permissions. For more information on AWS
OpsWorks Stacks permissions, see Managing User Permissions. To determine the permissions
required for a particular command, see the command's reference page in the AWS OpsWorks
Stacks reference.

The following sections describe how to use the AWS OpsWorks Stacks CLI to perform a variety of
common tasks.

Create an Instance (create-instance)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Create an Instance API Version 2013-02-18 1337

http://docs.aws.amazon.com/cli/latest/reference/opsworks/index.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/index.html

AWS OpsWorks User Guide

Use the create-instance command to create an instance on a specified stack.

Topics

• Create an Instance with a Default Host Name

• Create an Instance with a Themed Host Name

• Create an Instance with a Custom AMI

Create an Instance with a Default Host Name

C:\>aws opsworks --region us-west-1 create-instance --stack-id 935450cc-61e0-4b03-
a3e0-160ac817d2bb
 --layer-ids 5c8c272a-f2d5-42e3-8245-5bf3927cb65b --instance-type m1.large --os
 "Amazon Linux"

The arguments are as follows:

• stack-id – You can get the stack ID from the stack's settings page on the console (look for
OpsWorks ID) or by calling describe-stacks.

• layer-ids – You can get layer IDs from the layer's details page on the console (look for
OpsWorks ID) or by calling describe-layers. In this example, the instance belongs to only one
layer.

• instance-type – The specification that defines the memory, CPU, storage capacity, and hourly
cost for the instance; m1.large for this example.

• os – The instance's operating system; Amazon Linux for this example.

The command returns a JSON object that contains the instance ID, as follows:

{
 "InstanceId": "5f9adeaa-c94c-42c6-aeef-28a5376002cd"
}

This example creates an instance with a default host name, which is simply an integer. The
following section describes how to create an instance with a host name generated from a theme.

Create an Instance API Version 2013-02-18 1338

http://docs.aws.amazon.com/cli/latest/reference/opsworks/create-instance.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-stacks.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-layers.html

AWS OpsWorks User Guide

Create an Instance with a Themed Host Name

You can also create an instance with a themed host name. You specify the theme when you create
the stack. For more information, see Create a New Stack.To create the instance, first call get-
hostname-suggestion to generate a name. For example:

C:\>aws opsworks get-hostname-suggestion --region us-west-1 --layer-id 5c8c272a-
f2d5-42e3-8245-5bf3927cb65b

If you specify the default Layer Dependent theme, get-hostname-suggestion simply
appends a digit to the layer's short name. For more information, see Create a New Stack.

The command returns the generated host name.

{
 "Hostname": "php-app2",
 "LayerId": "5c8c272a-f2d5-42e3-8245-5bf3927cb65b"
}

You can then use the hostname argument to pass the generated name to create-instance, as
follows:

c:\>aws --region us-west-1 opsworks create-instance --stack-id 935450cc-61e0-4b03-
a3e0-160ac817d2bb
 --layer-ids 5c8c272a-f2d5-42e3-8245-5bf3927cb65b --instance-type m1.large --os
 "Amazon Linux" --hostname "php-app2"

Create an Instance with a Custom AMI

The following create-instance command creates an instance with a custom AMI, which must
be from the stack's region. For more information about how to create a custom AMI for AWS
OpsWorks Stacks, see Using Custom AMIs.

C:\>aws opsworks create-instance --region us-west-1 --stack-id c5ef46ce-3ccd-472c-
a3de-9bec94c6028e
 --layer-ids 6ff8a2ac-c9cc-49cf-9c67-fc852539ade4 --instance-type c3.large --os
 Custom

Create an Instance API Version 2013-02-18 1339

http://docs.aws.amazon.com/cli/latest/reference/opsworks/get-hostname-suggestion.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/get-hostname-suggestion.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/create-instance.html

AWS OpsWorks User Guide

 --ami-id ami-6c61f104

The arguments are as follows:

• stack-id – You can get the stack ID from the stack's settings page on the console (look for
OpsWorks ID) or by calling describe-stacks.

• layer-ids – You can get layer IDs from the layer's details page on the console (look for
OpsWorks ID) or by calling describe-layers. In this example, the instance belongs to only one
layer.

• instance-type – The value defines the instance's memory, CPU, storage capacity, and hourly
cost, and must be compatible with the AMI (c3.large for this example).

• os – The instance's operating system, which must be set to Custom for a custom AMI.

• ami-id – The AMI ID, which should look something like ami-6c61f104

Note

When you use a custom AMI, block device mappings are not supported, and values that you
specify for the --block-device-mappings option are ignored.

The command returns a JSON object that contains the instance ID, as follows:

{
 "InstanceId": "5f9adeaa-c94c-42c6-aeef-28a5376002cd"
}

Deploy an App (create-deployment)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For

Deploy an App API Version 2013-02-18 1340

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-stacks.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-layers.html

AWS OpsWorks User Guide

more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the create-deployment command to deploy an app to a specified stack.

Topics

• Deploy an App

Deploy an App

aws opsworks --region us-west-1 create-deployment --stack-id cfb7e082-ad1d-4599-8e81-
de1c39ab45bf
 --app-id 307be5c8-d55d-47b5-bd6e-7bd417c6c7eb --command "{\"Name\":\"deploy\"}"

The arguments are as follows:

• stack-id – You can get the stack ID from the stack's settings page on the console (look for
OpsWorks ID) or by calling describe-stacks.

• app-id – You can get app ID from the app's details page (look for OpsWorks ID) or by calling
describe-apps.

• command – The argument takes a JSON object that sets the command name to deploy, which
deploys the specified app to the stack.

Notice that the " characters in the JSON object are all escaped. Otherwise, the command might
return an error that the JSON is invalid.

The command returns a JSON object that contains the deployment ID, as follows:

{
 "DeploymentId": "5746c781-df7f-4c87-84a7-65a119880560"
}

Deploy an App API Version 2013-02-18 1341

http://docs.aws.amazon.com/cli/latest/reference/opsworks/create-deployment.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-apps.html

AWS OpsWorks User Guide

Note

The preceding example deploys to every instance in the stack. To deploy to a specified
subset of instances, add an instance-ids argument and list the instance IDs.

List a Stack's Apps (describe-apps)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the describe-apps command to list a stack's apps or get details about specified apps.

aws opsworks --region us-west-1 describe-apps --stack-id 38ee91e2-abdc-4208-
a107-0b7168b3cc7a

The preceding example returns a JSON object that contains information about each app. This
example has only one app. For a description of each parameter, see describe-apps.

{
 "Apps": [
 {
 "StackId": "38ee91e2-abdc-4208-a107-0b7168b3cc7a",
 "AppSource": {
 "Url": "url",
 "Type": "archive"
 },
 "Name": "SimpleJSP",
 "EnableSsl": false,
 "SslConfiguration": {},
 "AppId": "da1decc1-0dff-43ea-ad7c-bb667cd87c8b",

List Apps API Version 2013-02-18 1342

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-apps.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-apps.html

AWS OpsWorks User Guide

 "Attributes": {
 "RailsEnv": null,
 "AutoBundleOnDeploy": "true",
 "DocumentRoot": "ROOT"
 },
 "Shortname": "simplejsp",
 "Type": "other",
 "CreatedAt": "2013-08-01T21:46:54+00:00"
 }
]
}

List a Stack's Commands (describe-commands)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the describe-commands command to list a stack's commands or get details about specified
commands. The following example gets information about the commands that have been executed
on a specified instance.

aws opsworks --region us-west-1 describe-commands --instance-id
 8c2673b9-3fe5-420d-9cfa-78d875ee7687

The command returns a JSON object that contains details about each command. The Type
parameter identifies the command name, deploy or undeploy for this example. For a description of
the other parameters, see describe-commands.

{
 "Commands": [
 {
 "Status": "successful",

List Commands API Version 2013-02-18 1343

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-commands.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-commands.html

AWS OpsWorks User Guide

 "CompletedAt": "2013-07-25T18:57:47+00:00",
 "InstanceId": "8c2673b9-3fe5-420d-9cfa-78d875ee7687",
 "DeploymentId": "6ed0df4c-9ef7-4812-8dac-d54a05be1029",
 "AcknowledgedAt": "2013-07-25T18:57:41+00:00",
 "LogUrl": "https://s3.amazonaws.com/prod_stage-log/logs/008c1a91-
ec59-4d51-971d-3adff54b00cc?AWSAccessKeyId=AIDACKCEVSQ6C2EXAMPLE
 &Expires=1375394373&Signature=HkXil6UuNfxTCC37EPQAa462E1E%3D&response-cache-
control=private&response-content-encoding=gzip&response-content- type=text%2Fplain",
 "Type": "undeploy",
 "CommandId": "008c1a91-ec59-4d51-971d-3adff54b00cc",
 "CreatedAt": "2013-07-25T18:57:34+00:00",
 "ExitCode": 0
 },
 {
 "Status": "successful",
 "CompletedAt": "2013-07-25T18:55:40+00:00",
 "InstanceId": "8c2673b9-3fe5-420d-9cfa-78d875ee7687",
 "DeploymentId": "19d3121e-d949-4ff2-9f9d-94eac087862a",
 "AcknowledgedAt": "2013-07-25T18:55:32+00:00",
 "LogUrl": "https://s3.amazonaws.com/prod_stage-log/
logs/899d3d64-0384-47b6-a586-33433aad117c?AWSAccessKeyId=AIDACKCEVSQ6C2EXAMPLE
 &Expires=1375394373&Signature=xMsJvtLuUqWmsr8s%2FAjVru0BtRs%3D&response-cache-
control=private&response-content-encoding=gzip&response-conten t-type=text%2Fplain",
 "Type": "deploy",
 "CommandId": "899d3d64-0384-47b6-a586-33433aad117c",
 "CreatedAt": "2013-07-25T18:55:29+00:00",
 "ExitCode": 0
 }
]
}

List a Stack's Deployments (describe-deployments)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

List Deployments API Version 2013-02-18 1344

AWS OpsWorks User Guide

Use the describe-deployments command to list a stack's deployments or get details about specified
deployments.

aws opsworks --region us-west-1 describe-deployments --stack-id 38ee91e2-abdc-4208-
a107-0b7168b3cc7a

The preceding command returns a JSON object that contains details about each deployment for
the specified stack. For a description of each parameter, see describe-deployments.

{
 "Deployments": [
 {
 "StackId": "38ee91e2-abdc-4208-a107-0b7168b3cc7a",
 "Status": "successful",
 "CompletedAt": "2013-07-25T18:57:49+00:00",
 "DeploymentId": "6ed0df4c-9ef7-4812-8dac-d54a05be1029",
 "Command": {
 "Args": {},
 "Name": "undeploy"
 },
 "CreatedAt": "2013-07-25T18:57:34+00:00",
 "Duration": 15,
 "InstanceIds": [
 "8c2673b9-3fe5-420d-9cfa-78d875ee7687",
 "9e588a25-35b2-4804-bd43-488f85ebe5b7"
]
 },
 {
 "StackId": "38ee91e2-abdc-4208-a107-0b7168b3cc7a",
 "Status": "successful",
 "CompletedAt": "2013-07-25T18:56:41+00:00",
 "IamUserArn": "arn:aws:iam::444455556666:user/example-user",
 "DeploymentId": "19d3121e-d949-4ff2-9f9d-94eac087862a",
 "Command": {
 "Args": {},
 "Name": "deploy"
 },
 "InstanceIds": [
 "8c2673b9-3fe5-420d-9cfa-78d875ee7687",
 "9e588a25-35b2-4804-bd43-488f85ebe5b7"
],
 "Duration": 72,
 "CreatedAt": "2013-07-25T18:55:29+00:00"

List Deployments API Version 2013-02-18 1345

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-deployments.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-deployments.html

AWS OpsWorks User Guide

 }
]
}

List a Stack's Elastic IP Addresses (describe-elastic-ips)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the describe-elastic-ips command to list the Elastic IP addresses that have been registered with
a stack or get details about specified Elastic IP addresses.

aws opsworks --region us-west-2 describe-elastic-ips --instance-id b62f3e04-e9eb-436c-
a91f-d9e9a396b7b0

The preceding command returns a JSON object that contains details about each Elastic IP address
(one in this example) for a specified instance. For a description of each parameter, see describe-
elastic-ips.

{
 "ElasticIps": [
 {
 "Ip": "192.0.2.0",
 "Domain": "standard",
 "Region": "us-west-2"
 }
]
}

List Elastic IP Addresses API Version 2013-02-18 1346

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-elastic-ips.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-elastic-ips.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-elastic-ips.html

AWS OpsWorks User Guide

List a Stack's Instances (describe-instances)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the describe-instances command to list a stack's instances or get details about specified
instances.

C:\>aws opsworks --region us-west-2 describe-instances --stack-id 38ee91e2-abdc-4208-
a107-0b7168b3cc7a

The preceding command returns a JSON object that contains details about every instance in a
specified stack. For a description of each parameter, see describe-instances.

{
 "Instances": [
 {
 "StackId": "38ee91e2-abdc-4208-a107-0b7168b3cc7a",
 "SshHostRsaKeyFingerprint":
 "f4:3b:8e:27:1b:73:98:80:5d:d7:33:e2:b8:c8:8f:de",
 "Status": "stopped",
 "AvailabilityZone": "us-west-2a",
 "SshHostDsaKeyFingerprint":
 "e8:9b:c7:02:18:2a:bd:ab:45:89:21:4e:af:0b:07:ac",
 "InstanceId": "8c2673b9-3fe5-420d-9cfa-78d875ee7687",
 "Os": "Amazon Linux",
 "Hostname": "db-master1",
 "SecurityGroupIds": [],
 "Architecture": "x86_64",
 "RootDeviceType": "instance-store",
 "LayerIds": [
 "41a20847-d594-4325-8447-171821916b73"
],
 "InstanceType": "c1.medium",

List Instances API Version 2013-02-18 1347

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-elastic-ips.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-elastic-ips.html

AWS OpsWorks User Guide

 "CreatedAt": "2013-07-25T18:11:27+00:00"
 },
 {
 "StackId": "38ee91e2-abdc-4208-a107-0b7168b3cc7a",
 "SshHostRsaKeyFingerprint":
 "ae:3a:85:54:66:f3:ce:98:d9:83:39:1e:10:a9:38:12",
 "Status": "stopped",
 "AvailabilityZone": "us-west-2a",
 "SshHostDsaKeyFingerprint":
 "5b:b9:6f:5b:1c:ec:55:85:f3:45:f1:28:25:1f:de:e4",
 "InstanceId": "9e588a25-35b2-4804-bd43-488f85ebe5b7",
 "Os": "Amazon Linux",
 "Hostname": "tomcustom1",
 "SecurityGroupIds": [],
 "Architecture": "x86_64",
 "RootDeviceType": "instance-store",
 "LayerIds": [
 "e6cbcd29-d223-40fc-8243-2eb213377440"
],
 "InstanceType": "c1.medium",
 "CreatedAt": "2013-07-25T18:15:52+00:00"
 }
]
}

List an Account's Stacks (describe-stacks)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the describe-stacks command to list an account's stacks or get details about specified stacks.

aws opsworks --region us-west-2 describe-stacks

List Stacks API Version 2013-02-18 1348

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-stacks.html

AWS OpsWorks User Guide

The preceding command returns a JSON object that contains details about each stack in the
account, two in this example. For a description of each parameter, see describe-stacks.

{
 "Stacks": [
 {
 "ServiceRoleArn": "arn:aws:iam::444455556666:role/aws-opsworks-service-
role",
 "StackId": "aeb7523e-7c8b-49d4-b866-03aae9d4fbcb",
 "DefaultRootDeviceType": "instance-store",
 "Name": "TomStack-sd",
 "ConfigurationManager": {
 "Version": "11.4",
 "Name": "Chef"
 },
 "UseCustomCookbooks": true,
 "CustomJson": "{\n \"tomcat\": {\n \"base_version\": 7,\n
 \"java_opts\": \"-Djava.awt.headless=true -Xmx256m\"\n },\n \
"datasources\": {\n \"ROOT\": \"jdbc/mydb\"\n }\n}",
 "Region": "us-west-2",
 "DefaultInstanceProfileArn": "arn:aws:iam::444455556666:instance-profile/
aws-opsworks-ec2-role",
 "CustomCookbooksSource": {
 "Url": "git://github.com/example-repo/tomcustom.git",
 "Type": "git"
 },
 "DefaultAvailabilityZone": "us-west-2a",
 "HostnameTheme": "Layer_Dependent",
 "Attributes": {
 "Color": "rgb(45, 114, 184)"
 },
 "DefaultOs": "Amazon Linux",
 "CreatedAt": "2013-08-01T22:53:42+00:00"
 },
 {
 "ServiceRoleArn": "arn:aws:iam::444455556666:role/aws-opsworks-service-
role",
 "StackId": "40738975-da59-4c5b-9789-3e422f2cf099",
 "DefaultRootDeviceType": "instance-store",
 "Name": "MyStack",
 "ConfigurationManager": {
 "Version": "11.4",
 "Name": "Chef"

List Stacks API Version 2013-02-18 1349

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-stacks.html

AWS OpsWorks User Guide

 },
 "UseCustomCookbooks": false,
 "Region": "us-west-2",
 "DefaultInstanceProfileArn": "arn:aws:iam::444455556666:instance-profile/
aws-opsworks-ec2-role",
 "CustomCookbooksSource": {},
 "DefaultAvailabilityZone": "us-west-2a",
 "HostnameTheme": "Layer_Dependent",
 "Attributes": {
 "Color": "rgb(45, 114, 184)"
 },
 "DefaultOs": "Amazon Linux",
 "CreatedAt": "2013-10-25T19:24:30+00:00"
 }
]
}

List a Stack's Layers (describe-layers)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the describe-layers command to list a stack's layers or get details about specified layers.

aws opsworks --region us-west-2 describe-layers --stack-id 38ee91e2-abdc-4208-
a107-0b7168b3cc7a

The preceding command returns a JSON object that contains details about each layer in a specified
stack—in this example, a MySQL layer and a custom layer. For a description of each parameter, see
describe-layers.

{
 "Layers": [

List Layers API Version 2013-02-18 1350

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-layers.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-layers.html

AWS OpsWorks User Guide

 {
 "StackId": "38ee91e2-abdc-4208-a107-0b7168b3cc7a",
 "Type": "db-master",
 "DefaultSecurityGroupNames": [
 "AWS-OpsWorks-DB-Master-Server"
],
 "Name": "MySQL",
 "Packages": [],
 "DefaultRecipes": {
 "Undeploy": [],
 "Setup": [
 "opsworks_initial_setup",
 "ssh_host_keys",
 "ssh_users",
 "mysql::client",
 "dependencies",
 "ebs",
 "opsworks_ganglia::client",
 "mysql::server",
 "dependencies",
 "deploy::mysql"
],
 "Configure": [
 "opsworks_ganglia::configure-client",
 "ssh_users",
 "agent_version",
 "deploy::mysql"
],
 "Shutdown": [
 "opsworks_shutdown::default",
 "mysql::stop"
],
 "Deploy": [
 "deploy::default",
 "deploy::mysql"
]
 },
 "CustomRecipes": {
 "Undeploy": [],
 "Setup": [],
 "Configure": [],
 "Shutdown": [],
 "Deploy": []
 },

List Layers API Version 2013-02-18 1351

AWS OpsWorks User Guide

 "EnableAutoHealing": false,
 "LayerId": "41a20847-d594-4325-8447-171821916b73",
 "Attributes": {
 "MysqlRootPasswordUbiquitous": "true",
 "RubygemsVersion": null,
 "RailsStack": null,
 "HaproxyHealthCheckMethod": null,
 "RubyVersion": null,
 "BundlerVersion": null,
 "HaproxyStatsPassword": null,
 "PassengerVersion": null,
 "MemcachedMemory": null,
 "EnableHaproxyStats": null,
 "ManageBundler": null,
 "NodejsVersion": null,
 "HaproxyHealthCheckUrl": null,
 "MysqlRootPassword": "*****FILTERED*****",
 "GangliaPassword": null,
 "GangliaUser": null,
 "HaproxyStatsUrl": null,
 "GangliaUrl": null,
 "HaproxyStatsUser": null
 },
 "Shortname": "db-master",
 "AutoAssignElasticIps": false,
 "CustomSecurityGroupIds": [],
 "CreatedAt": "2013-07-25T18:11:19+00:00",
 "VolumeConfigurations": [
 {
 "MountPoint": "/vol/mysql",
 "Size": 10,
 "NumberOfDisks": 1
 }
]
 },
 {
 "StackId": "38ee91e2-abdc-4208-a107-0b7168b3cc7a",
 "Type": "custom",
 "DefaultSecurityGroupNames": [
 "AWS-OpsWorks-Custom-Server"
],
 "Name": "TomCustom",
 "Packages": [],
 "DefaultRecipes": {

List Layers API Version 2013-02-18 1352

AWS OpsWorks User Guide

 "Undeploy": [],
 "Setup": [
 "opsworks_initial_setup",
 "ssh_host_keys",
 "ssh_users",
 "mysql::client",
 "dependencies",
 "ebs",
 "opsworks_ganglia::client"
],
 "Configure": [
 "opsworks_ganglia::configure-client",
 "ssh_users",
 "agent_version"
],
 "Shutdown": [
 "opsworks_shutdown::default"
],
 "Deploy": [
 "deploy::default"
]
 },
 "CustomRecipes": {
 "Undeploy": [],
 "Setup": [
 "tomcat::setup"
],
 "Configure": [
 "tomcat::configure"
],
 "Shutdown": [],
 "Deploy": [
 "tomcat::deploy"
]
 },
 "EnableAutoHealing": true,
 "LayerId": "e6cbcd29-d223-40fc-8243-2eb213377440",
 "Attributes": {
 "MysqlRootPasswordUbiquitous": null,
 "RubygemsVersion": null,
 "RailsStack": null,
 "HaproxyHealthCheckMethod": null,
 "RubyVersion": null,
 "BundlerVersion": null,

List Layers API Version 2013-02-18 1353

AWS OpsWorks User Guide

 "HaproxyStatsPassword": null,
 "PassengerVersion": null,
 "MemcachedMemory": null,
 "EnableHaproxyStats": null,
 "ManageBundler": null,
 "NodejsVersion": null,
 "HaproxyHealthCheckUrl": null,
 "MysqlRootPassword": null,
 "GangliaPassword": null,
 "GangliaUser": null,
 "HaproxyStatsUrl": null,
 "GangliaUrl": null,
 "HaproxyStatsUser": null
 },
 "Shortname": "tomcustom",
 "AutoAssignElasticIps": false,
 "CustomSecurityGroupIds": [],
 "CreatedAt": "2013-07-25T18:12:53+00:00",
 "VolumeConfigurations": []
 }
]
}

Execute a Recipe (create-deployment)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the create-deployment command to execute stack commands and deployment commands. The
following example executes a stack command to run a custom recipe on a specified stack.

aws opsworks --region us-west-1 create-deployment --stack-id 935450cc-61e0-4b03-
a3e0-160ac817d2bb

Execute a Recipe API Version 2013-02-18 1354

http://docs.aws.amazon.com/cli/latest/reference/opsworks/create-deployment.html

AWS OpsWorks User Guide

 --command "{\"Name\":\"execute_recipes\", \"Args\":{\"recipes\":[\"phpapp::appsetup
\"]}}"

The command argument takes a JSON object that is formatted as follows:

• Name - Specifies the command name. The execute_recipes command used for this example
executes a specified recipe on the stack's instances.

• Args - Specifies a list of arguments and their values. This example has one argument, recipes,
which is set to the recipe to be executed, phpapp::appsetup.

Notice that the " characters in the JSON object are all escaped. Otherwise, the command might
return an error that the JSON is invalid.

The command returns a deployment ID, which you can use to identify the command for other CLI
commands such as describe-commands.

{
 "DeploymentId": "5cbaa7b9-4e09-4e53-aa1b-314fbd106038"
}

Install Dependencies (create-deployment)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the create-deployment command to execute stack commands and deployment commands. The
following example runs the update_dependencies stack command to update the dependencies
on a stack's instances.

aws opsworks --region us-west-1 create-deployment --stack-id 935450cc-61e0-4b03-
a3e0-160ac817d2bb

Install Dependencies API Version 2013-02-18 1355

http://docs.aws.amazon.com/cli/latest/reference/opsworks/create-deployment.html

AWS OpsWorks User Guide

--command "{\"Name\":\"install_dependencies\"}"

The command argument takes a JSON object with a Name parameter whose value specifies the
command name, install_dependencies for this example. Notice that the " characters in the
JSON object are all escaped. Otherwise, the command might return an error that the JSON is
invalid.

The command returns a deployment ID, which you can use to identify the command for other CLI
commands such as describe-commands.

{
 "DeploymentId": "aef5b255-8604-4928-81b3-9b0187f962ff"
}

Update the Stack Configuration (update-stack)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Use the update-stack command to update the configuration of a specified stack. The following
example updates a stack to add custom JSON to the stack configuration attributes.

aws opsworks --region us-west-1 update-stack --stack-id 935450cc-61e0-4b03-
a3e0-160ac817d2bb
 --custom-json "{\"somekey\":\"somevalue\"}" --service-role-arn
 arn:aws:iam::444455556666:role/aws-opsworks-service-role

Notice that the " characters in the JSON object are all escaped. Otherwise, the command might
return an error that the JSON is invalid.

Update the Stack Configuration API Version 2013-02-18 1356

http://docs.aws.amazon.com/cli/latest/reference/opsworks/update-stack.html

AWS OpsWorks User Guide

Note

The example also specifies a service role for the stack. You must set service-role-arn
to a valid service role ARN or the action will fail; there is no default value. You can specify
the stack's current service role ARN, if you prefer, but you must do so explicitly.

The update-stack command does not return a value.

Debugging and Troubleshooting Guide

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If you need to debug a recipe or troubleshoot a service issue, the best approach generally is to
work through the following steps, in order:

1. Check Common Debugging and Troubleshooting Issues for your specific issue.

2. Search the AWS OpsWorks Stacks Forum to see if the issue has been discussed there.

The Forum includes many experienced users and is monitored by the AWS OpsWorks Stacks
team.

3. For issues with recipes, see Debugging Recipes.

4. Contact AWS OpsWorks Stacks support or post your issue on the AWS OpsWorks Stacks Forum.

The following section provides guidance for debugging recipes. The final section describes
common debugging and troubleshooting issues and their solutions.

Debugging and Troubleshooting Guide API Version 2013-02-18 1357

https://forums.aws.amazon.com/forum.jspa?forumID=153#
https://forums.aws.amazon.com/forum.jspa?forumID=153#

AWS OpsWorks User Guide

Note

Each Chef run produces a log, which provides a detailed description of the run and is
a valuable troubleshooting resource. To specify the amount of detail in the log, add a
Chef::Log.level statement to a custom recipe that specifies the desired log level. The
default value is :info. The following example shows how to set the Chef log level to
:debug, which provides the most detailed description of the run.

Chef::Log.level = :debug

For more information about viewing and interpreting Chef logs, see Chef Logs.

Topics

• Debugging Recipes

• Common Debugging and Troubleshooting Issues

Debugging Recipes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

When a lifecycle event occurs, or you run the Execute Recipes stack command, AWS OpsWorks
Stacks issues a command to the agent to initiate a Chef Solo run on the specified instances to
execute the appropriate recipes, including your custom recipes. This section describes some ways
that you can debug failed recipes.

Topics

• Logging in to a Failed Instance

Debugging Recipes API Version 2013-02-18 1358

https://docs.chef.io/resource_log.html
https://docs.chef.io/ctl_chef_solo.html

AWS OpsWorks User Guide

• Chef Logs

• Using the AWS OpsWorks Stacks Agent CLI

Logging in to a Failed Instance

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

If a recipe fails, the instance will end up in the setup_failed state instead of online. Even though
the instance is not online as far as AWS OpsWorks Stacks is concerned, the EC2 instance is running
and it's often useful to log in to troubleshoot the issue. For example, you can check whether an
application or custom cookbook is correctly installed. The AWS OpsWorks Stacks built-in support
for SSH and RDP login is available only for instances in the online state. However, if you have
assigned an SSH key pair to the instance, you can still log in, as follows:

• Linux instances – Use the SSH key pair's private key to log in with a third-party SSH client, such
as OpenSSH or PuTTY.

You can use an EC2 key pair or your personal SSH key pair for this purpose.

• Windows instances – Use the EC2 key pair's private key to retrieve the instance's Administrator
password.

Use that password to log in with your preferred RDP Client. For more information, see Logging in
As Administrator. You cannot use a personal SSH key pair to retrieve an Administrator password.

Debugging Recipes API Version 2013-02-18 1359

AWS OpsWorks User Guide

Chef Logs

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef logs are one of your key troubleshooting resources, especially for debugging recipes. AWS
OpsWorks Stacks captures the Chef log for each command, and retains the logs for an instance's 30
most recent commands. Because the run is in debug mode, the log contains a detailed description
of the Chef run, including the text that is sent to stdout and stderror. If a recipe fails, the log
includes the Chef stack trace.

AWS OpsWorks Stacks gives you several ways to view Chef logs. Once you have the log
information, you can use it to debug failed recipes.

Note

You can also view a specified log's tail by using SSH to connect to the instance and running
the agent CLI show_log command. For more information, see Displaying Chef Logs.

Topics

• Viewing a Chef Log with the Console

• Viewing a Chef Log with the CLI or API

• Viewing a Chef Log on an Instance

• Interpreting a Chef Log

• Common Chef Log Errors

Debugging Recipes API Version 2013-02-18 1360

AWS OpsWorks User Guide

Viewing a Chef Log with the Console

The simplest way to view a Chef log is to go to the instance's details page. The Logs section
includes an entry for each event and Execute Recipes command. The following shows an instance's
Logs section, with configure and setup commands, which correspond to Configure and Setup
lifecycle events.

Click show in the appropriate command's Log column to view the corresponding Chef log. If an
error occurs, AWS OpsWorks Stacks automatically opens the log to the error, which is usually at the
end of the file.

Viewing a Chef Log with the CLI or API

You can use the AWS OpsWorks Stacks CLI describe-commands command or the
DescribeCommands API action to view the logs, which are stored on an Amazon S3 bucket.
The following shows how to use the CLI to view any of the current set of logs file for a specified
instance. The procedure for using DescribeCommands is essentially similar.

To use the AWS OpsWorks Stacks to view an instance's Chef logs

1. Open the instance's details page and copy its OpsWorks ID value.

2. Use the ID value to run the describe-commands CLI command, as follows:

aws opsworks describe-commands --instance-id 67bf0da2-29ed-4217-990c-d895d51812b9

The command returns a JSON object with an embedded object for each command that AWS
OpsWorks Stacks has executed on the instance, with the most recent first. The Type parameter
contains the command type for each embedded object, a configure command, and a setup
command in this example.

{

Debugging Recipes API Version 2013-02-18 1361

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-commands.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_DescribeCommands.html

AWS OpsWorks User Guide

 "Commands": [
 {
 "Status": "successful",
 "CompletedAt": "2013-10-25T19:38:36+00:00",
 "InstanceId": "67bf0da2-29ed-4217-990c-d895d51812b9",
 "AcknowledgedAt": "2013-10-25T19:38:24+00:00",
 "LogUrl": "https://s3.amazonaws.com/prod_stage-log/logs/
b6c402df-5c23-45b2-a707-ad20b9c5ae40?AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE
&Expires=1382731518&Signature=YkqS5IZN2P4wixjHwoC3aCMbn5s%3D&response-cache-
control=private&response-content-encoding=gzip&response-content-
type=text%2Fplain",
 "Type": "configure",
 "CommandId": "b6c402df-5c23-45b2-a707-ad20b9c5ae40",
 "CreatedAt": "2013-10-25T19:38:11+00:00",
 "ExitCode": 0
 },
 {
 "Status": "successful",
 "CompletedAt": "2013-10-25T19:31:08+00:00",
 "InstanceId": "67bf0da2-29ed-4217-990c-d895d51812b9",
 "AcknowledgedAt": "2013-10-25T19:29:01+00:00",
 "LogUrl": "https://s3.amazonaws.com/prod_stage-log/logs/2a90e862-
f974-42a6-9342-9a4f03468358?AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE
&Expires=1382731518&Signature=cxKYHO8mCCd4MvOyFb6ywebeQtA%3D&response-cache-
control=private&response-content-encoding=gzip&response-content-
type=text%2Fplain",
 "Type": "setup",
 "CommandId": "2a90e862-f974-42a6-9342-9a4f03468358",
 "CreatedAt": "2013-10-25T19:26:01+00:00",
 "ExitCode": 0
 }
]
}

3. Copy the LogUrl value to your browser to view the log.

If the instance has more than a few commands, you can add parameters to describe-commands
to filter which commands are included in the response object. For more information, see describe-
commands.

Debugging Recipes API Version 2013-02-18 1362

http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-commands.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/describe-commands.html

AWS OpsWorks User Guide

Viewing a Chef Log on an Instance

Note

Topics in this section apply to Chef 12. For information about the location of Chef logs for
Chef 11.10 and older releases, see Troubleshooting Chef 11.10 and Earlier Versions for
Linux.

Linux instances

AWS OpsWorks Stacks stores each instance's Chef logs in its /var/chef/runs directory. (For Linux
instances, this directory also includes the associated data bags, stored as JSON-formatted files.)
You need sudo privileges to access this directory. The log for each run is in a file named chef.log
inside of the individual run's subdirectory.

AWS OpsWorks Stacks stores its internal logs in the instance's /var/log/aws/opsworks folder.
The information is usually not very helpful for troubleshooting purposes. However, these logs are
useful to AWS OpsWorks Stacks support, and you might be asked to provide them if you encounter
an issue with the service. The Linux logs can also sometimes provide useful troubleshooting data.

Windows instances

Agent Logs

On Windows instances, OpsWorks logs are stored in a ProgramData path such as the following.
The number includes a timestamp.

C:\ProgramData\OpsWorksAgent\var\logs\number

Note

By default, ProgramData is a hidden folder. To unhide it, navigate to Folder Options.
Under View, choose the option to show hidden files.

The following example shows agent logs on a Windows instance.

Mode LastWriteTime Length Name

Debugging Recipes API Version 2013-02-18 1363

http://docs.aws.amazon.com/opsworks/latest/userguide/troubleshooting-chef-11-linux.html
http://docs.aws.amazon.com/opsworks/latest/userguide/troubleshooting-chef-11-linux.html

AWS OpsWorks User Guide

---- ------------- ------ ----
-a--- 5/24/2015 11:59 PM 127277 command.20150524.txt
-a--- 5/25/2015 11:59 PM 546772 command.20150525.txt
-a--- 5/26/2015 11:59 PM 551514 command.20150526.txt
-a--- 5/27/2015 9:43 PM 495181 command.20150527.txt
-a--- 5/24/2015 11:59 PM 24353 keepalive.20150524.txt
-a--- 5/25/2015 11:59 PM 106232 keepalive.20150525.txt
-a--- 5/26/2015 11:59 PM 106208 keepalive.20150526.txt
-a--- 5/27/2015 8:54 PM 92593 keepalive.20150527.txt
-a--- 5/24/2015 7:19 PM 3891 service.20150524.txt
-a--- 5/27/2015 8:54 PM 1493 service.20150527.txt
-a--- 5/24/2015 11:59 PM 112549 wire.20150524.txt
-a--- 5/25/2015 11:59 PM 501501 wire.20150525.txt
-a--- 5/26/2015 11:59 PM 499640 wire.20150526.txt
-a--- 5/27/2015 8:54 PM 436870 wire.20150527.txt

Chef Logs

On Windows instances, Chef logs are stored in a ProgramData path such as the following. The
number includes a timestamp.

C:\ProgramData\OpsWorksAgent\var\commands\number

Note

This directory contains only the output of the first (OpsWorks owned) Chef run.

The following example shows OpsWorks owned Chef logs on a Windows instance.

 Mode LastWriteTime Name
 ---- ------------- ----
 d---- 5/24/2015 7:23 PM
 configure-7ecb5f47-7626-439b-877f-5e7cb40ab8be
 d---- 5/26/2015 8:30 PM configure-8e74223b-d15d-4372-aeea-
a87b428ffc2b
 d---- 5/24/2015 6:34 PM configure-
c3980a1c-3d08-46eb-9bae-63514cee194b
 d---- 5/26/2015 8:32 PM grant_remote_access-70dbf834-1bfa-4fce-
b195-e50e85402f4c
 d---- 5/26/2015 10:30 PM revoke_remote_access-1111fce9-843a-4b27-
b93f-ecc7c5e9e05b

Debugging Recipes API Version 2013-02-18 1364

AWS OpsWorks User Guide

 d---- 5/24/2015 7:21 PM setup-754ec063-8b60-4cd4-
b6d7-0e89d7b7aa78
 d---- 5/26/2015 8:27 PM setup-af5bed36-5afd-4115-
af35-5766f88bc039
 d---- 5/24/2015 6:32 PM setup-d8abeffa-24d4-414b-
bfb1-4ad07319f358
 d---- 5/24/2015 7:13 PM shutdown-c7130435-9b5c-4a95-
be17-6b988fc6cf9a
 d---- 5/26/2015 8:25 PM
 sync_remote_users-64c79bdc-1f6f-4517-865b-23d2def4180c
 d---- 5/26/2015 8:48 PM
 update_custom_cookbooks-2cc59a94-315b-414d-85eb-2bdea6d76c6a

User Chef Logs

The logs for your Chef runs can be found in files named logfile.txt in a folder that is named
after the numbered Chef command, as in the following diagram.

C:/chef └── runs └── command-12345 ├── attribs.json ├── client.rb └── logfile.txt

Interpreting a Chef Log

The beginning of the log contains mostly internal Chef logging.

Logfile created on Thu Oct 17 17:25:12 +0000 2013 by logger.rb/1.2.6
[2013-10-17T17:25:12+00:00] INFO: *** Chef 11.4.4 ***
[2013-10-17T17:25:13+00:00] DEBUG: Building node object for php-app1.localdomain
[2013-10-17T17:25:13+00:00] DEBUG: Extracting run list from JSON attributes provided on
 command line
[2013-10-17T17:25:13+00:00] INFO: Setting the run_list to
 ["opsworks_custom_cookbooks::load", "opsworks_custom_cookbooks::execute"] from JSON
[2013-10-17T17:25:13+00:00] DEBUG: Applying attributes from json file
[2013-10-17T17:25:13+00:00] DEBUG: Platform is amazon version 2013.03
[2013-10-17T17:25:13+00:00] INFO: Run List is [recipe[opsworks_custom_cookbooks::load],
 recipe[opsworks_custom_cookbooks::execute]]
[2013-10-17T17:25:13+00:00] INFO: Run List expands to [opsworks_custom_cookbooks::load,
 opsworks_custom_cookbooks::execute]
[2013-10-17T17:25:13+00:00] INFO: Starting Chef Run for php-app1.localdomain
[2013-10-17T17:25:13+00:00] INFO: Running start handlers
[2013-10-17T17:25:13+00:00] INFO: Start handlers complete.
[2013-10-17T17:25:13+00:00] DEBUG: No chefignore file found at /opt/aws/opsworks/
releases/20131015111601_209/cookbooks/chefignore no files will be ignored

Debugging Recipes API Version 2013-02-18 1365

AWS OpsWorks User Guide

[2013-10-17T17:25:13+00:00] DEBUG: Cookbooks to compile: ["gem_support", "packages",
 "opsworks_bundler", "opsworks_rubygems", "ruby", "ruby_enterprise", "dependencies",
 "opsworks_commons", "scm_helper", :opsworks_custom_cookbooks]
[2013-10-17T17:25:13+00:00] DEBUG: Loading cookbook gem_support's library file: /
opt/aws/opsworks/releases/20131015111601_209/cookbooks/gem_support/libraries/
current_gem_version.rb
[2013-10-17T17:25:13+00:00] DEBUG: Loading cookbook packages's library file: /opt/aws/
opsworks/releases/20131015111601_209/cookbooks/packages/libraries/packages.rb
[2013-10-17T17:25:13+00:00] DEBUG: Loading cookbook dependencies's library file: /
opt/aws/opsworks/releases/20131015111601_209/cookbooks/dependencies/libraries/
current_gem_version.rb
[2013-10-17T17:25:13+00:00] DEBUG: Loading cookbook opsworks_commons's library file: /
opt/aws/opsworks/releases/20131015111601_209/cookbooks/opsworks_commons/libraries/
activesupport_blank.rb
[2013-10-17T17:25:13+00:00] DEBUG: Loading cookbook opsworks_commons's library file: /
opt/aws/opsworks/releases/20131015111601_209/cookbooks/opsworks_commons/libraries/
monkey_patch_chefgem_resource.rb
...

This part of the file is useful largely to Chef experts. Note that the run list includes only two
recipes, even though most commands involve many more. These two recipes handle the task of
loading and executing all the other built-in and custom recipes.

The most interesting part of the file is typically at the end. If a run ends successfully, you should
see something like the following:

...
[Tue, 11 Jun 2013 16:00:50 +0000] DEBUG: STDERR:
[Tue, 11 Jun 2013 16:00:50 +0000] DEBUG: ---- End output of /sbin/service mysqld
 restart ----
[Tue, 11 Jun 2013 16:00:50 +0000] DEBUG: Ran /sbin/service mysqld restart returned 0
[Tue, 11 Jun 2013 16:00:50 +0000] INFO: service[mysql]: restarted successfully
[Tue, 11 Jun 2013 16:00:50 +0000] INFO: Chef Run complete in 84.07096 seconds
[Tue, 11 Jun 2013 16:00:50 +0000] INFO: cleaning the checksum cache
[Tue, 11 Jun 2013 16:00:50 +0000] DEBUG: removing unused checksum cache file /var/chef/
cache/checksums/chef-file--tmp-chef-rendered-template20130611-4899-8wef7e-0
[Tue, 11 Jun 2013 16:00:50 +0000] DEBUG: removing unused checksum cache file /var/chef/
cache/checksums/chef-file--tmp-chef-rendered-template20130611-4899-1xpwyb6-0
[Tue, 11 Jun 2013 16:00:50 +0000] DEBUG: removing unused checksum cache file /var/chef/
cache/checksums/chef-file--etc-monit-conf
[Tue, 11 Jun 2013 16:00:50 +0000] INFO: Running report handlers
[Tue, 11 Jun 2013 16:00:50 +0000] INFO: Report handlers complete

Debugging Recipes API Version 2013-02-18 1366

AWS OpsWorks User Guide

[Tue, 11 Jun 2013 16:00:50 +0000] DEBUG: Exiting

Note

You can use the agent CLI to display the log's tail during or after the run. For more
information, see Displaying Chef Logs.

If a recipe fails, you should look for an ERROR-level output, which will contain an exception
followed by a Chef stack trace, such as the following:

...
Please report any problems with the /usr/scripts/mysqlbug script!

[OK]
MySQL Daemon failed to start.
Starting mysqld: [FAILED]STDERR: 130611 15:07:55 [Warning] The syntax '--log-slow-
queries' is deprecated and will be removed in a future release. Please use '--slow-
query-log'/'--slow-query-log-file' instead.
130611 15:07:56 [Warning] The syntax '--log-slow-queries' is deprecated and will be
 removed in a future release. Please use '--slow-query-log'/'--slow-query-log-file'
 instead.
---- End output of /sbin/service mysqld start ----

/opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/mixin/command.rb:184:in `handle_command_failures'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/mixin/command.rb:131:in `run_command'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/provider/service/init.rb:37:in `start_service'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/provider/service.rb:60:in `action_start'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource.rb:406:in `send'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource.rb:406:in `run_action'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/runner.rb:53:in `run_action'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/runner.rb:89:in `converge'

Debugging Recipes API Version 2013-02-18 1367

AWS OpsWorks User Guide

 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/runner.rb:89:in `each'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/runner.rb:89:in `converge'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource_collection.rb:94:in `execute_each_resource'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource_collection/stepable_iterator.rb:116:in `call'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource_collection/stepable_iterator.rb:116:in
 `call_iterator_block'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource_collection/stepable_iterator.rb:85:in `step'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource_collection/stepable_iterator.rb:104:in `iterate'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource_collection/stepable_iterator.rb:55:in
 `each_with_index'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/resource_collection.rb:92:in `execute_each_resource'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/runner.rb:84:in `converge'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/client.rb:268:in `converge'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/client.rb:158:in `run'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/application/solo.rb:190:in `run_application'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/application/solo.rb:181:in `loop'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/application/solo.rb:181:in `run_application'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/../lib/chef/application.rb:62:in `run'
 /opt/aws/opsworks/releases/20130605160141_122/vendor/bundle/ruby/1.8/gems/
chef-0.9.15.5/bin/chef-solo:25
 /opt/aws/opsworks/current/bin/chef-solo:16:in `load'
 /opt/aws/opsworks/current/bin/chef-solo:16

The end of the file is the Chef stack trace. You should also examine the output just before the
exception, which often contains a system error such as package not available that can also be
useful in determining the failure cause. In this case, the MySQL daemon failed to start.

Debugging Recipes API Version 2013-02-18 1368

AWS OpsWorks User Guide

Common Chef Log Errors

The following are some common Chef log errors, and how to address them.

Log could not be found

At the start of a Chef run, instances receive a presigned Amazon S3 URL that lets you view the
log on a webpage when the Chef run is finished. Because this URL expires after two hours, there
is no log uploaded to the Amazon S3 site if a Chef run takes longer than two hours, even if no
problems occurred during the Chef run. The command to create a log succeeds, but the log can
be viewed only on the instance, not at the presigned URL.

Log ends abruptly

If a Chef log ends abruptly without either indicating success or displaying error information, you
have probably encountered a low-memory state that prevented Chef from completing the log.
Your best option is to try again with a larger instance.

Missing cookbook or recipe

If the Chef run encounters a cookbook or recipe that is not in the cookbook cache, you will see
something like the following:

DEBUG: Loading Recipe mycookbook::myrecipe via include_recipe
ERROR: Caught exception during execution of custom recipe: mycookbook::myrecipe:
 Cannot find a cookbook named mycookbook; did you forget to add metadata to a
 cookbook?

This entry indicates that the mycookbook cookbook is not in the cookbook cache. With
Chef 11.4, you can also encounter this error if you do not declare dependencies correctly in
metadata.rb.

AWS OpsWorks Stacks runs recipes from the instance's cookbook cache. It downloads
cookbooks from your repository to this cache when the instance starts. However, AWS
OpsWorks Stacks does not automatically update the cache on an online instance if you
subsequently modify the cookbooks in your repository. If you have modified your cookbooks or
added new cookbooks since starting the instance, take the following steps:

1. Make sure that you have committed your changes to the repository.

2. Run the Update Cookbooks stack command to update the cookbook cache with the most
recent version from the repository.

Debugging Recipes API Version 2013-02-18 1369

AWS OpsWorks User Guide

Local command failure

If a Chef execute resource fails to execute the specified command, you will see something like
the following:

DEBUG: ---- End output of ./configure --with-config-file-path=/ returned 2
ERROR: execute[PHP: ./configure] (/root/opsworks-agent/site-cookbooks/php-fpm/
recipes/install.rb line 48) had an error:
 ./configure --with-config-file-path=/

Scroll up in the log and you should see the command's stderr and stdout output, which
should help you determine why the command failed.

Package failure

If a package installation fails, you will see something like the following:

ERROR: package[zend-server-ce-php-5.3] (/root/opsworks-agent/site-cookbooks/
zend_server/recipes/install.rb line 20)
 had an error: apt-get -q -y --force-yes install zend-server-ce-php-5.3=5.0.4+b17
 returned 100, expected 0

Scroll up in the log and you should see the command's STDOUT and STDERROR output, which
should help you determine why the package installation failed.

Using the AWS OpsWorks Stacks Agent CLI

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Debugging Recipes API Version 2013-02-18 1370

AWS OpsWorks User Guide

Note

The agent CLI is available only on Linux instances.

On every online instance, AWS OpsWorks Stacks installs an agent, which communicates with the
service. The AWS OpsWorks Stacks service in turn sends commands to the agent to performs tasks
such as initiating Chef runs on the instance when a lifecycle event occurs. On Linux instances,
the agent exposes a command line interface (CLI) that is very useful for troubleshooting. To run
agent CLI commands, use SSH to connect to an instance. You can then run agent CLI commands to
perform a variety of tasks, including the following:

• Execute recipes.

• Display Chef logs.

• Display stack configuration and deployment JSON.

For more information on how to set up an SSH connection to an instance, see Logging In with SSH.
You must also have SSH and sudo permissions for the stack.

This section describes how to use the agent CLI for troubleshooting. For more information and a
complete command reference, see AWS OpsWorks Stacks Agent CLI.

Topics

• Executing Recipes

• Displaying Chef Logs

• Displaying the Stack Configuration and Deployment JSON

Executing Recipes

The agent CLI run_command command directs the agent to rerun a command that it performed
earlier. The most useful commands for troubleshooting—setup, configure, deploy, and
undeploy—each correspond to a lifecycle event. They direct the agent to initiate a Chef run to
execute the associated recipes.

Debugging Recipes API Version 2013-02-18 1371

AWS OpsWorks User Guide

Note

The run_command command is limited to executing the group of recipes that is associated
with a specified command, typically the recipes that are associated with a lifecycle event.
You cannot use it to execute a particular recipe. To execute one or more specified recipes,
use the Execute Recipes stack command or the equivalent CLI or API actions (create-
deployment and CreateDeployment).

The run_command command is quite useful for debugging custom recipes, especially recipes that
are assigned to the Setup and Configure lifecycle events, which you can't trigger directly from
the console. By using run_command, you can run a particular event's recipes as often as you need
without having to start or stop instances.

Note

AWS OpsWorks Stacks runs recipes from the instance's cookbook cache, not the cookbook
repository. AWS OpsWorks Stacks downloads cookbooks to this cache when the instance
starts, but does not automatically update the cache on online instances if you subsequently
modify your cookbooks. If you have modified your cookbooks since starting the instance,
be sure to run the Update Cookbooks stack command stack command to update the
cookbook cache with the most recent version from the repository.

The agent caches only the most recent commands. You can list them by running list_commands,
which returns a list of cached commands and the time that they were performed.

sudo opsworks-agent-cli list_commands
2013-02-26T19:08:26 setup
2013-02-26T19:12:01 configure
2013-02-26T19:12:05 configure
2013-02-26T19:22:12 deploy

To rerun the most recent command, run this:

sudo opsworks-agent-cli run_command

To rerun the most recent instance of a specified command, run this:

Debugging Recipes API Version 2013-02-18 1372

http://docs.aws.amazon.com/cli/latest/reference/opsworks/create-deployment.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/create-deployment.html
http://docs.aws.amazon.com/opsworks/latest/APIReference/API_CreateDeployment.html

AWS OpsWorks User Guide

sudo opsworks-agent-cli run_command command

For example, to rerun the Setup recipes, you can run the following command:

sudo opsworks-agent-cli run_command setup

Each command has an associated stack configuration and deployment JSON that represents stack
and deployment state at the time the command was run. Because that data can change from
one command to the next, an older instance of a command might use somewhat different data
than the most recent one. To rerun a particular instance of a command, copy the time from the
list_commands output and run the following:

sudo opsworks-agent-cli run_command time

The preceding examples all rerun the command using the default JSON, which is the JSON was
installed for that command. You can rerun a command against an arbitrary JSON file as follows:

sudo opsworks-agent-cli run_command -f /path/to/valid/json.file

Displaying Chef Logs

The agent CLI show_log command displays a specified log. After the command is finished, you will
be looking at the end of the file. The show_log command therefore provides a convenient way to
tail the log, which is typically where you find error information. You can scroll up to see the earlier
parts of the log.

To display the current command's log, run this:

sudo opsworks-agent-cli show_log

You can also display logs for a particular command, but be aware that the agent caches logs for
only the last thirty commands. You can list an instance's commands by running list_commands,
which returns a list of cached commands and the time that they were performed. For an example,
see Executing Recipes.

To show the log for the most recent execution of a particular command, run the following:

sudo opsworks-agent-cli show_log command

Debugging Recipes API Version 2013-02-18 1373

AWS OpsWorks User Guide

The command parameter can be set to setup, configure, deploy, undeploy, start, stop, or
restart. Most of these commands correspond to lifecycle events and direct the agent to run the
associated recipes.

To display the log for a particular command execution, copy the date from the list_commands
output and run:

sudo opsworks-agent-cli show_log date

If a command is still executing, show_log displays the log's current state.

Note

One way to use show_log to troubleshoot errors and out-of-memory issues is to tail a log
during execution, as follows:

1. Use run_command to trigger the appropriate lifecycle event. For more information, see
Executing Recipes.

2. Repeatedly run show_log to see the tail of the log as it is being written.

If Chef runs out of memory or exits unexpectedly, the log will end abruptly. If a recipe fails,
the log will end with an exception and a stack trace.

Displaying the Stack Configuration and Deployment JSON

Much of the data used by recipes comes from the stack configuration and deployment JSON, which
defines a set of Chef attributes that provide a detailed description of the stack configuration,
any deployments, and optional custom attributes that users can add. For each command, AWS
OpsWorks Stacks installs a JSON that represents the stack and deployment state at the time of the
command . For more information, see Stack Configuration and Deployment Attributes.

If your custom recipes obtain data from the stack configuration and deployment JSON, you can
verify the data by examining the JSON. The easiest way to display the stack configuration and
deployment JSON is to run the agent CLI get_json command, which displays a formatted version
of the JSON object. The following shows the first few lines of some typical output:

Debugging Recipes API Version 2013-02-18 1374

AWS OpsWorks User Guide

{
 "opsworks": {
 "layers": {
 "php-app": {
 "id": "4a2a56c8-f909-4b39-81f8-556536d20648",
 "instances": {
 "php-app2": {
 "elastic_ip": null,
 "region": "us-west-2",
 "booted_at": "2013-02-26T20:41:10+00:00",
 "ip": "10.112.235.192",
 "aws_instance_id": "i-34037f06",
 "availability_zone": "us-west-2a",
 "instance_type": "c1.medium",
 "private_dns_name": "ip-10-252-0-203.us-west-2.compute.internal",
 "private_ip": "10.252.0.203",
 "created_at": "2013-02-26T20:39:39+00:00",
 "status": "online",
 "backends": 8,
 "public_dns_name": "ec2-10-112-235-192.us-west-2.compute.amazonaws.com"
...

You can display the most recent stack configuration and deployment JSON as follows:

sudo opsworks-agent-cli get_json

You can display the most recent stack configuration and deployment JSON for a specified
command by executing the following:

sudo opsworks-agent-cli get_json command

The command parameter can be set to setup, configure, deploy, undeploy, start, stop, or
restart. Most of these commands correspond to lifecycle events and direct the agent to run the
associated recipes.

You can display the stack configuration and deployment JSON for a particular command execution
by specifying the command's date like this:

sudo opsworks-agent-cli get_json date

The simplest way to use this command is as follows:

Debugging Recipes API Version 2013-02-18 1375

AWS OpsWorks User Guide

1. Run list_commands, which returns a list of commands that have been run on the instance, and
the date that each command was run.

2. Copy the date for the appropriate command and use it as the get_json date argument.

Common Debugging and Troubleshooting Issues

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

This section describes some commonly encountered debugging and troubleshooting issues and
their solutions.

Topics

• Troubleshooting AWS OpsWorks Stacks

• Troubleshooting Instance Registration

Troubleshooting AWS OpsWorks Stacks

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1376

AWS OpsWorks User Guide

This section contains some commonly encountered AWS OpsWorks Stacks issues and their
solutions.

Topics

• Unable to Manage Instances

• After a Chef Run, Instances Won't Boot

• A Layer's Instances All Fail an Elastic Load Balancing Health Check

• Can't Communicate with an Elastic Load Balancing Load Balancer

• An Imported On-premises Instance Fails to Finish Volume Setup After a Restart

• An EBS Volume Does Not Reattach After a Reboot

• Can't Delete AWS OpsWorks Stacks Security Groups

• Accidentally Deleted an AWS OpsWorks Stacks Security Group

• Chef Log Terminates Abruptly

• Cookbook Does Not Get Updated

• Instances are Stuck at Booting Status

• Instances Unexpectedly Restart

• opsworks-agent Processes are Running on Instances

• Unexpected execute_recipes Commands

Unable to Manage Instances

Problem: You are no longer able to manage an instance that has been manageable in the past. In
some cases, logs can show an error similar to the following.

Aws::CharlieInstanceService::Errors::UnrecognizedClientException - The security token
 included in the request is invalid.

Cause: This can occur if a resource outside AWS OpsWorks on which the instance depends was
edited or deleted. The following are examples of resource changes that can break communications
with an instance.

• An IAM user or role associated with the instance has been deleted accidentally, outside of AWS
OpsWorks Stacks. This causes a communication failure between the AWS OpsWorks agent that is
installed on the instance, and the AWS OpsWorks Stacks service. The user that is associated with
an instance is required throughout the life of the instance.

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1377

AWS OpsWorks User Guide

• Editing volume or storage configurations while an instance is offline can make an instance
unmanageable.

• Adding EC2 instances to an ELB manually. AWS OpsWorks reconfigures an assigned Elastic Load
Balancing load balancer each time an instance enters or leaves the online state. AWS OpsWorks
only considers instances it knows about to be valid members; instances that are added outside of
AWS OpsWorks, or by some other process, are removed. Every other instance is removed.

Solution: Do not delete IAM users or roles upon which your instances depend. If possible, edit
volume or storage configurations only while dependent instances are running. Use AWS OpsWorks
to manage the load balancer or EIP memberships of AWS OpsWorks instances. When you are
registering an instance, to help prevent problems managing registered instances in the event that
the user is accidentally deleted, add the --use-instance-profile parameter to your register
command to use the instance's built-in instance profile instead.

After a Chef Run, Instances Won't Boot

Problem: On Chef 11.10 or older stacks that are configured to use custom cookbooks, after a Chef
run that used community cookbooks, instances won't boot. Log messages can state that recipes
failed to compile ("Recipe Compile Error"), or can't be loaded because they are unable to find a
dependency.

Cause: The most likely cause is that the custom or community cookbook does not support the
Chef version that your stack uses. Some popular community cookbooks, such as apt and build-
essential, have known compatibility issues with Chef 11.10.

Solution: On AWS OpsWorks Stacks stacks that have the Use custom Chef cookbooks setting
turned on, custom or community cookbooks must always support the version of Chef that your
stack uses. Pin community cookbooks to a version (that is, set the cookbook version number to
a specific version) that is compatible with the version of Chef that is configured in your stack
settings. To find a supported community cookbook version, view the changelog for a cookbook
that fails to compile, and use only the most current version of the cookbook that your stack will
support. To pin a cookbook version, specify an exact version number in your custom cookbook
repository's Berksfile. For example, cookbook 'build-essential', '= 3.2.0'.

A Layer's Instances All Fail an Elastic Load Balancing Health Check

Problem: You attach an Elastic Load Balancing load balancer to an app server layer, but all the
instances fail the health check.

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1378

https://supermarket.chef.io/cookbooks/apt
https://supermarket.chef.io/cookbooks/build-essential/versions/3.2.0
https://supermarket.chef.io/cookbooks/build-essential/versions/3.2.0

AWS OpsWorks User Guide

Cause: When you create an Elastic Load Balancing load balancer, you must specify the ping path
that the load balancer calls to determine whether the instance is healthy. Be sure to specify a ping
path that is appropriate for your application; the default value is /index.html. If your application
does not include an index.html, you must specify an appropriate path or the health check will
fail. For example, the SimplePHPApp application used in Getting Started with Chef 11 Linux Stacks
does not use index.html; the appropriate ping path for those servers is /.

Solution: Edit the load balancer's ping path. For more information, see Elastic Load Balancing

Can't Communicate with an Elastic Load Balancing Load Balancer

Problem: You create an Elastic Load Balancing load balancer and attach it to an app server layer,
but when you click the load balancer's DNS name or IP address to run the application, you get the
following error: "The remote server is not responding".

Cause: If your stack is running in a default VPC, when you create an Elastic Load Balancing load
balancer in the region, you must specify a security group. The security group must have ingress
rules that allow inbound traffic from your IP address. If you specify default VPC security group,
the default ingress rule does not accept any inbound traffic.

Solution: Edit the security group ingress rules to accept inbound traffic from appropriate IP
addresses.

1. Click Security Groups in the Amazon EC2 console's navigation pane.

2. Select the load balancer's security group.

3. Click Edit on the Inbound tab.

4. Add an ingress rule with Source set to an appropriate CIDR.

For example, specifying Anywhere sets the CIDR to 0.0.0.0/0, which directs the load balancer to
accept incoming traffic from any IP address.

An Imported On-premises Instance Fails to Finish Volume Setup After a Restart

Problem: You restart an EC2 instance that you have imported into AWS OpsWorks Stacks, and the
AWS OpsWorks Stacks console displays failed as the instance status. This can occur on either Chef
11 or Chef 12 instances.

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1379

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/gs-ec2classic.html
https://console.aws.amazon.com/ec2/

AWS OpsWorks User Guide

Cause: AWS OpsWorks Stacks might be unable to attach a volume to your instance during
the setup process. One possible cause is that AWS OpsWorks Stacks overwrites your volume
configuration on your instance when you run the setup command.

Solution: Open the Details page for the instance, and check your volume configuration in the
Volumes area. Note that you can change your volume configuration only when your instance is in
the stopped state. Be sure that every volume has a specified mount point and a name. Confirm
that you provided the correct mount point in your configuration in AWS OpsWorks Stacks before
you restart the instance.

An EBS Volume Does Not Reattach After a Reboot

Problem:You use the Amazon EC2 console to attach an Amazon EBS volume to an instance but
when you reboot the instance, the volume is no longer attached.

Cause: AWS OpsWorks Stacks can reattach only those Amazon EBS volumes that it is aware of,
which are limited to the following:

• Volumes that were created by AWS OpsWorks Stacks.

• Volumes from your account that you have explicitly registered with a stack by using the
Resources page.

Solution: Manage your Amazon EBS volumes only by using the AWS OpsWorks Stacks console,
API, or CLI. If you want to use one of your account's Amazon EBS volumes with a stack, use the
stack's Resources page to register the volume and attach it to an instance. For more information,
see Resource Management.

Can't Delete AWS OpsWorks Stacks Security Groups

Problem: After you delete a stack, there are a number of AWS OpsWorks Stacks security groups
left behind that can't be deleted.

Cause: The security groups must be deleted in a particular order.

Solution: First, make sure that no instances are using the security groups. Then, delete any of the
following security groups, if they exist, in the following order:

1. AWS-OpsWorks-Blank-Server

2. AWS-OpsWorks-Monitoring-Master-Server

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1380

AWS OpsWorks User Guide

3. AWS-OpsWorks-DB-Master-Server

4. AWS-OpsWorks-Memcached-Server

5. AWS-OpsWorks-Custom-Server

6. AWS-OpsWorks-nodejs-App-Server

7. AWS-OpsWorks-PHP-App-Server

8. AWS-OpsWorks-Rails-App-Server

9. AWS-OpsWorks-Web-Server

10.AWS-OpsWorks-Default-Server

11.AWS-OpsWorks-LB-Server

Accidentally Deleted an AWS OpsWorks Stacks Security Group

Problem: You deleted one of the AWS OpsWorks Stacks security groups and need to recreate it.

Cause: These security groups are usually deleted by accident.

Solution: The recreated group must an exact duplicate of the original, including the same
capitalization for the group name. Instead of recreating the group manually, the preferred
approach is to have AWS OpsWorks Stacks perform the task for you. Just create a new stack in the
same AWS region—and VPC, if present—and AWS OpsWorks Stacks will automatically recreate all
built-in security groups, including the one that you deleted. You can then delete the stack if you
don't have any further use for it; the security groups will remain.

Chef Log Terminates Abruptly

Problem: A Chef log terminates abruptly; the end of the log does not indicate a successful run or
display an exception and stack trace.

Cause: This behavior is typically caused by inadequate memory.

Solution: Create a larger instance and use the agent CLI run_command command to run the
recipes again. For more information, see Executing Recipes.

Cookbook Does Not Get Updated

Problem: You updated your cookbooks but the stack's instances are still running the old recipes.

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1381

AWS OpsWorks User Guide

Cause: AWS OpsWorks Stacks caches cookbooks on each instance, and runs recipes from the
cache, not the repository. When you start a new instance, AWS OpsWorks Stacks downloads your
cookbooks from the repository to the instance's cache. However, if you subsequently modify your
custom cookbooks, AWS OpsWorks Stacks does not automatically update the online instances'
caches.

Solution: Run theUpdate Cookbooks stack command to explicitly direct AWS OpsWorks Stacks to
update your online instances' cookbook caches.

Instances are Stuck at Booting Status

Problem: When you restart an instance, or auto healing restarts it automatically, the startup
operation stalls at the booting status.

Cause: One possible cause of this issue is the VPC configuration, including a default VPC. Instances
must always be able to communicate with the AWS OpsWorks Stacks service, Amazon S3, and the
package, cookbook, and app repositories. If, for example, you remove a default gateway from a
default VPC, the instances lose their connection to the AWS OpsWorks Stacks service. Because
AWS OpsWorks Stacks can no longer communicate with the instance agent, it treats the instance
as failed and auto heals it. However, without a connection, AWS OpsWorks Stacks cannot install
an instance agent on the healed instance. Without an agent, AWS OpsWorks Stacks cannot run
the Setup recipes on the instance, so the startup operation cannot progress beyond the "booting"
status.

Solution: Modify your VPC configuration so that instances have the required connectivity.

Instances Unexpectedly Restart

Problem: A stopped instance unexpectedly restarts.

Cause 1: If you have enabled auto healing for your instances, AWS OpsWorks Stacks periodically
performs a health check on the associated Amazon EC2 instances, and restarts any that are
unhealthy. If you stop or terminate an AWS OpsWorks Stacks-managed instance by using the
Amazon EC2 console, API, or CLI, AWS OpsWorks Stacks is not notified. Instead, it will perceive the
stopped instance as unhealthy and automatically restart it.

Solution: Manage your instances only by using the AWS OpsWorks Stacks console, API, or CLI.
If you use AWS OpsWorks Stacks to stop or delete an instance, it will not be restarted. For more
information, see Manually Starting, Stopping, and Rebooting 24/7 Instances and Deleting AWS
OpsWorks Stacks Instances.

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1382

AWS OpsWorks User Guide

Cause 2: Instances can fail for a variety of reasons. If you have auto healing enabled, AWS
OpsWorks Stacks automatically restarts failed instances.

Solution: This is normal operation; there is no need to do anything unless you do not want AWS
OpsWorks Stacks to restart failed instances. In that case, you should disable auto healing.

opsworks-agent Processes are Running on Instances

Problem: Several opsworks-agent processes are running on your instances. For example:

aws 24543 0.0 1.3 172360 53332 ? S Feb24 0:29 opsworks-agent: master 24543
aws 24545 0.1 2.0 208932 79224 ? S Feb24 22:02 opsworks-agent: keep_alive of master
 24543
aws 24557 0.0 2.0 209012 79412 ? S Feb24 8:04 opsworks-agent: statistics of master
 24543
aws 24559 0.0 2.2 216604 86992 ? S Feb24 4:14 opsworks-agent: process_command of master
 24

Cause: These are legitimate processes that are required for the agent's normal operation. They
perform tasks such as handling deployments and sending keep-alive messages back to the service.

Solution: This is normal behavior. Do not stop these processes; doing so will compromise the
agent's operation.

Unexpected execute_recipes Commands

Problem: The Logs section on an instance's details page includes unexpected execute_recipes
commands. Unexpected execute_recipes commands can also appear on the Stack and
Deployments pages.

Cause: This issue is often caused by permission changes. When you change a user or group's SSH or
sudo permissions, AWS OpsWorks Stacks runs execute_recipes to update the stack's instances
and also triggers a Configure event. Another source of execute_recipes commands is AWS
OpsWorks Stacks updating the instance agent.

Solution: This is normal operation; there is no need to do anything.

To see what actions an execute_recipes command performed, go to the Deployments page
and click the command's time stamp. This opens the command's details page, which lists the

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1383

AWS OpsWorks User Guide

key recipes that were run. For example, the following details page is for an execute_recipes
command that ran ssh_users to update SSH permissions.

To see all of the details, click show in the command's Log column to display the associated
Chef log. Search the log for Run List. AWS OpsWorks Stacks maintenance recipes will
be under OpsWorks Custom Run List. For example, the following is the run list for the
execute_recipes command shown in the preceding screenshot, and shows every recipe that is
associated with the command.

[2014-02-21T17:16:30+00:00] INFO: OpsWorks Custom Run List:
 ["opsworks_stack_state_sync",
 "ssh_users", "test_suite", "opsworks_cleanup"]

Troubleshooting Instance Registration

This section contains some commonly encountered instance registration issues and their solutions.

Note

If you are having registration problems, run register with the --debug argument, which
provides additional debugging information.

Topics

• EC2User Is Not Authorized to Perform: ...

• Credential Should Be Scoped to a Valid Region

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1384

AWS OpsWorks User Guide

EC2User Is Not Authorized to Perform: ...

Problem: A register command returns something like the following:

A client error (AccessDenied) occurred when calling the CreateGroup operation:
User: arn:aws:iam::123456789012:user/ImportEC2User is not authorized to
perform: iam:CreateGroup on resource:
arn:aws:iam::123456789012:group/AWS/OpsWorks/OpsWorks-b583ce55-1d01-4695-b3e5-
ee19257d1911

Cause: The register command is running with credentials that do not grant the required
permissions. The user's policy must allow the iam:CreateGroup action, among others.

Solution Provide register with IAM user credentials that have the required permissions. For more
information, see Installing and Configuring the AWS CLI.

Credential Should Be Scoped to a Valid Region

Problem: A register command returns the following:

A client error (InvalidSignatureException) occurred when calling the
DescribeStacks operation: Credential should be scoped to a valid region, not 'cn-
north-1'.

Cause: The command's region must be a valid AWS OpsWorks Stacks region. For a list of supported
regions, see Region Support. This error typically occurs for one of the following reasons:

• The stack is in a different region, and you assigned a the stack's region to the command's --
region argument.

You don't need to specify a stack region; AWS OpsWorks Stacks automatically determines it from
the stack ID.

• You omitted --region argument, which implicitly specifies the default region, but your default
region is not supported by AWS OpsWorks Stacks.

Solution: Explicitly set --region to a supported AWS OpsWorks Stacks region, or edit your AWS
CLI config file to change the default region to a supported AWS OpsWorks Stacks region. For
more information, see Configuring the AWS Command Line Interface.

Common Debugging and Troubleshooting Issues API Version 2013-02-18 1385

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS OpsWorks User Guide

AWS OpsWorks Stacks Agent CLI

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Note

This feature is available only on Linux instances.

The agent that AWS OpsWorks Stacks installs on every instance exposes a command line interface
(CLI). If you use SSH to log in to the instance, you can use the CLI to the following:

• Access log files for Chef runs.

• Access AWS OpsWorks Stacks commands.

• Manually run Chef recipes.

• View instance reports.

• View agent reports.

• View a limited set of stack configuration and deployment attributes.

Important

You can run agent CLI commands only as root or by using sudo.

The basic command syntax is:

sudo opsworks-agent-cli [--help] [command [activity] [date]]

AWS OpsWorks Stacks Agent CLI API Version 2013-02-18 1386

AWS OpsWorks User Guide

The four arguments are as follows:

help

(Optional) Displays a brief synopsis of the available commands when used by itself. When used
with a command, help displays a description of the command.

command

(Optional) The agent CLI command, which must be set to one of the following:

• agent_report

• get_json

• instance_report

• list_commands

• run_command

• show_log

• stack_state

activity

(Optional) Used as an argument with some commands to specify a particular AWS OpsWorks
Stacks activity: setup, configure, deploy, undeploy, start, stop, or restart.

date

(Optional) Used as an argument with some commands to specify a particular AWS OpsWorks
Stacks command execution. Specify the command execution by setting date to the timestamp
that the command was executed in the yyyy-mm-ddThh:mm:ss format, including the single
quotes. For example, for 10:31:55 on Tuesday Feb 5, 2013, use: '2013-02-05T10:31:55'.
To determine when a particular AWS OpsWorks Stacks command was executed, run
list_commands.

Note

If the agent has executed the same AWS OpsWorks Stacks activity multiple times, you can
pick a particular execution by specifying both the activity and the time it was executed.
If you specify an activity and omit the time, the agent CLI command acts on the activity's
most recent execution. If you omit both arguments, the agent CLI command acts on the
most recent activity.

AWS OpsWorks Stacks Agent CLI API Version 2013-02-18 1387

AWS OpsWorks User Guide

The following sections describe the commands and their associated arguments. For brevity, the
syntax sections omit the optional --help option, which can be used with any command.

Topics

• agent_report

• get_json

• instance_report

• list_commands

• run_command

• show_log

• stack_state

agent_report

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Returns an agent report.

sudo opsworks-agent-cli agent_report

The following output example is from an instance that most recently ran a configure activity.

$ sudo opsworks-agent-cli agent_report

AWS OpsWorks Instance Agent State Report:

 Last activity was a "configure" on 2015-12-01 18:19:23 UTC
 Agent Status: The AWS OpsWorks agent is running as PID 30998

agent_report API Version 2013-02-18 1388

AWS OpsWorks User Guide

 Agent Version: 4004-20151201152533, up to date

get_json

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Returns information about a Chef run as a JSON object.

sudo opsworks-agent-cli get_json [activity] [date] [-i | --internal | --no-i | --no-
internal]

By default, get_json displays customer-supplied information for the most recent Chef run. Use
the following options to specify a particular set of information.

activity

Displays information for the Chef run associated with the most recent specified activity. To get a
list of valid activities, run list_commands.

date

Displays information for the Chef run associated with the activity that executed for the
specified timestamp. To get a list of valid timestamps, run list_commands.

-i, --internal

Displays information that AWS OpsWorks Stacks uses internally for the Chef run.

--no-i, --no-internal

Explicitly displays customer-supplied information for the Chef run. This is the default if not
otherwise specified.

get_json API Version 2013-02-18 1389

AWS OpsWorks User Guide

Note

For Chef 12 Linux instances, running this command will return valid information such
as the instance's stack configuration and deployment attributes. However, to get more
complete information, reference the Chef data bags that AWS OpsWorks Stacks creates on
the instance. For more information, see the AWS OpsWorks Stacks Data Bag Reference.

The following output example shows the customer-supplied information for the most recent Chef
run for the most recent configure activity.

$ sudo opsworks-agent-cli get_json configure

{
 "run_list": [
 "recipe[opsworks_cookbook_demo::configure]"
]
}

The following output example shows information that AWS OpsWorks Stacks uses internally for
the Chef run executed for the specified timestamp.

$ sudo opsworks-agent-cli get_json 2015-12-01T18:20:24 -i

{
 "aws_opsworks_agent": {
 "version": "4004-20151201152533",
 "valid_client_activities": [
 "reboot",
 "stop",
 "deploy",
 "grant_remote_access",
 "revoke_remote_access",
 "update_agent",
 "setup",
 "configure",
 "update_dependencies",
 "install_dependencies",
 "update_custom_cookbooks",
 "execute_recipes",
 "sync_remote_users"

get_json API Version 2013-02-18 1390

AWS OpsWorks User Guide

],
 "command": {
 "type": "configure",
 "args": {
 "app_ids": [

]
 },
 "sent_at": "2015-12-01T18:19:23+00:00",
 "command_id": "5c2113f3-c6d5-40eb-bcfa-77da2885eeEX",
 "iam_user_arn": null,
 "instance_id": "cfdaa716-42fe-4e3b-9762-fef184ddd8EX"
 },
 "resources": {
 "apps": [

],
 "layers": [
 {
 "layer_id": "93f50d83-1e73-45c4-840a-0d4f07cda1EX",
 "name": "MyCookbooksDemoLayer",
 "packages": [

],
 "shortname": "cookbooks-demo",
 "type": "custom",
 "volume_configurations": [

]
 }
],
 "instances": [
 {
 "ami_id": "ami-d93622EX",
 "architecture": "x86_64",
 "auto_scaling_type": null,
 "availability_zone": "us-west-2a",
 "created_at": "2015-11-18T00:21:05+00:00",
 "ebs_optimized": false,
 "ec2_instance_id": "i-a480e960",
 "elastic_ip": null,
 "hostname": "cookbooks-demo1",
 "instance_id": "cfdaa716-42fe-4e3b-9762-fef184ddd8EX",
 "instance_type": "c3.large",

get_json API Version 2013-02-18 1391

AWS OpsWorks User Guide

 "layer_ids": [
 "93f50d83-1e73-45c4-840a-0d4f07cda1EX"
],
 "os": "Amazon Linux 2015.09",
 "private_dns": "ip-192-0-2-0.us-west-2.compute.internal",
 "private_ip": "10.122.69.33",
 "public_dns": "ec2-203-0-113-0.us-west-2.compute.amazonaws.com",
 "public_ip": "192.0.2.0",
 "root_device_type": "ebs",
 "root_device_volume_id": "vol-f6f7e8EX",
 "ssh_host_dsa_key_fingerprint": "f2:...:15",
 "ssh_host_dsa_key_public": "ssh-dss AAAAB3Nz...a8vMbqA=",
 "ssh_host_rsa_key_fingerprint": "0a:...:96",
 "ssh_host_rsa_key_public": "ssh-rsa AAAAB3Nz...yhPanvo7",
 "status": "online",
 "subnet_id": null,
 "virtualization_type": "paravirtual",
 "infrastructure_class": "ec2",
 "ssh_host_dsa_key_private": "-----BEGIN DSA PRIVATE KEY-----
\nMIIDVwIB...g5OtgQ==\n-----END DSA PRIVATE KEY-----\n",
 "ssh_host_rsa_key_private": "-----BEGIN RSA PRIVATE KEY-----
\nMIIEowIB...78kprtIw\n-----END RSA PRIVATE KEY-----\n"
 }
],
 "users": [

],
 "elastic_load_balancers": [

],
 "rds_db_instances": [

],
 "stack": {
 "arn": "arn:aws:opsworks:us-west-2:80398EXAMPLE:stack/040c3def-b2b4-4489-bb1b-
e08425886fEX/",
 "custom_cookbooks_source": {
 "type": "s3",
 "url": "https://s3.amazonaws.com/opsworks-demo-bucket/opsworks-cookbook-
demo.tar.gz",
 "username": "AKIAJUQN...WG644EXA",
 "password": "O5v+4Zz+...rcKbFTJu",
 "ssh_key": null,
 "revision": null

get_json API Version 2013-02-18 1392

AWS OpsWorks User Guide

 },
 "name": "MyCookbooksDemoStack",
 "region": "us-west-2",
 "stack_id": "040c3def-b2b4-4489-bb1b-e08425886fEX",
 "use_custom_cookbooks": true,
 "vpc_id": null
 },
 "ecs_clusters": [

],
 "volumes": [

]
 },
 "chef": {
 "customer_recipes": [
 "opsworks_cookbook_demo::configure"
],
 "customer_json": "e30=\n",
 "customer_data_bags": "e30=\n"
 }
 }
}

instance_report

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Returns an extended instance report.

sudo opsworks-agent-cli instance_report

The following output example is from an instance.

instance_report API Version 2013-02-18 1393

AWS OpsWorks User Guide

$ sudo opsworks-agent-cli instance_report

AWS OpsWorks Instance Agent State Report:

 Last activity was a "configure" on 2015-12-01 18:19:23 UTC
 Agent Status: The AWS OpsWorks agent is running as PID 30998
 Agent Version: 4004-20151201152533, up to date
 OpsWorks Stack: MyCookbooksDemoStack
 OpsWorks Layers: MyCookbooksDemoLayer
 OpsWorks Instance: cookbooks-demo1
 EC2 Instance ID: i-a480e9EX
 EC2 Instance Type: c3.large
 Architecture: x86_64
 Total Memory: 3.84 Gb
 CPU: 2x Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

Location:

 EC2 Region: us-west-2
 EC2 Availability Zone: us-west-2a

Networking:

 Public IP: 192.0.2.0
 Private IP: 198.51.100.0

list_commands

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Lists the times for each activity that has been executed on this instance. You can use these times
for other agent-CLI commands to specify a particular execution.

list_commands API Version 2013-02-18 1394

AWS OpsWorks User Guide

sudo opsworks-agent-cli list_commands [activity] [date]

The following output example is from an instance that has run configure, setup, and update
custom cookbooks activities.

$ sudo opsworks-agent-cli list_commands

2015-11-24T21:00:28 update_custom_cookbooks
2015-12-01T18:19:09 setup
2015-12-01T18:20:24 configure

run_command

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Runs an AWS OpsWorks Stacks command, which is a JSON file containing a Chef run-list that
contains the information necessary to execute an AWS OpsWorks Stacks activity (setup, configure,
deploy, and so on). The run_command command generates a log entry that you can view by
running show_log . This option is intended only for development purposes, so AWS OpsWorks
Stacks does not track changes.

sudo opsworks-agent-cli run_command [activity] [date] [/path/to/valid/json.file]

By default, run_command runs the most recent AWS OpsWorks Stacks command. Use the
following options to specify a particular command.

activity

Run a specified AWS OpsWorks Stacks command: setup, configure, deploy, undeploy,
start, stop, or restart.

run_command API Version 2013-02-18 1395

AWS OpsWorks User Guide

date

Run the AWS OpsWorks command that executed at the specified timestamp. To get a list of
valid timestamps, run list_commands.

file

Run the specified command JSON file. To get a command's file path, run get_json.

The following output example is from an instance and runs the configure command.

$ sudo opsworks-agent-cli run_command configure

[2015-12-02 16:52:53] INFO [opsworks-agent(21970)]: About to re-run 'configure' from
 2015-12-01T18:20:24
...
[2015-12-02 16:53:02] INFO [opsworks-agent(21970)]: Finished Chef run with exitcode 0

show_log

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Return's a command's log file.

sudo opsworks-agent-cli show_log [activity] [date]

By default, show_log tails the most recent log file. Use the following options to specify a
particular command.

activity

Display the specified activity's log file.

show_log API Version 2013-02-18 1396

AWS OpsWorks User Guide

date

Display the log file for the activity that executed at the specified timestamp. To get a list of
valid timestamps, run list_commands.

The following output example shows the most recent log.

$ sudo opsworks-agent-cli show_log

[2015-12-02T16:52:59+00:00] INFO: Storing updated cookbooks/opsworks_cookbook_demo/
opsworks-cookbook-demo.tar.gz in the cache.
...
[2015-12-02T16:52:59+00:00] INFO: Report handlers complete

stack_state

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Displays information that AWS OpsWorks Stacks uses internally for the most recent Chef run.

opsworks-agent-cli stack_state

Note

For Chef 12 Linux instances, running this command will return valid information such
as the instance's stack configuration and deployment attributes. However, to get more
complete information, reference the Chef data bags that AWS OpsWorks Stacks creates on
the instance. For more information, see the AWS OpsWorks Stacks Data Bag Reference.

stack_state API Version 2013-02-18 1397

AWS OpsWorks User Guide

The following output example is from an instance.

$ sudo opsworks-agent-cli stack_state

{
 "last_command": {
 "sent_at": "2015-12-01T18:19:23+00:00",
 "activity": "configure"
 },
 "instance": {
 "ami_id": "ami-d93622EX",
 "architecture": "x86_64",
 "auto_scaling_type": null,
 "availability_zone": "us-west-2a",
 "created_at": "2015-11-18T00:21:05+00:00",
 "ebs_optimized": false,
 "ec2_instance_id": "i-a480e9EX",
 "elastic_ip": null,
 "hostname": "cookbooks-demo1",
 "instance_id": "cfdaa716-42fe-4e3b-9762-fef184ddd8EX",
 "instance_type": "c3.large",
 "layer_ids": [
 "93f50d83-1e73-45c4-840a-0d4f07cda1EX"
],
 "os": "Amazon Linux 2015.09",
 "private_dns": "ip-192-0-2-0.us-west-2.compute.internal",
 "private_ip": "10.122.69.33",
 "public_dns": "ec2-203-0-113-0.us-west-2.compute.amazonaws.com",
 "public_ip": "192.0.2.0",
 "root_device_type": "ebs",
 "root_device_volume_id": "vol-f6f7e8EX",
 "ssh_host_dsa_key_fingerprint": "f2:...:15",
 "ssh_host_dsa_key_public": "ssh-dss AAAAB3Nz...a8vMbqA=",
 "ssh_host_rsa_key_fingerprint": "0a:...:96",
 "ssh_host_rsa_key_public": "ssh-rsa AAAAB3Nz...yhPanvo7",
 "status": "online",
 "subnet_id": null,
 "virtualization_type": "paravirtual",
 "infrastructure_class": "ec2",
 "ssh_host_dsa_key_private": "-----BEGIN DSA PRIVATE KEY-----\nMIIDVwIB...g5OtgQ==
\n-----END DSA PRIVATE KEY-----\n",
 "ssh_host_rsa_key_private": "-----BEGIN RSA PRIVATE KEY-----\nMIIEowIB...78kprtIw
\n-----END RSA PRIVATE KEY-----\n"
 },

stack_state API Version 2013-02-18 1398

AWS OpsWorks User Guide

 "layers": [
 {
 "layer_id": "93f50d83-1e73-45c4-840a-0d4f07cda1EX",
 "name": "MyCookbooksDemoLayer",
 "packages": [

],
 "shortname": "cookbooks-demo",
 "type": "custom",
 "volume_configurations": [

]
 }
],
 "applications": null,
 "stack": {
 "arn": "arn:aws:opsworks:us-west-2:80398EXAMPLE:stack/040c3def-b2b4-4489-bb1b-
e08425886fEX/",
 "custom_cookbooks_source": {
 "type": "s3",
 "url": "https://s3.amazonaws.com/opsworks-demo-bucket/opsworks-cookbook-
demo.tar.gz",
 "username": "AKIAJUQN...WG644EXA",
 "password": "O5v+4Zz+...rcKbFTJu",
 "ssh_key": null,
 "revision": null
 },
 "name": "MyCookbooksDemoStack",
 "region": "us-west-2",
 "stack_id": "040c3def-b2b4-4489-bb1b-e08425886fEX",
 "use_custom_cookbooks": true,
 "vpc_id": null
 },
 "agent": {
 "valid_activities": [
 "reboot",
 "stop",
 "deploy",
 "grant_remote_access",
 "revoke_remote_access",
 "update_agent",
 "setup",
 "configure",
 "update_dependencies",

stack_state API Version 2013-02-18 1399

AWS OpsWorks User Guide

 "install_dependencies",
 "update_custom_cookbooks",
 "execute_recipes",
 "sync_remote_users"
]
 }
}

AWS OpsWorks Stacks Data Bag Reference

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

AWS OpsWorks Stacks exposes a wide variety of settings to recipes as Chef data bag content. This
reference lists this data bag content.

A data bag is a Chef concept. A data bag is a global variable that is stored as JSON data on an
instance; the JSON data is accessible from Chef. For example, a data bag can store global variables
such as an app's source URL, the instance's hostname, and the associated stack's VPC identifier.
AWS OpsWorks Stacks stores its data bags on each stack's instances. On Linux instances, AWS
OpsWorks Stacks stores data bags in the /var/chef/runs/run-ID/data_bags directory. On
Windows instances, it stores data bags in the drive:\chef\runs\run-id\data_bags directory.
In both cases, run-ID is a unique ID that AWS OpsWorks Stacks assigns to each Chef run on an
instance. These directories include a set of data bags (subdirectories). Each data bag contains zero
or more data bag items, which are JSON-formatted files that contain sets of data bag content.

Note

AWS OpsWorks Stacks does not support encrypted data bags. To store sensitive data in
encrypted form, such as passwords or certificates, we recommend storing it in a private S3

AWS OpsWorks Stacks Data Bag Reference API Version 2013-02-18 1400

AWS OpsWorks User Guide

bucket. You can then create a custom recipe that uses the Amazon SDK for Ruby to retrieve
the data. For an example, see Using the SDK for Ruby.

Data bag content can include any of the following:

• String content that follows standard Ruby syntax and can use single or double quotes, although
strings containing certain special characters must have double quotes. For more information, go
to the Ruby documentation site.

• Boolean content, which is either true or false (no quotes).

• Number content, which is either integer or decimal numbers, such as 4 or 2.5 (no quotes).

• List content, which takes the form of comma-separated values enclosed in square brackets (no
quotes), such as ['80', '443']

• JSON objects, which contain additional data bag content, such as "my-app":
{"elastic_ip": null,...}.

Chef recipes can access data bags, data bag items, and data bag content through Chef search
or directly. The following describes how to use both access approaches (although Chef search is
preferred).

To access a data bag through Chef search, use the search method, specifying the desired search
index. AWS OpsWorks Stacks provides the following search indexes:

• aws_opsworks_app, which represents a set of deployed apps for a stack.

• aws_opsworks_command, which represents a set of commands that were run on a stack.

• aws_opsworks_ecs_cluster, which represents a set of Amazon Elastic Container Service (Amazon
ECS) cluster instances for a stack.

• aws_opsworks_elastic_load_balancer, which represents a set of Elastic Load Balancing load
balancers for a stack.

• aws_opsworks_instance, which represents a set of instances for a stack.

• aws_opsworks_layer, which represents a set of layers for a stack.

• aws_opsworks_rds_db_instance, which represents a set of Amazon Relational Database Service
(Amazon RDS) instances for a stack.

• aws_opsworks_stack, which represents a stack.

AWS OpsWorks Stacks Data Bag Reference API Version 2013-02-18 1401

http://aws.amazon.com/documentation/sdk-for-ruby/
http://www.ruby-lang.org/en/documentation/
https://docs.chef.io/dsl_recipe.html#search

AWS OpsWorks User Guide

• aws_opsworks_user, which represents a set of users for a stack.

Once you know the search index name, you can access the content of the data bag for that search
index. For example, the following recipe code uses the aws_opsworks_app search index to get
the content of the first data bag item (the first JSON file) in theaws_opsworks_app data bag (the
aws_opsworks_app directory). The code then writes two messages to the Chef log, one with the
app's shortname data bag content (a string in the JSON file), and another with the app's source
URL data bag content (another string in the JSON file):

app = search("aws_opsworks_app").first
Chef::Log.info("********** The app's short name is '#{app['shortname']}' **********")
Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}' **********")

Where ['shortname'] and ['app_source']['url'] specify the following data bag content in
the corresponding JSON file:

{
 ...
 "shortname": "mylinuxdemoapp",
 ...
 "app_source": {
 ...
 "url": "https://s3.amazonaws.com/opsworks-demo-assets/opsworks-linux-demo-
nodejs.tar.gz",
 },
 ...
}

For a list of the data bag content that you can search for, see the reference topics in this section.

You can also iterate through a set of data bag items in a data bag. For example, the following
recipe code is similar to the previous example; it iterates through each of the data bag items in the
data bag when there is more than one data bag item:

search("aws_opsworks_app").each do |app|
 Chef::Log.info("********** The app's short name is '#{app['shortname']}' **********")
 Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}'
 **********")
end

AWS OpsWorks Stacks Data Bag Reference API Version 2013-02-18 1402

AWS OpsWorks User Guide

If you know that specific data bag content exists, you can find the corresponding data bag item
with the following syntax:

search("search_index", "key:value").first

For example, the following recipe code uses the aws_opsworks_app search index to find the data
bag item that contains the app short name of mylinuxdemoapp. It then uses the data bag item's
contents to write a message to the Chef log with the corresponding app's short name and source
URL:

app = search("aws_opsworks_app", "shortname:mylinuxdemoapp").first
Chef::Log.info("********** For the app with the short name '#{app['shortname']}', the
 app's URL is '#{app['app_source']['url']}' **********")

For the aws_opsworks_instance search index only, you can specify self:true to represent the
instance that the recipe is being executed on. The following recipe code uses the corresponding
data bag item's contents to write a message to the Chef log with the corresponding instance's AWS
OpsWorks Stacks-generated ID and operating system:

instance = search("aws_opsworks_instance", "self:true").first
Chef::Log.info("********** For instance '#{instance['instance_id']}', the instance's
 operating system is '#{instance['os']}' **********")

Instead of using Chef search to access data bags, data bag items, and data bag content, you can
access them directly. To do this, use the data_bag and data_bag_item methods to access data bags
and data bag items, respectively. For example, the following recipe code does the same things as
the previous examples, except that it directly accesses a single data bag item and then multiple
data bag items when there are more than one:

Syntax: data_bag_item("the data bag name", "the file name in the data bag without the
 file extension")
app = data_bag_item("aws_opsworks_app", "mylinuxdemoapp")
Chef::Log.info("********** The app's short name is '#{app['shortname']}' **********")
Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}' **********")

data_bag("aws_opsworks_app").each do |data_bag_item|
 app = data_bag_item("aws_opsworks_app", data_bag_item)
 Chef::Log.info("********** The app's short name is '#{app['shortname']}' **********")
 Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}'
 **********")

AWS OpsWorks Stacks Data Bag Reference API Version 2013-02-18 1403

https://docs.chef.io/dsl_recipe.html#data-bag
https://docs.chef.io/dsl_recipe.html#data-bag-item

AWS OpsWorks User Guide

end

Of these two approaches, we recommend that you use Chef search. All related examples in this
guide demonstrate this approach.

Topics

• App Data Bag (aws_opsworks_app)

• Command Data Bag (aws_opsworks_command)

• Amazon ECS Cluster Data Bag (aws_opsworks_ecs_cluster)

• Elastic Load Balancing Data Bag (aws_opsworks_elastic_load_balancer)

• Instance Data Bag (aws_opsworks_instance)

• Layer Data Bag (aws_opsworks_layer)

• Amazon RDS Data Bag (aws_opsworks_rds_db_instance)

• Stack Data Bag (aws_opsworks_stack)

• User Data Bag (aws_opsworks_user)

App Data Bag (aws_opsworks_app)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

For a Deploy event or an Execute Recipes stack command, represents an app's settings.

The following example shows how to use Chef search to search through a single data bag item and
then multiple data bag items to write messages to the Chef log with the apps' short names and
source URLs:

app = search("aws_opsworks_app").first
Chef::Log.info("********** The app's short name is '#{app['shortname']}' **********")

App Data Bag (aws_opsworks_app) API Version 2013-02-18 1404

AWS OpsWorks User Guide

Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}' **********")

search("aws_opsworks_app").each do |app|
 Chef::Log.info("********** The app's short name is '#{app['shortname']}' **********")
 Chef::Log.info("********** The app's URL is '#{app['app_source']['url']}'
 **********")
end

app_id app_source data_sources

deploy attributes domains

enable_ssl environment name

shortname ssl_configuration type

app_id

The app ID (string). A GUID that identifies the app.

app_source

A set of content that specifies the information that AWS OpsWorks Stacks uses to deploy the
app from its source control repository. The content varies depending on the repository type.

password

The password for private repositories, and "null" for public repositories (string). For private
S3 buckets, this content is set to the secret key.

revision

If the repository has multiple branches, the content specifies the app's branch or version,
such as "version1" (string). Otherwise, it is set to "null".

ssh_key

A deploy SSH key for accessing private Git repositories, and "null" for public repositories
(string).

type

The app's source location (string). Valid values include:

App Data Bag (aws_opsworks_app) API Version 2013-02-18 1405

AWS OpsWorks User Guide

• "archive"

• "git"

• "other"

• "s3"

url

Where the app source is located (string).

user

The user name for private repositories, and "null" for public repositories (string). For
private S3 buckets, the content is set to the access key.

attributes

A set of content that describes the directory structure and content of the app.

document_root

The root directory of the document tree. Defines the path to the document root–or the
location of the app's home page, such as home_html–that is relative to your deployment
directory. Unless this attribute is specified, the document_root defaults to public. The
value of document_root can start only with a-z, A-Z, 0-9, _ (underscore) or - (hyphen)
characters.

data_sources

The information required to connect to the app's database. If the app has an attached database
layer, AWS OpsWorks Stacks automatically assigns the appropriate values to this content.

The value of data_sources is an array, and arrays are accessed by an integral offset, not by key.
For example, to access the app's first data source, use app[:data_sources][0][:type].

database_name

The database name, which is typically the app's short name (string).

type

The database instance's type, typically "RdsDbInstance" (string).

arn

The database instance's Amazon Resource Name (ARN) (string).

App Data Bag (aws_opsworks_app) API Version 2013-02-18 1406

AWS OpsWorks User Guide

deploy

Whether the app should be deployed (Boolean). true for apps that should be deployed in
a Deploy lifecycle event. In a Setup lifecycle event, this content will be true for all apps.
To determine which apps should be deployed on an instance, check the layers to which the
instance belongs.

domains

A list of the app's domains (list of strings).

enable_ssl

Whether SSL support is enabled (Boolean).

environment

A collection of user-specified environment variables that have been defined for the app. For
more information about how to define an app's environment variables, see Adding Apps. Each
content name is set to an environment variable name and the corresponding value is set to the
variable's value.

name

The app's name, which is used for display purposes (string).

shortname

The app's short name, which is generated by AWS OpsWorks Stacks from the name (string). The
shortname is used internally and by recipes; it is used as the name of the directory where your
app files are installed.

ssl_configuration

certificate

If you enabled SSL support, the app's SSL certificate; otherwise, "null" (string).

chain

If SSL is enabled, content for specifying an intermediate certificate authority key or client
authentication (string).

private_key

If you enabled SSL support, the app's SSL private key; otherwise, "null" (string).

App Data Bag (aws_opsworks_app) API Version 2013-02-18 1407

AWS OpsWorks User Guide

type

The app's type, which is always set to "other" for Chef 12 Linux and Chef 12.2 Windows stacks
(string).

Command Data Bag (aws_opsworks_command)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Represents settings for a command that AWS OpsWorks Stacks runs on one or more instances.

The following example shows how to use Chef search to search through a single data bag item and
then multiple data bag items to write messages to the Chef log with the commands' types and
when they were sent:

command = search("aws_opsworks_command").first
Chef::Log.info("********** The command's type is '#{command['type']}' **********")
Chef::Log.info("********** The command was sent at '#{command['sent_at']}' **********")

search("aws_opsworks_command").each do |command|
 Chef::Log.info("********** The command's type is '#{command['type']}' **********")
 Chef::Log.info("********** The command was sent at '#{command['sent_at']}'
 **********")
end

args command_id iam_user_arn

instance_id sent_at type

Command Data Bag (aws_opsworks_command) API Version 2013-02-18 1408

AWS OpsWorks User Guide

args

Arguments for the command (string).

command_id

The command's random unique identifier, assigned by AWS OpsWorks Stacks (string).

iam_user_arn

If the command is created by the customer, the Amazon Resource Name (ARN) of the user who
created the command (string).

instance_id

The identifier of the instance that the command was run on (string).

sent_at

The timestamp of when AWS OpsWorks Stacks ran the command (string).

type

The command's type (string). Valid values include:

• "configure"

• "deploy"

• "deregister"

• "execute_recipes"

• "grant_remote_access"

• "install_dependencies"

• "restart"

• "revoke_remote_access"

• "rollback"

• "setup"

• "shutdown"

• "start"

• "stop"

• "sync_remote_users"

Command Data Bag (aws_opsworks_command) API Version 2013-02-18 1409

AWS OpsWorks User Guide

• "undeploy"

• "update_agent"

• "update_custom_cookbooks"

• "update_dependencies"

Amazon ECS Cluster Data Bag (aws_opsworks_ecs_cluster)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Represents an Amazon ECS cluster's settings.

The following example shows how to use Chef search to search through a single data bag item
and then multiple data bag items to write messages to the Chef log with the Amazon ECS clusters'
names and Amazon Resource Names (ARNs):

ecs_cluster = search("aws_opsworks_ecs_cluster").first
Chef::Log.info("********** The ECS cluster's name is
 '#{ecs_cluster['ecs_cluster_name']}' **********")
Chef::Log.info("********** The ECS cluster's ARN is '#{ecs_cluster['ecs_cluster_arn']}'
 **********")

search("aws_opsworks_ecs_cluster").each do |ecs_cluster|
 Chef::Log.info("********** The ECS cluster's name is
 '#{ecs_cluster['ecs_cluster_name']}' **********")
 Chef::Log.info("********** The ECS cluster's ARN is
 '#{ecs_cluster['ecs_cluster_arn']}' **********")
end

ecs_cluster_arn ecs_cluster_name

Amazon ECS Cluster Data Bag (aws_opsworks_ecs_cluster) API Version 2013-02-18 1410

AWS OpsWorks User Guide

ecs_cluster_arn

The cluster's Amazon Resource Name (ARN) (string).

ecs_cluster_name

The cluster's name (string).

Elastic Load Balancing Data Bag (aws_opsworks_elastic_load_balancer)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Represents an Elastic Load Balancing load balancer's settings.

The following example shows how to use Chef search to search through a single data bag item and
then multiple data bag items to write messages to the Chef log with the Elastic Load Balancing
load balancers' names and DNS names:

elastic_load_balancer = search("aws_opsworks_elastic_load_balancer").first
Chef::Log.info("********** The ELB's name is
 '#{elastic_load_balancer['elastic_load_balancer_name']}' **********")
Chef::Log.info("********** The ELB's DNS name is '#{elastic_load_balancer['dns_name']}'
 **********")

search("aws_opsworks_elastic_load_balancer").each do |elastic_load_balancer|
 Chef::Log.info("********** The ELB's name is
 '#{elastic_load_balancer['elastic_load_balancer_name']}' **********")
 Chef::Log.info("********** The ELB's DNS name is
 '#{elastic_load_balancer['dns_name']}' **********")
end

elastic_load_balancer_name dns_name layer_id

Elastic Load Balancing Data Bag (aws_opsworks_elastic_load_balancer) API Version 2013-02-18 1411

AWS OpsWorks User Guide

elastic_load_balancer_name

The load balancer's name (string).

dns_name

The load balancer's DNS name (string).

layer_id

The AWS OpsWorks Stacks ID of the layer that the load balancer is assigned to (string).

Instance Data Bag (aws_opsworks_instance)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Represents an instance's settings.

The following example shows how to use Chef search to search through a single data bag item and
then multiple data bag items to write messages to the Chef log with the instances' hostnames and
IDs:

instance = search("aws_opsworks_instance").first
Chef::Log.info("********** The instance's hostname is '#{instance['hostname']}'
 **********")
Chef::Log.info("********** The instance's ID is '#{instance['instance_id']}'
 **********")

search("aws_opsworks_instance").each do |instance|
 Chef::Log.info("********** The instance's hostname is '#{instance['hostname']}'
 **********")
 Chef::Log.info("********** The instance's ID is '#{instance['instance_id']}'
 **********")

Instance Data Bag (aws_opsworks_instance) API Version 2013-02-18 1412

AWS OpsWorks User Guide

end

The following example shows different ways of using Chef search to search through multiple
data bag items to find the data bag item that contains the specified Amazon EC2 instance ID.
The example then uses the data bag item's contents to write a message to the Chef log with the
corresponding instance's public IP address:

instance = search("aws_opsworks_instance", "ec2_instance_id:i-12345678").first
Chef::Log.info("********** For instance '#{instance['ec2_instance_id']}', the
 instance's public IP address is '#{instance['public_ip']}' **********")

search("aws_opsworks_instance").each do |instance|
 if instance['ec2_instance_id'] == 'i-12345678'
 Chef::Log.info("********** For instance '#{instance['ec2_instance_id']}', the
 instance's public IP address is '#{instance['public_ip']}' **********")
 end
end

The following example shows how to use Chef search with self:true to find the data bag item
that contains information related to the instance that the recipe is being executed on. The example
then uses the data bag item's contents to write a message to the Chef log with the corresponding
instance's AWS OpsWorks Stacks-generated ID and the instance's public IP address:

instance = search("aws_opsworks_instance", "self:true").first
Chef::Log.info("********** For instance '#{instance['instance_id']}', the instance's
 public IP address is '#{instance['public_ip']}' **********")

ami_id architecture auto_scaling_type

availability_zone created_at ebs_optimized

ec2_instance_id elastic_ip hostname

instance_id instance_type layer_ids

os private_dns private_ip

public_dns public_ip root_device_type

root_device_volume_id self ssh_host_dsa_key_fingerprint

Instance Data Bag (aws_opsworks_instance) API Version 2013-02-18 1413

AWS OpsWorks User Guide

ssh_host_dsa_key_private ssh_host_dsa_key_public ssh_host_rsa_key_fingerprint

ssh_host_rsa_key_private ssh_host_rsa_key_public status

subnet_id virtualization_type

ami_id

The instance's AMI (Amazon Machine Image) ID (string).

architecture

The instance's architecture, which is always set to "x86_64" (string).

auto_scaling_type

The instance's scaling type: null, timer, or load (string).

availability_zone

The instance's Availability Zone (AZ), such as "us-west-2a" (string).

created_at

The time that the instance was created, using the UTC "yyyy-mm-dddThh:mm:ss+hh:mm"
format (string). For example, "2013-10-01T08:35:22+00:00" corresponds to 8:35:22 on
Oct. 10, 2013, with no time zone offset. For more information, see ISO 8601.

ebs_optimized

Whether the instance is EBS-optimized (Boolean).

ec2_instance_id

The EC2 instance ID (string).

elastic_ip

The Elastic IP address; set to "null" if the instance does not have an Elastic IP address (string).

hostname

The host name, such as "demo1" (string).

instance_id

The instance ID, which is an AWS OpsWorks Stacks-generated GUID that uniquely identifies the
instance (string).

Instance Data Bag (aws_opsworks_instance) API Version 2013-02-18 1414

http://en.wikipedia.org/wiki/ISO_8601

AWS OpsWorks User Guide

instance_type

The instance type, such as "c1.medium" (string).

layer_ids

A list of the instance's layers, identified by their unique IDs; for example, 307ut64c-
c7e4-40cc-52f0-67d5k1f9992c.

os

The instance's operating system (string). Valid values include:

• "Amazon Linux 2"

• "Amazon Linux 2018.03"

• "Amazon Linux 2017.09"

• "Amazon Linux 2017.03"

• "Amazon Linux 2016.09"

• "Custom"

• "Microsoft Windows Server 2022 Base"

• "Microsoft Windows Server 2022 with SQL Server Express"

• "Microsoft Windows Server 2022 with SQL Server Standard"

• "Microsoft Windows Server 2022 with SQL Server Web"

• "Microsoft Windows Server 2019 Base"

• "Microsoft Windows Server 2019 with SQL Server Express"

• "Microsoft Windows Server 2019 with SQL Server Standard"

• "Microsoft Windows Server 2019 with SQL Server Web"

• "CentOS 7"

• "Red Hat Enterprise Linux 7"

• "Ubuntu 20.04 LTS"

• "Ubuntu 18.04 LTS"

• "Ubuntu 16.04 LTS"

• "Ubuntu 14.04 LTS"

private_dns

The private DNS name (string).

Instance Data Bag (aws_opsworks_instance) API Version 2013-02-18 1415

AWS OpsWorks User Guide

private_ip

The private IP address (string).

public_dns

The public DNS name (string).

public_ip

The public IP address (string).

root_device_type

The root device type (string). Valid values include:

• "ebs

• "instance-store"

root_device_volume_id

The root device's volume ID (string).

self

true if this data bag item contains information about the instance that the recipe is being
executed on; otherwise, false (Boolean). This value is available only to recipes, not through the
AWS OpsWorks Stacks API.

ssh_host_dsa_key_fingerprint

A shorter sequence of bytes that identifies the longer DSA public key (string).

ssh_host_dsa_key_private

The DSA-generated private key for SSH authentication with the instance (string).

ssh_host_dsa_key_public

The DSA-generated public key for SSH authentication with the instance (string).

ssh_host_rsa_key_fingerprint

A shorter sequence of bytes that identifies the longer RSA public key (string).

ssh_host_rsa_key_private

The RSA-generated private key for SSH authentication with the instance (string).

Instance Data Bag (aws_opsworks_instance) API Version 2013-02-18 1416

AWS OpsWorks User Guide

ssh_host_rsa_key_public

The RSA-generated public key for SSH authentication with the instance (string).

status

The instance's status (string). Valid values include:

• "requested"

• "booting"

• "running_setup"

• "online"

• "setup_failed"

• "start_failed"

• "terminating"

• "terminated"

• "stopped"

• "connection_lost"

subnet_id

The instance's subnet ID (string).

virtualization_type

The instance's virtualization type (string).

Layer Data Bag (aws_opsworks_layer)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Layer Data Bag (aws_opsworks_layer) API Version 2013-02-18 1417

AWS OpsWorks User Guide

Represents a layer's settings.

The following example shows how to use Chef search to search through a single data bag item and
then multiple data bag items to write messages to the Chef log with the layers' names and short
names:

layer = search("aws_opsworks_layer").first
Chef::Log.info("********** The layer's name is '#{layer['name']}' **********")
Chef::Log.info("********** The layer's shortname is '#{layer['shortname']}'
 **********")

search("aws_opsworks_layer").each do |layer|
 Chef::Log.info("********** The layer's name is '#{layer['name']}' **********")
 Chef::Log.info("********** The layer's shortname is '#{layer['shortname']}'
 **********")
end

ecs_cluster_arn layer_id name

packages shortname type

volume_configurations

ecs_cluster_arn

If the layer has an Amazon ECS cluster assigned, the Amazon ECS cluster's Amazon Resource
Name (ARN) (string).

encrypted

true if the EBS volume is encrypted; otherwise, false (Boolean).

layer_id

The layer ID, which is a GUID that is generated by AWS OpsWorks Stacks and that uniquely
identifies the layer (string).

name

The layer's name, which is used to represent the layer in the console (string). It can be user
defined and need not be unique.

Layer Data Bag (aws_opsworks_layer) API Version 2013-02-18 1418

AWS OpsWorks User Guide

packages

A list of packages to be installed (list of strings).

shortname

The layer's shortname, which is user defined (string).

type

The layer's type, which is always set to "custom" for Chef 12 Linux and Chef 12.2 Windows
(string).

volume_configurations

A list of Amazon EBS volume configurations.

iops

The number of I/O operations per second that the volume can support.

mount_point

The volume's mount point directory.

number_of_disks

The number of disks in the volume.

raid_level

The volume's RAID configuration level.

size

The volume's size in GiB.

volume_type

The volume's type: general purpose, magnetic, provisioned IOPS, throughput-optimized
HDD, or cold HDD.

Amazon RDS Data Bag (aws_opsworks_rds_db_instance)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until

Amazon RDS Data Bag (aws_opsworks_rds_db_instance) API Version 2013-02-18 1419

AWS OpsWorks User Guide

May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

A set of data bag content that specifies an Amazon Relational Database Service (Amazon RDS)
instance's configuration as follows:

address db_instance_identifier db_password

db_user engine rds_db_instance_arn

region

The following example shows how to use Chef search to search through a single data bag item and
then multiple data bag items to write messages to the Chef log with the Amazon RDS instances'
addresses and database engine types:

rds_db_instance = search("aws_opsworks_rds_db_instance").first
Chef::Log.info("********** The RDS instance's address is
 '#{rds_db_instance['address']}' **********")
Chef::Log.info("********** The RDS instance's database engine type is
 '#{rds_db_instance['engine']}' **********")

search("aws_opsworks_rds_db_instance").each do |rds_db_instance|
 Chef::Log.info("********** The RDS instance's address is
 '#{rds_db_instance['address']}' **********")
 Chef::Log.info("********** The RDS instance's database engine type is
 '#{rds_db_instance['engine']}' **********")
end

address

The instance's DNS name.

port

The instance's port.

Amazon RDS Data Bag (aws_opsworks_rds_db_instance) API Version 2013-02-18 1420

AWS OpsWorks User Guide

db_instance_identifier

The instance's ID.

db_password

The instance's master password.

db_user

The instance's master user name.

engine

The instance's database engine, such as mysql.

rds_db_instance_arn

The instance's Amazon Resource Name (ARN).

region

The instance's AWS region, such as us-west-2.

Stack Data Bag (aws_opsworks_stack)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Represents a stack's settings.

The following example shows how to use Chef search to write messages to the Chef log with the
stack's name and cookbook's source url:

stack = search("aws_opsworks_stack").first
Chef::Log.info("********** The stack's name is '#{stack['name']}' **********")

Stack Data Bag (aws_opsworks_stack) API Version 2013-02-18 1421

AWS OpsWorks User Guide

Chef::Log.info("********** The stack's cookbook URL is
 '#{stack['custom_cookbooks_source']['url']}' **********")

arn custom_cookbooks_source name

region stack_id use_custom_cookbooks

vpc_id

arn

The stack's Amazon Resource Name (ARN) (string).

custom_cookbooks_source

A set of content that specify the custom cookbook's source repository.

type

The repository type (string). Valid values include:

• "archive"

• "git"

• "s3"

url

The repository URL, such as "git://github.com/amazonwebservices/opsworks-
demo-php-simple-app.git" (string).

username

The user name for private repositories, and null for public repositories (string). For private
Amazon Simple Storage Service (Amazon S3) buckets, the content is set to the access key.

password

The password for private repositories, and null for public repositories (string). For private
S3 buckets, this content is set to the secret key.

ssh_key

A deploy SSH key for accessing private Git repositories, and null for public repositories
(string).

Stack Data Bag (aws_opsworks_stack) API Version 2013-02-18 1422

AWS OpsWorks User Guide

revision

If the repository has multiple branches, the content specifies the app's branch or version,
such as "version1" (string). Otherwise, it is set to null.

name

The stack's name (string).

region

The stack's AWS region (string).

stack_id

A GUID that identifies the stack (string).

use_custom_cookbooks

Whether custom cookbooks are enabled (Boolean).

vpc_id

If the stack is running in a VPC, the VPC ID, if the stack is running in a VPC (string).

User Data Bag (aws_opsworks_user)

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Represents a user's settings.

The following example shows how to use Chef search to search through a single data bag item and
then multiple data bag items to write messages to the Chef log with the users' user names and
Amazon Resource Names (ARNs):

User Data Bag (aws_opsworks_user) API Version 2013-02-18 1423

AWS OpsWorks User Guide

user = search("aws_opsworks_user").first
Chef::Log.info("********** The user's user name is '#{user['username']}' **********")
Chef::Log.info("********** The user's user ARN is '#{user['iam_user_arn']}'
 **********")

Or...

search("aws_opsworks_user").each do |user|
 Chef::Log.info("********** The user's user name is '#{user['username']}' **********")
 Chef::Log.info("********** The user's user ARN is '#{user['iam_user_arn']}'
 **********")
end

administrator_privileges iam_user_arn remote_access

ssh_public_key unix_user_id username

administrator_privileges

Whether the user has administrator privileges (Boolean).

iam_user_arn

The user's Amazon Resource Name (ARN) (string).

remote_access

Whether the user can use RDP to log in to the instance (Boolean).

ssh_public_key

The user's public key, as provided through the AWS OpsWorks Stacks console or API (string).

unix_user_id

The user's Unix ID (number).

username

The user name (string).

User Data Bag (aws_opsworks_user) API Version 2013-02-18 1424

AWS OpsWorks User Guide

OpsWorks Agent Changes

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

Chef 12 Agent Releases

The following table describes important changes to the Chef 12 agent that AWS OpsWorks Stacks
installs on instances that it manages.

Agent Version Description Release Date

4042 • This agent release only contains minor changes
with no new features

February 7, 2023

4041 • This agent release only contains minor changes
with no new features

• Update Amazon CA certificates

January 27, 2023

4040 • This agent release only contains minor changes
with no new features

July 22, 2022

4039 • Fix ECS integration for Ubuntu AMIs April 30, 2020

4038 • Fix bug when sending instance statistics during
DST change

• Respect no_proxy environment variable during
agent download and installation

March 5, 2020

4037 • Add support for signing requests to S3 URLs
without region using SigV4

June 4, 2019

OpsWorks Agent Changes API Version 2013-02-18 1425

AWS OpsWorks User Guide

Agent Version Description Release Date

• Remove support for signing S3 requests using
SigV2

4035 • Fix bug during ECS setup

• Fix duplicated fstab entries after an instance type
change

May 8, 2019

4033 • Add support for Ubuntu 18.04

• Fix agent installation bug in Amazon Linux 2

November 26,
2018

4032 • Added support for Amazon Linux 2 October 24, 2018

4031 • Add support for Amazon Linux 2018.03

• Support public S3 archives hosted on another
account

August 15, 2018

4030 • Fix volume handling for c5d instances May 31, 2018

4029 • Install nvme-cli on Ubuntu 14.04

• Fix volume mounting on c5, m5 instances

• Always preserve hostname on restart

May 2, 2018

4028 • Fix monit configuration for CentOS March 20, 2018

4027 • Support for mounting NVMe volumes on Ubuntu
14.04 (nvme-cli must be installed manually)

• Do not require name property for volumes

February 17, 2018

4026 • Mount NVMe-based EBS volumes using EBS
volume ID

• Fix EBS volume mounting on i3 instances

• Fix order of mounted EBS volumes on c5, m5
instances

January 31, 2018

4025 • Fix handling of NVMe devices December 13,
2017

Chef 12 Agent Releases API Version 2013-02-18 1426

AWS OpsWorks User Guide

Agent Version Description Release Date

4024 • Add support for Amazon Linux 2017.09 December 5, 2017

4023 • Add support for CloudWatch Logs integration April 2, 2017

4022 • Update Chef client version to 12.18.31 February 1, 2017

4021 • Improve proxy handling December 16,
2016

4020 • Update Chef client version to 12.16.42 December 8, 2016

4019 • Source proxy variables during agent installation

• Red Hat Enterprise Linux 7 now uses systemd
instead of monit

• Don't setup EPEL on Red Hat Enterprise Linux 7

• Use flock instead of lockrun.c for process
locking

• Avoid odd output of ps -p1 when checking for
systemd

October 19, 2016

4018 • Update Chef client version to 12.13.37

• Add support for Amazon Linux 2016.09

August 25, 2016

4017 • Update Chef client version to 12.12.15 August 10, 2016

4016 • Fix agent uninstallation on systems where monit
is not used

June 23, 2016

4015 • Fix ECS setup for Amazon Linux 2016.03 June 17, 2016

4011 • Update Chef client version to 12.10.24

• Improve log upload handling

May 19, 2016

4008 • Add support for Amazon Linux 2016.03

• Add timeout to bundle install

• Add xfs to /etc/filesystems if it exists

March 16, 2016

Chef 12 Agent Releases API Version 2013-02-18 1427

AWS OpsWorks User Guide

Agent Version Description Release Date

4007 • Update Chef client version to 12.7.2

• Improvements for error handling for on-premises
instances (servers hosted outside of AWS)

• Improve compatibility with latest chef-sugar

• Retry archive download for deployment

March 4, 2016

4006 • Update Chef client version to 12.6.0

• Don't install libxml2-devel/libxml2-dev and libxslt-
devel/libxslt-dev packages on agent install

January 21, 2016

4005 • Fix ec2 import by always enabling ec2 data in ohai
for ec2 infrastructure

December 17,
2015

4004 • AWS OpsWorks Stacks support for Chef 12 Linux-
Chef Client 12.5.1

December 3, 2015

Chef 11.10 Agent Releases

The following table describes important changes to the Chef 11.10 agent that AWS OpsWorks
Stacks installs on instances that it manages.

Agent Version Description Release Date

3456 • This agent release only contains minor changes
with no new features

• Update Amazon CA certificates

January 27, 2023

3455 • This agent release only contains minor changes
with no new features

November 1,
2022

3454 • Fix ECS integration for Ubuntu AMIs April 28, 2020

3453 • Fix bug when sending instance statistics during
DST change

• Fix missing packages bug in RHEL7 setup

March 5, 2020

Chef 11.10 Agent Releases API Version 2013-02-18 1428

AWS OpsWorks User Guide

Agent Version Description Release Date

• Respect no_proxy environment variable during
agent download and installation

3452 • Do not include region in the Amazon S3 virtual
path URL if it is us-east-1

• Extract and upload internal cookbooks to stage-
region specific buckets

• Fix fstab entries for Chef 11.10

• Remove SigV2 usage for S3 and get the region for
the bucket in the request

August 13, 2019

3451 • Add support for Ruby 2.6.1 March 20, 2019

3450 • Fix default EBS attributes

• Fix CloudWatchLogs agent installation for Amazon
Linux 2

• Fix bundler installation for rubygem versions
newer than 2.6.14

• Fix public S3 archives support

December 3, 2018

3449 • Fix volume handling for c5d instances

• Fix RAID array support on NVMe-device instances

June 5, 2018

3448 • Upgrade the default 2.3 version of Ruby to 2.3.7

• Fix mounting EBS volumes on NVMe based
instances on Ubuntu 14.04 instances

• Support public Amazon S3 archives hosted on
another account

• Fix opsworks-agent boot issues on Red Hat
Enterprise Linux instances

May 8, 2018

Chef 11.10 Agent Releases API Version 2013-02-18 1429

AWS OpsWorks User Guide

Agent Version Description Release Date

3447 • Mount NVMe-based EBS volumes using EBS
volume ID

• Fix EBS volume mounting on i3 instances

• Fix order of mounted EBS volumes on c5, m5

• Update the default 2.3 version of Ruby to 2.3.6

January 31, 2018

3446 • Fix handling of NVMe devices

• Update the default 2.3 version of Ruby to 2.3.5

December 14,
2017

3445 • Add support for Amazon Linux 2017.09

• Update the default 2.2 version of Ruby to 2.2.8

October 31, 2017

3444 • Add support for CloudWatch Logs April 1, 2017

3443 • Improve proxy handling December 15,
2016

3442 • Update the default 2.3 version of Ruby to 2.3.3

• Update the default 2.2 version of Ruby to 2.2.6

December 6, 2016

3441 • Source proxy variables during agent installation October 21, 2016

3440 • Add support for Amazon Linux 2016.09 September 13,
2016

3439 • Minor changes; no new features July 29, 2016

3438 • Add support for Ruby 2.3.1

• Improve instance registration with credentials
from IAM instance profile

• Remove s3curl.pl leftovers

• Fix ECS setup for Amazon Linux 2016.03

June 17, 2016

3437 • Update the default 2.2 version of Ruby to 2.2.5 May 4, 2016

Chef 11.10 Agent Releases API Version 2013-02-18 1430

AWS OpsWorks User Guide

Agent Version Description Release Date

3436 • Update EPEL URL for Red Hat Enterprise Linux.
IMPORTANT: without this change, Red Hat
Enterprise Linux instances fail to boot.

April 18, 2016

3435 • Update the default 2.1 version of Ruby to 2.1.9

• Improve handling of Amazon S3 and archive
deployments

April 6, 2016

3434 • Add support for Amazon Linux 2016.03

• Retry package installations

March 16, 2016

3433 • Some improvements for on-premises instances
(servers hosted outside of AWS)

• Improve compatibility with latest chef-sugar

• Retry archive download for deployment

• Fix Ruby gems installation URL

February 27, 2016

3432 • Improve handling of special characters in bucket
names

• Update s3_file to version 2.6.6

• Skip mounting of volumes with no specified
mount point

• Always restart unicorn instead of a stop and start
to prevent downtime during deploys

• Always update custom cookbook for setup
command

• After creating RAID arrays update initramfs to
prevent device mapping issues on reboot

January 20, 2016

Chef 11.10 Agent Releases API Version 2013-02-18 1431

AWS OpsWorks User Guide

Agent Version Description Release Date

3431 • Fixed passenger and unicorn gem installation
issue in Rails layer

• Updating the default 2.0, 2.1 and 2.2 versions of
Ruby to 2.0.0p648, 2.1.8 and 2.2.4

• Allow postgres package names to set in custom
JSON

• Update the Node.js default version to 0.12.9

December 22,
2015

3430 • Minor changes; no new features November 25,
2015

3429 • Improve OpsWorks agent daemonize (close
stdout/stderr)

• Improve robustness of s3_file resource (retries,
 caught exceptions)

November 18,
2015

3428 • Adding postgres adapter detection based on the
Gemfile, fixes https://github.com/aws/opsworks-
cookbooks/issues/136

June 17, 2016

3427 • Fixed an issue with retrieving credentials in the
agent

• Updating the default 2.0, 2.1 and 2.2 versions of
Ruby to 2.0.0p647, 2.1.7 and 2.2.3

September 11,
2015

Chef 11.10 Agent Releases API Version 2013-02-18 1432

AWS OpsWorks User Guide

Agent Version Description Release Date

3426 • Updated aws-sdk to 1.65.0

• Improving download from Amazon S3 by replacing
s3curl with s3_file cookbook

• Change the default Node.js version to 0.12.7

• Logging added for Node.js apps. STDOUT and
STDERR logged and rotated in the shared/log
directory

• Make custom cookbook submodule checkout
update explicit

• Added workaround for https://github.com/aws/
opsworks-cookbooks/issues/213 that will check
to ensure bind mounts have been made before the
deploy directory is created

August 27, 2015

3425 • ECS support for Amazon Linux and Ubuntu July 27, 2015

3424 • Minor changes; no new features July 9, 2015

3422 • Full support of Red Hat Enterprise Linux 7

• Make /etc/hosts generation more resilient to
errors

June 29, 2015

3421 • Option to override database package name for Red
Hat Enterprise Linux 7

• Updated the monit systemd config to prevent
systemd from sending the kill signal to
processes monitored by monit

June 11, 2015

Chef 11.10 Agent Releases API Version 2013-02-18 1433

AWS OpsWorks User Guide

AWS OpsWorks Stacks Resources

Important

AWS OpsWorks Stacks is no longer accepting new customers. Existing customers will be
able to use the OpsWorks console, API, CLI, and CloudFormation resources as normal until
May 26, 2024, at which time they will be discontinued. To prepare for this transition, we
recommend you transition your stacks to AWS Systems Manager as soon as possible. For
more information, see AWS OpsWorks Stacks End of Life FAQs and Migrating your AWS
OpsWorks Stacks applications to AWS Systems Manager Application Manager.

The following related resources can help you as you work with this service.

Reference Guides, Tools, and Support Resources

Several helpful guides, forums, contact info, and other resources are available from AWS OpsWorks
Stacks and Amazon Web Services.

• AWS OpsWorks Stacks API Reference – Descriptions, syntax, and usage examples about AWS
OpsWorks Stacks actions and data types, including common parameters and error codes.

• AWS OpsWorks Stacks Technical FAQ – Top questions developers have asked about this
product.

• AWS OpsWorks Stacks Release Notes – A high-level overview of the current release. This
document specifically notes any new features, corrections, and known issues.

• AWS Tools for PowerShell – A set of Windows PowerShell cmdlets that expose the functionality
of the AWS SDK for .NET in the PowerShell environment.

• AWS Command Line Interface– A uniform command line syntax for accessing AWS services. The
AWS CLI uses a single setup process to enable access for all supported services.

• AWS OpsWorks Stacks Command Line Reference – AWS OpsWorks Stacks-specific commands
for use at a command line prompt.

• Classes & Workshops – Links to role-based and specialty courses, in addition to self-paced labs to
help sharpen your AWS skills and gain practical experience.

Reference Guides, Tools, and Support Resources API Version 2013-02-18 1434

http://docs.aws.amazon.com/opsworks/latest/APIReference/Welcome.html
http://aws.amazon.com/opsworks/faqs/
http://aws.amazon.com/releasenotes/AWS-OpsWorks
http://docs.aws.amazon.com/powershell/latest/userguide/pstools-welcome.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
http://docs.aws.amazon.com/cli/latest/reference/opsworks/index.html
https://aws.amazon.com/training/course-descriptions/

AWS OpsWorks User Guide

• AWS Developer Center – Explore tutorials, download tools, and learn about AWS developer
events.

• AWS Developer Tools – Links to developer tools, SDKs, IDE toolkits, and command line tools for
developing and managing AWS applications.

• Getting Started Resource Center – Learn how to set up your AWS account, join the AWS
community, and launch your first application.

• Hands-On Tutorials – Follow step-by-step tutorials to launch your first application on AWS.

• AWS Whitepapers – Links to a comprehensive list of technical AWS whitepapers, covering topics
such as architecture, security, and economics and authored by AWS Solutions Architects or other
technical experts.

• AWS Support Center – The hub for creating and managing your AWS Support cases. Also
includes links to other helpful resources, such as forums, technical FAQs, service health status,
and AWS Trusted Advisor.

• AWS Support – The primary webpage for information about AWS Support, a one-on-one, fast-
response support channel to help you build and run applications in the cloud.

• Contact Us – A central contact point for inquiries concerning AWS billing, account, events, abuse,
and other issues.

• AWS Site Terms – Detailed information about our copyright and trademark; your account, license,
and site access; and other topics.

AWS Software Development Kits

Amazon Web Services provides software development kits for accessing AWS OpsWorks Stacks
from several different programming languages. The SDK libraries automate a number of common
tasks, including cryptographically signing your service requests, retrying requests, or handling error
responses.

• AWS SDK for Java – Setup and other documentation

• AWS SDK for .NET – Setup and other documentation.

• AWS SDK for PHP – Documentation

• AWS SDK for Ruby – Documentation

• other documentation

• AWS SDK for Python (Boto) – Setup and other documentation

AWS Software Development Kits API Version 2013-02-18 1435

https://aws.amazon.com/developer/?ref=docs_id=res1
https://aws.amazon.com/developer/tools/?ref=docs_id=res1
https://aws.amazon.com/getting-started/?ref=docs_id=res1
https://aws.amazon.com/getting-started/hands-on/?ref=docs_id=res1
https://aws.amazon.com/whitepapers/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/terms/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-setup.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/opsworks/AWSOpsWorks.html
http://docs.aws.amazon.com/AWSSdkDocsNET/latest/DeveloperGuide/net-dg-setup.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdk-for-php/index.html
http://aws.amazon.com/documentation/sdk-for-ruby
http://aws.amazon.com/documentation/sdkforjavascript/
http://boto.readthedocs.org/en/latest/getting_started.html
http://docs.pythonboto.org/en/latest/ref/opsworks.html

AWS OpsWorks User Guide

Open Source Software

AWS OpsWorks Stacks includes a variety of open-source software packages, which are governed by
their respective licenses. For more information, see the following:

• For Chef 12 Linux instances, open the THIRD_PARTY_LICENSES file in the /opt/aws/
opsworks/current directory on the instance.

• For Chef 11.10 and earlier versions for Linux, download the OpsWorks Linux Agent Attributions
Document PDF.

Open Source Software API Version 2013-02-18 1436

samples/OpsWorks-Linux-Agent-Attributions-Document-10-08-14.zip
samples/OpsWorks-Linux-Agent-Attributions-Document-10-08-14.zip

AWS OpsWorks User Guide

AWS OpsWorks document history

Change Description Date

Updates to AWS OpsWorks
Stacks

You can now migrate your
AWS OpsWorks Stacks to AWS
Systems Manager Application
Manager by using a migration
script. For more informati
on, see Migrating your AWS
OpsWorks Stacks applicati
ons to AWS Systems Manager
Application Manager in this
guide.

December 22, 2022

Updates to AWS OpsWorks
for Chef Automate and
AWS OpsWorks for Puppet
Enterprise

A troubleshooting procedure
is now available that
describes what you can do
if system maintenance fails
for your AWS OpsWorks for
Chef Automate or OpsWorks
for Puppet Enterprise server.
For more information, see
System maintenance fails
for Chef Automate server or
System maintenance fails for
Puppet Enterprise server. in
this guide.

September 29, 2022

Updates to AWS OpsWorks
for Chef Automate and
AWS OpsWorks for Puppet
Enterprise

A troubleshooting procedure
is now available if your AWS
OpsWorks for Chef Automate
or OpsWorks for Puppet
Enterprise server enters a
Connection lost state.
For more information, see

March 23, 2022

API Version 2013-02-18 1437

https://docs.aws.amazon.com/opsworks/latest/userguide/migrating-to-systems-manager.html
https://docs.aws.amazon.com/opsworks/latest/userguide/migrating-to-systems-manager.html
https://docs.aws.amazon.com/opsworks/latest/userguide/migrating-to-systems-manager.html
https://docs.aws.amazon.com/opsworks/latest/userguide/migrating-to-systems-manager.html
https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-opscm.html#tshooterrors-chef-maintenance-fails
https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-opscm.html#tshooterrors-chef-maintenance-fails
https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-opspup.html#tshooterrors-puppet-maintenance-fails
https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-opspup.html#tshooterrors-puppet-maintenance-fails

AWS OpsWorks User Guide

Chef Automate server is in a
Connection lost state or
Puppet Enterprise server is in
a Connection lost state
in this guide.

Updates to AWS OpsWorks
Stacks

As a security best practice,
you can now add an
aws:SourceArn or
aws:SourceAccount
condition key (or both) to
trust relationship policies that
allow AWS OpsWorks Stacks
access to perform tasks in
other AWS services. For more
information, see Cross-service
confused deputy prevention
in AWS OpsWorks Stacks in
this guide.

March 4, 2022

Updates to AWS OpsWorks
for Chef Automate and
AWS OpsWorks for Puppet
Enterprise

As a security best practice,
you can now add an
aws:SourceArn or
aws:SourceAccount
condition key (or both) to
trust relationship policies that
allow AWS OpsWorks for Chef
Automate and OpsWorks for
Puppet Enterprise access to
perform tasks in other AWS
services. For more informati
on, see Cross-service confused
deputy prevention in this
guide.

January 10, 2022

API Version 2013-02-18 1438

https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-opscm.html#tshooterrors-chef-connection-lost
https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-opscm.html#tshooterrors-chef-connection-lost
https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-opspup.html#tshooterrors-puppet-connection-lost
https://docs.aws.amazon.com/opsworks/latest/userguide/troubleshoot-opspup.html#tshooterrors-puppet-connection-lost
https://docs.aws.amazon.com/opsworks/latest/userguide/cross-service-confused-deputy-prevention-stacks.html
https://docs.aws.amazon.com/opsworks/latest/userguide/cross-service-confused-deputy-prevention-stacks.html
https://docs.aws.amazon.com/opsworks/latest/userguide/cross-service-confused-deputy-prevention-stacks.html
https://docs.aws.amazon.com/opsworks/latest/userguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/opsworks/latest/userguide/cross-service-confused-deputy-prevention.html

AWS OpsWorks User Guide

Updates to AWS OpsWorks
for Chef Automate and
AWS OpsWorks for Puppet
Enterprise

AWS OpsWorks for Chef
Automate and OpsWorks
for Puppet Enterprise have
updated the managed policies
AWSOpsWorksCMServi
ceRole and AWSOpsWor
ksCMInstanceProfil
eRole , and now store
secrets in AWS Secrets
Manager.

May 3, 2021

Updates to AWS OpsWorks
for Puppet Enterprise

The engine version of
an OpsWorks for Puppet
Enterprise server that you
create in the console is now
2019.8.5. By using the API,
you can specify either version
2019 or 2017 when you
create a Puppet Enterpris
e server. The DescribeS
ervers API now returns an
attribute called PUPPET_AP
I_CRL in its results. This
attribute contains a certifica
te revocation list for internal
use.

April 28, 2021

API Version 2013-02-18 1439

https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-awsopsworkscmservicerole
https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-awsopsworkscmservicerole
https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-awsopsworkscminstanceprofilerole
https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-awsopsworkscminstanceprofilerole
https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-awsopsworkscminstanceprofilerole
https://docs.aws.amazon.com/opsworks/latest/userguide/data-protection.html#data-protection-secrets-manager
https://docs.aws.amazon.com/opsworks/latest/userguide/data-protection.html#data-protection-secrets-manager
https://docs.aws.amazon.com/opsworks/latest/userguide/data-protection.html#data-protection-secrets-manager

AWS OpsWorks User Guide

AWS OpsWorks Stacks uses a
new managed policy

AWS OpsWorks Stacks has
changed the managed policy
that includes permissions
to perform all actions in
AWS OpsWorks Stacks. The
new policy is AWSOpsWor
ks_FullAccess. For more
information about the
permissions in this policy, see
Example policies.

February 19, 2021

Migrate AWS OpsWorks
Stacks stacks from EC2-Class
ic to a VPC

Documentation has been
added describing how to
migrate an AWS OpsWorks
Stacks stack from EC2-Classic
to a VPC.

September 29, 2020

Regenerate a starter kit for
AWS OpsWorks for Chef
Automate and AWS OpsWorks
for Puppet Enterprise

Documentation has been
added describing how to
regenerate the starter
kit for an AWS OpsWorks
for Chef Automate or an
AWS OpsWorks for Puppet
Enterprise server.

July 29, 2020

AWS OpsWorks for Puppet
Enterprise lets you create a
server that uses a custom
domain, certificate, and
private key

You can now create an
OpsWorks for Puppet
Enterprise server that uses
a custom domain, certifica
te, and private key. You can
update an existing Puppet
Enterprise server to use a
custom domain by creating
a server from a backup of an
existing server.

April 17, 2020

API Version 2013-02-18 1440

https://docs.aws.amazon.com/opsworks/latest/userguide/opsworks-security-users-examples.html

AWS OpsWorks User Guide

AWS OpsWorks for Chef
Automate and AWS OpsWorks
for Puppet Enterprise now
support tagging in the
console

You can now add tags to
an AWS OpsWorks for Chef
Automate server or an
AWS OpsWorks for Puppet
Enterprise master, or to server
backups, by using either the
AWS Management Console
or the AWS CLI. For more
information, see Work with
Tags (Chef) or Work with Tags
(Puppet).

February 26, 2020

AWS OpsWorks for Chef
Automate simplifies upgrade
of existing Chef Automate 1
servers to Chef Automate 2

You can upgrade eligible
AWS OpsWorks for Chef
Automate servers running
Chef Automate 1 to Chef
Automate 2 by choosing
Start upgrade on your
server's details page in the
console, or by running the
StartMaintenance API
action. For more informati
on, see Upgrade an AWS
OpsWorks for Chef Automate
Server to Chef Automate 2.

January 24, 2020

AWS OpsWorks for Chef
Automate and AWS OpsWorks
for Puppet Enterprise

A new chapter about Security
in AWS OpsWorks CM (AWS
OpsWorks for Chef Automate
and AWS OpsWorks for
Puppet Enterprise) has been
added to the guide.

December 23, 2019

API Version 2013-02-18 1441

https://docs.aws.amazon.com/opsworks/latest/userguide/opscm-tags.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opscm-tags.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opspup-tags.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opspup-tags.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opscm-a2upgrade.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opscm-a2upgrade.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opscm-a2upgrade.html

AWS OpsWorks User Guide

AWS OpsWorks for Chef
Automate and AWS OpsWorks
for Puppet Enterprise support
tagging

You can now add tags to
an AWS OpsWorks for Chef
Automate server or an
AWS OpsWorks for Puppet
Enterprise master, or to server
backups, by using the AWS
CLI. AWS OpsWorks CM now
supports tag-based authoriza
tion.

December 18, 2019

AWS OpsWorks for Chef
Automate lets you create a
server that uses a custom
domain, certificate, and
private key

You can now create an AWS
OpsWorks for Chef Automate
2.0 server that uses a custom
domain, certificate, and
private key. You can update
an existing Chef Automate
2.0 server to use a custom
domain by creating a server
from a backup of an existing
server.

October 22, 2019

AWS OpsWorks Stacks now
supports Ruby 2.6.1

AWS OpsWorks Stacks
supports Ruby 2.6.1 on Rails
App Server layers in Chef
11.10 stacks.

May 2, 2019

AWS OpsWorks for Chef
Automate now supports Chef
Automate 2.0

New AWS OpsWorks for
Chef Automate servers will
run Chef Automate 2.0,
which includes updates to
Chef InSpec, new features
in compliance scanning and
reporting, and Chef Infra.

April 30, 2019

API Version 2013-02-18 1442

AWS OpsWorks User Guide

AWS OpsWorks for Chef
Automate and AWS OpsWorks
for Puppet Enterprise

You can now use AWS
CloudFormation to create
an AWS OpsWorks for Chef
Automate server or an
AWS OpsWorks for Puppet
Enterprise master server.

January 24, 2019

AWS OpsWorks Stacks AWS OpsWorks Stacks now
supports instances running
Ubuntu 18.04 LTS in Chef 12
stacks.

December 18, 2018

AWS OpsWorks for Puppet
Enterprise

Added procedure for setting
up an SSH-based connectio
n to a control repository that
uses CodeCommit.

December 3, 2018

AWS OpsWorks Stacks AWS OpsWorks Stacks now
supports instances running
Amazon Linux 2 in Chef 12
stacks.

November 15, 2018

AWS OpsWorks Stacks AWS OpsWorks Stacks now
supports instances running
Amazon Linux 2018.03 in
Chef 11.10 stacks.

October 23, 2018

AWS OpsWorks Stacks AWS OpsWorks Stacks now
supports instances running
Amazon Linux 2018.03 in
Chef 12 stacks.

August 23, 2018

AWS OpsWorks for Chef
Automate and OpsWorks for
Puppet Enterprise

OpsWorks for Puppet
Enterprise has upgraded to PE
2018.1.2. AWS OpsWorks for
Chef Automate has upgraded
to Chef Automate 1.8.68.

June 29, 2018

API Version 2013-02-18 1443

AWS OpsWorks User Guide

• AWS OpsWorks for Chef Automate and OpsWorks for Puppet Enterprise API version:
2016-11-01

• AWS OpsWorks Stacks API version: 2016-03-08

• Latest documentation update: 2023-12-19

Earlier updates

The following table describes important changes in each release of the AWS OpsWorks User Guide
before June 2018.

Description Date

AWS OpsWorks Stacks Chef version for Windows-based stacks
upgraded to 12.22; Ruby version is now 2.3.6.

April 19, 2018

New procedures for creating an AWS OpsWorks for Chef Automate
server or an OpsWorks for Puppet Enterprise master by using the
AWS CLI.

March 23, 2018

Chef Automate version updated to 1.8; Chef Compliance setup
simplified with the addition of the opsworks-audit cookbook.

March 5, 2018

Added support for AWS OpsWorks Stacks events in Amazon
CloudWatch Events.

February 20, 2018

Added support for new EBS volume types in AWS OpsWorks Stacks,
and a new API, DescribeOperatingSystems.

January 25, 2018

OpsWorks for Puppet Enterprise and AWS OpsWorks for Chef
Automate now support selecting multiple security groups when you
are creating a server.

January 18, 2018

Added support for AWS OpsWorks Stacks in the Europe (Paris)
Region.

December 19, 2017

Added support for AWS OpsWorks for Chef Automate and OpsWorks
for Puppet Enterprise in six additional regions, and added procedure
s for creating backups of AWS OpsWorks for Chef Automate and

December 18, 2017

Earlier updates API Version 2013-02-18 1444

AWS OpsWorks User Guide

Description Date

OpsWorks for Puppet Enterprise servers in the AWS Management
Console.

Added the new OpsWorks for Puppet Enterprise service and
documentation.

November 16, 2017

Added support for Amazon Linux 2017.09 to AWS OpsWorks Stacks. November 7, 2017

Added support for Chef Compliance to AWS OpsWorks for Chef
Automate.

October 25, 2017

Added support for Amazon Linux 2017.09 to AWS OpsWorks for
Chef Automate.

October 9, 2017

Added System Maintenance topic to AWS OpsWorks for Chef
Automate chapter.

July 28, 2017

Added support for tags in AWS OpsWorks Stacks. June 6, 2017

Added integration with CloudWatch Logs. April 10, 2017

Added the new AWS OpsWorks for Chef Automate service and
documentation.

December 1, 2016

Added support for the US East (Ohio) Region regional endpoint. October 12, 2016

Added support for stacks and instances that run the Amazon Linux
2016.09 operating system.

September 30, 2016

Added support for the Asia Pacific (Seoul) Region and nine additiona
l regional endpoints.

August 15, 2016

Added support for Node.js 0.12.15 and Ruby 2.3 in built-in layers. July 6, 2016

Added support for the Asia Pacific (Mumbai) Region. June 28, 2016

Added support for stacks and instances that run the CentOS 7
operating system.

June 22, 2016

Earlier updates API Version 2013-02-18 1445

AWS OpsWorks User Guide

Description Date

Added walkthrough describing CodePipeline and AWS OpsWorks
Stacks integration.

June 2, 2016

Added support for stacks and instances that run the Ubuntu 16.04
LTS operating system.

June 1, 2016

Added Chef 12 Linux support and related documentation. December 3, 2015

Added Node.js walkthrough to Getting Started. July 14, 2015

Added two new cookbook examples to Cookbooks 101. July 14, 2015

Added support for agent version management. June 23, 2015

Added support for managing the agent version. June 24, 2015

Added support for custom Windows AMIs. June 22, 2015

Added three new Best Practices topics. June 11, 2015

Added support for Windows stacks. May 18, 2015

Added a Best Practices chapter. Dec. 15, 2014

Added support for Elastic Load Balancing connection draining and
custom Shutdown timeouts.

Dec. 15, 2014

Added support for registering instances created outside of AWS
OpsWorks Stacks.

Dec 9, 2014

Added support for Amazon SWF. Sept. 4, 2014

Added support for associating environment variables with apps and
extended Cookbooks 101.

July 16, 2014

Added Cookbooks 101, a tutorial introduction to implementing
cookbooks.

July 16, 2014

Added support for CloudTrail. June 4, 2014

Earlier updates API Version 2013-02-18 1446

AWS OpsWorks User Guide

Description Date

Added support for Amazon RDS. May 14, 2014

Added support for Chef 11.10 and Berkshelf. Mar. 27, 2014

Added support for Amazon EBS PIOPS volumes. Dec. 16, 2013

Added resource-based permissions. Dec. 5, 2013

Added resource management. Oct. 7, 2013

Added support for VPCs. Aug. 29, 2013

Added support for custom AMIs and Chef 11.4. July 24, 2013

Added console support for multiple layers per instance. July 1, 2013

Added support for Amazon EBS-backed instances, Elastic Load
Balancing, and Amazon CloudWatch monitoring.

May 14, 2013

Initial release of the AWS OpsWorks Stacks User Guide. February 18, 2013

Earlier updates API Version 2013-02-18 1447

	AWS OpsWorks
	Table of Contents
	What Is AWS OpsWorks?
	AWS OpsWorks Services

	AWS OpsWorks for Puppet Enterprise
	Region Support for OpsWorks for Puppet Enterprise
	AWS OpsWorks for Puppet Enterprise End of Life FAQs
	How will existing customers be affected by this End of Life?
	What happens to my servers if I don’t take any action?
	Is AWS OpsWorks for Puppet Enterprise accepting new customers?
	Will the End of Life affect all AWS Regions at the same time?
	What level of technical support is available for AWS OpsWorks for Puppet Enterprise?
	I am a current customer of OpsWorks for Puppet Enterprise and I need to launch a server in an account which was not using the service previously. Am I able to do this?
	Will there be any new feature releases for AWS OpsWorks for Puppet Enterprise?

	Getting Started with OpsWorks for Puppet Enterprise
	Prerequisites
	Install the Puppet Development Kit
	Install the Puppet Enterprise Client Tools
	Set Up a Git Control Repository
	Setting up a repository by using CodeCommit

	Set Up a VPC
	Set Up an EC2 Key Pair (Optional)
	Prerequisites for Using a Custom Domain (Optional)
	Set Up a Custom Domain
	Get a Certificate
	Get a Private Key

	Create a Puppet Enterprise Master
	Create a Puppet Enterprise Master by using the AWS Management Console
	Create a Puppet Enterprise Master by using the AWS CLI

	Configure the Puppet Master Using the Starter Kit
	Prerequisites
	Install the Puppet Master Certificate
	Generate a Short-term Token
	Set Up the Starter Kit Apache Example

	Add Nodes for the Puppet Master to Manage
	Run associateNode() API calls
	Considerations for Adding On-premises Nodes
	More Information

	Sign in to the Puppet Enterprise Console
	Group and Classify Nodes
	Reset Administrator and User Passwords

	Optional: Use AWS CodeCommit as a Puppet r10k Remote Control Repository
	Step 1: Use CodeCommit as a Repository with an HTTPS connection type
	Step 2: (Optional) Use CodeCommit as a Repository with an SSH connection type

	Create an AWS OpsWorks for Puppet Enterprise Master by using AWS CloudFormation
	Prerequisites
	Create a Puppet Enterprise Master in AWS CloudFormation
	Create a Puppet Enterprise Master by using AWS CloudFormation (Console)
	Create a Puppet Enterprise Master by using AWS CloudFormation (CLI)

	Update an OpsWorks for Puppet Enterprise Server to Use a Custom Domain
	Prerequisites
	Limitations
	Update a Server to Use a Custom Domain
	See Also

	Working with Tags on AWS OpsWorks for Puppet Enterprise Resources
	How Tags Work in AWS OpsWorks for Puppet Enterprise
	Add and Manage Tags in OpsWorks for Puppet Enterprise (Console)
	Add Tags to a New OpsWorks for Puppet Enterprise Server (Console)
	Add Tags to a New Backup (Console)
	Add or View Tags on an Existing Server (Console)
	Add or View Tags on an Existing Backup (Console)
	Delete Tags from a Server (Console)
	Delete Tags from a Backup (Console)

	Add and Manage Tags in OpsWorks for Puppet Enterprise (CLI)
	Add Tags to a New OpsWorks for Puppet Enterprise Server (CLI)
	Add Tags to a New Backup (CLI)
	Add Tags to Existing Servers or Backups (CLI)
	List Resource Tags (CLI)
	Delete Tags from a Resource (CLI)

	See Also

	Back Up and Restore an OpsWorks for Puppet Enterprise Server
	Back Up an OpsWorks for Puppet Enterprise Server
	Automated Backups
	Manual Backups
	Delete backups

	Restore an OpsWorks for Puppet Enterprise Server from a Backup

	System Maintenance in OpsWorks for Puppet Enterprise
	Configuring system maintenance
	Configuring system maintenance by using the AWS CLI

	Starting system maintenance on demand
	Restoring custom configurations and files after maintenance

	Adding Nodes Automatically in OpsWorks for Puppet Enterprise
	Step 1: Create an IAM Role to Use as Your Instance Profile
	Step 2: Create Instances by Using an Unattended Association Script

	Disassociate a Node from an OpsWorks for Puppet Enterprise Server
	See Also

	Delete an OpsWorks for Puppet Enterprise Server
	Step 1: Disassociate Managed Nodes
	Step 2: Delete the Server
	See Also

	How to migrate an OpsWorks for Puppet Enterprise server to Amazon Elastic Compute Cloud (Amazon EC2)
	Step 1: Contact Puppet to purchase a license
	Step 2: Get details about your OpsWorks for Puppet Enterprise server
	Step 3: Make a backup of your OpsWorks for Puppet Enterprise server
	Step 4: Launch a new EC2 instance
	(Optional) Step 4.1: Create and attach an Elastic IP

	Step 5: Install Puppet Enterprise on the new EC2 instance
	Step 6: Restore the backup on the new EC2 instance
	Step 7: Configure your Puppet license
	Step 8: Migrate your nodes
	Step 8.1: For BYODC (Bring Your Own Domain and Certificate)
	Step 8.2: For OpsWorks endpoint
	Step 8.2.1: Copy the uninstaller from the Puppet server
	Step 8.2.2: Download the uninstaller and run it on a node
	Step 8.2.3: Reinstall the Puppet agent on a node
	Step 8.2.3.1: Install the Puppet agent with the correct configuration
	Step 8.2.3.2: Accept the certificate in the Puppet console
	Step 8.2.3.3: Check the node into the Puppet Enterprise server

	Step 9: Delete your OpsWorks for Puppet Enterprise server

	Logging OpsWorks for Puppet Enterprise API Calls with AWS CloudTrail
	OpsWorks for Puppet Enterprise Information in CloudTrail
	Understanding OpsWorks for Puppet Enterprise Log File Entries

	Troubleshooting OpsWorks for Puppet Enterprise
	General troubleshooting tips
	Troubleshooting specific errors
	Server is in a Connection lost state
	Server creation fails with "requested configuration is currently not supported" message
	Unable to create the server's Amazon EC2 instance
	Service role error prevents server creation
	Elastic IP address limit exceeded
	Unattended node association fails
	System maintenance fails
	Service role or instance profile error prevents system maintenance

	Additional help and support

	AWS OpsWorks for Chef Automate
	Region Support for AWS OpsWorks for Chef Automate
	AWS OpsWorks for Chef Automate End of Life FAQs
	How will existing users be affected by this End of Life?
	What happens to my servers if I don’t take any action?
	What alternatives can I transition to?
	Is the service still accepting new customers?
	Will the End of Life affect all AWS Regions at the same time?
	What level of technical support is available?
	I am a current customer of OpsWorks for Chef Automate and I need to launch a server in an account which was not using the service previously. Am I able to do this?
	Will there be any major feature releases over the next year?

	Upgrade an AWS OpsWorks for Chef Automate Server to Chef Automate 2
	Prerequisites for Upgrading to Chef Automate 2
	About the Upgrade Process
	Upgrade to Chef Automate 2 (Console)
	Upgrade to Chef Automate 2 (CLI)
	Roll Back an AWS OpsWorks for Chef Automate Server to Chef Automate 1 (CLI)
	See Also

	Getting Started with AWS OpsWorks for Chef Automate
	Prerequisites
	Set Up a VPC
	Prerequisites for Using a Custom Domain (Optional)
	Set Up a Custom Domain
	Get a Certificate
	Get a Private Key

	Set Up an EC2 Key Pair (Optional)

	Create a Chef Automate Server
	Create a Chef Automate server in the AWS Management Console
	Create a Chef Automate server by using the AWS CLI

	Configure the Chef Server Using the Starter Kit
	Prerequisites
	Explore the Starter Kit Contents
	Set Up Your Chef Repository
	Use Policyfile.rb to Get Cookbooks from a Remote Source
	(Alternate) Use Berkshelf to Get Cookbooks from a Remote Source
	(Optional) Configure knife to Work with a Custom Domain

	Add Nodes for the Chef Server to Manage
	Add nodes individually
	(Optional) Specify the URL of your Chef Automate Server Root CA
	Supported Operating Systems
	Add Nodes with Knife

	Add nodes automatically in AWS OpsWorks for Chef Automate
	Supported Operating Systems
	Step 1: Create an IAM Role to Use as Your Instance Profile
	Step 2: Install the Chef Client Cookbook
	Step 3: Create Instances by Using an Unattended Association Script
	Other Methods of Automating Repeated Runs of chef-client
	Related Topics

	Sign in to the Chef Automate dashboard

	Create an AWS OpsWorks for Chef Automate Server by using AWS CloudFormation
	Prerequisites
	Create a Chef Automate Server in AWS CloudFormation
	Create a Chef Automate Server by using AWS CloudFormation (Console)
	Create a Chef Automate Server by using AWS CloudFormation (CLI)

	Update an AWS OpsWorks for Chef Automate Server to Use a Custom Domain
	Prerequisites
	Limitations
	Update a Server to Use a Custom Domain
	See Also

	Regenerate the starter kit for an AWS OpsWorks for Chef Automate server
	Regenerate the AWS OpsWorks for Chef Automate starter kit with the AWS CLI

	Working with Tags on AWS OpsWorks for Chef Automate Resources
	How Tags Work in AWS OpsWorks for Chef Automate
	Add and Manage Tags in AWS OpsWorks for Chef Automate (Console)
	Add Tags to a New AWS OpsWorks for Chef Automate Server (Console)
	Add Tags to a New Backup (Console)
	Add or View Tags on an Existing Server (Console)
	Add or View Tags on an Existing Backup (Console)
	Delete Tags from a Server (Console)
	Delete Tags from a Backup (Console)

	Add and Manage Tags in AWS OpsWorks for Chef Automate (CLI)
	Add Tags to a New AWS OpsWorks for Chef Automate Server (CLI)
	Add Tags to a New Backup (CLI)
	Add Tags to Existing Servers or Backups (CLI)
	List Resource Tags
	Delete Tags from a Resource

	See Also

	Back Up and Restore an AWS OpsWorks for Chef Automate Server
	Back Up an AWS OpsWorks for Chef Automate Server
	Automated Backups
	Manual Backups
	Delete backups

	Restore an AWS OpsWorks for Chef Automate Server from a Backup

	System Maintenance in AWS OpsWorks for Chef Automate
	Ensuring nodes trust the AWS OpsWorks Certification Authority
	Configuring system maintenance
	Configuring system maintenance by using the AWS CLI

	Starting system maintenance on demand
	Restoring custom configurations and files after maintenance

	Compliance Scans in AWS OpsWorks for Chef Automate
	Compliance in Chef Automate 2.0
	Running Compliance Scan Jobs with Chef Automate 2.0
	(Optional, Chef Automate 2.0) Setting Up Compliance with the Audit Cookbook
	Running a Compliance Scan
	(Optional) Resolving Noncompliant Results

	Compliance in Chef Automate 1.x
	(Optional, Chef Automate 1.x) Setting Up Chef Compliance
	Running a Compliance Scan
	(Optional) Resolving Noncompliant Results

	Updates to Compliance
	Community and Custom Compliance Profiles
	See Also

	Disassociate a Node from an AWS OpsWorks for Chef Automate Server
	Related Topics

	Delete an AWS OpsWorks for Chef Automate Server
	Step 1: Disassociate Managed Nodes
	Step 2: Delete the Server

	Reset Chef Automate Dashboard Credentials
	Logging AWS OpsWorks for Chef Automate API Calls with AWS CloudTrail
	AWS OpsWorks for Chef Automate Information in CloudTrail
	Understanding AWS OpsWorks for Chef Automate Log File Entries

	Troubleshooting AWS OpsWorks for Chef Automate
	General troubleshooting tips
	Troubleshooting specific errors
	Server is in a Connection lost state
	Managed node shows up in the Chef Automate dashboard in the Missing column
	Cannot create a Chef vault; knife vault command fails with errors
	Server creation fails with "requested configuration is currently not supported" message
	Chef server doesn't recognize organization names added in the Chef Automate dashboard
	Unable to create the server's Amazon EC2 instance
	Service role error prevents server creation
	Elastic IP address limit exceeded
	Cannot sign into the Chef Automate dashboard
	Unattended node association fails
	System maintenance fails
	Service role or instance profile error prevents system maintenance

	Additional help and support

	Security in AWS OpsWorks Configuration Management (CM)
	Data Protection in AWS OpsWorks CM
	Integration with AWS Secrets Manager

	Data Encryption
	Encryption at Rest
	Encryption in Transit
	Key Management

	Identity and Access Management for AWS OpsWorks CM
	Audience
	Authenticating With Identities
	AWS account root user
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	How AWS OpsWorks CM Works with IAM
	AWS OpsWorks CM Identity-Based Policies
	Actions
	Resources
	Condition Keys
	Examples

	AWS OpsWorks CM and Resource-Based Policies
	Authorization Based on AWS OpsWorks CM Tags
	AWS OpsWorks CM IAM Roles
	Using Temporary Credentials with AWS OpsWorks CM
	Service-Linked Roles
	Service Roles
	Choosing an IAM Role in AWS OpsWorks CM

	AWS OpsWorks CM Identity-Based Policy Examples
	Policy Best Practices
	Allow Users to View Their Own Permissions
	Viewing AWS OpsWorks CM Servers Based on Tags

	Troubleshooting AWS OpsWorks CM Identity and Access
	I Am Not Authorized to Perform an Action in AWS OpsWorks CM
	I Am Not Authorized to Perform iam:PassRole
	I Want to Allow People Outside of My AWS Account to Access My AWS OpsWorks CM Resources

	AWS managed policies for AWS OpsWorks Configuration Management
	AWS managed policy: AWSOpsWorksCMServiceRole
	AWS managed policy: AWSOpsWorksCMInstanceProfileRole
	OpsWorks CM updates to AWS managed policies

	Cross-service confused deputy prevention in AWS OpsWorks CM
	Prevent confused deputy exploits in AWS OpsWorks CM
	Example: Accessing AWS OpsWorks CM servers in a specific region
	Example: Adding more than one server ARN to aws:SourceArn

	Internetwork Traffic Privacy
	Logging and Monitoring in AWS OpsWorks CM
	Compliance Validation for AWS OpsWorks CM
	Resilience in AWS OpsWorks CM
	Infrastructure Security in AWS OpsWorks CM
	Configuration and Vulnerability Analysis in AWS OpsWorks CM
	Security Best Practices for AWS OpsWorks CM

	AWS OpsWorks Stacks
	Stacks
	Layers
	Recipes and LifeCycle Events
	Instances
	Apps
	Customizing your Stack
	Resource Management
	Security and Permissions
	Monitoring and Logging
	CLI, SDK, and AWS CloudFormation Templates
	AWS OpsWorks Stacks End of Life FAQs
	How will existing customers be affected by this End of Life?
	Is AWS OpsWorks Stacks accepting new customers?
	Where should I migrate my existing stacks to?
	Will the End of Life affect all AWS Regions at the same time?
	What level of technical support is available for AWS OpsWorks Stacks?
	Will there be any new feature releases for AWS OpsWorks Stacks?

	Migrating your AWS OpsWorks Stacks applications to AWS Systems Manager Application Manager
	How the script works
	Prerequisites
	Limitations
	Getting started
	Step 1: Prepare your environment for running the script
	Amazon Linux 2
	Amazon Linux
	Ubuntu 18.04, 20.04, 22.04
	Red Hat Enterprise Linux 8
	Windows Server 2019, Windows 10 Enterprise

	Step 2: Download the migration script
	Step 3: Set up your environment to run the script
	Step 4: Run the script
	Step 5: Provision a CloudFormation stack
	Step 6: Review the provisioned resources
	Step 7: Start an instance
	Step 8: Review the instance
	Step 9: Monitor and run operations on your instances using Systems Manager Application Manager

	FAQ
	Which AWS OpsWorks Stacks versions can I migrate?
	Which Chef versions can my migrated instances use?
	Which repository types can I migrate?
	Can I continue using a private Git repository?
	What SSH keys can I use to access my instances?
	Why are my instances automatically scaling in and out?
	Can I turn off Auto Scaling?
	Can I perform kernel and package updates on launched EC2 instances?
	Why don't the EBS volumes in my instances contain any data?
	Why aren't the EBS volumes described in my launch template mounted?
	Where can I find Chef recipe and Mount EBS volume logs?
	Where can I find the debug log for the migration script?
	Does the migration script support CloudFormation template versioning?
	Can I migrate multiple layers?
	How do I create a SecureString parameter?
	How can I protect instances in the new Auto Scaling group from termination events?
	What load balancers are available with the migration script?
	Are custom cookbook configure recipes migrated?
	Can I run deploy and undeploy recipes on my newly created instances?
	Can I change what subnets my Auto Scaling group spans?

	Troubleshooting
	Provided principal is not valid
	Unable to delete CloudFormation stack when Auto Scaling group protected instances are enabled
	Access denied error when providing existing S3 bucket and prefix

	Getting Started with AWS OpsWorks Stacks
	Region Support
	Getting Started with a Sample Stack
	Step 1: Complete the Prerequisites
	Sign up for an AWS account
	Create an administrative user
	Assign Service Access Permissions

	Step 2: Create a Stack
	Step 3: Start the Instance and Deploy the App
	Step 4: Test the Deployed App on the Instance
	Step 5: Explore the Stack's Settings
	Step 6: Explore the Layer's Settings
	Step 7: Explore the Instance's Settings and Logs
	Step 8: Explore the App's Settings
	Step 9: Explore Layer Monitoring Reports
	Step 10: Explore Additional Stack Settings
	Step 11 (Optional): Clean Up
	Next Steps

	Getting Started with Linux Stacks
	Step 1: Complete the Prerequisites
	Sign up for an AWS account
	Create an administrative user
	Assign Service Access Permissions

	Step 2: Create a Stack
	Step 3: Add a Layer to the Stack
	Step 4: Specify the App to Deploy to the Instance
	Step 5: Launch an Instance
	Step 6: Deploy the App to the Instance
	Step 7: Test the Deployed App on the Instance
	Step 8 (Optional): Clean Up
	Next Steps
	Learning More: Explore the Cookbook Used in This Walkthrough
	Learning More: Explore the App Used in This Walkthrough

	Getting Started with Windows Stacks
	Step 1: Complete the Prerequisites
	Sign up for an AWS account
	Create an administrative user
	Assign Service Access Permissions
	Ensure AWS OpsWorks Stacks Users are Added to Your Domain

	Step 2: Create a Basic Application Server Stack
	Step 2.1: Create the Stack
	Step 2.2: Authorize RDP Access
	Step 2.3: Implement a Custom Cookbook
	A Quick Introduction to Cookbooks and Recipes
	Implement a Recipe to Install and Start IIS
	Enable the Custom Cookbook

	Step 2.4: Add an IIS Layer
	Create a Layer
	Add an Instance to the Layer and Start It
	Confirm that IIS is Installed and Running

	Step 2.5: Deploy an App
	Create the Application and Store It in a Repository
	Implement a Recipe to Deploy the Application
	Update the Instance's Cookbooks
	Add the Recipe to the Custom IIS Layer
	Add an App
	Deploy the App and Open the Application

	Step 3: Scale Out IISExample
	Add a Load Balancer

	Next Steps

	Getting Started with Cookbooks in AWS OpsWorks Stacks
	Step 1: Create the Cookbook
	Step 2: Create the Stack and its Components
	Step 3: Run and Test the Recipe
	Step 4: Update the Cookbook to Install a Package
	Step 5: Update the Cookbook on the Instance and Run the Recipe
	Step 6: Update the Cookbook to Add a User
	Step 7: Update the Cookbook to Create a Directory
	Step 8: Update the Cookbook to Create and Copy Files
	Step 9: Update the Cookbook to Run a Command
	Step 10: Update the Cookbook to Run a Script
	Step 11: Update the Cookbook to Manage a Service
	Step 12: Update the Cookbook to Use Custom JSON
	Step 13: Update the Cookbook to Use Data Bags
	Step 14: Update the Cookbook to Use Iteration
	Step 15: Update the Cookbook to Use Conditional Logic
	Step 16: Update the Cookbook to Use Community Cookbooks
	Step 17: (Optional) Clean Up
	Next Steps

	AWS OpsWorks Stacks Best Practices
	Best Practices: Root Device Storage for Instances
	Best Practices: Optimizing the Number of Application Servers
	Best Practices: Managing Permissions
	Best Practices: Managing and Deploying Apps and Cookbooks
	Maintaining Consistency
	Deploying Code to Online Instances
	Using a Rolling Deployment
	Using Separate Stacks
	Using Development, Staging, and Production Stacks
	Using a Blue-Green Deployment Strategy

	Managing a Backend Database

	Packaging Cookbook Dependencies Locally
	Packaging Dependencies Locally in Chef 12
	Packaging Dependencies Locally for One Cookbook
	Packaging Dependencies Locally for Multiple Cookbooks
	Additional resources

	Stacks
	Migrating stacks from Amazon EC2-Classic to a VPC
	Prerequisites
	Migrate an AWS OpsWorks Stacks stack to a VPC
	See also

	Create a New Stack
	Choose the Type of Stack to Create
	Basic Options
	Advanced Options

	Running a Stack in a VPC
	VPC Basics
	Create a VPC for an AWS OpsWorks Stacks Stack

	Update a Stack
	Clone a Stack
	Run AWS OpsWorks Stacks Stack Commands
	Using Custom JSON
	Delete a Stack
	Deleting Other AWS Resources Used by a Stack

	Layers
	OpsWorks Layer Basics
	Creating an OpsWorks Layer
	Editing an OpsWorks Layer's Configuration
	General Settings
	Recipes
	Network
	EBS Volumes
	Specifying a Mount Point

	Security
	CloudWatch Logs
	Tags

	Using Auto Healing to Replace Failed Instances
	Deleting an OpsWorks Layer

	Elastic Load Balancing Layer
	Amazon RDS Service Layer
	Specifying Security Groups
	Registering an Amazon RDS Instance with a Stack
	Updating the Stack's Service Role

	Associating Amazon RDS Service Layers with Apps
	Removing an Amazon RDS Service Layer from a Stack

	ECS Cluster Layers
	Adding an ECS Cluster Layer to a Stack
	Managing the ECS Cluster
	Deleting an ECS Cluster Layer from a Stack

	Custom AWS OpsWorks Stacks Layers
	Per-layer Operating System Package Installations

	Instances
	Using AWS OpsWorks Stacks Instances
	AWS OpsWorks Stacks operating systems
	Linux operating systems
	Amazon Linux
	Ubuntu LTS
	CentOS
	Red Hat Enterprise Linux

	Microsoft Windows Server

	Adding an Instance to a Layer
	Using Custom AMIs
	How Custom AMIs work with AWS OpsWorks Stacks
	Startup Behavior
	Choosing a Layer
	Handling Applications

	Creating a Custom AMI for AWS OpsWorks Stacks
	Create a Custom AMI using Amazon EC2
	Create a Custom Linux AMI from an AWS OpsWorks Stacks Instance
	Create a Custom Windows AMI
	Creating a Custom Windows AMI with Sysprep
	Creating a Custom Windows AMI Without Sysprep
	Adding a New Instance by Using a Custom Windows AMI

	Manually Starting, Stopping, and Rebooting 24/7 Instances
	Starting or Restarting an Instance
	Stopping an Instance
	Rebooting an Instance

	Managing load with time-based and load-based instances
	Using automatic time-based scaling
	Adding a time-based instance to a layer
	Configuring a time-based instance

	Using automatic load-based scaling
	How load-based scaling differs from auto healing

	Using Computing Resources Created Outside of AWS OpsWorks Stacks
	Registering an Instance with an AWS OpsWorks Stacks Stack
	Walkthrough: Register an Instance from Your Workstation
	Step 1: Create a Stack and an Instance
	Step 2: Install and Configure the AWS CLI
	Step 3: Register the Instance with the EC2Register Stack

	Registering Amazon EC2 and On-premises Instances
	Preparing the Instance
	On-premises Instances
	Amazon EC2 Instances

	Installing and Configuring the AWS CLI
	Using an IAM Role
	Using Installed Credentials

	Registering the Instance
	Using the register Command
	Example register Commands
	Instance Registration Policies
	The AWSOpsWorksRegisterCLI_EC2 Policy
	The AWSOpsWorksRegisterCLI_OnPremises Policy
	(Deprecated) The AWSOpsWorksRegisterCLI Policy

	Managing Registered Instances
	Assigning a Registered Instance to a Layer
	Unassigning a Registered Instance
	Deregistering a Registered Instance
	Registered Instance Life Cycle
	Registering
	Running Setup
	Registering
	Assigning
	Setup Failed

	Registered
	Assigning
	Online
	Setup Failed
	Unassigning
	Initial Setup Configuration Changes

	Editing the Instance Configuration
	Deleting AWS OpsWorks Stacks Instances
	Using SSH to Log In to a Linux Instance
	Using the Built-in MindTerm SSH Client
	Using a Third-Party SSH Client

	Using RDP to Log In to a Windows Instance
	Providing a Security Group that Allows RDP Access
	Logging in As an Ordinary User
	Logging in As Administrator

	Apps
	Adding Apps
	Configuring an App
	Settings
	Application Source
	HTTP Archive
	Amazon S3 Archive
	Git Repository
	Other Repositories

	Data Sources
	Environment Variables
	Domain and SSL Settings

	Deploying Apps
	Other Deployment Commands

	Editing Apps
	Connecting an Application to a Database Server
	Using a Custom Recipe
	Connecting to a Database Server for a Linux Stack

	Using Environment Variables
	Passing Data to Applications
	Using Git Repository SSH Keys
	Using Custom Domains
	Running Multiple Applications on the Same Application Server

	Using SSL
	Step 1: Install and Configure OpenSSL
	Step 2: Create a Private Key
	Step 3: Create a Certificate Signing Request
	Step 4: Submit the CSR to Certificate Authority
	Step 5: Edit the App

	Cookbooks and Recipes
	Cookbook Repositories
	Chef Versions
	Implementing Recipes for Chef 12.2 Stacks
	Implementing Recipes for Chef 12 Stacks
	Implementing Recipes for Chef 11.10 Stacks
	Cookbook Installation and Precedence
	Using Chef Search
	Using Data Bags
	Using Berkshelf

	Implementing Recipes for Chef 11.4 Stacks
	Migrating an Existing Linux Stack to a new Chef Version

	Ruby Versions
	Installing Custom Cookbooks
	Specifying a Custom Cookbook Repository
	HTTP Archive
	Amazon S3 Archive
	Git Repository
	Subversion Repository

	Updating Custom Cookbooks
	Executing Recipes
	AWS OpsWorks Stacks Lifecycle Events
	Automatically Running Recipes
	Manually Running Recipes

	Resource Management
	Registering Resources with a Stack
	Registering Amazon EBS Volumes with a Stack
	Registering Elastic IP Addresses with a Stack
	Registering Amazon RDS Instances with a Stack

	Attaching and Moving Resources
	Assigning Amazon EBS Volumes to an Instance
	Associating Elastic IP Addresses with an Instance
	Attaching Amazon RDS Instances to an App

	Detaching Resources
	Unassigning Amazon EBS Volumes
	Disassociating Elastic IP Addresses
	Detaching Amazon RDS Instances

	Deregistering Resources
	Deregistering Amazon EBS Volumes
	Deregistering Elastic IP Addresses
	Deregistering Amazon RDS Instances

	Tags
	Setting Tags at the Stack Level
	Setting Tags at the Layer Level
	Managing Tags with the AWS CLI
	Tag Limitations

	Monitoring
	Monitoring Stacks using Amazon CloudWatch
	AWS OpsWorks Stacks Metrics
	Dimensions for AWS OpsWorks Stacks Metrics
	Stack Metrics
	Layer Metrics
	Instance Metrics

	Logging AWS OpsWorks Stacks API Calls with AWS CloudTrail
	AWS OpsWorks Stacks Information in CloudTrail
	Understanding AWS OpsWorks Stacks Log File Entries

	Using Amazon CloudWatch Logs with AWS OpsWorks Stacks
	Prerequisites
	Enabling CloudWatch Logs
	Turning Off CloudWatch Logs
	Deleting Streamed Logs from CloudWatch Logs

	Managing Your Logs in CloudWatch Logs
	Configuring Chef 12.2 Windows Layers to Use CloudWatch Logs

	Monitoring Stacks using Amazon CloudWatch Events

	Security and Permissions
	Managing AWS OpsWorks Stacks User Permissions
	Managing AWS OpsWorks Stacks Users
	Users and Regions
	Creating an AWS OpsWorks Stacks Administrative User
	Creating IAM users for AWS OpsWorks Stacks
	Importing Users into AWS OpsWorks Stacks
	Unix IDs and Users Created Outside AWS OpsWorks Stacks

	Editing AWS OpsWorks Stacks User Settings

	Granting AWS OpsWorks Stacks Users Per-Stack Permissions
	Setting a User's Permissions
	Viewing your Permissions
	Using IAM Condition Keys to Verify Temporary Credentials

	Managing AWS OpsWorks Stacks Permissions by Attaching an IAM Policy
	Example Policies
	Administrative Permissions
	Manage Permissions
	Deploy Permissions

	AWS OpsWorks Stacks Permissions Levels

	Allowing AWS OpsWorks Stacks to Act on Your Behalf
	Cross-service confused deputy prevention in AWS OpsWorks Stacks
	Prevent confused deputy exploits in AWS OpsWorks Stacks
	Example: Accessing stacks in a specific region
	Example: Adding more than one stack ARN to aws:SourceArn

	Specifying Permissions for Apps Running on EC2 instances
	Managing SSH Access
	Installing an Amazon EC2 Key
	Registering a User's Public SSH Key

	Managing Linux Security Updates
	Security Updates

	Using Security Groups
	Security Groups

	AWS OpsWorks Stacks Support for Chef 12 Linux
	Overview
	Moving to Chef 12
	Supported Operating Systems
	Supported Instance Types
	More Information
	Moving Stack Settings from Attributes to Data Bags

	Support for Previous Chef Versions in AWS OpsWorks Stacks
	Chef 11.10 and Earlier Versions for Linux
	Getting Started with Chef 11 Linux Stacks
	Step 1: Complete the Prerequisites
	Sign up for an AWS account
	Create an administrative user
	Assign Service Access Permissions to Your User

	Step 2: Create a Simple Application Server Stack - Chef 11
	Step 2.1: Create a Stack - Chef 11
	Step 2.2: Add a PHP App Server Layer - Chef 11
	Step 2.3: Add an Instance to the PHP App Server Layer - Chef 11
	Step 2.4: Create and Deploy an App - Chef 11

	Step 3: Add a Back-end Data Store
	Step 3.1: Add a Back-end Database
	Step 3.2: Update SimplePHPApp
	A Short Digression: Cookbooks, Recipes, and AWS OpsWorks Stacks Attributes
	Recipes and Attributes
	Set Up the Database
	Connect the Application to the Database

	Step 3.3: Add the Custom Cookbooks to MyStack
	Step 3.4: Run the Recipes
	Step 3.5: Deploy SimplePHPApp, Version 2
	Step 3.6: Run SimplePHPApp

	Step 4: Scale Out MyStack
	Step 4.1: Add a Load Balancer
	Step 4.2: Add PHP App Server Instances
	Step 4.3: Monitor MyStack

	Step 5: Delete MyStack

	Creating Your First Node.js Stack
	Prerequisites
	Implementing the Application
	The Package Descriptor
	The Layout File
	The Code File

	Creating the Database Server and Load Balancer
	Creating the Stack
	Deploying the Application
	What Next?

	Customizing AWS OpsWorks Stacks
	Customizing AWS OpsWorks Stacks Configuration by Overriding Attributes
	Attribute Precedence
	Overriding Attributes With Custom JSON
	How to Specify Custom JSON
	When to Specify Custom JSON
	Custom JSON Best Practices

	Overriding AWS OpsWorks Stacks Attributes Using Custom Cookbook Attributes

	Extending AWS OpsWorks Stacks Configuration Files Using Custom Templates
	Extending a Layer
	Using Recipes to Run Scripts
	Using Chef Deployment Hooks
	Running Cron Jobs on Linux Instances
	Installing and Configuring Packages on Linux Instances

	Creating a Custom Tomcat Server Layer
	Attributes File
	Setup Recipes
	tomcat::setup
	tomcat::install
	tomcat::service
	tomcat::container_config
	Tomcat Environment Configuration File
	Server.xml Configuration File

	tomcat::apache_tomcat_bind

	Configure Recipes
	tomcat::configure
	tomcat::context

	Deploy Recipes
	Create a Stack and Run an Application
	The SimpleJSP Application
	Create a Stack

	Stack Configuration and Deployment Attributes
	Configure Attributes
	Deployment Attributes

	Cookbooks 101
	Vagrant and Test Kitchen
	Vagrant
	Test Kitchen

	Cookbook Basics
	Recipe Structure
	Resources
	Flow Control
	Included Recipes

	Example 1: Installing Packages
	Example 2: Managing Users
	Example 3: Creating Directories
	Example 4: Adding Flow Control
	Iteration
	Conditional Logic

	Example 5: Using Attributes
	Example 6: Creating Files
	Installing a File from a Cookbook
	Creating a File from a Template

	Example 7: Running Commands and Scripts
	Running Commands
	Running Scripts

	Example 8: Managing Services
	Defining and Starting a Service
	Using notifies to Start or Restart a Service

	Example 9: Using Amazon EC2 Instances
	Sign up for an AWS account
	Create an administrative user
	Configuring .kitchen.yml for Amazon EC2
	Running the Recipe

	Next Steps

	Implementing Cookbooks for AWS OpsWorks Stacks
	Running a Recipe on an AWS OpsWorks Stacks Linux Instance
	Creating and Running the Recipe
	Executing the Recipe Automatically
	Troubleshooting and Fixing Recipes

	Running a Recipe on a Windows Instance
	Enabling RDP Access
	Creating and Running the Recipe
	Executing the Recipe Automatically

	Running a Windows PowerShell Script
	Mocking the Stack Configuration and Deployment Attributes on Vagrant
	Using Stack Configuration and Deployment Attribute Values
	Obtaining Attribute Values Directly
	Obtaining Attribute Values with Chef Search
	Using Search on a Linux Stack
	Using Search on a Windows Stack
	Using the node Search Index on Windows Stacks
	Using AWS OpsWorks Stacks-Specific Search Indexes on Windows Stacks

	Using an External Cookbook on a Linux Instance: Berkshelf
	Using Berkshelf with Test Kitchen and Vagrant
	Using Berkshelf with AWS OpsWorks Stacks

	Using the SDK for Ruby: Downloading Files from Amazon S3
	Using the SDK for Ruby on a Vagrant Instance
	Using the SDK for Ruby on an AWS OpsWorks Stacks Linux Instance
	Using the SDK for Ruby on an AWS OpsWorks Stacks Windows Instance

	Installing Windows Software
	Installing a Windows Feature: IIS
	Installing a Package on a Windows Instance

	Overriding Built-In Attributes
	Overriding Built-In Templates

	Load Balancing a Layer
	Migrating from Chef Server to AWS OpsWorks Stacks
	Mapping Roles to Layers
	Using Data Bags
	Using Chef Search
	Managing Cookbooks and Recipes
	Storing Cookbooks
	Executing Recipes

	Using Chef Environments

	AWS OpsWorks Stacks Layer Reference
	HAProxy Layer Reference
	HAProxy AWS OpsWorks Stacks Layer
	How the HAProxy Layer Works
	Statistics Page

	MySQL Layer Reference
	MySQL OpsWorks Layer
	Application Server Layers Reference
	AWS Flow (Ruby) Layer Reference
	Java App Server Layer Reference
	Node.js App Server Layer Reference
	PHP App Server Layer Reference
	Rails App Server Layer Reference
	Static Web Server Layer Reference

	Application Server Layers
	AWS Flow (Ruby) Layer
	Java App Server AWS OpsWorks Stacks Layer
	Disabling SSLv3 for Apache Servers
	Custom Configuration
	Deploying Java Apps
	Deploying a JSP App
	Deploying a JSP App with a Back-End Database

	Node.js App Server AWS OpsWorks Stacks Layer
	Deploying Node.js Apps

	PHP App Server AWS OpsWorks Stacks Layer
	Rails App Server AWS OpsWorks Stacks Layer
	Disabling SSLv3 for Rails Servers
	Connecting to a Database
	Deploying Ruby on Rails Apps

	Static Web Server AWS OpsWorks Stacks Layer

	ECS Cluster Layer Reference
	Custom Layer Reference
	Other Layers Reference
	Ganglia Layer Reference
	Memcached Layer Reference

	Other Layers
	Ganglia Layer
	View the Ganglia Statistics

	Memcached

	Cookbook Components
	Attributes
	node.
	type
	attribute name
	value

	Templates
	Recipes

	Stack Configuration and Deployment Attributes: Linux
	opsworks Attributes
	applications
	instance Attributes
	layers Attributes
	rails_stack Attributes
	stack Attributes
	Other Top-level opsworks Attributes

	opsworks_custom_cookbooks Attributes
	dependencies Attributes
	ganglia Attributes
	mysql Attributes
	passenger Attributes
	opsworks_bundler Attributes
	deploy Attributes
	Other Top-Level Attributes

	Built-in Cookbook Attributes
	apache2 Attributes
	deploy Attributes
	haproxy Attributes
	memcached Attributes
	mysql Attributes
	nginx Attributes
	opsworks_berkshelf Attributes
	opsworks_java Attributes
	passenger_apache2 Attributes
	ruby Attributes
	unicorn Attributes

	Troubleshooting Chef 11.10 and Earlier Versions for Linux
	Chef Logs for Chef 11.10 and Earlier Versions for Linux

	Using AWS OpsWorks Stacks with Other AWS Services
	Using a Back-end Data Store
	How to Set up a Database Connection
	How to Connect an Application Server Instance to Amazon RDS
	Create an Amazon RDS MySQL Database
	Customize the Stack to Connect to the RDS Database

	Using ElastiCache Redis as an In-Memory Key-Value Store
	Step 1: Create an ElastiCache Redis Cluster
	Step 2: Set up a Rails Stack
	Step 3: Create and Deploy a Custom Cookbook
	Step 4: Assign the Recipe to a LifeCycle Event
	Step 5: Add Access Information to the Stack Configuration JSON
	Step 6: Deploy and run the App

	Using an Amazon S3 Bucket
	Step 1: Create an Amazon S3 Bucket
	Step 2: Create a PHP App Server Stack
	Step 3: Create and Deploy a Custom Cookbook
	Step 4: Assign the Recipes to LifeCycle Events
	Step 5: Add Access Information to the Stack Configuration and Deployment Attributes
	Step 6: Deploy and Run PhotoApp

	Using AWS CodePipeline with AWS OpsWorks Stacks
	AWS CodePipeline with AWS OpsWorks Stacks - Chef 12 Stacks
	Prerequisites
	Other Supported Scenarios
	Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks
	Step 2: Configure your stack and layer to use custom cookbooks
	Step 3: Upload app code to an Amazon S3 bucket
	Step 4: Add your app to AWS OpsWorks Stacks
	Step 5: Create a pipeline in CodePipeline
	Step 6: Verifying the app deployment in AWS OpsWorks Stacks
	Step 7 (Optional): Update the app code to see CodePipeline redeploy your app automatically
	Step 8 (Optional): Clean up resources

	AWS CodePipeline with AWS OpsWorks Stacks - Chef 11 Stacks
	Prerequisites
	Other Supported Scenarios
	Step 1: Create a stack, layer, and an instance in AWS OpsWorks Stacks
	Step 2: Upload app code to an Amazon S3 bucket
	Step 3: Add your app to AWS OpsWorks Stacks
	Step 4: Create a pipeline in CodePipeline
	Step 5: Verifying the app deployment in AWS OpsWorks Stacks
	Step 6 (Optional): Update the app code to see CodePipeline redeploy your app automatically
	Step 7 (Optional): Clean up resources

	Using the AWS OpsWorks Stacks CLI
	Create an Instance (create-instance)
	Create an Instance with a Default Host Name
	Create an Instance with a Themed Host Name
	Create an Instance with a Custom AMI

	Deploy an App (create-deployment)
	Deploy an App

	List a Stack's Apps (describe-apps)
	List a Stack's Commands (describe-commands)
	List a Stack's Deployments (describe-deployments)
	List a Stack's Elastic IP Addresses (describe-elastic-ips)
	List a Stack's Instances (describe-instances)
	List an Account's Stacks (describe-stacks)
	List a Stack's Layers (describe-layers)
	Execute a Recipe (create-deployment)
	Install Dependencies (create-deployment)
	Update the Stack Configuration (update-stack)

	Debugging and Troubleshooting Guide
	Debugging Recipes
	Logging in to a Failed Instance
	Chef Logs
	Viewing a Chef Log with the Console
	Viewing a Chef Log with the CLI or API
	Viewing a Chef Log on an Instance
	Linux instances
	Windows instances

	Interpreting a Chef Log
	Common Chef Log Errors

	Using the AWS OpsWorks Stacks Agent CLI
	Executing Recipes
	Displaying Chef Logs
	Displaying the Stack Configuration and Deployment JSON

	Common Debugging and Troubleshooting Issues
	Troubleshooting AWS OpsWorks Stacks
	Unable to Manage Instances
	After a Chef Run, Instances Won't Boot
	A Layer's Instances All Fail an Elastic Load Balancing Health Check
	Can't Communicate with an Elastic Load Balancing Load Balancer
	An Imported On-premises Instance Fails to Finish Volume Setup After a Restart
	An EBS Volume Does Not Reattach After a Reboot
	Can't Delete AWS OpsWorks Stacks Security Groups
	Accidentally Deleted an AWS OpsWorks Stacks Security Group
	Chef Log Terminates Abruptly
	Cookbook Does Not Get Updated
	Instances are Stuck at Booting Status
	Instances Unexpectedly Restart
	opsworks-agent Processes are Running on Instances
	Unexpected execute_recipes Commands

	Troubleshooting Instance Registration
	EC2User Is Not Authorized to Perform: ...
	Credential Should Be Scoped to a Valid Region

	AWS OpsWorks Stacks Agent CLI
	agent_report
	get_json
	instance_report
	list_commands
	run_command
	show_log
	stack_state

	AWS OpsWorks Stacks Data Bag Reference
	App Data Bag (aws_opsworks_app)
	Command Data Bag (aws_opsworks_command)
	Amazon ECS Cluster Data Bag (aws_opsworks_ecs_cluster)
	Elastic Load Balancing Data Bag (aws_opsworks_elastic_load_balancer)
	Instance Data Bag (aws_opsworks_instance)
	Layer Data Bag (aws_opsworks_layer)
	Amazon RDS Data Bag (aws_opsworks_rds_db_instance)
	Stack Data Bag (aws_opsworks_stack)
	User Data Bag (aws_opsworks_user)

	OpsWorks Agent Changes
	Chef 12 Agent Releases
	Chef 11.10 Agent Releases

	AWS OpsWorks Stacks Resources
	Reference Guides, Tools, and Support Resources
	AWS Software Development Kits
	Open Source Software

	AWS OpsWorks document history
	Earlier updates

